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Abstract: The quality of the surrounding rock is crucial to the stability of underground caverns,
thereby requiring an effective monitoring technology. Ground-penetrating radar (GPR) can recon-
struct the subterranean profile by electromagnetic waves, but two significant issues, called clutter
and hyperbola tails, affect the signal quality. We propose an approach to identify fractured rocks
using 2D Wavelet transform (WT) and F-K migration. F-K migration can handle the hyperbola using
Fourier analysis. WT can mitigate clutter, distinguish signal discontinuity, and provide signals with
a good time-frequency resolution for F-K migration. In the simulation, the migration result from
horizontal detail coefficients highlight the crack locations and reduce the scattering signals. Noise has
been separated by 2D WT. Hyperbola tails are decomposed to vertical and diagonal detail coefficients.
Similar promising results have been achieved in the field measurement. Therefore, the proposed
approach can process GPR signals for identifying fractured rock areas.

Keywords: ground penetrating radar; fractured rock identification; 2D wavelet transform; F-K
migration; noise; scattered signals; hyperbola interference

1. Introduction

Underground water-sealed caverns are of strategic significance for energy resource
storage (e.g., gas [1], oil [2]) owing to their advantages, including considerable capacities,
reliable structural safety and limited land resource occupation. Surrounding rock qual-
ity is a primary factor determining the structural stability of these storage caverns [3],
thereby requiring monitoring strategies and rock reinforcement approaches. Although
rock quality evaluation has been extensively developed [4,5] and mature numerical models
for analyzing fractured rock deformation has been proposed [6–8], field detection of rock
formations is still limited. The classic opening and pit sampling [5] measure is wasteful
and time-consuming, accompanied by the potential risks of breaking intact rocks or ig-
noring some fractured regions in this discontinuous procedure. Force and acceleration
transducer arrays have been applied for monitoring deformation, stress and dynamic
responses (e.g., [9,10]) but limited in shallow ground. Seismic methods use high-energy
elastic waves to monitor underground caverns (e.g., [11,12]), but the signals are produced
by explosions or rock mass failure. Electrical resistivity tomography is suitable for detecting
underground terrain (e.g., [13]) but has resolution limitations. Therefore, it is significant to
develop effective non-destructive technology for monitoring the surrounding rock quality
of underground caverns.

Ground-penetrating radar (GPR) is a non-destructive detection technology to explore
the unseen subsurface world, developed based on the theory of electromagnetic wave
propagation in materials. It behaves like an echo listener recording the wave reflections
from the underground, and this approach has been proven effective in many geological
surveys (e.g., [14,15]). For the fractured surrounding rock, the interfaces of numerous
fissures become significant reflection and diffraction sources. Nonetheless, the resolution
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scale is yet the primary issue obstructing the radargram interpretation. The sizes of the
joint fissures are small, and densely distributed cracks can generate complicated signals.
Although high-frequency electromagnetic waves have a high spatial resolution, the wave
energy attenuates quickly within a short propagation distance [16]. Some researches
can quantify small voids, objects and throughout cracks in the centimeter or millimeter
level (e.g., [17–19]), but the complicated situation with joint fissures deeply beneath the
ground remains unrevealed in the literature. Another issue hiding crack locations arises
from the hyperbola signal of any scatter in the B-scan radargram [20]. The hyperbola
tails of crack groups cover the entire B-scan image, which makes the actual locations
indistinguishable. Besides, instrumental and environmental clutter increases the difficulty
in signal processing [21]. Clutter suppression and hyperbola elimination for fractured rock
identification are subjected to researches.

Approaches for eliminating the hyperbola effect has evolved during the last decades.
The direct method is to calculate the hyperbola and then either sum the signals to the
focusing point [22] or mitigate the hyperbola [23]. This method has low resolution. The
two mainstream approaches are migration and inversion by the forward model, orig-inally
proposed for processing seismic signals [24]. Migration converts the hyperbola signal
to the focused position [25]. Kirchhoff’s wave equation [26] and Fourier transform [27]
based migration is extensively applied. Recent researches concern improving the migration
approach (e.g., increasing accuracy of velocity estimation [28]) according to different
application requirements and combining it with deep learning approaches [29]. Full-wave
inversion establishes the forward model and adjusts the parameters to achieve the detected
profile [30]. This method applies in simple models with fewer parameters (e.g., [31,32]),
limited by high computational complexity. Recent researches concern accelerating inversion
algorithms by deep learning approaches [33] and Bayesian inference [34]. In our research,
we utilize the migration approach owing to the complicated situations of fractured rocks.

Wavelet transform (WT) is a time-frequency analysis approach to interpret signals [35].
It can distinguish signal discontinuities and decompose the signal into different mode
functions containing distinct features. For the fractured surrounding rock identification,
signal discontinuities appear at crack interfaces, and WT is expected to capture these
characteristics. WT has demonstrated good de-clutter practices in processing GPR signals
(e.g., [36–38]) but can only eliminate part of the hyperbola tails (e.g., [39,40]). Migration can
handle hyperbola tails, but different migration approaches present different performance
in terms of resolution and target intensity and sometimes preserve undesired scattering
signals [20]. Besides, clutter also affects the migration results [41]. Therefore, some re-
searchers complemented strategies to enhance the migration results (e.g., [42,43]). A typical
migration approach is F-K migration, which operates frequency and wavenumber in the
Fourier domain and then inverses to the time domain [44]. WT is functional-similar in sig-
nal analysis to the adopted Fourier transform and can provide good frequency resolution.
Therefore, WT can assist F-K migration for clutter suppression and hyperbola elimination,
and enhance the migration results.

In this paper, we propose a novel approach based on two-dimensional (2D) WT and
F-K migration for identifying fractured rock areas using GPR. The 2D WT can decompose
the radargram to different frequency levels and then feed the signals into F-K migration.
The remainder of this paper is organized as follows: Section 2 describes the approach for
processing GPR signals; Section 3 analyzes the results of numerical simulation and field
measurements; Sections 4 and 5 discuss and conclude this paper.

2. Materials and Methods
2.1. Signal Pre-Processing

Step 1: dewow filtering
Dewow filtering refers to the procedure of zero offset removal, which is primarily

designed to eliminate the effect of direct current bias and the low-frequency signal trend
contained in the data. The ‘wow’ phenomenon partially arises from the swamping or
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saturation of early arrivals and inductive coupling effect, thereby generating a distortion
of the mean amplitude away from zero [25]. This can affect the subsequently processed
results, particularly, the offset will be amplified to an indistinguishable extent in step 2.
Efficient dewow filtering approach can be found in [25].

Step 2: Amplitude gain
Amplifying signal amplitude is required to enhance the appearance of later arrivals

due to the attenuation from wave propagation and geometry spreading loss. Since the
GPR antenna launches spherical waves, not plane waves, the signal spreads out, accel-
erating the attenuation. According to the electric field solution of Maxwell’s equations,
the electromagnetic waves attenuate exponentially with propagation distance in a low-
loss uniform medium [25]. Heavy scattering and refraction of the electromagnetic wave
at defects constitute the geometry spreading loss. Based on the assumption of evenly
distributed fissures, the wave energy decreases uniformly with the propagation distance.
In this research, we combine the common gain functions, called exponential and linear
functions [45,46], to compensate for the signal attenuation.

2.2. 2D Wavelet Decomposition

WT is a signal decomposition and time-frequency representation approach [47]. It uti-
lizes function groups as band-pass filters to decompose the signals into different frequency
levels. Since the wavelet functions are localized in the time domain, the decomposed results
present the local modes in the time series and provide good time-frequency resolution.
Identifying distinct local modes is significant for GPR radargram interpretation, as the
distinct signals are reflected from the subsurface interfaces with dielectric contrasts. WT
can decompose signals over oscillatory waveforms that reveal signal characteristics and
provide sparse representations of regular signals that may include transients and singu-
larities. Therefore, it has the potential to distinguish between clutter and targeted signals,
as well as between hyperbola tails and focusing signals. The wavelet basis consisting of
the scaling function ϕ0,0 and wavelets ψj,n (Equation (1)) determines the decomposition
paths. It can represent the signals by the wavelet inner-product coefficients and recover the
signals by summing the coefficients (Equation (2)) [47].

ψj,n(t) =
1√
2j

ψ(
t− 2jn

2j ), (j, n) ∈ Z2 (1)

〈Y, ψj,n〉 =
∫ ∞

−∞
Yψj,n(t)dt

Y =
∞

∑
j=−∞

∞

∑
n=−∞

〈Y, ψj,n〉ψj,n

(2)

where wavelets ψj,n that dilate and translate from the mother wavelet ψ constitute the
orthonormal basis, Y is the GPR signal function, 〈−,−〉 represents the inner product.
An orthonormal basis is a complete orthonormal system for the Hilbert space, representing
signals with no redundant information. Although different scaling functions and wavelet
groups can have similar bandwidths, they will influence the local mode reconstruction,
e.g., sharp curves or smooth oscillation. In this research, the fourth-order Daubechies
wavelets are utilized to decompose GPR signals, and the scaling function and the mother
wavelet are illustrated in Figure 1.
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Figure 1. Scaling function and mother wavelet of the fourth-order Daubechies wavelet.

The down-sampling procedure after band-pass filtering at each wavelet decomposition
stage reduces the signal resolution, which ignores minor signal responses and affects the
identification of the interface locations from radargrams. Stationary wavelet transform
(SWT) was designed to complement the translation-invariance, achieved by removing the
down-samplers and up-samplers in the discrete wavelet transform and up-sampling the
filter coefficients [48]. The signal size remains constant in the decomposition procedure.
Keeping the signal size is significant, as the minimum recognizable scale is determined by
the signal intervals. 2D SWT is appropriate for analyzing 2D datasets or pictures, as these
signals have continuity in different orientations. The subsurface formations have both
transverse and perpendicular continuities, and utilizing 2D SWT to interpret radargrams
can reveal the horizontal relationships among diverse A-scan traces. The B-scan radargram
is decomposed into multiple horizontal detail coefficients DHi, vertical detail coefficients
DVi, diagonal detail coefficients DDi and approximation coefficients Ai, i = 1, 2, ..., N
(Equation (3)).

Y(x, t) =
N

∑
i=1

(DHi + DVi + DDi) + AN , (3)

where Y(x, t) is the B-scan radargram and N is the decomposition number. In this research,
we use the Matlab function ‘swt2’ for 2D SWT decomposition, and the sole parameter
required is the fourth-order Daubechies wavelet.

2.3. F-K Migration

Frequency-wavenumber migration, or F-K migration, is an approach to convert hyper-
bola signals to object locations, firstly applied to process seismic signals [27]. It utilizes the
exploding source model, where the scattered signal field is originated by the explosion at
the object locations [49], to solve the wave equation (Equation (4)). F-K migration calculates
the wave-field ϕ at t = 0 when the explosion happens and the waves still locate at sources.
The essence of F-K migration is the Fourier transform, which is derived from the general
summation expression of a wave function (Equation (5)) [50].

(
∂2

∂x2 +
∂2

∂z2 −
1
v2

∂2

∂t2 )ϕ(x, z, t) = 0 (4)

ϕ(x, z, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
φ(kx, ω)e−j(kx x+kzz−ωt)dkxdω (5)

where v is the propagation velocity (assumed constant in K-F migration) of electromagnetic
waves, kx and kz are wave-numbers in the x and z directions, ω = v

√
k2

x + k2
z represents

the frequency, and φ is the Fourier transform from the surface field ϕ(x, 0, t). ϕ(x, 0, t)
equals to the measured signal Y(x, t) as GPR acquires the waves propagated to the surface.
The target image is estimated by the initial wave-field I(x, z) at t = 0 (Equation (6)).

I(x, z) = ϕ(x, z, 0) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
φ(kx, ω)e−j(kx x+kzz)dkxdω (6)
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By resampling φ(kx, ω) to the kx − kz domain, the migration results can be calculated
by the inverse fast Fourier transform F−1 (Equation (7)). In this research, F-K migration
is programmed by Matlab, and the parameter of propagation velocity can be calculated
according to [25].

I(x, z) = F−1
kx
F−1

kz
Φ(kx, kz)

Φ(kx, kz) =
vkz√

k2
x + k2

z
φ(kx, v

√
k2

x + k2
z)

(7)

F-K migration is a linear function since the Fourier transform satisfies the linear super-
position principle. The migration results of radargram can be regarded as the summation
of migration from all SWT coefficients (Equation (8)).

M(Y(x, t)) =
N

∑
i=1

(M(DHi) + M(DVi) + M(DDi)) + M(AN), (8)

where M(·) represents the F-K migration function. The SWT coefficients have a good
time-frequency resolution, and each component can contain clutter, targets, or hyperbola
interference. Effective SWT signals containing the targets can enhance the migration results,
while those occupied by clutter or hyperbola interference should be discarded. Thus the
final target profile is reconstructed by selected migration components. Figure 2 presents
the procedures of our proposed approach.

GPR 
radargram Pre-processing

2-D 
SWT

Approximation 
coefficient

Horizontal detail 
coefficient

Vertical detail 
coefficient

Diagonal detail 
coefficient

Choose 
coefficients

F-K migration

Figure 2. The flowchart of proposed methods.

2.4. Test Site

Field measurements were carried out in an underground cavern in Huangdao, China,
before grouting reinforcement, with the measurement scheme shown in Figure 3a. The
underground caverns were built inside the layer of granite for structural stability. We
use the GPR instrument from ‘MALA-Geoscience’, moving along the cavern surface and
transmitting 250 MHz electromagnetic waves into surrounding rock sections. The wave
frequency is 250 MHz to reach the depth around 7 m. The measurement length of an
example section is 0 ≤ x ≤ 20 m, and the time window is 130 ns. Figure 3b presents the
original radargram. Since opening the rocks and obtaining the actual rock distribution are
difficult, a finely processed radargram by expertise is used as ‘ground truth’ (Figure 3c).
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(a) (b)

0
Length (m)

20

0

130

Ti
m

e 
(n

s)

U
V W

(c)

Figure 3. (a) A simple scheme of field measurements. (b) The original radargram. (c) The radargram processed by expertise.

3. Results
3.1. Simulated Signal Analysis

Scenario 1: identifying sparse rock cracks

Since visibly obtaining the actual fissure distribution inside the surrounding rocks is
difficult, the numerically generated radargram is analyzed to compare the reconstructed
profile with the preset geometric model. The open-source software, ‘gprMax’ [51], can
simulate electromagnetic wave propagation inside the subterranean sections and have
been extensively applied in evaluating GPR signal processing approaches (e.g., [52,53]).
We assume that the signal reflections are all generated by rock fissures, not strata interfaces,
since the underground caverns are built inside the single layer of granite. In this paper,
we simulated the GPR signals from a subterranean area with the measurement length
0 ≤ x ≤ 2 m and depth 0 ≤ z ≤ 1 m. The subterranean material is granite with relative
permittivity of 7 [54] and conductivity of 0.012 [55]. The model includes six horizontal
5 mm-thick cracks (the direction is limited by ‘gprMax’, vertically or horizontally) filled by
air, as shown in Figure 4a. The simulated grid step is4x = 4z = 0.005 m, and the time
window is 20 ns. GPR transmits an 800 MHz ricker wave and receives A-scan traces with
0.01 m intervals. The simulated radargram after pre-processing is presented in Figure 4b.
The hyperbola tails in the radargram affect the visibility of crack sizes and locations.

0 0.5 1 1.5 2
Scanning length (m)

1

0.5

0

D
e
p
th

 (
m

)

(a) (b)

Figure 4. (a) Subterranean model with 6 cracks; (b) The pre-processed radargram.

Firstly, the radargram is decomposed by 2D SWT, and Figure 5 illustrates the 2nd layer
coefficients for an example. The approximation coefficient is not considered in migration
since it preserves both target signals and hyperbola tails similar to the pre-processed
radargram. Vertical and diagonal detail coefficients only contain hyperbola tails, while
hyperbola centers corresponding to cracks are invisible. These two coefficients are excluded
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for migration. The horizontal detail coefficient preserves the target signal and discards part
of the hyperbola tails, suitable for further F-K migration. Therefore, only horizontal detail
coefficients DHi in Equation (8) are considered in the migration step.

(a) (b)

(c) (d)

Figure 5. Second layer (a) approximation coefficient A2, (b) horizontal detail coefficient DH2, (c) vertical detail coefficient
DV2, and (d) diagonal detail coefficient DD2.

The radargram is decomposed into four layers by 2D SWT. F-K migration processes
the four horizontal detail coefficients and the pre-processed radargram for comparison,
as shown in Figure 6. Without SWT decomposition, the migrated radargram (Figure 6e)
highlights the crack locations, but preserves scattering signals, which are produced by
hyperbola tails. Two-dimensional SWT has reduced the scatter in the migration results
especially from the 3rd and 4th-layer horizontal coefficients (Figure 6c,d). However, when
decomposing to deep SWT layers (e.g., 4th-layer in Figure 6d), the highlighted crack sizes
increase. This is because the deep-layer signals have low frequency but large wavelengths.
Therefore, DH3 is more promising for avoiding scattering signals in migration and high-
lighting the crack locations and sizes. The radargrams contain artifacts marked in the
dashed circles, which are unavoidable in all migration results. These artefacts are gener-
ated by multiple reflections between two upper cracks (center locations (0.52 m, 0.25 m)
and (1.14 m, 0.45 m)).



Remote Sens. 2021, 13, 2280 8 of 19

(a) (b)

(c) (d) (e)

Figure 6. F-K migration results of (a) 1st-layer DH1, (b) 2nd-layer DH2, (c) 3rd-layer DH3, (d) 4th-layer DH4, and (e) pre-
processed radargram without SWT decomposition.

Scenario 2: identifying sparse rock cracks from noisy environments

Noise is a significant issue affecting GPR signals. We add Gaussian white noise to the
radargram to simulate the random noise. The same model in Figure 4a is utilized, and the
polluted radargram (the signal-to-noise ratio is−5 db) is shown in Figure 7. Noisy speckles
occupy the radargram, affecting the visibility of target signals and hyperbola tails.

Figure 7. Polluted radargram of the model in Figure 4a.

The polluted radargram is decomposed into four layers by 2D SWT. Similar to scenario
1, only horizontal detail coefficients preserve target signals and mitigate part of hyperbola
tails, as shown in Figure 8. The radargram is not decomposed into deeper layers that
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increase the crack sizes in the migration result. The coefficients DH1 and DH2 are occupied
by noise, which means 2D SWT can separate noise out. DH3 is a mixture of noise and target
signals, unsuitable for crack identification. Noise nearly disappears in DH4, and target
signals become visible. Noise, target signals, and hyperbola tails have different time-
frequency features, and therefore they can be separated by 2D SWT.

(a) (b)

(c) (d)

Figure 8. The horizontal detail coefficients of (a) 1st-layer DH1, (b) 2nd-layer DH2, (c) 3rd-layer DH3, and (d) 4th-layer DH4.

The F-K approach migrates the polluted radargram in Figure 7 and the 4th-layer DH4,
as illustrated in Figure 9. Although highlighting the crack locations, Figure 9a contains a
similar noise level to Figure 7. Besides, scattering signals appear surrounding the focused
locations in Figure 9a. The noise intensity decreases dramatically in Figure 9b since 2D
SWT has separated the noisy layers. The migration result from DH4 has highlighted the
target locations and eliminated noise and hyperbola tails. However, the identified crack
sizes increase due to the large wavelength in deep SWT layers.
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(a) (b)

Figure 9. F-K migration results of (a) the polluted radargram and (b) the 4th-layer DH4.

Scenario 3: identifying fractured rock areas with dense fissures

Fissure groups other than the single throughout crack are common in fractured rock
areas. A subterranean area with the measurement length 0 ≤ x ≤ 2 m and depth 0 ≤ z ≤
1 m is simulated by ‘gprMax’. There are three predefined fractured rock portions with
rock fissures randomly distributed inside (fissure widths of 5 mm, lengths of 1–5 cm,
and intervals of 1–5 cm), as shown in Figure 10a. Other model parameters are the same
as scenario 1. Figure 10b illustrates the corresponding radargram after pre-processing.
Dense hyperbola tails have occupied large subsurface areas, affecting the identification of
fractured rock areas.

(a) (b)

Figure 10. (a) Simulated subterranean area with three fractured rock portions (0.1 ≤ x ≤ 0.5 m and 0.1 ≤ z ≤ 0.3 m;
0.7 ≤ x ≤ 0.9 m and 0.4 ≤ z ≤ 0.7 m; 1.5 ≤ x ≤ 2 m and 0.8 ≤ z ≤ 0.9 m). (b) The pre-processed radargram.

The radargram is firstly decomposed by 2D SWT, and Figure 11 illustrates the 2nd-
layer coefficients for an example. Similar to scenario 1, the approximation coefficient
contain both target signals and hyperbola tails. Vertical and diagonal detail coefficients
only contain hyperbola tails, while hyperbola centers corresponding to fractured rocks
are invisible. These coefficients are not considered for migration. The horizontal detail
coefficient preserves target signals and mitigates part of the hyperbola tails. Therefore, only
horizontal detail coefficients DH are suitable for migration to identify the fractured rocks.
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(a) (b)

(c) (d)

Figure 11. 2nd layer (a) approximation coefficient A2, (b) horizontal detail coefficient DH2, (c) vertical detail coefficient
DV2, and (d) diagonal detail coefficient DD2 from 2D SWT on Figure 10b.

The radargram is decomposed into four layers by 2D SWT. F-K migration processes
the four horizontal detail coefficients and the pre-processed radargram for comparison,
as shown in Figure 12. Without SWT, scattering signals appear surrounding the fractured
rocks highlighted in the migration result (Figure 12e). Migration from horizontal detail
coefficients, especially of the deep layers, can mitigate the scattering signals. Artefacts
(marked in the dashed circles) arising from multiple reflections also exist in the migration
results, but SWT decomposition demonstrates potential to reduce this effect in DH3 and
DH4. Different from scenario 1, the wavelength effect on identifying crack sizes is less sig-
nificant when handling fractured rock areas. Limited by ‘gprMax’ software, the simulated
cracks are horizontal, and DH3 and DH4 have revealed the horizontal directions of the
cracks. Both DH3 and DH4 present promising results in highlighting the fractured areas
and eliminating scattering signals.

Scenario 4: identifying fractured rock areas with dense fissures from noisy environment

Similarly, we consider the noise effect by adding Gaussian white noise to the radargram
(Figure 10b), with the polluted profile (signal-to-noise ratio −5 db) shown in Figure 13. Noisy
speckles occupy the radargram, affecting the visibility of target signals and hyperbola tails.
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(a) (b)

(c) (d) (e)

Figure 12. F-K migration results of (a) 1st-layer DH1, (b) 2nd-layer DH2, (c) 3rd-layer DH3, (d) 4th-layer DH4, and (e)
pre-processed radargram without SWT decomposition.

Figure 13. Polluted radargram of the model in Figure 10b.

The polluted radargram is decomposed into four layers by 2D SWT. Similar to previous
scenarios, horizontal detail coefficients that preserve target signals and mitigate part of
hyperbola tails are illustrated in Figure 14. The 2D SWT has separated noise to DH1 and
DH2, and the noise nearly disappear in DH4. Therefore, 2D SWT can distinguish noise,
targets, and hyperbola tails.

The F-K approach migrates the polluted radargram in Figure 13 and the 4th-layer DH4,
as illustrated in Figure 15. Although highlighting the crack locations, Figure 15a contains
noise speckles polluting the crack signals and scattering signals appear surrounding the
focused locations. The noise intensity decreases dramatically in Figure 15b since 2D SWT
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has separated the noisy layers. The migration result from DH4 has highlighted the target
locations and eliminated noise and hyperbola tails. Similar to scenario 3, the wavelength
effect on crack lengths is little when handling fractured rock areas.

(a) (b)

(c) (d)

Figure 14. The horizontal detail coefficients of (a) 1st-layer DH1, (b) 2nd-layer DH2, (c) 3rd-layer DH3, and (d) 4th-layer DH4.

(a) (b)

Figure 15. F-K migration results of (a) the polluted radargram and (b) the 4th-layer DH4.
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3.2. Field Signal Analysis

Figure 16 presents the pre-processed radargram from field measurement. Signals
weaker than 2.5% of the maximum amplitude are excluded for better showing the fractured
areas. These weak signals are mostly noise, which will not affect fractured rock identi-
fication but block the visible presentation from figures. The entire section is covered by
intensive signals except for the upper-right portion (with the length 12 ≤ x ≤ 17 m and
time 20 ≤ t ≤ 65 ns), which makes the fractured rocks indistinguishable.

Figure 16. The pre-processed radargram from an example surrounding rock section. Signals weaker
than 2.5% of the maximum amplitude are excluded.

Firstly, the pre-processed radargram is decomposed by 2D SWT, with the 2nd-layer
coefficients shown in Figure 17. Similar to the simulation results, hyperbola tails have been
decomposed to DV2 and DD2. The approximation coefficient presents similar distribution
to the pre-processed radargram. Only DH2 discards part of the noise and hyperbola tails,
and preserves the target signals. Therefore, the horizontal coefficients are considered for
further migration.

The F-K approach migrates DH1, DH2, DH3, and the pre-processed radargram for
comparison, as illustrated in Figure 18. The signals inside region U and the lower part
of region V are weak in Figure 3c, but direct F-K migration preserves intensive signals
(Figure 18d). This is affected by clutter. The 2D SWT can mitigate the clutter and thus the
signals inside region U and the lower part of region V in Figure 18c become less intensive.
Region W is identified as severely fractured rock areas. 2D SWT has demonstrated good
practice in enhancing the migration results.
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(a) (b)

(c) (d)

Figure 17. 2nd-layer coefficients from 2D SWT on Figure 16. (a) approximation coefficient A2, (b) horizontal detail coefficient
DH2, (c) vertical detail coefficient DV2, and (d) diagonal detail coefficient DD2. Signals weaker than 2.5% of the maximum
amplitude are excluded.

(a) (b)

(c) (d)

Figure 18. (a) F-K migration results of 1st-layer DH1, (b) 2nd-layer DH2, (c) 3rd-layer DH3, and (d) pre-processed radargram
without SWT decomposition. Signals weaker than 2.5% of the maximum amplitude are excluded.
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4. Discussion

In this paper, a novel approach based on 2D WT and F-K migration is proposed to
identify fractured rock areas from GPR radargrams. WT is theoretically similar to Fourier
transform, the foundation of F-K migration, but alters the orthogonal basis. Therefore in
signal processing, WT usually provides better time-frequency resolution [47]. By applying
the proposed approach, three significant development has been achieved: (1) Noise, hy-
perbola tails, and target signals are separated into different WT coefficients; (2) Scattered
signals surrounding cracks in F-K migration results have been eliminated; (3) Noise has
been mitigated in the focused radargram. The remained scattering energy in migrated
profiles does not affect the identification of sparse objects (e.g., [44,56] and Figure 6e) and
strata (e.g., [57]), but increases the identified crack group areas (Figure 12b) significantly.
Therefore, eliminating the remained scattered signal is important for our application.

One phenomenon that arises from 2D WT is the wavelength effect. When identifying
sparse cracks (Figures 6d and 9b), the imaged crack length increases. The reason is that
the wavelength increases as WT decomposes signals to deeper low-frequency compo-
nents. Normally, the imaged crack size on an A-scan trace is influenced by the antenna
frequency [58] (imaged size = wave-number × wavelength) and thus does not equal the
actual size vertically. The 2D WT decomposes the radargram vertically and horizontally,
and thereby the two-direction wavelengths vary in different decomposition layers. This
results in the horizontal deformation of imaged cracks. To accurately calculate the object
sizes, the frequency of processed radargram needs to compare with the antenna frequency
vertically and with the original signal frequency horizontally. Nonetheless, the wavelength
effect is little when identifying crack groups (Figure 12d) and thus affect little on our
applications.

In our research, we apply 800 MHz waves in simulation and 250 MHz waves in field
measurements. The choice of central frequency is determined by the required detection
depth and resolution. The high-frequency electromagnetic waves have high resolution,
but the energy attenuates quickly [25]. If using 250 MHz waves in simulation, the major
difference is that the imaged cracks become thicker due to large wavelengths.

Our future researches will concern practical investigations of oblique and non-rectilinear
rock fractures. The crack directions are limited by grids in numerical simulation and thus
cannot cover all the crack conditions. In literature, long and throughout cracks (e.g., [59,60])
in different directions has been investigated in practical cases, but the conditions are not
same as the fractured rocks. Although our approach can process radargrams from simulating
other objects, including ‘cylinders’ and ‘spheres’, simulation of oblique and non-rectilinear
rock fractures are impossible. Therefore, further researches should include more physical
experiments to cover all the rock conditions.

The physical experiments are also important for validation since we cannot open the
entire rock section in field measurements. The cracks or the fractured rock areas with
different rock qualities can be preset, and thus our approach can be further evaluated. On
this basis, we can establish the relationship between GPR radargrams and rock quality
values in criterion.

5. Conclusions

In this paper, a novel approach based on 2D SWT and F-K migration is proposed
to identify fractured rock areas from GPR radargrams. The 2D SWT can mitigate clutter,
distinguish signal discontinuity, and provide signals with a good time-frequency resolution.
It decomposes the radargram to different frequency levels and then feeds the signals
into F-K migration. F-K migration can focus the scattered hyperbola signals back to
the target locations. In practice, the detail coefficients achieved by 2D SWT can contain
clutter, hyperbola tails, and target signals separately, and thus they are selected for the
migration step.

The simulation and measurement results demonstrate that: comparing with direct F-K
migration results, migration from the horizontal detail coefficients by 2D SWT can mitigate
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scattering signals and eliminate noise. 2D SWT decomposes the hyperbola tails to the
vertical and diagonal detail coefficients, and separates the noise to the first few horizontal
detail coefficients. Therefore, the corresponding migration results of later DH highlight
the crack locations and directions with little signal interference. The wavelength effect
affects the identification of single cracks but not the crack groups. When decomposing to
deep SWT layers, the frequency decreases and the wavelength increases. This results in
the increased scale corresponding to the crack sizes. Nonetheless, the promising results
indicate the effectiveness in identifying fractured rock areas. Future research will concern
more practical cases since the simulations of oblique and non-rectilinear rock fractures
are impossible.
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