
Automated Detection of Code Smells
for Machine Learning Applications

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Haiyin Zhang
born in Guangdong, China

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

AI for Fintech Research
ING Bank N.V.

Frankemaheerd 1
Amsterdam, the Netherlands

www.ing.nl

www.ewi.tudelft.nl
www.ing.nl

© 2022 Haiyin Zhang. All rights reserved.

Automated Detection of Code Smells
for Machine Learning Applications

Author: Haiyin Zhang
Student id: 5221749

Abstract

The popularity of machine learning has wildly expanded in recent years. Machine
learning techniques have been heatedly studied in academia and applied in the industry
to create business value. However, there is a lack of guidelines for code quality in ma-
chine learning applications. Although machine learning code is usually integrated as a
small part of an overarching system, it usually plays an important role in its core func-
tionality. Hence ensuring code quality is quintessential to avoiding issues in the long
run. To help improve the machine learning code quality, we conducted two studies in
this thesis. The first study proposes and identifies a list of 22 machine learning-specific
code smells collected from various sources, including papers, grey literature, GitHub
commits, and Stack Overflow posts. We pinpoint each smell with a description of its
context, potential issues in the long run, and proposed solutions. In addition, we link
them to their respective pipeline stage and the evidence from both academic and grey
literature. The second study aims to develop a tool to improve code quality and study
the prevalence of machine learning-specific code smells. We extend a static analysis
tool dslinter and run it on both Python notebook datasets and regular Python project
datasets. Moreover, we analyse the result to check the tool’s validity and investigate the
code smell prevalence in machine learning applications. The code smell catalog and
dslinter together help data scientists and developers produce and maintain high-quality
machine learning application code.

Thesis Committee:

Chair and University Supervisor: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University Supervisor: Dr. L. Cruz, Faculty EEMCS, TU Delft
Committee Member: Dr. J. Yang, Faculty EEMCS, TU Delft

h.zhang-29@student.tudelft.nl

Preface

It has been a wonderful thesis journey to spend nine months with a lot of great people :) Here
I’d like to express my gratitude to all the people who helped, supported, and accompanied
me through this journey.

First and foremost, I would like to thank my daily supervisor Dr. Luı́s Cruz, for his
excellent academic guidance and constant encouragement throughout my entire thesis pro-
cess. Thank you Luı́s, for introducing me to this interesting research topic, guiding me
through the enlightening weekly meetings, providing me with detailed feedback and offer-
ing me a lot of chances to explore things. I’m fortunate enough to be one of your students.
Thank you Prof. Arie van Deursen, for providing valuable feedback at the crucial points
and keeping the project on the right track. In addition, my gratitude goes to ING AI For
Fintech Lab (AFR) for the interesting weekly meet-ups and pleasant gatherings during my
thesis journey. I also thank Dr. Jie Yang for co-reading my thesis and taking part in my
thesis committee.

Next, I want to thank my family and friends, who always accompany me and help me.
Thank you to all my friends, Danyao, Jie, Mingyu, Chadha, my roommates, teammates,
study buddies at Building 28, and whoever we have a good time with. Thank you for all the
lunches, dinners, happy weekends and laughing moments. Master thesis life would have
been less fun without you. Thank you to my boyfriend Qingyuan, who has been supportive
all the time and shared my happiness and sadness. Finally, I want to thank my parents for
supporting me and always caring for me. Without all the help, I couldn’t finish this journey.

I’m so grateful to have had the chance to study in the beautiful Delft for two years,
which will definitely be an unforgettable memory in my life.

Haiyin Zhang
Delft, the Netherlands

June 30, 2022

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Objectives and Research Questions . 1
1.2 Approach . 2
1.3 Contributions . 2
1.4 Report Organization . 3

2 Code Smells for Machine Learning Applications 5
2.1 Introduction . 5
2.2 Related Work . 6
2.3 Methodology . 8
2.4 Results . 13
2.5 Discussions and Implications . 21
2.6 Threats to validity . 24
2.7 Conclusions and Future Work . 25

3 Automated Detection of ML-Specific Code Smells 27
3.1 Introduction . 27
3.2 Related Work . 28
3.3 Dslinter . 30
3.4 Methodology . 34
3.5 Results . 37
3.6 Discussions and Implications . 46
3.7 Thread to Validity . 51
3.8 Conclusions and Future Work . 52

v

CONTENTS

4 Conclusions and Future Work 53
4.1 Conclusions . 53
4.2 Future work . 53

Bibliography 55

A Grey Literature References 59
A.1 Grey Literature References . 59

vi

List of Figures

2.1 Methodology . 8
2.2 Paper Selection Process . 9
2.3 Search Query for Literature and Grey Literature 10
2.4 Search Query for Stack Overflow Mining . 11
2.5 Total Number of Stack Overflow Posts and GitHub Commits 12

3.1 Dslinter . 30
3.2 The Whole Process . 34
3.3 The Top 10 Most Frequently Violated Rules 39
3.4 True Positive 1 - Chain Indexing Smell . 39
3.5 True Positive 2 - DataFrame Conversion API Misused Smell 41
3.6 True Positive 3 - Hyperparameter Not Explicitly Set Smell 41
3.7 False Positive 1 - Unnecessary Iteration Smell 42
3.8 False Positive 2 - Hyperparameter Not Explicitly Set Smell 42
3.9 False Positive 3 - No Scaling before Scaling-Sensitive Operation Smell 43
3.10 The number of code smells in notebooks and in projects per 100000 lines . . . 44
3.11 The top 10 most prevalent code smells in notebooks 45
3.12 The top 10 most prevalent code smells in projects 45
3.13 Histogram of code smell numbers in notebooks 46
3.14 Histogram of code smell numbers in projects 46
3.15 The distribution of distinct code smell number per notebook 46
3.16 The distribution of distinct code smell number per regular project 46

vii

Chapter 1

Introduction

Machine learning is gaining increasing interest in both academia and industry nowadays.
The next generation of software systems will likely incorporate machine learning. How-
ever, it is challenging to construct production systems with machine learning components.
87% of data science projects never reach production, despite initial success with machine
learning model training 1. Efforts still need to be made to facilitate the production process
of machine learning systems.

In this thesis study, we attempt to improve the reliability of the machine learning appli-
cations and thereby assist their production. We do this by identifying some coding issues
in machine learning applications, developing a static analysis tool to help developers avoid
these coding issues, and studying the prevalence of machine learning-specific code smells.

1.1 Objectives and Research Questions

This section briefly states the objectives and research questions of both studies performed
in this thesis project.

Code Smells for Machine Learning Applications: This study aims to learn more
about the code issues in machine learning applications. We defined the following research
question for this study:

1. What are the recurrent code issues that may arise from the peculiarities of machine
learning applications?

Automated Detection of ML-Specific Code Smells: The objective of this study is to
learn how widespread these coding pitfalls are in the public repositories, and to what extent
we can solve these problems by developing a tool specific for machine learning code smells.
We defined the following research questions for this study:

1. How prevalent are the machine learning-specific code smells?
2. How accurate is the machine learning-specific code smell detection tool dslinter?
3. Is the prevalence of code smells different in Python notebooks and regular Python

projects?

1Why do 87% of data science projects never make it into production?: https://venturebeat.com/2019
/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/

1

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/

1. INTRODUCTION

1.2 Approach

This section briefly introduces the study approaches of both studies.
Code Smells for Machine Learning Applications:
With the goal of identifying the coding issues in machine learning applications, we pro-

pose and identify a list of 22 machine learning-specific code smells collected from various
sources, including papers, grey literature, GitHub commits, and Stack Overflow posts. We
pinpoint each smell with a description of its context, potential issues in the long run, and
proposed solutions. In addition, we link them to their respective pipeline stage and the
evidence from both academic and grey literature.

Automated Detection of ML-Specific Code Smells:
We develop a static analysis tool dslinter with the purpose of automating the detec-

tion of ml-specific code smells. Then, we run dslinter on notebook and project datasets
to research the prevalence of ml-specific code smells. Further analyses are conducted to un-
derstand the validity of the tool and the code quality difference between Python notebooks
and regular Python projects.

1.3 Contributions

The main contributions of this thesis are as follows:
1. A catalog of machine learning-specific code smells, and a website to present all the

smells 2.
2. A replication package 3 for identifying the code smells, which contains 1750 papers,

2170 grey literature entries, 87 GitHub commits and 491 Stack Overflow posts for empirical
studies.

3. A research paper 4 “Code Smells for Machine Learning Applications”, which has
been accepted by the International Conference on AI Engineering - Software Engineering
for AI (CAIN) 2022, to share the machine learning-specific code smells we identified with
the research community.

4. An open-source static analysis tool dslinter to detect the machine learning-specific
code smells, which is available at GitHub 5 and PyPI 6.

5. An empirical study on the prevalence of code smells in both public Python notebook
datasets and regular Python project datasets.

6. A replication package 7 for the empirical study.

2Code Smell Catalog Website: https://hynn01.github.io/ml-smells/
3Replication Package 1: https://github.com/Hynn01/ml-smells
4Paper: https://arxiv.org/pdf/2203.13746.pdf
5dslinter at GitHub: https://github.com/SERG-Delft/dslinter
6dslinter at PyPI: https://pypi.org/project/dslinter/
7Replication Package 2: https://github.com/Hynn01/dslinter-experiments

2

https://hynn01.github.io/ml-smells/
https://github.com/Hynn01/ml-smells
https://arxiv.org/pdf/2203.13746.pdf
https://github.com/SERG-Delft/dslinter
https://pypi.org/project/dslinter/
https://github.com/Hynn01/dslinter-experiments

1.4. Report Organization

1.4 Report Organization

The remaining of the thesis contains three chapters, one of each study and a conclusion
chapter. Chapter 2 includes the study of identifying code smells for machine learning appli-
cations. Chapter 3 contains the study for building an automated code smell detection tool
dslinter and the research on the prevalence of machine learning-specific smells in the
public datasets. Each chapter stands on its own, containing an introduction, related work,
methodology, results, discussions and implications, thread to validity, conclusions and fu-
ture work. Chapter 4 describes the conclusions for the thesis and the future work. In the
Appendix, the grey literature references for identifying the code smells can be found.

3

Chapter 2

Code Smells for Machine Learning
Applications

2.1 Introduction

Despite the large increase in the popularity of machine learning applications [6], there are
several concerns regarding the quality control and the inevitable technical debt growing
in these systems [22]. Moreover, machine learning teams tend to be very heterogeneous,
having experts from different disciplines that are not necessarily aware of Software Engi-
neering (SE) practices backgrounds and there is a limited number of training and guidelines
on machine learning-related software development issues. Hence, software engineering best
practices are often overlooked when developing machine learning applications [24, 16]. Yet,
previous research shows that practitioners are eager to learn more about engineering best
practices for their machine learning applications [8].

There has been a lot of interest in various machine learning system artifacts, including
models and data. Researchers make efforts to improve machine learning model quality [14]
and data quality [11]. However, the quality assurance of machine learning code has not been
highlighted [16]. Recent work studied the code quality for machine learning applications in
a general way, finding some code quality issues such as duplicated code [29] and violations
of traditional naming convention [24]. These works highlighted the fact that the existing
code conventions do not necessarily fit the context of machine learning applications. For
example, the typical math notation in data science tasks clashes with the naming conven-
tions of Python [29]. Thus, we argue that more research is needed to accommodate the
particularities of data-oriented codebases.

As an important artifact in the machine learning application, the quality of the code
is essential. Low-quality code can lead to catastrophic consequences. In the meantime,
different from traditional software, machine learning code quality is more challenging to
evaluate and control. Low-quality code can lead to silent pitfalls that exist somewhere that
affect the software quality, which takes a lot of time and effort to discover [33]. Therefore,
it is non-trivial to improve the code quality during the development process and consider
code quality assurance in the deployment process.

A common strategy to improve code quality is eliminating code smells and anti-patterns.

5

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

When we talk about code smells in this paper, we refer them to the pitfalls that we can in-
spect at the code level but not at the data or model level. We use the term “pitfall” to
represent issues that degrade the software quality. Listing 2.1 shows an example of such
pitfalls using Python and the Pandas library. In the red (-) part of the listing, an inefficient
loop is created. A better alternative is highlighted in green (+), using Pandas built-in API to
replace the loop, which operates faster. While some alternative solutions might lead to im-
provements in runtime efficiency, other solutions might be essential to prevent problems in
the long run. For example, previous work shows that code smells affect the maintainability,
understandability, and complexity of software [15].

Listing 2.1: Coding Pitfall Example from [9]
import pandas as pd
df = pd.DataFrame([1, 2, 3])

- result = []
- for index , row in df.iterrows();
- result.append(row[0] + 1)
- result = pd.DataFrame(result)
+ result = df.add(1)

With the concern of improving machine learning application code quality and easing the
machine learning development process, we conduct an empirical study to collect machine
learning-specific code smells and provide practical recommendations about the quality in
machine learning applications. Thus, we formulate the following research question: What
are the recurrent code issues that may arise from the peculiarities of machine learning
applications?

The main contributions of this chapter are:
1) A catalog of machine learning-specific code smells.
2) A dataset of 1750 papers, 2170 grey literature entries, 87 GitHub commits and 491

Stack Overflow posts for empirical studies.
The replication package for this study is available at https://github.com/Hynn01/

ml-smells. The website with all the smells is published at https://hynn01.github.io
/ml-smells/.

2.2 Related Work

Code smells are common poor code design choices that negatively affect the systems and
violate the best practice or original design vision [15]. Martin Fowler introduced a general
code smell list in his book [17]. Ever since then, code smells have been widely discussed
in studies. Many empirical studies have linked code smell proliferation with decreased
code quality, increased error proneness, and increased maintainability issues in the long
term [25, 19, 31].

The prevalence of traditional code smells in machine learning projects was studied in
van Oort et al.’s paper [29]. They ran Pylint on 74 machine learning projects and concluded
the most frequent traditioal code smells. Yet, they noted that “the fact that Pylint fails

6

https://github.com/Hynn01/ml-smells
https://github.com/Hynn01/ml-smells
https://hynn01.github.io/ml-smells/
https://hynn01.github.io/ml-smells/

2.2. Related Work

to reliably analyse whether prominent ML libraries are used correctly, provides a major
obstacle to the adoption of Continuous Integration (CI) in the development environment of
ML systems.” This implies that the context of machine learning applications brings new
challenges to the code quality. Therefore, our work addresses machine learning-specific
code smells.

Even though there are few code smell studies specific to machine learning applica-
tion coding, some researchers are studying refactoring and bugs associated with machine
learning, which are related to machine learning coding patterns. Most relatedly, Tang et
al. studied refactoring in machine learning programs by analyzing 26 projects [26]. They
introduced 14 new machine learning-specific refactorings and seven new machine learning-
specific technical debt. However, some of the machine learning programs they analyzed are
machine learning tools, while we focus on machine learning applications. We argue that
the underlying nature of machine learning libraries and tools is very different from appli-
cations. In addition, they focused on classifying different types of refactoring (e.g., ”make
algorithms more visible”), but they did not extract the code patterns that should trigger such
a refactoring. We take a step further by addressing this question. Furthermore, we focus on
code smells that cannot be identified by looking at general-purpose smells. For example,
while it makes sense to have a type of refactoring for ”duplicate model code”, its code pat-
tern is no different from the traditional smell ”duplicated code”. Our paper dives deep into
code patterns and examples that are at the machine-learning library API usage level, which
is different from their work.

Zhang et al. conducted an empirical study, mining Stack Overflow and GitHub commits
to studying the TensorFlow bugs [33]. They proposed several bug patterns, which are help-
ful when debugging deep learning applications. Islam et al. followed up by inspecting Stack
Overflow blogs and GitHub commits of five deep learning libraries, including Caffe, Keras,
Tensorflow, Theano, and Torch [12]. They adopted some of the root causes of deep learning
bugs from [33] and added more root causes. Also, they studied the impacts of bugs, the
common patterns of the bugs, and the evolution of the bugs. Humbatova et al. created a
comprehensive taxonomy of deep learning bugs by mining GitHub, mining Stack Overflow
and interviewing developers [10]. The final taxonomy is quite thorough and detailed.

Our work differs from these two studies in four main reasons: 1) we formulate practical
coding advice in the form of code smells, to improve the code and avoid potential issues in
the long run, 2) we only focus on issues that can be inspected at the code level, 3) we not
only focus on pitfalls that lead to potential bugs but also on performance, reproducibility,
and maintainability issues, 4) we expand the scope of these smells beyond the deep learning
discipline, focusing on other machine learning tasks provided in the libraries Scikit-Learn,
Pandas, NumPy and SciPy.

Rajbahadur et al. collected eight data science project pitfalls from a paper and used a
model-driven method to detect the pitfalls in the pipeline. Our study differs from theirs by
inspecting the faults in the code level to assure the software quality [21]. Breck et al. learned
from the experience with a wide range of production machine learning systems at Google
and presented 27 machine learning-specific tests and monitoring needs [4]. However, it does
not provide a concrete coding guideline. We go further by building a machine learning-
specific code smell catalog and guide machine learning developers towards better coding

7

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

practices by eliminating code smells.

2.3 Methodology

Collect Code Smells

Paper Mining

Grey Literature Mining

Reusing Existing Bug
Datasets

Complementary Stack
Overflow Mining

Validation Code Smell CatalogGitHub Mining

Stack Overflow Mining

Check Library
Documentations

Figure 2.1: Methodology

To collect machine learning-specific code smells, we resort to academic literature, grey
literature, community-based coding Q&A platforms (with Stack Overflow), and public soft-
ware repositories (with GitHub). The general process is depicted in Figure 2.1. We mine
papers, grey literature, reuse existing bug datasets, and conduct a complementary Stack
Overflow mining. Then we triangulate our collected smells with the recommendations pro-
vided in the official documentation of machine learning libraries. In the end, two authors
validate the code smell catalog.

2.3.1 Paper Mining

Our methodology for paper mining is described as follows, and shown as Figure 2.2:
1) Search on Google Scholar search engine: To collect papers that potentially con-

tain code smells for machine learning projects, we use terms combining machine learning-
related keywords and code quality-related keywords to search. Machine learning-related
keywords include “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Neural
Network” and “Data Science”. Code quality-related keywords include “Technical Debt”,
“Refactoring”, “Code Smell”, “Code Quality”, “Coding Best Practice”, “Coding Anti-
pattern” and “Common Coding Mistakes”. We apply these queries (e.g., “Machine Learning
Technical Debt”) in the Google Scholar search engine, as presented in Figure 2.3. After an-
alyzing papers from the initial result set, we reach a level of saturation for each query after
consulting the first five pages of the result. Therefore, we consult the first five pages of the
results for each query, i.e., the first 50 results, sorted by relevance at any time by any type.
In total, there are 1750 papers (5×7×50).

2) Selection based on title and abstract: We observe that there are many papers study-
ing machine learning for software engineering (ML4SE) and a few are about software en-
gineering for machine learning (SE4ML). For example, for a paper titled “Comparing and
experimenting machine learning techniques for code smell detection”, we identify it as an

8

2.3. Methodology

1) Search on Google
Scholar search engine 1750 papers

2) Selection based on title
and abstract 33 papers

3) Snowballing 42 papers

4) Full-text reading and
selecting the ones with

potential ML application-
specific code smells

6 papers

Figure 2.2: Paper Selection Process

Table 2.1: Number of Selected Papers under Each Query (Duplicates Included)

Technical
Debt

Refactoring
Code
Smell

Code
Quality

Coding
Best Practice

Coding
Anti-pattern

Common
Coding Mistakes

Artificial Intelligence 7 1 0 2 0 2 0
Machine Learning 6 1 0 2 7 3 3

Deep Learning 8 3 0 4 4 1 5
Neural Network 3 0 0 0 0 0 2

Data Science 2 0 0 0 2 1 0

ML-for-SE paper and exclude it from our study. When we cannot classify the paper from
the title (e.g., “Toward deep learning software repositories”), we look into the abstract and
decide whether to include it in our study. The numbers of selected papers under each query
are listed in Table 2.1. After excluding the duplicated ones, our methodology yields 33
papers.

3) Snowballing: We apply the forward and backward snowballing method, i.e., browse
the reference list of the 33 papers and the list where the paper is cited, select the paper based
on the title and abstract as step 2) described, and delete the duplicated papers. We add nine
papers after this step.

4) Full-text reading and selecting the ones with potential machine learning-specific
code smells: We read the full text of the 42 papers and select the ones with potential ma-
chine learning-specific code smells. After this step, we get six final papers. The papers that
contribute to the code smell catalog are listed as follows: [4, 9, 33, 12, 21, 10].

9

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

Artificial Intelligence

Machine Learning

Deep Learning

Neural Network

Data Science

Technical Debt

Refactoring

Code Smell

Code Quality

Coding Best Practice

Coding Anti-pattern

Common Coding
Mistakes

AND

Search
Query

1750
papers

1750
grey

literature
entries

TensorFlow

PyTorch

Scikit-Learn

NumPy

Pandas

Technical Debt

Refactoring

Code Smell

Code Quality

Coding Best Practice

Coding Anti-pattern

Common Coding
Mistakes

SciPy

AND

420
grey

literature
entries

2170
grey

literature
entries

Figure 2.3: Search Query for Literature and Grey Literature

2.3.2 Grey Literature Mining

Many relevant pieces of knowledge about machine learning engineering are being published
on the Web by experienced practitioners – for example, in the format of blog posts. Hence,
we use grey literature as a relevant source for machine learning-specific coding advice in
this study.

To collect online entries of grey literature, we first resort to the Google search engine
with the same queries used above for the research literature (cf. Figure 2.3). We also apply
a back-cutting strategy at the end of the fifth page of the result for each query. Hence, there
are 1750 entries for this group of search queries, the same number as the paper selection
queries.

Complementarily, we select six machine learning-related Python libraries, namely Ten-
sorFlow, PyTorch, Scikit-Learn, Pandas, NumPy, and SciPy, combine them with the code
quality-related keywords mentioned in Section 2.3.1 and form a new group of search queries.
Python is widely used for machine learning1 and the six libraries are the most popular ma-
chine learning libraries 2, covering the two most important steps in machine learning appli-
cation development – data processing and model training. For this group of search queries,
we reach a level of saturation after analyzing the first result page. Therefore, we consult

1State of Data Science and Machine Learning 2021. https://www.kaggle.com/kaggle-survey-2021
215 Python Libraries for Data Science You Should Know. https://www.dataquest.io/blog/15-pyt

hon-libraries-for-data-science/

10

https://www.kaggle.com/kaggle-survey-2021
https://www.dataquest.io/blog/15-python-libraries-for-data-science/
https://www.dataquest.io/blog/15-python-libraries-for-data-science/

2.3. Methodology

the first ten results (i.e., first page) the Google search engine provides. There are 420 en-
tries (6× 7× 10) for this group of search queries. In total, there are 2170 entries for grey
literature mining.

Since not all entries contain actionable coding advice, we select entries by 1) reading the
title, 2) reading the first summary, and 3) reading the whole article. Many articles mention
some common patterns in machine learning, but most of them are duplicated and are general
advice that do not contain code-level pitfalls.

In the end, we identify eight cornerstone blog posts that contribute to the code smell
catalog, as listed in Section A.1 in the Appendix: (1), (2), (3), (4), (5), (6), (7), (8).

2.3.3 Reusing Existing Bug Datasets

We reuse the dataset provided in the work by Zhang et al. [33] to mine code smells in
Tensorflow applications. Zhang et al. mined the Tensorflow application bugs, analyzed the
bugs pattern using 88 Stack Overflow posts as well as 87 GitHub commits and provided a
replication package for these bugs (hereinafter called “TensorFlow Bugs” replication pack-
age). We reuse their replication package to extract recurrent pitfalls that may generalize to
other projects and thus should be documented as code smells.

2.3.4 Complementary Stack Overflow Mining

PyTorch

Scikit-Learn

Pandas

NumPy

SciPy

Error

Bug

Reproducible

Performance

Efficient

Readable

AND AND Answer >= 1 AND NOT

Install

Build

Search
Query

403 posts

library
keyword

Figure 2.4: Search Query for Stack Overflow Mining

After reusing the existing bug datasets, we apply a similar study method to other ma-
chine learning libraries. We only check the posts on Stack Overflow at this part without
GitHub commits. This is because all the issues have a similar pattern in GitHub and Stack
Overflow, as noted by [12] and verified in the TensorFlow Bugs replication package [33].

1) Library Selection: We use five libraries: PyTorch, Scikit-Learn, Pandas, NumPy,
and SciPy, excluding TensorFlow from the six libraries mentioned in Section 2.3.2.

2) Keyword Selection: To retrieve relevant entries from Stack Overflow we had to re-
define our search keywords. We did so because Stack Overflow seldom hosts discussions
that directly mention technical debt, smells or refactorings. Entries are mostly related to

11

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

403
SO posts

"TensorFlow Bugs"
replicate package

88
SO posts

87 GitHub
commits

491
SO posts

Figure 2.5: Total Number of Stack Overflow Posts and GitHub Commits

low-level and straight-to-the-point problems – e.g., performance issues or errors. Hence,
keywords had to be adjusted. When collecting posts from Stack Overflow, we use six key-
words that are related to typical software quality issues [5]: Error, Bug, Reproducible,
Performance, Efficient, Readable.

3) Applying Search Terms: We use the notation provided by Stack Overflow to imple-
ment the refined queries listed in Figure 2.4. It has the following format:

[library] keyword answer:1 -install -build ü

• library refers to the name of the library we are targeting (e.g., PyTorch, Pandas,
etc.).

• keyword refers to the software quality aspect (e.g., error, bug, etc.).

• answer:1 refers to the entries having at least one answers.

• -install -build these are terms that we exclude from the result set. We filter out
install and build because they typically yield results related to configuration and
not the codebase.

Using the keyword “Error” to search gets the maximum number of posts among all
libraries. Therefore, we rank all the posts by their votes after applying the term in the
search engine, selecting the top 50 posts with the “Error” keyword, and selecting the top
10 posts with each of the rest keywords. If the number of posts is fewer than 10, we select
all the posts. Then, we delete the duplicated posts for each library. In the end, we get
81, 68, 84, 88, and 82 posts respectively for PyTorch, Scikit-learn, Pandas, NumPy, and
SciPy. Together with the “TensorFlow Bugs” replication package [33], we have 87 GitHub
commits and 491 Stack Overflow posts in our dataset, as presented in Figure 2.5.

2.3.5 Validation

The first author collects all code smells from the empirical study (including paper, grey
literature, GitHub and Stack Overflow mining) and discusses the code smell catalog with the

12

2.4. Results

second author. We conducted discussion meetings consisting of an introductory discussion
of each smell, followed by the analysis of code examples where the code issue had been
identified, and the collection of further evidence. We look for references in academic and
grey literature that support that particular smell. In total, the first author collected 31 code
smells, from which 9 were dropped.

2.4 Results

In this section, we describe 22 machine learning-specific code smells collected from our
empirical study. For each smell, we provide a general description followed by the context
of the smell, the problem of its occurrence, and the solution. In the end, we summarise all
the smells, including the references supporting the smell, the stage of the machine learning
pipeline where they are more relevant, and the main effect that arises from having those
smells.

We use the notation (n) to cite entries from grey literature, as listed in Appendix A.1,
where n refers to the nth element in the list.

Table 2.2: Code Smell Catalog

Code Smell Pipeline Stage Effect Type Literature
Grey
Literature

GitHub
Commits

SO Posts

Unnecessary Iteration Data Cleaning Efficiency Generic [9] (6)(14) (13)
NaN Equivalence Comparison Misused Data Cleaning Error-prone Generic [9]

Chain Indexing Data Cleaning
Error-prone
& Efficiency

API-Specific: Pandas (30) (31)(32)

Columns and DataType Not Explicitly Set Data Cleaning Readability Generic (7)
Empty Column Misinitialization Data Cleaning Robustness Generic (7)

Merge API Parameter Not Explicitly Set Data Cleaning
Readability
& Error-prone

Generic (7)

In-Place APIs Misused Data Cleaning Error-prone Generic [9] (11)
Dataframe Conversion API Misused Data Cleaning Error-prone API-Specific: Pandas (33)
Matrix Multiplication API Misused Data Cleaning Readability API-Specific: NumPy (35) (34)
No Scaling before Scaling-Sensitive Operation Feature Engineering Error-prone Generic (2)(16) (17)

Hyperparameter Not Explicitly Set Model Training
Error-prone
& Reproducibility

Generic [9][4][10]

Memory Not Freed Model Training Memory Issue Generic [10] (5)(19) (20)
Deterministic Algorithm Option Not Used Model Training Reproducibility Generic [4] (9)

Randomness Uncontrolled
Model Training
& Model Evaluation

Reproducibility Generic [4] (1)(5)(9) (26)

Missing the Mask of Invalid Value Model Training Error-prone Generic [33][10] (21)(22)(23)(24)
Broadcasting Feature Not Used Model Training Efficiency Generic (6)

TensorArray Not Used Model Training
Efficiency
& Error-prone

API-Specific: TensorFlow 2 (6)

Training / Evaluation Mode Improper Toggling Model Training Error-prone Generic (36)
Pytorch Call Method Misused Model Training Robustness API-Specific: PyTorch (5)
Gradients Not Cleared before Backward Propagation Model Training Error-prone API-Specific: PyTorch (36)
Data Leakage Model Evaluation Error-prone Generic [9] (8) (27)
Threshold-Dependent Validation Model Evaluation Robustness Generic [21]

2.4.1 Unnecessary Iteration

Avoid unnecessary iterations. Use vectorized solutions instead of loops.

Context Loops are typically time-consuming and verbose, while developers can usually
use some vectorized solutions to replace the loops.

Problem As stated in the Pandas documentation (14): “Iterating through pandas objects is
generally slow. In many cases, iterating manually over the rows is not needed and can be

13

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

avoided”. In (6), it is also stated that the slicing operation with loops in TensorFlow is slow,
and there is a substitute for better performance.

Solution Machine learning applications are typically data-intensive, requiring operations
on data sets rather than an individual value. Therefore, it is better to adopt a vectorized
solution instead of iterating over data. In this way, the program runs faster and code com-
plexity is reduced, resulting in more efficient and less error-prone code [9]. Pandas’ built-in
methods (e.g., join, groupby) are vectorized. It is therefore recommended to use Pandas
built-in methods as an alternative to loops. In TensorFlow, using the tf.reduce sum() API to
perform reduction operation is much faster than combining slicing operation and loops.

2.4.2 NaN Equivalence Comparison Misused

The NaN equivalence comparison is different to None comparison. The result of NaN ==
NaN is False (40).

Context NaN equivalence comparison behaves differently from None equivalence compar-
ison.

Problem While None == None evaluates to True, np.nan == np.nan evaluates to False
in NumPy. As Pandas treats None like np.nan for simplicity and performance reasons, a
comparison of DataFrame elements with np.nan always returns False [9]. If the developer
is not aware of this, it may lead to unintentional behaviours in the code.

Solution Developers need to be careful when using the NaN comparison.

2.4.3 Chain Indexing

Avoid using chain indexing in Pandas.

Context In Pandas, df[“one”][“two”] and df.loc[:,(“one”,“two”)] give the same result.
df[“one”][“two”] is called chain indexing.

Problem Using chain indexing may cause performance issues as well as error-prone
code (30)(31)(32). For example, when using df[“one”][“two”], Pandas sees this opera-
tion as two events: call df[“one”] first and call [“two”] based on the result the previous
operation gets. On the contrary, df.loc[:,(“one”,“two”)] only performs a single call. In
this way, the second approach can be significantly faster than the first one. Furthermore,
assigning to the product of chain indexing has inherently unpredictable results. Since Pan-
das makes no guarantees on whether df[“one”] will return a view or a copy, the assignment
may fail.

Solution Developers using Pandas should avoid using chain indexing.

14

2.4. Results

2.4.4 Columns and DataType Not Explicitly Set

Explicitly select columns and set DataType when importing data.

Context In Pandas, all columns are selected by default when a DataFrame is imported
from a file or other sources. The data type for each column is defined based on the default
dtype conversion.

Problem If the columns are not selected explicitly, it is not easy for developers to know
what to expect in the downstream data schema (7). If the datatype is not set explicitly, it
may silently continue the next step even though the input is unexpected, which may cause
errors later. The same applies to other data importing scenerios.

Solution It is recommended to set the columns and DataType explicitly in data processing.

2.4.5 Empty Column Misinitialization

When a new empty column is needed in a DataFrame in Pandas, use the NaN value in
Numpy instead of using zeros or empty strings.

Context Developers may need a new empty column in DataFrame.

Problem If they use zeros or empty strings to initialize a new empty column in Pandas, the
ability to use methods such as .isnull() or .notnull() is retained (7). This might also happens
to initializations in other data structure or libraries.

Solution Use NaN value (e.g. “np.nan”) if a new empty column in a DataFrame is needed.
Do not use “filler values” such as zeros or empty strings.

2.4.6 Merge API Parameter Not Explicitly Set

Explicitly specify the parameters for merge operations. Specifically, explicitly specify on,
how and validate parameter for df.merge() API in Pandas for better readability.

Context The df.merge() API merges two DataFrames in Pandas.

Problem Although using the default parameter can produce the same result, explicitly
specify on and how produce better readability (7). The parameter on states which columns
to join on, and the parameter how describes the join method (e.g., outer, inner). Also, the
validate parameter will check whether the merge is of a specified type. If the developer
assumes the merge keys are unique in both left and right datasets, but that is not the case,
and he does not specify this parameter, the result might silently go wrong. The merge oper-
ation is usually computationally and memory expensive. It is preferable to do the merging
process in one stroke for performance consideration.

Solution Developer should explicitly specify the parameters for merge operation.

15

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

2.4.7 In-Place APIs Misused

Remember to assign the result of an operation to a variable or set the in-place parameter in
the API.

Context Data structures can be manipulated in mainly two different approaches: 1) by
applying the changes to a copy of the data structure and leaving the original object intact,
or 2) by changing the existing data structure (also known as in-place).

Problem Some methods can adopt in-place by default, while others return a copy. If the de-
veloper assumes an in-place approach, he will not assign the returned value to any variable.
Hence, the operation will be executed, but it will not affect the final outcome. For example,
when using the Pandas library, the developer may not assign the result of df.dropna() to a
variable. He may assume that this API will make changes on the original DataFrame and
not set the in-place parameter to be True either. The original DataFrame will not be updated
in this way [9]. In the “TensorFlow Bugs” replication package, we also found an exam-
ple (11) where the developer thought np.clip() is an in-place operation and used it without
assigning it to a new variable.

Solution We suggest developers check whether the result of the operation is assigned to a
variable or the in-place parameter is set in the API. Some developers hold the view that the
in-place operation will save memory. However, this is a misconception in the Pandas library
because the copy of the data is still created. In PyTorch, the in-place operation does save
GPU memory, but it risks overwriting the values needed to compute the gradient (10).

2.4.8 Dataframe Conversion API Misused

Use df.to numpy() in Pandas instead of df.values() for transform a DataFrame to a NumPy
array.

Context In Pandas, df.to numpy() and df.values() both can turn a DataFrame to a NumPy
array.

Problem As noted in (33), df.values() has an inconsistency problem. With .values() it is
unclear whether the returned value would be the actual array, some transformation of it, or
one of the Pandas custom arrays. However, the .values() API has not been not deprecated
yet. Although the library developers note it as a warning in the documentation, it does not
log a warning or error when compiling the code if we use .value().

Solution When converting DataFrame to NumPy array, it is better to use df.to numpy()
than df.values().

2.4.9 Matrix Multiplication API Misused

When the multiply operation is performed on two-dimensional matrixes, use np.matmul()
instead of np.dot() in NumPy for better semantics.

16

2.4. Results

Context When the multiply operation is performed on two-dimensional matrixes,
np.matmul() and np.dot() give the same result, which is a matrix.

Problem In mathematics, the result of the dot product is expected to be a scalar rather than a
vector (39). The np.dot() returns a new matrix for two-dimensional matrixes multiplication,
which does not match with its mathematics semantics. Developers sometimes use np.dot()
in scenarios where it is not supposed to, e.g., two-dimensional multiplication.

Solution When the multiply operation is performed on two-dimensional matrixes,
np.matmul() is preferred over np.dot() for its clear semantic (34)(35).

2.4.10 No Scaling before Scaling-Sensitive Operation

Check whether feature scaling is added before scaling-sensitive operations.

Context Feature scaling is a method of aligning features from various value ranges to the
same range (18).

Problem There are many operations sensitive to feature scaling, including Principal Com-
ponent Analysis (PCA), Support Vector Machine (SVM), Stochastic Gradient Descent
(SGD), Multi-layer Perceptron classifier and L1 and L2 regularization (2)(16). Missing
scaling can lead to a wrong conclusion. For example, if one variable is on a larger scale
than another, it will dominate the PCA procedure. Therefore, PCA without feature scaling
can produce a wrong principal component result.

Solution To avoid bugs, whether feature scaling is added before scaling-sensitive opera-
tions should be checked.

2.4.11 Hyperparameter Not Explicitly Set

Hyperparameters should be set explicitly.

Context Hyperparameters are usually set before the actual learning process begins and
control the learning process [9]. These parameters directly influence the behavior of the
training algorithm and therefore have a significant impact on the model’s performance.

Problem The default parameters of learning algorithm APIs may not be optimal for a given
data or problem, and may lead to local optima. In addition, while the default parameters
of a machine learning library may be adequate for some time, these default parameters
may change in new versions of the library. Furthermore, not setting the hyperparameters
explicitly is inconvenient for replicating the model in a different programming language.

Solution Hyperparameters should be set explicitly and tuned for improving the result’s
quality and reproducibility.

17

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

2.4.12 Memory Not Freed

Free memory in time.

Context Machine learning training is memory-consuming, and the machine’s memory is
always limited by budget.

Problem If the machine runs out of memory while training the model, the training will fail.

Solution Some APIs are provided to alleviate the run-out-of-memory issue in deep learn-
ing libraries. TensorFlow’s documentation notes that if the model is created in a loop, it
is suggested to use clear session() in the loop (19). Meanwhile, the GitHub repository
pytorch-styleguide recommends using .detach() to free the tensor from the graph whenever
possible (5). The .detach() API can prevent unnecessary operations from being recorded
and therefore can save memory (38). Developers should check whether they use this kind
of APIs to free the memory whenever possible in their code.

2.4.13 Deterministic Algorithm Option Not Used

Set deterministic algorithm option to True during the development process, and use the
option that provides better performance in the production.

Context Using deterministic algorithms can improve reproducibility.

Problem The non-deterministic algorithm cannot produce repeatable results, which is in-
convenient for debugging.

Solution Some libraries provide APIs for developers to use the deterministic algorithm.
In PyTorch, it is suggested to set torch.use deterministic algorithms(True) when debug-
ging (9). However, the application will perform slower if this option is set, so it is suggested
not to use it in the deployment stage.

2.4.14 Randomness Uncontrolled

Set random seed explicitly during the development process whenever a possible random
procedure is involved in the application.

Context There are several scenarios involving random seeds. In some algorithms, ran-
domness is inherently involved in the training process. For the cross-validation process in
the model evaluation stage, the dataset split by some library APIs can vary depending on
random seeds.

Problem If the random seed is not set, the result will be irreproducible, which increases the
debugging effort. In addition, it will be difficult to replicate the study based on the previous
one. For example, in Scikit-Learn, if the random seed is not set, the random forest algorithm
may provide a different result every time it runs, and the dataset split by cross-validation
splitter will also be different in the next run (8).

18

2.4. Results

Solution It is recommended to set global random seed first for reproducible results in
Scikit-Learn, Pytorch, Numpy and other libraries where a random seed is involved (1)(9).
Specifically, DataLoader in PyTorch needs to be set with a random seed to ensure the data
is split and loaded in the same way every time running the code.

2.4.15 Missing the Mask of Invalid Value

Add a mask for possible invalid values. For example, developers should wrap the argument
for tf.log() with tf.clip() to avoid the argument turning to zero.

Context In deep learning, the value of the variable changes during training. The variable
may turn into an invalid value for another operation in this process.

Problem Several posts on Stack Overflow talk about the pitfalls that are not easy to dis-
cover caused by the input of the log function approaching zero (21)(22)(23)(24). In this
kind of programs, the input variable turns to zero and becomes an invalid value for tf.log(),
which raises an error during the training process. However, the error’s stack trace did not
directly point to the line of code that the bug exists [33]. This problem is not easy to debug
and may take a long training time to find.

Solution The developer should check the input for the log function or other functions that
have special requirements for the argument and add a mask for them to avoid the invalid
value. For example, developer can change tf.log(x) to tf.log(tf.clip by value(x,1e-10,1.0)).
If the value of x becomes zero, i.e., lower than the lowest bound 1e-10, the tf.clip by value()
API will act as a mask and outputs 1e-10. It will save time and effort if the developer could
identify this smell before the code run into errors.

2.4.16 Broadcasting Feature Not Used

Use the broadcasting feature in deep learning code to be more memory efficient.

Context Deep learning libraries like PyTorch and TensorFlow supports the element-wise
broadcasting operation.

Problem Without broadcasting, tiling a tensor first to match another tensor consumes more
memory due to the creation and storage of a middle tiling operation result (6)(41).

Solution With broadcasting, it is more memory efficient. However, there is a trade-off in
debugging since the tiling process is not explicitly stated.

2.4.17 TensorArray Not Used

Use tf.TensorArray() in TensorFlow 2 if the value of the array will change in the loop.

Context Developers may need to change the value of the array in the loops in TensorFlow.

19

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

Problem If the developer initializes an array using tf.constant() and tries to assign a new
value to it in the loop to keep it growing, the code will run into an error. The developer can
fix this error by the low-level tf.while loop() API (6). However, it is inefficient coding in
this way. A lot of intermediate tensors are built in this process.

Solution Using tf.TensorArray() for growing array in the loop is a better alternative for this
kind of problem in TensorFlow 2. Developers should use new data types from libraries for
more intelligent solutions.

2.4.18 Training / Evaluation Mode Improper Toggling

Call the training mode in the appropriate place in deep learning code to avoid forgetting to
toggle back the training mode after the inference step.

Context In PyTorch, calling .eval() means we are going into the evaluation mode and the
Dropout layer will be deactivated.

Problem If the training mode did not toggle back in time, the Dropout layer would not
be used in some data training and thus affect the training result (36). The same applies to
TensorFlow library.

Solution Developers should call the training mode in the right place to avoid forgetting to
switch back to the training mode after the inference step.

2.4.19 Pytorch Call Method Misused

Use self.net() in PyTorch to forward the input to the network instead of self.net.forward().

Context Both self.net() and self.net.forward() can be used to forward the input into the
network in PyTorch.

Problem In PyTorch, self.net() and self.net.forward() are not identical. The self.net() also
deals with all the register hooks, which would not be considered when calling the plain
.forward() (5).

Solution It is recommended to use self.net() rather than self.net.forward().

2.4.20 Gradients Not Cleared before Backward Propagation

Use optimizer.zero grad(), loss fn.backward(), optimizer.step() together in order in PyTorch.
Do not forget to use optimizer.zero grad() before loss fn.backward() to clear gradients.

Context In PyTorch, optimizer.zero grad() clears the old gradients from last step, loss -
fn.backward() does the back propagation, and optimizer.step() performs weight update using
the gradients.

20

2.5. Discussions and Implications

Problem If optimizer.zero grad() is not used before loss fn.backward(), the gradients will
be accumulated from all loss fn.backward() calls and it will lead to the gradient explosion,
which fails the training (36).

Solution Developers should use optimizer.zero grad(), loss fn.backward(), optimizer.step()
together in order and should not forget to use optimizer.zero grad() before loss -
fn.backward().

2.4.21 Data Leakage

Use Pipeline() API in Scikit-Learn or check data segregation carefully when using other
libraries to prevent data leakage.

Context The data leakage occurs when the data used for training a machine learning model
contains prediction result information (28).

Problem Data leakage frequently leads to overly optimistic experimental outcomes and
poor performance in real-world usage [9].

Solution There are two main sources of data leakage: leaky predictors and a leaky valida-
tion strategy (29). Leaky predictors are the cases in which some features used in training
are modified or generated after the goal value has been achieved. This kind of data leakage
can only be inspected at the data level rather than the code level. Leaky validation strategy
refers to the scenario where training data is mixed with validation data. This fault can be
checked at the code level. One best practice in Scikit-Learn is to use the Pipeline() API to
prevent data leakage.

2.4.22 Threshold-Dependent Validation

Use threshold-independent metrics instead of threshold-dependent ones in model evalua-
tion.

Context The performance of the machine learning model can be measured by different
metrics, including threshold-dependent metrics (e.g., F-measure) or threshold-independent
metrics (e.g., Area Under the Curve (AUC)).

Problem Choosing a specific threshold is tricky and can lead to a less-interpretable re-
sult [21].

Solution Threshold-independent metrics are more robust and should be preferred over
threshold-dependent metrics.

2.5 Discussions and Implications

The code smell catalog summarized from the empirical study is presented in Table 3.5.
We collected 22 code smells in total and linked the smells to four pipeline stages: Data

21

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

Cleaning, Feature Engineering, Model Training, and Model Evaluation. Possible impacts of
the smells on application codes include being error-prone, less efficient, less reproducible,
causing memory issues, less readable, and less robust. In addition, 16 smells are generic
smells, while 6 are API-specific smells. Generic smells occur regardless of which library
the developer uses, while API-specific smells depend on a specific library API design.

The catalog helps understand prevalent flaws in machine learning application develop-
ment by investigating recurrent code issues from various sources. Since many data scientists
do not have a software engineering background and are not up-to-date with the best prac-
tices from the software engineering field, our catalog of smells mitigates this barrier by
providing some guidelines when developing machine learning applications.

Machine learning libraries are being regularly improved with new versions. We reused
the “TensorFlow Bugs” replication package and found that many instances have already
been deprecated because TensorFlow has upgraded to version 2. Hence, we expect that new
API-specific code smells will appear with new versions and library features. In fact, our
results showcase that most API-related smells are only reported by grey literature in general
instead of literature. We argue that collecting a catalog of code smells helps in promoting a
continuous effort between practitioners and academics.

The ecosystem of AI frameworks is changing very fast, which means that some smells
might become obsolete in the meantime. In our catalog, we anticipate that three smells
can be considered temporary smells: Dataframe Conversion API Misused, Matrix Multi-
plication API Misused and Gradients Not Cleared before Backward Propagation. While
other smells are perceived to last for a long time, temporary smells might be deprecated in a
few years. Yet, these three smells are important and should be flagged to help practitioners
prevent issues downstream.

2.5.1 Implications to Data Scientists and Machine Learning Application
Developers

This catalog contains smells from heterogeneous sources, existing in different stages, and
will trigger various effects. For instance, the Unnecessary Iteration code smell describes
the inefficient code structure and it often occurs at data cleaning stages. Another code smell
Hyperparameter Not Explicitly Set indicates irreproducible code and it is at model training
stage. Data scientists and machine learning application developers can check these aspects
while checking their code.

Some code smells appear multiple times in different sources – both from academic
and grey literature. For example, Missing the Mask of Invalid Value is referenced in two
instances of academic literature and four from Stack Overflow posts. Practitioners can use
this as an indication of the relevance of smells and use the references to learn more about
them.

Machine learning application developers, especially data scientists with little software
engineering experience, can use the catalog to build awareness of the pitfalls and best prac-
tices highlighted in this study and strive to prevent these errors from their code. We assume
that knowing code smells can shorten the time of development and help assure high-quality
software in production. Future work will validate whether eliminating these code smells will

22

2.5. Discussions and Implications

lead to more accurate results during training, better hyperparameter optimization, clearer
and higher quality code, and less maintenance effort.

2.5.2 Implication to Machine Learning Library Developers

Some smells in the catalog stem from the fact that APIs require a particular usage pat-
tern that is not intuitive to their users. For example, the smell Dataframe Conversion API
Misused smell could be eradicated if the API method df.values() would be deprecated and
completely replaced by df.to numpy(). In another example, the Gradients Not Cleared be-
fore Backward Propagation smell could be avoided if the API already took care of com-
bining gradient clear and backward propagation for its users, since this is the commended
approach. Hence, our results show how the design of library APIs plays an important role
in avoiding potential issues in projects.

Some of the smells we identify are reported in the official documentation of the libraries.
Yet, there is still code being created that does not comply with these recommendations. For
example, the effect of index chaining (cf. Section 2.4.3) appears in code examples provided
by Stack Overflow although it is explained in the Pandas documentation. This indicates that
many developers are struggling to follow the documentation strictly. It might stem from
the fast iteration cycles in the development process of teams or from the developer’s lack
of experience in that particular library. We argue that passively indicating warnings on doc-
umentation might not be sufficient. It is important that library developers and maintainers
are actively engaging in community forums, such as Stack Overflow, to help the community
avoid non-obvious issues.

Finally, it is important that library maintainers promote and reach out to existing projects
that aim at helping the development of machine learning software – i.e., static code analysis
tools, testing tools, quality auditors, experiment trackers, and so on. Library developers
know better than anyone what is the optimal way of leveraging their libraries. Hence, their
contribution is crucial in the development of coding tools that support best practices.

2.5.3 Implication to Code Analysis Tool Developers

As some code smells cannot be addressed by designing better APIs, the static analysis tool
can help promote best practices and warn pitfalls to the application developers.

This research serves as the base for future work on automated tools to detect these
unwanted code patterns. Automated tools can minimize the developer’s effort to discover
the code smells and eliminate them, providing support for code quality assurance. Because
humans are occasionally forgetful, it is preferable to have a technology that expressly checks
whether best practices are being followed.

In addition, we observe that some code smells are related to the context. This is aligned
with previous work that proposes context-aware code analysis tools for machine learning
applications [13]. For example, PyTorch library developers recommend application devel-
opers to use the deterministic option during the development but not set it in the production
code due to the consideration for performance. Therefore, the automated tool can have dif-

23

2. CODE SMELLS FOR MACHINE LEARNING APPLICATIONS

ferent configuration settings. For example, according to the pipeline stage, it can have a
development setting and a deployment setting.

2.5.4 Implication to Students

As mentioned by [9], many graduates in the industry do not have formal education on
machine learning application development since it requires a combination of software en-
gineering and data science practices. Students can use this catalog to learn more about the
common anti-patterns in machine learning application development and prepare for future
jobs.

2.6 Threats to validity

In our study, the first author performs manual code smell inspections, which can be biased
due to the different understanding of machine learning code. To alleviate this threat, the
second author reviews all instances of code smells, followed by a discussion between the
first two authors.

In both the academic and grey literature survey, the initial selection of keywords in the
search query might miss relevant entries. To mitigate this threat, we iteratively refine the
search keywords based on retrieved relevant content. In addition, we apply forward and
backward snowballing to complement the search.

Moreover, since we use a back-cutting strategy on the grey literature search, the qual-
ity of the search results depends on the accuracy of the Google search engine’s relevance
sorting algorithm, which is beyond our control. The results are collected from the first au-
thor’s Google account, and they might vary across users. However, we believe that this has
minimal impact on the result set of our study.

When mining Stack Overflow entries and GitHub commits, we inspect 88 GitHub com-
mits and 491 Stack Overflow posts in total. It is unclear how generalizable our results are.
To cover the most common mistakes in the machine learning application practice in a gen-
eralizable way, we use the “highest voted” criteria to select instances from Stack Overflow.
We anticipate that less-voted instances may also contain machine learning code issues. In-
creasing the result set would not be feasible in a manual inspection. Yet, we argue that the
highest voted instances provide an interesting snapshot with the most relevant issues.

This study focuses on six Python machine learning libraries and frameworks. There
are several other machine learning frameworks that might lead to particular code smells.
However, it would not be feasible to apply our methodology in all the libraries out there.
Hence, we reduce this threat by selecting the most popular frameworks.

Finally, we acknowledge that there are more warnings within libraries documentation
that can become code smells. However, we only consider warnings that have allegedly led
to real code issues, as observed in other sources (e.g., Stack Overflow).

24

2.7. Conclusions and Future Work

2.7 Conclusions and Future Work

In this paper, we conducted an empirical study to collect the code smell specific for machine
learning applications. We collected the code smells from various sources, including mining
1750 papers, mining 2170 grey literature entries, using the existing bugs datasets including
88 Stack Overflow posts and 87 GitHub commits and gathering 403 complementary Stack
Overflow posts. We analyzed the pitfalls mentioned in the posts and decided whether to take
it as a code smell. We collected 22 code smells, including general and API-specific smells.
We also classified the code smell by different pipeline stages and its effect. We want to raise
the discussion about machine learning-specific code smell and help improve code quality in
the machine learning community in this way.

Future work will include a quantitative large-scale validation of the code smell catalog.
We would like to interview machine learning practitioners and mine code changes in GitHub
repositories to validate and improve the catalog. In addition, we plan to implement a static
analysis tool that automatically detect these smells to promote best practices in machine
learning code. Finally, it would be interesting to study the prevalence of these code smells
in real-world machine learning applications and explore the benefits of using a catalog of
machine learning-specific code smells.

25

Chapter 3

Automated Detection of ML-Specific
Code Smells

3.1 Introduction

The popularity of machine learning (ML) algorithms has exploded in recent years, to the
point where it has become a critical component of the product. Machine learning has been
integrated into autonomous driving, medical decision-making, and financial fraud detection
systems. As the core component of the system, machine learning code should be thoroughly
assessed before it can be deemed trustworthy.

However, due to the dynamic nature of machine learning programs, their reliability can
be challenging to ensure [3]. The algorithmic result of the machine learning applications
could be nondeterministic, and the bugs might occur after a lengthy training period [33].
This may cause the end users to fail to trust the machine learning model and the develop-
ers to spend an excessive amount of time debugging. The reliability of machine learning
systems, therefore, has become an important topic.

Traditional software systems resort to several tools to ensure system reliability. For
example, static analysis tools are used to improve code quality and alleviate technical debt.
However, few tools are developed and adopted to mitigate technical debt issues in machine
learning projects. According to [23], static analysis tools, one of the best practices in the
traditional software system, have a low adoption rate in machine learning projects. One
reason for the low adoption rate is the significant number of false positives generated when
using such tools [28]. Due to the fact that common code patterns are not precisely linked
with machine learning code, a static analysis tool may produce a large number of false
positives.

The findings from Chapter 2 indicate that some machine learning-specific issues are
stated in papers and grey literature. We do not yet know how widespread these coding
pitfalls are in the public repositories. We are interested in finding out how frequently those
issues occur, to what extent we can solve these problems by developing a tool specific for
machine learning code smells and what are the differences between notebooks and regular
projects for machine learning code quality. Therefore, we define the following research
questions:

27

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

RQ1: How prevalent are the machine learning-specific code smells?
RQ2: How accurate is the machine learning-specific code smell detection tool dslinter?
RQ3: Is the prevalence of code smells different in Python notebooks and regular Python

projects?
To answer these research questions, we develop a static analysis tool specifically for

machine learning code named dslinter. We apply the tool to four datasets to assess how
widespread the code smells are in machine learning projects and to what extent the tool can
improve the software quality.

The contributions of this research are as follows:
1) Extending an open-source static analysis tool dslinter to detect the machine learning-

specific code smells, which is available at GitHub 1 and PyPI 2.
2) An empirical study on the prevalence of code smells in both public notebook datasets

and regular project datasets.
3) A replication package 3 for the empirical study.

3.2 Related Work

In this section, we introduce the related work. We cover the related work in three dimen-
sions: tools for improving the quality of machine learning applications, static code analysis
tools, and code smell prevalence studies.

3.2.1 Tools for improving the quality of machine learning applications

Recently, some tools for ensuring the quality of machine learning software have been de-
veloped.

A novel quality control method was proposed in Rajbahadur et al.’s paper [21]. They
built a model-driven tool called Pitfalls Analyzer to detect the pitfall in the data science
pipeline. By running their tool on 11 data science pipelines, they verified that the tool can
successfully identify every pitfall they identified manually.

Oort et al. proposed and developed a static analysis tool for machine learning project
management [30]. Their tool checks whether the SE4ML best practices are followed and
provides suggestions on low abstraction level best practices, including whether linters are
used to ensure the code quality. They evaluated the concept of project smells and the tool in
a global bank ING, and found that the developers think the code quality is very important
for a production-ready project.

Hynes et al. introduced a data linter to check the data quality in deep neural networks
(DNNs) [11]. They defined 13 rules, which can be roughly grouped into three categories:
miscodings of data, outliers, and packaging errors. The linter helps increase the DNN
model’s precision from 0.48 to 0.59 in the most promising outcome.

These tools significantly help with machine learning experiment management and soft-
ware quality assurance. However, tools for assisting with machine learning-specific code

1dslinter at GitHub: https://github.com/SERG-Delft/dslinter
2dslinter at PyPI: https://pypi.org/project/dslinter/
3Replication Package: https://github.com/Hynn01/dslinter-experiments

28

https://github.com/SERG-Delft/dslinter
https://pypi.org/project/dslinter/
https://github.com/Hynn01/dslinter-experiments

3.2. Related Work

quality checks are rare. Our study fills this gap by developing a static code analysis tool for
machine learning applications.

3.2.2 Static code analysis tools

The static code analysis tool is one solution to help ensure code quality.
Zakas et al. created ESlint to help developers find and fix potential problems in JavaScript

code [32]. It is built into most editors nowadays and can be incorporated into the continuous
integration pipeline 4. Tómasdóttir et al. studied the adoption of JavaScript and found that
developers usually adopt linter for several reasons: code consistency maintenance, errors
prevention, discussion time reduction, complex code elimination, and code review automa-
tion [28].

Popa et al. developed Pylint for detecting the violation of PEP8 coding rules [27]. Pylint
uses Abstract Syntax Tree analysis to find warning signs and errors that can be relayed to
the user as well as return an overall grade reflecting on the software quality level 5. It
allows developers to easily extend its core functionality and augment it with new rules and
algorithms.

Besides Pylint, developers can choose Flake8 and Black for static code analysis for
Python projects. However, while these tools are highly customisable, none of these offers
any machine learning-specific insights. Even though static analysis tools are widely used,
[23] reports that their adoption is low in machine learning teams. According to their inves-
tigation, partitioners complain about excessive false positives, partly because the rules are
unrelated to the machine learning context.

The detection of a few machine learning coding issues has been automated in the Pylint
extension dslinter, a prototype which looks for code smells in machine learning project
source code [7]. However, the number of smells detected by dslinter 1.0.0 is limited
and many common smells, as derived from popular developer practices, still exist that are
not identified with this tool. Due to these limitations, we are motivated to expand the smell
set of dslinter and increase its power, making it even more useful to developers.

3.2.3 Code smell prevalence studies

Some researchers have already researched code smells in a specific context.
Muse et al. studied the prevalence of SQL code smells in data-intensive systems [18].

150 open-source projects were collected and examined to find SQL code smells. Their study
showed a high diffusion of code smells in data-intensive software.

Bavota et al. researched the prevalence of code smells specific to tests such as unit
tests [1]. They performed an exploratory study on 27 software systems and a controlled
experiment involving 61 participants with different experience levels. Their study finds that
86% of JUnit tests exhibit at least one smell, which indicates the test smells are pervasive.
Their study also verified that the test smell could strongly harm the program’s comprehen-
sion and maintenance.

4ESlint Documentation: https://eslint.org/
5Pylint Documentation: http://pylint.pycqa.org/en/latest/intro.html

29

https://eslint.org/
http://pylint.pycqa.org/en/latest/intro.html

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

Currently, there are rarely studies applying static analysis tools to research machine
learning code quality. Van Oort et al. applied Pylint to analyze 74 machine learning
projects, implying that Pylint is unable to analyze whether the ML library APIs are correctly
used, which reduces the power of Continuous Integration (CI) for the machine learning sys-
tems [29].

In Chapter 2 we studied the code smells in both papers and grey literature, and identi-
fied 22 machine learning-specific code smells. The prevalence of these machine learning-
specific code smells in public codebases has not yet been studied. Our new version of
dslinter not only helps developers ensure machine learning code quality but can also be
used to research the prevalence of machine learning-specific code smell.

3.3 Dslinter

Figure 3.1: Dslinter

We developed a static analysis tool – coined as dslinter – that implements 20 code
smells, based on our study presented in Chapter 2. The tool is developed under an open
source license and is available here: https://github.com/SERG-Delft/dslinter. It
can also be easily installed using the pip package manager: https://pypi.org/project
/dslinter/. There are 36 checkers in total for different libraries. In 36 checkers, 9, 3, 9,
8, and 5 examine the API usage for Pandas, NumPy, PyTorch, TensorFlow, and Scikit-learn
libraries, respectively. Each checker’s name is a combination of smell and library. Below,
we pinpoint each code smell checker supported by dslinter.

3.3.1 Checkers

• Import Checkers (import-pandas, import-numpy, import-pyplot, import-sklearn,
import-tensorflow, import-pytorch): Check whether data science modules are

30

https://github.com/SERG-Delft/dslinter
https://pypi.org/project/dslinter/
https://pypi.org/project/dslinter/

3.3. Dslinter

imported using the correct naming conventions.

• Unnecessary Iteration Checkers (unnecessary-iteration-pandas, dataframe-
iteration-modification-pandas, unnecessary-iteration-tensorflow): Vec-
torized solutions are preferred over iterators. These checkers check whether iterations
are used while vectorized APIs can be used. If this is the case, the rule is violated.

• Nan Equality Checker (nan-numpy): The NaN equivalence comparison is differ-
ent to None comparison. The result of NaN == NaN is False. This checker checks
whether a value is compared with np.nan. If so, the rule is violated.

• Chain Indexing Checker (chain-indexing-pandas): Chain indexing is consid-
ered bad practice in Pandas code and should be avoided. If chain indexing is used on
a Pandas DataFrame, the rule is violated.

• DataType Checker (datatype-pandas): DataType should be set when a DataFrame
is imported from data to ensure the data formats are imported as expected. If the
DataType is not set when importing, the rule is violated.

• Column Selection Checker (column-selection-pandas): Column should be se-
lected after the DataFrame is imported for better elaborating what to be expected in
the downstream.

• Merge Parameter Checker (merge-parameter-pandas): Parameters ‘how’, ‘on’
and ‘validate’ should be set for merge operations to ensure the correct usage of merg-
ing.

• In-Place Checker (inplace-pandas): Operations on DataFrames return new DataFrames,
and they should be assigned to a variable. Otherwise, the result is lost, and the rule is
violated.

• DataFrame Conversion Checker (dataframe-conversion-pandas): For DataFrame
conversion in Pandas code, use .to numpy() instead of .values for better consis-
tency.

• Scaler Missing Checker (scaler-missing-scikitlearn): Check whether the scaler
is used before every scaling-sensitive operation in scikit-learn codes. Scaling-sensitive
operations include Principal Component Analysis (PCA), Support Vector Machine
(SVM), Stochastic Gradient Descent (SGD), Multi-layer Perceptron classifier and L1
and L2 regularization.

• Hyperparameter Checkers (hyperparameters-scikitlearn, hyperparameters-
tensorflow, hyperparameters-pytorch): For machine learning algorithms, some
important hyperparameters should be set for better reproducibility and less error-
prone code.

31

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

• Memory Release Checker (memory-release-tensorflow): The checker checks
whether the memory is released in time in the training process. If a neural network is
created in the loop, and no memory clear operation is used, the rule is violated.

• Deterministic Algorithm Usage Checker (deterministic-pytorch): If use de-
terministic algorithm is not used in a PyTorch program, the rule is violated.

• Randomness Control Checkers (randomness-control-numpy, randomness-control-
scikitlearn, randomness-control-tensorflow, randomness-control-pytorch,
randomness-control-dataloader-pytorch): The checkers check whether a ran-
dom seed is set in the machine learning program to preserve reproducibility. If not,
the rule is violated.

• Mask Missing Checkers (missing-mask-tensorflow, missing-mask-pytorch):
If log function is used in the code, check whether the argument value is valid, i.e., not
equal to zero.

• Tensor Array Checker (tensor-array-tensorflow): The checker checks whether
tf.TensorArray() is used for growing array in the loop in TensorFlow program. If
not, the rule is violated.

• Net Forward Checker (forward-pytorch): It is recommended to use self.net()
rather than self.net.forward() in PyTorch code. If self.net.forward() is used
in the code, the rule is violated.

• Gradient Clear Checker (gradient-clear-pytorch): The loss fn.backward()
and optimizer.step() should be used together with optimizer.zero grad() in
PyTorch code. If the optimizer.zero grad() is missing in the code, the rule is
violated.

• Pipeline Not Used Checker (pipeline-not-used-scikitlearn): Scikit-learn es-
timators and preprocessor should be used together inside Pipelines to prevent data
leakage.

• Dependent Threshold Checkers (dependent-threshold-scikitlearn, dependent-
threshold-tensorflow, dependent-threshold-pytorch): If threshold-dependent
evaluation(e.g., F-Score) is used in the code, check whether threshold-indenpendent
evaluation(e.g., AUC) metrics is also used in the code. If not, the rule is violated.

3.3.2 Implementation

The dslinter is a Pylint plugin, which works by traversing the abstract syntax tree (AST)
and checking if the rules are violated. The Pylint and its dependencies take care of build-
ing the AST and then the dslinter checks the rules on the node it visits. Whenever the
dslinter finds a violation, it exports the violation to the output. Other Pylint features can
still be enabled when using this plugin.

32

3.3. Dslinter

Example 1 – Chain Indexing Checker

Listing 3.1: Checker Example 1

import pandas as pd
df = pd.DataFrame([[1,2,3],[4,5,6]])
col = 1
x = 0
- df[col][x] = 42
+ df.loc[x, col] = 42

The Chain Indexing Checker shown in listing 3.1 works by checking all the subscript
nodes and counting the indexing number attached to the subscript node. If the subscript
node is a DataFrame and the indexing number is no less than two, the rule is violated, and a
message is raised. Whether the subscript node is a DataFrame is checked by a type inference
module. The type inference module makes use of the mypy package to statically infer the
type of the object in the Python code.

Example 2 – Scaler Missing Checker

Listing 3.2: Checker Example 2

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
+ from sklearn.pipeline import make_pipeline
+ from sklearn.preprocessing import StandardScaler

Make a train/test split using 30% test size
RANDOM_STATE = 42
features , target = load_wine(return_X_y=True)
X_train , X_test , y_train , y_test = train_test_split(

features , target , test_size=0.30, random_state=RANDOM_STATE
)

Fit to data and predict using pipelined GNB and PCA
- clf = SVC()
+ clf = make_pipeline(StandardScaler(), SVC())
clf.fit(X_train , y_train)
pred_test = clf.predict(X_test)
ac = accuracy_score(y_test , pred_test)

The Scaler Missing Checker shown in listing 3.2 checks whether a scaler is used before
the scaling-sensitive operations. The scaler in the Scikit-learn library are "PCA", "Ker-
nelPCA", "SparsePCA", "IncrementalPCA", "LinearSVC", "LinearSVR", "NuSVC",
"NuSVR", "OneClassSVM", "SVC", "SVR", "SGDClassifier", "SGDOneClassSVM",

33

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

"SGDRegressor", "MLPClassifier" and "MLPRegressor". The scaling-sensitive op-
erations are "RobustScaler", "StandardScaler", "MaxAbsScaler" and "MinMaxS-
caler". The learning functions are "fit", "fit transform" and "transform".

Since the scaling-sensitive operations can be used with or without Pipeline API in the
Scikit-learn library, the violation detection has two parts of checks, respectively. If the
Pipeline API is used in the code, and there is a scaling-sensitive function used as an argu-
ment of the Pipeline call, check whether a scaler is also in the arguments. If not, the rule is
violated and a warning message is raised. If the Pipeline API is not used in the code, and
a learning function is used on a variable representing a scaling-sensitive operation, check
the argument used in the learning function. If the argument has never been processed by a
scaler, the rule is violated and a warning message is raised.

3.3.3 Improvement Iterations

During development, to test the code smell checkers, we ran the dslinter against an ex-
isting dataset of Python notebooks and another dataset of regular Python projects. We then
collected 20 code instances detected by our tool: 10 from notebooks and another 10 from
regular projects. These 20 smells are manually analysed to detect whether there are any
false positives and improvements that need to be made in the tool. These datasets, Note-
book Dataset 1 and Project Dataset 1, are further explained below in Section 3.4.1.

3.4 Methodology

Results

Dataset Collection and
Preprocessing

Static Code Analysis

Notebook Project 1

Notebook Project 992

...

Notebook Project 1

Notebook Project 937

...

Regular Project 1

Regular Project 95

...

Regular Project 1

Regular Project 70

...

dslinter

Collect & Count
messages

Collect & Count
messages

Collect & Count
messages

Collect & Count
messages

Project Dataset 1

Project Dataset 2

Notebook Dataset 1

nbconvert

Notebook Dataset 2

nbconvert

Figure 3.2: The Whole Process

34

3.4. Methodology

This section describes the methodology for conducting the empirical study on the preva-
lence of machine learning-specific code smells. The whole process contains dataset collec-
tion and preprocessing as well as static code analysis, which is outlined in Figure 3.2.

3.4.1 Dataset Collection and Preprocessing

We use four datasets in our study, including two notebook sets and two regular project sets.
These two types of datasets are different by nature. The notebooks typically have small
code blocks and a single file, while the regular projects always have more files and complex
entanglement. We analyse these two groups separately because we anticipate that these
differences might cause an impact on the overall quality of the code, which can be reflected
by a different distribution of code smell instances.

Table 3.1: Characteristics of the Datasets

Notebook Dataset 1 Notebook Dataset 2 Project Dataset 1 Project Dataset 2

Number of projects 992 927 95 70
Number of Python files 992 927 5,075 2,866
Lines of Python code 552,488 340,717 849,014 466,924
Average code line number for each project 557 368 8,937 6,670
Average code line number for each Python file 557 368 167 163

• Notebook Dataset 1: A list of 1100 machine learning kernels was collected by Haak-
man et al. [7] from Kaggle on May 1st, 2020. The kernel refers to a solution in Kag-
gle, which is a combination of code, data and analysis. Typically there is a notebook
in a kernel. The kernels in the list are selected based on ‘hotness’, meaning that they
are rated highly and have been consistently popular on the platform for a long time.
They are collected using the Kaggle API6 and the notebooks are converted to Python
scripts using nbconvert 7. We wrapped each kernel in a folder. In the list, 93 kernels
are not able to access on May 8th, 2022 and 15 kernels do not contain notebooks
or Python scripts. Instead, they contain R scripts or other kinds of files. We delete
the folders without notebooks or Python files and call the rest of the folders note-
book projects. 992 notebook projects are retrieved at the end. This set has 552,488
source code lines of Python code. Each notebook project has 557 source code lines
on average.

• Notebook Dataset 2: We collected a list of 1000 kernels on May 8th, 2022. These
kernels are also from Kaggle and ranked by ‘hotness’, and Notebook Dataset 2 does
not overlap with Notebook Dataset1. Since 3 kernels cannot be accessed and 58 ker-
nels do not contain notebooks or Python scripts, 939 notebook projects are retrieved
from this list. During the static code analysis process, the analysis tool mentioned
in section 3.4.2 failed to parse the output for 12 projects. Therefore, 927 notebook
projects are retrieved and analysed at the end. This set has source code lines of
340,717 Python code. Each script has 368 source code lines on average.

6Kaggle API: https://github.com/Kaggle/kaggle-api
7nbconvert: https://github.com/jupyter/nbconvert

35

https://github.com/Kaggle/kaggle-api
https://github.com/jupyter/nbconvert

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

• Project Dataset 1: We reused the first 100 projects in the Boa Data science corpus
created by Biswas et al. [2] as the Project Dataset 1. The corpus was created to enable
mining software repository research, such as identifying bug patterns or suggesting
best practices for developing Data Science applications, which matches our study.
The projects in the corpus are all written in Python and developed for Data Science
tasks. Two projects cannot be retrieved, and the analysis tool fails to parse the output
for three projects, so there are 95 projects left. This set contains 849,014 source code
lines, so each project has 8,947 code lines on average.

• Project Dataset 2: Oort et al. [29] collected a set of 74 ML projects and analyzed
them with Pylint to research the prevalence of code smells in ML projects. The 74
projects come from academic papers, (student) reproductions, Kaggle competitions,
and industrial projects, which are also suitable for our research. Therefore, we reuse
the dataset as the Project Dataset 2. The analysis tool fails to parse the output for four
projects, so there are 70 projects left. This set contains 466,974 source code lines in
total, with 6,670 source code lines for each project on average.

In total, we gathered 2,084 projects, 9,860 Python files, and 2,209,143 lines of Python
code. The average code line number for each project is 1060, and the average code line
number for each Python file is 224.

Table 3.2: Top 5 Popular Libraries & The Libraries in Dslinter

Top 5 Popular Libraries The Libraries in Dslinter

Library Number Library Number

NumPy 1777 NumPy 1777
Pandas 1751 Pandas 1751
Matplotlib 1394 Scikit-learn 1146
Scikit-learn 1146 TensorFlow 291
Seaborn 930 PyTorch 157

To analyze whether the scope of the dslinter fits the projects collected in our datasets,
we did a preliminary assessment of the top libraries used by the projects in the dataset. We
then compare these top libraries with the libraries supported by dslinter. The top five
data science libraries used in the datasets are NumPy, Pandas, Matplotlib, Scikit-learn, and
Seaborn. The five libraries dslinter focus on are NumPy, Pandas, Scikit-learn, Tensor-
Flow and PyTorch. So we cover all the most popular libraries except for the visualization
libraries – i.e., matplotlib and seaborn, which are beyond our study scope.

3.4.2 Static Code Analysis

We run dslinter 2.0.9 on the four datasets mentioned above to verify the effectiveness
and accuracy of the checkers. “Run dslinter” means running Pylint with the dslinter plu-
gin enabled and other checkers disabled. For randomness control checkers, we use different
settings for notebooks and regular projects. Since the random seed only needs to be set once
and globally in the program, the checkers, by default, only check whether the entrance file
of the project has the random seed set to avoid excessive false positives. The checkers check

36

3.5. Results

whether the file is an entrance file by checking whether "if name == ’ main :’" is
used. For notebooks, one file usually stands for one project, while they normally do not use
"if name == ’ main :’" in the script. Therefore, we disable the entrance file check
in the randomness control checkers for notebooks by using no main module check option.

We reuse and adapt the replication package from [29] to run dslinter. Previous
study [9] simply treated all notebooks as a big project and used the Pylint command line
in the console to perform the evaluation. We did not follow the method in [9]. Instead, we
use the analysis tool from [29] to conduct the experiment. This is done for two reasons: 1)
The projects can be distributedly run to save time. 2) The report generated by the analysis
tool shows not only the number of violations for each checker but also the number for each
notebook or regular project. In this way, we can gain more insight into the code smell differ-
ence between various notebooks or regular projects. To adapt the tool to our tasks, we made
some modifications to the code: 1) We replaced the Pylint command with the dslinter
command. 2) The dependency installation part of the code is removed because collecting
the result from the static analysis tool does not need the dependency to be installed, while
this is the most time-consuming part and causes some exceptions. 3) The tool originally
required a URL of the projects to download the code. However, the notebooks do not be-
long to any git repository and thus do not have URLs. We modified the code to enable it
to run from folders, solving the problem of running the tool on notebooks. The code for
our experiment can be found at https://gitlab.com/Hynn01/python-ml-analysis,
and the code for extra analysis and the visualization of the results can be found at https:
//github.com/Hynn01/dslinter-experiments. In total, our experiments on Notebook
Dataset 1, Notebook Dataset 2, Project Dataset 1 and Project Dataset 2 took 65, 32, 19, and
10 minutes respectively.

We collect the report generated from the analysis tool and analyse the results. The
general results can be used to answer RQ1. To address RQ2, we manually inspect up to
10 instances respectively in notebook dataset 2 and project dataset 2 and then combined
the result to calculate a true positive rate. Applying the true positive rate, we estimate the
number of true positives of each checker. Moreover, the result for regular projects and
notebooks are compared to answer RQ3. Combining the insights taken from the results, we
deduce patterns to answer the research questions and raise discussions.

3.5 Results

Applying our methodology, we run the dslinter on four datasets and gather the results. In
this section, we present our results and answer the research questions.

3.5.1 RQ1: How prevalent are the machine learning-specific code smells?

The checkers in the dslinter found 14,854 violations in total in all datasets. In Table 3.3,
we show the number of violations for each checker on Notebook Dataset 1, Notebook
Dataset 2, Project Dataset 1, Project Dataset 2, respectively. Following the total number
of violations for each checker, a bar is plotted accordingly to visualize the number. The
checkers in the table follow the order of code smells we showed in the catalog in Chapter 2.

37

https://gitlab.com/Hynn01/python-ml-analysis
https://github.com/Hynn01/dslinter-experiments
https://github.com/Hynn01/dslinter-experiments

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

Table 3.3: The Number of Violations for Each Checker
Checker Name Notebook Dataset 1 Notebook Dataset 2 Project Dataset 1 Project Dataset 2 Total

import-pandas 4 0 32 0 36
import-numpy 7 6 256 19 288
import-pyplot 2 0 1 0 3
import-sklearn 9 19 1 3 32
import-tensorflow 0 4 4 0 8
import-pytorch 2 0 0 3 5
unnecessary-iteration-pandas 8 15 3 0 26
dataframe-iteration-modification-pandas 0 0 0 0 0
unnecessary-iteration-tensorflow 0 0 0 0 0
nan-numpy 7 0 0 0 7
chain-indexing-pandas 73 22 0 8 103
datatype-pandas 2169 1586 47 766 4568
column-selection-pandas 1907 1354 23 463 3747
merge-parameter-pandas 6 3 1 0 10
inplace-pandas 21 20 0 0 41
dataframe-conversion-pandas 351 191 14 214 770
scaler-missing-scikitlearn 99 66 4 24 193
hyperparameters-scikitlearn 392 420 9 11 832
hyperparameters-tensorflow 19 16 1 0 36
hyperparameters-pytorch 4 7 6 12 29
memory-release-tensorflow 0 0 0 0 0
deterministic-pytorch 51 66 15 229 361
randomness-control-numpy 523 499 248 169 1439
randomness-control-scikitlearn 106 91 6 8 211
randomness-control-tensorflow 83 100 443 42 668
randomness-control-pytorch 32 51 12 207 302
randomness-control-dataloader-pytorch 86 83 25 428 622
missing-mask-tensorflow 1 0 84 7 92
missing-mask-pytorch 3 0 5 49 57
tensor-array-tensorflow 0 0 0 0 0
forward-pytorch 3 8 16 33 60
gradient-clear-pytorch 0 3 1 0 4
pipeline-not-used-scikitlearn 159 135 0 0 294
dependent-threshold-scikitlearn 7 3 0 0 10
dependent-threshold-tensorflow 0 0 0 0 0
dependent-threshold-pytorch 0 0 0 0 0

As shown in Table 3.3 and Figure 3.3, the two most frequently violated rules are
datatype-pandas and column-selection-pandas, which are related to the Columns
and DataType Not Explicitly Set smell. They have 4,568 and 3,747 occurrences, re-
spectively. The number of violations for them is much higher than for other rules.

Five of the top ten most violated rules correspond to Randomness Uncontrolled smell.
The randomness-control-numpy, randomness-control-tensorflow, randomness-control-
dataloader-pytorch, deterministic-pytorch and randomness-control-pytorch rules
have 1439, 668, 662, 302, 361 violations, respectively. It demonstrates that the random seed
is commonly not specified in machine learning projects.

The hyperparamters-scikitlearn rule has the fourth highest number of violations
with 832 violations. This rule is related to the Hyperparameter not Explicitly Set
smell.

The data-conversion-pandas rule has the fifth highest number of violations, which
has 770 violations. This rule is derived from the official Pandas documentation and relates
to the DataFrame Conversion API Misused smell.

Finally, the pipeline-not-used-scikitlearn has the tenth highest number of viola-
tions, amounting to 294. This rule relates to the Data Leakage smell. The documentation
for the Scikit-learn library recommends using the Pipeline API to prevent inconsistent pre-
processing and data leakage. However, 294 code instances do not follow this practice in the
codebases.

38

3.5. Results

Figure 3.3: The Top 10 Most Frequently Violated Rules

3.5.2 RQ2: How accurate is the machine learning-specific code smell
detection tool dslinter?

An overview of the true positives rate of the tool is provided in Table 3.4. It shows the
checker name, the number of instances in Notebook Dataset 2 and Project Dataset 2, and
the estimated true positives calculated based on the true positives rate. The true positive
rates are calculated based on manually inspecting 20 randomly selected instances: 10 from
Notebook Dataset 2 and 10 from Project Dataset 2. If the instance number is fewer than 10
in the Notebook Dataset 2 or Project Dataset 2, we inspect all the instances in that dataset.
A true positive is a code instance with a refactoring opportunity or a potential bug.

Out of 36 checkers, 24 checkers have the 100% true positives rate. The gradient-
clear-pytorch checker has the lowest true positive rate – 0%. We randomly select three
examples of the true positives to show in Figures 3.4, 3.5, 3.6 and three examples of false
positives in Figures 3.7, 3.8, 3.9.

Examples of True Positives

Figure 3.4: True Positive 1 - Chain Indexing Smell

39

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

Table 3.4: True Positive Number of Each Checker

Checker Name
Notebook Dataset 2
+ Project Dataset 2

Estimated
True Positives

TP Rate

import-pandas 0 0 100%
import-numpy 25 25 100%
import-pyplot 0 0 100%
import-sklearn 22 22 100%
import-tensorflow 4 4 100%
import-pytorch 3 3 100%
unnecessary-iteration-pandas 15 9 60%
dataframe-iteration-modification-pandas 0 0 100%
unnecessary-iteration-tensorflow 0 0 100%
nan-numpy 0 0 100%
chain-indexing-pandas 30 30 100%
datatype-pandas 2352 2352 100%
column-selection-pandas 1817 1817 100%
merge-parameter-pandas 3 3 100%
inplace-pandas 20 8 40%
dataframe-conversion-pandas 405 385 95%
scaler-missing-scikitlearn 90 86 95%
hyperparameters-scikitlearn 431 431 100%
hyperparameters-tensorflow 16 10 60%
hyperparameters-pytorch 19 10 53%
memory-release-tensorflow 0 0 100%
deterministic-pytorch 295 280 95%
randomness-control-numpy 668 568 85%
randomness-control-scikitlearn 99 99 100%
randomness-control-tensorflow 142 121 85%
randomness-control-pytorch 258 181 70%
randomness-control-dataloader-pytorch 511 511 100%
missing-mask-tensorflow 7 6 86%
missing-mask-pytorch 49 49 100%
tensor-array-tensorflow 0 0 100%
forward-pytorch 41 33 80%
gradient-clear-pytorch 3 0 0%
pipeline-not-used-scikitlearn 135 135 100%
dependent-threshold-scikitlearn 3 3 100%
dependent-threshold-tensorflow 0 0 100%
dependent-threshold-pytorch 0 0 100%

Three true positives of the Chain Indexing smell detected by the chain-indexing-
pandas checker are shown in Figure 3.4. In the example, the code gender df[’Gender -
Survived’][start:end] can be refactored to gender df.loc(’Gender Survived’, start:end),
which is more efficient and less error-prone.

A true positive of the DataFrame Conversion API Misused smell detected by the
dataframe-conversion-pandas checker is presented in Figure 3.5. As recommended
in the Pandas official documentation, the code df.values can be refactored to df.to -
numpy(). Since the returned value of .values is not always consistent, (i.e., it could be the
actual array, some transformation of it, or one of the Pandas custom arrays) and the semantic

40

3.5. Results

Figure 3.5: True Positive 2 - DataFrame Conversion API Misused Smell

Figure 3.6: True Positive 3 - Hyperparameter Not Explicitly Set Smell

of .values is ambiguous, using .to numpy() would guarantee an array and clarify the
code.

A true positive of the Hyperparameter Not Explicitly Set smell detected by the
hyperparameters-scikitlearn checker is displayed in Figure 3.6. The learning rate
is an important hyperparameter for AdaBoostClassifier [20]. Nevertheless, it is not set in
the code. This might harm the reproducibility and maintainability of the software solu-
tion. We recommend to refactor the code AdaBoostClassifier() to AdaBoostClassi-
fier(batch size=xxx).

Examples of False Positives

A false positive of the Unnecessary Iteration smell detected by the unnecessary-
iteration-pandas checker is depicted in Figure 3.7. There is indeed an iteration over
a DataFrame in the code. However, since the operation inside the iteration is plotting, the
code cannot be refactored. A possible solution for avoiding this kind of false positive is to
check whether a possible-to-vectorize operation is used in the iteration. This might require
extra manual effort to collect all the possible-to-vectorize functions. Adding this constraint

41

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

Figure 3.7: False Positive 1 - Unnecessary Iteration Smell

Figure 3.8: False Positive 2 - Hyperparameter Not Explicitly Set Smell

will reduce false positives, while at the same time, it might increase the false negatives if
the possible-to-vectorize function list cannot cover all the functions.

A false positive of the Hyperparameter Not Explicitly Set smell detected by the
hyperparameters-pytorch checker is exhibited in Figure 3.8. In this code example, the
Dataloader takes an argument **loader kwargs, which predefines the batch size before.
Nevertheless, the checker did not take this into account and caused a false positive. There
are two possible ways to reduce this false positive: 1) Whenever the checker sees an argu-
ment list (e.g., **kwargs), it assumes that the hyperparameters are already predefined and
skip the check. This might cause some false negatives. 2) Trace the argument list variable
and see what is assigned to the variable. This increases the complexity of the checker and
elongates the time required to check the violation.

A false positive for the No Scaling before Scale-Sensitive Operation smell de-
tected by the scaler-missing-scikitlearn checker is presented in Figure 3.9. The data
was initially scaled but underwent numerous other data processing steps and was assigned
to another variable. In the end, the checker believed that the scaling-sensitive function’s
input data had never been processed by a scaler, resulting in a false positive.

‘

42

3.5. Results

Figure 3.9: False Positive 3 - No Scaling before Scaling-Sensitive Operation Smell

3.5.3 RQ3: Is the prevalence of code smells different in Python notebooks
and regular Python projects?

An overview of the comparison between the notebooks and the projects is presented in
Figure 3.10. The bars show the number of rule violations in notebooks and projects per
100,000 lines. As shown in the figure, in most cases, notebooks contain more code smells
than projects. However, there are also a few cases where projects have more violations than
notebooks, which includes the following rules: "import-pandas", "import-numpy",
"hyperparameters-pytorch", "deterministic-pytorch", "randomness-control-
tensorflow", "randomness-control-pytorch", "randomness-control-dataloader-
pytorch", "missing-mask-tensorflow", "missing-mask-pytorch" and "forward-
pytorch".

We plotted the top 10 most prevalent code smells in notebooks and regular projects, re-
spectively. As we can see from the figures, six rules are the same and four are different. Six
common rules are datatype-pandas, column-selection-pandas, randomness-control-
numpy, dataframe-conversion-pandas, randomness-control-tensorflow, and randomness-
control-dataloader-pytorch. The rest four code smells in notebooks are "hyperparameters-
scikitlearn", "pipeline-not-used-scikitlearn", "randomness-control-scikitlearn"
and "scaler-missing-scikitlearn". The rest four code smells in projects are "import-

43

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

Figure 3.10: The number of code smells in notebooks and in projects per 100000 lines
44

3.5. Results

Figure 3.11: The top 10 most prevalent code smells in notebooks

Figure 3.12: The top 10 most prevalent code smells in projects

numpy", "deterministic-pytorch", "randomness-control-pytorch" and "missing-
mask-tensorflow".

Additionally, we plotted the distribution of code smell counts within a single notebook
or project. The majority of notebooks or projects contain fewer than 10 code smells. The
maximum number of code smells a notebook can have is approximately 70, and the maxi-
mum number of code smells for a project is approximately 700.

Most notebooks contain two distinct types of code smells, whereas most projects do
not have any code smells. 19% of notebooks do not contain any code smell, while 28% of
projects do not contain any code smell.

45

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

Figure 3.13: Histogram of code smell num-
bers in notebooks

Figure 3.14: Histogram of code smell num-
bers in projects

Figure 3.15: The distribution of distinct code
smell number per notebook

Figure 3.16: The distribution of distinct code
smell number per regular project

3.6 Discussions and Implications

In this section, we discussed our results and implications. We discuss the results in three
aspects: the prevalence of code smells, the challenges of building and putting the static
analysis tool into use, and the code smell prevalence difference between notebooks and
regular projects.

3.6.1 Discussions about the prevalence of code smells

As shown in the result for RQ1, the two most frequently violated rules are datatype-
pandas and column-selection-pandas. After manually inspecting a few instances, we
discovered some interesting patterns. For instance, the developers typically use df.head()
to print out the DataFrame, rather than selecting columns to imply what data to expect
downstream. Also, developers typically import data without explicitly setting the DataType.
However, these smells were mentioned in an unofficial Pandas style guide. This demon-
strates that while some developers may perceive this smell as a problem, others do not. It

46

3.6. Discussions and Implications

indicates that these two checkers should be disabled by default, but enabled by developers
who believe this may cause issues. The configuration of a static analysis tool is crucial.

Five of the top ten most violated rules correspond to Randomness Uncontrolled smell,
which demonstrates that the random seed is commonly not specified in machine learning
projects. One could argue that a portion of the instances are false positives because random-
ness does not need to be controlled in some scripts. However, we believe that many machine
learning algorithms have a random seed involved, and thus it is preferable to set the random
seed. The result also indicates that the developers do not care much about reproducibility.

The hyperparamters-scikitlearn rule has the fourth highest number of violations.
On the one hand, this is partially due to the widespread use of the Scikit-learn library and
its learning class. On the other hand, it suggests that some developers are unaware that ex-
plicitly setting hyperparameters is the best practice, while some developers and researchers
have different opinions about the essential hyperparameters.

The data-conversion-pandas rule and the pipeline-not-used-scikitlearn rule
has the fifth and tenth highest number of violations, respectively. These two rules are spec-
ified in the official library documentation. Nevertheless, they still have a large number of
violations. This indicates that the developer is unaware of best practices, resulting in the
accumulation of technical debt.

- A portion of the rules are derived from unofficial documentation, which a substantial
number of code instances do not adhere to.
- Reproducibility of results is not sufficiently valued.
- Many developers do not explicitly set the hyperparameters or hold divergent views
regarding the most crucial hyperparameters.
- A significant proportion of violations involve API usage that deviates from the official
documentation recommendation, which threatens the reliability of software.

One may argue that these code smells are widespread because the APIs are widely used.
Many instances in the codebases follow the best practice as well. Therefore, we conduct
a further analysis experiment on all the datasets. We make changes to the dslinter code
on the “experiement” branch 8. For instance, scaler-missing-scikitlearn checker
checks whether the variable for a scaler-sensitive learning function was not processed by
a scaler before. We make a scaler-missing-scikitlearn-correct checker by check-
ing whether the variable was used by a scaler before. The new checkers are also run by the
analysis tool.

There are 4568 code instances that violate the datatype-pandas rule and 108 that
adhere to it, whereas there are 3747 instances of code that violate the column-selection-
pandas rule and 155 that follow it. This result is consistent with the understanding gained
from the number of violations and the manual inspection of the violations, indicating that
developers do not typically code in this manner. For the top 5 most prevalent smells, the
number of instances that break the rules is far more than that follow the best practices.

Among the checker rules that we did further analysis on, only scaler-missing-scikitlearn
checker has more instances that follow the best practice. It demonstrates that a scaler is typi-

8The “experiement” branch: https://github.com/SERG-Delft/dslinter/tree/experiment

47

https://github.com/SERG-Delft/dslinter/tree/experiment

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

Table 3.5: The number of code instances that break the rule and follow the rule in four
datasets

Four Datasets
Number of instances
that break the rule

Number of instances
that follow the rule

datatype-pandas 4568 108
column-selection-pandas 3747 155
randomness-control-numpy 1439 270
hyperparameters-scikitlearn 832 84
dataframe-conversion-pandas 770 108
scaler-missing-scikitlearn 193 203

cally placed before a scaling-sensitive operation. If the developer does not comply, it would
be reasonable to issue a warning.

A scaler is typically placed before a scaling-sensitive operation. It would be reasonable
to issue a warning if the developer does not comply with the rule.

Another interesting finding by looking at the raw data is that some projects have specific
styles and have a high number of violations on a specific rule. For instance, in the chem-
istry chainer in Project Dataset 1, there are 164 violations of the import-numpy rule.
While most of the developers use import numpy as np, the developers in this project use
import numpy all the time and skip the alias. For the project that has their specific style, we
agree that the developers can customize the configuration to meet their tastes. On the other
hand, if the developer is unaware of the common practices before, our tool can help them
to have early detection and prevent the technical debt from accumulating. We believe that
following the common practice will make it easier for outside contributors to participate in
public projects.

For the project that has their specific style, we agree that the developers can customize
the configuration to meet their tastes. On the other hand, if the developer is unaware of
the common practices before, our tool can help them to have early detection and prevent
the technical debt from accumulating.

3.6.2 Discussions about the challenges of building and applying static
analysis tool

First of all, the results of RQ1 indicate that the rules of selecting the column after importing
the DataFrame and setting the DataType when importing data are not popular among devel-
opers. These smells were derived from an unofficial Pandas style guide. This suggests that
rules derived from grey literature are opinion-based and need to be validated before putting
the static analysis tool into use.

Rules derived from grey literature are opinion-based and need to be validated before
putting the static analysis tool into use.

48

3.6. Discussions and Implications

After collecting some smells from various sources, one difficulty in developing a static
analysis tool is mapping the smell to the checker rules. Some smells are, by default, at a very
low abstraction level. For example, the DataFrame Conversion smell is specific to Pandas
and links to a specific API .values. The checker directly verifies whether .values is used.
However, there are some smells at a very high abstraction level. Originally pipeline-not-
used checker was named data-leakage checker and the rule is to check whether pipeline
API is used around the machine learning class. However, not using Pipeline API does not
directly point to the data leakage problem. Using it as an indicator for whether data is leaked
will cause an excessive number of false positives.

Moreover, the code can be heterogeneous and thus the implementation of the checker
must cover more cases during the development iterations. For instance, the example code
for Gradients Not Cleared before Backward Propagation shows as Listing 3.3 in
the source. The gradient-clear-pytorch checker checks whether .zero grad() is used
in the same abstract syntax tree layer if .backward() and .step() are used, according to
the code example. However, in the real life code, the .zero grad() is used in the for loop
instead of in the same layer, as shown in 3.4.

Listing 3.3: Gradients Not Cleared before Backward Propagation Example from the source

o u t p u t = model (input)
o p t i m i z e r . z e r o g r a d ()
l o s s f n . backward ()
o p t i m i z e r . s t e p ()

Listing 3.4: Gradients Not Cleared before Backward Propagation Example from a notebook

f o r i , d a t a in enumerate (t r a i n L o a d e r) :
. . .
o p t i m i z e r 1 . z e r o g r a d ()
. . .

t o t a l L o s s 1 = r u n n i n g l o s s / (i +1)
t o t a l L o s s 1 . backward ()
o p t i m i z e r 1 . s t e p ()

Mapping the smell to the checker rules is one of the challenges associated with develop-
ing a static analysis tool.

Another obstacle to implementing the code smell checkers is that some smells require
context in the execution environment. For example, to check the Matrix Multiplication
API Misused smell, the array dimension of the input array must be known. Therefore, it
is not possible to develop a static analysis solution to detect whether this type of API is
misused.

49

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

Some smells require context in the execution environment, which cannot be detected by
a static analysis tool.

Still, two-thirds of checkers reach 100% true positive rate shows that our static analysis
tool is effective, and it is useful to use a static analysis tool to detect the machine learning
library API usage violations. We recommend applying our tool in the machine learning ap-
plication to improve the code quality. In addition, the result shows the general programming
language linter can be extended for specific use cases. If there is some common knowledge
in the company or organization, they can write and apply their own rules. Some smells are
dropped in our previous study for not having enough evidence. For example, a large learn-
ing rate could cause a potential problem in the code. However, since we could not find a
recommended threshold for checking the learning rate violation, we dropped this smell. If
this kind of common knowledge is established in an organization, they can self-define the
rule and conduct the check.

Our static analysis tool is generally effective, and we recommend applying our tool in
the machine learning application to improve the code quality. In addition, the tool can be
easily extended for specific checks in companies or organizations.

3.6.3 Discussions about the code smell prevalence difference between
notebooks and regular projects

Six rules are common to both notebooks and regular projects, indicating that some rules
are easily broken in both notebooks and projects. Regardless of notebooks and projects,
datatype-pandas and column-selection-pandas are the two rules with the most vio-
lations. The Randomness Uncontrolled and DataFrame Conversion API Misused are
also popular smells regardless of projects or notebooks. The remaining four most preva-
lent code smells in notebooks are all associated with Scikit-learn libraries, while those in
projects are associated with NumPy, PyTorch, and TensorFlow. This may be attributable
to the widespread use of the Scikit-learn library in notebooks. We analyze library usage in
notebooks and projects separately. Table 3.6 compares the percentage of libraries utilized in
regular projects and notebooks. The percentage of using Scikit-learn in notebooks is much
higher than in regular projects.

Table 3.6: The percentage of libraries in notebooks & The percentage of libraries in regular
projects

Library Notebooks Regular Projects

NumPy 87.6% 58.2%
Pandas 89.7% 18.2%
Scikit-learn 57.7% 23.6%
TensorFlow 13.1% 24.2%
PyTorch 6.1% 23.6%

50

3.7. Thread to Validity

Some rules are easily broken in both notebooks and projects, while some rules are not
due to the different characteristics of notebooks and projects.

The percentage of regular projects with zero smells is higher than that of notebooks, in-
dicating that the code quality is generally higher in regular projects. This could result from
the peer review process and code quality control measures established in the projects. How-
ever, there can be more instances of code smells and more types of code smell in a single
regular project, because projects typically contain more code, and the code is diverse. The
highest number of code violations in one single regular project is 702. This also indicates
that it is easier for regular projects to accumulate technical debt.

The code quality is generally higher in regular projects. However, there can be more
instances of code smells and more types of code smell in a regular project. This is
because projects typically contain more code, and the code is diverse.

One observation from investigating the raw data is that the “interview” project has 89
violations and 11 different kinds of code smell. It suggests that the individuals who use the
online tutorials may learn some suboptimal API usages. The poor quality of online tutorials
might be one of the reasons for the prevalence of code smells.

One of the reasons for the prevalence of code smells might be the poor quality of the
online tutorials.

3.7 Thread to Validity

A few factors act as threats to the validity of our study which we have tried as much as
possible to minimise.

Firstly, the datasets might not be able to represent the machine learning codebases that
are put into production in the industry, because they are all collected from the public repos-
itories. The project from the industry might have a higher code quality standard. However,
we argue that we collected both notebooks and regular projects, and some of the projects
are from the public repositories of big companies. We tried our best to represent the Python
projects in the real world by collecting four datasets.

Secondly, we only selected 20 instances to calculate the true positive rate of the dslin-
ter. We can not guarantee that the true positives and false positives distribution in the 20
instances is identical to the distribution in all instances. Nonetheless, we attempt to com-
pensate for this by selecting the 20 instances randomly.

Moreover, the criterion for a true positive is that the code instance has a potential refac-
toring opportunity or bug. However, to what extent can it affect the software and whether
the project developer perceives it as a refactoring opportunity still needs to be verified.

Lastly, in this research, we only study the code smell prevalence in Python. There are
probably some common machine learning coding faults in other programming languages
as well. Further studies still need to be conducted to verify the prevalence of machine
learning-specific code smells in different programming languages.

51

3. AUTOMATED DETECTION OF ML-SPECIFIC CODE SMELLS

3.8 Conclusions and Future Work

In this chapter, we extended a static analysis tool dslinter to automatedly detect the ma-
chine learning-specific code smells. By using the tool and running the tool on four datasets,
we further investigate the prevalence of code smells for machine learning applications. The
results show that many best practices stated in the official documentation are violated, while
developers have a different coding preference from the unofficial documentation. In addi-
tion, the awareness to preserve reproducibility still needs to arise. Our tool helps machine
learning practitioners be aware of the possible faults and best practices, and aims to improve
the machine learning code quality and software reliability.

Future work will include further research into the tool’s validity. Pull request of the
refactoring code can be created to see if the developers agree with the refactoring. Intelligent
refactoring recommendation tools can be created to recommend refactoring solutions. In
the study, we also felt that it is not easy to use linters on jupyter notebooks. Therefore,
how to better integrate existing code quality solutions into notebooks can be investigated.
In addition, the Pylint-Pycharm graphics interface has not supported the plugin yet, which
calls for further effort. Last but not least, the rule of the tool can still be finer tuned for better
accuracy.

52

Chapter 4

Conclusions and Future Work

This chapter provides an overview of the project’s conclusions and research directions for
future work.

4.1 Conclusions

In this thesis, we identified several code smells specific to machine learning applications
and developed a static analysis tool dslinter to improve the machine learning application
code quality.

In Chapter 2, we conducted an empirical study to collect the code smells specific for
machine learning applications. The code smells were collected by us from various sources,
including 1750 papers, 2170 grey literature entries, the existing bugs datasets including
88 Stack Overflow posts and 87 GitHub commits and 403 complementary Stack Overflow
posts. We analyzed the pitfalls mentioned in the posts and decided whether to take it as a
code smell. 22 code smells were collected in the end, including general and API-specific
smells. The code smells are also classified by different pipeline stages and their effects. We
want to raise the discussion about machine learning-specific code smells and help improve
code quality in the machine learning community in this way.

In Chapter 3, we developed a static analysis tool dslinter to automatedly detect the
machine learning-specific code smells. By using the tool and running the tool on four
datasets, we further investigate the prevalence of code smells for machine learning appli-
cations. The results show that many best practices stated in the official documentation
are violated, while developers have a different coding preference from the unofficial docu-
mentation. In addition, the awareness to preserve reproducibility still needs to arise. Our
research helps machine learning practitioners be aware of the possible faults and best prac-
tices, and aims to improve the machine learning code quality and software reliability.

4.2 Future work

Both studies performed in this thesis call for future research directions.

53

4. CONCLUSIONS AND FUTURE WORK

Regarding the machine learning-specific code smells, machine learning practitioners
can be interviewed to improve the code smell catalog. Our study mostly investigates the
API usage of the machine learning libraries, but further research to look inside the ma-
chine learning library implementations will also be interesting. In addition, code smells in
different languages can be studied to increase the generalizability of the machine learning-
specific code smells. Furthermore, the correlation between code smells and data smells can
be studied.

For dslinter, the checker rules can still be finer tuned for better accuracy. Future work
will also include further research into the tool’s validity. Pull requests of the refactoring code
can be created to see if the developers agree with the refactoring opportunities. In addition,
intelligent refactoring recommendation tools can be created to recommend the refactor so-
lution. Moreover, in the study, we also felt that applying linter to jupyter notebooks is not
easy. Therefore, how to better integrate existing code quality solutions into notebooks can
be investigated. The Pylint-Pycharm graphics interface has not yet supported the plugin,
which also calls for further effort. Finally, ESlint is more popular than Pylint was felt in the
study. It would be interesting to study the reason behind it and help promote the machine
learning code quality assurance tools.

54

Bibliography

[1] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave Binkley.
Are test smells really harmful? an empirical study. Empirical Software Engineering,
20(4):1052–1094, 2015.

[2] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan. Boa meets python:
a boa dataset of data science software in python language. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), pages 577–581.
IEEE, 2019.

[3] Markus Borg. Agility in software 2.0–notebook interfaces and mlops with buttresses
and rebars. In International Conference on Lean and Agile Software Development,
pages 3–16. Springer, 2022.

[4] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D Sculley. The ml test
score: A rubric for ml production readiness and technical debt reduction. In 2017 IEEE
International Conference on Big Data (Big Data), pages 1123–1132. IEEE, 2017.

[5] International Organization for Standardization/International Electrotechnical Com-
mission et al. Iso/iec 9126–software engineering–product quality, 2001.

[6] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. The state of
the ml-universe. Proceedings of the 17th International Conference on Mining Software
Repositories, 2020. doi: 10.1145/3379597.3387473.

[7] Mark Haakman. Master’s thesis, TU Delft, 2020. URL https://repository.tud
elft.nl/islandora/object/uuid:38ff4e9a-222a-4987-998c-ac9d87880907
/datastream/OBJ/download.

[8] Mark Haakman, Luı́s Cruz, Hennie Huijgens, and Arie van Deursen. Ai lifecycle
models need to be revised. Empirical Software Engineering, 26(5):1–29, 2021.

[9] MPA Haakman. Studying the machine learning lifecycle and improving code quality
of machine learning applications. 2020.

55

https://repository.tudelft.nl/islandora/object/uuid:38ff4e9a-222a-4987-998c-ac9d87880907/datastream/OBJ/download
https://repository.tudelft.nl/islandora/object/uuid:38ff4e9a-222a-4987-998c-ac9d87880907/datastream/OBJ/download
https://repository.tudelft.nl/islandora/object/uuid:38ff4e9a-222a-4987-998c-ac9d87880907/datastream/OBJ/download

BIBLIOGRAPHY

[10] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. Taxonomy of real faults in deep learning systems. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering,
pages 1110–1121, 2020.

[11] Nick Hynes, D Sculley, and Michael Terry. The data linter: Lightweight, automated
sanity checking for ml data sets. In NIPS MLSys Workshop, 2017.

[12] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive
study on deep learning bug characteristics. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 510–520, 2019.

[13] Jai Kannan, Scott Barnett, Andrew Simmons, Luı́s Cruz, and Akash Agarwal.
Mlsmellhound: A context-aware code analysis tool. In 2022 IEEE/ACM 44th In-
ternational Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER), 2022.

[14] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada, 1995.

[15] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
Code smells and refactoring: A tertiary systematic review of challenges and obser-
vations. Journal of Systems and Software, 167:110610, 2020.

[16] Valentina Lenarduzzi, Francesco Lomio, Sergio Moreschini, Davide Taibi, and
Damian Andrew Tamburri. Software quality for ai: Where we are now? In Inter-
national Conference on Software Quality, pages 43–53. Springer, 2021.

[17] Kent Beck Martin Fowler. efactoring: Improving the Design of Existing Code. 2018.

[18] Biruk Asmare Muse, Mohammad Masudur Rahman, Csaba Nagy, Anthony Cleve,
Foutse Khomh, and Giuliano Antoniol. On the prevalence, impact, and evolution of
sql code smells in data-intensive systems. In Proceedings of the 17th international
conference on mining software repositories, pages 327–338, 2020.

[19] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. On the diffuseness and the impact on maintainability
of code smells: a large scale empirical investigation. Empirical Software Engineering,
23(3):1188–1221, 2017. doi: 10.1007/s10664-017-9535-z.

[20] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. Tunability: importance of
hyperparameters of machine learning algorithms. The Journal of Machine Learning
Research, 20(1):1934–1965, 2019.

[21] Gopi Krishnan Rajbahadur, Gustavo Ansaldi Oliva, Ahmed E Hassan, and Juergen
Dingel. Pitfalls analyzer: Quality control for model-driven data science pipelines. In
2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pages 12–22. IEEE, 2019.

56

Bibliography

[22] D. Sculley, Gary Holt, D. Golovin, Eugene Davydov, Todd Phillips, D. Ebner, Vinay
Chaudhary, M. Young, J. Crespo, and Dan Dennison. Hidden technical debt in ma-
chine learning systems. In NIPS, 2015.

[23] Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. Adoption and effects
of software engineering best practices in machine learning. In Proceedings of the
14th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 1–12, 2020.

[24] Andrew J Simmons, Scott Barnett, Jessica Rivera-Villicana, Akshat Bajaj, and Rajesh
Vasa. A large-scale comparative analysis of coding standard conformance in open-
source data science projects. In Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages 1–
11, 2020.

[25] Dag I.K. Sjøberg, Aiko Yamashita, Bente C.D. Anda, Audris Mockus, and Tore Dybå.
Quantifying the effect of code smells on maintenance effort. IEEE Transactions on
Software Engineering, 39(8):1144–1156, 2013. doi: 10.1109/TSE.2012.89.

[26] Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, Rhia Singh, Ajani Stewart,
and Anita Raja. An empirical study of refactorings and technical debt in machine
learning systems. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 238–250. IEEE, 2021.

[27] Sylvain Thénault et al. Pylint. Code analysis for Python, 2001.

[28] Kristı́n Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. The adoption of
javascript linters in practice: A case study on eslint. IEEE Transactions on Software
Engineering, 46(8):863–891, 2018.

[29] Bart van Oort, Luı́s Cruz, Maurı́cio Aniche, and Arie van Deursen. The prevalence
of code smells in machine learning projects. In 2021 IEEE/ACM 1st Workshop on AI
Engineering - Software Engineering for AI (WAIN), pages 1–8, 2021. doi: 10.1109/
WAIN52551.2021.00011.

[30] Bart van Oort, Luı́s Cruz, Babak Loni, and Arie van Deursen. ”project smells” –
experiences in analysing the software quality of ml projects with mllint. In 2022
IEEE/ACM 44th International Conference on Software Engineering: Software Engi-
neering In Practice (ICSE-SEIP), 2022.

[31] Aiko Yamashita and Leon Moonen. To what extent can maintenance problems be
predicted by code smell detection? – an empirical study. Information and Software
Technology, 55(12):2223–2242, 2013. ISSN 0950-5849. doi: https://doi.org/10.1016/
j.infsof.2013.08.002. URL https://www.sciencedirect.com/science/articl
e/pii/S0950584913001614.

[32] Nicholas C Zakas. Eslint.

57

https://www.sciencedirect.com/science/article/pii/S0950584913001614
https://www.sciencedirect.com/science/article/pii/S0950584913001614

BIBLIOGRAPHY

[33] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. An em-
pirical study on tensorflow program bugs. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 129–140, 2018.

58

Appendix A

Grey Literature References

A.1 Grey Literature References
(1) Christian Haller. My Machine Learning Model Is Perfect. URL: https://towardsdatascience.com

/my-machine-learning-model-is-perfect-9a7928e0f604

(2) Cheng-Tao Chu. Machine Learning Done Wrong. URL: https://ml.posthaven.com/machine-l
earning-done-wrong

(3) What are common mistakes when working with neural networks? URL: https://www.kaggle.com/g
eneral/196487

(4) Top 10 Coding Mistakes Made by Data Scientists. URL: https://www.kdnuggets.com/2019/04/to
p-10-coding-mistakes-data-scientists.html

(5) Igor Susmelj, Lucas Vandroux, Daniel Bourke (2022). A PyTorch Tools, best practices & Styleguide.
URL: https://github.com/IgorSusmelj/pytorch-styleguide

(6) EffectiveTensorflow. URL: https://github.com/vahidk/EffectiveTensorflow

(7) Josh Levy-Kramer (2021). Pandas Style Guide. URL: https://github.com/joshlk/pandas style
guide

(8) Scikit-Learn Documentation. URL: https://scikit-learn.org/stable/common pitfalls.html

(9) PyTorch Documentation. Reproducibility. URL: https://pytorch.org/docs/stable/notes/ra
ndomness.html

(10) Alexandra Deis. In-place Operations in PyTorch. URL: https://towardsdatascience.com/in-pl
ace-operations-in-pytorch-f91d493e970e

(11) GitHub Commit. URL: https://github.com/bamos/dcgan-completion.tensorflow/commit/
e8b930501dffe01db423b6ca1c65d3ac54f27223

(12) Samual Sam (2018). Inplace operator in Python. URL: https://www.tutorialspoint.com/inpla
ce-operator-in-python

(13) Github Commit – Tensor Flow. URL: https://github.com/tensorflow/models/commit/90f63a
1e1653

(14) Pandas Documentation. Essential basic functionality – Iteration. URL: https://pandas.pydata.or
g/pandas-docs/stable/user guide/basics.html#iteration

(15) Vectorization, Part 2: Why and What? URL: https://www.quantifisolutions.com/vectorizat
ion-part-2-why-and-what/

(16) Scikit-Learn Documentation. URL: https://scikit-learn.org/stable/modules/preprocess
ing.html

59

https://towardsdatascience.com/my-machine-learning-model-is-perfect-9a7928e0f604
https://towardsdatascience.com/my-machine-learning-model-is-perfect-9a7928e0f604
https://ml.posthaven.com/machine-learning-done-wrong
https://ml.posthaven.com/machine-learning-done-wrong
https://www.kaggle.com/general/196487
https://www.kaggle.com/general/196487
https://www.kdnuggets.com/2019/04/top-10-coding-mistakes-data-scientists.html
https://www.kdnuggets.com/2019/04/top-10-coding-mistakes-data-scientists.html
https://github.com/IgorSusmelj/pytorch-styleguide
https://github.com/vahidk/EffectiveTensorflow
https://github.com/joshlk/pandas_style_guide
https://github.com/joshlk/pandas_style_guide
https://scikit-learn.org/stable/common_pitfalls.html
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://towardsdatascience.com/in-place-operations-in-pytorch-f91d493e970e
https://towardsdatascience.com/in-place-operations-in-pytorch-f91d493e970e
https://github.com/bamos/dcgan-completion.tensorflow/commit/e8b930501dffe01db423b6ca1c65d3ac54f27223
https://github.com/bamos/dcgan-completion.tensorflow/commit/e8b930501dffe01db423b6ca1c65d3ac54f27223
https://www.tutorialspoint.com/inplace-operator-in-python
https://www.tutorialspoint.com/inplace-operator-in-python
https://github.com/tensorflow/models/commit/90f63a1e1653
https://github.com/tensorflow/models/commit/90f63a1e1653
https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#iteration
https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#iteration
https://www.quantifisolutions.com/vectorization-part-2-why-and-what/
https://www.quantifisolutions.com/vectorization-part-2-why-and-what/
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html

A. GREY LITERATURE REFERENCES

(17) Stack Overflow. GridSearchCV extremely slow on small dataset in scikit-learn. URL: https://stac
koverflow.com/questions/17455302/gridsearchcv-extremely-slow-on-small-dataset-in
-scikit-learn/23813876#23813876

(18) Feature scaling. URL: https://en.wikipedia.org/wiki/Feature scaling

(19) TensorFlow Documentation. Backend: clear session. URL: https://www.tensorflow.org/api
docs/python/tf/keras/backend/clear session

(20) Stack Overflow. Tensorflow OOM on GPU. URL: https://stackoverflow.com/questions/4249
5930/tensorflow-oom-on-gpu

(21) Stack Overflow. Tensorflow NaN bug? URL: https://stackoverflow.com/questions/33712178
/tensorflow-nan-bug

(22) Stack Overflow. TensorFlow’s ReluGrad claims input is not finite. URL: https://stackoverflow.
com/questions/33699174/tensorflows-relugrad-claims-input-is-not-finite

(23) Stack Overflow. Tensorflow - Convolutionary Net: Grayscale vs Black/White training. URL: https:
//stackoverflow.com/questions/39487825/tensorflow-convolutionary-net-grayscale-v
s-black-white-training

(24) Stack Overflow. Implement MLP in tensorflow. URL: https://stackoverflow.com/questions/
35078027/implement-mlp-in-tensorflow

(25) Weight Initialization Techniques in Neural Networks. URL: https://towardsdatascience.com/w
eight-initialization-techniques-in-neural-networks-26c649eb3b78

(26) Stack Overflow. Best practices for generating a random seeds to seed Pytorch? URL: https://stac
koverflow.com/questions/57416925/best-practices-for-generating-a-random-seeds-to
-seed-pytorch

(27) Stack Overflow. Keras Regression using Scikit Learn StandardScaler with Pipeline and without Pipeline.
URL: https://stackoverflow.com/questions/43816718/keras-regression-using-scikit
-learn-standardscaler-with-pipeline-and-without-pip/43816833#43816833

(28) Ask a Data Scientist: Data Leakage. URL: https://insidebigdata.com/2014/11/26/ask-data-
scientist-data-leakage/

(29) Data Leakage. URL: https://www.kaggle.com/alexisbcook/data-leakage

(30) Pandas Documentation. URL: https://pandas.pydata.org/pandas-docs/stable/user guide
/indexing.html#indexing-view-versus-copy

(31) Stack Overflow. Extrapolate values in Pandas DataFrame. URL: https://stackoverflow.com/qu
estions/22491628/extrapolate-values-in-pandas-dataframe/35959909#35959909

(32) Stack Overflow. Why does one use of iloc() give a SettingWithCopyWarning, but the other doesn’t?
URL: https://stackoverflow.com/questions/53806570/why-does-one-use-of-iloc-give
-a-settingwithcopywarning-but-the-other-doesnt/53807453#53807453

(33) Stack Overflow. Convert pandas dataframe to NumPy array. URL: https://stackoverflow.com/qu
estions/13187778/convert-pandas-dataframe-to-numpy-array/54508052#54508052

(34) Stack Overflow. Does np.dot automatically transpose vectors? URL: https://stackoverflow.com/
questions/54160155/does-np-dot-automatically-transpose-vectors/54161169#54161169

(35) Linear Algebra (numpy.dot). NumPy Documentation. URL: https://numpy.org/doc/stable/ref
erence/generated/numpy.dot.html#numpy.dot

(36) Yuval Greenfield. Most Common Neural Net PyTorch Mistakes. URL: https://medium.com/missi
nglink-deep-learning-platform/most-common-neural-net-pytorch-mistakes-456560ad
a037

(37) Stack Overflow. Is this a right way to train and test the model using Pytorch? URL: https://stacko
verflow.com/questions/67066452/is-this-a-right-way-to-train-and-test-the-model
-using-pytorch/67067242#67067242

60

https://stackoverflow.com/questions/17455302/gridsearchcv-extremely-slow-on-small-dataset-in-scikit-learn/23813876#23813876
https://stackoverflow.com/questions/17455302/gridsearchcv-extremely-slow-on-small-dataset-in-scikit-learn/23813876#23813876
https://stackoverflow.com/questions/17455302/gridsearchcv-extremely-slow-on-small-dataset-in-scikit-learn/23813876#23813876
https://en.wikipedia.org/wiki/Feature_scaling
https://www.tensorflow.org/api_docs/python/tf/keras/backend/clear_session
https://www.tensorflow.org/api_docs/python/tf/keras/backend/clear_session
https://stackoverflow.com/questions/42495930/tensorflow-oom-on-gpu
https://stackoverflow.com/questions/42495930/tensorflow-oom-on-gpu
https://stackoverflow.com/questions/33712178/tensorflow-nan-bug
https://stackoverflow.com/questions/33712178/tensorflow-nan-bug
https://stackoverflow.com/questions/33699174/tensorflows-relugrad-claims-input-is-not-finite
https://stackoverflow.com/questions/33699174/tensorflows-relugrad-claims-input-is-not-finite
https://stackoverflow.com/questions/39487825/tensorflow-convolutionary-net-grayscale-vs-black-white-training
https://stackoverflow.com/questions/39487825/tensorflow-convolutionary-net-grayscale-vs-black-white-training
https://stackoverflow.com/questions/39487825/tensorflow-convolutionary-net-grayscale-vs-black-white-training
https://stackoverflow.com/questions/35078027/implement-mlp-in-tensorflow
https://stackoverflow.com/questions/35078027/implement-mlp-in-tensorflow
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://stackoverflow.com/questions/57416925/best-practices-for-generating-a-random-seeds-to-seed-pytorch
https://stackoverflow.com/questions/57416925/best-practices-for-generating-a-random-seeds-to-seed-pytorch
https://stackoverflow.com/questions/57416925/best-practices-for-generating-a-random-seeds-to-seed-pytorch
https://stackoverflow.com/questions/43816718/keras-regression-using-scikit-learn-standardscaler-with-pipeline-and-without-pip/43816833#43816833
https://stackoverflow.com/questions/43816718/keras-regression-using-scikit-learn-standardscaler-with-pipeline-and-without-pip/43816833#43816833
https://insidebigdata.com/2014/11/26/ask-data-scientist-data-leakage/
https://insidebigdata.com/2014/11/26/ask-data-scientist-data-leakage/
https://www.kaggle.com/alexisbcook/data-leakage
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-view-versus-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-view-versus-copy
https://stackoverflow.com/questions/22491628/extrapolate-values-in-pandas-dataframe/35959909#35959909
https://stackoverflow.com/questions/22491628/extrapolate-values-in-pandas-dataframe/35959909#35959909
https://stackoverflow.com/questions/53806570/why-does-one-use-of-iloc-give-a-settingwithcopywarning-but-the-other-doesnt/53807453#53807453
https://stackoverflow.com/questions/53806570/why-does-one-use-of-iloc-give-a-settingwithcopywarning-but-the-other-doesnt/53807453#53807453
https://stackoverflow.com/questions/13187778/convert-pandas-dataframe-to-numpy-array/54508052#54508052
https://stackoverflow.com/questions/13187778/convert-pandas-dataframe-to-numpy-array/54508052#54508052
https://stackoverflow.com/questions/54160155/does-np-dot-automatically-transpose-vectors/54161169#54161169
https://stackoverflow.com/questions/54160155/does-np-dot-automatically-transpose-vectors/54161169#54161169
https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot
https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot
https://medium.com/missinglink-deep-learning-platform/most-common-neural-net-pytorch-mistakes-456560ada037
https://medium.com/missinglink-deep-learning-platform/most-common-neural-net-pytorch-mistakes-456560ada037
https://medium.com/missinglink-deep-learning-platform/most-common-neural-net-pytorch-mistakes-456560ada037
https://stackoverflow.com/questions/67066452/is-this-a-right-way-to-train-and-test-the-model-using-pytorch/67067242#67067242
https://stackoverflow.com/questions/67066452/is-this-a-right-way-to-train-and-test-the-model-using-pytorch/67067242#67067242
https://stackoverflow.com/questions/67066452/is-this-a-right-way-to-train-and-test-the-model-using-pytorch/67067242#67067242

A.1. Grey Literature References

(38) Why does detach reduce the allocated memory? URL: https://discuss.pytorch.org/t/why-do
es-detach-reduce-the-allocated-memory/43836

(39) Dot product. Wikipedia. URL: https://en.wikipedia.org/wiki/Dot product

(40) Stack Overflow. What is the rationale for all comparisons returning false for IEEE754 NaN values?
URL: https://stackoverflow.com/questions/1565164/what-is-the-rationale-for-all-
comparisons-returning-false-for-ieee754-nan-values

(41) Broadcasting the good and the ugly URL: https://effectivemachinelearning.com/PyTorch/3
. Broadcasting the good and the ugly

61

https://discuss.pytorch.org/t/why-does-detach-reduce-the-allocated-memory/43836
https://discuss.pytorch.org/t/why-does-detach-reduce-the-allocated-memory/43836
https://en.wikipedia.org/wiki/Dot_product
https://stackoverflow.com/questions/1565164/what-is-the-rationale-for-all-comparisons-returning-false-for-ieee754-nan-values
https://stackoverflow.com/questions/1565164/what-is-the-rationale-for-all-comparisons-returning-false-for-ieee754-nan-values
https://effectivemachinelearning.com/PyTorch/3._Broadcasting_the_good_and_the_ugly
https://effectivemachinelearning.com/PyTorch/3._Broadcasting_the_good_and_the_ugly

	Preface
	Contents
	List of Figures
	Introduction
	Objectives and Research Questions
	Approach
	Contributions
	Report Organization

	Code Smells for Machine Learning Applications
	Introduction
	Related Work
	Methodology
	Results
	Discussions and Implications
	Threats to validity
	Conclusions and Future Work

	Automated Detection of ML-Specific Code Smells
	Introduction
	Related Work
	Dslinter
	Methodology
	Results
	Discussions and Implications
	Thread to Validity
	Conclusions and Future Work

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Grey Literature References
	Grey Literature References

