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1) INTRODUCTION

é‘inr(?')

% iiinc (‘f) \ =

Fig 1. 1) Incident field impinging on an antenna (sphere of radius a)

How antennas absorb a generic incident electro-magnetic field impinging on it is a
mechanism that is still not perfectly known. Thanks to reciprocity, the means we analyze
antennas in reception by is a set of techniques developed for antennas in transmission. In spite
of this fact, some aspects, like scattering and absorption, are being investigated in order to
define procedures to facilitate optimal designs through numerical software, e.g. how to define
currents or boundaries. However, other aspects, which seem to be significantly important, still
lack of a proper understanding; one of these is the power available to an antenna given
whichever field impinging on it.

One of the most clarifying works on this topic is from 2009 by Kwon and Pozar [9]. To
address the power available to an antenna enclosed in a generic volume they expand the
incident field as an infinite summation of spherical TE and TM vector modes. Thanks to this
field representation they express the incident field and the perturbation introduced by the
antenna in terms of spherical waves. They then split the incident field in 2 different terms: one
that is significantly different from zero in the antenna domain (the low order ‘LO’ modes

field), and a remaining part (the high order ‘HO’ modes field), which is instead negligible in

1 | The Observable Field



1) INTRODUCTION

the surroundings of the antenna (please, note that the fact that the LO field is the portion of
the incident field which is different from zero in the antenna domain does not mean the it is
not present in the far field region). The LO field is the maximum portion of the incident field
the antenna can interact with and absorb, it defines the available power, and it is evaluated as
the sum of a finite number of modes; this number will depend on the dimension of the antenna
volume in terms of wavelength. The available power is estimated considering an ideal
lossless, load-matched antenna.

Implicitly in this spherical mode representation is the definition of an ‘observable’ component
of the incident field, which is the largest portion that can be absorbed by the antenna. Based
on this assumption the purpose of this work is designated, and it is the exploitation of the
opportunity to identify in the total incident field the maximum part the antenna can interact
with; the remaining fraction of the field is what cannot be absorbed. The characterization of
the Observable field will depend on the field representation adopted, e.g. it corresponds to the

low order field if a spherical modes expansion is applied.

éinc (F) = 5obs (?) + é)rem (F) (1-1)

éi nc (T)

Fig 1. 2) Representation of the observable field and of the antenna domain (the antenna is not present now)

In order to estimate the available power given by the observable component of the incident
field it is necessary, as it will be clear in the following, to express the observable field as the

sum of an inward propagating component, that converges from large distance r,, towards the
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1) INTRODUCTION

antenna domain, plus an outward propagating component, that diverges from the antenna

domain to 7,,.

eobs(r) = eéri;‘;v(r) + eg;)lstw(r) (1.2)

~outu
€obs r)

e )

Fig 1. 3) Observable field component as the sum of an inward plus an outward propagating wave

In the far field region r,, we express the two inward and outward propagating components as

the product between an angular distribution and a spherical spreading.

inw inw +Jkroo ( )2
oUW (7,) = V3utw (g, $)= _— 7ol > = Vel [l » a (1.3)

The usage of the letter V for the angular distribution points out the fact that it is a VVoltage
quantity. If no perturbation is present, as in this case where the antenna is not there yet, the
inward propagating wave is equal to the outward propagating one: the field converges to the
antenna region and, if nothing is there, it diverges from it. The relationship between the two
depends on the reference system, the kind of coordinates that are adopted and the polarization
of the field. Using a spherical coordinates system centered in the antenna domain, and having
the electric field represented as TE and TM spherical vector modes oriented along the unit

vectors ,¢ = (6, ¢), it is possible to define the outward components as:
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1) INTRODUCTION

Versem(6,8) = Vops (6, 4)0 (1.4)
Ve (6, 8) = Veg(0, )¢ (1.5)

And their relation with the inward propagating components as:

Vepsem (6, 9)8 = Vopslpy (r — 6,7 + ¢)8 (1.6)
otystWTE(H ¢)¢ = VOLZ;”—TE(” -0, + ¢)¢ (1.7)

This highlights the fact that the polarization is unperturbed if the antenna is absent.

Fig 1. 4) vector nature of the Observable field, (8 polarized example). The observable field converges toward the
origin, and then emerges to diverge, maintaining the unaltered ray like vector orientation.

The magnetic field derivation is straight forward. At large distance from the center of the
reference system the spherical waves can be locally approximated as plane waves, and the

following, well-known rule applies:

i - 1 7 - -
hobs(roo) = Ek X eobs(rOO) (1-8)
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1) STATE OF THE ART: THE SPHERICAL MODES
REPRESENTATION OF THE INCIDENT FIELD

[1.a2) The spherical modes procedure

The incident field, at any observation point, can be expanded as an infinite summation of

spherical vector modes:

e = ) Fn (1,6, ) )

The spherical modes functions are defined with respect to the center of the reference system
and depend on the antenna electrical dimensions. Each spherical modes function can be
expressed either as a TE or TM mode and split into an inward and an outward propagating
component. Inward and outward propagating components are related as in (1.4), (1.5), (1.6),
(1.7). The number of modes used to represent the field depends on the observation point 7 and
on the source location 7. If the observation point is close to the origin of the reference
system, and if the sources are located at large distance from it, only a few harmonics are
necessary. However, the further from the origin the observation point is, the more modes will
be needed. This becomes clear when looking at the radial dependence of the scalar free space

Green’s function g(7,7"), when expressed as a summation of spherical functions:

- - e_]klfz_lel c - - o
9GF) = gz = ) ) Conknn(0,6,6,9) dn (7 22)
m=0n=0

Cmn are functions that depends only on the indices (m,n), L,,, are the Legendre’s
polynomials which depend on the angular coordinates, and d,, takes into account the radial
dependence. Assuming that the sources are located at large distance from the origin we can
express d,, as a function of the spherical Bessel’s j, and Hankel’s h2 functions of integer

order:



) STATE OF THE ART

i (kr)h2(kr'
d, (7, 7") _ Jn(kr) ”,( r) (2.3)
krr

Moreover, if the observation point is close to the source, the expression turns into:

h3(kr")
lirr(} do(r,r') =17 for n=20 (2.4)
T
0 Vn>0

Finally, if the condition |7'| > |7| is verified, thus if the source location is much further away

than the observation point, the number of modes is independent from the source location itself

=/

[1.0) The low order field

The final aim of this procedure is to define the available power. Thus, we need to derive the
portion of the incident field the antenna can interact with: the observable field, once again. If
the adopted field representation is the spherical modes expansion, the observable field will
coincide with the low order modes field. Let us stress again the fact that the observable
component of the incident field is the only portion which is significantly different than zero in

the antenna region.

N 00
bo@ =) En(r0,0), Eno@®= ) En(6,) (25)
n=0 n=N+1
N =ka=2r3 (2.6)

N is such that éy,(#) —» 0 in the antenna domain, which from now on will be considered a

sphere of radius a. This means:

éinc(r € Vant) = éLO (F) Vant: IFI <a (2-7)

Now, in the case of a plane wave incident from broadside, the incident field is written as:
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) STATE OF THE ART

tc:')inc(?) = Einc (T‘, 6’ d))ejsz Hinc(?) = ﬁinc(r' 9, d))ejkz v ? (2'8)

The low order field depends on N, which means that it depends on the antenna length in terms
of wavelength. Here are the plots of the LO field at z — 0 scanned on the E-plane for a plane

wave incident from broadside with E,,,.(r,8,¢) = 18 [V/m] for three significant cases:
a=0.014 a=A1, a=104

IE, o [V/m]

73 A5 A 05 0 05 1 15 2
ali
a—a=0.0121
1.
08
E
S o8
9
Yoo
02
9% 2 1 0 1 2 3
ali
b—a=121
1
0.8
E
S 06
9
Y04
02
95 0 5 0 5 10 15
ah.
c—a=101

Fig 2. 1) Electric field scanned in the E-plane, for z = 0, for three cases: Fig 2.1a) a = 0.014, Fig 2.1b) a =
A, Fig2.lc)a =54

It is apparent that the spherical modes representation introduces a spatial filtering action that

selects only the central portion of the incident field around the antenna domain. Please, note
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) STATE OF THE ART

that considering the first antenna its domain is small in terms of wavelengths: it only
comprises the region a/A = [-0.01 — 0.01], and the field amplitude remains close to the
incident field value much further away; this phenomenon can also be seen through the
effective area concept. Instead, as far as relatively large antennas are concerned the spherical
modes expansion constitutes a good approximation of the incident field itself on the antenna

domain, then it starts decaying.

I1.c) The fields far away from the antenna

As already stated, the fact that the LO field is the only part of the incident field which is
significantly different than zero in the antenna region does not mean that it is zero in the far
field region as well. The LO field is defined over the entire space indeed. For observation
points far away from the center of the reference system the radial dependence of the modes
tends to the spherical spreading e*/*™~ /r,,, and the electric and magnetic fields tend to be
orthogonal and transversely polarized. This allows the summation in amplitude and phase of
every mode, leading to the construction of a single outward (or inward) propagating spherical
wave. It is immediate to verify that at 7, we can express the LO field as in (1.3), thus an
inward/outward component defined as the product between an angular distribution and a
spherical spreading function. In general, the remaining field, which is in this representation
the HO field, is not zero at 7., given the fact that the LO field does not represent the whole

incident field:

10 (o) # Einc(Tos) = Eno(ie) # 0 (2.9)
In order to clarify this concept, the far field pattern of the LO field, normalized to its
maximum value and expressed in dB, is plotted for the same antennas that were analyzed

previously. 3 antennas of radius a = 0.011, a = A, a = 104, far field at 7, > 2(2a)?/2,
scanned for 8 = (—m - ), ¢ = 0 (E-plane):
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Fig 2.2) Observable fields patterns, for three different dimensions of the antenna domain for normal incidence
plane waves: Fig 2.2a) a = 0.014, Fig 2.2b) a = 4, Fig2.2c) a = 54

[1.d) The available power estimated by the spherical modes procedure

The easiest way to calculate the available power is to consider the Poynting vector in the far
field region, where the field can be locally approximated as a superposition of plane waves;
this means that the flux that crosses a generic surface in the far field S., needs to be evaluated
(if |7,] > 2(2a)?/1) the available power is independent on the radius of the sphere it will be
evaluated at). It is well known that the total flux of a field crossing a closed surface in absence
of any perturbation is zero: this is because the inward propagating component, that contributes
to a positive flux, leaves then the surface as an outward propagating component, contributing
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) STATE OF THE ART

in an equal but opposite way. [9] clarified that due to this reason only the inward propagating

component has to be taken into account when calculating the available power:

1 -1 - 2 -
Fava = Pinw = _ff |e£7(sw(roo)| dre (2.10)
2¢ ),
When analyzing the case of a single plane wave impinging from broadside, the effective area

A5y represents a useful parameter to quantify the available power and then compare it when

different procedures are used:
2 (2.11)

The effective area given a plane wave impinging from broad side (6;,. = 0, $inc = 0)
estimated with the spherical modes expansion is plotted as a function of the physical area,
when both are normalized to A2:

107 10" 10° 10’

" 2
Aphys//“

Fig 2. 3) Effective area as a function of the physical area estimated by the spherical modes expansion, both
normalized to the wavelength squared. N chosen as N = round(ka)

This kind of stepped function highlights the uncertainty error introduced by the spherical
modes description: they quantize a process that is continuous instead. The approximation
error becomes negligible for extremely small or extremely large antennas in terms of
wavelength, where the steps are either not present or negligible; while for antennas whose

dimension is in the range between some fraction to some units of A the uncertainty is
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) STATE OF THE ART

significant. This quantized behavior depends on the choice of N = ka, which is, in general,
not an integer number; moreover, there is no rule that defines how one should choose N (the
observable fields estimated by N = round(ka), N = round(ka) + 1 or N = round(ka) —

1 present significant differences when working with antenna of dimensions around 7).

[1.e) The heuristic extension

The antenna community tried to overcome this issue by means of an interpolation of the
results predicted by the spherical modes procedure. A simple formula that accounts for the
effective area for really large and really small antennas in terms of wavelength has been
proposed. It is well known that for really directive antennas the effective area tends to equate
the physical area, while for extremely small antennas the spherical modes procedure predicts
the effective area of a Huygens’ source: the heuristic formula simply interpolates these two
results [12].

3
AgFf =722 + Apnys (2.12)

10° e ——————
& —Spherical Modes |
|—Heuristic Formula|
10' -
o E
S [
(0}
< L
10° ¢
10-1 HL2 — ‘1 ‘ HO ’ ] ’ Hl1
107 10 10 10
A2
phys

Fig 2. 4) Effective area as a function of the physical area estimated by the spherical modes expansion and by the
heuristic formula, both normalized to the wavelength squared. N chosen as N = round(ka)

However, even if the curve predicted by the heuristic formula seems to have solved the

guantization problem, there is de facto no reason to believe that the results it gives are more
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) STATE OF THE ART

accurate; they should be compared to actual measurements. Moreover, the extension to more
realistic cases where the incident field can be described as a superposition of multiple plane

waves is not possible, since their phase is not considered by this procedure at all.
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1) THE IDEAL CURRENTS METHOD

A new procedure, meant to estimate the observable component of the incident field
overcoming the stumbling block given by the quantization introduced by the spherical modes
expansion, is here presented. The field is hereby split into two components once again: an
observable component, and a remaining component €;,.(¥) = €,ps(¥) + €rem (7). Now, a
new methodology is needed to evaluate é,,¢(7) given whatever €;,,.(#). In order to have a
quick and immediate insight into this procedure let us first consider the case of a single plane

wave impinging on a focusing system

[11.a) The ideal antenna in a focusing system

When a plane wave excites a focusing system, within the system itself the field €;(¥) can be
represented as a spherical wave that converges to its focus, and then diverges; the center of
the reference system will be placed at the focus. Once again then, the field is represented as
the sum of an inward and an outward propagating spherical waves (keep in mind that this is

the field inside the focusing system, not the incoming plane wave):

&) = ™ (@ + e (P 3.1)

The ideal lossless, load matched antenna is a device that absorbs the whole inward
propagating component, cancelling the outward propagating one (an intuitive parallelism can
be made with the concept of a perfect absorber, even if the mechanism is different); the ideal
antenna will convert the EM energy in a guided wave. The cancellation of °“*¥ (#) happens
via scattering: the incident field will excite a set of currents on the antenna, that radiate a field

which will be equal and opposite to the first.

ELi () = EPM (7) + 880 () = 0 (3.2)
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%ﬁijgsystei\ ( Antenna h
% 5t v

- | s e ~ Equivalence
K —inwh, / N theorem
' €; . ’ —inw Y
! L e\
: 1 \ i \ , N
1 ] \ ( N / (W g

I‘\‘ | gouw Antenna " ‘*"‘IF“- ,’Jeq' Meq
\\\ i € /,’ /,, \\ EDMW
P X v vEscat
S !
ik £ opox
~ 7\ J\ )

Fig 3. 1) Field picture in an ideal focusing system, Fig 3.1 b) Incident field as sum of inward and outward
propagating waves. Fig 3.1b) the ideal antenna captures all the inward incident field. Fig 3.1 ¢) The scattered
field radiated by the currents of the ideal antenna is equal and opposite to the outward component of the incident
field.

Please note that the ‘outw’ superscript is omitted in 8:4,,(#), since the field scattered by an
antenna is always propagating outward its domain. Now, note that within a focusing system
excited by a plane wave, the incident field can coincide with the observable field. Indeed, in
this particular case the field is no more a plane wave, and it is possible to define a set of

sources that can radiate it.

51' (77) = é)obs(?) - é)rem(?) =0 (33)

The available then will be:
Pova = Prlacci = PiinW (34)
P = PP = Pofa (3.5)

[11.0) Plane wave incidence

In case of plane wave incidence &;,.(¥) = EZW (#)e/kin™ | the first thing to be taken into
account is that it does not exist a set of sources able to radiate such a field. This is because the
spatial domain of a plane wave is infinite, and so should be the distribution of the currents.
Thus, the ideal antenna will never be able to absorb the whole 852 (#), and the definition of

the observable component of the incident field is not straightforward.
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1) THE IDEAL CURRENTS METHOD

é)inc(?) * éobs(F) - érem(?) #0 (36)

The observable field will be now specified as the largest portion of the incident field the
antenna can interact with. The proposal is to define the observable field as equal and opposite
to the field scattered by the ideal antenna given a plan wave impinging on it, so that they

cancel out leading to é24*Y (#) = 0.

Eps " () = —&' (P) (3.7)

gscat (?)

— t —.
e ()

I\

C

ET(’”I (F)

eope (™) R}MW

Fig 3. 2) Observable field as the field equal and opposite to the one scattered by an ideal antenna given a generic
incident field.

We call the scattered field ‘ideal’ to underline the fact that it radiates a power which is equal
to the received one: the maximum possible power in the given antenna volume. Once again,
when dealing with plane wave incidences it is possible, and useful, to define the effective

area.
pid = LB ) 4, = it 3.8
rx — qu inc (T')l eff — Yscat ( : )

The effective area will be the parameter used to compare the procedure introduced by this
work to the spherical modes representation. The point now is the definition of a set of sources

-

that scatter 8:4¢¢(#): the ‘Ideal Currents’.
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1) THE IDEAL CURRENTS METHOD

I11.c) The Ideal Currents

Fig 3. 3) Ideal currents on the antenna volume induced by the incident field

We define the ‘Ideal Currents’ by means of the equivalence theorem. This theorem says that,
given whatever kind of field at any observation point, this can be represented by a set of
sources that radiate it. In the case of a plane wave it is apparent that these currents’ spatial
domain must be infinitely extended in order to satisfy the condition: indeed, they are defined
over the hemisphere of the antenna volume illuminated by the incident field and over an
infinite plane orthogonal to the plane wave propagation direction k;,, and crossing the antenna
in the middle. The mathematical derivation of the currents is performed through the physical
optics (PO) approximation, then they are amplified by a constant factor that accounts for the
power budget of the system (the scattered power will thus be equal to the received power);
this amplifying factor definition will be explained soon. Now, thanks again to the equivalence
theorem we can represent the radiation of the currents distributed on the illuminated
hemisphere of the antenna volume through another set of planar distributed sources that will
generate the same field: they will be defined over the cross section of the antenna orthogonal
to k;, (please, note that the current will be different now, but it is their radiation what

matters). These are precisely the sources we’re interested in.
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Fig 3. 4) Definition of the domain orthogonal to k;,,

R /R
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Fig 3. 5) 1D cut of the procedure of the evaluation of the ideal currents: Fig 3.5a) plane wave and observation

point. Fig 3.5b) distribution of the currents over an infinitely extended planar domain including the surface of

the hemisphere illuminated by the incident field. Fig 3.5¢) substitution of the current on the hemisphere surface
with the ideal currents distribute over a planar distribution (antenna cross section orthogonal to k;;,)

The Ideal Currents value will depend on the antenna domain electrical length, they will be
multiplied by the amplifying factor and distributed over the whole cross section. From now
on, the plane wave will be considered impinging from underneath the antenna (from
0;, = 180°), so that its scattered field and the outward component of the observable field will
be defined with the maximum directivity towards the positive hemi-axis z*. The ideal

currents are thus defined as in Appendix A:

]_)id (?’) = Campé X ’_{inc(?))((F,: a): mid (F’) = _CampZA X é)inc(F)X(F" a) (39)
x@,a)=[p:0->a,¢:0 - 2r] (3.10)
A
Camp = AQJ (3.11)
phys
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x(#',a) represents the spatial domain of the sources distribution. Note that this kind of
approximation (physical optics approximation) represents a spatial truncation: the currents
cannot go from a certain value to 0 instantaneously at the edge of the antenna domain. This
kind of spatial truncation is somehow comparable to the modes truncation introduced by the
spherical modes expansion when selecting the LO field. Due to the PO approximation, the
electric and magnetic current will always be one orthogonal to the other, determining a
distribution of Huygens’ sources. A Huygens’ source is indeed constituted by an elementary

electric dipole orthogonal to a magnetic one; for the sake of clarity its far field pattern is

plotted:
0
330 1 ~~.30
300" 60
270 90
240, 120
210~ 150
180

Fig 3. 6) Far field radiation pattern of a Huygens’ source

[11.d) The amplification factor

Given a uniform distribution of Huygens’ sources, where in this particular case the sources are
the ideal currents excited by a plane impinging orthogonally to the antenna domain (please,
keep in mind that the currents are defined with the PO approximation and then amplified by a

constant factor), the scattered power results (Appendix G):

. 1 A2, 2
Pitar = 575 |EGE O Comp (3.12)
eff

The received power from an ideal antenna will be instead:
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o L
PY = 7 |ELY (D) Aess (3.13)

This two powers have to be equal. Imposing this condition the value of the amplifying factor

is eventually obtained:

; 1 A3 (2 1 12 ,
Pl = =LN|EPY )| C2p = == |[ERY ()| Aesy = P (3.14)
20 Aggy 2¢
A
ff
Camp = 2 = (3.15)
phys

I11.e) The far field radiation

It is well known that the radiation of the ideal currents can be calculated by the convolution

integral between the free space spatial Green’s function §/¢(#) and the currents themselves:

raa (@) = G F 7') * Jig ) + GE™(F,7) * Mg (") (3.16)
a 2T

raa(@) = j j (G4 (F, 7] () + gem (@, #)imq (7)) ] dF’ (3.17)
0 0

hraa(P) = GV F,7) * Mg () + GV (7, 7) * Jia (1) (3.18)
a 2T

hraa(P) = J f [gM @ 7)) + G @, 7 mg (7] d (3.19)
0 0

However, in the far field region asymptotical considerations can be made in order to render
the calculations much easier (see Appendix A for the detailed derivation). Eventually, the
expression one obtains for the electric field in the far field region (remember that in the far
field region the radiation can be locally considered a plane wave, thus the derivation of the

magnetic field is immediate) is:
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- - ]k . . =g e_jkroo
€rad(To) = CampE{ALry(ksme, a)} [roo X (EO X (fon + z))] -
. (3.20)
Lo e ke
= CampVEo™ (a, 7, kin) -
VIutw(a, 7, ki) = Airy(ksing, a)H (7o, Kiz) (3.21)

Airy(ksinf, a) represents spectrum of the sources. It is an Airy distribution indeed, given by
the fact that the sources are symmetrical in ¢’ over the antenna cross section S;,,; the resulting
radiation follows in the spatial domain the spectral behavior of the Airy pattern, ending up
having a minimum in the direction where the plane wave is impinging from, and a maximum
in the direction of propagation of the scattered field. The Airy distribution sets the directivity

of the pattern as well: the higher the radius a, the higher the directivity. ﬁ(?w,ﬁin) instead,

reflects the spectral behavior of a Huygens’ source. V5§ (a, 7, l_c)l-n) expresses the angular
distribution of the pattern indeed.
The same result can be obtained using the spectral representation of the Green’s function.

Following the steps reported in Appendix C one eventually obtains:

9 1 repre
- ~JC
fraa® =z [ [ 6/l k)

- Eid (Kx ky)e_jk"(x_x’)e_jkY(y_y')e‘jkz|Z‘Z'|dkxdky

(3.22)

where frad(?) is either the electric or the magnetic field and C;l-d(kx, ky) is the spectrum of
either the electric or the magnetic current; the subscript 'fs’ means ‘free space’, while the
superscript ‘fc’ indicates that the Green’s function expresses the field fmd (#) radiated by the

source 5id(kx, ky). Also on the spectral integral asymptotical consideration can be made

when analyzing the field at 7, which lead to the final result (detailed steps in Appendix C):

—JkToo

2Ty

fraa(o) = —jk, GELS (kosinfs, a5) Ca(kosings, as) (3.23)

Please, note that the latter expression is exactly equal to (3.20); only the notation is different.

Now, from the asymptotical evaluation of the radiation in the far field region it is evident that
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we’re dealing with a spherical wave. Remember that the ideal scattered field is what it has just
been calculated, and that is equal and opposite to the outward propagating component of the
observable field. The assumption we made previously is then verified: we can represent at 7,
the observable field as the sum of an inward and an outward propagating spherical wave. The
3 procedures to estimate the far field radiation have been implemented using Matlab, and their

plot superposed in order to verify them; a perfect agreement is obtained:

J —Asymbtotical Sbatial GF
—Spatial GF
-5 —Spectral GF

= -10
k=)
_)g( -15
w
E _20,

-25

-30 ‘ R ‘ ‘

0 20 40 60 80 100 120 140 160 180

0 [Deg]

Fig 3. 7) Comparison of the far field radiation pattern given by the three methodologies. Antenna of radius
a = A. The plots were normalized to their maximum value, expressed in dB forascan @ = 0 - m, ¢ = 0.

When analyzing really large, or really small, antennas in terms of wavelength it is possible to
make a few assumptions (please, refer to Appendix D) and derive an analytical formulation
for the broadside radiation of the ideal currents. This was used in order to verify the validity
of the Matlab script: the case of an extremely small antenna (a = 0.014) was considered, and
a perfect agreement between the analytical prediction and the numerical evaluation of any of
(3.16), (3.20), (3.22), (3.23) was found. From (3.20) we obtain:

L

_]_/’Iggtw(a' Ein' E) ma® 1

|é)rad(Foo' Ein)l = Camp ) TT‘OO

amp ’

Two

(3.24)
= 7.9482 - 1075 [K]
m
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gx10°

E] [V/m]
o
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Fig 3. 8) Broad side radiation validation for the following data: |Epy| = 1 V\m, a = 0.014, 1y, =
30004, A=1m

It should be noted that in the case of an extremely small antenna the two sources distributions

can be considered two orthogonal elementary dipoles:

i) = Camp? X Rinc (DS (3.25)
mid (F,) = _Campf X é)inc(iz)6(7i’) (3.26)

In this case we can consider the system to be exactly a Huygens’ source. This is evident from
the pattern of Fig.15, where the field is plotted linearly as function of the observation angle 6

(instead that using a polar plot as in Fig.13).

[11.f) Far field patterns comparison: Ideal Currents Vs Spherical Modes

It is fundamental to assess whether or not this work’s procedure has a scientific dignity. In
order to do this, the far field patterns of the field estimated by the spherical modes and
radiated by the ideal currents are compared. Three antennae are analyzed (a = 0.014, a = 4,
a = 54); the field is scanned on the E-plane (¢ = 0, 8 = —m — m). The fields estimated by
the two different methodologies are expressed in dB and superposed one on top of the other.
When the antennae are small or large in terms of wavelength the two procedures give the
same result for the value of the broadside radiation, thus for these two antennae (a = 0.014,
a = 54) the patterns are normalized to their maximum value, which is, as already stated, the
same; this is not the case for the medium antenna. The results given by the spherical modes
are always plotted with a red line, while the ones given by the ideal currents with a blue line.

We can see that for the small antenna the results are perfectly superposed, and for the large
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antenna there is a really good agreement down to —23dB; increasing even more the radius of
the antenna would lead to a better and better agreement for the far field patterns. For the
medium antenna instead, the results are different, and the absolute value (without any
normalization) is plotted. Note that for the most directive antenna case (a = 51) the scan is

interrupted at & = +25°, since no value of the patterns is higher than —30dB after that
threshold. The input data are |Epy,| = 1 V\m, 1, = 30004, 4 =1m.

Comparison: spherical modes Vs ideal currents
0 T T

-
=
%415
=
u
u
- 20
25+ 4
a L 1 1 1 1 L L
§£00 -150 -100 -50 0 50 100 150 200
0 [deg]
Spherical Modes VS I|deal Currents
-55; .‘ : G
-60!
-65}
E -70}
>
)
S, -75;
=)
-80!
-90 L ! L
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Comparison: spherical modes Vs ideal currents
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5l d
10~ |
T al) m /\ AYN
mb A8 - o 8 0 5 10 15 2/07\\ 2
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Fig 3. 9) Far field pattern comparison: Ideal currents (blue line) Versus Spherical Modes (red line). Fig 3.9a)
antenna of @ = 0.01A. Fig 3.9b) antenna of @ = A. Fig 3.9¢c) antennaof a = 54
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[11.9) Available power and comparison between Ideal Currents and Spherical Modes

Once again, what we are looking for is the field the ideal antenna should scatter to cancel the
outward propagating component of the observable part of the incident field. Keep in mind that
BIW(7) = goMtw(7), gid (#) = —8°%W(#). This means that the inward and the outward
component of the observable field carry the same amount of power, thus the power carried by
the field radiated by the ideal current, that is the power the antenna absorbs, has equal

amplitude as well, which is:
|Paval = |PE| = [Pope | = IPSE™ 1 = 1Piar] (3.27)

The available power has been calculated using the Poynting vector in the far field region.
Since in this zone the field can be locally approximated as a plane wave, the flux of the
Poynting vector given by the ideal scattered field is of simple expression, so that the available
power calculation becomes an integration over the angular distribution of the inward or
outward component of the observable field (or of the field radiated by the ideal currents, of

course); the only thing that changes is the sign of P,,,.

1 . >,
Prva = ERe {ff slcclat(roo) X cat (T‘oo)> dS(Too)}
S(Foo)

(3.28)
21 )
j j 2¢ Eslcat(roo:Q, ®)| 12sin@d@dd

Please, note that now the available power depends in a continuous way on the antenna
dimension. Thus, the spatial truncation introduced by the Ideal Currents method does not
compromise the continuous nature of the reception mechanism, which is what the Spherical
Modes expansion does instead. Given the fact that the incident field is a plane wave coming
from underneath (6;,. = m) and orthogonally to the plane where the ideal sources are

induced, we can define an effective area, whose expression is:

AZ

Aesr = gDmax (3.29)

24 | The Observable Field



1) THE IDEAL CURRENTS METHOD

For the derivation of A.r; see Appendix B. Dy, is the directivity of the antenna in the
direction of maximum radiation, which in this case is 8 = 0,V ¢. The effective area has been
calculated and then compared to the other two estimated by the spherical modes procedure

and the heuristic formula:

10 R ,
—Spherical Modes
—Ideal Currents
—Heuristic Formula
10' - 4
o~ » ;
%
<C L
10°
10'1 G ol . i i il i i it E_4 i R
107 10" 10° 10'
A, N2

phys

Fig 3. 10) Effective area as a function of the physical area, normalized to A%: comparison between the three
methods.

All the methodologies tend to give the same results for really small and really large antennae
in terms of wavelength. For really small antennae they all predict an effective area which is
the one given by a Huygens’ source; for really large antennae the effective area becomes to
the limit equal to the physical one. This is obvious for the heuristic formula though: it is
constructed exactly to do so. In the region that represents most of the antennae designs we
notice the biggest differences between the ideal currents and the spherical modes, especially
for antennae of surface around 0.512. However, the technique proposed in this work gives
results that are always comparable to the ones estimated by the spherical modes expansion;
also it seems to have solved the quantization problem introduced by the latter one, which is an
error, of course. Finally, it is necessary to stress again the fact the curve obtained with the
spherical modes is based upon the choice of N = round(ka), but there is no rule that tells us
how to choose it: the plot might shift to the left or to the right choosing N in a different way,

and the result would have the same dignity.
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In the region close to the antenna domain the asymptotical considerations that were made in
the previous chapters to derive easier expressions for the field do not apply anymore. This is
because the reactive part of both the electric and the magnetic field is still present and its
effect is not negligible. When moving to the far field region this component attenuates (this is
why it is also called non-visible field, it does not reach the far field region), and it is well
known that it can be neglected when evaluating the field at distances bigger than the
Fraunhofer distance dr = 2(2a)?/A (or d » 1 if a < 1), after which only the visible
component of the field remains. Let us take a look at the field expressed as a spectral integral
as in (3.22):

5 1 + 00 + 00 ~fe
fraa® =z [ [ 6k k)

. C;id (kx; ky)e‘ka(x—x')e—fky(y_y’)e_jk2|z_2,| dkydk,

(4.1)

When calculating the field using the 2D spectral Green’s function and performing the
integration in a cylindrical coordinates system in the two complex variables set (k,% =kZ +
k3, a), where dk,dk, = k,dk,da, one can have a quick insight into the visible and non-
visible ‘behaviors’ of the field imagining to perform the integration along the real axis of k,

and looking at its exponential dependence e ~/k" = e~/kpP g =Jikzlzl:

kr =k,p +k,z; k= —j /—(k2 —k2) (4.2)

Selecting the expression for k, this way allows us to set it always with a negative imaginary
part, choosing the Riemann space for the solutions of the square root that will be adopted.

Integrating over the real axis of k,, if |k,| > k then k, will be imaginary. Expressing:
k, = —jb; e JkalZl = g~Dlzl (4.3)

the solution decreases exponentially as a function of z, thus it decays with the distance from

the reference system where the antenna is allocated at. That solution is precisely the reactive
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component of the field, whose effect is considered not negligible for small #. The field
component that does not attenuate (visible) is thus the one obtained cropping the integration at

k, =0 — k=, the non-visible component the one obtained extending the integration from
k, = k™ — oo. The attenuation of the reactive component depends on the observation point:

the more # — 0, and the more 6 — /2, which translates into z — 0, the weaker is the
attenuation. Thus, for observation points close to the source (near field region) and/or for
6 - m/2, the integrand function, which is in general constituted by highly oscillating
complex components, can be of extremely hard numerical evaluation. Appropriate techniques

have been implemented to overcome this hurdle.

IV.a) Spectral integral in cylindrical coordinates: closing it in a

To derive the whole integral expression for the field in the spectral domain, let us first

consider the spatial domain convolution:

Eraa () = G (F,7") * Jia () + G (7, 7) » iy () (4.4)
hraa(P) = G @7 * Jia @) + G F, ) i (71 (4.5)

Let us consider for now only the electric field given by the electric current

8rea® = W+ﬂHMH—JJ‘eW”Wd)ﬁ’ (4.6)

Expressing the spatial Green’s function as the Fourier anti-transform of its spectral

representation:

gim%>

o . . , 4.7
4nz j G (ky ky 2, 2")e TN =iy =y gmikale=21 gk,

=gz [ [ ]Gk a8)

e Ikx(x=x)o=iky(y=y") g=ikelz=2\ g e d ke, J,q (F)dF
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Jia) = Camp? X hine D x(F, @) (4.9)

After a few mathematical derivations that can be found in Appendix C one obtains the

following expression (from now on, since everything is evaluated in free space, k = ky):

_)EJd(r)
2n 1 B¢l > ” (=) ik (4.10)
N _@k_o.f J. DF (K ky, 2,2")ia(kp, a)e~ToP o@D Ilel ke dkdar
k§ — kjcos?a  —k}sinacosa —k,cosa(tk,)
ﬁfej(kx, ky,z,2') = | —kZsinacosa  k§ —kjsin®a  —k,sina(+k,) (4.11)
—kycosa(tk,) —k,sina(tk,) ki — k2
> 1. Jila k
Jia(kp, a) = = Epo(P)2ma? M (4.12)
¢ k,a

Where J; is the Bessel’s function of order 1 and so, once again, the whole fl-d(kp,a)
expression has the spectral signature of an Airy pattern, thanks to fact that the source
distribution is homogeneous over the whole circular cross section of the antenna domain.

Similar operations can be made for the electric field radiated by the magnetic source, leading

to the following expression:

rad(r)
o em N7 —jkyp cos(a—¢) ,—jk,|z| (4'13)
= 8n2 ™ (ky, ky, z,2" )My (k,, a)e™/%e e Ikl dk,da
0 tjk, —jk,sina
DEM(ky ky,z,2") = | Fik, 0 jkpcosa (4.14)
kysina  —jk,cosa 0
= R ak
Miq(k,,a) = —2 x Einc(?)Znazh(k—ap) (4.15)
0

The sum of the two contributions leads to:
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1 +o0 2T . N
é)rad(?) = FL L (Gf?s] (kx» ky; Z, Z,)]id(kp' a)

+ Gesm(kx, ky,z, Z')ﬁid (kp, a)) e Jkop Cos(a_¢)€_jk2|z|kpdkpda

(4.16)

Identical mathematical steps can be performed in order to define the radiated magnetic field:

N 1 +00 2T ~hi >
hmd(F)=4—n2 fo fo (Gfsj(kx,ky,z,z’)]l-d(kp,a)

+ é;l_s-m(kx, ky, Z'Z,)Mid(kp: a)) e_jkpp COS(a—¢)e—ij|Z|kpdkpda

(4.17)

The only thing that changes is the constants in front of the spectral Green’s functions. Here

they are all four listed:

ki —k?cos’a —k2sinacosa —k,cosa(+k,)
' ¢ p p P
Grl (ky, ky,2,2") = T —k3sinacosa ki —kisin®a —kpysina(tk,)| (4.18)
0%z —k,cosa(tk,) —k,sina(tk,) k3 — k2
3 i 0 tjk, —jk,sina
G (ke ky,2,2") = — T +jk, 0 jkpcosa (4.19)
“jkysina  —jk,cosa 0
_1 [k —kZcos>a —kZsinacosa —k,cosa(tk,)
Gfgn(kx, ky,zz') = T i —kjsinacosa  k§ —kjsin*a —kysina(+k,)| (4.20)
0%z —k,cosa(tk,) —k,sina(tk,) k2 — k2
N j 0 tjk, —jk,sina
thsj (kx' ky,z,z’) = +jk, 0 jkycosa (4.21)
“jkysina  —jk,cosa 0

Note that thanks to the fact that the Airy pattern does not depend on a the radiation integral

can be analytically closed in a, since the only dependence of the integrand function on this
variable is found in the dyads of G'f’;c(kx,ky,z,z’). This is extremely convenient, since the

numerical evaluation of the integral will be much faster (the integrand function is defined as a

function of a single complex variable, not two), effectively reducing the time a numerical
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software (Matlab was used for this work) needs to perform it. All the detailed derivations can

be found in Appendix E, while here are posted only the forms every one of the nine

components of the integrand function depends on a with and their analytical solutions:

21T ) 1 21 ]
CC = f cos? q e Jkppcos@=2) g4 — EJ (1 + cos(2a))e Jkppcos@=2) gy
0 0
2T ) 1 21 ]
SS = J. sin? q e Tkpp cosla=2) gy — Ef (1 — cos(2a))eTkpp cosla=2) gy
0 0
2w ] 1 2 ]
SC = f sina cosa e JkpP cos@=®) go — EJ sin(2a) e Fkep cos@=2)gq
0 0

21
C = f cosa e Tkopcos(a=2) 44
0

2T
S = j sina e~ TkpP cos(@=2) 44
0

The integral expressions at the right hand side have analytical results, with the form:

2T cos . cos
N —]kppcos(a—¢)d — -—N2 No k
| e @ =™ 2m 0 (N (k)

Where J; are the Bessel’s functions of order i. The results are:

CC=m (]O(kpp) —cos(29)J, (kpp))
SS=m (]O(kpp) + cos(29) J, (kpp))
SC=-m sin(Z(D)]z(kpp)

C = —j2m cos® J,(k,p)

§ = —j2n sin® J,(k,p)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
(4.31)
(4.32)

The Green’s function is a 3 X 3 matrix, and each of the radiated fields are two, electric and

magnetic, is given by the contribution of both the electric and magnetic source, which means

that the expression to close are 36 in total. All the expressions for every component of the
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electric field are reported in Appendix E; the other ones for the magnetic field differ only for

the constant of the Green’s functions.

IV.b) Deformation path

Closing the integral in @ means that the propagation of the field radiated by the ideal currents
is now defined by means of a spectral integration of complex argument k,; the function to be
integrated is composed by oscillating terms described through Bessel functions of various
order. The expression of the Bessel function is rather complicated, but its asymptotical
evaluation for large input arguments can be expressed as a sum of exponential functions that
depend on k,p. It is well known that thanks to the Euler’s formula one could express
exponential functions as the sum of sinusoidal functions; these functions’ value increases
extremely fast when the imaginary part of their argument becomes larger. The point is that
now it is clear that the integrand function is constituted by highly oscillating function of
complex argument. For this reason, the path one will perform the integration on has to be
chosen appropriately, otherwise the numerical evaluation of the expression would become
impossible.

First thing to consider is that the integrand function depends on:

N 1 ’
frad(F) x k_; k,=—j _(k(% - kg) (4.33)

Performing the integration, which depends now only on k,, we end up having a space of
solutions of k, that verify k, = 0, and that make the integrand function explode. That space
of solutions is called branch cut, and must be avoided in the integration path. The starting
point of the branch cut is precisely on the real axis and it is k, = k. Also, the path must not

be crossed: this is because we are dealing with a multivalued function (the square root), and
we have to choose to work with only one set of the positive or negative solutions it gives. If
the branch cut is crossed by the integration path the function changes (same absolute value but

opposite sign), and this makes its evaluation much more complicated [13].
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S’ Imik,}

:

Fig 4. 1) k,complex plane and branch cut of k, = 0

The deformation path used for this procedure introduces a new real variable x > 0 € Re. This

variable is used to define the integration path in k,, which is now expressed as:

x2

k, = x +gjxe 28 —jy; x=[0-+0); &y >0E€Re (4.34)
Thanks to the definition of (x,¢,y), there is now no solution such that k, = ko. The

differential has now to be changed in the integrand function due to the variables substitution.

It results:

x2

ok - x?
dk, = a—;dx =1+ gje %ko (1 — k_§> (4.35)

€ and y are two constants that can be modified to adjust the integration path to the
characteristics of the radiation problem. In this case they are € = 0.15,y = 0.2. Duetoy > 0
the path has been shifted towards the negative region of the imaginary axis of k,: this is
because the higher the imaginary part of Sm(kp) is, the more the integrand function tends to

explode, leading to an impossible numerical evaluation. This is clear when looking at the

exponential term:

e Jkpp = p—Jj(Re+jIm)p — o,—jRep pImp (4.36)
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el > o0 if Im1 (4.37)

The deformation path here applied is meant to avoid any kind of singularity, which in this

case is represented only by the branch cuts, and it is qualitatively depicted here on the k,

complex plane:

Imik,}

ave”

L Jelk)

Fig 4. 2) k,complex plane and branch cut of k, = 0 and deformation path

Sometimes, it can be helpful to express wave propagations phenomena in cylindrical
coordinates systems using a linear combination of Bessel’s functions of the first and second
kind. These linear combinations’ results are also known as Hankel’s functions. This
substitution can be applied by means of the following integral identity, which renders the
convergence, that sometimes can be extremely slow, of the integrand function faster thanks to

the integration path that now goes from —co to +co:

(o) 1 + oo
f Ji(kpp)kpdk, =5 f H® (k,p)k,dk, (4.38)
0

—00

Both the techniques have been used to test the accuracy of the Matlab scripts. They give the
same results in about the same computational time.

Finally, under certain conditions it is possible to mathematically derive the best possible path
to perform the integration on, the detailed steps are reported in Appendix F.
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IV.c) Near field Poynting vector: sphere enclosing the antenna

The Poynting vector theorem states that in absence of lossless (one of the initial hypothesis of
the ideal currents procedure was having a losses load-matched antenna indeed) the power
available to the antenna can be evaluated by means of the real part of the Poynting vector
flux, integrated on a whichever closed surface enclosing the antenna. Having already the
value of the available power, the near field procedure has been validated upon this info: both
the electric and the magnetic field were calculated over a sphere in the near field region,
specifically at r5,, = 1.5a Va, varying the antenna radius as a = 0.014 — 5A. The Poynting
vector has been evaluated in two ways: using the fields calculated stopping the spectral
integration at k, = ko, which means that only their visible component was accounted for, and
using the fields obtained performing the integration until the full convergence of the integrand
function, using the techniques before explained, retaining thus their whole spectrum. The
plots show that only one of the two operations, namely the Poynting vector obtained using the

field calculated by means of a full spectral integration, gives the correct results.

Available Power

. ‘—L'ir‘ni’ted integrétion ‘
—Full Spectral integration

107 10" 10°
aln

Fig 4. 3) Available power as a function of the antenna domain obtained integrating the Poynting vector flux over
a sphere in the near field of the antenna (r,, = 1.5a), using the electric and magnetic fields calculated either
by means of a full spectral integration or chopping the integration at k, = k,
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Fig 4. 4) Available power estimated integrating the Poynting vector flux over a sphere in the far field region.

IV.d) Near field Poynting vector: reaction integral on the antenna domain

The fact that retaining only the visible part of the near electric and the magnetic fields to
calculate the Poynting vector did not give the expected result was surprising, since it’s the
component of the fields that is used in the far field region to perform the same operation (it is
in fact the only existing component there). Thus, in order to have a confirmation of the results,
the available power in the near field region was calculated by means of a reaction integral
performed on the antenna domain, considering only the visible spectrum of the Poynting

vector. Starting from the Poynting theorem:

%Re{ﬂs(éx H*)-d§}+%wm‘/(u|ﬁ|2 +£lé12) dv
_ —%Re{UV(é-f*+ﬁ*-r7i)dV}

Hp: lossless antenna > %w I, (/,L|7z|2 + elélz) av =0 (4.40)
1 - > 1 -

—Re {H(éx h)- dS} = ——Re{ﬂ (é-7+h -rTi)dV} (4.41)
2 S 2 v

This is: the real part of the result obtained performing a reaction between the fields and the

(4.39)

sources integrated over the volume V must be equal to the real part of the integration of the

flux of the Poynting vector over whichever surface enclosing the antenna. The latter result is
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already available, thus, in order to verify what the definition of visible is the result of the
reaction integral must be compared to it.

In this case we have surface currents, thus the reaction is expressed as a surface integral
without any loss of meaning. The chosen surface where to perform the reaction over is a
cylinder, centered in the antenna domain. Then, its height has been shrunk until the flux
across the lateral surface was negligible: the surface for the integration becomes the antenna

cross section itself, where the currents are defined.

Fig 4. 5) Cylinder chosen as the surface where to perform the reaction integral; height progressively reduced to
obtain a negligible contribute from the lateral surface

Expressing the radiated field as the convolution between the spatial Green’s functions and the

sources, and the Green’s function as the anti-Fourier’s transform of its spectral representation:

2w a

1 * i —
Praa = =3 Re| | [ (60.) 5’ 0.6 + T (0.8) - Tia0. ) pidpig | (422
0 0

5(’0, ()b) = gej(p, p/, (,'b, ¢I) *fid(plr ¢’) + gem(p’ p,' ¢' ¢,) * T?lid(p" ¢,) (443)
H(p, ¢) = g’hm(p’ plr ¢r ¢,) * mid(plr ¢,) + ghj(p’ p,' ¢r ¢,) *]_)id(p,J ¢,) (444)

1 o ~ . oy . I
3.0, b, ¢") ] j j G (ky, ky )e Raxelkax’ g=TkyY oIkyY qle di,, (4.45)

After a few mathematical steps the following expression is found (for the detailed derivation

please refer to Appendix G):

pmd=—8L f( alkpa) | + (65 (ky, ))*>%|Ex(kp,a)lzkpdkpda (4.46)

o)
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Thanks to the fact that we are dealing with a uniform distribution of Huygens’ sources, which
once again are identified as an electric and a magnetic dipole one orthogonal to the other, the
mixed terms that emerge in Appendix G (the reaction between the magnetic current and the
magnetic field given by electric current, as well as the reaction between the electric current
and the electric field given by the magnetic current) cancel out. Moreover, please note that
due to the complex conjugate product we ended up having an expression with no exponential

dependence. This is fundamental and it will be evident proceeding with the derivation:

1 ® /1 2ki—k%\ 1 2
Praa = 5—Re { ]O (2—kok—zf’>z |E.(k,)| kpdkp} (4.47)
1 (1 2ki—k>3\ 1 2
oo k
P.qq = Re { f P(kp)dkp} = J OP(kp)dkp (4.49)
0 0

Having no exponential dependence implies in fact that considering only the real part of the
integral simply means performing the integration for k, = 0 — ko, which is the visible
spectrum of the Poynting vector in the near field region. We can see now that the result
predicted by this expression is precisely equal to the real part of the Poynting vector flux
when integrated over a sphere in the far field region and in the near field region, but using the

total electric and magnetic fields (not just their visible part).

Available Power
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Fig 4. 6) Available power as a function of the antenna domain predicted by the reaction integral.
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I\VV.€) Interpretation of the definition of “visible’

This is where one of the most significant results of this work emerges: it appears that the
definition of ‘visible’ is de facto applicable to power rather than to fields. The Poynting vector
evaluated in the near field region with the two methods gives of course different results: the
correct one, which is perfectly equal to the value estimated using the field in the far field
region and the reaction integral on the antenna domain, is the one obtained with the fields
calculated by means of a full spectral integration. It seems thus that the definition of visible,
which to my knowledge was used to describe the portion of the spectrum of the field that does
not attenuate while propagating from the antenna to the far field region, is then applicable to
the Poynting vector rather than to the fields themselves. The correct available power is in fact
obtained either integrating the flux of the Poynting vector that crosses a sphere in the far field
region, or integrating it over a sphere in the near field region using the fields calculated
through a full spectral integration, or performing a reaction integral over the antenna domain

cropping the integration at k, = k,: while the latter two methods do not use the visible

components of the fields, all of them retain only the visible part of the Poynting vector indeed.

Available Power

—Far Field Region
—Reaction Integral
—Visible Fields

2 —Total Fields

1 i | | i L |
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Fig 4. 7) Available power as a function of the antenna domain predicted by the four different methods:
comparison.
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IV.f) Near field Poynting vector comparison: Ideal Currents Vs Spherical Modes

It is interesting to have a comparison of the near field quantities estimated by the two
methods, to validate the implementation of the spectral techniques adopted. To do this the
Poynting vector was calculated with the two procedures in the near field region. Two antenna
dimension are examined: a = 0.51, a = 24. The absolute value and the direction of real part
of the Poynting vector are displayed on a sphere of radius r5,, = 1.5a. Please, note that the
scales on the colorbars relative to the results given by the two methods are different. We can
see that for the bigger antenna case the distribution is significantly different, and it reflects the
quantization error introduced by the spherical modes expansion: for an antenna of a = 21 it
indeed results N = ka = 4 = 12.56. Having a N value in the middle between two integers
is indeed the case with the highest uncertainty, since there is no rule that guides us in the
choice between N = 12 and N = 13. In this case N = 13 was chosen. On the other hand,
when a = 0.54 - N = = 3.16. In this case the exact value of N is much closer to its

integer approximation given by N = round (ka); however the results are still different:

4 3
x 10 x10 |
9
" 15, 2.5
M7 1 N,
6 05
] 15
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4
05 "
b3
i A 05
05 Nt
;7 o5 0 2 1 ‘
Ideal Currents Spherical Modes

Fig 4. 8) Real part of the Poynting vector (colorbar expressed in [W]) on a sphere of radius a = 1.54 having
a = 0.54 enclosing the antenna: Fig 4.8a) Estimated by the Ideal Currents method; Fig 4.8b) Estimated by the
Spherical Modes expansion
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Fig 4. 9) Real part of the Poynting vector (colorbar expressed in [W]) on a sphere of radius a = 1.54 having
a = 24 enclosing the antenna: Fig 4.9a) Estimated by the Ideal Currents method; Fig 4.9b) Estimated by the

Spherical Modes expansion

Moreover, note how the directivity of the antenna changes between the two procedures and

when varying its electrical length.
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As far as most of the real case are concerned, the incident field cannot be approximated by a
single incident plane wave. Assuming once again that the sources are located at large distance
from the reference system, which is centered on the antenna domain, the field can be then
expressed as a continuous superposition of plane waves, since Maxwell’s equations obey the
principle of the superposition of the effects. The final aim of the whole description is to define
the power that given an incident field the antenna can absorb, but it is not possible to define
an available power for every single plane wave incidence and then simply sum each one of
them up. Indeed, the difference with respect to the single plane wave incidence case is that
now the relative phase of the plane waves must be taken into account, given the fact that
depending on it they can give rise to either constructive or destructive interference. To give a
brief and intuitive example, given two equal plane wave impinging from symmetrical
directions (6,1 = Oin2, Pin1 = Pin2 —m) one would be tempted to define an available
power for each one of them, that would be in this case the same, following the procedure
defined chapter IV or V; then one would sum them, obtaining a power that will be twice as
much. This would lead to huge mistakes though. The electromagnetic fields in general interact
with each other, and the available power changes depending on the kind of the interference
they establish: it would be zero with a perfect destructive interference, while, in case of
constructive interference, it would be four times the power given by a single plane wave.
What must be done is to evaluate the total incident field accounting for the relative phase of
each plane wave used to describe it, define its observable component and then estimate the
available power. As already introduced in chapter I1.d, this is not something that is achievable
by the heuristic formula, since what it would do is precisely a sum of the powers regardless of

the relative phase, which is wrong.

V.a) Observable field definition in case of two incident plane waves

Under the assumptions just listed the expression for the total incident field is then:
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é)inc (7_2)

2m T
= f f Ein (Hin; ¢in)e—jkr(sin@incos¢incos(¢in—d>)+c059incos®) Sineindgind¢in (5.1)
0 0

In order to define the observable component of the incident field the procedure is a straight
forward extension to the one used for the single plane wave incidence case. For each plane
wave impinging on the reference system a squinted reference system orthogonal to its
direction of propagation is defined, the ideal currents are calculated, and their radiation, which
is equal and opposite to the outward component of the observable field, is estimated; then the
total field, evaluated accounting for the relative phase, is referred to the main reference
system; finally, all the fields with their relative phases are summed up (for the derivation refer
to Appendix H). For sake of simplicity, only two waves incoming from symmetrical
directions (01 = Oinz =0, Pin1 = P, Pin, = ¢ + m) are taken into account. The ideal
currents are of course the PO ones multiplied by the amplification factor Cg,,,, Which is
defined for every plane wave and is in general different for each one; however, in the case of
two equal plane waves incoming from symmetrical directions the effective area is the same,
and so is Cymp,. Once the procedure is properly defined, the extension to a whichever number

of plane waves is immediate. A qualitative sketch of the process is the following:

Fig 5. 1) Incoming plane waves and domain where the antenna will be allocated at; Fig 5.1b) squinted domains
relative to each plane wave and their ideal radiated field
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AR

FoooX

Fig 5. 2) Ideal radiated field in case of multiple impinging plane waves: final configuration with total radiated
field.

Once the total field scattered by the ideal currents is evaluated, the calculation of the available
power is immediate: it simply is the integration of the real part of the Poynting vector flux
over a sphere in the far field region.

Eitoal (Too) = —E5ps" (7e0)

2 T IR e—jkroo
= Camp J f vyt (a, k™, k) sinﬁmdﬁmdamr— (5.2)
0 0

o)

- 2

2T T 2T T
1 _ .- , , ,
Pava = 3 j j Camp J j S5t (a, P, k)sinpmdp™da™| sinfdod¢  (5.3)
0 0 0 0

However, before calculating the available power, the ideal scattered field needs to be

analyzed.
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V.b) Far field region beams splitting

As it was already showed in the previous chapters the larger the antenna is in terms of
wavelength, the more directive the far field pattern is. This applies also to the multiple plane
waves incidence case: the fields radiated by each set of currents on the squinted reference
systems will be summed, and the directivity of the total field pattern depends on the antenna
electrical length. It is apparent that in the case of two plane waves impinging on a directive
antenna from different directions a beam splitting phenomenon will be observed: the main
lobe of one of the two scattered field will be summed up with the side lobes of the other one.
The more directive the antenna, the more evident this effect. The following plot highlights
this aspect: keeping the incident angle constant and varying the antenna dimension one sees
that in case of relatively small antennas the directivity is not enough to give rise to two
distinct main lobes, while these become more and more visible increasing the antenna
dimension. The plot is a cut on the E-plane for 6 = [0 — n], ¢ = 0, and it is symmetrical for
6 = [-m — 0]; the two plane waves are incoming from 6, 1 = 6;,, = 165°, ¢;,; = 0°,
¢in2 = 180°. For the largest antenna a = 54 the beam peak occurs almost at 15°, the angle
of incident referred to the negative part of the z axis, which means that the main and the side
lobes have a really weak interaction due to the high directivity (most of the power is
concentrated around the angle of incidence, so that the side lobes present where the other

scattered field’s main lobe is have a really small amplitude).
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—a = lambda '
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Fig 5. 3) Multiple impinging plane waves: far field pattern plotted for a constant angle of incidence (8, ; =
0,2 = 165°, ¢, 1 = 0°, ¢, = 180°) varying the antenna electrical length. Electrical field normalized to its
maximum amplitude plotted on the E-plane for8 = [0 > 7], ¢ =0
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V.c) Far field patterns comparison: Ideal Currents Vs Spherical Modes

In order to assess whether or not the ideal currents procedure has a scientific dignity the far
field pattern has been compared to the one predicted by the spherical modes for different
antennae, different angles of incidence and for constructive or destructive interference at the
center of the antenna itself.

Three antennae are analyzed (a = 0.014,a = A,a = 54); field scanned on the E-plane
(p = 0,0 = —m - m). The fields are expressed in dB and superposed one on top of the other.
Since the two plane waves are incoming from symmetrical angles their relative phase i gives
rise to a perfect destructive interference when it isy =0, and to a perfect constructive
interference if Y = m: this is because the projections along x of the electric field component
of the incident waves become either equal (y = ), determining a perfect summation, or
opposite (3 = 0), causing the two fields to cancel out. The perfect destructive interference
determines a null for & = 0. Note that for the small antenna (a = 0.014), in the case of a
perfect constructive interference (y» = m), we basically have the coherent summation of the
patterns radiated by two Huygens’ sources; since the Huygens’ source far field pattern has a
single null for 8 = & — 6;,, that null is now disappeared: it is summed to the radiation of the
field scattered by the currents induced by the other incident plane wave. When the antennae
are small or large in terms of wavelength the two procedures give the same result for the value
of the broadside radiation, thus for these two cases (a = 0.014,a = 51) the patterns are
normalized to their maximum value, which is the same; however, this is not the valid for the
medium antenna. The results given by the spherical modes are always plotted with a red line,
while the ones given by the ideal currents with a blue line. We can see that for the small
antenna the results are perfectly superposed, while for the large antenna there is a really good
agreement down to —20dB. Increasing the radius of the antenna even more would lead to a
better agreement for the far field patterns. For the medium antenna instead, the results are
different, and the absolute value (with no normalization) is plotted. Note that for the most
directive antenna case (a = 51) the scan is interrupted before & = +m, since no value of

either the pattern is higher than —30dB after that threshold. The input data are |Epy | =
1V\m, r,ps = 30004, 1 =1m.
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Spherical modes Vs ideal currents
T T T T

E/E, 1y [4B]
o>

250 |
_§?00 -150 -100 -50 0 50 100 150 200
0 [deg]
spherical modes Vs ideal currents
0 T T T T
20 i
= 4 1
z
mz
m o |
-8
'18 | 1 1 | 1 | |
-Z200 -150 -100 -50 1] 50 100 150 200

0 [deg]

Fig 5. 4) Far field pattern plotted for a constant angle of incidence (8,1 = 0,2 = 120°, ¢y 1 = 0°, @y =
180°), antenna dimension a = 0.01A. Electrical field normalized to its maximum amplitude. Blue line: Ideal
Currents; red line: Spherical Modes; Fig 5.4a) ¥ = 0; Fig5.4b) Yy =&
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Fig 5. 5) Far field pattern plotted for a constant angle of incidence (6;,1 = 0> = 165°, ¢y = 0° @i =
180°), antenna dimension a = A. Blue line: Ideal Currents; red line: Spherical Modes; Fig 5.5a) i = 0;
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Spherical Modes VS Ideal Currents
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Fig 5. 6) Far field pattern plotted for a constant angle of incidence (6;,1 = 6;, = 175° ¢in1 = 0° P2 =
180°), antenna dimension a = 5A. Electrical field normalized to its maximum amplitude. Blue line: Ideal
Currents; red line: Spherical Modes; Fig 5.6a) ¥ = 0; Fig 5.6b) v =&
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V.d) Available power as a function of the antenna electrical length

The power available to the antenna, evaluated retaining the flux of the real part of the
Poynting vector over a sphere in the far field region, has been calculated as a function of its
electrical length for two incoming plane waves, three different set of incident angles, and for
the two cases of perfect constructive or destructive interference at the antenna center.

2T T 21 2

T

1 - - . , .

Pava = Z_Cf j- Campf j- ﬁgtw(a, f'ln, k)Sl'Tlﬁmdﬁmda’m Siﬂ,@d@d(]_’)
(V] 0 0

2w T
1 rid 2 2 .
= 2( |Escat(roo, @; ¢)| TooSln@d@d<D (54)
0 0

The result is normalized to the power available to the same antenna in case of a single plane
wave incoming form broadside. When the antenna is electrically small the power tends to stay
constant for both the interference cases (in-phase or anti-phase); this is due to the fact that the
directivity is still low, and the antenna is not able to discern properly the two different patterns
given by each of the two incident plane waves. The more the antenna dimension is increased,
the more it is able to resolve the two different main lobes, giving rise to beam splitting effects.
For small antennas, when the two incoming plane waves give rise to a perfect constructive
interference, the power tends to be four times as much the power absorbed from a single plane
wave: indeed, the two fields sum up coherently, the total field is thus twice as much, and the
power is proportional to its squared value; instead, in the case of a destructive interference the
power tends to be zero, since the two incoming plane waves tend to cancel each other. When
the angle of incidence referred to the negative part of the z axis increases, the power absorbed
by electrically small antennae in case of constructive interference becomes less than four,
while the power absorbed in case of destructive interference increases. This is because
increasing the 6;,,. can be seen as a rotation of the far field pattern generated by each plane
wave; thus, the two do not sum up (neither they cancel out) in the direction of maximum
amplitude. For electrically large antennas, regardless whether the interference is constructive
or destructive, and regardless of the angle of incidence, the available power asymptotically
tends to be twice as much the power given by a single plane wave. This result is extremely
interesting: the interaction between the two ideal scattered fields is so low that they seem to

sum up incoherently, that is equivalent to summing the power given by each one of the two in
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absence of the other. Finally, note that the sum of the powers given by the two interference
cases is always four: the validation is immediate simply applying the principle of the

superposition of the effects, for the cases of constructive and destructive interference.
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Fig 5. 7) Available power for two incident plane waves plotted as a function of the antenna electrical length and
normalized to the power given by the single plane wave incidence case 6, ; = 0;,, = 175°;
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Fig 5. 8) Available power for two incident plane waves plotted as a function of the antenna electrical length and
normalized to the power given by the single plane wave incidence case 6;,, ; = 6;,, = 165°
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Fig 5. 9) Available power for two incident plane waves plotted as a function of the antenna electrical length and
normalized to the power given by the single plane wave incidence case. 8,1 = 0;,, = 125°

One of the previous cases, namely for 8;, ; = 8;,, = 165°, has been used to compare the
Ideal Currents method and the Spherical Modes one. The difference between the two
procedures is now even more evident than when opposed to the single plane wave incidence
case, and the uncertainty introduced by the quantization process increases. Note that for
antenna of radius around a = A the difference is significant: looking at Fig 5.4a, Fig5.4b this

is the region where the far field patterns diverged most.
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Fig 5. 10) Available power for two incident plane waves plotted as a function of the antenna electrical length and
normalized to the power given by the single plane wave incidence case. 8, , = 0, , = 165°. Ideal Currents
versus Spherical Modes.
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V.e) Available power as a function of the incident angle

The available power is now presented as a function of the angle of incidence of the incoming
plane waves, namely 6;,,; = 6;,, = [180° - 90°] (or 0° - 90° when referred to the
negative part of the z axis), for both the cases of perfect constructive and destructive
interference at the center of the antenna (in phase or in anti-phase). Three different antennae
are analyzed: a = 0.011,a = A,a = 5A. The power is normalized to the one evaluated for the
single pane wave incidence case, as before. When 6,,, = 180° the power is obviously either
four times as much or zero, since the fields either perfectly sum up or cancel out each other.
When instead 8;,, — 90° another interesting result emerges: the value of the available power
tends once again to be twice as much the one given by a single plane wave incoming from
broadside, for both the interference cases. This is because when 6;, = 90° the two plane
waves are travelling towards the center of the reference system from exactly opposite
directions; if this is the case either one of these two conditions verifies: if the two plane waves
are in phase the electric fields sum up while the magnetic fields cancel out, while if they are
out of phase the two electric fields cancel out and the magnetic fields add up. As before, it is
like the two ideal scattered fields are incoherent, and their power can be summed up

independently on from the other.
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Fig 5. 11) Available power for two incident plane waves plotted as a function of the plane waves incident angle
and normalized to the power given by the single plane wave incidence case. a = 0.014
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Fig 5. 12) Available power for two incident plane waves plotted as a function of the plane waves incident angle
and normalized to the power given by the single plane wave incidence case. a = 4
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Fig 5. 13) Available power for two incident plane waves plotted as a function of the plane waves incident angle
and normalized to the power given by the single plane wave incidence case. a = 54

The biggest differences between the fields estimated by the Ideal Currents method and the
Spherical Modes expansion were seen for antennae of radii in the order of a = 4; thus, for
this case a comparison between the two techniques is showed. Note that the quantization
effect here is not present, since it depends on N = ka, and a is now a fixed parameter.
However, the curves relative to the spherical modes expansion are calculate with N =
round(ka) = round(2m) = 6, and the fact that the choice of N is arbitrary has to be
stressed again (one could have chosen N + 1 = 7 modes and the results would have had the

same dignity).
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V) MULTIPLE IMPINGING PLANE WAVES
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Fig 5. 14) Available power for two incident plane waves plotted as a function of the plane waves incident angle

and normalized to the power given by the single plane wave incidence case. Comparison between spherical
modes and ideal currents.
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VI) CONCLUSIONS

Implicit in the cornerstone article [9] was the definition of the fraction of the incident field
able to interact with a generic antenna enclosed in a sphere of radius a. Inspired by it, the
novel proposal introduced by this work is to express the incident field as the sum of two
distinct components: an ‘Observable field’, which corresponds to the incident field
component the antenna can absorb, and a remaining field, which is substantially zero in the
antenna domain. Moreover, the observable field is represented as the sum of two propagating
waves: an inward component, that converges towards the antenna domain, and an outward
component, that diverges from it. This definition is particularly useful to understand the
reception mechanism: the ideal antenna is now considered to be that device absorbing the
whole inward propagating component, transforming it into guided waves, and scattering a
field that cancels out the outward propagating one. The observable field is identified either as
the Lower Order (LO) mode component, by the spherical modes expansion, or as the field
whose outward propagating component is equal and opposite to the one radiated by the Ideal
Currents. The available power will be associated to the inward component of the observable
field.

In order to verify the scientific dignity of the Ideal Currents procedure, the results it predicts
have been systematically compared, and then extensively discussed, to the ones given by the
Spherical Modes expansion. Both the procedure involve a truncation: spatial truncation
around the antenna domain for what concerns the ideal currents, modes truncation based on
the antenna domain due to the spherical modes expansion. The available power, expressed in
terms of effective area, was taken as the quality parameter to assess whether the procedure
was useful: for large and small antennas in terms of wavelength, given a plane wave
impinging from broadside, the spherical modes and the ideal currents predict the same values;
for the intermediate region, the results are always comparable even if different, but the ideal
currents method results are continuous, fact that seems to have solved the quantization error
introduced by the modes truncation; moreover, the curve obtained thanks to this work is close
to the one given by the heuristic formula. Of course, the estimated available power will have
to be compared to real measurements.

Finally, differently from any heuristic formulation that does not account for the relative phase,
the procedure has been extended to more generalized cases where the incident field can be

approximated as a summation of plane waves. The results have been compared with the



Vi) CONCLUSIONS

spherical modes technique and then discussed: they are always comparable, although the
curves obtained by means of the ideal current technique do not show the controversial
quantized behavior belonging to the spherical expansion.

The ideal currents method will be used in the future for the analysis and the design of
focusing systems and feeding structures for focal plane arrays.
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Appendix A

This appendix defines the procedure used to derive the expression for the Ideal Currents, their
radiation, and its asymptotical evaluation in the far field region. Let us assume to have a plane

wave propagating in z with the electric field polarized along 8:
éinc (F) = E)inceﬁcif (Al)

Define a set of sources induced by the impinging field on a plane orthogonal to the plane

wave propagation direction (z = 0):

TTieq (F’) =ZX é)inc(?) (AZ)

- >y A 7 —> A 1 ~ - -
Jeq r')=-2x hinc(r) =—-zX (z kinc X einc(r)> (A3)

This set of currents will scatter the incident field, what we need is a field that is equal and
opposite its observable component: the Ideal Current will have opposite sign.

Apply the spatial truncation: the ideal currents are defined by means of the PO approximation
only on the antenna domain x, and amplified by a constant factor that depends on the effective

area and whose value is explained in Appendix G:

mid (FI) =—-ZX éinc(?))((?,r a)Camp (A4)
- -7 A 1 T - - >
Jid (T ) =zX Ekinc X einc(r) )((T ,a)Camp (A5)
x@,a)=[p ' =0+a;¢' =0+ 2m] (A6)

The far field radiation of this set of currents can be described as the sum of an inward and an
outward propagating component. The ideal antenna is that device that absorbs the whole

inward component scattering a field that cancels out the outward propagating one.

a r2r
€raa(?) = f f (37, 7)Jia(F) + g @7 )M ()] dF (A7)
0 Y0
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a 27
hraa(F) = f f (g™ 7)Jia ) + gV 7)) ]dF
0 Y0

(A8)

Let us consider only the electric field (the procedure to calculate the magnetic field will be

equivalent). Starting from the magnetic and electric vector potentials it is possible to

demonstrate that:

810 = —joou fff G, i) jff G (7, 7t () 7

e

3 7 3 , _
Ge(, ") = (1 ——2> @ 7); GM@ P = Vg i) x

e~ JKR
g(r,r)=4n—R; = |F =7
Since:
- o 1 e_JkR A
Vg(#,v") = — (E—Hk) o R
In the far field R > A:
- 1 e JkR _ e JkR
Pg@ ) =—(=+j)k R=~—jk R
9@7) (kR+]) 4R I 4R
V ~—jkR; VV=—k?RR

this means that:

Ge#7)=(I—-RR)g#7); G™GF7)=—jkgF?IRxI

Graa = K¢ | j (7 = RR) g, #)jia )7

+jk J j j R x [g(F 7).y () d7
%4

(A9)

(A10)

(Al1)

(A12)

(A13)

(Al4)

(A15)

(A16)

Also, in the far field, where the vector 7 — 7' represents the distance from the source to the

observation point, the two vectors 7,7’ can be considered parallel. Mathematically this is:
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R=|7=7"1;, 7>7

277 r'?
R=\/(7—?')(7—?’)=\/r2—27777’+r’2=r\/1— —+—
r2 o r

using Taylor’s expansion to the first order

277 2 o .
R=x=r 1—T+—+--- =r—7r7 |Rl->r, R->7

This leads to:
—]k|r 7|
€raa () = —jk((I — 71) ﬂ] Jld(F') ldr + jkt
—]k|r 7 |
qumdﬂ@m 74
6raa(®) = [—ﬂczu -0 | f e+ jler
—]kr
jk?'#
% Iﬂ Mia(7)e d7 l 4mr
Eventually:

—jkr —]kr

raa® = jk [~ = P90 a(K) + 7 X Mg (k)| 5 = Eraa ()

4tr

- k ~ = — = —
Braa(?) = 5[40 = #9)]a(R) + 7 x Mg (K)]

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

Note that this expression underlines the fact the electric field, and so is the magnetic field, is

transversely polarized with respect to the direction of propagation of the field. Now, the

Fourier’s transform of the sources needs to be calculated. First of all, if the plane wave is

coming from 6,,. = 0 Velw — k;,. = +2, and some approximations can be done applying

Ax (BxC) = (AC)B — (AB)C:
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- >/ 1 = -
Jid (') = _EEinc(r) (A24)
? 7 > oy ikl $ 1= 1. = k7' 321
Jia(k) = ﬂha(f )e T AT = —Camy EEinc(r) er_]kr o (A25)
S S
k7' = k(sinOcos®% + sinOsindy + cos@2)p' (cos®'% + sind'9) (A26)
= ksin@p'cos(® — @")
N a p2m e a p21 o , ,
FT(k) =f j ek ds =f J g Jksindp’ cos(@-a )p'dp’d(p’ (A27)
0o Jo 0o Jo
- a, ksin®
FT(k) = FT(ksin8,a) = 27ta2]1(—) (A28)

kasinf

Where J; is the Bessel’s function of order 1, and the whole Fourier’s transform is nothing

else but the Airy pattern. For the magnetic source the calculation is precisely the same.

=2, 1 — —
J(k) = ~Camp 7 EinclAiry ()} (A29)
M(K) = —Camp? X Epmc{Airy(R)) (A30)
Substituting in (A23):
L jk oo . .
Erad(®) = Camp 7 {Airy (k) ((1 — #7)Eype — F X (£ X Emc)) (A31)
. ik . .
Eraa®) = Camp g {Airy (1)} (7 % (Eune X G+ 2))) (A32)

The radiation can be more compactly expressed as in (3.20), (3.21).

62 | The Observable Field



Appendix B

This appendix shows how to calculate the antenna effective area, parameter used to estimate
the scattered power by the ideal currents. To calculate that we resort first to the time average

Poynting vector:

Suse () = 5 Re(Eraa(P) X Fraa ) 81

The Poynting vector is calculated on a sphere located in the far field region, enclosing the
antenna and centered in the adopted reference system. We need to calculate the radiation

intensity, defined as ‘the power radiated from an antenna per unit solid angle’

r? o - r?
U(O,P) =12Sye = 7Re{€oo(7”) X hoo(r)*} = 2 ENCE2IE (B2)

Performing a surface integration of §ave would give the total radiated power (integration over
any surface enclosing the antenna), so multiplying the Poynting vector by the radius squared

we obtain the power density expressed per unitary solid angles.

2T T 2T T
Proag = f f Ue,e)dn =f f U, ®)sinO0dOdd (B3)
0 0 0 0

Considering that the average radiated power per unit solid angle is simply the total radiated

power divided by the total solid angle, it is immediate to verify that the directivity is:

Uue, o)
Prad

a1

D(O,®) = (B4)

Now the maximum effective area of any antenna is related to its maximum directivity

through:
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/12

Aeff = EDMax (B5)
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Appendix C

This appendix explains how to express the field using the spectral representation of the
Green’s function and then how to perform an asymptotical evaluation of the radiation in the
far field region. Since the further the observation point, the faster the integrand function
oscillates (due to its exponential dependence), its numerical evaluation becomes harder and
harder to perform. To overcome this problem it is possible to consider the behavior of the
function in the far field (r > 2D?%/21), that will lead to an expression which is equivalent to
(A32). In order to do this we resort to a change of variable to perform an asymptotical
evaluation of the far field. The variable change expresses the integrand function as function of
(k,, B, @), instead of (k,, ky, k,); Note that both (k,, 3, a) are in general complex quantities.
Let us first define the radiated electric field using the convolution integral between the spatial

Green’s functions and the sources (the same steps apply for what concerns the magnetic
field):

Eraa () = G (F,7) * Jia () + G (7, 7) * 1y () (C1)

Eraa(®) = ff PRI TG R A G M G I (C2)
SI

Now, let us express the spatial Green’s function the relates the electric source to the electric
field as the 2D anti-Fourier transform of its spectral representation (once again, the derivation

is the same for the other components), and then substitute it in (C2):

) 1 +oo rtoo ( )
go @, v =—f f GeI(ky ky, 2z, 2'
4 ) o ) o Y (C3)

e ikx(xx) gmiky(r=Y") gmikalz~2!l g dk,

1 (*t® e _ .
€rqqa(7) = ﬂ —f J Gk, ky, z 2
ad 5’477'-2 -0 J-oo (x Y ) (C4)

e helxx) g =ity =y gikalz=2'| qle dle g (P!

The integral can be expressed as:
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1 too oo oy
grad(F) = mf_oo f_oo <fL,]—>id(1;>r)e]kxx elkyy dT") -

. o
< G (ky, key, 2, 2" e Thxx e~ TkyY g=ikalz=2" |k dk,

]2(75) = ff Jia (@) el eTkyY’ dy! (C6)
S’

It is easy to recognize now the Fourier transform of the current distribution. Let us assume

that the source is located at z' = 0, the expression turns into:
1 +o +oo ~ =,- . , .
éraa() = 7 f_ f_ G (ky, ky, z, 2 )] (K)e ety e=ikalZl gk dk,  (CT)

For this work’s configuration, the source are radiating in free space, and the Green’s function
accounts for it. Adding the magnetic source contribution, and expressing everything in a

cylindrical coordinates system:

1

+oo0 (2T . >
raa® =gz [ | (072, 2) O 0)
(C8)

+ G?;”(kx, ky,z, Z’)ﬁm (kp, a)) e~ Jkop COS(“‘¢)e‘jkz|Z|kpdkpda

Now, analyzing for the sake of simplicity only the electric field radiated by the electric

current,:
érad(F)
1 oo r2m ~ej Y —jkyp cos(a—¢) ,—jk,|z| (C9)
:4_7r2f0 fo Gys (kx ey, 2,2 )ia(Kp, a)e™H0P e/ kpdkyda
G*ej knsi _ ( ~ej k
s (Kosinp, a) = _TokszS( p,a) (C10)
The chosen change of variable is the following:
k, = kosinp (C11)
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k, = \/kg — k2 = \/ké — k& sin2 B = +kycosp (C12)
The dyad of this spectral Green’s function (4.11) becomes:

D7l (k@)

k% — k2 sin? B cos? a —k2 sin? B sinacosa  —kgsinfcosa(tkycosp) (C13)
=| —k3sin? B sinacosa k¢ — k3sin? fsin?a  —kgsinfsina(+kqcosp)
—kysinBcosa(+kocosp) —kysinBsina(+kocosp) ki sin? f — kicos?

The differential turns into:

dk,

BT dﬁ kocospdp (C14)

Substituting (C4), (C5), (C6) in (C2):

€raa(F) = _@k_oj j kOCO B fs (kosmﬁ a)]a(k) (C15)

. @~ Jkosinp rsin® cos(a—®) e—}koTCOSﬁ|005@|kgsinﬁcosﬁdadﬁ

21
I f [ e O Chosin, 0] () 19

. @ ~Jkor(sinp sin® cos(a—P)+cosp|cos6|) kgsinﬁcosﬁdad,b’

When evaluating the radiation at large distance from the source this integrand function
oscillates really fast. However, it presents much slowly varying points as a function of 9, ¢
(saddle points) that will determine the final result (the integration of the remaining part will
give zero, since it adds and subtract continuously really close quantities). Looking into the

exponential dependence one derives the first saddle point:

0
EP (sinp sin® cos(a — ®) + cosPB|cosO|) =0 (C17)

0
g(sinﬁ sin® cos(a — ®) + cosB|cosO|) = —sinf sin@ sin(a — ®) =0 (C18)
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a;,=Nm+ @ (C19)

The saddle points are numerically periodical, but the result they represent is not always
physical. Indeed, we have to describe the propagation of waves, and we’re doing it using a
spherical coordinates system. This system is defined for ® = [0 —» 7], ® = [0 — 2m]. This
means that also the saddle points we’re going to evaluate the field at will have to respect these
boundaries. Also, for every observation point we perform an integration in (8, a), which are
defined in a spherical coordinate system as well. Moreover, they have to satisfy the domain

where the integrand function is defined:
[)’E(O—>EVE—>n)aE(0—>2n) (C20)
2 2 '

Thus, the for the two hemisphere (z < 0,z > 0) there is only one possible saddle point for «,

and it is:
a=® (for N =0) (C21)

Also, the choice of the N is independent on the observation hemisphere, that depends only on
6. Now, from Balanis, Advanced Engineering Electromagnetics (pag. 963), we know that
evaluating a function in its saddle points along a complex integration path leads to the

following expression:

’ 21
I(ﬁ) = LF(Z)QB]C( )dZ = WF(Zs)eﬁf( s) (C22)

let’s split the integration for the upper and bottom plane.

Positive root:
T
ky = +kocosp - (2> 0,6 < =) (C23)

2

the a saddle point is ag = @. Integrating along da first it is apparent that:
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F(z) = Fecosp Efesj (kosing, a)fa (kosinf, a)kEsinfcosf (C24)
eBF(2) — p=jkor(sinB sin® cos(a—®)+cosp|cosol) (C25)

B = kor (C26)

f(z) = —j(sinB sin® cos(a — ®) + cosB|cosO|) (C27)
f(z;) = —j(sinBsin® + cosB|cosO|) (C28)

f"(z) = —j(—sinB sin® cos(a — P)) (C29)

f"(zs) = jsinp sin® (C30)

Thus:

T
1 ¢ (2 2 ~ej
- 4 ~ - D ] [ )
€rad () 872 ko o \/_jkorsinﬁsin@ fs (kOSlnﬁ aS) (C31)

. fa (kosinﬁ, as) e—jkor(cosﬁlcosel+sinBsin@) (kosinﬂ)dﬂ

3
1 ¢ (2 ’ 2 i
- - - ___ > D ] B
erad(r) 872 kojo —jrsin@ fs (kOSlTlﬁ, as) (C32)

; ]ja (kosinﬁ, as) e —Jkor(cosp |cos@|+sinfsine) (\W)dﬁ

This expression highlights the second saddle point:

9]
T (cosB|cosO| + sinfisin®) = 0 (C33)
In this half space (z — z. > 0) we can remove the modulus (6 > /2 = cos® > 0). This

way we obtain:

%(cosﬁlcos@l + sinfBsin®) = %(korcos(ﬁ —0)) = —korsin(B—0) =0 (C34)

Bs =Nt + 0 (C35)

Now again, since the saddle point must agree with the integral variables boundaries we chose

(B € [0,7/2]) and since in this hemisphere @ € [0, /2] the only possible choice is:
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Bs =0

21
— (2) ~ R (z5)
1(B) = ch(z)eﬁf dz ~ ’—ﬁf"(Zs) F(z)ePrf

F(z) = Efesj (kosing, as)fa (kosinB, ag)+/kosinf

e,Bf(z) — e—jkor(cosﬁ|cos@|+sinﬂsin0)
f(z) = —jko(cosB|cosO| + sinfsin®)
f(zs) = —jky(cosO@|cos@O| + sinOsin@)

sincez —z, > 0 — |cos®| = cosO

f(Zs) = _jkO
f""(z) = —jko(—cospB|cosO| — sinBsin®)
f'"(z5) = —jko(—cosO@|cosO| — sinOsind)

sincez —z, > 0 — |cos®| = cosO

f"(zs) = jko
so from:
T
. R 1 ¢ (2 2T )
€raa() = _@k_f Tirsind Ds (kosinp, as)
0J0
']:)a(kOSl'Tl,B, as) e—jkor(cosmcos@|+sinﬁsin@)mdﬁ
we obtain:
érad(F)

—jrsin®

1 ¢ 21 2 i 3 _ .
== 8772 k_oj \/_]'kor D;SJ (kOSln.Bs' as)]a(kOSln.Bs' as)\/ kOSlnﬁse Jieor

1 {2m |sinfs —; ) 2 . ikgr
= - 8772 k— r jzsinO Dfs (kOSlnﬁs: as)]a(kOSlnﬁs' as)e 0
0
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(C38)

(C39)
(C40)
(C41)

(C42)
(C43)
(C44)

(C45)

(C46)

(C47)
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- - . Z ~ej . 2 . _jkOT
€rad ) = ] k_O D]fs] (kOSlnﬁs» as)]a (kOSlnﬁs' as) -
(C48)
~pi 2 ~Jkor
= —jk, Gfesj (kosinBs, as)fq(kosinfs, ay) T
Negative root:
[
ky = —kocosp - (2 < 0,0 > E) (C49)
Y
€rqallr) = 8n2ko ), |, Tocosp s oSing, a ©50)
_fa(E)e—jkor(sinﬁ sin® cos(a—®)+cosPB|coso|) kgsinﬁcosﬁdadﬁ
First saddle point:
0
EP (sinf sin® cos(a — ®) + cosB|cosO|) =0 (C51)

d
e (sinp sin® cos(a — @) + cosP|cosO|) = —sinp sin® sin(a — ®) = 0 (C52)

a;=Nmn+ @ (C53)

We are observing a wave propagating in z < 0, but remember the domain we are integrating

the function in is:
ag =@ (C54)

The first integration result is already known:

T
1 ¢ (2 ’ 2y
- —> ~___ > —D ] .
erad(r) 872 kO-[(; —jT'SiTl@ fs (ROSlnﬁ' as) (C55)

'fa (kosinﬁ, as) e ~Jkor(sinB sin®+cosp|cosol) ’kosinﬁdﬁ

This expression highlights the second saddle point:
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9]
5 —jkor(cosp|cosO| + sinfsin®)) = 0

Since:

z—2,<0 - |cos®| = —cosO
o I
P ((cosB|cosO| + sinfsin@)) = 35 (cos(B +6))

g 0)) = si 0)=0
—%(cos(,8+ )) =sin(B + 6) =

ps = Nt — 0
Again, the only possible choice of the saddle point is:
ps=m—06

B € [0, /2] indeed, and in this hemisphere @ € [r/2,]. Now, again:

21
1) = JCF(Z)eﬁf( ddz ~ ’mp(zs)eﬁf( s)

F(2) = Dl (kosing, as)f (kosing, as)\kosinB
eBf(zs) — p—Jkor(sin sin@+cosplcosol)
B = kor
f(z) = —j(sinf sin® + cosf|cosO|)
f"(z) = —jko(—cosB|cosO| — sinfsin®)
f(zs) = —j(cos(mt — @)|cosO| + sin(mw — O)sind)
= —j(—cos0|cosO| + sinOsinO) = —j
f'"(z5) = —j(—cos(m — @)|cosO| — sin(m — O)sinO)
= —j(cosO|cosO| — sin@sinO) = j

Substituting in (C48):
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é)rad(?)
1 ¢ 21 2 i 2 .
~ — — — — D7 (kosinfBs, as)f, (kosinBs, as)/kosinfse /T
87‘[2k0\]—]7‘sm9\/—]k0r s (Kosinfs, as)]a(kosinfs, as)y kosinfs (C70)
1 ¢ 2m ’smﬁ ~
= _ﬁk_o r jSTS@ fe; (kOSLnﬁw as)]a(kOSlnﬁs’ as)e ~Jkor
. > —Jkor
é)rad(?) = _]k_o Dfeg (kOSinﬁs: as)]a(kOSinﬁs: as) py-
(C71)

—Jjkor

= (kOSlnBs' as)]a (kOSlnﬁs' as) = és (?)

Note that the result here is different compared to the previous one, since the saddle point is
different.
Subtracting and then adding again this term we eventually obtain the wanted result:
*532(0
+00 21 . N ) ]
=1 f f Gel (ks ey, 2,2")f1q (o, ) e~ THoP cOS@Dgmikalzl dk,da (CT2)
- es(r) + es(r)

Eraa(Too) = Epsc (o) + E5(15) = E5(1%) (C73)

Indeed, é,,.(7) — 0, since it’s characterized only by highly oscillating terms
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This appendix shows how to make asymptotical considerations regarding the dimension of the
antenna we’re analyzing whether it is small, or large, in terms of the wavelength. In these
situations either the Airy or the Huygens pattern tend to be dominant. The far field pattern can

be expressed as in (A32):

- R ko - o .
Erad(r) = Camp i_n_{Alry(k)} (T‘ X (Einc X (T + Z))) = Campvlggtw(a' T, kin) (Dl)

VEEW (a, 7, ki) = Airy(ksing, a)H (7o, Kin) (D2)

This is the result for a single incoming plane wave. However, the following derivations are
already generalized for the case of multiple impinging plane waves.

Small antennas:

In this case the portion of the incident field the antenna can interact with is defined by the

antenna itself and its properties, rather than the sources. If the ratio a/A — 0 the Airy pattern
turns out to behave essentially as a constant as a function of k:

(lli_% Airy(fin, k) = ma? (D3)

This means that Vﬁgtw(a, 7, Ein) is essentially characterized by an averaging integral over

Hin(Fin, k). The result turns out to be:

oo

e—jkn>° 2w T R
lim ;.44 (7o) =—— Camp f J lim V¥t (a, 7, kin)sinﬁindﬁindain (D4)
a—0 T, 0 0 a—0

- A -\ — -

lim VY (a,7, K ) = lim —ZL Airy(f1n, k) Hin (Fin, k) (D5)
a—0 a—0 Aphys
3

. — > 2 D6

!zl—% Aer 471)L (06)

. I 3 — A —
}ll_r)% VEE™v (a, 7, kin) = EAZHl-n(rin, k) (D7)

Expressing as B, @i, the direction of incidence of each impinging plane wave:
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llm érad (Foo)

]k 2 —]kroc
= 22 ]f f k >< m(ﬁm: Ajp) X (k rm)] smﬁmdﬁmdam
3 2m ~ - ~ e—]kroo
- [f @] fo fo k X [En(Bin, @in) X (k = 1) | sinfindBindatsy — ©08)

This last expression underlines two different contributes to the radiated electric field: one
from the electric source and the other one from the magnetic one. The total field can thus be

expressed as the superposition of two integrals:

3 L
hm Eraa(oo) ]4k( el(k) mag(k)) (D9)
N R 21 T R
Fa® = fx ([ [ EnBcnlsinfindinda, x ) (©O10)
0 0
N . R 21 T
Frag B = B ([ [ BB cndsinndfndn 7 ©o11)
0 0
Looking at:
ginc(F)
21
=-[ j gin(.Bin» ain)e—kr(sinﬁincosamcos(am—<1>)+cos[>’incos®) sinfi,dBimdam,
o Jo (D12)
It is apparent that the two contribution are just:
ﬁel(E) = é)inc(? =0) (D13)
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2T T
Fmag (k) =k X <f f Ein(ﬁin' ain)Sinﬁindﬁindain X fin)
0 0

Il
&

2T ,TT
X <f f kin X En(Bin, ain)Sinﬁindﬁindain>
o Jo

Tk X Ry (7 = 0) (D14)

Without considering the spherical spreading it results:

. > 7 4 3 I T I T
lim V5™ (0,7, Kin) =1 g7 (P () = P ()

3/, . P
= j 77 (8@ = 0) = Sk x Fin (7 = 0))
3 ~ - - T N T - -
=]E(kxein(r=0)><k—kxkinxein(r=0))
3 ./, . ~ o

Note that in the end, for the case of electrically really small antennas excited by a bunch of
plane waves with generalized incidence direction, the outward propagating wave results as it
was radiated by a couple of electric and magnetic dipoles with an intensity that is directly
proportional to the intensity of the incident field itself in the origin of the reference system
(the antenna domain). Attention has to be paid to the fact that the radiated field does not
correspond to a pure Huygens’ source anymore, but to a superposition of multiple Huygens’
sources instead. However, the small dipole radiation pattern is characterized by a relatively
small directivity, and so is the superposition of the fields radiated by more dipoles, thus the
radiated field would not present steep angular transitions, even if the incident field amplitude

El-n(ﬁin, @;,) is a rapidly varying function of B;,, a;,. Small antennas are thus not able to

observe this kind of fields, but only an angular average of them.

LARGE ANTENNAS:
For what concerns large antennas in terms of wavelength (a/A > 1) other considerations and
assumptions can be made to simplify the radiated (or the observable) field expression. First of

all the effective area tends to value really close to the physical one, so that:
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Aeff - Aphys; Camp -1 (D16)

The Airy pattern becomes more and more directive (not just a constant anymore), and

significantly different from zero only when observing it at directions opposite to the ones of
the incident wave vector k =~ —#,, - © =~ B;,,. Now, let us expand the expression of the

Huygens’ pattern using the following vector property: A X (B x C) = (AC)B — (AB)C.

— A - ]k ~ - ~ A
Hin(af Tin, k) = Ek X [Ein(ﬁin' ain) X (k - rin)]
j = S
= ﬁEin(ﬁin' ain) (k(k - in))
j ~ A ~
o1 (k = 7in) (kEin(ﬁinr ain)) (D17)
Since the Huygens’ source pattern will be multiplied by the Airy pattern, which we said is

different from zero only around the direction of incidence of every single wave, the

expression can be written as:

ﬁin(a' fin' %, 0 = ﬁin)

] z A A A
= ﬁEin(ﬁim ain)(_rin(_rin - rin))
i o
=57 "fin = Tin) (_rinEin(ﬁin' “in)) (D18)

Obviously the incident plane wave electric field polarization is always orthogonal to its
propagation direction, so the second term of the right hand side of the equation is equal to

Zero, thus:

. j o
Hin(@, Tin K, © = Bin) = 7 Ein(Bins ain) (D19)

J

VES™ (@, Fin, 6, © = Biy) = iﬁin(ﬁiw i) Airy(Kin, k,0 = Bn) (D20)

Consequently, the integral of the outward-going observable total field can be simplified
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. 2T ,TC N e—jkToO
Eraa(r. k) =f f VE™ (a7, kin)SinPimdBmda, —
o Jo

o)

: 2w T / —jkr
= Z 2ma® J(; J(; k;)/; Ein(ﬁin' ain)Slnﬁindﬁindain T (D21)

This integral is in general of difficult evaluation, because of the geometrical dependence of
k,. However, for the present case, other approximations can be made. We know that Ein =

—k#;,, and being y the angle between #,,, and k in the ‘primed’ reference system described by

"

2' = —fty, itis easy to appreciate that:

kz' = k(—t;,) = —cosy (D22)
Y = arcos(—k#y,) (D23)

Looking at Eﬁin = k?cosy suggests to express k, = ksiny in terms of |E - Ein|, so:

[k = Fin|” = (K = Kin) (k = Kin) = 2k%(1 = cosp)R2’ = R(~Fi) = —cosy  (D24)

2

- - 2
k — k|
2 | il _ D25
cosy k2 ( )
Expanding the right hand side of the equation we obtain:
F—Fal’ ) [F=Ful’
2 _ _tin _ 1t Tin D26
cosy 2 2 +1 (D26)
Fefal (F=Fal’\
o2 18T K| KT Kin D27
>y K2 2kc2 (b27)
k=Kl (| JF = anl
. — Rin - Rin
siny? = 2 1- Y% (D28)

Remember that in this particular case, the only significant contribution comes from

observation points such that |k — k;,| — 0, so we can expand siny around that point:
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-

- - - - 2 - - - 2
k —k; k—k; k—k; k—k;
B ) N N AT P g R

-

So that, for very large antenna, where |k — k;,| — 0 one can consider siny = |k —

kinl;

which renders the equation:

2m n'] (lk klnla) R e Jkreo
erad (T‘) = _Zﬂa m(ﬁmf am)Slnﬁlndﬁlndamr— (D3O)

ml ©

As already stated, the Airy pattern is significantly different than zero only towards 7;,,. Let us
call [0 — ©,,] the ® integration range, where 0,,, is an angle much larger than ©, = ', so that
the integral in that point is already zero. Let us parametrize the equation defining [B’, a'] as

the angles that describe the observation point with respect to the squinted reference system
[x',y',2'], and calling |k — ki,| = |k'| = ksinB’. The integral is different from zero only
around B’ — 0. Besides, E;,(B', a') variations as a function of [’, a’] are much slower with

respect to the ones of the Airy pattern, they can be considered constant around this region, and

then extracted from the integral.

. 2w O, P / —JjkToo
- N\ j_ 20 ' ] ]1(kSl'nﬁ a) . ’ ’ ,e
€raa(T) = AZna E,(B' - 0,«a )] f —ksin/j”a inp'dp'da -
j _jkroo
= E27tazEm(—> 0,a )J ]1 (ksinB'a)dp'da’ - (D31)
The integral can be now closed analytically in o'
Gm e_jkroo
é)rad(f')) (27‘[61) Em(ﬁ - O a) ]1(kSlnﬁ a)dﬁ r
N G)71'1. e_jkroo
= j2naE;, (B - 0,a’) i Ji(ksinB'a)dp’ - (D32)

Remember that we are performing the integration in dg’'da’, so ©,, » B’ — 0 due to the high

directivity of the Airy pattern, so sin’ - g’

79 | The Observable Field



Appendix D

R Om e_jkroo
€raa(?) = j2maEy (' - 0,a') Ji(kB'a)dp’

0 Too

(D33)

Applying the following change of variable kf'a = x - dp’' = z—z allows us to perform the

last integration analytically

. . 21a Omka e—jkrOO

braa @) = j e B8 > 0,0 | G (034)

0 [e'e]

N Omka e—jkroo
&r0a@® = jAE (B’ — 0,a) f Ji(X)dx (D35)

0 o

8raa(®) = jAEm(B' = 0,a)[1 — Jo(Oka)] (D36)
Eraa(F) = jAE;, (6, ®)A (D37)
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This appendix shows how to analytically close the radiation integrals, when expressed in
cylindrical coordinates (k,, a), in a in order to reduce the numerical evaluation to only one

variable, decreasing a lot the computational time. Let us first recall the integral, considering

now only the electric field given by the electric currents:

é)rad(F)
+oo 21 . 5 . ' (El)
4n2 f Gel (ki ky, 2,2 )Jiq(kp, a)e™TKoP oSO Pg=ikalzl ke da

Since the Fourier transform of the current distribution is independent on «, the only
dependence of the integrand function on « lays in the Green’s function dyad and in the
exponential terms. These are all oscillating terms, which means that the integral can be
analytically closed, using Bessel’s functions, with the following expression already listed in
Chapter IV .a:

2

21
) 1 .
CC = j cos? q e Jkppcos@=2) gy — > (1 + cos(2a))e kP cos@=2) gy (E2)
0 0

2 ] 1 21 )
SS = f sin? q e~ Tkppcosla=2) gy — Ef (1 — cos(a))e ko cos@=P gy (E3)
0 0

2

on ) 1 .
SC = j sina cosa e Jkppcos@=P) gy — EJ sin(2a) e Jkopcos@=®) gy (E4)
0 0

2T
C = f cosa e Jkppcos(a=®) g, (E5)
0

27T
S = J sina e Tkpp cos@=®) gy (E6)
0
The integral expressions at the right hand side have analytical results, with the form:

2 cos jk,p cos(a—d)
|5 Ny eikor o= = jNam ©2% () (i) €
0
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And the results are:

CC=m (]O(kpp) —cos(29) J, (kpp)) (E8)
SS=n (]O(kpp) + cos(20) J, (kpp)) (E9)
SC = —msin(2®) J,(k,p) (E10)
C = —j2m cos® ], (k,p) (E11)
S = —j2n sin® J;(k,p) (E12)

Where J are the Bessel function of integer order N. Let us have a look at the specific field

components. Starting from (E1), and recalling the spectral Green’s function expression:

ki —kjcos’a  —kjsinacosa —kycosa(tk,)
(kx, ky,zz') = T (k —kjsinacosa ki —kjsin®a  —kpsina(+k,) (E13)
0 —kycosa(tk,) —kysina(tk,) k2 — k2

The components result:

xx Component:

—)e_](r)

_ ___J jZH'kO kz cos? a (k )e_]kppcos(a’ ¢)e ]kZ|Z|k dk da
872 kO kz ldx P

— 1 ( k szlzlk o —jkppcos(a cb)d dk

- _Wk_o ]ldx( p)e a
ook2

2T
- ]Ld x(kp)e"kzlzlk f coszae‘fkppcos(“‘q’)dadkp}
0 0

= _ii zﬂf”"k_g}:‘d (E’ )]o(k p)e Tk} dk
812 k, o kNP p p=Tp

+ook2

wt [ a ) lllo) - cos(20) L kpp)e ki, |
0
1¢((*1= .

= —gk—o{fo k_Z]id,x(kp) [Zkgfo (k,p)

— k2 (]O(kpp) —cos(29) J, (kpp))] e_ijIZlkpdkp} (E14)
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xy Component:

—>8] (r)
B om kzsmacosa+ 7 \o-ikpp cos(a-a) —szIZIk dic,d
—_Qk_o ————Jiay (k 0)e € @
L (k e Jkalzlk fznsmacosae Jkpp cos(@=®) g4 dk,
"~ 8m2k, J, k Jiay (K,
1¢
=——= ]ldy(kp)sm(zqs) J2(kpp)e ¥ d ke,
8k J,

xz Component:

—>ej(r)
2r —k cosa(+k )2

= _gk_of j- z ldz(kp)e—jkppcos(a’ D) —]kZIZIk dk da
1 ¢ (+kz) 2 2

=—-—2 — = —Jjkzlz| —jkppcos(a—®)
sk ). K Jiaz(k,)e k J cosae™ ke dadk,
O - T »

=—j—= ikp]l-d,z(kp) cosqb]l(kpp)e sz|z|kpdkp
Ak J,

yx Component:

—>€] (r)
2m kzsmacosa-» —jk ppcos(a—®) ,—jky|z|
- _ﬁk_o,[ J ldx(kp)e P € ’ k dk da
1
__1rar ]ldx(kp) sin(2®) J,(kpp)e ¥k, dk,
87Tk0 0
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yy Component:

—>€]( )
27 2 k2 sina =
__2_f f 0 tp ldy(kp)e_]kppCOS(a <I>)e }kz|Z|k dk da
8m? ky
1 k2 - . .
= __2i f Ojldy(kp)e_]k2|2|kpf e_]kppCOS(a_(b)dadkp
8m? ky 0

0o kZ 5 N ] 2m .
p 2 _ . _ _
_JO k_Z]id'y(kp)e 1kz|z|kpj0 sin? q e Jkpp cosla q’)dadkp}

= _ii znj+wk_gf,d (E )]o(k p)e k2l dk
872 ko o kz a,y\p P PP

+oo kZ

- ”j ]Ldy(kp)[]o(kpp) + cos(29) J,(k,p)|e ¥k, dk }
0
1¢ 1=

- _gk_(){]o k_Z]id,y(kp) [ZkSJO(ka)

— k2 (Jo(kop) + cos(20) 5 (kyp) )] e‘f"Z'Z'kpdkp} (E18)
yz Component:

—>€] (T_)

2T —k,sina(+k,) »
_ __Z_J j ( ) le(kp)e jkpp cos(@=®) - sz|Z|k dk,da
8m? ky,

1 ¢ —k (+k2)+ 2n .
- —— [ A—— k e_]kzlzlk f Sinae_]kpp Cos(a_GD)da dk
872 ko k, le( P) o p

= —j— + 10)) —Jkzlzl k,
it j kofras(Ry)sind)s (kype =1k, €19
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zx Component:

—>e]( )
2k cosa(+kz) > _ -
- ‘ﬁk_of f Jiax(k,)eTkopcos@=®) g=jkzlzlk df da
. 1 ( “k (+kz)~ —jkz|z|
= Tink, ), k—zfldx(kp) cos® Jy(kpp)e /=l dk,
S R .
= i aric tkpliax(ky) cos® J1(k,p)e ¥k, dk, (E20)
zy Component:
ee](r)
21 _k sma(+kz)+ _
- _gk_o.f f zdy(kp)e Jkppcos(a=®P) o= Jkalzlke , dk,da
i 1 ( k (+kz) = . —j
= Vi), k—zfldy(kp)smawl(kme Healelley ey
NI -
= Tk, ), tkoiay (ko )sin®)y (kpp)e /e ky (E21)
zz Component:
1 ( kz 5 2T .
->€J( Y= —— z ke Jkz1zl[ f e Jkppeos@=®) gy df
8m? kO kz le( ) 0 ’
1¢ k2 _
=g ], "E Jas )k,

Let us consider now the magnetic source contribution to the electric field. First of all, the

spectral Green’s function expression is:

0 tjk, —jkpsina
~ . | = .
Gi (kyo Ky, 2,2") = — ok +jk, 0 jk,cosa (E23)
“jk,sina  —jk,cosa 0
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Now, closing the integral in « for every single dyad component:
xx Component:

esn(@) =0 (E24)
xy Component:

2T
é)f;,n(F) = _8712[ f —] z ldy(kp:a)e Jkp peos(a—®) , ]kzlzlk dk,da

j —]k ik,|z| 2 —jkypcos(a—®)
S| S Mgy (ki @e ek j Tiepp da dk,)
0 z

1 (** = .
= fo + M4, (kp )]o(kpp)e %22k, d ke, (E£25)

xz Component:

o —jk,sina
éﬂm———ff JE—-mwywww@ﬂmem
1 +ook 21
= 82), kledz(kp)e‘sz|Z|k J sinae TkoPcos(@= g di,
_L [ k"M (k,) sin® J (k,p)e %7k dk,
dmc )y k, ! (E26)

yx Component:

Gsm (i) = — = f f 2 e (ko ToP <050 g=ibilelc k. dar =

8m?
J [ "']k ez l2)
= _E k ldx(kp)]O(kpp)e TRz k dk
0 VA
to o .
=i . FMiax(kp)o(kpp)e "Ik, dk, (E27)
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yy Component:

ey =0 (E28)
yz Component:
2 * ke cosa =
é);;n(F) = _FI f J ldz(kp)e—jkppcos(a d>)e ]kz|Z|k dk da
T[ Z
1 [tk 2
=872 kp Mldz(kp)e —Jkzlzl f cosae ~Tkppcosa=®) g, dk,
0]
B ] +00kp = k k _jkz|zlk dk - o\
= i k_ZMid’Z( o)cos® Jy(k,p)e o dkyE,, () =0 (E29)
zx Component:
2T+ jkysina =
O =5 j D02 [ (ke Tkopeos@-)=jialeljc k., da
U Z
A kp Jkzlz|
=iz i —+ Mg (k,) sin® J; (k,p)e~7*z17lk ,dk, (E£30)
0
zy Component:
21
® —jkycosa =
ey (1) = ——f f — kp)e Tkepcos@a=®)g=jkzlzl dk, da
87‘[2 kz Ldy( p)
j + 00 kp
== K —+ Mg, (k,)cos® [y (k,p)e /%27l , dk, (E31)
0
zz Component:
e (@) =0 (E32)
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As far as the magnetic field is concerned, it is sufficient to substitute the proper constants in
the spectral Green’s functions in (4.18), (4.19), (4.20), (4.21), the operations are

the same.
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This appendix explains how to derive the steepest descent path given a certain exponential
dependence in the integral function. This path ensures the fastest convergence of the integrand

function, increasing the speed of its numerical evaluation. Let us analyze the expression:
e Ikorcos(B=0) \here B =B, + jp; (F1)
With a few straight forward mathematical identities one obtains:

. BityeBi . Bi_e—Bi
e—jkorCOS(ﬁ—G) — e—]korcos(ﬁr—e)e : Ze le—korsm([)’T—G))e - Ze : (FZ)

In order to have a convergent integrand function the second part of this expression must be

finite, which means :

sin(B, — ©) e o (F3)

This defines the integral convergence zones:

eﬁi — e_ﬁi
2

e.Bi_e_Bi
iffi<0 > ————<0 - sin(f;=0)<0 > 6-1<p[ <O (F5)

>0 - sin(B,—0)>0 > 0<p.<n+06 (F4)

cos(B, — 9) eite ™ =1 (F6)

On this path the exponential is always decaying and non-oscillating as a function of 8, and it

presents a saddle point for 8 = 0, where its value is e ~/¥o”, Let us define the integral:
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I = f e—jkorCOS(ﬁ—G)dﬁ
SDP(®)

Let us perform a well suited change of variable:

eﬁi — e_Bi

—jkorcos(B — ©) = —jkor — korsin(B, — 0) 5

= —jkor — kort?

| = f e—jkore—korrz %d‘[
SDP(®) dt

To calculate the derivative it is convenient to express T as:

—jkorcos(f — 0©) = —jkor (1 — 2sin? ('BT)) = —jkor — kor7?

o) (@t t3)) iy

It is convenient to express everything as a function of t:

cos(ﬁ;@) =\/1—sin2<ﬁ;®) :jl—érz

jmr
dB _ te+v2
dr i
_ L2
1 57

(F7)

(F8)

(F9)

(F10)
(F11)

(F12)

(F13)

(F14)

(F15)

The anomaly introduced by the square root is solved looking at the fact that on the integration

ap

path T = (—oo, +0) the differential dt is always positive; thus o is a complex function

with the same phase of df. Let us analyze a point in the integration path, possibly easy to

simplify the calculation, as g = ©:

90 | The Observable Field



Appendix F

%(5 = 0) = +civ2 (F16)
arg (% B = 6)) =% Vel % (F17)

However, since df = dp, + jdB; then dB(B8 = O) = dp, + jdp,, andthus:

d d i
arg(dﬁ(ﬁ = 0)) =% - arg (d—f B = @)) =% - d—f(ﬁ =0)= +e]T\/z (F18)

The integral eventually turns into:

% (F19)

Whose convergent behavior is ensured by e~¥"7*, which is extremely fast decaying.

I:f e —jkorcos(B— e)dﬁ — 64\/—6 ]korf
SDP(O)

This deformation can also be applied in some of the radiation expressions where the integral

is expressed as:
=] f@eiroreess-op (F20)
SDP(®)

Provided that f(B) is a slowly varying function. Attention must be payed whether the
deformed path makes any singularity of f(B) arise; however, in free space this is not the case.

The final expression is then:

—krr
jk
I—e4\/_e —J OTf (@) — > dt (F21)
1—7‘[2
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This appendix shows how to perform a reaction integral on the antenna domain; this
procedure allows to obtain the power available to the antenna retaining only the visible
component of the Poynting vector. Let us calculate the power radiated by the ideal current

distribution starting from the Poynting theorem in case of a lossless antenna:

srel [[@xy-as) = e [[[ @7 47 -myav] (61

Praa = ——Re { f f -7 +h -m)dv} =Py + P’ (G2)
1 2w a
et = —Real 5 [ [ €09 oo’ (0. 0Ipdpis ()
0 0
2w a
mag 1 e —
Praa” = —Real| = | | W"(p, ) - Mpo(p, p)pdpdd (G4)
0 0

The fact that we’re taking the real part means that we are accounting only for the real part of
the power, and not for the reactive one. Now, explicitly expressing the electric and magnetic
fields as in (4.43), (4.44) and substituting them in (G2) it is possible to observe that each one

of PeL,, P99 is given by two different contributes: one given by the electric source, and one

rad’ rad
given by the magnetic one. Let us analyze them separately, start from the reaction between the

electric field and electric source:

5(,0, ¢) = gej (p' ¢' p,' ¢I) * jid (p, d),) + gem(p’ d)' p,' ¢,) * mid (pIJ ¢,) (G5)
P _ Pelj +Pelm (GG)

rad — ‘rad rad

1 r )
Prad = =5 Re f f (357G, 40, 8" * Jia (0!, ) “Jia" (0, $)pdpded (G7)
0

0
el,m _ _1 r ~em 12 ’ —>. ! 7 * ) —).
Pad = —7Re (ge™(p, b, p', ") * Mg (p', ¢")) - Mia(p, P)pdpdd  (G8)
0 0
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Power radiated by the electric current:

2T a

( G (p, . 0", @) * Jia (', ") =ff 3, ¢,0, ¢ Jialo', qb))pdpdqb (G9)

0

27T

Jia (o', 0") p'dp'dd’ |Jia (o, $Ipdpdgp

NlH

Ja e’(p.p ¢, ¢")

Let us express the spatial Green’s function through its spectral representation

. 1 . o
3.0 6.9 =7 j j G (ky, ke ixxelnx’ g=llyy olhyY gk dk,

(G10)

(G11)

Following the same steps explained in Appendix C, imaging to have a plane wave coming

from broadside and the electric field oriented along j;; (0, ") = jia(p', p)X:

o)

1 2T a
Pad == e f f ( j-f G (Jex Jey Je ™I Hxx =Ty
0 0

— 00

1 4 Sk
4_n2]x (kx: ky)dkxdky>]id (P, ¢)pdpd¢

Preal;ij - ___Re ff (kx' ky)fid,x(kx: ky)

21T a

' J J Jia (p, e T*xeI%yY pdpd¢p dk,dk,

Preal;{ = ___Re ff (kxf ky)]tdx(kx' ky)]de( kx'_ky)dkxdky

Where:
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21T a
Jiaxllrky) = | [ (axto',#) ereereiton ptdp'agy (615)
0 0
2T a
Tk —ky) = f f i (00 ) €5 =743 pdpdp (G16)
0 O

Let us now assume that the source is real (verified in our specific case), that is

Jx (0 ¢") = jx (', ¢") (G17)
Jiax(=ke—ky) = Jiax(—kx —ky) (G18)

. 1 o .
P = —gzRe f f GE (K by )i (s ey )| ey (G19)

Let us analyze now the power associated to the magnetic source:

2w a

1 *
Pad' = —5Re j j (g™, &, 0", ") * Mia (0, N) * Jia (0, ) pdpdp  (G20)

0 0

Expressing the Green’s function by means of its spectral representation, and performing the
same operations as before, and having the magnetic source oriented along m;;(p’, ¢") =

m;q(p’, ¢") ¥, eventually one obtains:
1 r ~ = 2
Pt = gz e ff Ga (b, ey )My (K by iax (—ky, —ky )dkydky, =0 (G21)

Power radiated by the magnetic current:

21

magm __

P .a = Re J
0

N =

j R (0, $) - Tia(p, $)pdpdep (622)
0
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1 2m a /2nm a
Fraa” = —7Re f f f f (3" 0. p" ¢, 6"
0 0 0 0

*

Mia(p',¢")) p'dp'de’ | Mialp, dIpdpdep

1
g™ (p,p' . ") =z ﬁ Gl (ky, ke, e Txxellax’ o=TkyY oIy de, die,

mag,m
Prad
1 21T a o
— h kx kx
—‘ﬁRe” ffG 57 (e, ky e =T el
0 0 — 00
2T a *

| [ ey @ ge e 0 dprag dicudk, | ey (o, PIpdpde
0 0

1
Prrggg,m = _WRe<jj Ghm(kx' ky)Mldy(er ky)

2m ra *
[ [ Fayo 8y e e pdpag dkxdky)
0 0

mag,m
P rad

*

1 [ee]
:‘@Rew G (b ) Wiy (i ) Mgy (—lew, = y)dkxdky)

o = =2z Re [[ (65 G ky)) [y () il

Let us analyze now the power associated to the electric source:

2w a

. 1 N .
Plaa’’ =—5Re f f R (0, ) * Jia(p, §)pdpdep
0 0
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1 2T a 2T a
Fraa”’ = —7Re f f f f (8.0 ¢.6"
0 0 \0 O
'fid(P',¢’))P'dP'd¢' m;q(p, ¢)pdpdd
ghj(p’pI’ ¢’¢1) — ff (kx' ky)e ]kxxe]kxx’ e ]kyye]kyyldk dk

Pm;g.j
ra

21 a

SERIN| (] PYA—

2T a *

f f Jiax(p', @I Y pldp'dy’ | g, (p, d)pdpde
0

. 1 o R
Pr%g'] = _WRe U G;/li(er ky) ]id,x(kx' ky)

2m *

a
| [ Fiaro. 83 e pipag adky
0 0

mag,j __
Prad =0

Now, the total radiated power is given by:

2 2
]id,x(kx' ky)|

11 .
= ~gte || (620 )

+ (61 (kb)) [Py ()| )dk dk,

Where the FT’s of the sources are:
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mid(i&in; F) = Camp [E)lpw(f)) X iéin]
]_)id(iéin» ?) = Camp [iein X HlpW(F)]
= - o\ A n A T - 1 =4 —>
Eipw(r) = CampE}cow(r)X; kin = —2; Hipw(r) = _k X Eipw(r)

VT_Z € Sin (iéin)

mid(iein; 1’) CampEpwj}

Aph

~ E, . E (k, k R
fid(kinr T‘) = _Camp ?xx = _Camp gx
E. (k. k
Jia x(erky) = amp %: Mid,y(kx' ky) = CampEx(kx: ky)

And the total radiated power results:

Praa = P&y + Pog’

rad

amp

Re

¢

E (62)

+ (Gl (ke ky)) |E (ks k)| )dkxdky]

_ Cgc%;p [ ﬂ( (ke ey)

(Ghm(kx, ky)) > ; |Ex (Ky, ky)|2dkxdky ]

The Green’s functions components are:

. { k2 _ k2
Gafajc(kx» ky) = ok k >
z
1 k% —k2
Ghm(kx, ky) _ Z_kz kZ y
Gel(ky, ky) . 1 2k? — k2 — k2
—( (G m(kx, ky)) ok K,
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Substituting in (G42):

r 12k kK31
f f ( y>E|Ex(kx, k)| dkdk, (G46)

—00

1 Zk2 1 2
Prgg = f f 2 — |Ex(kx ky)| dkydk, (G47)
Z
Expressing the integrand function in cylindrical coordinates:

21 12k2
Praa = ‘"”pr f( ) |Ex (kp, @)|*kpdk,da
Z

Cc2 12k —kZ\ 1 (649)
— Zamp Sl Pl 2
== Refo <2k i )2{|Ex(kp)| kydk,

Please, note that the Green’s function was considered real, so that G’ C(kx,ky)* =

G’¢(ky ky); also the observation point and the source were taken at z,z' = 0; thus the
exponential dependence in z of the Green’s function was not taken into account, simplifying
the calculations.

Thanks to the complex conjugate products we performed any exponential dependence of the
integrand function is disappeared. Thus, considering the real part of the whole spectrum in

dk, simply means that only the visible part of the Poynting vector has to be accounted for,

cropping the integral for k, = [0 — k,]. The expression is then:

Comp (Fo (1 2k* —k}
Prad =%fo (ﬁk—> |E. (k) ey, (G49)

Finally, assumptions can be made depending on the antenna dimension; let us start working
on (G46):
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Praa = amp Re ( ff |Ex(kx, ky)lzdkxdky
'’ (G50)
ﬁ <2kk ) |Ex (ke ky )| dierd )

ko = ksinf, k = kcosf; dkp = %dﬁ = kcosBdp (G51)

kcosp 2CIE (ksinB)|?*ksinBkcospdf

Praa = ‘”"p <27‘[ j (
\

2nof <2kkcos/j‘> 2(|E ((ksmﬁ))| ksm[fkcosﬁdﬁ/ (©52)

1¢C amp

Praqg = 202 k2 <IIE (ksinpB)|?sinpdp ——f|E ((ksmﬁ))| sm%dﬁ) (G53)

Small antenna in terms of wavelength:

Fu(kerky) ~ Bolke = 0.k, = 0) = | fA Epuddy = EpuApy (G54)
ph
1 T
| 2 2 1 2
_ amp 2 5 . .
Praa = 575 k7l a2 | [ sinpdp =3 [ sin®pap -
0 0

P =ic‘§m’”k2|E |42 (1—1>

rad 2( 2T pw ph 3 (G56)
1 4rn 2
Prad Cgmp 2( 3/12 ?)h |Epw| (G57)
A3, 1

P rad — Cgmp A 5 | pwl (G58)

Large antenna in terms of wavelength:
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1 2k? —
Prgg = f f < 0 ) |Es (K, ky)| dk,dk, (G59)

|E (K, ky)| ~ 0 fork, > kmin
(G60)

k2 k2
— 2 _[,2 — 1,2 P L
B \fk ko = k” |1 k2 k 2k (G61)

1 2k* =k} 1 2k* =k} 6o

— — ﬁ — —
2k k, 2k, k3 (G62)

__k

Fraa = S e [ sl )l
origin

2 Lis 2 G63
= Camp zlex(x: y)|“dxdy ( )

Finally, from (G58) it is possible to derive the value of the amplifying factor used for the
definition of the ideal currents. The expression is valid for antennae that are electrically really

small, so it is necessary to substitute Ap,, , that corresponds to the effective area of an

Huygens’ source, with the general A (. The expression turns into:

2

A%, 1
Prad Cc%mpAp | pwl (664)

The power received from the ideal antenna can be related to its effective area as:
id 1 pw |2
Prec = flE |“Acrs (G65)

Equating (G64) and (G65), which means that the field scattered by a uniform distribution of
Huygens’ source has to be equal to the power received by the ideal antenna, justifies the value

adopted for the ideal current procedure:

Az 1
Prog = Cc%mpAp | pwl 20 |EpW|2Aeff = Prlgc (G66)
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A
Camp = Aef ! (G67)
ph
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This appendix shows how to extend the ideal current procedure to more generalized cases
where the incident field can be described as a superposition of multiple plane waves. This is
one of the most important aspect of the technique, since it can easily address the absorbed
power when multiple plane waves are incoming with different directions. The procedure is
similar to the previous one, since we can apply the ‘superposition of the effects’ principle
being the whole system linear. Each wave is travelling towards the center of the reference
system, where the antenna lies, with a direction that is defined by S;,, a;,. Through the
equivalence theorem a set of currents (ideal currents) is defined, for every single wave, in a
circular surface of radius a lying on the plane orthogonal to the wave propagating direction
k;,,; then the currents will be made radiate to calculate the ideal scattered field, equal and
opposite to the portion of the total incoming field the antenna can actually interacts with.

Let us start defining the total incident field (under the assumption of coherent waves),

considering for now just 2 waves:

8(F) = E1(By, “1)9_]%1?) + E,(By, “1)9_]%# (H1)
Explicitly

I?ﬁ = —kr(sinfipcosaip,X + sinfi,sina;,y + cosfin2)(sin®cosdx
+ sin®sin®y + cosOZ)
= —kr(sinf,cosa;,sin®cos® + sinf,sina;,sin@sind
+ cosfincos0))
= —kr(sinf,cosa;,cos(a;, — ®) + cosficosO) (H2)

So that

5(77)) — E)l (,31, al)e—kr(sinﬁlcosalcos(a1—<b)+cosﬁzcos®)

+ E’z (32: az)e —kr(sinfycosazcos(ay,—P)+cosPB,cosO) (H3)

Extending this to an integral on the whole solid angle:
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é()
2m pi_) ]
= f f Ein (ﬁin» ain)e—kr(smﬁincosaincos(ain—¢)+cosﬂincos®) Sinﬁindlgindain (H4)
0 0
Each one of these plane waves will induce a well-defined set of electric and magnetic currents

on the antenna domain, which is orthogonal to the incident direction.

The electric current are defined as (keep in mind that i = 2’ = —7,):

J@ = =CampPin X hin (@) (H5)
M(7) = CampTin X € (F) (H6)
Comp = ::—}Zs (H7)

Jeq (@) = =] x(Fin, @) (H8)

Meq () = —mM (@) x (i, @) (H9)

It is convenient to define an alternative reference system for each plane wave such that the
incidence direction results always orthogonal to the antenna domain itself. This system is
defined by 2’ = —#;,, and the antenna planar domain will be called S;,, = ma?.

This way the ideal currents turn into:

> A2 Al T Camp N o~ RPN
Jeq (Fiy7) = Camp2' X h(r) = Tz X ki, X e(r) (H10)
TTieq (Fin, 7) = Campg(f’) x 2’ (H11)

Now, the field radiated in the far field region by this set of currents, is in general defined as an

outward propagating wave:

8320t (oo, Tin) = ﬂ (37 Goo ¥ i (i) + G55 oo, 7 )0ia (i, )] A7
- (H12)

Note that S;,, can in general change for every plane wave used to represent the incident field.

It is clear from Appendix A, that in the far field region asymptotical consideration on the

103 | The Observable Field



Appendix H

spatial Green’s function can lead to a very simple and useful expression for the radiated field,

which is:

] . e—jkroo
8l (Foy i) = V'™ (a, 7, ki) - (H13)
Where using the V just indicates the fact that it is a VVoltage quantity, which is:
> 77 _]k = a2 g ~ — -
Ve (a7, kin) = =5 {¢(T = RR)T (Fin, &) — & x M (Fin, ) (H14)

The Fourier transform of the equivalent currents has to be evaluated over the squinted domain

of the antenna:

J(Fin k) = f J ] P, ¥)e I dF (H15)
Sin
M(Fin, k) = f f M (Fin, P) eI dF (H16)
Sin
Note that in the region the Fourier transform is performed the incoming plane wave does not

present any variation (#;,, = 0 € S;;,). This renders j(#;,,7), m(fi,, ) constant (see previous

definition), thus:

]_)(?in =0, E’ Ein) = j(?in =0, ?)Airyin (Ein; E) (H17)
M(Fin = 0, E, zin) = Wl(ﬁ'n = 0, ?)Airyin (Ein, E) (H18)
- - k!
Airym (Fin k) = 27ra2]1(,—pa) (H19)
kja

Now, we express k in terms of the local coordinates, defining as (B’,a’) the angles that
describe the observation point highlighted by k. Do not confuse this parametrization with the
one performed in the previous chapters and in this one. These sets of ([B,a'], [p’, 0, ®'])
change for every single plane wave, and so for each single squinted domain, we are

evaluating. In particular, [B’, a'] represent the observation points starting from the squinted
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reference system, and they’re different from [B;,, a;,]. The difference with respect to the
broadside incidence case is that now we have to express k', in terms of 7, k. Also, in order

to calculate the Airy pattern already as a function of the standard reference system, thus
avoiding the complex Matlab implementation of the rotation of the squinted one, we can note
that:

kz' = k(—t;,) = —cosy (H20)
y = arccos(—l?f”m) = arccos(kk;,) (H21)

So that now:
k, = ksiny (H23)

Note that k, # k, since the first one is expressed with respect to the standard reference

system, while the second one is expressed with respect to the squinted reference system. Let

us now improve the V34" expression:

Ve (g, 0 ) = — %{{(f — RR)] (o ) — R X F (o )
_ _%{{(7 — K)o (i ) —
X Tt q (Fan, ) } Airyin (K, ) (H24)
Jealin = 0. = 222" X [  E B 1)
= S 5 ¢ [ X BB )]
Camp N

= 72 X [ZA, X Ein(ﬁin' ain)]

C 5
= %ﬁ'n X [f'in X Ein(ﬁin' ain)] (HZS)

Expressing the field in local (either spherical or Cartesian, according to the vector product)

coordinates, and applying the vector identity A x (B x €) = (AC)B — (AB)C we obtain:
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- - — C =
Jeq (rin =0, T') = _$Ein(.8inl ain)

In the same way:

771>eq (Fin=0,7) = _CampEin(.Bin: ap) X2' = CampEin(:Bin' Ain) X Fin

Thus:

= __{((I: - El})j’eq(fﬂin’ 7) — k
X meq (fin' F)} Airyin (Ein: E)
K (/2 ~\= ~
outW(rln, k) Camp 1_77,'{(1 — kk)Ein(ﬁin' C(in) —k

X (Ein(ﬁinr ain) X fin)}Airyin(kin' k)
It is simple to demonstrate that:

(I:_ EE)Ein(ﬁin: ain) =k x (Ein(ﬁin' ain) X E)
outw (rm' k) Camp A {k (Em(ﬁmr aln) X k) k
X (Ein(ﬁin' ain) X 7"\'in)}léliryin(kin' k)

k - -
outw(a Tln' k) Camp k X [Em(ﬁmr am) X (k fin)] Airyin(kin' k)

Defining now the Huygens’ pattern:

- L, - jk - - ~ .
Hin(rinr k) = Ek X [Ein(ﬁin' ain) X (k - rin)]

We obtain the final definition for the outward observable field amplitude:
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Vl%utw (a' f.in' E) = CampAiryin (izin' E)ﬁin (fin: E) (H34)

The total observable field in the far field region is the superposition of every single outward

propagating wave induced by the incoming plane waves; so for every direction k:

N 2T T N e_jkroo
eV (r, k) = f f VigufW(a,ﬁn,k)sinﬁindﬁindamr— (H35)
0 0

oo
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