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o address the re-
lentless increase in 

data rates in wire-
less communication 
systems employing 

advanced modulation schemes, such 
as 5G frequency range (FR) 2 [see Fig-

ure 1(a)], generating mm-wave sig-
nals with minimal integrated phase 
noise (PN) or RMS jitter is of para-
mount concern [1]. Figure 1(b) speci-
fies the required jitter to achieve the 
targeted EVM performance. For in-
stance, for an EVM of less than 3.5%, 
as needed by a 256-QAM 28-GHz car-
rier, the RMS jitter contributed by 
the LO must be below 200 fs. As the 

carrier frequency or the symbol con-
stellation density increases, the re-
quired RMS jitter becomes even more 
stringent. For example, 1024 QAM 
at 39 GHz demands an RMS jitter of  
<50 fs [2], [3], [4].
To reach such good performance, two 
major noise sources, i.e., the oscilla-
tor PN and noise associated with the 
phase detection mechanism in a PLL, 
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should be carefully considered. Under 
the optimal loop bandwidth, the over-
all jitter should be equally contribut-
ed by the oscillator and PD. Note that 
the in-band (IB) PN of a PLL is typically 
dominated by its PD and the preced-
ing reference path, i.e., the XO and its 
low-noise reference buffer [5], [6].

In this article, architectures of 
low-jitter RF and mm-wave PLLs, with 
special emphasis on ADPLLs, are re-
viewed. Finally, PLL benchmarking and 
the future outlook will be discussed.

PLL Architectures
To address the stringent jitter re-
quirements of 5G systems, various 
techniques have been proposed in 
the past decade. Traditional analog 
charge pump (CP)-based PLLs tar-
geting low jitter mainly rely on the 
precise design of high-current CP 
circuitry with accurate up/down cur-
rent matching [I1 and I2 in Figure 2(a)] 
and large analog loop filter compo-
nents (C1, C2, and R1). Moreover, these 
issues become increasingly chal-
lenging in advanced CMOS nodes 
(e.g., below 28 nm) [7], [8], [9]. Addi-
tionally, in a fractional-N operation, 
the nonlinearity in the CP as well as 
in the PFD, exacerbated by the asso-
ciated delta-sigma modulator (DSM), 
will result in a worse IBPN [10]. To 

overcome these difficulties, ADPLLs 
are often utilized, as they are more 
compatible with CMOS scaling [11], 
[12]. Additionally, digital calibration 
and compensation techniques can 
be easily employed to maintain per-
formance across PVT variations [13]. 
However, the conventional ADPLL 
approaches often encounter RMS jit-
ter constraints resulting from the 
resolution and linearity limitations 
of the inverter-delay-based TDC, 
which in turn leads to a less com-
petitive IBPN and IB fractional spurs 
in 5G applications [14], [15].

In response, more complex phase 
detection methods, such as using 
a digital-to-time converter (DTC) to 
prealign the reference and variable 
clocks for the ultimate high-resolu-
tion (but short-range) detection, have 
been proposed [16], [17], [18], [19]. 
As another example, a subsampling 
(SS) PD leverages the high slew rate 
of the oscillator feedback signal by 
sampling it with sharp edges of the 
reference frequency ( )fref  clock [20], 
[21], [22]. This yields a high PD gain 
with extremely high resolution. How-
ever, due to the limited linearity of 
the oscillator waveform, the PLL may 
lose lock in the presence of oscilla-
tor perturbations [23], necessitating 
an additional frequency-locked loop 

(FLL) to ensure reliable locking [24]. 
Alternatively, a reference sampling 
(RS) PLL utilizes a frequency-divided 
signal from the oscillator feedback 
path to directly sample the reference 
sinusoidal XO waveform [25]. The 
wide linear range and limited slew 
rate of a typical low-cost XO (below 
50 MHz) provide excellent locking ro-
bustness over a broad locking range. 
However, this introduces challenges 
related to resolving the issue of the 
low gain of the time-to-voltage con-
version [26].

Due to the practical limitations in 
the PN performance of oscillators at 
mm-wave frequencies, a fairly large 
PLL bandwidth is necessary to achieve 
jitter below 100 fs. However, there is 
a tradeoff between the achievable PLL 
bandwidth and ,fref  and therefore, the 
authors of [27], [28], [29], and [30] take 
advantage of using rather “exotic” XOs 
with an extremely high reference fre-
quency (e.g., >250 MHz). To keep the 
use of an inexpensive XO with ≤50 
MHz, various reference multiplication 
techniques have been introduced. 
Unfortunately, these methods typi-
cally require an additional delay chain 
and calibration for the proper phase 
relationship, leading to increased 
power consumption and area [31], [32], 
[33]. Recently, a more efficient solution 
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FIGURE 1: (a) 5G/6G communication standards at various FRs [FR1–FR3 and FR terahertz (THz)] and (b) the target RMS jitter for various types of 
complex modulation schemes and carrier frequencies.
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points to the oversampling of the fre-
quency reference waveform source, 
which can enhance the PD rate beyond 
FREF. This is achieved by not only 
locking at the zero-crossing points of 
the sinusoidal reference waveform but 
also by distributing the locking points 
across the entire reference period [34], 
[35], [36], [37], [38].

In the following section, we re-
view the counter-based and DTC-
assisted ADPLL architectures before 
discussing the evolution leading to 
the oversampling-based ADPLLs. We 
then conclude with implementation 
examples.

ADPLL
Figure 2(b) is a block diagram of 
the natively fractional-N ADPLL-
based frequency synthesizer, which 
operates in a digitally synchronous 
fixed-point phase domain [39].1 The 
variable phase signal PHV[i] is gen-
erated by counting the rising edges 
of the DCO’s clock through a digital 
counter. For fine phase detection, 
a TDC measures and digitizes the 
phase difference ( )e  between the ref-
erence clock (FREF) and the oscillator 
feedback signal (CKV). Meanwhile, 
the reference phase signal PHR[k] 
is derived by accumulating the fre-
quency command word (FCW)2 at 
each rising edge of the retimed FREF 
clock. The synchronous arithmetic 
PD computes the difference between 
the sampled variable phase and the 
reference phase to determine the 
phase error (PHE) PHE[k]. This  can 
be mathematically modeled as 

[ ]kPHE = [ ] [ ] .k kPHR PHV e- +  The 
digital PHE is processed by a sim-
ple digital loop filter and then nor-
malized by the DCO gain ( )KDCO  to 
produce the oscillator tuning word 
(OTW). This approach ensures that 
the extensive digital logic is clocked 
after the quiet phase of the PHE de-
tection by the TDC.

1Note that it is also common for digital PLL 
architectures to utilize a multimodulus 
divider (MMD) with a DSM in the feedback 
path to achieve the fractional-N operation 
[17], [18]. For a more detailed comparison 
between the two approaches, see [40].
2Historically, this is referred to as “N.”

Figure 3 provides more details 
on how the reference phase PHR[k] 
(shown in green) aligns with the vari-
able phase (shown in red) when the 
latter is perfectly locked, lagging, or 
leading against the former. For the 
sake of illustration, the FCW, which 
denotes the expected frequency mul-
tiplication ratio, is 3.2. Since the oscil-
lation time period is an inverse of the 
oscillating frequency, there will be  
3.2 clock cycles of CKV per single cy-
cle of FREF. Also, we assume that the 

initial  phase is zero (i.e., the FREF 
and CKV rising edges are aligned at 
time zero).

It can be observed that in the 
fractional-N operation, the frac-
tional relation between the refer-
ence phase and the variable phase 
changes across one oscillator pe-
riod. Therefore, this sets the re-
quired range for the fractional 
phase measurement via a TDC, 
which is the key component to  
ensure low quantization noise. The 
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IBPN due to the TDC quantization 
can be modeled as

		
fT

t 1
12
2

L
RV

2 2
resTr

=
^ ch m � (1)

where L  is the PN contributed by 
the TDC resolution tresT  and TV is 
the period of the DCO signal fed 
back into the TDC.

As shown in Figure 4, as the CMOS 
technology scales down from the  
90-nm node to 28 nm, the typical 
resolution of a delay line-based TDC 
[39], [41] is reduced from 20 to 10 ps 
but can further go down to 2–3 ps in 

advanced FinFETs (and GAA nodes) 
[42]. This results in a reduction of 
the IBPN from −75 to −81 dBc/Hz 
when considering a 30-GHz carrier. 
However, to further lower the total 
RMS jitter below this limit, alterna-
tive techniques must be considered. 
In the past two decades, there have 
been various techniques proposed 
to lower ,tresT  e.g., Vernier delay 
lines, time amplifiers, and so on. The 
downside of such high resolution is 
the need to cover the whole oscilla-
tor period, resulting in either high 
power consumption or poor nonlin-
earity causing high fractional spurs.

As a means to alleviate the above 
issue, Figure 2(c) illustrates a DTC-
assisted ADPLL architecture. The 
DTC can be controlled by the frac-
tional part of the accumulated ref-
erence phase (PHRF[k]) to delay the 
edge of the reference clock (FREFD-

LY2) in order to align it with the os-
cillator feedback signal (CKV). Note 
that due to the much higher rate 
of the oscillator feedback signal 
clock, a snapshot circuit is intro-
duced to allow only the important 
edges of the feedback signal (i.e., 
CKV2) to proceed to the TDC. This 
approach greatly reduces the re-
quired range of the TDC. However, 
achieving a high-resolution DTC 
with excellent linearity now be-
comes crucial [43], [44], [45]. Con-
sequently, several new techniques, 
such as oversampling-based TDCs, 
have been developed.

Evolution of Phase Detection: From 
Sub-Sampling and Sampling to 
Oversampling
To achieve excellent jitter with high 
power efficiency, leading to a high 
FOM of a PLL, SS/bang–bang (BB) 
PDs have been promoted [24], [30], 
[46]. They exploit the intrinsically 
high time-to-voltage gain provided 
by the high slope of the oscillator 
waveform and sharp edges of the 
reference clock in order to reduce 
the PD noise, but at the expense of a 
narrow locking range [see Figure 5(a) 
and (b)]. As the sampling clock of the 
comparator input, the reference sig-
nal from the XO needs to translate 
its “gentle” sinusoidal waveform into 
sharp edges through an LNB, but 
that consumes significant power.

Alternatively, the XO waveform 
can be used directly as an input 
without requiring a buffer, while the 
sampling edge is generated from 
the divided oscillator output via a 
feedback clock generator (CG). This 
approach, known as the RS-PD [25], 
is examined in Figure 5(c) and (d). 
Although the PD gain from the input 
slope ( )KRSPD  is lower, the phase detec-
tion range is significantly wider, allow-
ing it to detect various disturbances 
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and enhance robustness against PVT 
variations. Additionally, compared 
to the SS approach, the slew rate re-
quirement of the sampling clock is 
more relaxed.

To reduce the PD’s noise contri-
bution to the output, a higher ref-
erence frequency ( )fref  is typically 
employed, as it gives a lower N [6]. 
However, the 100–500-MHz XOs used 
for this purpose are rather expensive 
and consume excessive power. An-
other approach to boost the effective 
reference frequency with a standard-

frequency XO calls for an additional 
reference multiplier (doubler/qua-
drupler/octrupler) [31], [32], [33] or 
cascaded PLLs [47]. This requires a 
duty cycle calibration (DCC) and/or 
additional circuits, which increase 
the overall power and area. Arguably, 
the best approach would be to extract 
the information contained in the ref-
erence sinusoidal XO waveform, ,Sref  
by sampling it by the oscillator clock 
edges [26]. This allows the possibility 
of increasing the PD rate, and conse-
quently, N, by, for example, 4× overs-

ampling, as in Figure 5(e) and (f) [34], 
[35], [37], [38], [48].

Figure 6 presents a detailed anal-
ysis of PN considerations associated 
with the SSPD and RS-PD when using 
a standard XO providing a sinusoidal 
waveform as the reference [2], [26], 
[49]. With an ideal clock edge of the 
sliced reference (CKR), the PD noise 
in the SSPD can be minimized to a 
negligible level [20]. This is achieved 
because the sampled thermal voltage 
noise and input-referred noise (IRN) 
of the gain stage G are converted 
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to time jitter via a steep slope of 
,A f2 osc oscr  where Aosc  and fosc  rep-

resent the oscillator’s amplitude and 
frequency, respectively. Note that the 
LNB plays an important role in trans-
lating the relatively slow sinusoidal 
input waveform into “super”-sharp 
clock edges for sampling, but consid-
erations of the on-chip LNB are usu-
ally neglected in the literature. The 
IRN of the LNB ( )v2

LNB  can actually 
dominate the SSPD jitter, due to the 
gentle slope of ,A f2 ref refr  where Aref  
is the reference waveform amplitude. 
The variance of timing uncertainty in 
the SSPD can be derived as

		
/ .

A f
v

A f
KT C v

2 2
S G2

2

2
LNB

2

2
IRN

SSPD
ref ref osc osc

-
v

r r
= +

+

^ ^h h
� (2)

In contrast, in the RS-PD [Fig-
ure  6(b)], the sampling clock is ob-
tained from an MMD in the oscillator 
feedback path (CKdiv), which naturally 
features sharp edges. The reference 
sinusoidal waveform is now directly 
sampled on the sampling capacitor 
CS without any buffer but at the ex-
pense of a slow slope of A f2 ref refr  
of the incoming .Sref  To address 
this, an isolation buffer is employed 
with amplification A to help with the 
quantization noise downstream. The 
variance of timing uncertainty in the 
RS-PD can be derived as

		
( )

/
A f

v KT C
2

S2
2

2
amp

RSPD
ref ref

v
r

=
+ � (3)

where v2
amp  is the amplifier’s IRN. 

When using a sufficiently large ca-
pacitor CS (in picofarads), its thermal 
noise can be neglected compared to 
the IRN of the LNB or amplifier.

The PN in radians ( SSPD
2
-vz  and 

)SPD
2

R-vz  can be obtained by nor-
malizing with an oscillator period 
and multiplying by .2r  Further, the 
magnitude of PN spectra at the AD-
PLL RF output can be calculated by 
normalizing SSPD

2
-vz  and RSPD

2
-vz  by 

the phase detection rate ,fPD  which 
is equal to the reference clock fref  for 
the RS-PD. The output PN contrib-
uted by the SSPD and RS-PD can be 
derived as

		
.

f
v

A f
f

f
v

A f
f

L

L

2

2 2

2

2
amp

2 2

2

LNB
SSPD

ref ref ref

out

RSPD
PD ref ref
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Z

[

\
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]]

]
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�
(4)

It can be observed that the jitter 
in both the SSPD and RS-PD can be 
dominated by the LNB and ampli-
fier, respectively. For the output PN 
contributed by the RS-PD, the IRN of 
an inverter-based amplifier ( )vampr  
adopted in [37] is .34 75 VRMSn  while 
consuming .122 Wn  Considering 
an Aref  of 0.5 V, fref  of 50 MHz, and 
fout  of 9.6 GHz, the theoretical IBPN 
can be estimated by (4), yielding 

–114.48 dBc/Hz. On the other hand, 
an inverter can operate as an LNB 
that converts a reference waveform 
into the RS edges used in the SSPD. 
Considering an fref  of 50 MHz and an 
input swing of ~1 Vpp, the simulated 
PN shows a reference floor of around 
–160 dBc/Hz when consuming a simi-
lar power of .120 Wn  Note that this 
level of PN at 50 MHz is equivalent to 
–114 dBc/Hz when it refers to an out-
put frequency of 9.6 GHz. Therefore, 
it can be concluded that the jitter 
performance limited by either an LNB 
or amplifier in the SSPD and RS-PD is 
quite similar under the constraint of 
similar power consumption.

The RS-PD architecture has re-
cently been gaining interest thanks 
to its natural capability of beneficial-
ly increasing the phase detection rate 
fPD  in (4) beyond fref  [35], [36]. With 
an example of 4× oversampling, four 
points are chosen at / , /4 3 4! !r r  
positions on ,Sref  which keep the 
PD gain (i.e., sampling slope) at 
( / ) .A f1 2 ref ref  Taking advantage of 
the 4× PD rate, the output PN contrib-
uted by the reference oversampling 
(ROS) PD is

		 .
f

v
A f

f
4

2
L

2
amp

2 2

2

ROSPD
ref ref ref

out
$. � (5)

The net result is a 2× improvement 
in jitter power compared to a single-
sampling RS-PD. Table 1 summarizes 
the theoretical jitter and power con-
sumption numbers in 1× sampling 
and 4× oversampling PLLs. Under 
the 4× ROS, the amplifier consumes 
4× higher power. The amplifier am-
plifies the sampled voltage and 
charges the ADC’s capacitor. This 
operation can be gated off outside 
of the tracking phase, thereby al-
lowing power saving by a factor c  
(e.g., 0.5). Comparing the FOMjitter  
in Table 1, which is defined as 

( ) ( )log log P10 10t10
2

10 dcv +  [20], the 
first jitter term in the ROS-PD is 
lowered by a factor of 1/4 (1.25 dB), 
while the second power term is in-
creased by )( ,log10 1 310 b+  where 

/P PPD dcb =  represents the fraction of 
the full PD path power to the total. For 
example, in [50], .P 0 22mWPD .  (PD, 

TABLE 1. THE PERFORMANCE OF THE RS-PD (SINGLE SAMPLING) VERSUS THE 
ROS-PD (4× SAMPLING).

SINGLE SAMPLING 4× OVERSAMPLING

PARAMETER EQUATION VALUE EQUATION VALUE

ID,RMS cID,RMS I1 4cID,RMS 4I1

ampv
A

v
f2 ref

amp

r
r 1ampv

sinA

v

f2 4ref

amp
)

r
r

r 2 1ampv

ampvz-
A

v f
fref

amp outr 1ampvz-
A

v f
f2
ref

amp outr 2 1ampvz-

PPD cVDDID,RMS PPD1 4cVDDID,RMS 4PPD1

t
2v † 2 2

PD OSCv v+ t
2
1v

2
1 2 2

PD OSCv v+ 4
3

t
2
1v

Pdc PPD + PHS Pdc1 4PPD + PHS Pdc1 + 3 PPD

*The 4× oversampling PD samples the slope at four ±π/4 positions.
†Under optimum bandwidth, the jitter contributed by the PD and oscillator are equal.
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ADC, digital) of the 1× sampling, and 
.P 12mWdc .  As a result, the FOMjitter 

improvement of 4× ROS can be .1 25 -
( . / ) . .log10 1 30 22 12 1 01dB10 + =

Selected PLL Examples

RS-PLL
A system diagram of the featured RS-
PLL appears in Figure 7(a). The out-
puts from the DCO are buffered to 
generate digital clock signals. One of 
them is divided by the MMD, whose 
phases are then resampled by stan-
dard-cell D flip-flops to eliminate 
the MMD noise. The CG produces SLO  
and the three phases for the RS-PD 
switches. The SLO  signal carries the 
oscillator’s phase information, deci-
mated to a rate close to the reference 
frequency, and directly samples the 
reference XO’s waveform through 
the bottom plate sampling capaci-
tor. The sampled signal is then con-
verted into voltage, representing 
the PHE, and amplified by the two-
stage amplifier. A compact SAR-ADC 
digitizes the amplified signal, ,SRSPD  
into an 8-b digital output, .DADC  In 
the DSP block, the PHE calculator 
converts DADC  into ,DPHE  applying 
dc offset compensation. The digital 
loop filter, implemented with pro-
portional-integral (PI) control, uses 
adjustable a  and t  factors for opti-
mization. The digital nature of the 
loop allows easy programming and 
optimization of the loop bandwidth 
and stability, which are crucial for 
minimizing the integrated jitter by 
fine-tuning the a  and t  parameters. 
The DCO decoder manages the DCO 
gain ( )KDCO  and generates the OTW 
for the switched-capacitor banks, 
helping to minimize the DCO PN.

The circuit implementation of the 
RS-PD is depicted in Figure 7(b). The 
reference sinusoidal waveform ( )SREF  
from the XO is directly sampled by 
the high-speed bootstrap switch, trig-
gered by the divided oscillator edges 
from the CG block. The left and right 
plates of the bottom-plate sampling 
capacitor CS = 2 pF are preset to the 
common-mode voltage ( )Vcm  and 
threshold voltage ( ),Vth  respectively, 

both of which are automatically gen-
erated by a self-bias inverter with a 
minimum transistor width and the 
same length as used in the Gm1 stage. 
The preset switches are implemented 
using CMOS transmission gates to en-
sure low on-resistance.

As mentioned earlier, the sampled 
signal must be amplified prior to digiti-
zation to compensate for the low time-

to-voltage gain ,( )KRSPD  which is due to 
the slow slope of the reference signal. 
This amplification is handled by the 
two-stage amplifier (Gm1 and ).Gm2  For 
an accurate voltage transfer during 
the bottom plate sampling, the input 
parasitic capacitance of Gm1 must be 
kept small, limiting the gain of the 
first stage. Additionally, input node B  
of Gm1 carries voltage information 
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derived from ,SDCO  which has a low 
transfer gain due to the slope of .SREF  
This imposes a strict noise constraint, 
necessitating a low IRN for .Gm1  An 
inverter-based structure is employed 
for ,Gm1  with the transistor length 
optimized to 120 nm to minimize the 
flicker noise and achieve a low IRN. 
Eight parallel PMOS and NMOS units are 
used to control both the gain (~6) and 
the output common-mode voltage. Ad-
ditionally, power saving functionality 
is integrated through gated PMOS and 
NMOS transistors controlled by 3zr  
and .3z  With this gated design, Gm1  
consumes less than 60 μW while main-
taining a low IRN of 122 μVRMS when 
integrated up to 160 MHz, correspond-
ing to an IBPN limit of −122 dBc/Hz. 
The second stage, ,Gm2  is a common-
source amplifier that provides higher 
gain and improved driving capability 
to charge the CDAC in the subsequent 
SAR-ADC stage. Since Gm1 dominates 
the overall IRN, Gm2 is designed with 
a minimum transistor length of 30 nm  
to enhance the settling speed. It deliv-
ers a gain of 10 when driving a 120-fF 
CDAC load, with a settling time of un-
der 5 ns. In addition, Gm2 incorporates 
gated PMOS and NMOS switches at the 
top and bottom to reduce the power 
consumption. Once the amplified sig-
nal has fully settled on the bottom 
plates of the CDAC, two CMOS switch-
es between Gm2 and the 8-b SAR-ADC 
open, initiating the ADC’s conversion 
process. It is worth noting that even in 
the presence of significant frequency 
perturbations, the sampled voltage 
remains within a large monotonic 
range centered around the locking 
point. Even at the saturation point, the 
loop will maintain the proper nega-
tive feedback for accurate phase and 
frequency tracking, unlike in the prior 
art, such as [2] and [20].

The Reference Sampling process 
consists of three operational phases, 
as depicted in Figure 7(c). When op-

erating at an fref  of 80 MHz, 1z  pro-
vides a ~4-ns window to preset the 
voltages on the top and bottom plates 
of Cs. During this phase, VA is set by 
the common-mode voltage ,VCM  and 
VB is set by VC, which is self-biased 
at the threshold voltage ( )Vth  of .Gml  
This configuration helps to eliminate 
any offset caused by mismatches be-
tween the common-mode voltage of 
Sref  and the threshold voltage of .Gm1

The second phase  2z^ h is for 
tracking, during which there is a 2-ns 
window that allows VA to follow the 
input waveform Sref The bottom plate 
sampling operation ensures that VB 
tracks the changes in VA. Once 2z  is 
complete, the sampled voltage held 
at  VB (on the ground capacitance 
of the bottom plate of CS at node B) 
represents the voltage ,V Vth PHET+  
where VPHET  contains the PHE infor-
mation translated from the time-to-
voltage conversion at the sampling 
instant 0 Tz+

In the final phase, ,3z  VC is ampli-
fied and settles at .V G V1th PHE$ T+

MM] The second-stage amplifier Gm2 
further amplifies this signal with 
an additional gain G2 at node D be-
fore charging the CDAC capacitors 
in the SAR-ADC. The ADC enable 
signal, triggered by ,1z  initiates the 
ADC conversion process. It is critical 
to ensure that the end of ,2z  which 
marks the time-to-voltage conver-
sion, is not interrupted by any other 
phase. To prevent any such interfer-
ence, a small delay is introduced at 
the rising edge of .3z  Additionally, 
the CMOS switches preceding the 
SAR-ADC must open before the shut-
down of Gm2 during phase .3z

The proof-of-concept RS-PLL was 
fabricated in Taiwan Semiconductor 
Manufacturing Company (TSMC) 28-nm  
LP CMOS. A standard external 80-MHz 
XO was employed as the reference. 
The output PN at 2.4 GHz, corre-
sponding to a frequency multiplica-

tion factor of N = 30, shows that the 
optimal bandwidth is around 2 MHz, 
and the IBPN reaches −115 dBc/Hz.  
The integrated jitter, measured from 
10 kHz to 30 MHz, is 355 fs. Addi-
tionally, the main reference spur 
measures −60 dBc. The total power 
consumption is 1.1 mW. The passive 
sampling switches and gated opera-
tion in the Gm stages consumes a low 
power consumption of .120 Wn  The 
compact-sized SAR-ADC consumes 

0 W6 n  while operating at 80 MHz. The  
RS-PLL remains locked even under a 
DCO supply modulation ranging from 
the original 0.2 up to 0.6 V, demon-
strating the architectural robustness, 
without requiring any additional FLL.

ROS-PLL
By sampling more points along the 
accurate sinusoidal waveform SREF 
of the XO, we can increase the PLL’s 
phase correction rate beyond the ref-
erence frequency, fref  A higher overs-
ampling ratio /M f fsample ref=^ h can 
expand the loop bandwidth, acceler-
ating the locking process and reduc-
ing the IBPN contributed by the PD. 
An oversampling ratio of M 4=  [see 
Figure 5(f)] is a balance between the 
direct sampling [M 1=  in Figure 5(c)] 
used in [26] and other conventional 
PLLs/ADPLLs and an excessively high 
M, which could lead to 1) variations 
in the oversampling PD gain (KROS) 
across the reference waveform, with 
the gain peaking at zero crossings 
and dipping near peaks/troughs; 2) a 
reduced monotonic PD range; and 3) 
increased power consumption.

The 4× ROS-PD results in four lock-
ing points with a phase increment of 

/2 4r  in an integer-N operation. In a 
fractional-N mode, the sampled volt-
age tracks the entire extent of SREF. 
Consequently, the next-stage quantiz-
er would normally need to handle the 
full-scale ~1-V input range, necessitat-
ing an extremely high-resolution ADC 
to achieve a low IBPN. Such a high-
resolution ADC would require signifi-
cant power, especially at conversion 
speeds in the hundreds of megahertz.

To avoid the above issue, a bottom 
plate sampling circuit (similar to the 

Generating mm-wave signals with minimal 
integrated phase noise or RMS jitter is of 
paramount concern.
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one used in the RS-PD) is now assisted 
by a voltage zero-forcing technique, 
as in Figure 8. This technique relaxes 
the required range by removing the 
dc offset, i.e., / ,sinA 4! r^ h  at each 
locking point by means of VP and VN. 
Additionally, a fine-resolution/small-
range CDAC, placed at the top plate, 
can be programmed to further com-
pensate for any fractional voltage 
residues. The net result is that the 
voltage on the top plate (right side) 
of CS represents the ideally bias-free 
PHE, proportional to .KROS $ Tz  Since 

the required input range is much 
smaller, the requirements on sub-
sequent circuits can be relaxed to 
achieve low noise while maintaining 
low power.

The operation of the ROS-PD, 
which is at the heart of the ROS-
PLL in Figure  9(a), occurs in three 
distinct phases, as demonstrated in 
Figure 9(b). In the first phase, ,1z  
having a clock pulsewidth of 1.3 ns, 
presets node A to the expected SREF 
of 0.85 V (i.e., VP) and node B to a VTH 
of 0.5 V. At the end of this presetting 

phase, the voltage across the top and 
bottom plates of CS is 0.35 V. In the 
second phase, ,2z  a brief pulse of ap-
proximately 0.7 ns allows the bottom 
sampling (BS) circuit to track the in-
coming SREF. This action charges the 
capacitance at node A, which primar-
ily comprises the CDAC input. While 
the charge on CS remains conserved, 
the voltage at node B tracks the SREF 
trajectory with the previously es-
tablished offset of 0.35 V. Simulta-
neously, A1 amplifies the voltage at 
node B with a gain of 15. The third 
phase, ,3z  halts the input tracking to 
establish the sampling point. To ad-
just for a fractional-N operation, the 
DSP alters the CDAC code to modify 
the load capacitance at node A, al-
lowing the voltage at nodes A and B 
to be programmed to eliminate any 
voltage residue. At the same time, the 
second-stage amplifier, A2, drives the 
6-b SAR-ADC and amplifies the sam-
pled voltage from the input CDAC of 
the SAR-ADC. This phase is allocated 
a duration of 3 ns.

The showcased 4× ROS-ADPLL was 
realized in TSMC 28-nm LP CMOS. The 
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oscillator accounts for the majority 
of the ADPLL’s active area, occupying 
0.16  mm2 out of the total 0.24 mm2. 
Due to the large bandwidth provided by 
the 4× oversampling of ,fref  the PN re-
quirement of the DCO is less stringent, 
allowing for power savings. Specifical-
ly, the DCO and its buffer consume only 

.380 Wn  The MMD and clock genera-
tion circuits use 0 W20 n  while operat-
ing at a CKVDIV rate of 200 MHz. The 
ROS-PD, which includes bootstrapped 
switches, low-noise amplifiers A1 
and A2, CDAC buffers, and other pas-
sive switches, consumes 00 W3 n  at  
200 MHz. Overall, the total power con-
sumption of the ADPLL is just 1.15 mW. 
In an integer-N operation, this 4× 
ROS-ADPLL was tested with a 48-MHz 
reference frequency and FCWI of 48. 
Figure  9(c) presents the PN plot 
at 2.304  GHz. The IBPN is as low as 
–113 dBc/Hz, with an integrated RMS jit-
ter of 379 fs over the 10 kHz to 30 MHz 
range. For a fractional-N operation, the 

PN at a carrier frequency of 2.30475 
GHz, with an FCW of 48.015625, is 
also shown in Figure  9(c). With opti-
mal bandwidth settings, the integrated 
RMS jitter is 414 fs. With a power bud-
get of ~1 mW, this results in one of the 
best FOMs for jitter, FOMjitter, of 247 dB 
among fractional-N ADPLLs consum-
ing less than 5 mW. The wide mono-
tonic PD range of this architecture 
eliminates the need for an FLL, which 
is typically required in SS-PLLs for 
locking robustness and fast settling. 
This is validated by the transient 
measurement results in Figure  9(d). 
Under a 1-MHz loop bandwidth, the 
ADPLL settles to a new frequency 
24 MHz away within .5 sn  Increas-
ing the loop bandwidth to approxi-
mately 5 MHz reduces the settling 
time to s3n  for a 70-MHz frequency 
step. The measured relocking be-
havior aligns well with simulation re-
sults, demonstrating the robustness 
of the system. Consequently, this 

architecture’s inherent phase and 
frequency tracking can effectively 
counter various environmental per-
turbations, such as supply and tem-
perature variations or interference 
from strong power amplifiers.

mm-Wave ROS-PLL
The presented architecture has been  
adapted to support mm-wave fre-
quencies, as described in Figure 10(a). 
The reference waveform (SREF) is like-
wise directly oversampled by the di-
vided oscillator clock (the outputs of 
CG) using cross-coupled bottom plate 
sampling switches. A programmable 
PI controller functions as a loop fil-
ter and tunes the 30-GHz class F23 
DCO with a third-harmonic extrac-
tor (H3E). The DCO provides a funda-
mental 10-GHz component to the 4'   
frequency divider, MMD, and CG, 
which produces the clocks for 
the ROS-PD and digital blocks. A 
schematic of the class F23 oscillator 
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is presented in Figure  10(b), which 
includes the H3E and a second-stage 
output buffer designed to drive a 
50-Ω load [52], [53]. The source induc-
tor LT in the H3E is tuned to resonate 
at 10 GHz, effectively filtering out the 
fundamental harmonic current. The 
10-GHz signal from the oscillator gate 
node is divided by two 2'  dividers 
to produce a 2.5-GHz signal with 
high reliability.

The mm-wave ROS-ADPLL is also 
implemented in 28-nm CMOS, cov-
ering an active area of 0.3 mm2 and 
consuming just 11.9 mW, with 80% of 
this power allocated to the DCO and 
H3E [see Figure 10(c)]. The measured 
PN and spectral plots are given in 
Figure 10(d). With a 50-MHz refer-
ence input, the system achieves an 
RMS jitter of 199 fs in the integer-N 
mode and 237 fs in the fractional-N  
mode when synthesizing a 28.8-GHz  
carrier. By enabling the digital calibra-
tion loop, reference spurs and their 
harmonics can be reduced by 32 dB,  
bringing them down to –65 dBc [38]. 
In the fractional-N mode, the typical 
fractional spur is –40 dBc. The AD-
PLL’s wide PD range allows it to settle 
within 15 sn  after a 62-MHz frequen-
cy jump, demonstrating the robust-
ness of the design. This system 
achieves exceptionally low jitter and 
power consumption for ADPLLs op-
erating above 10 GHz, using a stan-
dard 50-MHz reference—the lowest 
among recent state-of-the-art PLLs/
ADPLLs. Without relying on high 
reference frequencies or additional 
cascading PLLs, this ADPLL delivers 
an FOM of –241.7 dB and a record 
FOMjitter-N [54] of –269.3 dB for mm-
wave ADPLLs.

Charge-Sharing Locking PLLs
An entirely different technique of ex-
ploiting a digitally friendly approach 
to simultaneously achieve ultralow 
jitter, low power consumption, and 
robustness is revealed in Figure 11(a).  
A new technique of charge-sharing 
locking (CSL) with an implicit digi-
tal frequency tracking loop (FTL) 
exploits a minimalistic SAR-ADC 
(0.1 mW). In contrast to the conven-

tional subharmonic injection locking 
(IL), in which the switch is used to 
preset the oscillator waveform to the 
ac ground,3 a sharing capacitor Cshare  
(1 pF) with a DAC-controlled preset 
voltage is employed for charge shar-
ing with the resonant LC tank (realiz-
ing a phase-correcting proportional 
path), while the resulting charge res-
idue on Cshare  (which mainly repre-
sents the frequency error after the 
charge sharing) is then sampled and 
processed by the digital FTL (includ-
ing a SAR-ADC, an IIR filter, and an 
integrator) for frequency tracking 
(integral path). The CSL technique 
offers the following advantages: 1) 
thanks to the Cshare  recording of how 
much charge was used to correct the 
PHE caused by the frequency error 
and intrinsic DCO PN, the timing–
race problem can be effectively miti-
gated; 2) the SAR-ADC-based digital 
FTL consumes ultralow power and 
occupies a tiny area; and 3) the fine 
switched-capacitor tuning bank in 
the DCO is used only for frequency 
tracking rather than phase correction 
in the ADPLL or digital SS-PLL, thus 
relieving the tough requirements 
on the resolution, usually requiring 
a high-speed DSM, and the linearity 
of the switched capacitor. The tim-
ing diagram is in Figure 11(b). First, 
Cshare  is preset by the DAC (when the 
reference pulse is high and S1 is on). 
After that, S1 is off, and S2 is on. This 
results in a charge injection into the 
oscillator (when the clock signal–CSL  
is high). Figure 11(c) shows the ef-
fect of charge-sharing injection on 
the oscillator’s phase when there is 
a frequency mismatch. The leftover 

3Since traditional IL requires an ac ground 
(either single ended or differential) to inject 
the adjusting signal, it can natively support 
only an integer-N operation (unless assisted 
by an additional DTC). On the other hand, 
CSL can allow an injection at any point along 
the voltage waveform, and thus, it can in-
herently support the fractional-N operation.

charge on Cshare  is fed back to the 
SAR-ADC to ensure that the intrin-
sic frequency of the oscillator fosc^ h 
is equal to .N fref#  Thus, a robust 
locking operation can be ensured. 
The prototype in [55] achieves a 
low RMS jitter of 75 fs at 26.25 GHz, 
while the reference spur is –45 dBc 
at a 250-MHz offset. The total power 
consumption of the whole system is 
16.5 mW.

Despite the low RMS jitter 
achieved, the realized prototype in 
[55] still requires manual calibration 
of the pulsewidth ,pulsex^ h  due to its 
sensitivity to PVT variations. A nar-
row pulse may reduce the injection 
time, leading to a lower bandwidth, 
while a wider pulse increases the 
time that the LC tank is loaded by 

,C dshare  complicating the performance 
optimization at mm-wave frequen-
cies. To address these challenges, 
a ping-pong (PP) CSL technique was 
introduced in [56] and is illustrated 
in Figure 12(a). Instead of relying 
on the narrowest achievable ,pulsex  
this technique uses a 50% duty cycle 
reference clock 1z^ h and its comple-
ment 2z^ h in a ping-pong manner. 
During each clock phase, either 
C dshare  or C dsharel  connects to the LC 
tank, thereby minimizing loading 
variation. The extended duration of 
the charge-sharing operation, due to 
a longer ,pulsex  improves the injec-
tion efficiency independent of the RC 
time constant of ,C dshare  resulting in 
a wider achievable bandwidth. The 
charge residues on the disconnect-
ed capacitor can be read out during 

ors s
1 2z z^ h to gather the oscillator 

state information. This information 
can then be used for the DCC and 
FTL. The PP operation inherently pro-
vides a 2× reference multiplication 
without the need for explicit multi-
plier circuitry operating directly at 
2× fREF, thus reducing the IBPN of the 
PLL. Additionally, the common-mode 

As the carrier frequency or the symbol 
constellation density increases, the required 
RMS jitter becomes even more stringent.
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precharging DAC found in prior 
designs is replaced by simply con-
necting the complementary phases 
of the PP operation during ,orR R

1 2z z^ h  
which enables automatic common-
mode acquisition. A detailed timing 
diagram and corresponding phase re-
lationships are shown at the bottom 
of Figure 12(a).

Figure 12(b) presents a chip micro-
graph of this PLL fabricated in TSMC 

28-nm HPC+ CMOS, with an active area 
of 0.21 mm2. The measured PN dem-
onstrates a lower RMS jitter of 42  fs 
(integrated from 10 kHz to 30 MHz)  
using a 250-MHz reference. The mea-
sured spur is −60 dBc at an offset of 
fref around the 27-GHz carrier, high-
lighting the effectiveness of the em-
ployed FTL and DCC calibration when 
compared to the spur level of −29 dBc 
without any calibration. The PLL con-

sumes only 14 mW, with 90% of this 
power allocated to the DCO and H3E. 
The low-noise reference path and cali-
bration loop, including the FTL, con-
sume only 1 and 1.2 mW, respectively. 
This results in an FOMjitter of −256.3 dB.

PLL Benchmark and Future Outlook
To fairly benchmark the perfor-
mance of low-jitter PLLs, the work in 
[6] has proposed a PLL FOM defined 
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as / / ,log s P20 1 10 1mWt10 dcv +^ ^ ^hh h   
where tv  and Pdc  are the integrated 
PN or RMS jitter and power con-
sumption, respectively. Figure 13(a) 
surveys the jitter variance versus 
the power consumption of integer-
N PLL/ADPLLs. In the past two 
decades, various techniques have 
been proposed to push the PLL FOM 
performance. It can be observed 
that integer-N PLLs adopting the 

SSPD with the higher slew rate of 
the PD input signal, either from the 
reference clock or oscillator feed-
back path, can achieve a high PD 
gain with low intrinsic noise, which 
leads to  an exceptional FOM of 
below 250-  dBc/Hz [57], [58], [59]. 
Alternatively, CSL PLLs also show 
competitive FOM performance due 
to the improved injection efficiency 
and low latency [55], [56]. Recently, 

approaches using ROS techniques 
[34], [36], [37] have gained interest 
and offer plenty of room to push the 
FOM limit while maintaining the ref-
erence frequency below 100 MHz.

For fractional-N PLLs [see Fig-
ure  13(b)], it can be observed that 
most of the high-performance AD-
PLLs adopt the DTC-assisted archi-
tecture with the BB-PD but with the 
reference above 200 MHz [33], [45] 
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or use other short-range high-reso-
lution TDCs [18], [46], [61]. Alterna-
tive methods using harmonic mixing 
phase locking can achieve excellent 
performance [62]. Figure 14 conveys 
the PLL FOM performance for dif-
ferent N ratios. It can be observed 
that, when the effect of the output 
frequency and reference frequency 
is taken into account, techniques us-
ing the reference multiplier [31] or 
oversampling PDs [38] together with 
the output frequency multiplier can 
break the trend line. From the above 
PLL surveys, it can be observed that 
there is still room to further push 
the PLL FOM while maintaining a 
low reference clock, i.e., lower than 
100 MHz.
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