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ABSTRACT The qubit-mapping problem aims to assign and route qubits of a quantum circuit onto an
noisy intermediate-scale quantum (NISQ) device in an optimized fashion, with respect to some cost function.
Finding an optimal solution to this problem is known to scale exponentially in computational complexity; as
such, it is imperative to investigate scalable qubit-mapping solutions for NISQ computation. In this work, a
noise-aware heuristic qubit-assignment algorithm (which assigns initial placements for qubits in a quantum
algorithm to qubits on an NISQ device, but does not route qubits during the quantum algorithm’s execution)
is presented and compared against the optimal brute-force solution, as well as a trivial qubit assignment,
with the aim to quantify the performance of our heuristic qubit-assignment algorithm. We find that for small,
connected-graph algorithms, our heuristic-assignment algorithm faithfully lies in between the effective upper
and lower bounds given by the brute-force and trivial qubit-assignment algorithms. Additionally, we find that
the topological-graph properties of quantum algorithms with over six qubits play an important role in our
heuristic qubit-assignment algorithm’s performance on NISQ devices. Finally, we investigate the scaling
properties of our heuristic algorithm for quantum processors with up to 100 qubits; here, the algorithm
was found to be scalable for quantum-algorithms that admit path-like graphs. Our findings show that as the
size of the quantum processor in our simulation grows, so do the benefits from utilizing the heuristic qubit-
assignment algorithm, under particular constraints for our heuristic algorithm. This work, thus, characterizes
the performance of a heuristic qubit-assignment algorithm with respect to the topological-graph and scaling
properties of a quantum algorithm that one may wish to run on a given NISQ device.

INDEX TERMS Quantum computing, qubit-mapping problem.

I. INTRODUCTION
Quantum computation may still be in its infancy, but new
advances have allowed for the first experimental demon-
strations of quantum computing in recent years [1]–[5].
Quantum computers themselves promise to aid in solving
classically intractable problems for such fields as quantum
chemistry [6]–[9], quantum machine learning [10], [11],
quantum field theory [12]–[15], and quantum cryptography
[16], [17], among others. However, such promise comes with
a catch: protecting the quantum states in a quantum computer
from deleterious noise channels has proven to be a most
difficult task, preventing scalability and implementation of
most quantum algorithms [18]. Indeed, current prototypes of

quantum processing units (or QPUs) available from Rigetti,
Honeywell, IBM, Google, Intel [1], [3], [5], [19]–[21], and
others are considered still too resource-constrained to be
able to demonstrate full fault-tolerant quantum computation
[22]–[24].
In the noisy intermediate-scale quantum (NISQ) era,

quantum computers are still rapidly evolving but still present
several limitations. First, quantum computing as a field has
not yet settled on a particular physical realization for quan-
tum hardware [25]; leading candidate implementations in-
clude those constructed from superconducting qubits [19],
[26]–[30], trapped-ion qubits [31]–[34], as well as other pro-
posals [35]–[39]. Second, many devices exhibit fixed and
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finite connectivity constraints between neighboring qubits (a
notable exception to this is trapped-ion technology, in which
one can in principle produce “all-to-all” connectivity [31]).
Third, noise considerations have severely hampered devel-
opments in quantum devices [40]. As such, efficient methods
for executing quantum algorithms on first-generation quan-
tum hardware require special attention.
In light of these difficulties, the goal of efficiently delegat-

ing these finite resources in a QPU for usage with near-term
quantum algorithms is both exigent and pervasive. Quantum
algorithms described as quantum circuits have to be adapted
to specific hardware constraints in order to be executed.
Many different approaches exist for realizing this aim,
which range widely from algorithm compilation [25] and
neural-network-based approaches [41], [42], to more theo-
retically motivated methods such as quantum gate-synthesis
techniques adapted for quantum hardware [43]–[46].
Recent work has centered on the qubit-mapping prob-

lem, which aims to answer the following question. Given
a resource-constrained quantum device and a prospec-
tive quantum algorithm, what is the optimal strategy for
assigning (known as the assignment of qubits) and co-
ordinating movements (known as quantum-state routing)
of qubits along the lattice of the QPU, while making
guarantees on the algorithm’s fidelity? Many methods of
solving this problem have been studied, wherein the most-
promising approaches so far have explicitly taken into
account error information from the quantum device (e.g.,
two-qubit and single-qubit gate fidelities) [41], [42], [47]–
[52]. In spite of this progress, much remains to be done
in order to understand the general characteristics of such
qubit-mapping techniques. Due to the computational hard-
ness of finding optimized solutions for the qubit-mapping
problem, one commonly resorts to heuristic algorithms [48],
[50]. Therefore, assessing the capabilities of heuristic qubit-
mapping algorithms is essential for addressing scalability
concerns in NISQ hardware. As the assignment of qubits is
a fundamental part of the qubit-mapping process [50], [53],
this work will focus on this first step using a heuristic qubit-
assignment algorithm (HQAA). For a thorough review of the
qubit-mapping problem, we refer the reader to [54] and [55].
Currently, heuristic qubit-assignment algorithms lack a

systematic comparative basis by which their performance
can be assessed; this includes the notion of providing upper
and lower bounds for the performance of a quantum algo-
rithm executed on an NISQ device, evaluating quantum cir-
cuits whose entangling two-qubit gates produce interaction
graphs with different topological graph-theoretic structures,
and understanding whether or not a given heuristic qubit-
assignment algorithm will scale well as both the quantum
algorithm and the QPU size are increased.
The purpose of this manuscript is to answer the follow-

ing questions: 1) how does an HQAA compare relative to
an optimal brute-force and a trivial approach to the qubit-
assignment problem? 2) do the topological features of a
quantum algorithm influence the measured success rate for a

noise-aware HQAA? 3) what behavior can one expect from
a noise-aware HQAA as the size of the QPU is scaled up?
To this end, we develop an HQAA which is similar to the
noise-aware one introduced in [50], but improve upon this
work by incorporating notions of graph centrality [56], [57].
We run tests with several realistic benchmarks in order to
provide approximate upper and lower bounds to the suc-
cess rate of the HQAA using implementations of brute-force
and trivial assignment algorithms (BFAA and TAA, respec-
tively). We systematically analyze an HQAA with respect to
topologically inequivalent graph representations of quantum
circuits, and assign them to a n× n QPU lattice which we
keep constant throughout most of the study. An analysis of
topologically inequivalent quantum-circuit structures is pro-
vided, and it is shown that the topological characteristics of
two quantum algorithms (with identical numbers of gates) in-
deed play a role in the average success rate measured for our
HQAA when quantum algorithms consisting of more than
six qubits are examined. Finally, we investigate the scaling
properties of the HQAA for quantum algorithms whose gate
structure gives rise to path-like graph representations (which
commonly appear in simulations of fermionic quantum sys-
tems [6]–[8]); we find that our HQAA consistently exhibits
higher success rates than a TAA, when considering path-like
quantum algorithms on larger quantum-device architectures,
as long less than 75% of the quantum processor is filled.
We additionally find that the benefits of utilizing our HQAA
increase with the size of the QPU.
The structure of this article is as follows. Section II pro-

vides a background to the qubit-mapping problem and a
walk-through of a basic example. Section III provides de-
tails on the structure of each of the algorithms employed;
additionally, we show how to calculate the success rate
for our simulations. We separate our results in Section IV
into several parts. We describe the benchmarks utilized in
our analysis in Section IV-A. Next, we discuss the results
obtained from incorporating nonnearest-neighbor two-qubit
gates in the benchmarks we tested (see Section IV-B), using
and comparing a breadth versus depth analysis of two-qubit
gate additions in order to generate topologically inequiva-
lent quantum-algorithmic graphs; and in Section IV-C, we
examine the outcomes of our simulations with quantum-
algorithmic path-like graph structures, scaled onto QPU con-
nectivity graphs with dimensions n× n qubits, where n > 3.
Finally, Section V concludes this article.

II. BACKGROUND
Most quantum circuits that are devised theoretically do not
take into account the actual physical hardware constraints
of a given quantum device. In order to accommodate NISQ
hardware, quantum-programming frameworks such as Qiskit
[58] include supports that allow developers to write algo-
rithms without explicitly factoring in hardware limitations.
As such, quantum compilers must perform several steps in
order to prepare the quantum algorithm for actual execu-
tion on a device. Broadly speaking, these steps are: 1) to
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FIGURE 1. In this work, we introduce the notions of IGs which are
path-like and cycle-like. (a) Nearest-neighbor quantum circuit with a
path-like IG. (b) This shows that adding a cyclic edge to the IG is
equivalent to the addition of an extra two-qubit gate, which is not
nearest-neighbor in the corresponding quantum circuit.

decompose the quantum gates into elementary gates; 2) to
assign the qubits of the quantum circuit to the physical qubits
of the quantum processor, and inserting SWAP operations
(known as routing) into the algorithm in order to satisfy the
connectivity constraints of a given quantum device; 3) and
finally, to optimize the resultant quantum circuit, with an
aim to minimize quantities such as the execution time and
gate count, among other cost functions. The qubit-mapping
problem consists of the second step of quantum compilation
and will be the main focus of this article, with an emphasis
on the assignment of the qubits of a quantum algorithm to the
physical qubits of a quantum processor.
In the context of the qubit-mapping problem, we consider

two objects: an interaction graph (IG), which is a graph
representation of the quantum circuit that we would like to
execute (wherein vertices represent qubits, and its weights
represent the number of single-qubit gates invoked; con-
versely, the edges correspond to two-qubit gate interaction,
with weights designating the quantity of such interactions),
and the coupling graph (CG), which is a graph representa-
tion of the QPU’s geometric connectivity (wherein vertices
represent the physical qubits used in the device, edges rep-
resent the two-qubit gate interactions which are possible,
and weights on vertices and edges represent the single and
two-qubit gate errors). For the purposes of this manuscript,
we define a graph to be an ordered pair G(V,E ) of two
sets known as the vertex set V and edge set E. The sets of
vertices V and edges E are interpreted qubits and two-qubit
gate interactions, respectively; this relationship is displayed
in Fig. 1. Two graphs are termed topologically equivalent if
there is a map f : X �→ Y between two graphs X and Y such
that the following conditions are upheld [59].

1) The map f is bijective, i.e., f maps from all edges to
all edges and from all vertices to all vertices.

2) f is continuous, i.e., f is an isomorphism from X to Y ,
allowing for the graph operations of smoothing out and
subdivision of edges.

3) The inverse function f−1 is continuous.

These criteria do not form the centerpiece of the
present work; rather, the notion of topologically equiva-
lent graphs will be useful for understanding the rest of the
article.
Most realistic QPU layouts are accompanied with noise-

calibration statisticswhich are added to the graph; these data
usually include two-qubit gate error rates, single-qubit error
rates, execution times (gate length), relaxation energies, and
decoherence characteristic times T1 and T2 [48]. The goal
is to match the geometric connectivity of the IG to that of
the CG as closely as possible (in effect defining a graph
isomorphism in the case of an exact match [59]) while taking
into account the noise-calibration statistics of the quantum
device as well. In the present work, we do not directly utilize
the noise-calibration statistics from a real quantum computer;
instead, we have analyzed the statistics from several of the
IBM quantum computers [3], [50], [60], and assume random
errors on the same order of magnitude (which are typically
∼ 10−3 for single-qubit errors, and ∼ 10−2 for two-qubit
gate errors andmeasurement errors [50]), which are then ran-
domly assigned to nodes and edges on the QPU CG. These
errors are utilized in a cost function for evaluating the success
rate of the quantum algorithm, using our HQAA. The pro-
cedure for this analysis is discussed in detail in Section III.
Additionally, several proposals show that qubits can be given
initial assignments, which later may be modified in timestep
fashion as the execution of the algorithm progresses. As the
basis for this work considers only the initial assignment for
the qubit-mapping problem, we refer the reader to [49], [51],
[52], and [61] for work involving routing/time-scheduling
techniques.

In order to illustrate how the qubit-assignment problem
can be treated, consider the quantum algorithm in Fig. 2(a).
Before assigning qubits from the quantum algorithm to the
physical QPU, the corresponding circuit is itself decomposed
into a graph-theoretic form which we defined as the inter-
action graph; such a decomposition is needed in order to
properly assign virtual qubits to a relevant portion of the
QPU lattice such that the geometric constraints of the circuit
are respected. As shown in Fig. 2(b), the resulting IG is the
complete graph K4, and cannot be exactly embedded into the
QPU CG shown in Fig. 2(d); equivalently, one may say that
no structure-preserving map (i.e., a graph isomorphism) f
exists from the IG to the CG [59]. In order to correctly assign
this algorithm, one may add a SWAP gate operation to the
qubits q1 and q3, and then perform the required two-qubit
gate between q3 and q4, as depicted in themodified algorithm
of Fig. 2(c); other SWAP gates are added as well in Fig. 2.
The SWAP gate itself degrades the final-state fidelity of the
algorithm, in accordance with the commensurate two-qubit
gate error rates. Due to the disadvantages of utilizing SWAP
gates, many qubit-mapping algorithms explicitly attempt to
minimize the amount of SWAP gates employed [49], [54].
However, we did not explicitly design our algorithm with
such a notion in mind, even though necessary SWAP gates
are considered.
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FIGURE 2. (a) Example quantum circuit. As shown in (b), this circuit is decomposed into a graph-theoretic version of the algorithm [also known as an
interaction graph (IG)] which illustrates the interaction via two-qubit gates of qubits in the original algorithm; edges represent two-qubit gates, while
vertices represent qubits which are acted upon. Weights are added to vertices and edges in order to account for more gate invocations. In (c) the
geometric connectivity of the IG is analyzed and SWAP gates are added for any interaction-graph edges which cannot be exactly assigned to the QPU
coupling graph (CG); for example, if we define an assignment {q1 �→ Q1, q2 �→ Q2, q3 �→ Q3}, then the interaction-graph edge between q1 and q4 cannot
be explicitly assigned, since Q1 and Q4 do not share an edge connection in the QPU CG shown in (d). The modified quantum circuit is then assigned to
the QPU in (d); in this way, the appropriate vertices, in accordance with some metric to be defined, are assigned to the graph-theoretic object
representing the quantum device (referred to as the CG of the QPU). In many types of qubit-mapping algorithms, qubits can then be arranged and
mapped temporally, as well as spatially during the routing process [48], [49], [52]; for this reason, the final arrow between (c) and (d) carries the
designation initial assignment.

Solutions to both the qubit-assignment and qubit-mapping
problems can be separated into two broad categories: 1) opti-
mal (or brute-force) optimization and 2) heuristic optimiza-
tion algorithms [54]. As described before, current studies
of qubit-mapping and assignment focus on minimizing the
number of SWAP gates [49], [54], [55], [61], [62]. How-
ever, our particular solution to the qubit-assignment problem
is not the main focus of the present manuscript; rather we
concentrate on the evaluation of topologically inequivalent
IGs for an HQAA, building and expanding on the work
pioneered by [50], with an aim toward understanding the
topological-graph properties of IGs and how they influence
the performance of an HQAA while keeping the QPU CG
effectively constant.

For the present work, we introduce the concepts of IGs
which are path-like and cycle-like in the context of the
qubit-assignment problem in order to efficiently assess the
topological-graph structure of a quantum algorithm. Two ex-
amples of this idea can be seen in Fig. 1. In Fig. 1(a), we
take a four-vertex IG with three edges (known as a Hamil-
tonian path P4) to be equivalent to a four-qubit quantum
circuit exhibiting nearest-neighbor two-qubit gates. As is
shown in Fig. 1(b), if an extra edge is added, the IG be-
comes a cycle graph C4 and corresponds to the addition
of an extra two-qubit gate between the first and last qubits
in the quantum circuit. In graph theory, the two objects
in Fig. 1 are well known; the problem of identifying suit-
ableHamiltonian-path and cycle-graph solutions in a simple
undirected graph is related to the traveling salesman problem
and is known to be NP-complete [63]–[65]; such computa-
tional complexity necessitates our present study. Later, we
shall further seek to specify interaction-graph structure by
introducing edges to a path-like IG either in a breadth-first
or depth-first approach, resulting in several pairing of IGs
which have the same number of edges, but are topologically
inequivalent, cycle-like IGs.1

In this article, we shall focus primarily on the two differing
cases described above: quantum algorithms whose IGs admit

1One may also consider tree-like IGs; however, for the purposes of this
manuscript, we will concentrate on path-like and cycle-like IGs, and reserve
this discussion for further study.

path-like and cycle-like forms (such IGs are briefly discussed
in Section IV-A). The emphasis on path-like IGs is justified
for two main reasons. First, in fields such as quantum
chemistry, the simulation of fermionic quantum systems can
be carried out by encoding the qubits via a Jordan-Wigner
transformation [6]–[8]; such an encoding scheme can give
rise to circuits known as linear SWAP networks [66], [67],
exhibiting path-like IGs. Second, a quantum algorithm
with a path-like interacting-graph representation is, in a
sense, hardware agnostic; such algorithms exhibit only
nearest-neighbor two-qubit gate invocations and are thus
adaptable to any architecture. Designing a qubit-assignment
algorithm for the goal of considering such quantum
algorithms is therefore paramount. Conversely, our precise
motivation for investigating graph cyclicity as it applies to
the qubit-assignment problem is not motivated necessarily
with respect to realistic implementations, but rather as a
method by which to probe the limits of when our HQAA
effectively fails to find an adequate solution. In this way,
we set forth a method by which to diagnose and analyze the
effectiveness of a general HQAA with respect to a diverse
plethora of interaction-graph topological structures, while
keeping the coupling-graph connectivity constant; moreover,
we utilize a similar framework to investigate the scaling
properties of our HQAA, in particular as the size of the
QPU increases. In the following section, we will detail our
approach for the qubit-assignment algorithm, specifically
made with the previously mentioned goals in mind.

III. DESCRIPTION OF THE QUBIT-ASSIGNMENT
ALGORITHMS
All of the qubit-assignment algorithms utilized in this work
generally function in the following manner. First, an n× n
square lattice (representing the geometric connectivity of the
QPU) is initialized, along with single-qubit and two-qubit er-
ror rates, as well asmeasurements, as a NetworkX object [68]
which will serve as an approximation for the QPU device’s
CG. Next, a quantum algorithm written in cQASM [69] is
parsed into a NetworkX object as well. The qubit-assignment
algorithm is then called, a final-assignment solution is as-
signed, and the assignment is evaluated using a cost function

3101114 VOLUME 3, 2022
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that is described at the end of this section (we will refer to
this cost function as the metric). The IGs used in this article
for QPU simulations were assigned to CGs which consist of
3 × 3QPU lattice grids in the simulations fromSection IV-B;
for the large path-like simulations of Section IV-C, we assign
to n× n grid lattice QPUs qubits, where n > 3. All of the
code for this project is freely accessible on Github.2

For all of the algorithms described in this section, we will
refer to an IG, comprised of some set of verticesV and some
set of edges E, as Ĩ(V,E ); additionally, we shall refer to a
QPU CG with vertex setV ′ and edge set E ′ as Q̃(V,′ E ′). For
the algorithms that we designed, several assumptions were
made.

1) If�(V ) ≥ �(V ′) (where�(V ) represents themaximal
vertex degree [63]), then an assignment solution exists
for Ĩ(V,E ), whichmay ormay not require SWAP gates.

2) We assume that |V | ≤ |V ′| (where |V |, |V ′| represent
the total number of vertices in the interaction and CGs,
respectively), i.e., that the number of vertices in the IG
is smaller than or equal to the number of vertices in the
CG. If |V | > |V ′|, then the assignment process aborts,
and an error message is displayed. An example of such
an error would concern the assignment of an n-qubit
quantum algorithm to an (n− 1)-qubit CG.

A. HQAA TRAFFIC COEFFICIENT
Our HQAA is greedy in nature [70], and pseudocode for the
algorithm is described in Algorithm 1. The HQAA functions
generally as follows. The IG Ĩ(V,E ) and the CG Q̃(V,′ E ′)
are initialized as NetworkX objects after being parsed from
an input QASM file. Next, the set of traffic coefficients
Vi,tc and the maximal traffic coefficient Vmax

i,tc are calculated
and stored in lists, which can be interpreted as the over-
all percentage of gate invocations for a given qubit. These
mathematical objects will be explained in more detail in the
next two paragraphs. Subsequently, the infimum vertex (in
the present context we refer to the “infimum-vertex qubit”
as the maximal-degree qubit with the minimal two-qubit
error-rate edge on the CG, which we denote in Algorithm
1 as inf�(V ′ ),E (E ′ ), where �(V ′) and E (E ′) represent the
maximal-degree and the minimal two-qubit error-rate edge
for the CG, respectively) of the CG is selected as the first
candidate coupling-graph qubit to be assigned to. After-
ward, our algorithm defines an initial assignment from the
interaction-graph qubit with the maximal traffic coefficient
to the infimum coupling-graph qubit; we cycle through both
ordered sets of interaction-graph and coupling-graph qubits,
defining neighboring interaction-graph qubits in a nearest-
neighbor style on the QPU CG. When all nearest neighbors
for a given coupling-graph vertex have been defined already,
our algorithm uses Dijkstra’s shortest-path algorithm in order
to find the physically closest coupling-graph qubit (here we
take the “shortest path” tomean the edge(s) that constitute the

2https://github.com/mattsteinberg13/heuristic-qubit-mapping-algorithm

overall lowest edge error rate); as such, whenever a nearest-
neighbor qubit is not able to be located, our policy is to add
SWAP gates, in accordance with the shortest path that the
Dijkstra’s algorithm finds. This process is continued until
all of the interaction-graph qubits have been matched to a
corresponding coupling-graph qubit. We will provide more
detail in the rest of the section.
The HQAA presented here is necessarily similar to the

simple heuristic assignment strategy used in [50]; however,
our HQAA is novel in the sense that we utilize the traffic
coefficients as a fitness function for the interaction-graph
qubits. As mentioned earlier, the notion of traffic coefficients
is related to the notion of vertex centrality in graph theory
[56], [57]. Additionally, [50] evaluates and compares sev-
eral heuristic qubit-assignment algorithms to SMTP-based
algorithms. We stress here that our aim is not to make signif-
icant improvements to state-of-the-art qubit-mapping strate-
gies, but rather to directly quantify and qualify topological-
graph dependencies between an interaction graph and our

VOLUME 3, 2022 3101114
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HQAA, as well as investigating the scaling properties of
our HQAA. We suspect that our findings will have wider
applicability to most qubit-mapping algorithms, although we
will comment on this in Section V.
The maximal traffic coefficient is calculated as follows.

First, for the ith interaction-graph qubit, we sum the total
number of single- and two-qubit gate invocations; the fre-
quency of an interaction-graph qubit is subsequently labeled
fi, as shown in (1). Here, we have weighted two-qubit gate
invocations (Nd,i) with an extra linear multiplier of 2 in or-
der to weigh interaction-graph qubits which exhibit a large
percentage of the two-qubit gates utilized in a given quan-
tum algorithm more heavily than single-qubit gates. In this
way, we take into account for both the nontriviality of the
single-qubit gate invocations (Ns,i) and the higher error rates
of two-qubit gates, which are typically at least one order of
magnitude worse than for single-qubit gates [50], [60]. After
a bit of algebra (2) and (3), one sees that the frequency of
the ith interaction-graph is rewritten as a traffic coefficient
v ∈ Vi,tc; these traffic coefficients are summed and normal-
ized, such that cv provides a “percentage-wise” overview of
the total interactions for the ith interaction-graph qubit in an
algorithm. We then take the maximal traffic coefficient Vmax

i,tc
as corresponding to the first interaction-graph qubit to be
assigned, as shown in (4).

fi = Ns,i + 2Nd,i (1)

1 − 1

fi
= Vi,tc (2)

c ·
∑

i

Vi,tc = 1 (3)

maxVi,tc = Vmax
i,tc (4)

As a brief aside, one may ask why the single-qubit error
rates are factored in at all, given the large difference inmagni-
tude between the two-qubit and single-qubit error rates. The
reason for this is the following: consider a quantum circuit,
where the ratio of single-qubit gates to double-qubit gates is
much higher than 1. Given such a scenario, we expect that the
error rates of the single-qubit gates nontrivially factor into the
determination of which virtual qubit should be first allocated.
The maximal traffic coefficient Vmax

i,tc represents the per-
centage of interactions for the “most active” qubit in the
algorithm and is used as a way to ascertain which interaction-
graph qubits must be prioritized for the best-connected, low-
est error-rate portions of the QPU CG via our HQAA that is
described in Section III-A. It is entirely possible that more
than one interaction-graph qubit may have the largest traffic
coefficient; in this case, we simply iterate through the set of
qubits with maximal traffic coefficient Vmax

i,tc and then treat
the rest of the qubits in the assignment process.
In order to assign the rest of the IG, a variant of Dijkstra’s

algorithm [71] is utilized, which takes into account the error
rates of two- and single-qubit gates (represented on the CG as
edges and vertices with assigned error rates) in order to find

FIGURE 3. Numbering scheme employed by our TAA follows a “snake
pattern” across the CG.

the “shortest path” (in this case the term shortest path refers
to the particular sequence of gates which lead to the lowest er-
ror rate, which is the shortest path since weights are placed on
the edges as two-qubit error rates) to the next available qubit
in the IG; once the next candidate interaction-graph qubit
is designated, the algorithm surveys the interaction-graph
qubits that have already been assigned. Finally, the HQAA
assigns the new candidate to the QPU CG, as closely as
possible (such that the least amount of errors is generated) to
the originally assigned interaction-graph qubit. This process
continues until the entire algorithm has been assigned to the
closest-possible qubits on the IG.

B. BRUTE-FORCE AND TRIVIAL QUBIT-ASSIGNMENT
ALGORITHMS
The BFAA utilized in this work functions as follows. First,
the lattice QPU is initialized, and the error rates for all quan-
tities are defined; next, the BFAA generates a list of all possi-
ble permutations for a quantum-algorithm mapping solution.
Each permutation is assigned and is evaluated using the met-
ric described in Section III-C. The preceding permutation’s
metric value is compared to the current iteration, and the per-
mutation with the highest success-rate metric value is kept,
while the inferior one is discarded. This process continues
until the best permutation is found.
The TAA functions by sequentially assigning interaction-

graph qubits to correspondingly numbered coupling-graph
qubits; a quantum algorithm with qubits q1 . . . qr, where
r ≤ n2 (n2 for a n× n QPU), will be assigned to a CG
of a QPU with qubits Q1 . . .Qs, where s ≥ r, by assigning
interaction-/coupling-graph qubit pairs as {q1 �→ Q1, q2 �→
Q2, . . . , qr �→ Qr}. The success-rate metric is then subse-
quently evaluated, in order to compare with the other two as-
signment strategies. In all likelihood, one can imagine many
different numbering schemes that will give rise to differing
evaluations of the success rate; as such, we fixed our num-
bering scheme for the QPU CG in order to follow a snake
pattern along the processor’s topology, as shown Fig. 3. The
numbering scheme used for the IGs can be considered to
be arbitrary and follows from the numbering of the qubits
in its respective qubit register. As such, our TAA iteratively
assigns interaction-graph qubits to a CG while following a
snake pattern.

C. EVALUATION OF THE SUCCESS-RATE METRIC
The cost function used to quantify the performance of all al-
gorithms in this work is described below. The purpose of this
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metric is to approximate the fidelity of the final quantum state
after the quantum circuit is assigned and executed, with all
gates invoked, in a computationally efficient manner. Other
metrics exist [49]–[52]; however, we limit our attention here
to a metric that is based on success-rate measures.
The single-qubit gate, two-qubit gate, and SWAP-gate

product metrics are calculated as shown below in (5)–(8).
These product metrics, as explained above, relate specifically
to the CGs that we utilize in this work.

σs =
n′<n∏

i

(1 − ξs,i)
Ns,i (5)

σd =
δd∏

i

(1 − ξd,i)
Nd,i (6)

σ SW =
δSW∏

j

l∏

i

(1 − ξSWi )
(2NSW

i )
j (7)

σtotal = σs · σd · σ SW (8)

where on the first line, σs, n′, n, ξs,i,Ns,i are the total single-
qubit gate metric value; the total number of qubits in the
IG; the total number of qubits in the CG; the single-qubit
gate error rate for each qubit; and the number of single-
qubit gate invocations per qubit, respectively. On the sec-
ond line, σd, δd, ξd,i,Nd,i are the total two-qubit gate metric
value; the total number of edges on the NISQ device; the
two-qubit gate error rate per edge; and the number of two-
qubit gate invocations per edge, respectively. On the final
line, σ SW, δSW, l, ξSWi , 2NSW

i represent the total SWAP-gate
metric value; the total number of separate edges that need
SWAP gates; the total number of edges which physically
separate the SWAP-corrected pair of coupling-graph qubits;
the two-qubit gate error rate per edge; and the number of two-
qubit gate invocations, for which the error rates overall are
squared (this takes into account the cost of moving the qubit
both to and from the closest unoccupied region, using the
SWAP gate), respectively. Finally, σtotal represents the total
metric calculated from the product of all other success rates,
as mentioned above. For simplicity, we do not explicitly take
into account how SWAP gates may be invoked on real QPU
devices [45], [46].
Since the HQAA itself functions by allocating interaction-

graph qubits to coupling-graph qubits based on a measure of
the success rate, one may ask how useful it is to utilize a
metric based on the same measures. The reason for this can
be seen as follows: when considering the optimal solution for
any qubit-assignment algorithm, there are a variety of differ-
ent cost functions that one may utilize. However, any assign-
ment that is based on an exact calculation of the fidelity of the
final quantum state after running it on a physical QPU will
give the best indication of performance for an assignment
solution [72]. Since direct computations of the fidelity are
computationally resource-intensive and scale exponentially
with the size of the QPU [18], [73], we opt to utilize a cost

FIGURE 4. IGs of several realistic benchmarks which were tested in
Section IV-A; the benchmarks themselves were taken from [50]. a1)–a3)
show the BV4, BV6, and BV8 benchmarks, respectively; (b) represents the
QFT and HS2 benchmark algorithms; the IGs in (c) and (d) were used for
the HS4 and HS6 algorithms; (e) depicts the Fredkin, Or, Peres, and
Toffoli algorithms; and (f) displays the Adder benchmark.

function that may be regarded as related to the calculation
of the fidelity (i.e., a success rate measurement, based on the
error rates as presented). In this way, we attempt to employ
a cost function that is as relevant as possible, without the
computational demands incurred by large-scale simulations.
In agreement with [50], a precise formulation of the noise

model is not warranted in this work. One main reason for
this discrepancy is due to the inherent nature of the cost
function used, which takes into account the experimentally
determined noise-calibration statistics, not the specific de-
tails of the quantum channels acting upon the system. Further
details are not necessary, as such inclusions will impact the
scalability of the qubit-assignment algorithm.
In the next section, we will discuss in full the results

obtained from studying several realistic interaction-graph
benchmarks, benchmarks whose IGs exhibit high degrees
of cycle-like edges, and benchmarks that increase in size
and sequentially occupy more and more of a given QPU
coupling-graph’s qubits.

IV. RESULTS
The results are organized as follows. Section IV-A details the
results obtained from realistic benchmark IGs, assigned to a
3 × 3 CG. Section IV-B discusses the results from assign-
ing quantum benchmarks with IGs that exhibit increasing
amounts of nonnearest neighbor two-qubit gate combina-
tions. The results from scaling the size of path-like IGs onto
ever-increasing QPU CGs are described in Section IV-C.
All benchmarks were tested on a Dell Latitude 7400 laptop
with a 1.9 GHz × 4 Intel i7-8665 U quadcore processor
and 8.0 GB of RAM. Each benchmark was assigned using
our simulation 100, 100, and 1000 times in Sections IV-A
and IV-C, respectively; success rates were averaged over all
trials. Simulations of Sequences I and II (as shown in Fig. 6)
took approximately 60 hours of continuous runtime.

A. REALISTIC INTERACTION-GRAPH BENCHMARKS
The benchmarks from [50] were utilized in this section. The
corresponding IGs for each of the benchmarks listed are
shown in Fig. 4. All of the benchmarks were tested on a
3 × 3 lattice CG, and the results are reported in Fig. 5. In
this section, we did not explicitly take into account whether
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FIGURE 5. Success rate for the benchmarks in [50]. The BFAA results are
shown in red, followed by blue and green bars, which represent the
HQAA and TAA results, respectively.

the IGs are path-like or cycle-like; path-like and cycle-like
interaction-graph benchmarks will be investigated and com-
pared in detail in Sections IV-B and IV-C.
The results obtained from the BFAA, HQAA, and TAA

with respect to the benchmarks detailed in Fig. 4 are shown in
Fig. 5. The algorithms themselves are grouped: the first three
groupings of results pertain to the hidden-shift algorithmic
benchmarks; the second three groupings relate the results ob-
tained for the Bernstein–Vazirani benchmarks; as for the next
grouping, the results belonging to the Toffoli, Or, Fredkin,
and Peres benchmarks exhibit triangular IGs; and finally, the
quantum Fourier transform (QFT) and Adder benchmarks
admit IGs as shown in Fig. 4(b) and (f), respectively. Red
bars denote the results from the BFAA; blue and green bars
denote the results from the commensurate HQAA and TAA,
respectively. The y-axis of Fig. 5 displays the calculated suc-
cess rates.
As is evidenced in the graphs, the BFAA provides an effec-

tive upper bound for the performance of the HQAA (we use
the term effective upper bound with the view that better so-
lutions may exist if one utilizes time-scheduling techniques,
as mentioned in Section II). Additionally, the TAA allows
for an interpretation as an effective lower bound, with the
HQAA pivoting between both of these effective bounds. The
HQAA outperforms the TAA in virtually all cases except for
those involving disjointness in the interaction-graph quantum
algorithms, as indicated by the success-rate values of Fig. 4
a2) and Fig. 4 a3).
One may naïvely conclude from the results obtained that

the HQAA used in this work performs generally well for
all types of interaction-graph topologies, both cycle-like and
path-like.3 However, one may expect that topological-graph
effects play a limited role in such small-scale quantum al-
gorithms. Therefore, our results from this section serve to

3The only exception to this rule can be seen in the disjoint IGs that were
utilized for the HS4 and HS6 algorithms. Such a complication is hardly
unexpected, as our HQAA was intended for connected-IGs only. One can
in principle consider additions in order address quantum algorithms that
prepare product states; however, we reserve the discussion on disjoint IGs
for future work.

motivate a more systematic investigation of the topological-
graph effects of an IG on the performance of our HQAA. We
will show in the next section that topological-graph structure
plays a role in the performance of our HQAA for IGs larger
than six virtual qubits, and thus, were not apparent in the
results of this section.

B. TOPOLOGICALLY INEQUIVALENT
INTERACTION-GRAPH BENCHMARKS
The results of this section detail comparison between
the HQAA, BFAA, and TAA. These two additional
qubit-assignment algorithms provide effective upper and
lower bounds on the performance of the HQAA, just as
in the previous section. The 4-, 6-, and 8-qubit IGs were
used as benchmarks to be assigned onto a 3 × 3 lattice
CG. Two sequences of two-qubit gate additions for 6-
and 8-qubit IGs are utilized and are shown in Fig. 6. We
sequentially add cycle-like edges to IGs, starting from their
path-like counterparts. Our aim is twofold. First, we wish
to characterize and associate the performance of our HQAA
with the number of cycle-like edges in the corresponding
IG; furthermore, we are interested in the specific topological
properties of said IGs. In this section, we added cycle-like
edges in two different patterns: following a depth-first
pattern, which seeks to saturate the vertex degree of one
vertex of the IG before adding more edges to the next, and
breadth-first pattern, in which edges are added in such a way
that the vertex degrees of all nodes stay approximately equal.
In the small-n regime (for a n× n QPU CG), BFAAs can

be utilized, as the size of the coupling and IGs are sufficiently
small. Even so, it must be stated that in all of our simulation
results, our BFAA requires several orders of magnitude more
time in order to complete each trial than the HQAA or TAA.
Cycle-like chords that were sequentially added to s-qubit

path-like IGs are shown in Fig. 6; here, s ∈ {4, 6, 8}. Due to
the fact that there are several different ways in which onemay
add chords to the six- and eight-qubit quantum algorithms,
two different ways of edge addition were used for the respec-
tive s-qubit cycles, in order to explore and compare two sets
of IGs that are equivalent in all ways, except when viewed
through the lens of topological graph equivalence. We name
these resulting sets of IGs generated by each iterative pro-
cedure as breadth-first or depth-first sequences. As shown
in Sequence I (see Fig. 6), a cycle is immediately created
upon adding an edge between the first and last vertices of a
path-like IG; subsequently, chords are added to the s-qubit
cycle such that the degree of every sequentially numbered
vertex is maximized before proceeding to add chords to the
consecutively numbered vertices. We refer to this style of
adding edges as a depth-first approach. Sequence II, however,
exhibits a breadth-first approach to cycle-like edge addition,
as chords are added in amanner such that the vertex degree of
all vertices remain approximately equal. The red-highlighted
edges represent newly added chords to a particular sequence.
One may ask what the reasoning behind such an elabo-

rate edge-generation procedure may be; after all, is it not
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FIGURE 6. IGs for the first and second benchmark sequences. Red edges depict newly added cycle-like edges to the IGs that were tested with our
HQAA. In the IGs from Sequence I, cycle-like edges are appended such that every vertex degree is maximized before subsequently appending cycle-like
edges to consecutively higher-numbered vertices; this process continues until a Ks graph is attained for Sequence I (We refer to this technique as a
depth-first edge-assignment procedure). As for Sequence II, a breadth-first edge-assignment procedure is utilized, as cycle-like edges are appended
such that every vertex exhibits approximately the same degree until a Ks graph is reached.

sufficient to only consider the numbers of virtual qubits
and gate overhead for understanding the qubit-assignment
properties of a quantum algorithm using an HQAA? One
of the main purposes of this manuscript is to show that
topological-graph properties such as degree centrality play
an important role in qubit-assignment when using an HQAA;
as such, it was imperative to construct sets of interaction-
graph benchmarks which exhibit the same numbers of two-
and single-qubit gates, exhibiting their only differences in
their topological-graph properties. As an example, consider a
map f from graph d6) in Sequence I (which for this example
we shall denote X for simplicity) to graph d6) in Sequence
II (we here we shall denote Y for simplicity). According
to the definition of topological equivalence introduced in
Section II, three main conditions must be fulfilled, in order
to define such a map f : X �→ Y . It should be obvious that
condition 1 does not hold, as their graph Laplacians [63] do
not share the same eigenvalue spectrum.4 In our simulations,
we hold the total numbers of single- and two-qubit gates
to be the same for our benchmarks but allow for different

4It is well known in spectral graph theory [63], [74], [75] that two graphs
X and Y are isomorphic (i.e., exhibit an edge-set and vertex-set bijection)
if a permutation matrix P exists for which PXP−1 = Y ; a necessary con-
sequence of this is that both graph Laplacians share the same eigenvalue
spectrum. Since we know a priori that X and Y do not share the same
eigenvalue spectrum, we can conclude that no permutation matrix exists
such that a vertex- and edge-set bijection exists; thus, condition 1 does not
hold.

topological structures to emerge between IGs, as shown by
Fig. 6. In this way, we have positioned ourselves such that
we can now evaluate the performance of an HQAA relative
to varying the topological-graph properties of the IGs while
keeping the coupling-graph structure constant.
The results for 4-, 6-, and 8-qubit IGs that were assigned in

accordance with the IGs in Sequence I and II are depicted in
Fig. 7. Fig. 7(a)–(c) represents the results procured from IGs
in Sequence I; Fig. 7(d) and (e) represent the Sequence II re-
sults. In each subfigure, the BFAA, HQAA, and TAA results
are shown in red, blue, and green, respectively. The success
rates of each assignment algorithm {σbrute, σheuristic, σtrivial}
are graphed as a function of the number of cycle-like edges
that have been added from the original sequence start in Ia4),
Ia6), and Ia8) in Fig. 6. The average runtime per trial for
the BFAA, HQAA, and TAA are on the order of about 60
s for the BFAA versus 0.5 and 0.2 ms for the HQAA and
TAA, respectively. These figures largely stay the same for the
Sequence II benchmarks, as the BFAA exhibits an average
solution time of several orders of magnitude higher than the
other two qubit-assignment algorithms.
Fig. 7(a) shows that our HQAA’s success rate can approach

the BFAA’s for 4-qubit IGs, no matter how many cyclic
chords are added; indeed, it is observed that even a quantum
algorithm representing a K4 IG can be effectively assigned to
the 3 × 3 lattice CG in our simulations. In contrast, Fig. 7(b)
and (c) depict performance decreases for our heuristic
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FIGURE 7. (a)–(c) Results for the cycle-like benchmarks in Fig. 6 for Sequence I (the depth-first benchmarks); the x-axis of the figure follows the
sequence of cycle-like edge additions. The average runtime per trial for all of the benchmarks was approximately 60 s, 0.5 ms, and 0.2 ms for the BFAA,
HQAA, and TAA, respectively. The total runtime for the entire simulation was approximately 60 h. (d) and (e) Results for the cycle-like benchmark IGs in
Fig. 6 for Sequence II. These breadth-first benchmarks exhibited an average runtime per trial were approximately equal to those stated for the
depth-first benchmarks.

optimization as more and more cycle-like edges are added to
the IG. Fig. 7(c), however, is unique in that the performance
of the HQAA achieves roughly analogous performance to
that of the TAA, until finally, after 18 cycle-like edges have
been added, a “critical point” is reached. We define this crit-
ical point to be the point at which the HQAA’s success rate
matches that of the TAA’s. This behavior is not witnessed in
the 6-qubit IGs; indeed, although the 6-qubit benchmarks do
exhibit steadily decaying performance, our results indicate
that this tendency is more prevalent with larger quantum
circuits, such as the 8-qubit benchmarks.
The breadth-first benchmarks of Sequence II exhibit a dis-

tinct trend from the first-sequence IGs. Although Fig. 7(d)
largely appears to agree with Fig. 7(b), the second-sequence
IGs in Fig. 7(e) exhibit much worse HQAA success rates,
compared to the first-sequence alternatives. In point of fact,
the critical point appears sooner in our simulations while
following Sequence II. Approximately 18 cycle-like edges
were added in the depth-first analysis of Sequence I; in
contrast, the point wherein the HQAA’s success rate is
equal to that of the TAA’s is observed after approximately
7–8 cycle-like edges have been added from Sequence II
(breadth-first).
A few comments are in order here. First, the data obtained

from these simulations reveal that our HQAA can adequately
assign IGs that exhibit a low degree of cycle-like edges,
provided that the quantum circuit in question is not very deep.
As we increase the sheer amount of the two-qubit gate invo-
cations between interaction-graph qubits, it can be seen that

our HQAA can tolerate a small amount of interaction-graph
cyclicity, especially if this cyclicity is centralized on a subset
of the total vertices. Next, and perhaps more importantly,
for a given number of cycle-like edges added to a path-
like IG, the success rate varies significantly for our HQAA.
However, if we take two IGs from Sequences I and II with
equivalent numbers of edges, we found that the local distri-
bution of edge assignments play a role in the success rates
observed, as these localized edge-assignment discrepancies
are the only difference between any two pairs of IGs from
Sequences I and II. This local distribution discrepancy gener-
ates the observed topological inequivalence globally for the
IGs and plays a significant role in the performance of the
HQAA.
These same simulations were performed for the same

benchmarks, with the only difference being that the number
of total gates for each benchmark was multiplied by two
and four. Our results largely conform with those shown in
Fig. 7, as only the scaling of the success-rate metric changes.
This observation is indeed expected, as the design of the
experiment and the cost function themselves facilitate such a
rescaling.
Lastly, as shown in Fig. 7(c) and (e), the heuristic’s and

TAA’s success rates are relatively close. One may surmise
that a reason for this proximity is related to the high occu-
pancy of the coupling-graph qubits during our simulations
(8/9 of the available QPU qubits were utilized). The next
section will provide information related to the large path-like
interactions graphs that were tested and how they scale in the
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FIGURE 8. Success-rate differences between the success rates of the HQAA and TAA (σheurstic, σtrivial ) taken from n-qubit path-like IGs which have been
assigned to n × n QPU CGs. a) Success rates differences without any noise scaling. (b) and (c) Success rate σtotal calculated for both n = 4 and n = 6 QPU
CGs, respectively.

regime n > 3 for a corresponding n× nQPUCG.We specif-
ically address the question of how the occupancy percentage
of the QPU affects our HQAA’s solution.

C. SCALING PROPERTIES OF OUR HQAA ON LARGER
QPU LATTICES
The benchmarks tested in this section are all path-like, but
vary in size so as to occupy different percentages of an n× n
QPU CG, where n = 3, . . . , 10. A CG of lattice dimensions
n× n is initialized, and sequentially larger and larger path-
like IGs are assigned to a CG until it is 100% occupied; as in
the previous simulations, vertices of the CG are taken to be
qubits. Additionally, no explicit noise scaling was utilized as
the CG increases; the magnitudes of noise for two-qubit and
single-qubit error rates, as well as measurements, are kept the
same as described in Section III. As BFAAs were not utilized
for this section (becoming practically intractable if n > 3),
success rates were instead compared between the HQAA and
TAA, as shown in Fig. 8(b) and (c).
The results from our study are displayed in Fig. 8. Fig. 8(a)

shows the success-rate difference {σheuristic − σtrivial}, calcu-
lated between our HQAA and the TAA, with respect to path-
like IGs that progressively fill the entire QPUCG. The differ-
ent colors in Fig. 8(a) denote differing n-values for the lattice
dimensions of the CG. Fig. 8(b) and (c) displays the actual
success rates calculated under no noise scaling behavior, for
4 × 4 and 6 × 6 coupling-graph dimensions, respectively.

In these graphs, one can observe several trends: first, as the
n-value of the CG increases, the success-rate difference be-
comes steadily larger for path-like IGs that occupy the same
percentage of the CGwhen fully assigned, until about 75% of
the QPU is occupied. Next, after approximately 75% of the
CG has been filled, the success-rate difference becomes neg-
ligible; this success-rate difference implies that an effectively
negligible difference between the heuristic- and the TAA is
observed. Lastly, after roughly 85%–90% of the lattice CG
is occupied, the success-rate difference is not only negligible
but starts to dip below zero, the main observation here being
that the HQAA cannot find a solution that outperforms the
success rate measured from the TAA. We will discuss the
consequences of this observation in Section V.

Additionally, we performed the same tests for CGs with
increasing n-values such that a uniform increase in noise
of order four times larger than the noise in Fig. 8, as well
as under exponentially increasing noise. The purpose of
these rescaled-noise simulations was to investigate poten-
tially more realistic noise, as device error rates are expected
to increase due to crosstalk as quantum processors become
larger [60], [76]. Our results from these simulations largely
confirm the same trends that werementioned in the preceding
paragraphs, albeit with steeper linear decays.

V. DISCUSSION
In this article, we have introduced an HQAA for the pur-
pose of exploring the advantages and limitations of assigning
topologically-inequivalent IGs to quantum hardware, in ad-
dition to systematically investigating the scaling behavior of
our HQAA as the QPU size increases. The HQAA itself is
noise-aware, and the success rate is high, relative to a BFAA
and TAA, which serves to effectively bound the performance
of our HQAA from above and below. For small, low-depth
quantum circuits, theHQAA is shown to provide a significant
performance gain over a TAA solution, and in some cases for
realistic benchmarks even approaches that of a BFAA.
Two main stages of our work have led us to novel results

about the behavior of simple HQAAs. First, we have investi-
gated the performance of our BFAA, HQAA, and TAA with
low-depth quantum circuits which admit cycle-like IGs. Two
particular edge-addition sequences were considered, both of
which highlight the inherent limitations of the HQAA that
we devised, albeit in different ways. The topological-graph
properties of the cycle-like edges added to the circuit (i.e.,
depth-first or breadth-first edge assignments), as well as the
sheer amount of cycle-like edges utilized, both were found
to play a role in our HQAA’s calculated success rate. These
two observations are evidenced from an analysis of Fig. 7(c)
and (e): although our HQAA performs better than the TAA
solution for most of the depth-first edge additions (Sequence
I), we see that the performance is not much better, imply-
ing that our HQAA can tolerate a relatively low amount
of interaction-graph cyclicity, in the case of the number of
qubits in the IG being relatively high. This observation comes
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as no surprise, seeing as the algorithm was designed to ac-
commodate path-like IGs. Furthermore, for two IGs with
the same number of cycle-like edges, it was found that our
HQAA’s performance depends on the particular manner in
which the cycle-like interaction-graph edges are distributed.
We verified that this fact is reinforced for deeper algorithms
by running simulations with larger-depth IGs of the same
form as described in Fig. 6. More specifically, Sequence I
and Sequence II differ from each other due to their vertex
centrality. When looked at from this perspective, it is unsur-
prising that our HQAA, tailored to take into account vertex
centrality, performs better for IGs that additionally exhibit.
What is in fact novel about these results is how quickly the
performance of our HQAA falls off in comparison to an-
other, topologically inequivalent IG, and also in comparison
to our approximate upper- and lower-bounds, provided by the
BFAA and TAA. This falloff demonstrates that a topological-
graph dependence is exhibited for our particular assignment
strategy employed.
Second, we investigated the scaling behavior of our

HQAA in the regime n > 3 for n× n QPU CGs. In this
regime, our BFAA solutions to the assignment problem be-
come intractable; as such, the HQAA was compared to the
TAA described in Section III. Our novel results indicate that
the HQAA scales well for quantum circuits with path-like
IGs, as long as less than approximately 75% of the QPU
CG is filled (in comparison to our TAA). If one occupies
more of the available space on the QPU, one can expect
a trivial benefit from utilizing our HQAA, until approxi-
mately 85% of the processor is allocated; after this marker,
performance losses can be expected (with respect to our
TAA), as our results denoted. Additionally, for comparable
percentages of the CG that are filled, one can expect higher
success rates relative to the TAA solution as n is steadily in-
creased. These same simulations were additionally employed
for uniformly and exponentially increasing noise parameters,
concomitant with observations that larger QPU devices expe-
rience more problems with error rates due to crosstalk [60],
[76]. Our results confirm and reinforce the remarks stated
above.
One may ask why our HQAA tends to underperform as we

occupy larger percentages of a QPU CG. An answer to this
question can be seen when one considers that, as the CG is
filled up, fewer and fewer nearest-neighbor choices are left
for the HQAA to evaluate. As the algorithm itself functions
by selecting first the maximum-degree vertex of the minimal
error-rate edge, the heuristic-based solution will necessitate
more SWAP gates as the processor is further allocated. In this
regime (i.e., when over 75% of the QPU is occupied), the
TAA used in this study would be expected to outperform our
HQAA for quantum circuits that give rise to path-like IGs. In
this sense, using notions of vertex centrality for an HQAA’s
strategymay lead to detrimental results in the limit when over
75% of the processor is filled. An example of this difficulty
can be seen in Fig. 9; indeed, in Fig. 9(a) and (b), one sees
the result of a greedy shortest-path assignment applied to

FIGURE 9. Example scenario in which our HQAA could perform worse in
comparison to a TAA. On the 5 × 5 CG pictured above, (a) and (b)
represent possible final-assignment solutions for the HQAA and TAA,
respectively. In (a), one may initiate the assignment process in a
highly-connected region of the CG; however, as one proceeds using the
algorithm to consecutively assign the 15 qubits in our quantum-circuit
example, one may encounter a situation in which the heuristic-based
solution may involve several more SWAP gates than normally
anticipated. This situation is shown as a dotted line in blue (tracing out
the nearest-neighbor assignment path of our HQAA) which essentially
runs into a corner in the lower-right portion of the QPU CG, stopping at
the vertex shown in blue. From this point forward, the next shortest-path
distance would not be a nearest-neighbor vertex, and SWAPs will
undoubtedly be needed in order to realize such an assignment solution
(shown by the dotted line in magenta, which terminates at the
red-labeled vertex q14). In (b), a TAA solution would better utilize the
space and connectivity available for a QPU when fewer choices are
available.

a 5 × 5 CG. In Fig. 9(a), we may start with a high-degree
vertex (shown in green); as the algorithm proceeds to find
nearest-neighbor solutions, the algorithm’s attempt to assign
the 15-qubit path-like IG in our example may run into a
portion of the device that is less highly connected (shown
by the blue-dotted line which terminates at the blue-labeled
vertex). When such an event happens, the HQAA will con-
tinue searching for the nearest possible neighbor that is free;
unfortunately, in this case, several SWAP gates would be
needed in order to realize the mapping shown (denoted by
the magenta-dotted line that terminates at the red vertex q14).
In Fig. 9(b), we see an example of our TAA that would make
better use of the space requirements for the 15-qubit quantum
circuit. One solution to this issue with our HQAA may be to
utilize look-ahead or look-behind techniques, which would
serve to match not only the nearest neighbor on the CG but to
additionally analyze several interaction-graph vertices [62],
[77], [78]. Such a qubit-mapping algorithm may improve
overall success rates. In any case, it is clear that the choice
of HQAA may or may not perform well for a given CG and
cost function; we leave further discussion to future work.
As a final comment, it was observed that our BFAA scaled

badly after n = 3 for the CGs tested; this does not necessarily
imply that any exact simulation is intractable. Although we
note that finding an exact solution to the qubit-mapping prob-
lem is NP-hard, one may be able to write an exact mapping
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algorithm that does in fact scale better than ours for larger
n-values.

Various other qubit-mapping algorithm proposals exist as
well [41], [42], [47]–[49], [51], [52], [54], [79]; many of
these could be analyzed and classified, as it is imperative
to better understand which types of qubit-assignment algo-
rithms may be most amenable for certain structural classes of
quantum algorithms. In the interim, we expect that most (if
not all) HQAAs will exhibit a topological-graph dependence
via the IGs utilized, although this must be explored and ver-
ified in future work. Additionally, profiling the topological-
graph properties of further benchmark sets such as those from
[80] and [81]may serve to inform future proposals for QAAs,
as well as more general qubit-mapping approaches. In this
way, understanding the topological-graph properties of the
qubit-mapping problem may serve to elucidate a more fun-
damental mathematical metric to quantify the performance
of qubit-mapping strategies.
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