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I) INTRODUCTION 

 

 

Fig 1. 1) Incident field impinging on an antenna (sphere of radius 𝒂) 

 

How antennas absorb a generic incident electro-magnetic field impinging on it is a 

mechanism that is still not perfectly known. Thanks to reciprocity, the means we analyze 

antennas in reception by is a set of techniques developed for antennas in transmission. In spite 

of this fact, some aspects, like scattering and absorption, are being investigated in order to 

define procedures to facilitate optimal designs through numerical software, e.g. how to define 

currents or boundaries. However, other aspects, which seem to be significantly important, still 

lack of a proper understanding; one of these is the power available to an antenna given 

whichever field impinging on it. 

One of the most clarifying works on this topic is from 2009 by Kwon and Pozar [9]. To 

address the power available to an antenna enclosed in a generic volume they expand the 

incident field as an infinite summation of spherical TE and TM vector modes. Thanks to this 

field representation they express the incident field and the perturbation introduced by the 

antenna in terms of spherical waves. They then split the incident field in 2 different terms: one 

that is significantly different from zero in the antenna domain (the low order ‘LO’ modes 

field), and a remaining part (the high order ‘HO’ modes field), which is instead negligible in 
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the surroundings of the antenna (please, note that the fact that the LO field is the portion of 

the incident field which is different from zero in the antenna domain does not mean the it is 

not present in the far field region). The LO field is the maximum portion of the incident field 

the antenna can interact with and absorb, it defines the available power, and it is evaluated as 

the sum of a finite number of modes; this number will depend on the dimension of the antenna 

volume in terms of wavelength. The available power is estimated considering an ideal 

lossless, load-matched antenna. 

Implicitly in this spherical mode representation is the definition of an ‘observable’ component 

of the incident field, which is the largest portion that can be absorbed by the antenna. Based 

on this assumption the purpose of this work is designated, and it is the exploitation of the 

opportunity to identify in the total incident field the maximum part the antenna can interact 

with; the remaining fraction of the field is what cannot be absorbed. The characterization of 

the Observable field will depend on the field representation adopted, e.g. it corresponds to the 

low order field if a spherical modes expansion is applied. 

 

 𝑒𝑖𝑛𝑐(𝑟) = 𝑒𝑜𝑏𝑠(𝑟) + 𝑒𝑟𝑒𝑚(𝑟) (1.1) 

 

 

Fig 1. 2) Representation of the observable field and of the antenna domain (the antenna is not present now) 

 

In order to estimate the available power given by the observable component of the incident 

field it is necessary, as it will be clear in the following, to express the observable field as the 

sum of an inward propagating component, that converges from large distance 𝑟∞ towards the 
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antenna domain, plus an outward propagating component, that diverges from the antenna 

domain to 𝑟∞. 

 

 𝑒𝑜𝑏𝑠(𝑟) = 𝑒𝑜𝑏𝑠
𝑖𝑛𝑤(𝑟) + 𝑒𝑜𝑏𝑠

𝑜𝑢𝑡𝑤(𝑟) (1.2) 

 

 

Fig 1. 3) Observable field component as the sum of an inward plus an outward propagating wave 

 

In the far field region 𝑟∞ we express the two inward and outward propagating components as 

the product between an angular distribution and a spherical spreading. 

 

 
𝑒𝑜𝑏𝑠

𝑖𝑛𝑤
𝑜𝑢𝑡𝑤(𝑟∞) = 𝑉⃗⃗𝑜𝑏𝑠

𝑖𝑛𝑤
𝑜𝑢𝑡𝑤(𝜃, 𝜙)

𝑒±𝑗𝑘𝑟∞

𝑟∞
;      |𝑟∞| >

2(2𝑎)2

𝜆
   𝑉𝑒𝑙   |𝑟∞| ≫ 𝑎 (1.3) 

 

The usage of the letter  𝑉⃗⃗ for the angular distribution points out the fact that it is a Voltage 

quantity. If no perturbation is present, as in this case where the antenna is not there yet, the 

inward propagating wave is equal to the outward propagating one: the field converges to the 

antenna region and, if nothing is there, it diverges from it. The relationship between the two 

depends on the reference system, the kind of coordinates that are adopted and the polarization 

of the field. Using a spherical coordinates system centered in the antenna domain, and having 

the electric field represented as TE and TM spherical vector modes oriented along the unit 

vectors  𝜃, 𝜙̂ = 𝑓(𝜃, 𝜙), it is possible to define the outward components as: 
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 𝑉⃗⃗𝑜𝑏𝑠−𝑇𝑀
𝑜𝑢𝑡𝑤 (𝜃, 𝜙) = 𝑉𝑜𝑏𝑠−𝑇𝑀

𝑜𝑢𝑡𝑤 (𝜃, 𝜙)𝜃 (1.4) 

 𝑉⃗⃗𝑜𝑏𝑠−𝑇𝐸
𝑜𝑢𝑡𝑤 (𝜃, 𝜙) = 𝑉𝑜𝑏𝑠−𝑇𝐸

𝑜𝑢𝑡𝑤 (𝜃, 𝜙)𝜙̂ (1.5) 

 

And their relation with the inward propagating components as:  

 

 𝑉𝑜𝑏𝑠−𝑇𝑀
𝑜𝑢𝑡𝑤 (𝜃, 𝜙)𝜃 = 𝑉𝑜𝑏𝑠−𝑇𝑀

𝑖𝑛𝑤 (𝜋 − 𝜃, 𝜋 + 𝜙)𝜃 (1.6) 

 𝑉𝑜𝑏𝑠−𝑇𝐸
𝑜𝑢𝑡𝑤 (𝜃, 𝜙)𝜙̂ = −𝑉𝑜𝑏𝑠−𝑇𝐸

𝑖𝑛𝑤 (𝜋 − 𝜃, 𝜋 + 𝜙)𝜙̂ (1.7) 

 

This highlights the fact that the polarization is unperturbed if the antenna is absent. 

 

 

Fig 1. 4) vector nature of the Observable field, (𝜽̂ polarized example). The observable field converges toward the 

origin, and then emerges to diverge, maintaining the unaltered ray like vector orientation. 

 

The magnetic field derivation is straight forward. At large distance from the center of the 

reference system the spherical waves can be locally approximated as plane waves, and the 

following, well-known rule applies: 

 

 

 
ℎ⃗⃗𝑜𝑏𝑠(𝑟∞) =

1

𝜁
𝑘̂ × 𝑒𝑜𝑏𝑠(𝑟∞) (1.8) 



  

II) STATE OF THE ART: THE SPHERICAL MODES 

REPRESENTATION OF THE INCIDENT FIELD 

 

 

II.a) The spherical modes procedure 

 

The incident field, at any observation point, can be expanded as an infinite summation of 

spherical vector modes: 

 

 
𝑒𝑖𝑛𝑐(𝑟) = ∑ 𝐸⃗⃗𝑛

∞

𝑛=0

(𝑟, 𝜃, 𝜙) (2.1) 

 

The spherical modes functions are defined with respect to the center of the reference system 

and depend on the antenna electrical dimensions. Each spherical modes function can be 

expressed either as a TE or TM mode and split into an inward and an outward propagating 

component. Inward and outward propagating components are related as in (1.4), (1.5), (1.6), 

(1.7). The number of modes used to represent the field depends on the observation point 𝑟 and 

on the source location 𝑟′. If the observation point is close to the origin of the reference 

system, and if the sources are located at large distance from it, only a few harmonics are 

necessary. However, the further from the origin the observation point is, the more modes will 

be needed. This becomes clear when looking at the radial dependence of the scalar free space 

Green’s function 𝑔(𝑟, 𝑟′), when expressed as a summation of spherical functions: 

 

 
𝑔(𝑟, 𝑟′) =

𝑒−𝑗𝑘|𝑟−𝑟
′|

4𝜋|𝑟 − 𝑟′|
= ∑ ∑𝐶𝑚𝑛𝐿𝑚𝑛(𝜃, 𝜃

′, 𝜙, 𝜙′)

∞

𝑛=0

∞

𝑚=0

𝑑𝑛(𝑟, 𝑟
′) (2.2) 

 

𝐶𝑚𝑛  are functions that depends only on the indices (𝑚, 𝑛) , 𝐿𝑚𝑛  are the Legendre’s 

polynomials which depend on the angular coordinates, and 𝑑𝑛 takes into account the radial 

dependence. Assuming that the sources are located at large distance from the origin we can 

express 𝑑𝑛  as a function of the spherical Bessel’s 𝑗𝑛  and Hankel’s ℎ𝑛
2  functions of integer 

order: 
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𝑑𝑛(𝑟, 𝑟

′) =
𝑗𝑛(𝑘𝑟)ℎ𝑛

2(𝑘𝑟′)

𝑘𝑟𝑟′
 (2.3) 

 

Moreover, if the observation point is close to the source, the expression turns into: 

 

 

lim
𝑟→0

𝑑𝑛(𝑟, 𝑟
′) = {

ℎ0
2(𝑘𝑟′)

𝑟′
    𝑓𝑜𝑟  𝑛 = 0

 0           ∀   𝑛 > 0

 (2.4) 

 

Finally, if the condition |𝑟′| ≫ |𝑟| is verified, thus if the source location is much further away 

than the observation point, the number of modes is independent from the source location itself 

𝑟′. 

 

 

II.b) The low order field 

 

The final aim of this procedure is to define the available power. Thus, we need to derive the 

portion of the incident field the antenna can interact with: the observable field, once again. If 

the adopted field representation is the spherical modes expansion, the observable field will 

coincide with the low order modes field. Let us stress again the fact that the observable 

component of the incident field is the only portion which is significantly different than zero in 

the antenna region. 

 

 

𝑒𝐿𝑂(𝑟) = ∑ 𝐸⃗⃗𝑛

𝑁

𝑛=0

(𝑟, 𝜃, 𝜙),       𝑒𝐻𝑂(𝑟) = ∑ 𝐸⃗⃗𝑛

∞

𝑛=𝑁+1

(𝑟, 𝜃, 𝜙) (2.5) 

 𝑁 = 𝑘𝑎 = 2𝜋
𝑎

𝜆
 (2.6) 

 

𝑁 is such that  𝑒𝐻𝑂(𝑟) → 0  in the antenna domain, which from now on will be considered a 

sphere of radius 𝑎. This means: 

 

 𝑒𝑖𝑛𝑐(𝑟 ∈ 𝑉𝑎𝑛𝑡) ≃ 𝑒𝐿𝑂(𝑟)      𝑉𝑎𝑛𝑡: |𝑟| ≤ 𝑎 (2.7) 

 

Now, in the case of a plane wave incident from broadside, the incident field is written as: 
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 𝑒𝑖𝑛𝑐(𝑟) = 𝐸⃗⃗𝑖𝑛𝑐(𝑟, 𝜃, 𝜙)𝑒
𝑗𝑘𝑧 ,     ℎ⃗⃗𝑖𝑛𝑐(𝑟) = 𝐻⃗⃗⃗𝑖𝑛𝑐(𝑟, 𝜃, 𝜙)𝑒

𝑗𝑘𝑧      ∀ 𝑟 (2.8) 

 

The low order field depends on 𝑁, which means that it depends on the antenna length in terms 

of wavelength. Here are the plots of the LO field at 𝑧 → 0 scanned on the E-plane for a plane 

wave incident from broadside with 𝐸⃗⃗𝑖𝑛𝑐(𝑟, 𝜃, 𝜙) = 1 𝜃 [𝑉/𝑚]  for three significant cases:  

𝑎 = 0.01𝜆,   𝑎 = 𝜆,   𝑎 = 10𝜆 

 

 
a − 𝑎 = 0.01𝜆 

 
b − 𝑎 = 𝜆 

 
c − 𝑎 = 10𝜆 

Fig 2. 1)  Electric field scanned in the E-plane, for 𝒛 = 𝟎, for three cases: Fig 2.1a)  𝒂 = 𝟎. 𝟎𝟏𝝀, Fig 2.1b)  𝒂 =
𝝀,  Fig 2.1c) 𝒂 = 𝟓𝝀 

 

It is apparent that the spherical modes representation introduces a spatial filtering action that 

selects only the central portion of the incident field around the antenna domain. Please, note 
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that considering the first antenna its domain is small in terms of wavelengths: it only 

comprises the region 𝑎/𝜆 = [−0.01 → 0.01], and the field amplitude remains close to the 

incident field value much further away; this phenomenon can also be seen through the 

effective area concept. Instead, as far as relatively large antennas are concerned the spherical 

modes expansion constitutes a good approximation of the incident field itself on the antenna 

domain, then it starts decaying.  

 

 

II.c) The fields far away from the antenna 

 

As already stated, the fact that the LO field is the only part of the incident field which is 

significantly different than zero in the antenna region does not mean that it is zero in the far 

field region as well. The LO field is defined over the entire space indeed. For observation 

points far away from the center of the reference system the radial dependence of the modes 

tends to the spherical spreading  𝑒±𝑗𝑘𝑟∞/𝑟∞,  and the electric and magnetic fields tend to be 

orthogonal and transversely polarized. This allows the summation in amplitude and phase of 

every mode, leading to the construction of a single outward (or inward) propagating spherical 

wave. It is immediate to verify that at 𝑟∞ we can express the LO field as in (1.3), thus an 

inward/outward component defined as the product between an angular distribution and a 

spherical spreading function. In general, the remaining field, which is in this representation 

the HO field, is not zero at 𝑟∞, given the fact that the LO field does not represent the whole 

incident field: 

 

 𝑒𝐿𝑂(𝑟∞) ≠ 𝑒𝑖𝑛𝑐(𝑟∞)    →    𝑒𝐻𝑂(𝑟∞) ≠ 0 (2.9) 

 

In order to clarify this concept, the far field pattern of the LO field, normalized to its 

maximum value and expressed in dB, is plotted for the same antennas that were analyzed 

previously. 3 antennas of radius 𝑎 = 0.01𝜆, 𝑎 = 𝜆, 𝑎 = 10𝜆 , far field at 𝑟∞ > 2(2𝑎)
2/𝜆, 

scanned for 𝜃 = (−𝜋 → 𝜋), 𝜙 = 0 (E-plane): 
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Fig 2. 2)   Observable fields patterns, for three different dimensions of the antenna domain for normal incidence 

plane waves: Fig 2.2a)  𝒂 = 𝟎. 𝟎𝟏𝝀, Fig 2.2b)  𝒂 = 𝝀,  Fig 2.2c) 𝒂 = 𝟓𝝀 

 

 

II.d) The available power estimated by the spherical modes procedure 

 

The easiest way to calculate the available power is to consider the Poynting vector in the far 

field region, where the field can be locally approximated as a superposition of plane waves; 

this means that the flux that crosses a generic surface in the far field 𝑆∞ needs to be evaluated 

(if |𝑟∞| > 2(2𝑎)
2/𝜆 )  the available power is independent on the radius of the sphere it will be 

evaluated at). It is well known that the total flux of a field crossing a closed surface in absence 

of any perturbation is zero: this is because the inward propagating component, that contributes 

to a positive flux, leaves then the surface as an outward propagating component, contributing 
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in an equal but opposite way. [9] clarified that due to this reason only the inward propagating 

component has to be taken into account when calculating the available power: 

 

 
𝑃𝑎𝑣𝑎 ≡ 𝑃𝑖𝑛𝑤 =

1

2𝜁
∬ |𝑒𝐿𝑂

𝑖𝑛𝑤(𝑟∞)|
2
𝑑𝑟∞

𝑆∞

 (2.10) 

 

When analyzing the case of a single plane wave impinging from broadside, the effective area 

𝐴𝑒𝑓𝑓 represents a useful parameter to quantify the available power and then compare it when 

different procedures are used: 

 

 
𝐴𝑒𝑓𝑓 =

𝑃𝑎𝑣𝑎
1
2𝜁 |𝐸⃗⃗𝑃𝑊(𝑟)|

2
 

(2.11) 

 

The effective area given a plane wave impinging from broad side (𝜃𝑖𝑛𝑐 = 0,𝜙𝑖𝑛𝑐 = 0) 

estimated with the spherical modes expansion is plotted as a function of the physical area, 

when both are normalized to 𝜆2: 

 

 

Fig 2. 3) Effective area as a function of the physical area estimated by the spherical modes expansion, both 

normalized to the wavelength squared. 𝑵 chosen as 𝑵 = 𝒓𝒐𝒖𝒏𝒅(𝒌𝒂) 

This kind of stepped function highlights the uncertainty error introduced by the spherical 

modes description: they quantize a process that is continuous instead. The approximation 

error becomes negligible for extremely small or extremely large antennas in terms of 

wavelength, where the steps are either not present or negligible; while for antennas whose 

dimension is in the range between some fraction to some units of 𝜆  the uncertainty is 
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significant. This quantized behavior depends on the choice of 𝑁 = 𝑘𝑎, which is, in general, 

not an integer number; moreover, there is no rule that defines how one should choose 𝑁 (the 

observable fields estimated by 𝑁 = 𝑟𝑜𝑢𝑛𝑑(𝑘𝑎), 𝑁 = 𝑟𝑜𝑢𝑛𝑑(𝑘𝑎) + 1 or   𝑁 = 𝑟𝑜𝑢𝑛𝑑(𝑘𝑎) −

1 present significant differences when working with antenna of dimensions around 𝜆). 

 

 

II.e) The heuristic extension 

 

The antenna community tried to overcome this issue by means of an interpolation of the 

results predicted by the spherical modes procedure. A simple formula that accounts for the 

effective area for really large and really small antennas in terms of wavelength has been 

proposed. It is well known that for really directive antennas the effective area tends to equate 

the physical area, while for extremely small antennas the spherical modes procedure predicts 

the effective area of a Huygens’ source: the heuristic formula simply interpolates these two 

results [12]. 

 

 
𝐴𝑒𝑓𝑓
ℎ𝑒𝑢 =

3

4𝜋
𝜆2 + 𝐴𝑝ℎ𝑦𝑠 (2.12) 

 

 

Fig 2. 4) Effective area as a function of the physical area estimated by the spherical modes expansion and by the 

heuristic formula, both normalized to the wavelength squared. 𝑵 chosen as 𝑵 = 𝒓𝒐𝒖𝒏𝒅(𝒌𝒂) 

 

However, even if the curve predicted by the heuristic formula seems to have solved the 

quantization problem, there is de facto no reason to believe that the results it gives are more 
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accurate; they should be compared to actual measurements. Moreover, the extension to more 

realistic cases where the incident field can be described as a superposition of multiple plane 

waves is not possible, since their phase is not considered by this procedure at all. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

III) THE IDEAL CURRENTS METHOD 

 

A new procedure, meant to estimate the observable component of the incident field 

overcoming the stumbling block given by the quantization introduced by the spherical modes 

expansion, is here presented. The field is hereby split into two components once again: an 

observable component, and a remaining component 𝑒𝑖𝑛𝑐(𝑟) = 𝑒𝑜𝑏𝑠(𝑟) + 𝑒𝑟𝑒𝑚(𝑟). Now, a 

new methodology is needed to evaluate 𝑒𝑜𝑏𝑠(𝑟) given whatever 𝑒𝑖𝑛𝑐(𝑟). In order to have a 

quick and immediate insight into this procedure let us first consider the case of a single plane 

wave impinging on a focusing system 

 

 

III.a) The ideal antenna in a focusing system 

 

When a plane wave excites a focusing system, within the system itself the field 𝑒𝑖(𝑟) can be 

represented as a spherical wave that converges to its focus, and then diverges; the center of 

the reference system will be placed at the focus. Once again then, the field is represented as 

the sum of an inward and an outward propagating spherical waves (keep in mind that this is 

the field inside the focusing system, not the incoming plane wave): 

 

 𝑒𝑖(𝑟) = 𝑒𝑖
𝑖𝑛𝑤(𝑟) + 𝑒𝑖

𝑜𝑢𝑡𝑤(𝑟) (3.1) 

 

The ideal lossless, load matched antenna is a device that absorbs the whole inward 

propagating component, cancelling the outward propagating one (an intuitive parallelism can 

be made with the concept of a perfect absorber, even if the mechanism is different); the ideal 

antenna will convert the EM energy in a guided wave. The cancellation of 𝑒𝑖
𝑜𝑢𝑡𝑤(𝑟) happens 

via scattering: the incident field will excite a set of currents on the antenna, that radiate a field 

which will be equal and opposite to the first. 

 

 𝑒𝑡𝑜𝑡
𝑜𝑢𝑡𝑤(𝑟) = 𝑒𝑖

𝑜𝑢𝑡𝑤(𝑟) + 𝑒𝑠𝑐𝑎𝑡
𝑖𝑑 (𝑟) = 0 (3.2) 
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Fig 3. 1) Field picture in an ideal focusing system, Fig 3.1 b)  Incident field as sum of inward and outward 

propagating waves. Fig 3.1b)  the ideal antenna captures all the inward incident field. Fig 3.1 c)  The scattered 

field radiated by the currents of the ideal antenna is equal and opposite to the outward component of the incident 

field. 

 

Please note that the ‘outw’ superscript is omitted in 𝑒𝑠𝑐𝑎𝑡
𝑖𝑑 (𝑟), since the field scattered by an 

antenna is always propagating outward its domain. Now, note that within a focusing system 

excited by a plane wave, the incident field can coincide with the observable field. Indeed, in 

this particular case the field is no more a plane wave, and it is possible to define a set of 

sources that can radiate it. 

 

 𝑒𝑖(𝑟) = 𝑒𝑜𝑏𝑠(𝑟)    →     𝑒𝑟𝑒𝑚(𝑟) = 0 (3.3) 

 

 The available then will be: 

 

 𝑃𝑎𝑣𝑎 = 𝑃𝑟𝑥
𝑖𝑑 = 𝑃𝑖

𝑖𝑛𝑤 (3.4) 

 𝑃𝑖
𝑖𝑛𝑤 = 𝑃𝑖

𝑜𝑢𝑡𝑤 = 𝑃𝑠𝑐𝑎𝑡
𝑖𝑑  (3.5) 

 

 

III.b) Plane wave incidence 

 

In case of plane wave incidence 𝑒𝑖𝑛𝑐(𝑟) = 𝐸⃗⃗𝑖𝑛𝑐
𝑃𝑊(𝑟)𝑒𝑗𝑘⃗⃗𝑖𝑛∙𝑟 , the first thing to be taken into 

account is that it does not exist a set of sources able to radiate such a field. This is because the 

spatial domain of a plane wave is infinite, and so should be the distribution of the currents. 

Thus, the ideal antenna will never be able to absorb the whole 𝑒𝑜𝑏𝑠
𝑖𝑛𝑤(𝑟), and the definition of 

the observable component of the incident field is not straightforward. 
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 𝑒𝑖𝑛𝑐(𝑟) ≠ 𝑒𝑜𝑏𝑠(𝑟)     →     𝑒𝑟𝑒𝑚(𝑟) ≠ 0 (3.6) 

 

The observable field will be now specified as the largest portion of the incident field the 

antenna can interact with. The proposal is to define the observable field as equal and opposite 

to the field scattered by the ideal antenna given a plan wave impinging on it, so that they 

cancel out leading to 𝑒𝑡𝑜𝑡
𝑜𝑢𝑡𝑤(𝑟) = 0. 

 

 𝑒𝑜𝑏𝑠
𝑜𝑢𝑡𝑤(𝑟) ≡ −𝑒𝑠𝑐𝑎𝑡

𝑖𝑑𝑒𝑎𝑙(𝑟) (3.7) 

 

 

Fig 3. 2) Observable field as the field equal and opposite to the one scattered by an ideal antenna given a generic 

incident field. 

 

We call the scattered field ‘ideal’ to underline the fact that it radiates a power which is equal 

to the received one: the maximum possible power in the given antenna volume. Once again, 

when dealing with plane wave incidences it is possible, and useful, to define the effective 

area: 

 

 
𝑃𝑟𝑥
𝑖𝑑 =

1

2𝜁
|𝐸⃗⃗𝑖𝑛𝑐
𝑃𝑊(𝑟)|

2
𝐴𝑒𝑓𝑓 = 𝑃𝑠𝑐𝑎𝑡

𝑖𝑑  (3.8) 

 

The effective area will be the parameter used to compare the procedure introduced by this 

work to the spherical modes representation. The point now is the definition of a set of sources 

that scatter 𝑒𝑠𝑐𝑎𝑡
𝑖𝑑𝑒𝑎𝑙(𝑟): the ‘Ideal Currents’. 
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III.c) The Ideal Currents 

 

 

 

Fig 3. 3) Ideal currents on the antenna volume induced by the incident field 

 

We define the ‘Ideal Currents’ by means of the equivalence theorem. This theorem says that, 

given whatever kind of field at any observation point, this can be represented by a set of 

sources that radiate it. In the case of a plane wave it is apparent that these currents’ spatial 

domain must be infinitely extended in order to satisfy the condition: indeed, they are defined 

over the hemisphere of the antenna volume illuminated by the incident field and over an 

infinite plane orthogonal to the plane wave propagation direction 𝑘̂𝑖𝑛 and crossing the antenna 

in the middle. The mathematical derivation of the currents is performed through the physical 

optics (PO) approximation, then they are amplified by a constant factor that accounts for the 

power budget of the system (the scattered power will thus be equal to the received power); 

this amplifying factor definition will be explained soon. Now, thanks again to the equivalence 

theorem we can represent the radiation of the currents distributed on the illuminated 

hemisphere of the antenna volume through another set of planar distributed sources that will 

generate the same field: they will be defined over the cross section of the antenna orthogonal 

to  𝑘̂𝑖𝑛  (please, note that the current will be different now, but it is their radiation what 

matters). These are precisely the sources we’re interested in. 



III)  THE IDEAL CURRENTS METHOD 

17 | The Observable Field  

 

.  

Fig 3. 4) Definition of the domain orthogonal to 𝒌̂𝒊𝒏 

 

Fig 3. 5) 1D cut of the procedure of the evaluation of the ideal currents: Fig 3.5a)  plane wave and observation 

point. Fig 3.5b)  distribution of the currents over an infinitely extended planar domain including the surface of 

the hemisphere illuminated by the incident field. Fig 3.5c)  substitution of the current on the hemisphere surface 

with the ideal currents distribute over a planar distribution (antenna cross section orthogonal to 𝒌̂𝒊𝒏) 

 

The Ideal Currents value will depend on the antenna domain electrical length, they will be 

multiplied by the amplifying factor and distributed over the whole cross section. From now 

on, the plane wave will be considered impinging from underneath the antenna (from        

𝜃𝑖𝑛 = 180°), so that its scattered field and the outward component of the observable field will 

be defined with the maximum directivity towards the positive hemi-axis 𝑧+ . The ideal 

currents are thus defined as in Appendix A: 

 

 𝑗𝑖𝑑(𝑟′) = 𝐶𝑎𝑚𝑝𝑧̂ × ℎ⃗⃗𝑖𝑛𝑐(𝑟)𝜒(𝑟′, 𝑎),    𝑚⃗⃗⃗𝑖𝑑(𝑟′) = −𝐶𝑎𝑚𝑝𝑧̂ × 𝑒𝑖𝑛𝑐(𝑟)𝜒(𝑟′, 𝑎) (3.9) 

 𝜒(𝑟′, 𝑎) = [𝜌: 0 → 𝑎, 𝜙: 0 → 2𝜋] (3.10) 

 
𝐶𝑎𝑚𝑝 =

𝐴𝑒𝑓𝑓

𝐴𝑝ℎ𝑦𝑠
 (3.11) 
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𝜒(𝑟′, 𝑎)  represents the spatial domain of the sources distribution. Note that this kind of 

approximation (physical optics approximation) represents a spatial truncation: the currents 

cannot go from a certain value to 0 instantaneously at the edge of the antenna domain. This 

kind of spatial truncation is somehow comparable to the modes truncation introduced by the 

spherical modes expansion when selecting the LO field. Due to the PO approximation, the 

electric and magnetic current will always be one orthogonal to the other, determining a 

distribution of Huygens’ sources. A Huygens’ source is indeed constituted by an elementary 

electric dipole orthogonal to a magnetic one; for the sake of clarity its far field pattern is 

plotted: 

 

 

Fig 3. 6) Far field radiation pattern of a Huygens’ source 

 

 

III.d) The amplification factor 

 

Given a uniform distribution of Huygens’ sources, where in this particular case the sources are 

the ideal currents excited by a plane impinging orthogonally to the antenna domain (please, 

keep in mind that the currents are defined with the PO approximation and then amplified by a 

constant factor), the scattered power results (Appendix G):  

 

 
𝑃𝑠𝑐𝑎𝑡
𝑖𝑑 =

1

2𝜁

𝐴𝑝ℎ𝑦𝑠
2

𝐴𝑒𝑓𝑓
|𝐸𝑖𝑛𝑐
𝑃𝑊(𝑟)|

2
 𝐶𝑎𝑚𝑝
2  (3.12) 

 

The received power from an ideal antenna will be instead: 
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𝑃𝑟𝑥
𝑖𝑑 =

1

2𝜁
 |𝐸𝑖𝑛𝑐

𝑃𝑊(𝑟)|
2
𝐴𝑒𝑓𝑓 (3.13) 

 

This two powers have to be equal. Imposing this condition the value of the amplifying factor 

is eventually obtained: 

 

 
𝑃𝑠𝑐𝑎𝑡
𝑖𝑑 =

1

2𝜁

𝐴𝑝ℎ𝑦𝑠
2

𝐴𝑒𝑓𝑓
|𝐸𝑖𝑛𝑐
𝑃𝑊(𝑟)|

2
 𝐶𝑎𝑚𝑝
2 =

1

2𝜁
 |𝐸𝑖𝑛𝑐

𝑃𝑊(𝑟)|
2
𝐴𝑒𝑓𝑓 = 𝑃𝑟𝑥

𝑖𝑑 (3.14) 

 
𝐶𝑎𝑚𝑝 =

𝐴𝑒𝑓𝑓

𝐴𝑝ℎ𝑦𝑠
 (3.15) 

 

 

 

III.e) The far field radiation 

 

It is well known that the radiation of the ideal currents can be calculated by the convolution 

integral between the free space spatial Green’s function 𝑔̃𝑓𝑐(𝑟) and the currents themselves: 

 

 𝑒𝑟𝑎𝑑(𝑟) = 𝑔̃
𝑒𝑗(𝑟, 𝑟′) ∗ 𝑗𝑖𝑑(𝑟′) + 𝑔̃

𝑒𝑚(𝑟, 𝑟′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝑟′) (3.16) 

 
𝑒𝑟𝑎𝑑(𝑟) = ∫ ∫ [𝑔̃𝑒𝑗(𝑟, 𝑟′)𝑗𝑖𝑑(𝑟′) + 𝑔̃

𝑒𝑚(𝑟, 𝑟′)𝑚⃗⃗⃗𝑖𝑑(𝑟′)]𝑑𝑟′
2𝜋

0

𝑎

0

 (3.17) 

 

 ℎ⃗⃗𝑟𝑎𝑑(𝑟) = 𝑔̃
ℎ𝑚(𝑟, 𝑟′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝑟′) + 𝑔̃

ℎ𝑗(𝑟, 𝑟′) ∗ 𝑗𝑖𝑑(𝑟′) (3.18) 

 
ℎ⃗⃗𝑟𝑎𝑑(𝑟) = ∫ ∫ [𝑔̃ℎ𝑗(𝑟, 𝑟′)𝑗𝑖𝑑(𝑟′) + 𝑔̃

ℎ𝑚(𝑟, 𝑟′)𝑚⃗⃗⃗𝑖𝑑(𝑟′)]𝑑𝑟′
2𝜋

0

𝑎

0

 (3.19) 

 

However, in the far field region asymptotical considerations can be made in order to render 

the calculations much easier (see Appendix A for the detailed derivation). Eventually, the 

expression one obtains for the electric field in the far field region (remember that in the far 

field region the radiation can be locally considered a plane wave, thus the derivation of the 

magnetic field is immediate) is: 
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𝑒𝑟𝑎𝑑(𝑟∞) = 𝐶𝑎𝑚𝑝

𝑗𝑘

4𝜋
{𝐴𝑖𝑟𝑦(𝑘𝑠𝑖𝑛𝜃, 𝑎)} [𝑟̂∞ × (𝐸⃗⃗0 × (𝑟̂∞ + 𝑧̂))]

𝑒−𝑗𝑘𝑟∞

𝑟∞

= 𝐶𝑎𝑚𝑝𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛)

𝑒−𝑗𝑘𝑟∞

𝑟∞
 

(3.20) 

 𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) = 𝐴𝑖𝑟𝑦(𝑘𝑠𝑖𝑛𝜃, 𝑎)𝐻⃗⃗⃗(𝑟∞, 𝑘⃗⃗𝑖𝑛) (3.21) 

 

𝐴𝑖𝑟𝑦(𝑘𝑠𝑖𝑛𝜃, 𝑎) represents spectrum of the sources. It is an Airy distribution indeed, given by 

the fact that the sources are symmetrical in 𝜙′ over the antenna cross section 𝑆𝑖𝑛; the resulting 

radiation follows in the spatial domain the spectral behavior of the Airy pattern, ending up 

having a minimum in the direction where the plane wave is impinging from, and a maximum 

in the direction of propagation of the scattered field. The Airy distribution sets the directivity 

of the pattern as well: the higher the radius 𝑎, the higher the directivity. 𝐻⃗⃗⃗(𝑟∞, 𝑘⃗⃗𝑖𝑛) instead, 

reflects the spectral behavior of a Huygens’ source. 𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) expresses the angular 

distribution of the pattern indeed. 

The same result can be obtained using the spectral representation of the Green’s function. 

Following the steps reported in Appendix C one eventually obtains: 

 

 
𝑓𝑟𝑎𝑑(𝑟) =

1

4𝜋2
∫ ∫ 𝐺̃𝑓𝑠

𝑓𝑐
(𝑘𝑥 ,  𝑘𝑦)

+∞

−∞

+∞

−∞

∙ 𝐶̃𝑖𝑑(𝑘𝑥,  𝑘𝑦)𝑒
−𝑗𝑘𝑥(𝑥−𝑥

′)𝑒−𝑗𝑘𝑦(𝑦−𝑦
′)𝑒−𝑗𝑘𝑧|𝑧−𝑧′|𝑑𝑘𝑥𝑑𝑘𝑦  

(3.22) 

 

where 𝑓𝑟𝑎𝑑(𝑟) is either the electric or the magnetic field and 𝐶̃𝑖𝑑(𝑘𝑥,  𝑘𝑦) is the spectrum of 

either the electric or the magnetic current; the subscript ′𝑓𝑠′ means ‘free space’,  while the 

superscript ′𝑓𝑐′ indicates that the Green’s function expresses the field 𝑓𝑟𝑎𝑑(𝑟) radiated by the 

source 𝐶̃𝑖𝑑(𝑘𝑥,  𝑘𝑦). Also on the spectral integral asymptotical consideration can be made 

when analyzing the field at 𝑟∞, which lead to the final result (detailed steps in Appendix C): 

 

 
𝑓𝑟𝑎𝑑(𝑟∞) = −𝑗𝑘𝑧 𝐺𝐹̃𝑓𝑠

𝑓𝑐(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐶⃗̃𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)
𝑒−𝑗𝑘𝑟∞

2𝜋𝑟∞
 (3.23) 

 

Please, note that the latter expression is exactly equal to (3.20); only the notation is different. 

Now, from the asymptotical evaluation of the radiation in the far field region it is evident that 



III)  THE IDEAL CURRENTS METHOD 

21 | The Observable Field  

 

we’re dealing with a spherical wave. Remember that the ideal scattered field is what it has just 

been calculated, and that is equal and opposite to the outward propagating component of the 

observable field. The assumption we made previously is then verified: we can represent at 𝑟∞ 

the observable field as the sum of an inward and an outward propagating spherical wave. The 

3 procedures to estimate the far field radiation have been implemented using Matlab, and their 

plot superposed in order to verify them; a perfect agreement is obtained: 

 

 

Fig 3. 7) Comparison of the far field radiation pattern given by the three methodologies. Antenna of radius   

𝒂 = 𝝀. The plots were normalized to their maximum value, expressed in dB for a scan 𝜽 = 𝟎 → 𝝅,𝝓 = 𝟎. 

 

When analyzing really large, or really small, antennas in terms of wavelength it is possible to 

make a few assumptions (please, refer to Appendix D) and derive an analytical formulation 

for the broadside radiation of the ideal currents. This was used in order to verify the validity 

of the Matlab script: the case of an extremely small antenna (𝑎 = 0.01𝜆) was considered, and 

a perfect agreement between the analytical prediction and the numerical evaluation of any of 

(3.16), (3.20), (3.22), (3.23) was found. From (3.20) we obtain: 

 

 
|𝑒𝑟𝑎𝑑(𝑟∞,  𝑘̂𝑖𝑛)| = Camp ∙ |−𝑉⃗⃗𝑃𝑂

𝑜𝑢𝑡𝑤(𝑎,  𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗)
𝑒−𝑗𝑘𝑟∞

𝑟∞
| = 𝐶𝑎𝑚𝑝 ∙

𝜋𝑎2

𝜆

1

𝑟∞

= 7.9482 ∙ 10−5 [
𝑉

𝑚
] 

(3.24) 
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Fig 3. 8) Broad side radiation validation for the following data: |𝑬𝑷𝑾| = 𝟏 𝑽\𝒎,   𝒂 = 𝟎. 𝟎𝟏𝝀,   𝒓𝒐𝒃𝒔 =

𝟑𝟎𝟎𝟎𝝀,   𝝀 = 𝟏 𝒎  

 

It should be noted that in the case of an extremely small antenna the two sources distributions 

can be considered two orthogonal elementary dipoles: 

 

 𝑗𝑖𝑑(𝑟′) = 𝐶𝑎𝑚𝑝𝑧̂ × ℎ⃗⃗𝑖𝑛𝑐(𝑟)𝛿(𝑟′) (3.25) 

  𝑚⃗⃗⃗𝑖𝑑(𝑟′) = −𝐶𝑎𝑚𝑝𝑧̂ × 𝑒𝑖𝑛𝑐(𝑟)𝛿(𝑟′) (3.26) 

 

In this case we can consider the system to be exactly a Huygens’ source. This is evident from 

the pattern of Fig.15, where the field is plotted linearly as function of the observation angle 𝜃 

(instead that using a polar plot as in Fig.13). 

 

 

III.f) Far field patterns comparison: Ideal Currents Vs Spherical Modes 

 

It is fundamental to assess whether or not this work’s procedure has a scientific dignity. In 

order to do this, the far field patterns of the field estimated by the spherical modes and 

radiated by the ideal currents are compared. Three antennae are analyzed (𝑎 = 0.01𝜆, 𝑎 = 𝜆,

𝑎 = 5𝜆); the field is scanned on the E-plane (𝜙 = 0, 𝜃 = −𝜋 → 𝜋). The fields estimated by 

the two different methodologies are expressed in 𝑑𝐵 and superposed one on top of the other. 

When the antennae are small or large in terms of wavelength the two procedures give the 

same result for the value of the broadside radiation, thus for these two antennae (𝑎 = 0.01𝜆,

𝑎 = 5𝜆) the patterns are normalized to their maximum value, which is, as already stated, the 

same; this is not the case for the medium antenna. The results given by the spherical modes 

are always plotted with a red line, while the ones given by the ideal currents with a blue line. 

We can see that for the small antenna the results are perfectly superposed, and for the large 
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antenna there is a really good agreement down to −23𝑑𝐵; increasing even more the radius of 

the antenna would lead to a better and better agreement for the far field patterns. For the 

medium antenna instead, the results are different, and the absolute value (without any 

normalization) is plotted. Note that for the most directive antenna case (𝑎 = 5𝜆) the scan is 

interrupted at 𝜃 = ±25° , since no value of the patterns is higher than −30𝑑𝐵  after that 

threshold. The input data are |𝐸𝑃𝑊| = 1 𝑉\𝑚,   𝑟𝑜𝑏𝑠 = 3000𝜆,   𝜆 = 1 𝑚. 

 

 

 

 

Fig 3. 9) Far field pattern comparison: Ideal currents (blue line) Versus Spherical Modes (red line). Fig 3.9a)  

antenna of 𝒂 = 𝟎. 𝟎𝟏𝝀. Fig 3.9b)  antenna of 𝒂 = 𝝀. Fig 3.9c)  antenna of 𝒂 = 𝟓𝝀 
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III.g) Available power and comparison between Ideal Currents and Spherical Modes 

 

Once again, what we are looking for is the field the ideal antenna should scatter to cancel the 

outward propagating component of the observable part of the incident field. Keep in mind that 

𝑒𝑜𝑏𝑠
𝑖𝑛𝑤(𝑟) = 𝑒𝑜𝑏𝑠

𝑜𝑢𝑡𝑤(𝑟), 𝑒𝑠𝑐𝑎𝑡
𝑖𝑑 (𝑟) = −𝑒𝑜𝑏𝑠

𝑜𝑢𝑡𝑤(𝑟). This means that the inward and the outward 

component of the observable field carry the same amount of power, thus the power carried by 

the field radiated by the ideal current, that is the power the antenna absorbs, has equal 

amplitude as well, which is: 

 

 |𝑃𝑎𝑣𝑎| = |𝑃𝑟𝑥
𝑖𝑑| = |𝑃𝑜𝑏𝑠

𝑖𝑛𝑤| = |𝑃𝑜𝑏𝑠
𝑜𝑢𝑡𝑤| = |𝑃𝑠𝑐𝑎𝑡

𝑖𝑑 | (3.27) 

 

The available power has been calculated using the Poynting vector in the far field region. 

Since in this zone the field can be locally approximated as a plane wave, the flux of the 

Poynting vector given by the ideal scattered field is of simple expression, so that the available 

power calculation becomes an integration over the angular distribution of the inward or 

outward component of the observable field (or of the field radiated by the ideal currents, of 

course); the only thing that changes is the sign of 𝑃𝑎𝑣𝑎. 

 

 
𝑃𝑎𝑣𝑎 =

1

2
𝑅𝑒 {∬ (𝑒𝑠𝑐𝑎𝑡

𝑖𝑑 (𝑟∞) × ℎ⃗⃗𝑠𝑐𝑎𝑡
𝑖𝑑

∗
(𝑟∞)) ∙ 𝑑𝑆(𝑟∞)

𝑆(𝑟∞)

}

= ∫ ∫
1

2𝜁
|𝐸⃗⃗𝑠𝑐𝑎𝑡
𝑖𝑑 (𝑟∞, 𝛩, 𝛷)|

2
𝑟∞
2𝑠𝑖𝑛𝛩𝑑𝛩𝑑𝛷

𝜋

0

2𝜋

0

 

(3.28) 

 

Please, note that now the available power depends in a continuous way on the antenna 

dimension. Thus, the spatial truncation introduced by the Ideal Currents method does not 

compromise the continuous nature of the reception mechanism, which is what the Spherical 

Modes expansion does instead. Given the fact that the incident field is a plane wave coming 

from underneath (𝜃𝑖𝑛𝑐 = 𝜋 ) and orthogonally to the plane where the ideal sources are 

induced, we can define an effective area, whose expression is: 

 

 
𝐴𝑒𝑓𝑓 =

𝜆2

4𝜋
𝐷𝑚𝑎𝑥 (3.29) 
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For the derivation of 𝐴𝑒𝑓𝑓  see Appendix B. 𝐷𝑚𝑎𝑥  is the directivity of the antenna in the 

direction of maximum radiation, which in this case is 𝜃 = 0, ∀ 𝜙. The effective area has been 

calculated and then compared to the other two estimated by the spherical modes procedure 

and the heuristic formula: 

 

 

Fig 3. 10) Effective area as a function of the physical area, normalized to 𝝀𝟐: comparison between the three 

methods.  

 

All the methodologies tend to give the same results for really small and really large antennae 

in terms of wavelength. For really small antennae they all predict an effective area which is 

the one given by a Huygens’ source; for really large antennae the effective area becomes to 

the limit equal to the physical one. This is obvious for the heuristic formula though: it is 

constructed exactly to do so. In the region that represents most of the antennae designs we 

notice the biggest differences between the ideal currents and the spherical modes, especially 

for antennae of surface around 0.5𝜆2. However, the technique proposed in this work gives 

results that are always comparable to the ones estimated by the spherical modes expansion; 

also it seems to have solved the quantization problem introduced by the latter one, which is an 

error, of course. Finally, it is necessary to stress again the fact the curve obtained with the 

spherical modes is based upon the choice of 𝑁 = 𝑟𝑜𝑢𝑛𝑑(𝑘𝑎), but there is no rule that tells us 

how to choose it: the plot might shift to the left or to the right choosing 𝑁 in a different way, 

and the result would have the same dignity. 



  

IV) NEAR FIELD DERIVATION: SPECTRAL INTEGRALS 

 

In the region close to the antenna domain the asymptotical considerations that were made in 

the previous chapters to derive easier expressions for the field do not apply anymore. This is 

because the reactive part of  both the electric and the magnetic field is still present and its 

effect is not negligible. When moving to the far field region this component attenuates (this is 

why it is also called non-visible field, it does not reach the far field region), and it is well 

known that it can be neglected when evaluating the field at distances bigger than the 

Fraunhofer distance 𝑑𝐹 = 2(2𝑎)
2/𝜆  (or 𝑑 ≫ 𝜆  if 𝑎 < 𝜆 ), after which only the visible 

component of the field remains. Let us take a look at the field expressed as a spectral integral 

as in (3.22): 

 

 
𝑓𝑟𝑎𝑑(𝑟) =

1

4𝜋2
∫ ∫ 𝐺̃𝑓𝑠

𝑓𝑐
(𝑘𝑥,  𝑘𝑦)

+∞

−∞

+∞

−∞

∙ 𝐶̃𝑖𝑑(𝑘𝑥,  𝑘𝑦)𝑒
−𝑗𝑘𝑥(𝑥−𝑥

′)𝑒−𝑗𝑘𝑦(𝑦−𝑦
′)𝑒−𝑗𝑘𝑧|𝑧−𝑧′|𝑑𝑘𝑥𝑑𝑘𝑦  

(4.1) 

 

When calculating the field using the 2𝐷  spectral Green’s function and performing the 

integration in a cylindrical coordinates system in the two complex variables set (𝑘𝜌
2 = 𝑘𝑥

2 +

𝑘𝑦
2, 𝛼), where 𝑑𝑘𝑥𝑑𝑘𝑦 = 𝑘𝜌𝑑𝑘𝜌𝑑𝛼, one can have a quick insight into the visible and non-

visible ‘behaviors’ of the field imagining to perform the integration along the real axis of 𝑘𝜌 

and looking at its exponential dependence 𝑒−𝑗𝑘𝑟 = 𝑒−𝑗𝑘𝜌𝜌𝑒−𝑗𝑘𝑧|𝑧|: 

 

 
𝑘𝑟 = 𝑘𝜌𝜌 + 𝑘𝑧𝑧;    𝑘𝑧 = −𝑗√−(𝑘2 − 𝑘𝜌2) (4.2) 

 

Selecting the expression for 𝑘𝑧 this way allows us to set it always with a negative imaginary 

part, choosing the Riemann space for the solutions of the square root that will be adopted. 

Integrating over the real axis of 𝑘𝜌 if |𝑘𝜌| > 𝑘 then 𝑘𝑧 will be imaginary. Expressing: 

 

 𝑘𝑧 = −𝑗𝑏;    𝑒
−𝑗𝑘𝑧|𝑧| = 𝑒−𝑏|𝑧| (4.3) 

 

the solution decreases exponentially as a function of 𝑧, thus it decays with the distance from 

the reference system where the antenna is allocated at. That solution is precisely the reactive 
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component of the field, whose effect is considered not negligible for small 𝑟 . The field 

component that does not attenuate (visible) is thus the one obtained cropping the integration at 

𝑘𝜌 = 0 → 𝑘
− , the non-visible component the one obtained extending the integration from 

𝑘𝜌 = 𝑘
+ → ∞. The attenuation of the reactive component depends on the observation point: 

the more 𝑟 → 0 , and the more 𝜃 → 𝜋/2 , which translates into 𝑧 → 0 , the weaker is the 

attenuation. Thus, for observation points close to the source (near field region) and/or for 

𝜃 → 𝜋/2 , the integrand function, which is in general constituted by highly oscillating 

complex components, can be of extremely hard numerical evaluation. Appropriate techniques 

have been implemented to overcome this hurdle. 

 

 

IV.a) Spectral integral in cylindrical coordinates: closing it in 𝛼 

 

To derive the whole integral expression for the field in the spectral domain, let us first 

consider the spatial domain convolution: 

 

 𝑒𝑟𝑎𝑑(𝑟) = 𝑔̃
𝑒𝑗(𝑟, 𝑟′) ∗ 𝑗𝑖𝑑(𝑟′) + 𝑔̃

𝑒𝑚(𝑟, 𝑟′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝑟′) (4.4) 

 ℎ⃗⃗𝑟𝑎𝑑(𝑟) = 𝑔̃
ℎ𝑗(𝑟, 𝑟′) ∗ 𝑗𝑖𝑑(𝑟′) + 𝑔̃

ℎ𝑚(𝑟, 𝑟′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝑟′) (4.5) 

 

Let us consider for now only the electric field given by the electric current 

 

 
𝑒𝑟𝑎𝑑(𝑟) = 𝑔̃

𝑒𝑗(𝑟, 𝑟′) ∗ 𝑗𝑖𝑑(𝑟′) = ∫ ∫ 𝑔̃𝑒𝑗(𝑟, 𝑟′)𝑗𝑖𝑑(𝑟′)𝑑𝑟′
2𝜋

0

𝑎

0

 (4.6) 

 

Expressing the spatial Green’s function as the Fourier anti-transform of its spectral 

representation: 

 

 𝑔̃𝑓𝑠
𝑒𝑗(𝑟, 𝑟′)

=
1

4𝜋2
∫ ∫ 𝐺̃𝑓𝑠

𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧′)𝑒

−𝑗𝑘𝑥(𝑥−𝑥
′)𝑒−𝑗𝑘𝑦(𝑦−𝑦

′)𝑒−𝑗𝑘𝑧|𝑧−𝑧′|𝑑𝑘𝑥𝑑𝑘𝑦 
+∞

−∞

+∞

−∞

 
(4.7) 

 
𝑒𝑟𝑎𝑑
𝑒𝑗 (𝑟) =

1

4𝜋2
∫ ∫ ∫ ∫ 𝐺̃𝑓𝑠

𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)
+∞

−∞

+∞

−∞

2𝜋

0

𝑎

0

∙ 𝑒−𝑗𝑘𝑥(𝑥−𝑥
′)𝑒−𝑗𝑘𝑦(𝑦−𝑦

′)𝑒−𝑗𝑘𝑧|𝑧−𝑧′|𝑑𝑘𝑥𝑑𝑘𝑦 𝑗𝑖𝑑(𝑟′)𝑑𝑟′ 

(4.8) 
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 𝑗𝑖𝑑(𝑟′) = 𝐶𝑎𝑚𝑝𝑧̂ × ℎ⃗⃗𝑖𝑛𝑐(𝑟)𝜒(𝑟′, 𝑎) (4.9) 

 

After a few mathematical derivations that can be found in Appendix C one obtains the 

following expression (from now on, since everything is evaluated in free space, 𝑘 = 𝑘0): 

 

 𝑒𝑟𝑎𝑑
𝑒𝑗 (𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

1

𝑘𝑧

2𝜋

0

∞

0

𝐷̃𝑓𝑠
𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝐽𝑖𝑑(𝑘𝜌, 𝑎)𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝜙)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼  

(4.10) 

 

𝐷̃𝑓𝑠
𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′) = [

𝑘0
2 − 𝑘𝜌

2 cos2 𝛼 −𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 −𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧)

−𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 𝑘0

2 − 𝑘𝜌
2 sin2 𝛼 −𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧)

−𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧) −𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧) 𝑘0
2 − 𝑘𝑧

2

] (4.11) 

 
𝐽𝑖𝑑(𝑘𝜌, 𝑎) = −

1

𝜁
𝐸⃗⃗𝑖𝑛𝑐(𝑟)2𝜋𝑎

2
𝐽1(𝑎, 𝑘𝜌)

𝑘𝜌𝑎
 (4.12) 

 

Where 𝐽1  is the Bessel’s function of order 1 and so, once again, the whole 𝐽𝑖𝑑(𝑘𝜌, 𝑎) 

expression has the spectral signature of an Airy pattern, thanks to fact that the source 

distribution is homogeneous over the whole circular cross section of the antenna domain. 

Similar operations can be made for the electric field radiated by the magnetic source, leading 

to the following expression: 

 

 𝑒𝑟𝑎𝑑
𝑒𝑚 (𝑟)

= −
𝑗

8𝜋2
∫ ∫

1

𝑘𝑧

2𝜋

0

∞

0

𝐷̃𝑓𝑠
𝑒𝑚(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝑀⃗⃗⃗̃𝑖𝑑(𝑘𝜌, 𝑎)𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝜙)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 

(4.13) 

 

𝐷̃𝑓𝑠
𝑒𝑚(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′) = [

0 ±𝑗𝑘𝑧 −𝑗𝑘𝜌𝑠𝑖𝑛𝛼

∓𝑗𝑘𝑧 0 𝑗𝑘𝜌𝑐𝑜𝑠𝛼

𝑗𝑘𝜌𝑠𝑖𝑛𝛼 −𝑗𝑘𝜌𝑐𝑜𝑠𝛼 0

] (4.14) 

 
𝑀⃗⃗⃗̃𝑖𝑑(𝑘𝜌, 𝑎) = −𝑧̂ × 𝐸⃗⃗𝑖𝑛𝑐(𝑟)2𝜋𝑎

2
𝐽1(𝑎, 𝑘𝜌)

𝑘𝜌𝑎
 (4.15) 

 

The sum of the two contributions leads to: 
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𝑒𝑟𝑎𝑑(𝑟) =

1

4𝜋2
∫ ∫ (𝐺̃𝑓𝑠

𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝐽𝑖𝑑(𝑘𝜌, 𝑎)
2𝜋

0

+∞

0

+ 𝐺̃𝑓𝑠
𝑒𝑚(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝑀⃗⃗⃗̃𝑖𝑑(𝑘𝜌, 𝑎)) 𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝜙)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼  

(4.16) 

 

Identical mathematical steps can be performed in order to define the radiated magnetic field: 

 

 
ℎ⃗⃗𝑟𝑎𝑑(𝑟) =

1

4𝜋2
∫ ∫ (𝐺̃𝑓𝑠

ℎ𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝐽𝑖𝑑(𝑘𝜌, 𝑎)
2𝜋

0

+∞

0

+ 𝐺̃𝑓𝑠
ℎ𝑚(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝑀⃗⃗⃗̃𝑖𝑑(𝑘𝜌, 𝑎)) 𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝜙)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼  

(4.17) 

 

 

 

The only thing that changes is the constants in front of the spectral Green’s functions. Here 

they are all four listed: 

 

 

𝐺̃𝑓𝑠
𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′) =
−𝜁

2𝑘0𝑘𝑧
[

𝑘0
2 − 𝑘𝜌

2 cos2 𝛼 −𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 −𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧)

−𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 𝑘0

2 − 𝑘𝜌
2 sin2 𝛼 −𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧)

−𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧) −𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧) 𝑘0
2 − 𝑘𝑧

2

] (4.18) 

 

𝐺̃𝑓𝑠
𝑒𝑚(𝑘𝑥 , 𝑘𝑦, 𝑧, 𝑧

′) = −
𝑗

2𝑘𝑧
[

0 ±𝑗𝑘𝑧 −𝑗𝑘𝜌𝑠𝑖𝑛𝛼

∓𝑗𝑘𝑧 0 𝑗𝑘𝜌𝑐𝑜𝑠𝛼

𝑗𝑘𝜌𝑠𝑖𝑛𝛼 −𝑗𝑘𝜌𝑐𝑜𝑠𝛼 0

] (4.19) 

 

𝐺̃𝑓𝑠
ℎ𝑚(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′) =
−
1
𝜁

2𝑘0𝑘𝑧
[

𝑘0
2 − 𝑘𝜌

2 cos2 𝛼 −𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 −𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧)

−𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 𝑘0

2 − 𝑘𝜌
2 sin2 𝛼 −𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧)

−𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧) −𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧) 𝑘0
2 − 𝑘𝑧

2

] (4.20) 

 

𝐺̃𝑓𝑠
ℎ𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′) =
𝑗

2𝑘𝑧
[

0 ±𝑗𝑘𝑧 −𝑗𝑘𝜌𝑠𝑖𝑛𝛼

∓𝑗𝑘𝑧 0 𝑗𝑘𝜌𝑐𝑜𝑠𝛼

𝑗𝑘𝜌𝑠𝑖𝑛𝛼 −𝑗𝑘𝜌𝑐𝑜𝑠𝛼 0

] (4.21) 

 

Note that thanks to the fact that the Airy pattern does not depend on 𝛼 the radiation integral 

can be analytically closed in 𝛼, since the only dependence of the integrand function on this 

variable is found in the dyads of 𝐺̃𝑓𝑠
𝑓𝑐
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′). This is extremely convenient, since the 

numerical evaluation of the integral will be much faster (the integrand function is defined as a 

function of a single complex variable, not two), effectively reducing the time a numerical 
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software (Matlab was used for this work) needs to perform it. All the detailed derivations can 

be found in Appendix E, while here are posted only the forms every one of the nine 

components of the integrand function depends on 𝛼 with and their analytical solutions: 

 

 
𝐶𝐶 =  ∫ cos2 𝛼 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 =

1

2
∫ (1 + cos(2𝛼))𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼
2𝜋

0

2𝜋

0

 (4.22) 

 
𝑆𝑆 =  ∫ sin2 𝛼 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 =

1

2
∫ (1 − cos(2𝛼))𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼
2𝜋

0

2𝜋

0

 (4.23) 

 
𝑆𝐶 =  ∫ 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 =

1

2
∫ sin(2𝛼) 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼
2𝜋

0

2𝜋

0

 (4.24) 

 
𝐶 =  ∫ 𝑐𝑜𝑠𝛼

2𝜋

0

𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 (4.25) 

 
𝑆 =  ∫ 𝑠𝑖𝑛𝛼

2𝜋

0

𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 (4.26) 

 

The integral expressions at the right hand side have analytical results, with the form: 

 

 
∫

𝑐𝑜𝑠

𝑠𝑖𝑛
(𝑁𝛼)

2𝜋

0

𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 = 𝑗−𝑁2𝜋
𝑐𝑜𝑠

𝑠𝑖𝑛
(𝑁𝛷)𝐽𝑁(𝑘𝜌𝜌) (4.27) 

 

Where 𝐽𝑖 are the Bessel’s functions of order 𝑖. The results are: 

 

 𝐶𝐶 = 𝜋 (𝐽0(𝑘𝜌𝜌) − cos(2𝛷) 𝐽2(𝑘𝜌𝜌)) (4.28) 

 𝑆𝑆 = 𝜋 (𝐽0(𝑘𝜌𝜌) + cos(2𝛷) 𝐽2(𝑘𝜌𝜌)) (4.29) 

 𝑆𝐶 = −𝜋 sin(2𝛷) 𝐽2(𝑘𝜌𝜌) (4.30) 

 𝐶 = −𝑗2𝜋 𝑐𝑜𝑠𝛷 𝐽1(𝑘𝜌𝜌) (4.31) 

 𝑆 = −𝑗2𝜋 𝑠𝑖𝑛𝛷 𝐽1(𝑘𝜌𝜌) (4.32) 

 

The Green’s function is a 3 × 3 matrix, and each of the radiated fields are two, electric and 

magnetic, is given by the contribution of both the electric and magnetic source, which means 

that the expression to close are 36 in total. All the expressions for every component of the 
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electric field are reported in Appendix E; the other ones for the magnetic field differ only for 

the constant of the Green’s functions. 

 

 

IV.b) Deformation path 

 

Closing the integral in 𝛼 means that the propagation of the field radiated by the ideal currents 

is now defined by means of a spectral integration of complex argument 𝑘𝜌; the function to be 

integrated is composed by oscillating terms described through Bessel functions of various 

order. The expression of the Bessel function is rather complicated, but its asymptotical 

evaluation for large input arguments can be expressed as a sum of exponential functions that 

depend on 𝑘𝜌𝜌 . It is well known that thanks to the Euler’s formula one could express 

exponential functions as the sum of sinusoidal functions; these functions’ value increases 

extremely fast when the imaginary part of their argument becomes larger. The point is that 

now it is clear that the integrand function is constituted by highly oscillating function of 

complex argument. For this reason, the path one will perform the integration on has to be 

chosen appropriately, otherwise the numerical evaluation of the expression would become 

impossible. 

First thing to consider is that the integrand function depends on: 

 

 
𝑓𝑟𝑎𝑑(𝑟) ∝

1

𝑘𝑧
;     𝑘𝑧 = −𝑗√−(𝑘0

2 − 𝑘𝜌2) (4.33) 

 

Performing the integration, which depends now only on 𝑘𝜌, we end up having a space of 

solutions of 𝑘𝜌 that verify 𝑘𝑧 = 0, and that make the integrand function explode. That space 

of solutions is called branch cut, and must be avoided in the integration path. The starting 

point of the branch cut is precisely on the real axis and it is 𝑘𝜌 = 𝑘0. Also, the path must not 

be crossed: this is because we are dealing with a multivalued function (the square root), and 

we have to choose to work with only one set of the positive or negative solutions it gives. If 

the branch cut is crossed by the integration path the function changes (same absolute value but 

opposite sign), and this makes its evaluation much more complicated [13]. 
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Fig 4. 1) 𝒌𝝆complex plane and branch cut of 𝒌𝒛 = 𝟎 

 

The deformation path used for this procedure introduces a new real variable 𝑥 > 0 ∈ ℛ𝑒. This 

variable is used to define the integration path in 𝑘𝜌, which is now expressed as: 

 

 
𝑘𝜌 = 𝑥 + 𝜀𝑗𝑥𝑒

−
𝑥2

2𝑘0
2
− 𝑗𝛾;     𝑥 = [0 → +∞);     𝜀, 𝛾 > 0 ∈ ℛ𝑒 (4.34) 

 

Thanks to the definition of (𝑥, 𝜀, 𝛾) , there is now no solution such that 𝑘𝜌 = 𝑘0 . The 

differential has now to be changed in the integrand function due to the variables substitution. 

It results: 

 

 
𝑑𝑘𝜌 =

𝜕𝑘𝜌

𝜕𝑥
𝑑𝑥 = 1 + 𝜀𝑗𝑒

−
𝑥2

2𝑘0
2
(1 −

𝑥2

𝑘0
2) (4.35) 

 

𝜀  and 𝛾  are two constants that can be modified to adjust the integration path to the 

characteristics of the radiation problem. In this case they are 𝜀 = 0.15, 𝛾 = 0.2. Due to 𝛾 > 0 

the path has been shifted towards the negative region of the imaginary axis of 𝑘𝜌: this is 

because the higher the imaginary part of ℑ𝑚(𝑘𝜌) is, the more the integrand function tends to 

explode, leading to an impossible numerical evaluation. This is clear when looking at the 

exponential term: 

 

 𝑒−𝑗𝑘𝜌𝜌 = 𝑒−𝑗(𝑅𝑒+𝑗𝐼𝑚)𝜌 = 𝑒−𝑗𝑅𝑒𝜌𝑒𝐼𝑚𝜌 (4.36) 
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 𝑒𝐼𝑚𝜌 → ∞    𝑖𝑓    𝐼𝑚 ↑ (4.37) 

 

 

The deformation path here applied is meant to avoid any kind of singularity, which in this 

case is represented only by the branch cuts, and it is qualitatively depicted here on the 𝑘𝜌 

complex plane: 

 

 

Fig 4. 2) 𝒌𝝆complex plane and branch cut of 𝒌𝒛 = 𝟎 and deformation path 

 

Sometimes, it can be helpful to express wave propagations phenomena in cylindrical 

coordinates systems using a linear combination of Bessel’s functions of the first and second 

kind. These linear combinations’ results are also known as Hankel’s functions. This 

substitution can be applied by means of the following integral identity, which renders the 

convergence, that sometimes can be extremely slow, of the integrand function faster thanks to 

the integration path that now goes from −∞ to +∞: 

 

 
∫ 𝐽𝑖(𝑘𝜌𝜌)𝑘𝜌𝑑𝑘𝜌 =

1

2
∫ 𝐻𝑖

(2)(𝑘𝜌𝜌)𝑘𝜌𝑑𝑘𝜌

+∞

−∞

∞

0

 (4.38) 

 

Both the techniques have been used to test the accuracy of the Matlab scripts. They give the 

same results in about the same computational time. 

Finally, under certain conditions it is possible to mathematically derive the best possible path 

to perform the integration on, the detailed steps are reported in Appendix F. 
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IV.c) Near field Poynting vector: sphere enclosing the antenna 

 

The Poynting vector theorem states that in absence of lossless (one of the initial hypothesis of 

the ideal currents procedure was having a losses load-matched antenna indeed) the power 

available to the antenna can be evaluated by means of the real part of the Poynting vector 

flux, integrated on a whichever closed surface enclosing the antenna. Having already the 

value of the available power, the near field procedure has been validated upon this info: both 

the electric and the magnetic field were calculated over a sphere in the near field region, 

specifically at 𝑟𝑠𝑝ℎ = 1.5𝑎 ∀𝑎, varying the antenna radius as 𝑎 = 0.01𝜆 → 5𝜆. The Poynting 

vector has been evaluated in two ways: using the fields calculated stopping the spectral 

integration at 𝑘𝜌 = 𝑘0, which means that only their visible component was accounted for, and 

using the fields obtained performing the integration until the full convergence of the integrand 

function, using the techniques before explained, retaining thus their whole spectrum. The 

plots show that only one of the two operations, namely the Poynting vector obtained using the 

field calculated by means of a full spectral integration, gives the correct results. 

 

 

Fig 4. 3) Available power as a function of the antenna domain obtained integrating the Poynting vector flux over 

a sphere in the near field of the antenna (𝒓𝒔𝒑𝒉 = 𝟏. 𝟓𝒂), using the electric and magnetic fields calculated either 

by means of a full spectral integration or chopping the integration at 𝒌𝝆 = 𝒌𝟎 
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Fig 4. 4) Available power estimated integrating the Poynting vector flux over a sphere in the far field region. 

 

 

IV.d) Near field Poynting vector: reaction integral on the antenna domain 

 

The fact that retaining only the visible part of the near electric and the magnetic fields to 

calculate the Poynting vector did not give the expected result was surprising, since it’s the 

component of the fields that is used in the far field region to perform the same operation (it is 

in fact the only existing component there). Thus, in order to have a confirmation of the results, 

the available power in the near field region was calculated by means of a reaction integral 

performed on the antenna domain, considering only the visible spectrum of the Poynting 

vector. Starting from the Poynting theorem: 

 

 1

2
𝑅𝑒 {∬(𝑒 × ℎ⃗⃗∗) ∙ 𝑑𝑆

𝑆

} +
1

2
𝜔∭ (𝜇|ℎ⃗⃗|

2
+ 𝜀|𝑒|2)𝑑𝑉

𝑉

= −
1

2
𝑅𝑒 {∭(𝑒 ∙ 𝑗∗ + ℎ⃗⃗∗ ∙ 𝑚⃗⃗⃗)𝑑𝑉

𝑉

} 

(4.39) 

 
Hp: lossless antenna        

1

2
𝜔∭ (𝜇|ℎ⃗⃗|

2
+ 𝜀|𝑒|2)𝑑𝑉

𝑉
= 0 (4.40) 

 1

2
𝑅𝑒 {∬(𝑒 × ℎ⃗⃗∗) ∙ 𝑑𝑆

𝑆

} = −
1

2
𝑅𝑒 {∭(𝑒 ∙ 𝑗∗ + ℎ⃗⃗∗ ∙ 𝑚⃗⃗⃗)𝑑𝑉

𝑉

} (4.41) 

 

This is: the real part of the result obtained performing a reaction between the fields and the 

sources integrated over the volume 𝑉 must be equal to the real part of the integration of the 

flux of the Poynting vector over whichever surface enclosing the antenna. The latter result is 
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already available, thus, in order to verify what the definition of visible is the result of the 

reaction integral must be compared to it.  

In this case we have surface currents, thus the reaction is expressed as a surface integral 

without any loss of meaning. The chosen surface where to perform the reaction over is a 

cylinder, centered in the antenna domain. Then, its height has been shrunk until the flux 

across the lateral surface was negligible: the surface for the integration becomes the antenna 

cross section itself, where the currents are defined. 

 

 

 

Fig 4. 5) Cylinder chosen as the surface where to perform the reaction integral; height progressively reduced to 

obtain a negligible contribute from the lateral surface 

 

Expressing the radiated field as the convolution between the spatial Green’s functions and the 

sources, and the Green’s function as the anti-Fourier’s transform of its spectral representation: 

 

 

𝑃𝑟𝑎𝑑 = −
1

2
𝑅𝑒 (∫ ∫(𝑒(𝜌, 𝜙) ∙ 𝑗𝑖𝑑

∗
(𝜌, 𝜙) + ℎ⃗⃗∗(𝜌, 𝜙) ∙ 𝑚⃗⃗⃗𝑖𝑑(𝜌, 𝜙)) 𝜌𝑑𝜌𝑑𝜙

𝑎

0

2𝜋

0

) (4.42) 

 𝑒(𝜌, 𝜙) = 𝑔̃𝑒𝑗(𝜌,  𝜌′, 𝜙,  𝜙′) ∗ 𝑗𝑖𝑑(𝜌′, 𝜙′) + 𝑔̃
𝑒𝑚(𝜌,  𝜌′, 𝜙,  𝜙′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝜌′, 𝜙′) (4.43) 

 ℎ⃗⃗(𝜌, 𝜙) = 𝑔̃ℎ𝑚(𝜌,  𝜌′, 𝜙,  𝜙′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝜌′, 𝜙′) + 𝑔̃
ℎ𝑗(𝜌,  𝜌′, 𝜙,  𝜙′) ∗ 𝑗𝑖𝑑(𝜌′, 𝜙′) (4.44) 

 

𝑔⃗𝑓𝑐(𝜌, 𝜌′, 𝜙, 𝜙′) =
1

4𝜋2
∬𝐺̃𝑓𝑐(𝑘𝑥 , 𝑘𝑦)𝑒

−𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑥𝑥
′
 𝑒−𝑗𝑘𝑦𝑦𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

 (4.45) 

 

After a few mathematical steps the following expression is found (for the detailed derivation 

please refer to Appendix G): 

 

 

𝑃𝑟𝑎𝑑 = −
1

8𝜋2
𝑅𝑒 ∬(

𝐺𝑥𝑥
𝑒𝑗
(𝑘𝜌, 𝛼)

𝜁
+ 𝜁 (𝐺𝑦𝑦

ℎ𝑚(𝑘𝜌, 𝛼))
∗

)
1

𝜁
|𝐸𝑥(𝑘𝜌, 𝛼)|

2
𝑘𝜌𝑑𝑘𝜌𝑑𝛼

∞

−∞

 (4.46) 
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Thanks to the fact that we are dealing with a uniform distribution of Huygens’ sources, which 

once again are identified as an electric and a magnetic dipole one orthogonal to the other, the 

mixed terms that emerge in Appendix G (the reaction between the magnetic current and the 

magnetic field given by electric current, as well as the reaction between the electric current 

and the electric field given by the magnetic current) cancel out.  Moreover, please note that 

due to the complex conjugate product we ended up having an expression with no exponential 

dependence. This is fundamental and it will be evident proceeding with the derivation: 

 

 
𝑃𝑟𝑎𝑑 =

1

2𝜋
𝑅𝑒 {∫ (

1

2𝑘0

2𝑘0
2 − 𝑘𝜌

2

𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝜌)|

2
𝑘𝜌𝑑𝑘𝜌

∞

0

} (4.47) 

 
𝑃(𝑘𝜌) =

1

2𝜋
(
1

2𝑘0

2𝑘0
2 − 𝑘𝜌

2

𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝜌)|

2
𝑘𝜌 (4.48) 

 
𝑃𝑟𝑎𝑑 = 𝑅𝑒 {∫ 𝑃(𝑘𝜌)𝑑𝑘𝜌

∞

0

} = ∫ 𝑃(𝑘𝜌)𝑑𝑘𝜌

𝑘0

0

 (4.49) 

 

Having no exponential dependence implies in fact that considering only the real part of the 

integral simply means performing the integration for 𝑘𝜌 = 0 → 𝑘0 , which is the visible 

spectrum of the Poynting vector in the near field region. We can see now that the result 

predicted by this expression is precisely equal to the real part of the Poynting vector flux 

when integrated over a sphere in the far field region and in the near field region, but using the 

total electric and magnetic fields (not just their visible part). 

 

 

Fig 4. 6) Available power as a function of the antenna domain predicted by the reaction integral. 
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IV.e) Interpretation of the definition of ‘visible’ 

 

This is where one of the most significant results of this work emerges: it appears that the 

definition of ‘visible’ is de facto applicable to power rather than to fields. The Poynting vector 

evaluated in the near field region with the two methods gives of course different results: the 

correct one, which is perfectly equal to the value estimated using the field in the far field 

region and the reaction integral on the antenna domain, is the one obtained with the fields 

calculated by means of a full spectral integration. It seems thus that the definition of visible, 

which to my knowledge was used to describe the portion of the spectrum of the field that does 

not attenuate while propagating from the antenna to the far field region, is then applicable to 

the Poynting vector rather than to the fields themselves. The correct available power is in fact 

obtained either integrating the flux of the Poynting vector that crosses a sphere in the far field 

region, or integrating it over a sphere in the near field region using the fields calculated 

through a full spectral integration, or performing a reaction integral over the antenna domain 

cropping the integration at 𝑘𝜌 = 𝑘0 : while the latter two methods do not use the visible 

components of the fields, all of them retain only the visible part of the Poynting vector indeed. 

 

 

Fig 4. 7) Available power as a function of the antenna domain predicted by the four different methods: 

comparison. 

 

 

 

 



IV)  NEAR FIELD DERIVATION 

39 | The Observable Field  

 

IV.f) Near field Poynting vector comparison: Ideal Currents Vs Spherical Modes 

 

It is interesting to have a comparison of the near field quantities estimated by the two 

methods, to validate the implementation of the spectral techniques adopted. To do this the 

Poynting vector was calculated with the two procedures in the near field region. Two antenna 

dimension are examined: 𝑎 = 0.5𝜆, 𝑎 = 2𝜆. The absolute value and the direction of real part 

of the Poynting vector are displayed on a sphere of radius 𝑟𝑠𝑝ℎ = 1.5𝑎. Please, note that the 

scales on the colorbars relative to the results given by the two methods are different. We can 

see that for the bigger antenna case the distribution is significantly different, and it reflects the 

quantization error introduced by the spherical modes expansion: for an antenna of 𝑎 = 2𝜆 it 

indeed results 𝑁 = 𝑘𝑎 = 4𝜋 = 12.56. Having a 𝑁 value in the middle between two integers 

is indeed the case with the highest uncertainty, since there is no rule that guides us in the 

choice between 𝑁 = 12 and 𝑁 = 13. In this case 𝑁 = 13 was chosen. On the other hand, 

when 𝑎 = 0.5𝜆 → 𝑁 = 𝜋 = 3.16 . In this case the exact value of 𝑁  is much closer to its 

integer approximation given by 𝑁 = 𝑟𝑜𝑢𝑛𝑑(𝑘𝑎); however the results are still different: 

 

 

Fig 4. 8) Real part of the Poynting vector (colorbar expressed in [W]) on a sphere of radius 𝒂 = 𝟏. 𝟓𝝀 having 

𝒂 = 𝟎. 𝟓𝝀 enclosing the antenna: Fig 4.8a) Estimated by the Ideal Currents method; Fig 4.8b) Estimated by the 

Spherical Modes expansion 
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Fig 4. 9) Real part of the Poynting vector (colorbar expressed in [W]) on a sphere of radius 𝒂 = 𝟏. 𝟓𝝀 having 

𝒂 = 𝟐𝝀 enclosing the antenna: Fig 4.9a)  Estimated by the Ideal Currents method; Fig 4.9b) Estimated by the 

Spherical Modes expansion 

 

Moreover, note how the directivity of the antenna changes between the two procedures and 

when varying its electrical length. 

 

 



  

V) MULTIPLE IMPINGING PLANE WAVES 

 

 

As far as most of the real case are concerned, the incident field cannot be approximated by a 

single incident plane wave. Assuming once again that the sources are located at large distance 

from the reference system, which is centered on the antenna domain, the field can be then 

expressed as a continuous superposition of plane waves, since Maxwell’s equations obey the 

principle of the superposition of the effects. The final aim of the whole description is to define 

the power that given an incident field the antenna can absorb, but it is not possible to define 

an available power for every single plane wave incidence and then simply sum each one of 

them up. Indeed, the difference with respect to the single plane wave incidence case is that 

now the relative phase of the plane waves must be taken into account, given the fact that 

depending on it they can give rise to either constructive or destructive interference. To give a 

brief and intuitive example, given two equal plane wave impinging from symmetrical 

directions (𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2, 𝜙𝑖𝑛,1 = 𝜙𝑖𝑛,2 − 𝜋 ) one would be tempted to define an available 

power for each one of them, that would be in this case the same, following the procedure 

defined chapter IV or V; then one would sum them, obtaining a power that will be twice as 

much. This would lead to huge mistakes though. The electromagnetic fields in general interact 

with each other, and the available power changes depending on the kind of the interference 

they establish: it would be zero with a perfect destructive interference, while, in case of 

constructive interference, it would be four times the power given by a single plane wave. 

What must be done is to evaluate the total incident field accounting for the relative phase of 

each plane wave used to describe it, define its observable component and then estimate the 

available power. As already introduced in chapter II.d, this is not something that is achievable 

by the heuristic formula, since what it would do is precisely a sum of the powers regardless of 

the relative phase, which is wrong. 

 

 

V.a) Observable field definition in case of two incident plane waves  

 

Under the assumptions just listed the expression for the total incident field is then: 
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 𝑒𝑖𝑛𝑐(𝑟)

= ∫ ∫ 𝐸⃗⃗𝑖𝑛(𝜃𝑖𝑛, 𝜙𝑖𝑛)𝑒
−𝑗𝑘𝑟(𝑠𝑖𝑛𝜃𝑖𝑛𝑐𝑜𝑠𝜙𝑖𝑛cos(𝜙𝑖𝑛−Φ)+𝑐𝑜𝑠𝜃𝑖𝑛𝑐𝑜𝑠Θ)

𝜋

0

2𝜋

0

𝑠𝑖𝑛𝜃𝑖𝑛𝑑𝜃𝑖𝑛𝑑𝜙𝑖𝑛 

 

(5.1) 

 

In order to define the observable component of the incident field the procedure is a straight 

forward extension to the one used for the single plane wave incidence case. For each plane 

wave impinging on the reference system a squinted reference system orthogonal to its 

direction of propagation is defined, the ideal currents are calculated, and their radiation, which 

is equal and opposite to the outward component of the observable field, is estimated; then the 

total field, evaluated accounting for the relative phase, is referred to the main reference 

system; finally, all the fields with their relative phases are summed up (for the derivation refer 

to Appendix H). For sake of simplicity, only two waves incoming from symmetrical 

directions (𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2 = 𝜃̅, 𝜙𝑖𝑛,1 = 𝜙̅, 𝜙𝑖𝑛,2 = 𝜙̅ + 𝜋) are taken into account. The ideal 

currents are of course the PO ones multiplied by the amplification factor 𝐶𝑎𝑚𝑝 , which is 

defined for every plane wave and is in general different for each one; however, in the case of 

two equal plane waves incoming from symmetrical directions the effective area is the same, 

and so is 𝐶𝑎𝑚𝑝. Once the procedure is properly defined, the extension to a whichever number 

of plane waves is immediate. A qualitative sketch of the process is the following: 

 

 

Fig 5. 1) Incoming plane waves and domain where the antenna will be allocated at; Fig 5.1b) squinted domains 

relative to each plane wave and their ideal radiated field  
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Fig 5. 2) Ideal radiated field in case of multiple impinging plane waves: final configuration with total radiated 

field.  

 

Once the total field scattered by the ideal currents is evaluated, the calculation of the available 

power is immediate: it simply is the integration of the real part of the Poynting vector flux 

over a sphere in the far field region. 

 

 𝑒𝑖𝑑𝑒𝑎𝑙
𝑠𝑐𝑎𝑡 (𝑟∞) = −𝑒𝑜𝑏𝑠

𝑜𝑢𝑡𝑤(𝑟∞)

= 𝐶𝑎𝑚𝑝∫ ∫ 𝑉⃗⃗𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎,  𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗)

𝜋

0

2𝜋

0

𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛
𝑒−𝑗𝑘𝑟∞

𝑟∞
 

 

(5.2) 

 

𝑃𝑎𝑣𝑎 =
1

2𝜍
∫ ∫ |𝐶𝑎𝑚𝑝∫ ∫  

𝜋

0

2𝜋

0

𝑉⃗⃗𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎,  𝑟̂𝑖𝑛, 𝑘⃗⃗)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛|

2𝜋 

0

2𝜋 

0

𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 (5.3) 

 

However, before calculating the available power, the ideal scattered field needs to be 

analyzed. 
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V.b) Far field region beams splitting  

 

As it was already showed in the previous chapters the larger the antenna is in terms of 

wavelength, the more directive the far field pattern is. This applies also to the multiple plane 

waves incidence case: the fields radiated by each set of currents on the squinted reference 

systems will be summed, and the directivity of the total field pattern depends on the antenna 

electrical length. It is apparent that in the case of two plane waves impinging on a directive 

antenna from different directions a beam splitting phenomenon will be observed: the main 

lobe of one of the two scattered field will be summed up with the side lobes of the other one. 

The more directive the antenna, the more evident this effect. The following plot highlights 

this aspect: keeping the incident angle constant and varying the antenna dimension one sees 

that in case of relatively small antennas the directivity is not enough to give rise to two 

distinct main lobes, while these become more and more visible increasing the antenna 

dimension. The plot is a cut on the E-plane for 𝜃 = [0 → 𝜋], 𝜙 = 0, and it is symmetrical for 

𝜃 = [−𝜋 → 0]; the two plane waves are incoming from 𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2 = 165°, 𝜙𝑖𝑛,1 = 0°,

𝜙𝑖𝑛,2 = 180°. For the largest antenna 𝑎 = 5𝜆 the beam peak occurs almost at 15°, the angle 

of incident referred to the negative part of the 𝑧 axis, which means that the main and the side 

lobes have a really weak interaction due to the high directivity (most of the power is 

concentrated around the angle of incidence, so that the side lobes present where the other 

scattered field’s main lobe is have a really small amplitude). 

 

Fig 5. 3) Multiple impinging plane waves: far field pattern plotted for a constant angle of incidence (𝜽𝒊𝒏,𝟏 =

𝜽𝒊𝒏,𝟐 = 𝟏𝟔𝟓°, 𝝓𝒊𝒏,𝟏 = 𝟎°, 𝝓𝒊𝒏,𝟐 = 𝟏𝟖𝟎°) varying the antenna electrical length. Electrical field normalized to its 

maximum amplitude plotted on the E-plane for 𝜽 = [𝟎 → 𝝅], 𝝓 = 𝟎 
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V.c) Far field patterns comparison: Ideal Currents Vs Spherical Modes  

 

In order to assess whether or not the ideal currents procedure has a scientific dignity the far 

field pattern has been compared to the one predicted by the spherical modes for different 

antennae, different angles of incidence and for constructive or destructive interference at the 

center of the antenna itself.  

Three antennae are analyzed ( 𝑎 = 0.01𝜆, 𝑎 = 𝜆, 𝑎 = 5𝜆 ); field scanned on the E-plane 

(𝜙 = 0, 𝜃 = −𝜋 → 𝜋). The fields are expressed in 𝑑𝐵 and superposed one on top of the other. 

Since the two plane waves are incoming from symmetrical angles their relative phase 𝜓 gives 

rise to a perfect destructive interference when it is 𝜓 = 0 , and to a perfect constructive 

interference if 𝜓 = 𝜋: this is because the projections along 𝑥 of the electric field component 

of the incident waves become either equal (𝜓 = 𝜋), determining a perfect summation, or 

opposite (𝜓 = 0), causing the two fields to cancel out. The perfect destructive interference 

determines a null for 𝜃 = 0. Note that for the small antenna (𝑎 = 0.01𝜆), in the case of a 

perfect constructive interference (𝜓 = 𝜋), we basically have the coherent summation of the 

patterns radiated by two Huygens’ sources; since the Huygens’ source far field pattern has a 

single null for 𝜃 = 𝜋 − 𝜃𝑖𝑛 that null is now disappeared: it is summed to the radiation of the 

field scattered by the currents induced by the other incident plane wave. When the antennae 

are small or large in terms of wavelength the two procedures give the same result for the value 

of the broadside radiation, thus for these two cases (𝑎 = 0.01𝜆, 𝑎 = 5𝜆) the patterns are 

normalized to their maximum value, which is the same; however, this is not the valid for the 

medium antenna. The results given by the spherical modes are always plotted with a red line, 

while the ones given by the ideal currents with a blue line. We can see that for the small 

antenna the results are perfectly superposed, while for the large antenna there is a really good 

agreement down to −20𝑑𝐵. Increasing the radius of the antenna even more would lead to a 

better agreement for the far field patterns. For the medium antenna instead, the results are 

different, and the absolute value (with no normalization) is plotted. Note that for the most 

directive antenna case (𝑎 = 5𝜆) the scan is interrupted before 𝜃 = ±𝜋, since no value of 

either the pattern is higher than −30𝑑𝐵  after that threshold. The input data are |𝐸𝑃𝑊| =

1 𝑉\𝑚,   𝑟𝑜𝑏𝑠 = 3000𝜆,  𝜆 = 1 𝑚. 
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Fig 5. 4) Far field pattern plotted for a constant angle of incidence (𝜽𝒊𝒏,𝟏 = 𝜽𝒊𝒏,𝟐 = 𝟏𝟐𝟎°, 𝝓𝒊𝒏,𝟏 = 𝟎°, 𝝓𝒊𝒏,𝟐 =
𝟏𝟖𝟎°), antenna dimension 𝒂 = 𝟎. 𝟎𝟏𝝀. Electrical field normalized to its maximum amplitude. Blue line: Ideal 

Currents; red line: Spherical Modes; Fig 5.4a) 𝝍 = 𝟎; Fig 5.4b) 𝝍 = 𝝅 
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Fig 5. 5) Far field pattern plotted for a constant angle of incidence (𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2 = 165°, 𝜙𝑖𝑛,1 = 0°, 𝜙𝑖𝑛,2 =
180°), antenna dimension 𝑎 = 𝜆. Blue line: Ideal Currents; red line: Spherical Modes; Fig 5.5a)  𝜓 = 0; 

Fig 5.5b)  𝜓 = 𝜋 
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Fig 5. 6) Far field pattern plotted for a constant angle of incidence (𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2 = 175°, 𝜙𝑖𝑛,1 = 0°, 𝜙𝑖𝑛,2 =
180°), antenna dimension 𝑎 = 5𝜆. Electrical field normalized to its maximum amplitude. Blue line: Ideal 

Currents; red line: Spherical Modes; Fig 5.6a)  𝜓 = 0; Fig 5.6b)  𝜓 = 𝜋 

 

 

 

 

 

 

 



V)  MULTIPLE IMPINGING PLANE WAVES 

49 | The Observable Field  

 

V.d) Available power as a function of the antenna electrical length  

 

The power available to the antenna, evaluated retaining the flux of the real part of the 

Poynting vector over a sphere in the far field region, has been calculated as a function of its 

electrical length for two incoming plane waves, three different set of incident angles, and for 

the two cases of perfect constructive or destructive interference at the antenna center. 

 

 

𝑃𝑎𝑣𝑎 =
1

2𝜍
∫ ∫ |𝐶𝑎𝑚𝑝∫ ∫  

𝜋

0

2𝜋

0

𝑉⃗⃗𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎,  𝑟̂𝑖𝑛, 𝑘⃗⃗)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛|
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|𝐸⃗⃗𝑠𝑐𝑎𝑡
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𝑟∞
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𝜋

0
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(5.4) 

 

The result is normalized to the power available to the same antenna in case of a single plane 

wave incoming form broadside. When the antenna is electrically small the power tends to stay 

constant for both the interference cases (in-phase or anti-phase); this is due to the fact that the 

directivity is still low, and the antenna is not able to discern properly the two different patterns 

given by each of the two incident plane waves. The more the antenna dimension is increased, 

the more it is able to resolve the two different main lobes, giving rise to beam splitting effects. 

For small antennas, when the two incoming plane waves give rise to a perfect constructive 

interference, the power tends to be four times as much the power absorbed from a single plane 

wave: indeed, the two fields sum up coherently, the total field is thus twice as much, and the 

power is proportional to its squared value; instead, in the case of a destructive interference the 

power tends to be zero, since the two incoming plane waves tend to cancel each other. When 

the angle of incidence referred to the negative part of the 𝑧 axis increases, the power absorbed 

by electrically small antennae in case of constructive interference becomes less than four, 

while the power absorbed in case of destructive interference increases. This is because 

increasing the 𝜃𝑖𝑛𝑐 can be seen as a rotation of the far field pattern generated by each plane 

wave; thus, the two do not sum up (neither they cancel out) in the direction of maximum 

amplitude. For electrically large antennas, regardless whether the interference is constructive 

or destructive, and regardless of the angle of incidence, the available power asymptotically 

tends to be twice as much the power given by a single plane wave. This result is extremely 

interesting: the interaction between the two ideal scattered fields is so low that they seem to 

sum up incoherently, that is equivalent to summing the power given by each one of the two in 
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absence of the other. Finally, note that the sum of the powers given by the two interference 

cases is always four: the validation is immediate simply applying the principle of the 

superposition of the effects, for the cases of constructive and destructive interference. 

 

 

Fig 5. 7) Available power for two incident plane waves plotted as a function of the antenna electrical length and 

normalized to the power given by the single plane wave incidence case 𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2 = 175°; 

 

 

 

Fig 5. 8) Available power for two incident plane waves plotted as a function of the antenna electrical length and 

normalized to the power given by the single plane wave incidence case 𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2 = 165° 
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Fig 5. 9) Available power for two incident plane waves plotted as a function of the antenna electrical length and 

normalized to the power given by the single plane wave incidence case. 𝜽𝒊𝒏,𝟏 = 𝜽𝒊𝒏,𝟐 = 𝟏𝟐𝟓°  

 

 

One of the previous cases, namely for 𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2 = 165°, has been used to compare the 

Ideal Currents method and the Spherical Modes one. The difference between the two 

procedures is now even more evident than when opposed to the single plane wave incidence 

case, and the uncertainty introduced by the quantization process increases. Note that for 

antenna of radius around 𝑎 = 𝜆 the difference is significant: looking at Fig 5.4a, Fig5.4b this 

is the region where the far field patterns diverged most. 

 

 

Fig 5. 10) Available power for two incident plane waves plotted as a function of the antenna electrical length and 

normalized to the power given by the single plane wave incidence case. 𝜽𝒊𝒏,𝟏 = 𝜽𝒊𝒏,𝟐 = 𝟏𝟔𝟓°. Ideal Currents 

versus Spherical Modes.  
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V.e) Available power as a function of the incident angle  

 

The available power is now presented as a function of the angle of incidence of the incoming 

plane waves, namely 𝜃𝑖𝑛,1 = 𝜃𝑖𝑛,2 = [180° → 90°]  (or 0° → 90°  when referred to the 

negative part of the 𝑧  axis), for both the cases of perfect constructive and destructive 

interference at the center of the antenna (in phase or in anti-phase). Three different antennae 

are analyzed: 𝑎 = 0.01𝜆, 𝑎 = 𝜆, 𝑎 = 5𝜆. The power is normalized to the one evaluated for the 

single pane wave incidence case, as before. When 𝜃𝑖𝑛 = 180° the power is obviously either 

four times as much or zero, since the fields either perfectly sum up or cancel out each other. 

When instead 𝜃𝑖𝑛 → 90° another interesting result emerges: the value of the available power 

tends once again to be twice as much the one given by a single plane wave incoming from 

broadside, for both the interference cases. This is because when 𝜃𝑖𝑛 = 90° the two plane 

waves are travelling towards the center of the reference system from exactly opposite 

directions; if this is the case either one of these two conditions verifies: if the two plane waves 

are in phase the electric fields sum up while the magnetic fields cancel out, while if they are 

out of phase the two electric fields cancel out and the magnetic fields add up. As before, it is 

like the two ideal scattered fields are incoherent, and their power can be summed up 

independently on from the other.  

 

 

 

Fig 5. 11) Available power for two incident plane waves plotted as a function of the plane waves incident angle 

and normalized to the power given by the single plane wave incidence case. 𝒂 = 𝟎. 𝟎𝟏𝝀 
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Fig 5. 12) Available power for two incident plane waves plotted as a function of the plane waves incident angle 

and normalized to the power given by the single plane wave incidence case. 𝒂 = 𝝀 

 

 

Fig 5. 13) Available power for two incident plane waves plotted as a function of the plane waves incident angle 

and normalized to the power given by the single plane wave incidence case. 𝒂 = 𝟓𝝀 

 

The biggest differences between the fields estimated by the Ideal Currents method and the 

Spherical Modes expansion were seen for antennae of radii in the order of 𝑎 = 𝜆; thus, for 

this case a comparison between the two techniques is showed. Note that the quantization 

effect here is not present, since it depends on 𝑁 = 𝑘𝑎 , and 𝑎  is now a fixed parameter. 

However, the curves relative to the spherical modes expansion are calculate with 𝑁 =

𝑟𝑜𝑢𝑛𝑑(𝑘𝑎) = 𝑟𝑜𝑢𝑛𝑑(2𝜋) = 6 , and the fact that the choice of 𝑁  is arbitrary has to be 

stressed again (one could have chosen 𝑁 + 1 = 7 modes and the results would have had the 

same dignity). 
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Fig 5. 14) Available power for two incident plane waves plotted as a function of the plane waves incident angle 

and normalized to the power given by the single plane wave incidence case. Comparison between spherical 

modes and ideal currents.  

 

 

 

 

 



  

VI) CONCLUSIONS 

 

Implicit in the cornerstone article [9] was the definition of the fraction of the incident field 

able to interact with a generic antenna enclosed in a sphere of radius 𝑎. Inspired by it, the 

novel proposal introduced by this work is to express the incident field as the sum of two 

distinct components: an ‘Observable field’, which corresponds to the incident field 

component the antenna can absorb, and a remaining field, which is substantially zero in the 

antenna domain. Moreover, the observable field is represented as the sum of two propagating 

waves: an inward component, that converges towards the antenna domain, and an outward 

component, that diverges from it. This definition is particularly useful to understand the 

reception mechanism: the ideal antenna is now considered to be that device absorbing the 

whole inward propagating component, transforming it into guided waves, and scattering a 

field that cancels out the outward propagating one. The observable field is identified either as 

the Lower Order (LO) mode component, by the spherical modes expansion, or as the field 

whose outward propagating component is equal and opposite to the one radiated by the Ideal 

Currents. The available power will be associated to the inward component of the observable 

field.  

In order to verify the scientific dignity of the Ideal Currents procedure, the results it predicts 

have been systematically compared, and then extensively discussed, to the ones given by the 

Spherical Modes expansion. Both the procedure involve a truncation: spatial truncation 

around the antenna domain for what concerns the ideal currents, modes truncation based on 

the antenna domain due to the spherical modes expansion. The available power, expressed in 

terms of effective area, was taken as the quality parameter to assess whether the procedure 

was useful: for large and small antennas in terms of wavelength, given a plane wave 

impinging from broadside, the spherical modes and the ideal currents predict the same values; 

for the intermediate region, the results are always comparable even if different, but the ideal 

currents method results are continuous, fact that seems to have solved the quantization error 

introduced by the modes truncation; moreover, the curve obtained thanks to this work is close 

to the one given by the heuristic formula. Of course, the estimated available power will have 

to be compared to real measurements. 

Finally, differently from any heuristic formulation that does not account for the relative phase, 

the procedure has been extended to more generalized cases where the incident field can be 

approximated as a summation of plane waves. The results have been compared with the 
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spherical modes technique and then discussed: they are always comparable, although the 

curves obtained by means of the ideal current technique do not show the controversial 

quantized behavior belonging to  the spherical expansion. 

The ideal currents method will be used in the future for the analysis and the design of 

focusing systems and feeding structures for focal plane arrays. 
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Appendix A  

 

This appendix defines the procedure used to derive the expression for the Ideal Currents, their 

radiation, and its asymptotical evaluation in the far field region. Let us assume to have a plane 

wave propagating in z with the electric field polarized along θ̂: 

 

 𝑒𝑖𝑛𝑐(𝑟) = 𝐸⃗⃗𝑖𝑛𝑐𝑒
𝑗𝑘⃗⃗𝑖𝑟 (A1) 

 

Define a set of sources induced by the impinging field on a plane orthogonal to the plane 

wave propagation direction (z = 0): 

 

 𝑚⃗⃗⃗𝑒𝑞(𝑟
′) = 𝑧̂ × 𝑒𝑖𝑛𝑐(𝑟) (A2) 

 
𝑗𝑒𝑞(𝑟

′) = −𝑧̂ × ℎ⃗⃗𝑖𝑛𝑐(𝑟) = −𝑧̂ × (
1

𝜁
𝑘̂𝑖𝑛𝑐 × 𝑒𝑖𝑛𝑐(𝑟)) (A3) 

 

This set of currents will scatter the incident field, what we need is a field that is equal and 

opposite its observable component: the Ideal Current will have opposite sign. 

Apply the spatial truncation: the ideal currents are defined by means of the PO approximation 

only on the antenna domain χ, and amplified by a constant factor that depends on the effective 

area and whose value is explained in Appendix G: 

 

 𝑚⃗⃗⃗𝑖𝑑(𝑟
′) = −𝑧̂ × 𝑒𝑖𝑛𝑐(𝑟)𝜒(𝑟

′, 𝑎)𝐶𝑎𝑚𝑝 (A4) 

 
𝑗𝑖𝑑(𝑟

′) = 𝑧̂ × (
1

𝜁
𝑘̂𝑖𝑛𝑐 × 𝑒𝑖𝑛𝑐(𝑟))𝜒(𝑟

′, 𝑎)𝐶𝑎𝑚𝑝 (A5) 

 𝜒(𝑟′, 𝑎) = [𝜌′ = 0 ÷ 𝑎;𝜙′ = 0 ÷ 2𝜋] (A6) 

 

The far field radiation of this set of currents can be described as the sum of an inward and an 

outward propagating component. The ideal antenna is that device that absorbs the whole 

inward component scattering a field that cancels out the outward propagating one.  

 

 
𝑒𝑟𝑎𝑑(𝑟) = ∫ ∫ [𝑔̃𝑒𝑗(𝑟, 𝑟′)𝑗𝑖𝑑(𝑟

′)  + 𝑔̃𝑒𝑚(𝑟, 𝑟′)𝑚⃗⃗⃗𝑖𝑑(𝑟
′)]𝑑𝑟′

2

0

𝑎

0

 (A7) 
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ℎ⃗⃗𝑟𝑎𝑑(𝑟) = ∫ ∫ [𝑔̃ℎ𝑗(𝑟, 𝑟′)𝑗𝑖𝑑(𝑟

′)  + 𝑔̃ℎ𝑚(𝑟, 𝑟′)𝑚⃗⃗⃗𝑖𝑑(𝑟
′)]𝑑𝑟′

2

0

𝑎

0

 (A8) 

 

Let us consider only the electric field (the procedure to calculate the magnetic field will be 

equivalent). Starting from the magnetic and electric vector potentials it is possible to 

demonstrate that: 

 

 
𝑒𝑟𝑎𝑑(𝑟) = −𝑗𝜔𝜇∭ 𝐺̃𝑒(𝑟, 𝑟′)𝑗𝑖𝑑(𝑟′)𝑑𝑟

′ −∭𝐺̃𝑚(𝑟, 𝑟′)𝑚⃗⃗⃗𝑖𝑑(𝑟′)𝑑𝑟
′

𝑉𝑉

 (A9) 

 
𝐺̃𝑒(𝑟, 𝑟′) = (𝐼 −

𝛻⃗⃗𝛻⃗⃗

𝑘2
)𝑔(𝑟, 𝑟′);    𝐺̃𝑚(𝑟, 𝑟′) = 𝛻⃗⃗𝑔(𝑟, 𝑟′) × 𝐼 (A10) 

 
𝑔(𝑟, 𝑟′) =

𝑒−𝑗𝑘𝑅

4𝜋𝑅
;    𝑅 = |𝑟 − 𝑟′| (A11) 

 

Since: 

 
𝛻⃗⃗𝑔(𝑟, 𝑟′) = −(

1

𝑅
+ 𝑗𝑘)

𝑒−𝑗𝑘𝑅

4𝜋𝑅
𝑅̂ (A12) 

 

In the far field 𝑅 ≫ 𝜆: 

 

 
𝛻⃗⃗𝑔(𝑟, 𝑟′) = −(

1

𝑘𝑅
+ 𝑗) 𝑘

𝑒−𝑗𝑘𝑅

4𝜋𝑅
𝑅̂ ≃ −𝑗𝑘

𝑒−𝑗𝑘𝑅

4𝜋𝑅
𝑅̂ (A13) 

 𝛻⃗⃗ ≃ −𝑗𝑘𝑅̂;    𝛻⃗⃗𝛻⃗⃗ = −𝑘2𝑅̂𝑅̂ (A14) 

 

this means that: 

 

 𝐺̃𝑒(𝑟, 𝑟′) = (𝐼 − 𝑅̂𝑅̂)𝑔(𝑟, 𝑟′);    𝐺̃𝑚(𝑟, 𝑟′) = −𝑗𝑘𝑔(𝑟, 𝑟′)𝑅̂ × 𝐼 (A15) 

 
𝑒𝑟𝑎𝑑(𝑟) = −𝑗𝑘𝜁∭(𝐼 − 𝑅̂𝑅̂)𝑔(𝑟, 𝑟′)𝑗𝑖𝑑(𝑟′)𝑑𝑟

′

𝑉

+ 𝑗𝑘∭𝑅̂ × 𝐼𝑔(𝑟, 𝑟′)𝑚⃗⃗⃗𝑖𝑑(𝑟′)𝑑𝑟
′

𝑉

 

(A16) 

 

Also, in the far field, where the vector 𝑟 − 𝑟′ represents the distance from the source to the 

observation point, the two vectors 𝑟, 𝑟′ can be considered parallel. Mathematically this is: 
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 𝑅 = |𝑟 − 𝑟′|;     𝑟 ≫ 𝑟′ (A17) 

 

𝑅 = √(𝑟 − 𝑟′)(𝑟 − 𝑟′) = √𝑟2 − 2𝑟𝑟′ + 𝑟′2 = 𝑟√1 −
2𝑟𝑟′

𝑟2
+
𝑟′2

𝑟2
 (A18) 

 

using Taylor’s expansion to the first order 

 

 
𝑅 ≃ 𝑟 (1 −

2𝑟𝑟′

2𝑟2
+
𝑟′
2

2𝑟2
+⋯) = 𝑟 − 𝑟′𝑟̂;    |𝑅| → 𝑟;    𝑅̂ → 𝑟̂ (A19) 

 

This leads to: 

 

 
𝑒𝑟𝑎𝑑(𝑟) = −𝑗𝑘𝜁(𝐼 − 𝑟̂𝑟̂)∭ 𝑗𝑖𝑑(𝑟′)

𝑒−𝑗𝑘|𝑟−𝑟
′|

4𝜋|𝑟 − 𝑟′|
𝑑𝑟′ + 𝑗𝑘𝑟̂

𝑉

× 𝐼∭ 𝑚⃗⃗⃗𝑖𝑑(𝑟′)
𝑒−𝑗𝑘|𝑟−𝑟

′|

4𝜋|𝑟 − 𝑟′|
𝑑𝑟′

𝑉

 

(A20) 

 
𝑒𝑟𝑎𝑑(𝑟) ≃ [−𝑗𝑘𝜁(𝐼 − 𝑟̂𝑟̂)∭ 𝑗(𝑟′)𝑖𝑑𝑒

𝑗𝑘𝑟′𝑟̂𝑑𝑟′ + 𝑗𝑘𝑟̂
𝑉

× 𝐼∭𝑚⃗⃗⃗𝑖𝑑(𝑟′)𝑒
𝑗𝑘𝑟′𝑟̂𝑑𝑟′

𝑉

]
𝑒−𝑗𝑘𝑟

4𝜋𝑟
 

(A21) 

 

Eventually: 

 

 
𝑒𝑟𝑎𝑑(𝑟) = 𝑗𝑘 [−𝜁(𝐼 − 𝑟̂𝑟̂)𝐽𝑖𝑑(𝑘⃗⃗) + 𝑟̂ × 𝑀⃗⃗⃗̃𝑖𝑑(𝑘⃗⃗)]

𝑒−𝑗𝑘𝑟

4𝜋𝑟
= 𝐸⃗⃗𝑟𝑎𝑑(𝑟)

𝑒−𝑗𝑘𝑟

𝑟
 (A22) 

 
𝐸⃗⃗𝑟𝑎𝑑(𝑟) =

𝑗𝑘

4𝜋
[−𝜁(𝐼 − 𝑟̂𝑟̂)𝐽𝑖𝑑(𝑘⃗⃗) + 𝑟̂ × 𝑀⃗⃗⃗̃𝑖𝑑(𝑘⃗⃗)] (A23) 

 

Note that this expression underlines the fact the electric field, and so is the magnetic field, is 

transversely polarized with respect to the direction of propagation of the field. Now, the 

Fourier’s transform of the sources needs to be calculated. First of all, if the plane wave is 

coming from 𝜃𝑖𝑛𝑐 = 0 𝑉𝑒𝑙 𝜋  →   𝑘̂𝑖𝑛𝑐 = ±𝑧̂, and some approximations can be done applying  

𝑨 × (𝑩 × 𝑪) = (𝑨𝑪)𝑩 − (𝑨𝑩)𝑪: 
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𝑗𝑖𝑑(𝑟

′) = −
1

𝜁
𝐸⃗⃗𝑖𝑛𝑐(𝑟) (A24) 

 
𝐽𝑖𝑑(𝑘⃗⃗) = ∬𝑗𝑖𝑑(𝑟′)𝑒

−𝑗𝑘𝑟′𝑟̂𝑑𝑟′

𝑠

= −𝐶𝑎𝑚𝑝
1

𝜁
𝐸⃗⃗𝑖𝑛𝑐(𝑟)∬𝑒−𝑗𝑘𝑟

′𝑟̂𝑑𝑟′

𝑠

 (A25) 

 𝑘⃗⃗𝑟′ = 𝑘(𝑠𝑖𝑛𝛩𝑐𝑜𝑠𝛷𝑥̂ + 𝑠𝑖𝑛𝛩𝑠𝑖𝑛𝛷𝑦̂ + 𝑐𝑜𝑠𝛩𝑧̂)𝜌′(𝑐𝑜𝑠𝛷′𝑥̂ + 𝑠𝑖𝑛𝛷′𝑦̂)

= 𝑘𝑠𝑖𝑛𝛩𝜌′cos (𝛷 − 𝛷′) 
(A26) 

 
𝐹𝑇(𝑘⃗⃗) = ∫ ∫ 𝑒𝑗𝑘⃗⃗𝑟

′
2𝜋

0

𝑑𝑆
𝑎

0

= ∫ ∫ 𝑒𝑗𝑘𝑠𝑖𝑛𝜃𝜌
′ cos(𝛷−𝛷′)𝜌′𝑑𝜌′𝑑𝛷′

2𝜋

0

𝑎

0

 (A27) 

 
𝐹𝑇(𝑘⃗⃗) = 𝐹𝑇(𝑘𝑠𝑖𝑛𝜃, 𝑎) = 2𝜋𝑎2

𝐽1(𝑎, 𝑘𝑠𝑖𝑛𝜃)

𝑘𝑎𝑠𝑖𝑛𝜃
 (A28) 

 

Where  𝐽1 is the Bessel’s function of order 1, and the whole Fourier’s transform is nothing 

else but the Airy pattern. For the magnetic source the calculation is precisely the same. 

 

 
𝐽(𝑘⃗⃗) = −𝐶𝑎𝑚𝑝

1

𝜁
𝐸⃗⃗𝑖𝑛𝑐{𝐴𝑖𝑟𝑦(𝑘⃗⃗)} (A29) 

 𝑀⃗⃗⃗̃(𝑘⃗⃗) = −𝐶𝑎𝑚𝑝𝑧̂ × 𝐸⃗⃗𝑖𝑛𝑐{𝐴𝑖𝑟𝑦(𝑘⃗⃗)} (A30) 

 

Substituting in (A23): 

 

 
𝐸⃗⃗𝑟𝑎𝑑(𝑟) = 𝐶𝑎𝑚𝑝

𝑗𝑘

4𝜋
{𝐴𝑖𝑟𝑦(𝑘⃗⃗)} ((𝐼 − 𝑟̂𝑟̂)𝐸⃗⃗𝑖𝑛𝑐 − 𝑟̂ × (𝑧̂ × 𝐸⃗⃗𝑖𝑛𝑐)) (A31) 

 
𝐸⃗⃗𝑟𝑎𝑑(𝑟) = 𝐶𝑎𝑚𝑝

𝑗𝑘

4𝜋
{𝐴𝑖𝑟𝑦(𝑘⃗⃗)} (𝑟̂ × (𝐸⃗⃗𝑖𝑛𝑐 × (𝑟̂ + 𝑧̂)))  (A32) 

 

The radiation can be more compactly expressed as in (3.20), (3.21). 

 

 

 

 

 

 

 



  

Appendix B  

 

This appendix shows how to calculate the antenna effective area, parameter used to estimate 

the scattered power by the ideal currents. To calculate that we resort first to the time average 

Poynting vector: 

 

 
𝑆𝑎𝑣𝑒(𝑟) =

1

2
𝑅𝑒{𝑒𝑟𝑎𝑑(𝑟) × ℎ⃗⃗𝑟𝑎𝑑(𝑟)

∗} (B1) 

 

The Poynting vector is calculated on a sphere located in the far field region, enclosing the 

antenna and centered in the adopted reference system. We need to calculate the radiation 

intensity, defined as ‘the power radiated from an antenna per unit solid angle’ 

 

 
𝑈(𝛩,𝛷) = 𝑟2𝑆𝑎𝑣𝑒 =

𝑟2

2
𝑅𝑒{𝑒∞(𝑟) × ℎ⃗⃗∞(𝑟)

∗} =
𝑟2

2𝜁
|𝑒∞(𝛩,𝛷)|

2 (B2) 

 

Performing a surface integration of 𝑆𝑎𝑣𝑒 would give the total radiated power (integration over 

any surface enclosing the antenna), so multiplying the Poynting vector by the radius squared 

we obtain the power density expressed per unitary solid angles. 

  

 
𝑃𝑟𝑎𝑑 = ∫ ∫ 𝑈(𝛩,𝛷)𝑑𝛺 =

𝜋

0

2𝜋

0

∫ ∫ 𝑈(𝛩,𝛷)𝑠𝑖𝑛𝛩𝑑𝛩𝑑𝛷
𝜋

0

2𝜋

0

 (B3) 

 

Considering that the average radiated power per unit solid angle is simply the total radiated 

power divided by the total solid angle, it is immediate to verify that the directivity is: 

 

 
𝐷(𝛩,𝛷) =

𝑈(𝛩,𝛷)

𝑃𝑟𝑎𝑑
4𝜋

 (B4) 

 

Now the maximum effective area of any antenna is related to its maximum directivity 

through: 
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𝐴𝑒𝑓𝑓 =

𝜆2

4𝜋
𝐷𝑀𝑎𝑥 (B5) 



  

Appendix C  

 

This appendix explains how to express the field using the spectral representation of the 

Green’s function and then how to perform an asymptotical evaluation of the radiation in the 

far field region. Since the further the observation point, the faster the integrand function 

oscillates (due to its exponential dependence), its numerical evaluation becomes harder and 

harder to perform. To overcome this problem it is possible to consider the behavior of the 

function in the far field (𝑟 > 2𝐷2/𝜆), that will lead to an expression which is equivalent to 

(A32). In order to do this we resort to a change of variable to perform an asymptotical 

evaluation of the far field. The variable change expresses the integrand function as function of 

(𝑘𝜌, 𝛽, 𝛼), instead of (𝑘𝑥, 𝑘𝑦, 𝑘𝑧); Note that both (𝑘𝜌, 𝛽, 𝛼) are in general complex quantities.  

Let us first define the radiated electric field using the convolution integral between the spatial 

Green’s functions and the sources (the same steps apply for what concerns the magnetic 

field):  

 

 𝑒𝑟𝑎𝑑(𝑟) = 𝑔̃
𝑒𝑗(𝑟, 𝑟′) ∗ 𝑗𝑖𝑑(𝑟′) + 𝑔̃

𝑒𝑚(𝑟, 𝑟′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝑟′) (C1) 

 
𝑒𝑟𝑎𝑑(𝑟) = ∬ [𝑔̃𝑒𝑗(𝑟, 𝑟′)𝑗𝑖𝑑(𝑟′) + 𝑔̃

𝑒𝑚(𝑟, 𝑟′)𝑚⃗⃗⃗𝑖𝑑(𝑟′)]𝑑𝑟′
𝑆′ 

  (C2) 

 

Now, let us express the spatial Green’s function the relates the electric source to the electric 

field as the 2D anti-Fourier transform of its spectral representation (once again, the derivation 

is the same for the other components), and then substitute it in (C2): 

 

 
𝑔̃𝑒𝑗(𝑟′, 𝑟) =

1

4𝜋2
∫ ∫ 𝐺̃𝑒𝑗(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)
+∞

−∞

+∞

−∞

∙ 𝑒−𝑗𝑘𝑥(𝑥−𝑥
′)𝑒−𝑗𝑘𝑦(𝑦−𝑦

′)𝑒−𝑗𝑘𝑧|𝑧−𝑧′| 𝑑𝑘𝑥𝑑𝑘𝑦 

(C3) 

 
𝑒𝑟𝑎𝑑(𝑟) = ∬

1

4𝜋2
∫ ∫ 𝐺̃𝑒𝑗(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)
+∞

−∞

+∞

−∞𝑆′

∙ 𝑒−𝑗𝑘𝑥(𝑥−𝑥
′)𝑒−𝑗𝑘𝑦(𝑦−𝑦

′)𝑒−𝑗𝑘𝑧|𝑧−𝑧
′| 𝑑𝑘𝑥𝑑𝑘𝑦𝑗𝑖𝑑(𝑟′)𝑑𝑟

′ 

(C4) 

 

The integral can be expressed as: 
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𝑒𝑟𝑎𝑑(𝑟) =

1

4𝜋2
∫ ∫ (∬ 𝑗𝑖𝑑(𝑟′)𝑒

𝑗𝑘𝑥𝑥
′
𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑟′

𝑆′
)

+∞

−∞

+∞

−∞

∙ 𝐺̃𝑒𝑗(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧
′)𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦𝑒−𝑗𝑘𝑧|𝑧−𝑧

′|𝑑𝑘𝑥𝑑𝑘𝑦 

(C5) 

 
𝐽(𝑘⃗⃗) = ∬ 𝑗𝑖𝑑(𝑟′)𝑒

𝑗𝑘𝑥𝑥
′
𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑟′

𝑆′
 (C6) 

 

It is easy to recognize now the Fourier transform of the current distribution. Let us assume 

that the source is located at 𝑧′ = 0, the expression turns into:  

 

 
𝑒𝑟𝑎𝑑(𝑟) =

1

4𝜋2
∫ ∫ 𝐺̃𝑒𝑗(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝐽(𝑘⃗⃗)𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦𝑒−𝑗𝑘𝑧|𝑧|𝑑𝑘𝑥𝑑𝑘𝑦

+∞

−∞

+∞

−∞

 (C7) 

 

For this work’s configuration, the source are radiating in free space, and the Green’s function 

accounts for it. Adding the magnetic source contribution, and expressing everything in a 

cylindrical coordinates system: 

 

 
𝑒𝑟𝑎𝑑(𝑟) =

1

4𝜋2
∫ ∫ (𝐺̃𝑓𝑠

𝑒𝑗
(𝑘𝑥, 𝑘𝑦 , 𝑧, 𝑧

′)𝐽𝑖𝑑(𝑘𝜌, 𝑎)
2𝜋

0

+∞

0

+ 𝐺̃𝑓𝑠
𝑒𝑚(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝑀⃗⃗⃗̃𝑖𝑑(𝑘𝜌, 𝑎)) 𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝜙)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼  

(C8) 

 

Now, analyzing for the sake of simplicity only the electric field radiated by the electric 

current,: 

 

 𝑒𝑟𝑎𝑑(𝑟)

=
1

4𝜋2
∫ ∫ 𝐺̃𝑓𝑠

𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝐽𝑖𝑑(𝑘𝜌, 𝑎)𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝜙)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 

2𝜋

0

+∞

0

 
(C9) 

 
𝐺̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼) = −

𝜁

2𝑘0𝑘𝑧
𝐷̃𝑓𝑠
𝑒𝑗
(𝑘𝜌, 𝛼) (C10) 

 

The chosen change of variable is the following: 

 

 𝑘𝜌 = 𝑘0𝑠𝑖𝑛𝛽 (C11) 
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𝑘𝑧 = √𝑘0

2 − 𝑘𝜌2 = √𝑘0
2 − 𝑘0

2 sin2 𝛽 = ±𝑘0𝑐𝑜𝑠𝛽 (C12) 

 

The dyad of this spectral Green’s function (4.11) becomes: 

 

 𝐷̃𝑓𝑠
𝑒𝑗
(𝑘𝜌, 𝛼)

= [

𝑘0
2 − 𝑘0

2 sin2 𝛽 cos2 𝛼 −𝑘0
2 sin2 𝛽 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 −𝑘0𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛼(±𝑘0𝑐𝑜𝑠𝛽)

−𝑘0
2 sin2 𝛽 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 𝑘0

2 − 𝑘0
2sin2 𝛽 sin2 𝛼 −𝑘0𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛼(±𝑘0𝑐𝑜𝑠𝛽)

−𝑘0𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛼(±𝑘0𝑐𝑜𝑠𝛽) −𝑘0𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛼(±𝑘0𝑐𝑜𝑠𝛽) 𝑘0
2 sin2 𝛽 − 𝑘0

2cos2 𝛽

] 
(C13) 

 

The differential turns into: 

 

 𝑑𝑘𝜌

𝑑𝛽
𝑑𝛽 = 𝑘0𝑐𝑜𝑠𝛽𝑑𝛽 (C14) 

 

Substituting (C4), (C5), (C6) in (C2): 

 

 
𝑒𝑟𝑎𝑑(𝑟) = −

1

8𝜋2
𝜁

𝑘0
∫ ∫

1

𝑘0𝑐𝑜𝑠𝛽
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼)𝐽𝑎(𝑘⃗⃗)

2𝜋

0

𝜋
2

0

∙ 𝑒−𝑗𝑘0𝑠𝑖𝑛𝛽 rsinΘ cos (𝛼−Φ) 𝑒−𝑗𝑘0𝑟𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|𝑘0
2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽𝑑𝛼𝑑𝛽  

(C15) 

 
𝑒𝑟𝑎𝑑(𝑟) = −

1

8𝜋2
𝜁

𝑘0
∫ ∫

1

𝑘0𝑐𝑜𝑠𝛽
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼)𝐽𝑎(𝑘⃗⃗)

2𝜋

0

𝜋
2

0

∙ 𝑒−𝑗𝑘0𝑟(𝑠𝑖𝑛𝛽 sinΘcos(𝛼−Φ)+𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) 𝑘0
2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽𝑑𝛼𝑑𝛽  

(C16) 

 

When evaluating the radiation at large distance from the source this integrand function 

oscillates really fast. However, it presents much slowly varying points as a function of 𝜃, 𝜙 

(saddle points) that will determine the final result (the integration of the remaining part will 

give zero, since it adds and subtract continuously really close quantities). Looking into the 

exponential dependence one derives the first saddle point: 

 

 𝜕

𝜕𝛼
(𝑠𝑖𝑛𝛽 sinΘ cos(𝛼 − Φ) + 𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) = 0 (C17) 

 𝜕

𝜕𝛼
(𝑠𝑖𝑛𝛽 sinΘ cos(𝛼 − Φ) + 𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) = −𝑠𝑖𝑛𝛽 sinΘ sin(𝛼 − Φ) = 0 (C18) 
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 𝛼𝑠 = 𝑁𝜋 +𝛷 (C19) 

 

The saddle points are numerically periodical, but the result they represent is not always 

physical. Indeed, we have to describe the propagation of waves, and we’re doing it using a 

spherical coordinates system. This system is defined for 𝛩 = [0 → 𝜋], 𝛷 = [0 → 2𝜋]. This 

means that also the saddle points we’re going to evaluate the field at will have to respect these 

boundaries. Also, for every observation point we perform an integration in (𝛽, 𝛼), which are 

defined in a spherical coordinate system as well. Moreover, they have to satisfy the domain 

where the integrand function is defined: 

 

 𝛽 ∈ (0 →
𝜋

2
 𝑉 
𝜋

2
→ 𝜋) , 𝛼 ∈ (0 → 2𝜋) (C20) 

 

Thus, the for the two hemisphere (𝑧 < 0, 𝑧 > 0) there is only one possible saddle point for 𝛼, 

and it is: 

 

 𝛼 = 𝛷 (𝑓𝑜𝑟 𝑁 = 0) (C21) 

 

Also, the choice of the N is independent on the observation hemisphere, that depends only on 

𝜃. Now, from Balanis, Advanced Engineering Electromagnetics (pag. 963), we know that 

evaluating a function in its saddle points along a complex integration path leads to the 

following expression: 

 

 

𝐼(𝛽) = ∫𝐹(𝑧)𝑒𝛽𝑓(𝑧)𝑑𝑧
𝐶

≃ √
2𝜋

−𝛽𝑓′′(𝑧𝑠)
𝐹(𝑧𝑠)𝑒

𝛽𝑓(𝑧𝑠) (C22) 

 

let’s split the integration for the upper and bottom plane. 

Positive root:  

 

 𝑘𝑧 = +𝑘0𝑐𝑜𝑠𝛽 → (𝑧 > 0, 𝛩 <
𝜋

2
) (C23) 

 

the 𝛼 saddle point is 𝛼𝑠 = 𝛷. Integrating along 𝑑𝛼 first it is apparent that: 
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𝐹(𝑧) =

1

𝑘0𝑐𝑜𝑠𝛽
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽, 𝛼)𝑘0

2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 (C24) 

 𝑒𝛽𝑓(𝑧) = 𝑒−𝑗𝑘0𝑟(𝑠𝑖𝑛𝛽 sinΘcos(𝛼−Φ)+𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|)  (C25) 

 𝛽 = 𝑘0𝑟 (C26) 

 𝑓(𝑧) = −𝑗(𝑠𝑖𝑛𝛽 sinΘ cos(𝛼 − Φ) + 𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) (C27) 

 𝑓(𝑧𝑠) = −𝑗(𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩 + 𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) (C28) 

 𝑓′′(𝑧) = −𝑗(−𝑠𝑖𝑛𝛽 sinΘ cos(𝛼 − Φ)) (C29) 

 𝑓′′(𝑧𝑠) = 𝑗𝑠𝑖𝑛𝛽 sinΘ (C30) 

 

Thus: 

 

 

𝑒𝑟𝑎𝑑(𝑟) ≃ −
1

8𝜋2
𝜁

𝑘0
∫ √

2𝜋

−𝑗𝑘0𝑟𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠)

𝜋
2

0

∙ 𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠) 𝑒
−𝑗𝑘0𝑟(𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|+𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩)(𝑘0𝑠𝑖𝑛𝛽)𝑑𝛽 

(C31) 

 

𝑒𝑟𝑎𝑑(𝑟) = −
1

8𝜋2
𝜁

𝑘0
∫ √

2𝜋

−𝑗𝑟𝑠𝑖𝑛𝛩
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠)

𝜋
2

0

∙ 𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠) 𝑒
−𝑗𝑘0𝑟(𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|+𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩)(√𝑘0𝑠𝑖𝑛𝛽)𝑑𝛽 

(C32) 

 

This expression highlights the second saddle point:  

 

 𝜕

𝜕𝛽
(𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩| + 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩) = 0 (C33) 

 

In this half space (𝑧 − 𝑧𝑐 > 0) we can remove the modulus (𝛩 > 𝜋/2 → 𝑐𝑜𝑠𝛩 > 0). This 

way we obtain: 

 

 𝜕

𝜕𝛽
(𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩| + 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩) =

𝜕

𝜕𝛽
(𝑘0𝑟𝑐𝑜𝑠(𝛽 − 𝛩)) = −𝑘0𝑟𝑠𝑖𝑛(𝛽 − 𝛩) = 0 (C34) 

 𝛽𝑠 = 𝑁𝜋 + 𝛩 (C35) 

 

Now again, since the saddle point must agree with the integral variables boundaries we chose 

(𝛽 ∈ [0, 𝜋/2]) and since in this hemisphere 𝛩 ∈ [0, 𝜋/2] the only possible choice is: 
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 𝛽𝑠 = 𝛩 (C36) 

 

𝐼(𝛽) = ∫𝐹(𝑧)𝑒𝛽𝑓(𝑧)𝑑𝑧
𝐶

≃ √
2𝜋

−𝛽𝑓′′(𝑧𝑠)
𝐹(𝑧𝑠)𝑒

𝛽𝑓(𝑧𝑠) (C37) 

 𝐹(𝑧) = 𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠)√𝑘0𝑠𝑖𝑛𝛽 (C38) 

 𝑒𝛽𝑓(𝑧) = 𝑒−𝑗𝑘0𝑟(𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|+𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩) (C39) 

 𝑓(𝑧) = −𝑗𝑘0(𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩| + 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩) (C40) 

 𝑓(𝑧𝑠) = −𝑗𝑘0(𝑐𝑜𝑠𝛩|𝑐𝑜𝑠𝛩| + 𝑠𝑖𝑛𝛩𝑠𝑖𝑛𝛩) (C41) 

 

since 𝑧 − 𝑧𝑐 > 0 → |𝑐𝑜𝑠𝛩| = 𝑐𝑜𝑠𝛩 

 

 𝑓(𝑧𝑠) = −𝑗𝑘0 (C42) 

 𝑓′′(𝑧) = −𝑗𝑘0(−𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩| − 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩) (C43) 

 𝑓′′(𝑧𝑠) = −𝑗𝑘0(−𝑐𝑜𝑠𝛩|𝑐𝑜𝑠𝛩| − 𝑠𝑖𝑛𝛩𝑠𝑖𝑛𝛩) (C44) 

 

since 𝑧 − 𝑧𝑐 > 0 → |𝑐𝑜𝑠𝛩| = 𝑐𝑜𝑠𝛩 

 

 𝑓′′(𝑧𝑠) = 𝑗𝑘0 (C45) 

 

so from: 

 

 

𝑒𝑟𝑎𝑑(𝑟) ≃ −
1

8𝜋2
𝜁

𝑘0
∫ √

2𝜋

−𝑗𝑟𝑠𝑖𝑛𝛩
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠)

𝜋
2

0

∙ 𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠) 𝑒
−𝑗𝑘0𝑟(𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|+𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩)√𝑘0𝑠𝑖𝑛𝛽𝑑𝛽 

(C46) 

 

we obtain: 

 

 𝑒𝑟𝑎𝑑(𝑟)

≃ −
1

8𝜋2
𝜁

𝑘0
√

2𝜋

−𝑗𝑟𝑠𝑖𝑛𝛩
√
2𝜋

−𝑗𝑘0𝑟
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)√𝑘0𝑠𝑖𝑛𝛽𝑠𝑒

−𝑗𝑘0𝑟

= −
1

8𝜋2
𝜁

𝑘0

2𝜋

𝑟
 √
𝑠𝑖𝑛𝛽𝑠
𝑗2𝑠𝑖𝑛𝛩

𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝑒

−𝑗𝑘0𝑟 

(C47) 
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𝑒𝑟𝑎𝑑(𝑟) = 𝑗

𝜁

𝑘0
 𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)

𝑒−𝑗𝑘0𝑟

4𝜋𝑟

= −𝑗𝑘𝑧 𝐺̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)

𝑒−𝑗𝑘0𝑟

2𝜋𝑟
         

(C48) 

 

Negative root:  

 

 𝑘𝑧 = −𝑘0𝑐𝑜𝑠𝛽 → (𝑧 < 0, 𝛩 >
𝜋

2
) (C49) 

 
𝑒𝑟𝑎𝑑(𝑟) = −

1

8𝜋2
𝜁

𝑘0
∫ ∫

1

𝑘0𝑐𝑜𝑠𝛽
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼)

2𝜋

0

𝜋
2

0

∙ 𝐽𝑎(𝑘⃗⃗)𝑒
−𝑗𝑘0𝑟(𝑠𝑖𝑛𝛽 sinΘcos(𝛼−Φ)+𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) 𝑘0

2𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽𝑑𝛼𝑑𝛽  

(C50) 

 

First saddle point:  

 𝜕

𝜕𝛼
(𝑠𝑖𝑛𝛽 sinΘ cos(𝛼 − Φ) + 𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) = 0 (C51) 

 𝜕

𝜕𝛼
(𝑠𝑖𝑛𝛽 sinΘ cos(𝛼 − Φ) + 𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) = −𝑠𝑖𝑛𝛽 sinΘ sin(𝛼 − Φ) = 0 (C52) 

 𝛼𝑠 = 𝑁𝜋 + 𝛷 (C53) 

 

We are observing a wave propagating in 𝑧 < 0, but remember the domain we are integrating 

the function in is:  

 

 𝛼𝑠 = 𝛷 (C54) 

 

The first integration result is already known: 

 

 

𝑒𝑟𝑎𝑑(𝑟) ≃ −
1

8𝜋2
𝜁

𝑘0
∫ √

2𝜋

−𝑗𝑟𝑠𝑖𝑛𝛩
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠)

𝜋
2

0

∙ 𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠) 𝑒
−𝑗𝑘0𝑟(𝑠𝑖𝑛𝛽 sinΘ+𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) √𝑘0𝑠𝑖𝑛𝛽𝑑𝛽 

(C55) 

 

This expression highlights the second saddle point: 
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 𝜕

𝜕𝛽
(−𝑗𝑘0𝑟(𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩| + 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩)) = 0 (C56) 

 

Since:  

 

 𝑧 − 𝑧𝑐 < 0 → |𝑐𝑜𝑠𝛩| = −𝑐𝑜𝑠𝛩 (C57) 

 𝜕

𝜕𝛽
((𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩| + 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩)) = −

𝜕

𝜕𝛽
(𝑐𝑜𝑠(𝛽 + 𝛩)) (C58) 

 
−
𝜕

𝜕𝛽
(𝑐𝑜𝑠(𝛽 + 𝛩)) = sin(𝛽 + 𝛩) = 0 (C59) 

 𝛽𝑠 = 𝑁𝜋 − 𝛩 (C60) 

 

Again, the only possible choice of the saddle point is: 

 

 𝛽𝑠 = 𝜋 − 𝛩 (C61) 

 

 𝛽 ∈ [0, 𝜋/2] indeed, and in this hemisphere 𝛩 ∈ [𝜋/2, 𝜋]. Now, again: 

 

 

𝐼(𝛽) = ∫𝐹(𝑧)𝑒𝛽𝑓(𝑧)𝑑𝑧
𝐶

≃ √
2𝜋

−𝛽𝑓′′(𝑧𝑠)
𝐹(𝑧𝑠)𝑒

𝛽𝑓(𝑧𝑠) (C62) 

 𝐹(𝑧) = 𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽, 𝛼𝑠)√𝑘0𝑠𝑖𝑛𝛽 (C63) 

 𝑒𝛽𝑓(𝑧𝑠) = 𝑒−𝑗𝑘0𝑟(𝑠𝑖𝑛𝛽 sinΘ+𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|)  (C64) 

 𝛽 = 𝑘0𝑟 (C65) 

 𝑓(𝑧) = −𝑗(𝑠𝑖𝑛𝛽 sinΘ + 𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩|) (C66) 

 𝑓′′(𝑧) = −𝑗𝑘0(−𝑐𝑜𝑠𝛽|𝑐𝑜𝑠𝛩| − 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛩) (C67) 

 𝑓(𝑧𝑠) = −𝑗(cos (𝜋 − 𝛩)|𝑐𝑜𝑠𝛩| + sin (𝜋 − 𝛩)𝑠𝑖𝑛𝛩)

= −𝑗(−cosΘ|𝑐𝑜𝑠𝛩| + sin𝛩𝑠𝑖𝑛𝛩) = −𝑗 
(C68) 

 𝑓′′(𝑧𝑠) = −𝑗(−cos (𝜋 − 𝛩)|𝑐𝑜𝑠𝛩| − sin (𝜋 − 𝛩)𝑠𝑖𝑛𝛩)

= −𝑗(cos𝛩|𝑐𝑜𝑠𝛩| − sin𝛩𝑠𝑖𝑛𝛩) = 𝑗 
(C69) 

 

Substituting in (C48): 
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 𝑒𝑟𝑎𝑑(𝑟)

≃ −
1

8𝜋2
𝜁

𝑘0
√

2𝜋

−𝑗𝑟𝑠𝑖𝑛𝛩
√
2𝜋

−𝑗𝑘0𝑟
𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)√𝑘0𝑠𝑖𝑛𝛽𝑠𝑒

−𝑗𝑘0𝑟

= −
1

8𝜋2
𝜁

𝑘0

2𝜋

𝑟
 √
𝑠𝑖𝑛𝛽𝑠
𝑗2𝑠𝑖𝑛𝛩

𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝑒

−𝑗𝑘0𝑟 

(C70) 

 
𝑒𝑟𝑎𝑑(𝑟) = −𝑗

𝜁

𝑘0
 𝐷̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)

𝑒−𝑗𝑘0𝑟

4𝜋𝑟

= −𝑗𝑘𝑧 𝐺̃𝑓𝑠
𝑒𝑗(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)𝐽𝑎(𝑘0𝑠𝑖𝑛𝛽𝑠, 𝛼𝑠)

𝑒−𝑗𝑘0𝑟

2𝜋𝑟
 = 𝑒𝑠(𝑟)   

(C71) 

 

Note that the result here is different compared to the previous one, since the saddle point is 

different.  

Subtracting and then adding again this term we eventually obtain the wanted result: 

 

 𝑒𝑟𝑎𝑑
𝑡𝑜𝑡 (𝑟)

=
1

4𝜋2
∫ ∫ 𝐺̃𝑓𝑠

𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝐽𝑖𝑑(𝑘𝜌, 𝑎)𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝜙)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 

2𝜋

0

+∞

0

− 𝑒𝑠(𝑟) + 𝑒𝑠(𝑟) 

(C72) 

 𝑒𝑟𝑎𝑑
𝑡𝑜𝑡 (𝑟∞) = 𝑒𝑜𝑠𝑐(𝑟∞) + 𝑒𝑠(𝑟∞) ≃ 𝑒𝑠(𝑟∞)  (C73) 

 

Indeed, 𝑒𝑜𝑠𝑐(𝑟∞) → 0, since it’s characterized only by highly oscillating terms 

 

 

 

 

 

 

 

 

 

 

 

 



  

Appendix D  

 

This appendix shows how to make asymptotical considerations regarding the dimension of the 

antenna we’re analyzing whether it is small, or large, in terms of the wavelength. In these 

situations either the Airy or the Huygens pattern tend to be dominant. The far field pattern can 

be expressed as in (A32):  

 

 
𝐸⃗⃗𝑟𝑎𝑑(𝑟) = 𝐶𝑎𝑚𝑝

𝑗𝑘

4𝜋
{𝐴𝑖𝑟𝑦(𝑘⃗⃗)} (𝑟̂ × (𝐸⃗⃗𝑖𝑛𝑐 × (𝑟̂ + 𝑧̂))) = 𝐶𝑎𝑚𝑝𝑉𝑃𝑂

𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) (D1) 

 𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) = 𝐴𝑖𝑟𝑦(𝑘𝑠𝑖𝑛𝜃, 𝑎)𝐻⃗⃗⃗(𝑟∞, 𝑘⃗⃗𝑖𝑛) (D2) 

 

This is the result for a single incoming plane wave. However, the following derivations are 

already generalized for the case of multiple impinging plane waves. 

Small antennas: 

In this case the portion of the incident field the antenna can interact with is defined by the 

antenna itself and its properties, rather than the sources. If the ratio 𝑎/𝜆 → 0 the Airy pattern 

turns out to behave essentially as a constant as a function of 𝑘⃗⃗: 

 

 lim
𝑎→0

𝐴𝑖𝑟𝑦(𝑟̂𝑖𝑛, 𝑘⃗⃗) = 𝜋𝑎
2 (D3) 

 

This means that 𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) is essentially characterized by an averaging integral over 

𝐻⃗⃗⃗𝑖𝑛(𝑟̂𝑖𝑛, 𝑘⃗⃗). The result turns out to be: 

 

 
lim
𝑎→0

𝑒𝑟𝑎𝑑(𝑟∞) =
𝑒−𝑗𝑘𝑟∞

𝑟∞
𝐶𝑎𝑚𝑝∫ ∫ lim

𝑎→0
𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛 

𝜋

0

2𝜋

0

 (D4) 

 
lim
𝑎→0

𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) = lim

𝑎→0

𝐴𝑒𝑓𝑓

𝐴𝑝ℎ𝑦𝑠
𝐴𝑖𝑟𝑦(𝑟̂𝑖𝑛, 𝑘⃗⃗)𝐻⃗⃗⃗𝑖𝑛(𝑟̂𝑖𝑛, 𝑘⃗⃗) (D5) 

 
lim
𝑎→0

𝐴𝑒𝑓𝑓 =
3

4𝜋
𝜆2 (D6) 

 
lim
𝑎→0

𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) =

3

4𝜋
𝜆2𝐻⃗⃗⃗𝑖𝑛(𝑟̂𝑖𝑛, 𝑘⃗⃗) (D7) 

 

Expressing as 𝛽𝑖𝑛, 𝛼𝑖𝑛 the direction of incidence of each impinging plane wave: 
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 lim
𝑎→0

𝑒𝑟𝑎𝑑(𝑟∞)

= [
3

4𝜋
𝜆2
𝑗𝑘

4𝜋
]∫ ∫ 𝑘̂ × [𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × (𝑘̂ − 𝑟̂𝑖𝑛)] 𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛

𝑒−𝑗𝑘𝑟∞

𝑟∞
 

𝜋

0

2𝜋

0

= [𝑗
3

4𝑘
]∫ ∫ 𝑘̂ × [𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × (𝑘̂ − 𝑟̂𝑖𝑛)] 𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛  

𝑒−𝑗𝑘𝑟∞

𝑟∞
 

𝜋

0

2𝜋

0

 
(D8) 

 

 

 

This last expression underlines two different contributes to the radiated electric field: one 

from the electric source and the other one from the magnetic one. The total field can thus be 

expressed as the superposition of two integrals: 

 

 
lim
𝑎→0

𝑒𝑟𝑎𝑑(𝑟∞) = 𝑗
3

4𝑘
(𝐹⃗𝑒𝑙(𝑘⃗⃗) − 𝐹⃗𝑚𝑎𝑔(𝑘⃗⃗))

𝑒−𝑗𝑘𝑟∞

𝑟∞
 (D9) 

 
𝐹⃗𝑒𝑙(𝑘⃗⃗) = 𝑘̂ × (∫ ∫ 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛 × 𝑘̂

𝜋

0

2𝜋

0

) (D10) 

 
𝐹⃗𝑚𝑎𝑔(𝑘⃗⃗) = 𝑘̂ × (∫ ∫ 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛 × 𝑟̂𝑖𝑛

𝜋

0

2𝜋

0

) (D11) 

 

Looking at:  

 

 𝑒𝑖𝑛𝑐(𝑟)

= ∫ ∫ 𝑒𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝑒
−𝑘𝑟(𝑠𝑖𝑛𝛽𝑖𝑛𝑐𝑜𝑠𝛼𝑖𝑛cos (𝛼𝑖𝑛−Φ)+𝑐𝑜𝑠𝛽𝑖𝑛𝑐𝑜𝑠Θ)

𝜋

0

2𝜋

0

𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛 
(D12) 

 

 

It is apparent that the two contribution are just: 

 

 𝐹⃗𝑒𝑙(𝑘⃗⃗) = 𝑒𝑖𝑛𝑐(𝑟 = 0) (D13) 
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𝐹⃗𝑚𝑎𝑔(𝑘⃗⃗) = 𝑘̂ × (∫ ∫ 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛 × 𝑟̂𝑖𝑛

𝜋

0

2𝜋

0

)

= 𝑘̂ × (∫ ∫ 𝑘̂𝑖𝑛 × 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛

𝜋

0

2𝜋

0

)

= 𝜁𝑘̂ × ℎ⃗⃗𝑖𝑛𝑐(𝑟 = 0) (D14) 

 

Without considering the spherical spreading it results: 

 

 
lim
𝑎→0

𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) = 𝑗

3

4𝑘
(𝐹⃗𝑒𝑙(𝑘⃗⃗) − 𝐹⃗𝑚𝑎𝑔(𝑘⃗⃗))

= 𝑗
3

4𝑘
(𝑒𝑖𝑛(𝑟 = 0) − 𝜁𝑘̂ × ℎ⃗⃗𝑖𝑛(𝑟 = 0))

= 𝑗
3

4𝑘
(𝑘̂ × 𝑒𝑖𝑛(𝑟 = 0) × 𝑘̂ − 𝑘̂ × 𝑘̂𝑖𝑛 × 𝑒𝑖𝑛(𝑟 = 0))

= 𝑗
3

4𝑘
𝑘̂ (𝑒𝑖𝑛(𝑟 = 0) × (𝑘̂ + 𝑘̂𝑖𝑛)) (D15) 

 

Note that in the end, for the case of electrically really small antennas excited by a bunch of 

plane waves with generalized incidence direction, the outward propagating wave results as it 

was radiated by a couple of electric and magnetic dipoles with an intensity that is directly 

proportional to the intensity of the incident field itself in the origin of the reference system 

(the antenna domain). Attention has to be paid to the fact that the radiated field does not 

correspond to a pure Huygens’ source anymore, but to a superposition of multiple Huygens’ 

sources instead. However, the small dipole radiation pattern is characterized by a relatively 

small directivity, and so is the superposition of the fields radiated by more dipoles, thus the 

radiated field would not present steep angular transitions, even if the incident field amplitude 

𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) is a rapidly varying function of 𝛽𝑖𝑛, 𝛼𝑖𝑛 . Small antennas are thus not able to 

observe this kind of fields, but only an angular average of them. 

 

 

LARGE ANTENNAS: 

For what concerns large antennas in terms of wavelength (𝑎/𝜆 ≫ 1) other considerations and 

assumptions can be made to simplify the radiated (or the observable) field expression. First of 

all the effective area tends to value really close to the physical one, so that: 
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 𝐴𝑒𝑓𝑓 → 𝐴𝑝ℎ𝑦𝑠;     𝐶𝑎𝑚𝑝 → 1 (D16) 

 

The Airy pattern becomes more and more directive (not just a constant anymore), and 

significantly different from zero only when observing it at directions opposite to the ones of 

the incident wave vector 𝑘̂ ≃ −𝑟̂𝑖𝑛 → Θ ≃ 𝛽𝑖𝑛 . Now, let us expand the expression of the 

Huygens’ pattern using the following vector property: 𝑨 × (𝑩 × 𝑪) = (𝑨𝑪)𝑩 − (𝑨𝑩)𝑪. 

 

 
𝐻⃗⃗⃗𝑖𝑛(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗) =

𝑗𝑘

4𝜋
𝑘̂ × [𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × (𝑘̂ − 𝑟̂𝑖𝑛)]

=
𝑗

2𝜆
𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) (𝑘̂(𝑘̂ − 𝑟̂𝑖𝑛))

−
𝑗

2𝜆
(𝑘̂ − 𝑟̂𝑖𝑛) (𝑘̂𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)) (D17) 

 

Since the Huygens’ source pattern will be multiplied by the Airy pattern, which we said is 

different from zero only around the direction of incidence of every single wave, the 

expression can be written as: 

  

 𝐻⃗⃗⃗𝑖𝑛(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗, Θ ≃ 𝛽𝑖𝑛)

=
𝑗

2𝜆
𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)(−𝑟̂𝑖𝑛(−𝑟̂𝑖𝑛 − 𝑟̂𝑖𝑛))

−
𝑗

2𝜆
(−𝑟̂𝑖𝑛 − 𝑟̂𝑖𝑛) (−𝑟̂𝑖𝑛𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)) (D18) 

 

Obviously the incident plane wave electric field polarization is always orthogonal to its 

propagation direction, so the second term of the right hand side of the equation is equal to 

zero, thus: 

 

 
𝐻⃗⃗⃗𝑖𝑛(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗, Θ ≃ 𝛽𝑖𝑛) =

𝑗

𝜆
𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) (D19) 

 
𝑉𝑃𝑂
𝑜𝑢𝑡𝑤(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗, Θ ≃ 𝛽𝑖𝑛) =

𝑗

𝜆
𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝐴𝑖𝑟𝑦(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗, Θ ≃ 𝛽𝑖𝑛) (D20) 

 

Consequently, the integral of the outward-going observable total field can be simplified 
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𝑒𝑟𝑎𝑑(𝑟, 𝑘⃗⃗) = ∫ ∫ 𝑉𝑃𝑂

𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛
𝑒−𝑗𝑘𝑟∞

𝑟∞

𝜋

0

2𝜋

0

=
𝑗

𝜆
2𝜋𝑎2∫ ∫

𝐽1(𝑘𝜌
′ 𝑎)

𝑘𝜌′ 𝑎
𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛

𝑒−𝑗𝑘𝑟∞

𝑟∞

𝜋

0

2𝜋

0

  
(D21) 

 

This integral is in general of difficult evaluation, because of the geometrical dependence of 

𝑘𝜌
′ . However, for the present case, other approximations can be made. We know that 𝑘⃗⃗𝑖𝑛 =

−𝑘𝑟̂𝑖𝑛, and being 𝛾 the angle between 𝑟̂𝑖𝑛 and 𝑘̂ in the ‘primed’ reference system described by 

𝑧̂′ = −𝑟̂𝑖𝑛 it is easy to appreciate that: 

 

 𝑘̂𝑧̂′ = 𝑘̂(−𝑟̂𝑖𝑛) = −𝑐𝑜𝑠𝛾 (D22) 

 𝛾 = 𝑎𝑟𝑐𝑜𝑠(−𝑘̂𝑟̂𝑖𝑛) (D23) 

 

Looking at 𝑘⃗⃗𝑘⃗⃗𝑖𝑛 = 𝑘
2𝑐𝑜𝑠𝛾 suggests to express 𝑘𝜌

′ = 𝑘𝑠𝑖𝑛𝛾 in terms of |𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|, so: 

 

 |𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|
2
= (𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛)(𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛) = 2𝑘

2(1 − 𝑐𝑜𝑠𝛾)𝑘̂𝑧̂′ = 𝑘̂(−𝑟̂𝑖𝑛) = −𝑐𝑜𝑠𝛾 (D24) 

 

𝑐𝑜𝑠𝛾2 = (
|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|

2

2𝑘2
− 1)

2

 (D25) 

 

Expanding the right hand side of the equation we obtain: 

 

 

𝑐𝑜𝑠𝛾2 = (
|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|

2

2𝑘2
)

2

−
|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|

2

𝑘2
+ 1 (D26) 

 

𝑠𝑖𝑛𝛾2 =
|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|

2

𝑘2
− (

|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|
2

2𝑘2
)

2

 (D27) 

 

𝑠𝑖𝑛𝛾2 =
|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|

2

𝑘2
(1 −

|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|
2

4𝑘2
) (D28) 

Remember that in this particular case, the only significant contribution comes from 

observation points such that |𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛| → 0, so we can expand 𝑠𝑖𝑛𝛾 around that point: 
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𝑠𝑖𝑛𝛾 =
|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|

𝑘
√1 −

|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|
2

4𝑘2
≃
|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|

𝑘
(1 −

|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|
2

8𝑘2
) (D29) 

 

So that, for very large antenna, where |𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛| → 0  one can consider 𝑠𝑖𝑛𝛾 ≃ |𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛| , 

which renders the equation: 

 

 
𝑒𝑟𝑎𝑑(𝑟) ≃

𝑗

𝜆
2𝜋𝑎2∫ ∫

𝐽1(|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|𝑎)

|𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛|𝑎
𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛

𝑒−𝑗𝑘𝑟∞

𝑟∞

𝜋

0

2𝜋

0

 (D30) 

 

As already stated, the Airy pattern is significantly different than zero only towards 𝑟̂𝑖𝑛. Let us 

call [0 − Θ𝑚] the Θ integration range, where Θ𝑚 is an angle much larger than Θ0 = 𝛽
′, so that 

the integral in that point is already zero. Let us parametrize the equation defining [𝛽′, 𝛼′] as 

the angles that describe the observation point with respect to the squinted reference system 

[𝑥′, 𝑦′, 𝑧′], and calling |𝑘⃗⃗ − 𝑘⃗⃗𝑖𝑛| = |𝑘
′| = 𝑘𝑠𝑖𝑛𝛽′. The integral is different from zero only 

around 𝛽′ → 0. Besides, 𝐸⃗⃗𝑖𝑛(𝛽
′, 𝛼′) variations as a function of [𝛽′, 𝛼′] are much slower with 

respect to the ones of the Airy pattern, they can be considered constant around this region, and 

then extracted from the integral. 

 

 
𝑒𝑟𝑎𝑑(𝑟) ≃

𝑗

𝜆
2𝜋𝑎2𝐸⃗⃗𝑖𝑛(𝛽

′ → 0, 𝛼′)∫ ∫
𝐽1(𝑘𝑠𝑖𝑛𝛽

′𝑎)

𝑘𝑠𝑖𝑛𝛽′𝑎
𝑠𝑖𝑛𝛽′𝑑𝛽′𝑑𝛼′

𝑒−𝑗𝑘𝑟∞

𝑟∞

Θ𝑚

0

2𝜋

0

=
𝑗

𝜆𝑘𝑎
2𝜋𝑎2𝐸⃗⃗𝑖𝑛(→ 0, 𝛼′)∫ ∫ 𝐽1(𝑘𝑠𝑖𝑛𝛽′𝑎)𝑑𝛽

′𝑑𝛼′
𝑒−𝑗𝑘𝑟∞

𝑟∞

Θ𝑚

0

2𝜋

0

 
(D31) 

 

The integral can be now closed analytically in 𝛼′ 

 

 
𝑒𝑟𝑎𝑑(𝑟) =

𝑗

𝜆𝑘𝑎
(2𝜋𝑎)2𝐸⃗⃗𝑖𝑛(𝛽

′ → 0, 𝛼′)∫ 𝐽1(𝑘𝑠𝑖𝑛𝛽
′𝑎)𝑑𝛽′

𝑒−𝑗𝑘𝑟∞

𝑟∞

Θ𝑚

0

= 𝑗2𝜋𝑎𝐸⃗⃗𝑖𝑛(𝛽
′ → 0, 𝛼′)∫ 𝐽1(𝑘𝑠𝑖𝑛𝛽′𝑎)𝑑𝛽

′
𝑒−𝑗𝑘𝑟∞

𝑟∞

Θ𝑚

0

 
(D32) 

 

Remember that we are performing the integration in 𝑑𝛽′𝑑𝛼′, so Θ𝑚 → 𝛽
′ → 0 due to the high 

directivity of the Airy pattern, so 𝑠𝑖𝑛𝛽′ → 𝛽′ 
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𝑒𝑟𝑎𝑑(𝑟) = 𝑗2𝜋𝑎𝐸⃗⃗𝑖𝑛(𝛽

′ → 0, 𝛼′)∫ 𝐽1(𝑘𝛽′𝑎)𝑑𝛽
′
𝑒−𝑗𝑘𝑟∞

𝑟∞

Θ𝑚

0

 (D33) 

 

Applying the following change of variable 𝑘𝛽′𝑎 = 𝑥 →  𝑑𝛽′ =
𝑑𝑥

𝑘𝑎
 allows us to perform the 

last integration analytically 

 

 
𝑒𝑟𝑎𝑑(𝑟) = 𝑗

2𝜋𝑎

𝑘𝑎
𝐸⃗⃗𝑖𝑛(𝛽

′ → 0, 𝛼′)∫ 𝐽1(𝑥)𝑑𝑥 
𝑒−𝑗𝑘𝑟∞

𝑟∞

Θ𝑚𝑘𝑎

0

 (D34) 

 
𝑒𝑟𝑎𝑑(𝑟) = 𝑗𝜆𝐸⃗⃗𝑖𝑛(𝛽

′ → 0, 𝛼′)∫ 𝐽1(𝑥)𝑑𝑥 
𝑒−𝑗𝑘𝑟∞

𝑟∞

Θ𝑚𝑘𝑎

0

 (D35) 

 𝑒𝑟𝑎𝑑(𝑟) = 𝑗𝜆𝐸⃗⃗𝑖𝑛(𝛽
′ → 0, 𝛼′)[1 − 𝐽0(Θ𝑚𝑘𝑎)] (D36) 

 𝑒𝑟𝑎𝑑(𝑟) ≃ 𝑗𝜆𝐸⃗⃗𝑖𝑛(Θ,Φ)𝜆 (D37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Appendix E  

 

This appendix shows how to analytically close the radiation integrals, when expressed in 

cylindrical coordinates (𝑘𝜌, 𝛼), in 𝛼 in order to reduce the numerical evaluation to only one 

variable, decreasing a lot the computational time. Let us first recall the integral, considering 

now only the electric field given by the electric currents: 

 

 𝑒𝑟𝑎𝑑(𝑟)

=
1

4𝜋2
∫ ∫ 𝐺̃𝑓𝑠

𝑒𝑗
(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′)𝐽𝑖𝑑(𝑘𝜌, 𝑎)𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝜙)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 

2𝜋

0

+∞

0

 
(E1) 

 

Since the Fourier transform of the current distribution is independent on 𝛼 , the only 

dependence of the integrand function on 𝛼  lays in the Green’s function dyad and in the 

exponential terms. These are all oscillating terms, which means that the integral can be 

analytically closed, using Bessel’s functions, with the following expression already listed in 

Chapter IV.a: 

 

 
𝐶𝐶 =  ∫ cos2 𝛼 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 =

1

2
∫ (1 + cos(2𝛼))𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼
2𝜋

0

2𝜋

0

 (E2) 

 
𝑆𝑆 =  ∫ sin2 𝛼 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 =

1

2
∫ (1 − cos(2𝛼))𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼
2𝜋

0

2𝜋

0

 (E3) 

 
𝑆𝐶 =  ∫ 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 =

1

2
∫ sin(2𝛼) 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼
2𝜋

0

2𝜋

0

 (E4) 

 
𝐶 = ∫ 𝑐𝑜𝑠𝛼

2𝜋

0

𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 (E5) 

 
𝑆 =  ∫ 𝑠𝑖𝑛𝛼

2𝜋

0

𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 (E6) 

 

The integral expressions at the right hand side have analytical results, with the form: 

 

 
∫

𝑐𝑜𝑠

𝑠𝑖𝑛
(𝑁𝛼)

2𝜋

0

𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼 = 𝑗−𝑁2𝜋
𝑐𝑜𝑠

𝑠𝑖𝑛
(𝑁𝛷)𝐽𝑁(𝑘𝜌𝜌) (E7) 
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And the results are: 

 

 𝐶𝐶 = 𝜋 (𝐽0(𝑘𝜌𝜌) − cos(2𝛷) 𝐽2(𝑘𝜌𝜌)) (E8) 

 𝑆𝑆 = 𝜋 (𝐽0(𝑘𝜌𝜌) + cos(2𝛷) 𝐽2(𝑘𝜌𝜌)) (E9) 

 𝑆𝐶 = −𝜋 sin(2𝛷) 𝐽2(𝑘𝜌𝜌) (E10) 

 𝐶 = −𝑗2𝜋 𝑐𝑜𝑠𝛷 𝐽1(𝑘𝜌𝜌) (E11) 

 𝑆 = −𝑗2𝜋 𝑠𝑖𝑛𝛷 𝐽1(𝑘𝜌𝜌) (E12) 

 

Where 𝐽𝑁 are the Bessel function of integer order 𝑁. Let us have a look at the specific field 

components. Starting from (E1), and recalling the spectral Green’s function expression: 

 

 

𝐺̃𝑓𝑠
𝑒𝑗
(𝑘𝑥 , 𝑘𝑦, 𝑧, 𝑧

′) =
−𝜁

2𝑘0𝑘𝑧
[

𝑘0
2 − 𝑘𝜌

2 cos2 𝛼 −𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 −𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧)

−𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 𝑘0

2 − 𝑘𝜌
2 sin2 𝛼 −𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧)

−𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧) −𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧) 𝑘0
2 − 𝑘𝑧

2

] (E13) 

 

The components result: 

𝑥𝑥 Component: 

 

 𝑒𝑥𝑥
𝑒𝑗(𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

𝑘0
2 − 𝑘𝜌

2 cos2 𝛼

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝜌ρcos(𝛼−Φ)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼
2𝜋

0

∞

0

= −
1

8𝜋2
𝜁

𝑘0
{∫

𝑘0
2

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−Φ)𝑑𝛼𝑑𝑘𝜌

2𝜋

0

∞

0

−∫
𝑘𝜌
2

𝑘𝑧
𝐽𝑖𝑑−𝑥(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ cos2 𝛼 𝑒−𝑗𝑘𝜌ρcos(𝛼−Φ)𝑑𝛼𝑑𝑘𝜌

2𝜋

0

∞

0

}

= −
1

8𝜋2
𝜁

𝑘0
{2𝜋∫

𝑘0
2

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌)

+∞

0

𝐽0(𝑘𝜌ρ)𝑒
−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

− 𝜋∫
𝑘𝜌
2

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌)[𝐽0(𝑘𝜌ρ) − cos(2𝛷) 𝐽2(𝑘𝜌ρ)]𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

+∞

0

}

= −
1

8𝜋

𝜁

𝑘0
{∫

1

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌)

+∞

0

[2𝑘0
2𝐽0(𝑘𝜌ρ)

− 𝑘𝜌
2 (𝐽0(𝑘𝜌ρ) − cos(2𝛷) 𝐽2(𝑘𝜌ρ))] 𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌} 
(E14) 
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𝑥𝑦 Component: 

 

 𝑒𝑥𝑦
𝑒𝑗 (𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

−𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝜌𝜌 cos(𝛼−Φ)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼
2𝜋

0

∞

0

=
1

8𝜋2
𝜁

𝑘0
∫

𝑘𝜌
2

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−Φ)𝑑𝛼 𝑑𝑘𝜌

2𝜋

0

∞

0

= −
1

8𝜋

𝜁

𝑘0
∫

𝑘𝜌
2

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌) sin(2𝛷) 𝐽2(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 
(E15) 

 

𝑥𝑧 Component: 

 

 𝑒𝑥𝑧
𝑒𝑗(𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

−𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧)

𝑘𝑧
𝐽𝑖𝑑,𝑧(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝜌𝜌 cos(𝛼−Φ)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 
2𝜋

0

∞

0

= −
1

8𝜋2
𝜁

𝑘0
∫

−𝑘𝜌(±𝑘𝑧)

𝑘𝑧
𝐽𝑖𝑑,𝑧(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑐𝑜𝑠𝛼𝑒−𝑗𝑘𝜌𝜌cos (𝛼−Φ) 𝑑𝛼𝑑𝑘𝜌 
2𝜋

0

∞

0

= −𝑗
1

4𝜋

𝜁

𝑘0
∫ ±𝑘𝜌𝐽𝑖𝑑,𝑧(𝑘⃗⃗𝜌) 𝑐𝑜𝑠𝛷 𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 
(E16) 

 

𝑦𝑥 Component: 

 

 𝑒𝑦𝑥
𝑒𝑗 (𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

−𝑘𝜌
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝜌𝜌cos (𝛼−Φ) 𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 
2𝜋

0

∞

0

= −
1

8𝜋

𝜁

𝑘0
∫

𝑘𝜌
2

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌) sin(2𝛷) 𝐽2(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 
(E17) 
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𝑦𝑦 Component: 

 

 𝑒𝑦𝑦
𝑒𝑗 (𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

𝑘0
2 − 𝑘𝜌

2 sin2 𝛼

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝜌𝜌cos (𝛼−Φ) 𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 
2𝜋

0

∞

0

= −
1

8𝜋2
𝜁

𝑘0
{∫

𝑘0
2

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−Φ)𝑑𝛼𝑑𝑘𝜌

2𝜋

0

∞

0

−∫
𝑘𝜌
2

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ sin2 𝛼 𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−Φ)𝑑𝛼𝑑𝑘𝜌

2𝜋

0

∞

0

}

= −
1

8𝜋2
𝜁

𝑘0
{2𝜋∫

𝑘0
2

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)

+∞

0

𝐽0(𝑘𝜌𝜌)𝑒
−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

− 𝜋∫
𝑘𝜌
2

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)[𝐽0(𝑘𝜌𝜌) + cos(2𝛷) 𝐽2(𝑘𝜌𝜌)]𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

+∞

0

}

= −
1

8𝜋

𝜁

𝑘0
{∫

1

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)

+∞

0

[2𝑘0
2𝐽0(𝑘𝜌𝜌)

− 𝑘𝜌
2 (𝐽0(𝑘𝜌𝜌) + cos(2𝛷) 𝐽2(𝑘𝜌𝜌))] 𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌} 
(E18) 

 

𝑦𝑧 Component: 

 

 𝑒𝑦𝑧
𝑒𝑗(𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

−𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧)

𝑘𝑧
𝐽𝑖𝑑,𝑧(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝜌𝜌 cos(𝛼−Φ)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 
2𝜋

0

∞

0

= −
1

8𝜋2
𝜁

𝑘0
∫

−𝑘𝜌(±𝑘𝑧)

𝑘𝑧
𝐽𝑖𝑑,𝑧(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑠𝑖𝑛𝛼𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−Φ)𝑑𝛼 𝑑𝑘𝜌

2𝜋

0

∞

0

= −𝑗
1

4𝜋

𝜁

𝑘0
∫ ±𝑘𝜌𝐽𝑖𝑑,𝑧(𝑘⃗⃗𝜌)𝑠𝑖𝑛𝛷𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 
(E19) 
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𝑧𝑥 Component: 

 

 𝑒𝑧𝑥
𝑒𝑗(𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

−𝑘𝜌𝑐𝑜𝑠𝛼(±𝑘𝑧)

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝜌𝜌cos (𝛼−Φ) 𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼
2𝜋

0

∞

0

= −𝑗
1

4𝜋

𝜁

𝑘0
∫

𝑘𝜌(±𝑘𝑧)

𝑘𝑧
𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌) 𝑐𝑜𝑠𝛷 𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 

= −𝑗
1

4𝜋

𝜁

𝑘0
∫ ±𝑘𝜌𝐽𝑖𝑑,𝑥(𝑘⃗⃗𝜌) 𝑐𝑜𝑠𝛷 𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 
(E20) 

 

𝑧𝑦 Component: 

 

 𝑒𝑧𝑦
𝑒𝑗(𝑟)

= −
1

8𝜋2
𝜁

𝑘0
∫ ∫

−𝑘𝜌𝑠𝑖𝑛𝛼(±𝑘𝑧)

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝜌𝜌cos (𝛼−Φ) 𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼
2𝜋

0

∞

0

= −𝑗
1

4𝜋

𝜁

𝑘0
∫

𝑘𝜌(±𝑘𝑧)

𝑘𝑧
𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)𝑠𝑖𝑛𝛷𝐽1(𝑘𝜌z)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 

= −𝑗
1

4𝜋

𝜁

𝑘0
∫ ±𝑘𝜌𝐽𝑖𝑑,𝑦(𝑘⃗⃗𝜌)𝑠𝑖𝑛𝛷𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 
(E21) 

 

𝑧𝑧 Component: 

 

 
𝑒𝑧𝑧
𝑒𝑗(𝑟) = −

1

8𝜋2
𝜁

𝑘0
∫

𝑘0
2 − 𝑘𝑧

2

𝑘𝑧
𝐽𝑖𝑑,𝑧(𝑘⃗⃗𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑒−𝑗𝑘𝜌𝜌cos (𝛼−Φ) 𝑑𝛼 𝑑𝑘𝜌

2𝜋

0

∞

0

= −
1

4𝜋

𝜁

𝑘0
∫

𝑘0
2 − 𝑘𝑧

2

𝑘𝑧
𝐽𝑖𝑑,𝑧(𝑘⃗⃗𝜌)𝐽0(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

∞

0

 
(E22) 

 

Let us consider now the magnetic source contribution to the electric field. First of all, the 

spectral Green’s function expression is: 

 

 

𝐺̃𝑓𝑠
𝑒𝑚(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧

′) = −
𝑗

2𝑘𝑧
[

0 ±𝑗𝑘𝑧 −𝑗𝑘𝜌𝑠𝑖𝑛𝛼

∓𝑗𝑘𝑧 0 𝑗𝑘𝜌𝑐𝑜𝑠𝛼

𝑗𝑘𝜌𝑠𝑖𝑛𝛼 −𝑗𝑘𝜌𝑐𝑜𝑠𝛼 0

] (E23) 
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Now, closing the integral in 𝛼 for every single dyad component: 

 

𝑥𝑥 Component: 

 

 𝑒𝑥𝑥
𝑒𝑚(𝑟) = 0 (E24) 

 

𝑥𝑦 Component: 

 

 
𝑒𝑥𝑦
𝑒𝑚(𝑟) = −

𝑗

8𝜋2
∫ ∫

±𝑗𝑘𝑧
𝑘𝑧

𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝜌, 𝛼)𝑒
−𝑗𝑘𝜌 𝜌cos (𝛼−𝛷)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼

+∞

0

2𝜋

0

= −
𝑗

8𝜋2
∫

±𝑗𝑘𝑧
𝑘𝑧

𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝜌, 𝛼)𝑒
−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑒−𝑗𝑘𝜌𝜌cos (𝛼−𝛷)𝑑𝛼 𝑑𝑘𝜌

2𝜋

0

+∞

0

)

=
1

4𝜋
∫ ±𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝜌, 𝛼)𝐽0(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

+∞

0

 
(E25) 

 

𝑥𝑧 Component: 

 

 
𝑒𝑥𝑧
𝑒𝑚(𝑟) = −

𝑗

8𝜋2
∫ ∫

−𝑗𝑘𝜌𝑠𝑖𝑛𝛼

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑧(𝑘𝜌)𝑒

−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼
+∞

0

2𝜋

0

= −
1

8𝜋2
∫

𝑘𝜌

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑧(𝑘𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑠𝑖𝑛𝛼𝑒−𝑗𝑘𝜌𝜌cos (𝛼−𝛷)𝑑𝛼 𝑑𝑘𝜌

2𝜋

0

+∞

0

=
𝑗

4𝜋
∫

𝑘𝜌

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑧(𝑘𝜌) 𝑠𝑖𝑛𝛷 𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

+∞

0

 
(E26) 

 

𝑦𝑥 Component: 

 

 
𝑒𝑦𝑥
𝑒𝑚(𝑟) = −

𝑗

8𝜋2
∫ ∫

∓𝑗𝑘𝑧
𝑘𝑧

𝑀⃗⃗⃗̃𝑖𝑑,𝑥(𝑘𝜌)𝑒
−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼 =

+∞

0

2𝜋

0

= −
𝑗

4𝜋
∫

∓𝑗𝑘𝑧
𝑘𝑧

𝑀⃗⃗⃗̃𝑖𝑑,𝑥(𝑘𝜌)𝐽0(𝑘𝜌𝜌)𝑒
−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

+∞

0

=
1

4𝜋
∫ ∓𝑀⃗⃗⃗̃𝑖𝑑,𝑥(𝑘𝜌)𝐽0(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

+∞

0

 
(E27) 
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𝑦𝑦 Component: 

 

 𝑒𝑦𝑦
𝑒𝑚(𝑟) = 0 (E28) 

 

𝑦𝑧 Component: 

 

 
𝑒𝑦𝑥
𝑒𝑚(𝑟) = −

𝑗

8𝜋2
∫ ∫

𝑗𝑘𝜌𝑐𝑜𝑠𝛼

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑧(𝑘𝜌)𝑒

−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼
+∞

0

2𝜋

0

=
1

8𝜋2
∫

𝑘𝜌

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑧(𝑘𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌∫ 𝑐𝑜𝑠𝛼𝑒−𝑗𝑘𝜌𝜌 cos(𝛼−𝛷)𝑑𝛼
2𝜋

0

+∞

0

 𝑑𝑘𝜌

= −
𝑗

4𝜋
∫

𝑘𝜌

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑧(𝑘𝜌)𝑐𝑜𝑠𝛷 𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌

+∞

0

𝑑𝑘𝜌𝐸⃗⃗𝑦𝑦(𝑟) = 0 
(E29) 

 

𝑧𝑥 Component: 

 

 
𝑒𝑧𝑥
𝑒𝑚(𝑟) = −

𝑗

8𝜋2
∫ ∫

𝑗𝑘𝜌𝑠𝑖𝑛𝛼

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑥(𝑘𝜌)𝑒

−𝑗𝑘𝜌𝜌cos (𝛼−𝛷)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼
+∞

0

2𝜋

0

= −𝑗
1

4𝜋
∫

𝑘𝜌

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑥(𝑘𝜌) 𝑠𝑖𝑛𝛷 𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌

+∞

0

 
(E30) 

 

𝑧𝑦 Component: 

 

 
𝑒𝑧𝑦
𝑒𝑚(𝑟) = −

𝑗

8𝜋2
∫ ∫

−𝑗𝑘𝜌𝑐𝑜𝑠𝛼

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝜌)𝑒

−𝑗𝑘𝜌𝜌cos (𝛼−𝛷)𝑒−𝑗𝑘𝑧|𝑧|𝑘𝜌𝑑𝑘𝜌𝑑𝛼
+∞

0

2𝜋

0

=
𝑗

4𝜋
∫

𝑘𝜌

𝑘𝑧
𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝜌)𝑐𝑜𝑠𝛷 𝐽1(𝑘𝜌𝜌)𝑒

−𝑗𝑘𝑧|𝑧|𝑘𝜌

+∞

0

𝑑𝑘𝜌 
(E31) 

 

𝑧𝑧 Component: 

 

 𝑒𝑧𝑧
𝑒𝑚(𝑟) = 0 (E32) 
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As far as the magnetic field is concerned, it is sufficient to substitute the proper constants in 

the spectral Green’s functions in (4.18), (4.19), (4.20), (4.21), the operations are

the same. 



  

Appendix F  

 

This appendix explains how to derive the steepest descent path given a certain exponential 

dependence in the integral function. This path ensures the fastest convergence of the integrand 

function, increasing the speed of its numerical evaluation. Let us analyze the expression: 

 

 𝑒−𝑗𝑘0𝑟𝑐𝑜𝑠(𝛽−Θ)   𝑤ℎ𝑒𝑟𝑒   𝛽 = 𝛽𝑟 + 𝑗𝛽𝑖 (F1) 

 

With a few straight forward mathematical identities one obtains: 

 

 
𝑒−𝑗𝑘0𝑟𝑐𝑜𝑠(𝛽−Θ) = 𝑒−𝑗𝑘0𝑟𝑐𝑜𝑠

(𝛽𝑟−Θ)
𝑒𝛽𝑖+𝑒−𝛽𝑖

2 𝑒−𝑘0𝑟𝑠𝑖𝑛
(𝛽𝑟−Θ)

𝑒𝛽𝑖−𝑒−𝛽𝑖
2  (F2) 

 

In order to have a convergent integrand function the second part of this expression must be 

finite, which means : 

 

 
𝑠𝑖𝑛(𝛽𝑟 − Θ)

𝑒𝛽𝑖 − 𝑒−𝛽𝑖

2
> 0 (F3) 

 

 This defines the integral convergence zones: 

 

 
𝑖𝑓 𝛽𝑖 > 0   →    

𝑒𝛽𝑖 − 𝑒−𝛽𝑖

2
> 0   →    𝑠𝑖𝑛(𝛽𝑟 − Θ) > 0 →    Θ < 𝛽𝑟 < 𝜋 + Θ  (F4) 

 
𝑖𝑓 𝛽𝑖 < 0   →    

𝑒𝛽𝑖 − 𝑒−𝛽𝑖

2
< 0   →    𝑠𝑖𝑛(𝛽𝑟 − Θ) < 0 →    Θ − π < 𝛽𝑟 < Θ (F5) 

 

This highlights the path that guarantees the fastest convergence: 

 

 
𝑐𝑜𝑠(𝛽𝑟 − Θ)

𝑒𝛽𝑖 + 𝑒−𝛽𝑖

2
= 1 (F6) 

 

On this path the exponential is always decaying and non-oscillating as a function of 𝛽, and it 

presents a saddle point for 𝛽 = Θ, where its value is 𝑒−𝑗𝑘0𝑟. Let us define the integral: 
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𝐼 = ∫ 𝑒−𝑗𝑘0𝑟𝑐𝑜𝑠(𝛽−Θ)𝑑𝛽

𝑆𝐷𝑃(Θ)

 (F7) 

 

Let us perform a well suited change of variable: 

 

 
−𝑗𝑘0𝑟𝑐𝑜𝑠(𝛽 − Θ) = −𝑗𝑘0𝑟 − 𝑘0𝑟𝑠𝑖𝑛(𝛽𝑟 − Θ)

𝑒𝛽𝑖 − 𝑒−𝛽𝑖

2
= −𝑗𝑘0𝑟 − 𝑘0𝑟𝜏

2 (F8) 

 
𝐼 = ∫ 𝑒−𝑗𝑘0𝑟𝑒−𝑘0𝑟𝜏

2 𝑑𝛽

𝑑𝜏
𝑑𝜏

𝑆𝐷𝑃(Θ)

 (F9) 

 

To calculate the derivative it is convenient to express 𝜏 as: 

 

 
−𝑗𝑘0𝑟𝑐𝑜𝑠(𝛽 − Θ) = −𝑗𝑘0𝑟 (1 − 2 sin

2 (
𝛽 − Θ

2
)) = −𝑗𝑘0𝑟 − 𝑘0𝑟𝜏

2 (F10) 

 
𝜏2 = −𝑗2 sin2 (

𝛽 − Θ

2
) (F11) 

 
𝜏 = ±𝑒−

𝑗𝜋
4 √2𝑠𝑖𝑛 (

𝛽 − Θ

2
) (F12) 

 
𝑑𝛽

𝑑𝜏
= (

𝑑𝜏

𝑑𝛽
)
−1

= (
𝑑

𝑑𝛽
(±𝑒−

𝑗𝜋
4 √2𝑠𝑖𝑛 (

𝛽 − Θ

2
)))

−1

=
±𝑒

𝑗𝜋
4 √2

𝑐𝑜𝑠 (
𝛽 − Θ
2 )

 (F13) 

 

It is convenient to express everything as a function of 𝜏: 

 

 

𝑐𝑜𝑠 (
𝛽 − Θ

2
) = √1 − sin2 (

𝛽 − Θ

2
) = √1 −

𝑗

2
𝜏2 (F14) 

 
𝑑𝛽

𝑑𝜏
=
±𝑒

𝑗𝜋
4 √2

√1 −
𝑗
2 𝜏

2

 (F15) 

 

The anomaly introduced by the square root is solved looking at the fact that on the integration 

path 𝜏 = (−∞,+∞) the differential 𝑑𝜏 is always positive; thus  
𝑑𝛽

𝑑𝜏
  is a complex function 

with the same phase of  𝑑𝛽. Let us analyze a point in the integration path, possibly easy to 

simplify the calculation, as 𝛽 = Θ: 
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 𝑑𝛽

𝑑𝜏
(𝛽 = Θ) = ±𝑒

𝑗𝜋
4 √2 (F16) 

 
arg (

𝑑𝛽

𝑑𝜏
(𝛽 = 𝛩)) =

𝜋

4
   𝑉𝑒𝑙   

5𝜋

4
 (F17) 

 

However, since  𝑑𝛽 = 𝑑𝛽𝑟 + 𝑗𝑑𝛽𝑖  then  𝑑𝛽(𝛽 = Θ) = 𝑑𝛽𝑟 + 𝑗𝑑𝛽𝑟,  and thus: 

 

 
arg(𝑑𝛽(𝛽 = 𝛩)) =

𝜋

4
 →  arg (

𝑑𝛽

𝑑𝜏
(𝛽 = 𝛩)) =

𝜋

4
  →  

𝑑𝛽

𝑑𝜏
(𝛽 = Θ) = +𝑒

𝑗𝜋
4 √2 (F18) 

 

The integral eventually turns into: 

 

 
𝐼 = ∫ 𝑒−𝑗𝑘0𝑟𝑐𝑜𝑠(𝛽−Θ)𝑑𝛽

𝑆𝐷𝑃(Θ)

= 𝑒
𝑗𝜋
4 √2𝑒−𝑗𝑘0𝑟∫

𝑒−𝑘𝑟𝜏
2

√1 −
𝑗
2 𝜏

2

𝑑𝜏
+∞

−∞

 
(F19) 

 

Whose convergent behavior is ensured by 𝑒−𝑘𝑟𝜏
2
, which is extremely fast decaying. 

This deformation can also be applied in some of the radiation expressions where the integral 

is expressed as: 

 

 
𝐼 = ∫ 𝑓(𝛽)𝑒−𝑗𝑘0𝑟𝑐𝑜𝑠(𝛽−Θ)𝑑𝛽

𝑆𝐷𝑃(Θ)

 (F20) 

 

Provided that 𝑓(𝛽)  is a slowly varying function. Attention must be payed whether the 

deformed path makes any singularity of 𝑓(𝛽) arise; however, in free space this is not the case. 

The final expression is then: 

 

 
𝐼 = 𝑒

𝑗𝜋
4 √2𝑒−𝑗𝑘0𝑟∫ 𝑓(𝜏)

𝑒−𝑘𝑟𝜏
2

√1 −
𝑗
2 𝜏

2

𝑑𝜏
+∞

−∞

 
(F21) 
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This appendix shows how to perform a reaction integral on the antenna domain; this 

procedure allows to obtain the power available to the antenna retaining only the visible 

component of the Poynting vector. Let us calculate the power radiated by the ideal current 

distribution starting from the Poynting theorem in case of a lossless antenna: 

 

 1

2
𝑅𝑒 {∬(𝑒 × ℎ⃗⃗∗) ∙ 𝑑𝑆

𝑆

} = −
1

2
𝑅𝑒 {∭(𝑒 ∙ 𝑗∗ + ℎ⃗⃗∗ ∙ 𝑚⃗⃗⃗)𝑑𝑉

𝑉

} (G1) 

 
𝑃𝑟𝑎𝑑 = −

1

2
𝑅𝑒 {∭(𝑒 ∙ 𝑗∗ + ℎ⃗⃗∗ ∙ 𝑚⃗⃗⃗)𝑑𝑉

𝑉

} = 𝑃𝑟𝑎𝑑
𝑒𝑙 + 𝑃𝑟𝑎𝑑

𝑚𝑎𝑔
 (G2) 

 

𝑃𝑟𝑎𝑑
𝑒𝑙 = −𝑅𝑒𝑎𝑙 (

1

2
∫ ∫𝑒(𝜌, 𝜙) ∙ 𝑗𝑃𝑂

∗
(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙

𝑎

0

2𝜋

0

) (G3) 

 

𝑃𝑟𝑎𝑑
𝑚𝑎𝑔

= −𝑅𝑒𝑎𝑙 (
1

2
∫ ∫ ℎ⃗⃗∗(𝜌, 𝜙) ∙ 𝑚⃗⃗⃗𝑃𝑂(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙

𝑎

0

2𝜋

0

) (G4) 

 

The fact that we’re taking the real part means that we are accounting only for the real part of 

the power, and not for the reactive one. Now, explicitly expressing the electric and magnetic 

fields as in (4.43), (4.44) and substituting them in (G2) it is possible to observe that each one 

of 𝑃𝑟𝑎𝑑
𝑒𝑙 , 𝑃𝑟𝑎𝑑

𝑚𝑎𝑔
 is given by two different contributes: one given by the electric source, and one 

given by the magnetic one. Let us analyze them separately, start from the reaction between the 

electric field and electric source: 

 

 𝑒(𝜌, 𝜙) = 𝑔̃𝑒𝑗(𝜌, 𝜙, 𝜌′, 𝜙′) ∗ 𝑗𝑖𝑑(𝜌′, 𝜙′) + 𝑔̃
𝑒𝑚(𝜌, 𝜙, 𝜌′, 𝜙′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝜌′, 𝜙′) (G5) 

 𝑃𝑟𝑎𝑑
𝑒𝑙 = 𝑃𝑟𝑎𝑑

𝑒𝑙,𝑗
+ 𝑃𝑟𝑎𝑑

𝑒𝑙,𝑚
 (G6) 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑗
= −

1

2
𝑅𝑒∫ ∫(𝑔̃𝑒𝑗(𝜌, 𝜙, 𝜌′, 𝜙′) ∗ 𝑗𝑖𝑑(𝜌′, 𝜙′)) ∙ 𝑗𝑖𝑑

∗
(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙

𝑎

0

2𝜋

0

 (G7) 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑚 = −

1

2
𝑅𝑒∫ ∫(𝑔̃𝑒𝑚(𝜌, 𝜙, 𝜌′, 𝜙′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝜌′, 𝜙′))

∗
∙ 𝑚⃗⃗⃗𝑖𝑑(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙

𝑎

0

2𝜋

0

 (G8) 
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Power radiated by the electric current: 

 

 

(𝑔̃𝑒𝑗(𝜌, 𝜙, 𝜌′, 𝜙′) ∗ 𝑗𝑖𝑑(𝜌′, 𝜙′)) = ∫ ∫(𝑔̃𝑒𝑗(𝜌, 𝜙, 𝜌′, 𝜙′) ∙ 𝑗𝑖𝑑(𝜌′, 𝜙′)) 𝜌′𝑑𝜌′𝑑𝜙′

𝑎

0

2𝜋

0

 (G9) 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑗
= −

1

2
𝑅𝑒∫ ∫(∫ ∫(𝑔⃗𝑒𝑗(𝜌, 𝜌′, 𝜙, 𝜙′)

𝑎

0

2𝜋

0

𝑎

0

2𝜋

0

∙ 𝑗𝑖𝑑(𝜌′, 𝜙
′)) 𝜌′𝑑𝜌′𝑑𝜙′) 𝑗𝑖𝑑

∗
(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙 

(G10) 

 

Let us express the spatial Green’s function through its spectral representation 

 

 

𝑔⃗𝑒𝑗(𝜌, 𝜌′, 𝜙, 𝜙′) =
1

4𝜋2
∬𝐺𝑥𝑥

𝑒𝑗
(𝑘𝑥 , 𝑘𝑦)𝑒

−𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑥𝑥
′
 𝑒−𝑗𝑘𝑦𝑦𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

 (G11) 

 

Following the same steps explained in Appendix C, imaging to have a plane wave coming 

from broadside and the electric field oriented along 𝑗𝑖𝑑(𝜌′, 𝜙′) = 𝑗𝑖𝑑(𝜌′, 𝜙′)𝑥̂: 

 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑗
= −

1

2
𝑅𝑒∫ ∫(∬𝐺̃𝑥𝑥

𝑒𝑗
(𝑘𝑥, 𝑘𝑦)𝑒

−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦 

∞

−∞

𝑎

0

2𝜋

0

∙
1

4𝜋2
𝐽𝑥(𝑘𝑥 , 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦) 𝑗𝑖𝑑

∗
(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙 

(G12) 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑗
= −

1

2

1

4𝜋2
𝑅𝑒 ∬𝐺̃𝑥𝑥

𝑒𝑗
(𝑘𝑥, 𝑘𝑦)

∞

−∞

𝐽𝑖𝑑,𝑥(𝑘𝑥, 𝑘𝑦)

∙ ∫ ∫ 𝑗𝑖𝑑
∗
(𝜌, 𝜙)𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦 𝜌𝑑𝜌𝑑𝜙

𝑎

0

𝑑𝑘𝑥𝑑𝑘𝑦

2𝜋

0

 

(G13) 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑗
= −

1

2

1

4𝜋2
𝑅𝑒 ∬𝐺̃𝑥𝑥

𝑒𝑗
(𝑘𝑥, 𝑘𝑦)

∞

−∞

𝐽𝑖𝑑,𝑥(𝑘𝑥, 𝑘𝑦)𝐽𝑖𝑑,𝑥
∗ (−𝑘𝑥, −𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 (G14) 

 

Where:  
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𝐽𝑖𝑑,𝑥(𝑘𝑥, 𝑘𝑦) = ∫ ∫(𝑗𝑖𝑑,𝑥(𝜌′, 𝜙
′)) 𝑒𝑗𝑘𝑥𝑥′𝑒𝑗𝑘𝑦𝑦′

𝑎

0

𝜌′𝑑𝜌′𝑑𝜙′

2𝜋

0

 (G15) 

 

𝐽𝑖𝑑,𝑥
∗ (−𝑘𝑥, −𝑘𝑦) = ∫ ∫ 𝑗𝑖𝑑,𝑥

∗
(𝜌, 𝜙)

𝑎

0

𝑒−𝑗𝑘𝑥𝑥 𝑒−𝑗𝑘𝑦𝑦𝜌𝑑𝜌𝑑𝜙

2𝜋

0

 (G16) 

 

Let us now assume that the source is real (verified in our specific case), that is   

 

 𝑗𝑥(𝜌′, 𝜙
′) = 𝑗𝑥

∗(𝜌′, 𝜙′) (G17) 

 𝐽𝑖𝑑,𝑥
∗ (−𝑘𝑥, −𝑘𝑦) = 𝐽𝑖𝑑,𝑥(−𝑘𝑥, −𝑘𝑦) (G18) 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑗
= −

1

8𝜋2
𝑅𝑒 ∬𝐺̃𝑥𝑥

𝑒𝑗
(𝑘𝑥, 𝑘𝑦)|𝐽𝑖𝑑,𝑥(𝑘𝑥, 𝑘𝑦)|

2
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

 (G19) 

 

Let us analyze now the power associated to the magnetic source: 

 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑚 = −

1

2
𝑅𝑒∫ ∫(𝑔̃𝑒𝑚(𝜌, 𝜙, 𝜌′, 𝜙′) ∗ 𝑚⃗⃗⃗𝑖𝑑(𝜌′, 𝜙′)) ∙ 𝑗𝑖𝑑

∗
(𝜌, 𝜙)

𝑎

0

𝜌𝑑𝜌𝑑𝜙

2𝜋

0

 (G20) 

 

Expressing the Green’s function by means of its spectral representation, and performing the 

same operations as before, and having the magnetic source oriented along 𝑚⃗⃗⃗𝑖𝑑(𝜌′, 𝜙′) =

𝑚𝑖𝑑(𝜌′, 𝜙′)𝑦̂, eventually one obtains: 

 

 

𝑃𝑟𝑎𝑑
𝑒𝑙,𝑚 = −

1

8𝜋2
𝑅𝑒 ∬𝐺̃𝑥𝑦

𝑒𝑚(𝑘𝑥, 𝑘𝑦)𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝑥, 𝑘𝑦)𝐽𝑖𝑑,𝑥(−𝑘𝑥 , −𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

= 0 (G21) 

 

Power radiated by the magnetic current: 

 

 

𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑚

= −
1

2
𝑅𝑒∫ ∫ ℎ⃗⃗∗(𝜌, 𝜙) ∙ 𝑚⃗⃗⃗𝑖𝑑(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙

𝑎

0

2𝜋

0

 (G22) 
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𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑚

= −
1

2
𝑅𝑒∫ ∫(∫ ∫(𝑔̃ℎ𝑚(𝜌, 𝜌′, 𝜙, 𝜙′)

𝑎

0

2𝜋

0

𝑎

0

2𝜋

0

∙ 𝑚⃗⃗⃗𝑖𝑑(𝜌
′, 𝜙′)) 𝜌′𝑑𝜌′𝑑𝜙′)

∗

𝑚⃗⃗⃗𝑖𝑑(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙 

(G23) 

 

𝑔̃ℎ𝑚(𝜌, 𝜌′, 𝜙, 𝜙′) =
1

4𝜋2
∬𝐺̃𝑦𝑦

ℎ𝑚(𝑘𝑥, 𝑘𝑦)𝑒
−𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑥𝑥

′
 𝑒−𝑗𝑘𝑦𝑦𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

 (G24) 

 𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑚

= −
1

8𝜋2
𝑅𝑒∫ ∫(∬𝐺̃𝑦𝑦

ℎ𝑚(𝑘𝑥, 𝑘𝑦)𝑒
−𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑥𝑥

′

∞

−∞

𝑎

0

2𝜋

0

∙ ∫ ∫ 𝑚⃗⃗⃗𝑖𝑑,𝑦(𝜌
′, 𝜙′)𝑒−𝑗𝑘𝑦𝑦𝑒𝑗𝑘𝑦𝑦′

𝑎

0

𝜌′𝑑𝜌′𝑑𝜙′
2𝜋

0

𝑑𝑘𝑥𝑑𝑘𝑦)

∗

𝑚⃗⃗⃗𝑖𝑑,𝑦(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙 

 

 

 

 

(G25) 

 

𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑚

= −
1

8𝜋2
𝑅𝑒 (∬𝐺̃𝑦𝑦

ℎ𝑚(𝑘𝑥, 𝑘𝑦)𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝑥, 𝑘𝑦)

∞

−∞

∙ ∫ ∫ 𝑚⃗⃗⃗𝑖𝑑,𝑦(𝜌, 𝜙)
𝑎

0

2𝜋

0

𝑒−𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑥𝑥𝜌𝑑𝜌𝑑𝜙 𝑑𝑘𝑥𝑑𝑘𝑦)

∗

 

 

 

 

(G26) 

 𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑚

= −
1

8𝜋2
𝑅𝑒 (∬𝐺̃𝑦𝑦

ℎ𝑚(𝑘𝑥, 𝑘𝑦)

∞

−∞

𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝑥, 𝑘𝑦) 𝑀⃗⃗⃗̃𝑖𝑑,𝑦(−𝑘𝑥 , −𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦)

∗

 

 

(G27) 

 

𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑚

= −
1

2

1

4𝜋2
𝑅𝑒 ∬(𝐺𝑦𝑦

ℎ𝑚(𝑘𝑥, 𝑘𝑦))
∗

∞

−∞

|𝑀𝑖𝑑,𝑦(𝑘𝑥 , 𝑘𝑦)|
2
𝑑𝑘𝑥𝑑𝑘𝑦 (G28) 

   

Let us analyze now the power associated to the electric source: 

 

 

𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑗

= −
1

2
𝑅𝑒∫ ∫ ℎ⃗⃗∗(𝜌, 𝜙) ∙ 𝑗𝑖𝑑(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙

𝑎

0

2𝜋

0

 (G29) 
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𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑗

= −
1

2
𝑅𝑒∫ ∫(∫ ∫(𝑔̃ℎ𝑗(𝜌, 𝜌′, 𝜙, 𝜙′)

𝑎

0

2𝜋

0

𝑎

0

2𝜋

0

∙ 𝑗𝑖𝑑(𝜌
′, 𝜙′)) 𝜌′𝑑𝜌′𝑑𝜙′)

∗

𝑚⃗⃗⃗𝑖𝑑(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙 

(G30) 

 

𝑔̃ℎ𝑗(𝜌, 𝜌′, 𝜙, 𝜙′) =
1

4𝜋2
∬𝐺̃𝑦𝑥

ℎ𝑗
(𝑘𝑥, 𝑘𝑦)𝑒

−𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑥𝑥′ 𝑒−𝑗𝑘𝑦𝑦𝑒𝑗𝑘𝑦𝑦′𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

 (G31) 

 𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑗

= −
1

2

1

4𝜋2
𝑅𝑒 [∫ ∫(∬𝐺̃𝑦𝑥

ℎ𝑗
(𝑘𝑥, 𝑘𝑦)𝑒

−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

𝑎

0

2𝜋

0

∙ ∫ ∫ 𝑗𝑖𝑑,𝑥(𝜌
′, 𝜙′)𝑒𝑗𝑘𝑥𝑥

′

𝑎

0

𝑒𝑗𝑘𝑦𝑦
′
𝜌′𝑑𝜌′𝑑𝜙′

2𝜋

0

)

∗

𝑚⃗⃗⃗𝑖𝑑,𝑦(𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙] 

 

 

 

   

(G32) 

 

𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑗

= −
1

8𝜋2
𝑅𝑒(∬𝐺̃𝑦𝑥

ℎ𝑗
(𝑘𝑥, 𝑘𝑦) 

∞

−∞

𝐽𝑖𝑑,𝑥(𝑘𝑥, 𝑘𝑦)

∙ ∫ ∫ 𝑚⃗⃗⃗𝑖𝑑,𝑦(𝜌, 𝜙)

𝑎

0

𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦𝜌𝑑𝜌𝑑𝜙

2𝜋

0

𝑑𝑘𝑥𝑑𝑘𝑦)

∗

 

 

 

 

(G33) 

 𝑃𝑟𝑎𝑑
𝑚𝑎𝑔,𝑗

= 0 (G34) 

 

Now, the total radiated power is given by: 

 

 𝑃𝑟𝑎𝑑 = 𝑃𝑟𝑎𝑑
𝑒𝑙 + 𝑃𝑟𝑎𝑑

𝑚𝑎𝑔

= −
1

2

1

4𝜋2
𝑅𝑒 ∬(𝐺𝑥𝑥

𝑒𝑗
(𝑘𝑥, 𝑘𝑦) |𝐽𝑖𝑑,𝑥(𝑘𝑥, 𝑘𝑦)|

2
∞

−∞

+ (𝐺𝑦𝑦
ℎ𝑚(𝑘𝑥, 𝑘𝑦))

∗

|𝑀⃗⃗⃗̃𝑖𝑑,𝑦(𝑘𝑥, 𝑘𝑦)|
2

) 𝑑𝑘𝑥𝑑𝑘𝑦  

 

 

 

  

(G35) 

 

Where the FT’s of the sources are: 
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 𝑚⃗⃗⃗𝑖𝑑(𝑘̂𝑖𝑛, 𝑟) = 𝐶𝑎𝑚𝑝[𝐸⃗⃗𝑖
𝑝𝑤(𝑟) × 𝑘̂𝑖𝑛]

𝑗𝑖𝑑(𝑘̂𝑖𝑛, 𝑟) = 𝐶𝑎𝑚𝑝[𝑘̂𝑖𝑛 × 𝐻⃗⃗⃗𝑖
𝑝𝑤(𝑟)]

    ∀𝑟 ∈ 𝑆𝑖𝑛(𝑘̂𝑖𝑛) (G36) 

 𝐸⃗⃗𝑖
𝑝𝑤(𝑟) = 𝐶𝑎𝑚𝑝𝐸𝑥

𝑝𝑤(𝑟)𝑥̂;    𝑘̂𝑖𝑛 = −𝑧̂;     𝐻⃗⃗⃗𝑖
𝑝𝑤(𝑟) =

1

𝜁
𝑘̂ × 𝐸⃗⃗𝑖

𝑝𝑤(𝑟) (G37) 

 𝑚⃗⃗⃗𝑖𝑑(𝑘̂𝑖𝑛, 𝑟) = 𝐶𝑎𝑚𝑝𝐸𝑥
𝑝𝑤𝑦̂ (G38) 

 
𝐸𝑥(𝑘𝑥, 𝑘𝑦) = ∬ 𝐸𝑝𝑤𝑒

𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦
𝐴𝑝ℎ

 
  

(G39) 

 
𝑗𝑖𝑑(𝑘̂𝑖𝑛, 𝑟) = −𝐶𝑎𝑚𝑝

𝐸𝑥
𝜁
𝑥̂ = −𝐶𝑎𝑚𝑝

𝐸𝑥(𝑘𝑥, 𝑘𝑦)

𝜁
𝑥̂ 

 

(G40) 

 
𝐽𝑖𝑑,𝑥(𝑘𝑥, 𝑘𝑦) = −𝐶𝑎𝑚𝑝

𝐸𝑥(𝑘𝑥, 𝑘𝑦)

𝜁
;    𝑀𝑖𝑑,𝑦(𝑘𝑥, 𝑘𝑦) = 𝐶𝑎𝑚𝑝𝐸𝑥(𝑘𝑥, 𝑘𝑦) 

  

(G41) 

 

And the total radiated power results: 

 

 𝑃𝑟𝑎𝑑 = 𝑃𝑟𝑎𝑑
𝑒𝑙 + 𝑃𝑟𝑎𝑑

𝑚𝑎𝑔

= −
𝐶𝑎𝑚𝑝
2

8𝜋2
𝑅𝑒 [∬(𝐺̃𝑥𝑥

𝑒𝑗
(𝑘𝑥, 𝑘𝑦) |

𝐸𝑥(𝑘𝑥, 𝑘𝑦)

𝜁
|

2∞

−∞

+ (𝐺̃𝑦𝑦
ℎ𝑚(𝑘𝑥, 𝑘𝑦))

∗

|𝐸𝑥(𝑘𝑥, 𝑘𝑦)|
2
)𝑑𝑘𝑥𝑑𝑘𝑦 ]

= −
𝐶𝑎𝑚𝑝
2

8𝜋2
𝑅𝑒 [∬(

𝐺̃𝑥𝑥
𝑒𝑗
(𝑘𝑥, 𝑘𝑦)

𝜁

∞

−∞

+ 𝜁 (𝐺̃𝑦𝑦
ℎ𝑚(𝑘𝑥 , 𝑘𝑦))

∗

)
1

𝜁
|𝐸𝑥(𝑘𝑥, 𝑘𝑦)|

2
𝑑𝑘𝑥𝑑𝑘𝑦 ] 

 

 

 

 

 

 

 

 

(G42) 

 

The Green’s functions components are: 

 

 
𝐺̃𝑥𝑥
𝑒𝑗
(𝑘𝑥, 𝑘𝑦) = −

𝜁

2𝑘

𝑘2 − 𝑘𝑥
2

𝑘𝑧
 (G43) 

 
𝐺̃𝑦𝑦
ℎ𝑚(𝑘𝑥, 𝑘𝑦) = −

1

2𝑘𝜁

𝑘2 − 𝑘𝑦
2

𝑘𝑧
 (G44) 

 𝐺̃𝑥𝑥
𝑒𝑗
(𝑘𝑥, 𝑘𝑦)

𝜁
+ 𝜁 (𝐺̃𝑦𝑦

ℎ𝑚(𝑘𝑥, 𝑘𝑦))
∗

= −
1

2𝑘

2𝑘2 − 𝑘𝑥
2 − 𝑘𝑦

2

𝑘𝑧
 (G45) 

 



Appendix G 

98 | The Observable Field  

 

Substituting in (G42): 

 

 

𝑃𝑟𝑎𝑑 = −
𝐶𝑎𝑚𝑝
2

8𝜋2
𝑅𝑒 ∬(−

1

2𝑘

2𝑘2 − 𝑘𝑥
2 − 𝑘𝑦

2

𝑘𝑧
)
1

𝜁
|𝐸𝑥(𝑘𝑥 , 𝑘𝑦)|

2
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

 (G46) 

 

𝑃𝑟𝑎𝑑 =
𝐶𝑎𝑚𝑝
2

4𝜋2
𝑅𝑒 ∬(

1

2𝑘

2𝑘2 − 𝑘𝜌
2

𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝑥, 𝑘𝑦)|

2
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

 (G47) 

   

Expressing the integrand function in cylindrical coordinates: 

 

 
𝑃𝑟𝑎𝑑 =

𝐶𝑎𝑚𝑝
2

4𝜋2
𝑅𝑒∫ ∫ (

1

2𝑘

2𝑘2 − 𝑘𝜌
2

𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝜌, 𝛼)|

2
𝑘𝜌𝑑𝑘𝜌𝑑𝛼

∞

0

2𝜋

0

=
𝐶𝑎𝑚𝑝
2

2𝜋
𝑅𝑒∫ (

1

2𝑘

2𝑘2 − 𝑘𝜌
2

𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝜌)|

2
𝑘𝜌𝑑𝑘𝜌

∞

0

 

(G48) 

 

Please, note that the Green’s function was considered real, so that 𝐺𝑓𝑐(𝑘𝑥, 𝑘𝑦)
∗
=

𝐺𝑓𝑐(𝑘𝑥, 𝑘𝑦); also the observation point and the source were taken at 𝑧, 𝑧′ = 0 ; thus the 

exponential dependence in z of the Green’s function was not taken into account, simplifying 

the calculations.  

Thanks to the complex conjugate products we performed any exponential dependence of the 

integrand function is disappeared. Thus, considering the real part of the whole spectrum in 

𝑑𝑘𝜌 simply means that only the visible part of the Poynting vector has to be accounted for, 

cropping the integral for 𝑘𝜌 = [0 → 𝑘0]. The expression is then: 

 

 
𝑃𝑟𝑎𝑑 =

𝐶𝑎𝑚𝑝
2

2𝜋
∫ (

1

2𝑘

2𝑘2 − 𝑘𝜌
2

𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝜌)|

2
𝑘𝜌𝑑𝑘𝜌

𝑘0

0

 (G49) 

 

Finally, assumptions can be made depending on the antenna dimension; let us start working 

on (G46): 
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𝑃𝑟𝑎𝑑 =
𝐶𝑎𝑚𝑝
2

4𝜋2
𝑅𝑒 (∬(

𝑘

𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝑥, 𝑘𝑦)|

2
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

− ∬(
𝑘𝜌
2

2𝑘𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝑥, 𝑘𝑦)|

2
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

) 

(G50) 

 𝑘𝜌 = 𝑘𝑠𝑖𝑛𝛽,   𝑘𝑧 = 𝑘𝑐𝑜𝑠𝛽;   𝑑𝑘𝜌 =
𝑑𝑘𝜌 

𝑑𝛽
𝑑𝛽 = 𝑘𝑐𝑜𝑠𝛽𝑑𝛽 (G51) 

 

𝑃𝑟𝑎𝑑 =
𝐶𝑎𝑚𝑝
2

4𝜋2

(

 2𝜋∫ (
𝑘

𝑘𝑐𝑜𝑠𝛽
)
1

2𝜁
|𝐸𝑥(𝑘𝑠𝑖𝑛𝛽)|

2𝑘𝑠𝑖𝑛𝛽𝑘𝑐𝑜𝑠𝛽𝑑𝛽

𝜋
2

0

− 2𝜋∫(
𝑘𝜌
2

2𝑘𝑘𝑐𝑜𝑠𝛽
)
1

2𝜁
|𝐸𝑥((𝑘𝑠𝑖𝑛𝛽))|

2
𝑘𝑠𝑖𝑛𝛽𝑘𝑐𝑜𝑠𝛽𝑑𝛽

𝜋
2

0
)

  

 

 

 

   

(G52) 

 

𝑃𝑟𝑎𝑑 =
1

2𝜁

𝐶𝑎𝑚𝑝
2

2𝜋
𝑘2

(

 ∫|𝐸𝑥(𝑘𝑠𝑖𝑛𝛽)|
2𝑠𝑖𝑛𝛽𝑑𝛽

𝜋
2

0

−
1

2
∫|𝐸𝑥((𝑘𝑠𝑖𝑛𝛽))|

2
𝑠𝑖𝑛3𝛽𝑑𝛽

𝜋
2

0
)

  (G53) 

   

Small antenna in terms of wavelength: 

 

 
𝐸𝑥(𝑘𝑥 , 𝑘𝑦) ≈ 𝐸𝑥(𝑘𝑥 = 0, 𝑘𝑦 = 0) = ∬ 𝐸𝑝𝑤𝑑𝑥𝑑𝑦

𝐴𝑝ℎ

= 𝐸𝑝𝑤𝐴𝑝ℎ (G54) 

 

𝑃𝑟𝑎𝑑 =
1

2𝜁

𝐶𝑎𝑚𝑝
2

2𝜋
𝑘2|𝐸𝑝𝑤|

2
𝐴𝑝ℎ
2

(

 ∫ 𝑠𝑖𝑛𝛽𝑑𝛽

𝜋
2

0

−
1

2
∫ 𝑠𝑖𝑛3𝛽𝑑𝛽

𝜋
2

0
)

  
  

(G55) 

 
𝑃𝑟𝑎𝑑 =

1

2𝜁

𝐶𝑎𝑚𝑝
2

2𝜋
𝑘2|𝐸𝑝𝑤|

2
𝐴𝑝ℎ
2 (1 −

1

3
 ) 

  

(G56) 

 
𝑃𝑟𝑎𝑑 = 𝐶𝑎𝑚𝑝

2
1

2𝜁

4𝜋

3𝜆2
 𝐴𝑝ℎ
2 |𝐸𝑝𝑤|

2
 (G57) 

 
𝑃𝑟𝑎𝑑 = 𝐶𝑎𝑚𝑝

2
𝐴𝑝ℎ
2

𝐴ℎ𝑢𝑦

1

2𝜁
|𝐸𝑝𝑤|

2
 (G58) 

 

Large antenna in terms of wavelength: 
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𝑃𝑟𝑎𝑑 =
𝐶𝑎𝑚𝑝
2

4𝜋2
𝑅𝑒 ∬(

1

2𝑘

2𝑘2 − 𝑘𝜌
2

𝑘𝑧
)
1

2𝜁
|𝐸𝑥(𝑘𝑥, 𝑘𝑦)|

2
𝑑𝑘𝑥𝑑𝑘𝑦 

∞

−∞

 (G59) 

 |𝐸𝑥(𝑘𝑥, 𝑘𝑦)|
2
≈ 0 𝑓𝑜𝑟𝑘𝜌 > 𝑘𝑚𝑖𝑛  

  

(G60) 

 

𝑘𝑧 = √𝑘2 − 𝑘𝜌2 = 𝑘
2√1 −

𝑘𝜌2

𝑘2
≈ 𝑘 −

𝑘𝜌
2

2𝑘
 

  

(G61) 

 

(
1

2𝑘

2𝑘2 − 𝑘𝜌
2

𝑘𝑧
) → (

1

2𝑘

2𝑘2 − 𝑘𝜌
2

𝑘 −
𝑘𝜌2

2𝑘

) = 1 (G62) 

 
𝑃𝑟𝑎𝑑 =

𝐶𝑎𝑚𝑝
2

4𝜋2
𝑅𝑒∬

1

2𝜁
|𝐸𝑥(𝑘𝑥, 𝑘𝑦)|

2
𝑑𝑘𝑥𝑑𝑘𝑦𝑎𝑟𝑜𝑢𝑛𝑑

𝑜𝑟𝑖𝑔𝑖𝑛

= 𝐶𝑎𝑚𝑝
2 ∬

1

2𝜁
|𝑒𝑥(𝑥, 𝑦)|

2𝑑𝑥𝑑𝑦 

 

 

(G63) 

 

Finally, from (G58) it is possible to derive the value of the amplifying factor used for the 

definition of the ideal currents. The expression is valid for antennae that are electrically really 

small, so it is necessary to substitute 𝐴ℎ𝑢𝑦 , that corresponds to the effective area of an 

Huygens’ source, with the general 𝐴𝑒𝑓𝑓. The expression turns into: 

 

 
𝑃𝑟𝑎𝑑 = 𝐶𝑎𝑚𝑝

2
𝐴𝑝ℎ
2

𝐴𝑒𝑓𝑓

1

2𝜁
|𝐸𝑝𝑤|

2
 (G64) 

 

The power received from the ideal antenna can be related to its effective area as: 

 

 
𝑃𝑟𝑒𝑐
𝑖𝑑 =

1

2𝜁
|𝐸𝑝𝑤|2𝐴𝑒𝑓𝑓 (G65) 

 

Equating (G64) and (G65), which means that the field scattered by a uniform distribution of 

Huygens’ source has to be equal to the power received by the ideal antenna, justifies the value 

adopted for the ideal current procedure: 

 

 
𝑃𝑟𝑎𝑑 = 𝐶𝑎𝑚𝑝

2
𝐴𝑝ℎ
2

𝐴𝑒𝑓𝑓

1

2𝜁
|𝐸𝑝𝑤|

2
=
1

2𝜁
|𝐸𝑝𝑤|2𝐴𝑒𝑓𝑓 = 𝑃𝑟𝑒𝑐

𝑖𝑑  (G66) 
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𝐶𝑎𝑚𝑝 =

𝐴𝑒𝑓𝑓

𝐴𝑝ℎ
 (G67) 

 

 

 



  

Appendix H  

 

This appendix shows how to extend the ideal current procedure to more generalized cases 

where the incident field can be described as a superposition of multiple plane waves. This is 

one of the most important aspect of the technique, since it can easily address the absorbed 

power when multiple plane waves are incoming with different directions. The procedure is 

similar to the previous one, since we can apply the ‘superposition of the effects’ principle 

being the whole system linear. Each wave is travelling towards the center of the reference 

system, where the antenna lies, with a direction that is defined by 𝛽𝑖𝑛, 𝛼𝑖𝑛 . Through the 

equivalence theorem a set of currents (ideal currents) is defined, for every single wave, in a 

circular surface of radius 𝑎 lying on the plane orthogonal to the wave propagating direction 

𝑘̂𝑖𝑛; then the currents will be made radiate to calculate the ideal scattered field, equal and 

opposite to the portion of the total incoming field the antenna can actually interacts with. 

Let us start defining the total incident field (under the assumption of coherent waves), 

considering for now just 2 waves: 

 

 𝑒(𝑟) = 𝐸⃗⃗1(𝛽1, 𝛼1)𝑒
−𝑗𝑘⃗⃗1𝑟 + 𝐸⃗⃗2(𝛽1, 𝛼1)𝑒

−𝑗𝑘⃗⃗2𝑟 (H1) 

 

Explicitly 

 

 𝑘⃗⃗𝑖𝑟 = −𝑘𝑟(𝑠𝑖𝑛𝛽𝑖𝑛𝑐𝑜𝑠𝛼𝑖𝑛𝑥̂ + 𝑠𝑖𝑛𝛽𝑖𝑛𝑠𝑖𝑛𝛼𝑖𝑛𝑦̂ + 𝑐𝑜𝑠𝛽𝑖𝑛𝑧̂)(𝑠𝑖𝑛Θ𝑐𝑜𝑠Φ𝑥̂

+ 𝑠𝑖𝑛Θ𝑠𝑖𝑛Φ𝑦̂ + 𝑐𝑜𝑠Θ𝑧̂)

= −𝑘𝑟(𝑠𝑖𝑛𝛽𝑖𝑛𝑐𝑜𝑠𝛼𝑖𝑛𝑠𝑖𝑛Θ𝑐𝑜𝑠Φ + 𝑠𝑖𝑛𝛽𝑖𝑛𝑠𝑖𝑛𝛼𝑖𝑛𝑠𝑖𝑛Θ𝑠𝑖𝑛Φ

+ 𝑐𝑜𝑠𝛽𝑖𝑛𝑐𝑜𝑠Θ))

= −𝑘𝑟(𝑠𝑖𝑛𝛽𝑖𝑛𝑐𝑜𝑠𝛼𝑖𝑛cos (𝛼𝑖𝑛 −Φ) + 𝑐𝑜𝑠𝛽𝑖𝑛𝑐𝑜𝑠Θ) 

 

 

 

 

(H2) 

 

So that 

 

 𝑒(𝑟) = 𝐸⃗⃗1(𝛽1, 𝛼1)𝑒
−𝑘𝑟(𝑠𝑖𝑛𝛽1𝑐𝑜𝑠𝛼1cos (𝛼1−Φ)+𝑐𝑜𝑠𝛽2𝑐𝑜𝑠Θ)

+ 𝐸⃗⃗2(𝛽2, 𝛼2)𝑒
−𝑘𝑟(𝑠𝑖𝑛𝛽2𝑐𝑜𝑠𝛼2cos (𝛼2−Φ)+𝑐𝑜𝑠𝛽2𝑐𝑜𝑠Θ) 

 

(H3) 

 

Extending this to an integral on the whole solid angle: 
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 𝑒(𝑟)

= ∫ ∫ 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)𝑒
−𝑘𝑟(𝑠𝑖𝑛𝛽𝑖𝑛𝑐𝑜𝑠𝛼𝑖𝑛cos (𝛼𝑖𝑛−Φ)+𝑐𝑜𝑠𝛽𝑖𝑛𝑐𝑜𝑠Θ)

𝑝𝑖

0

2𝜋

0

𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛 

 

(H4) 

 

Each one of these plane waves will induce a well-defined set of electric and magnetic currents 

on the antenna domain, which is orthogonal to the incident direction.  

The electric current are defined as (keep in mind that 𝑛̂ = 𝑧̂′ = −𝑟̂𝑖𝑛): 

 

 𝑗(𝑟) = −𝐶𝑎𝑚𝑝𝑟̂𝑖𝑛 × ℎ⃗⃗𝑖𝑛(𝑟) (H5) 

 𝑚⃗⃗⃗(𝑟) = 𝐶𝑎𝑚𝑝𝑟̂𝑖𝑛 × 𝑒𝑖𝑛(𝑟) (H6) 

 
𝐶𝑎𝑚𝑝 =

𝐴𝑒𝑓𝑓

𝐴𝑝ℎ𝑦𝑠
 (H7) 

 𝑗𝑒𝑞(𝑟) = −𝑗(𝑟)𝜒(𝑟̂𝑖𝑛, 𝑎) (H8) 

 𝑚⃗⃗⃗𝑒𝑞(𝑟) = −𝑚⃗⃗⃗(𝑟)𝜒(𝑟̂𝑖𝑛, 𝑎) (H9) 

 

It is convenient to define an alternative reference system for each plane wave such that the 

incidence direction results always orthogonal to the antenna domain itself. This system is 

defined by 𝑧̂′ = −𝑟̂𝑖𝑛, and the antenna planar domain will be called 𝑆𝑖𝑛 = 𝜋𝑎
2. 

This way the ideal currents turn into: 

 

 
𝑗𝑒𝑞(𝑟̂𝑖𝑛, 𝑟) = 𝐶𝑎𝑚𝑝𝑧̂

′ × ℎ⃗⃗(𝑟) =
𝐶𝑎𝑚𝑝

𝜁
𝑧̂′ × 𝑘̂𝑖𝑛 × 𝑒(𝑟) (H10) 

 𝑚⃗⃗⃗𝑒𝑞(𝑟̂𝑖𝑛, 𝑟) = 𝐶𝑎𝑚𝑝𝑒(𝑟) × 𝑧̂′ (H11) 

 

Now, the field radiated in the far field region by this set of currents, is in general defined as an 

outward propagating wave: 

 

 
𝑒𝑠𝑐𝑎𝑡
𝑖𝑑 (𝑟∞, 𝑟𝑖𝑛) = ∬ [𝑔̃̃𝑓𝑠

𝑒𝑗(𝑟∞, 𝑟
′)𝑗𝑖𝑑(𝑟̂𝑖𝑛, 𝑟) + 𝑔̃̃𝑓𝑠

𝑒𝑚(𝑟∞, 𝑟
′)𝑚⃗⃗⃗𝑖𝑑(𝑟̂𝑖𝑛, 𝑟)]𝑑𝑟′

𝑆𝑖𝑛

 
 

(H12) 

 

Note that 𝑆𝑖𝑛 can in general change for every plane wave used to represent the incident field. 

It is clear from Appendix A, that in the far field region asymptotical consideration on the 
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spatial Green’s function can lead to a very simple and useful expression for the radiated field, 

which is: 

 

 
𝑒𝑠𝑐𝑎𝑡
𝑖𝑑 (𝑟∞, 𝑟𝑖𝑛) = 𝑉𝑖𝑑

𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛)
𝑒−𝑗𝑘𝑟∞

𝑟∞
 (H13) 

 

Where using the V just indicates the fact that it is a Voltage quantity, which is: 

 

 
𝑉𝑖𝑑
𝑜𝑢𝑡𝑤(𝑎, 𝑟, 𝑘⃗⃗𝑖𝑛) = −

𝑗𝑘

4𝜋
{𝜁(𝐼 − 𝑘̂𝑘̂)𝐽(𝑟̂𝑖𝑛, 𝑘⃗⃗) − 𝑘̂ × 𝑀⃗⃗⃗(𝑟𝑖𝑛, 𝑘⃗⃗)} (H14) 

 

The Fourier transform of the equivalent currents has to be evaluated over the squinted domain 

of the antenna: 

 

 
𝐽(𝑟̂𝑖𝑛, 𝑘⃗⃗) = ∬ 𝑗(𝑟̂𝑖𝑛, 𝑟)𝑒

𝑗𝑘⃗⃗𝑟𝑑𝑟
𝑆𝑖𝑛

 (H15) 

 
𝑀⃗⃗⃗(𝑟̂𝑖𝑛, 𝑘⃗⃗) = ∬ 𝑚⃗⃗⃗(𝑟̂𝑖𝑛, 𝑟)𝑒

𝑗𝑘⃗⃗𝑟𝑑𝑟
𝑆𝑖𝑛

 (H16) 

 

Note that in the region the Fourier transform is performed the incoming plane wave does not 

present any variation (𝑟𝑖𝑛 = 0 ∈ 𝑆𝑖𝑛). This renders 𝑗(𝑟̂𝑖𝑛, 𝑟), 𝑚⃗⃗⃗(𝑟̂𝑖𝑛, 𝑟) constant (see previous 

definition), thus: 

 

 𝐽(𝑟𝑖𝑛 = 0, 𝑘⃗⃗, 𝑘⃗⃗𝑖𝑛) = 𝑗(𝑟𝑖𝑛 = 0, 𝑟)𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗) (H17) 

 𝑀⃗⃗⃗(𝑟𝑖𝑛 = 0, 𝑘⃗⃗, 𝑘⃗⃗𝑖𝑛) = 𝑚⃗⃗⃗(𝑟𝑖𝑛 = 0, 𝑟)𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗) (H18) 

 
𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗) = 2𝜋𝑎

2
𝐽1(𝑘𝜌

′ 𝑎)

𝑘𝜌′ 𝑎
 (H19) 

 

Now, we express 𝑘⃗⃗  in terms of the local coordinates, defining as (𝛽′, 𝛼′) the angles that 

describe the observation point highlighted by 𝑘⃗⃗. Do not confuse this parametrization with the 

one performed in the previous chapters and in this one. These sets of ([β′, α′], [ρ′, Θ′, Φ′]) 

change for every single plane wave, and so for each single squinted domain, we are 

evaluating. In particular, [β′, α′] represent the observation points starting from the squinted 
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reference system, and they’re different from [𝛽𝑖𝑛, 𝛼𝑖𝑛]. The difference with respect to the 

broadside incidence case is that now we have to express 𝑘′𝜌 in terms of 𝑟̂𝑖𝑛, 𝑘⃗⃗. Also, in order 

to calculate the Airy pattern already as a function of the standard reference system, thus 

avoiding the complex Matlab implementation of the rotation of the squinted one, we can note 

that: 

 

 𝑘̂𝑧̂′ = 𝑘̂(−𝑟̂𝑖𝑛) = −𝑐𝑜𝑠𝛾 (H20) 

 𝛾 = 𝑎𝑟𝑐𝑐𝑜𝑠(−𝑘̂𝑟̂𝑖𝑛) = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑘̂𝑘̂𝑖𝑛) (H21) 

 

So that now: 

 

 𝑘𝜌 = 𝑘𝑠𝑖𝑛𝛾 (H23) 

 

Note that 𝑘𝜌 ≠ 𝑘𝜌
′  since the first one is expressed with respect to the standard reference 

system, while the second one is expressed with respect to the squinted reference system. Let 

us now improve the 𝑉𝑜𝑏𝑠
𝑜𝑢𝑡𝑤 expression: 

 

 
𝑉𝑖𝑑
𝑜𝑢𝑡𝑤(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗) = −

𝑗𝑘

4𝜋
{𝜁(𝐼 − 𝑘̂𝑘̂)𝐽(𝑟̂𝑖𝑛, 𝑘⃗⃗) − 𝑘̂ × 𝑀⃗⃗⃗(𝑟𝑖𝑛, 𝑘⃗⃗)}

= −
𝑗𝑘

4𝜋
{𝜁(𝐼 − 𝑘̂𝑘̂)𝑗𝑒𝑞(𝑟̂𝑖𝑛, 𝑟) − 𝑘̂

× 𝑚⃗⃗⃗𝑒𝑞(𝑟̂𝑖𝑛, 𝑟)} 𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗) 

  

 

 

(H24) 

 
𝑗𝑒𝑞(𝑟𝑖𝑛 = 0, 𝑟) =

𝐶𝑎𝑚𝑝

𝜁
𝑧̂′ × [𝑘̂𝑖𝑛 × 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)]

=
𝐶𝑎𝑚𝑝

𝜁
𝑧̂′ × [−𝑟̂𝑖𝑛 × 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)]

=
𝐶𝑎𝑚𝑝

𝜁
𝑧̂′ × [𝑧̂′ × 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)]

=
𝐶𝑎𝑚𝑝

𝜁
𝑟̂𝑖𝑛 × [𝑟̂𝑖𝑛 × 𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛)] 

 

 

 

 

 

(H25) 

 

Expressing the field in local (either spherical or Cartesian, according to the vector product) 

coordinates, and applying the vector identity 𝑨 × (𝑩 × 𝑪) = (𝑨𝑪)𝑩 − (𝑨𝑩)𝑪 we obtain: 
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𝑗𝑒𝑞(𝑟𝑖𝑛 = 0, 𝑟) = −

𝐶𝑎𝑚𝑝

𝜁
𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) (H26) 

 

In the same way: 

 

 𝑚⃗⃗⃗𝑒𝑞(𝑟𝑖𝑛 = 0, 𝑟) = −𝐶𝑎𝑚𝑝𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × 𝑧̂
′ = 𝐶𝑎𝑚𝑝𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × 𝑟̂𝑖𝑛 (H27) 

 

Thus: 

 

 𝑉𝑖𝑑
𝑜𝑢𝑡𝑤(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗)

= −
𝑗𝑘

4𝜋
{𝜁(𝐼 − 𝑘̂𝑘̂)𝑗𝑒𝑞(𝑟̂𝑖𝑛, 𝑟) − 𝑘̂

× 𝑚⃗⃗⃗𝑒𝑞(𝑟̂𝑖𝑛, 𝑟)} 𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗) 

  

  

(H28) 

 
𝑉𝑖𝑑
𝑜𝑢𝑡𝑤(𝑟̂𝑖𝑛, 𝑘⃗⃗) = 𝐶𝑎𝑚𝑝

𝑗𝑘

4𝜋
{(𝐼 − 𝑘̂𝑘̂)𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) − 𝑘̂

× (𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × 𝑟̂𝑖𝑛)} 𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗) 

 

  

(H29) 

 

It is simple to demonstrate that: 

 

 (𝐼 − 𝑘̂𝑘̂)𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) = 𝑘̂ × (𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × 𝑘̂) (H30) 

 
𝑉𝑖𝑑
𝑜𝑢𝑡𝑤(𝑟̂𝑖𝑛, 𝑘⃗⃗) = 𝐶𝑎𝑚𝑝

𝑗𝑘

4𝜋
{𝑘̂ × (𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × 𝑘̂) − 𝑘̂

× (𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × 𝑟̂𝑖𝑛)}𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗) 

 

(H31) 

 
𝑉𝑖𝑑
𝑜𝑢𝑡𝑤(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗) = 𝐶𝑎𝑚𝑝

𝑗𝑘

4𝜋
𝑘̂ × [𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × (𝑘̂ − 𝑟̂𝑖𝑛)] 𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗) (H32) 

 

Defining now the Huygens’ pattern: 

 

 
𝐻⃗⃗⃗𝑖𝑛(𝑟̂𝑖𝑛, 𝑘⃗⃗) =

𝑗𝑘

4𝜋
𝑘̂ × [𝐸⃗⃗𝑖𝑛(𝛽𝑖𝑛, 𝛼𝑖𝑛) × (𝑘̂ − 𝑟̂𝑖𝑛)] (H33) 

 

We obtain the final definition for the outward observable field amplitude: 
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 𝑉𝑖𝑑
𝑜𝑢𝑡𝑤(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗) = 𝐶𝑎𝑚𝑝𝐴𝑖𝑟𝑦𝑖𝑛(𝑘⃗⃗𝑖𝑛, 𝑘⃗⃗)𝐻⃗⃗⃗𝑖𝑛(𝑟̂𝑖𝑛, 𝑘⃗⃗) (H34) 

 

The total observable field in the far field region is the superposition of every single outward 

propagating wave induced by the incoming plane waves; so for every direction 𝑘⃗⃗: 

 

 
𝑒𝑜𝑏𝑠
𝑜𝑢𝑡𝑤(𝑟, 𝑘⃗⃗) = ∫ ∫ 𝑉𝑖𝑑

𝑜𝑢𝑡𝑤(𝑎, 𝑟̂𝑖𝑛, 𝑘⃗⃗)𝑠𝑖𝑛𝛽𝑖𝑛𝑑𝛽𝑖𝑛𝑑𝛼𝑖𝑛
𝑒−𝑗𝑘𝑟∞

𝑟∞

𝜋

0

2𝜋

0

 (H35) 
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