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Abstract

Concrete is used significantly in many structures since, the last few centuries. The need to maximize
the concrete strength and utilize it’s complete potential is the main focus of researchers even in today’s
modern age. It is thus, important to restore the existing structures apart from developing new materials
and technology to build new structures. The advancement in scientific research and technology has helped
us understand the different mechanisms to strengthen the existing concrete structures such as slabs, beams,
bridge decks, walls etc. One such strengthening technique is application of overlays to existing concrete
structural elements. An overlay of High Strength Concrete (HSC) above a Normal Strength Concrete
(NSC) slab without shear reinforcement, proves to be a successful approach in some cases. One such
experimental study is performed by Dr. Randl on a composite slab with a HSC overlay on top of NSC
Reinforced Concrete (RC) slab. A four point bending test is executed in the experiment on eight such
slab specimens. To understand the behaviour of a composite slab undergoing shear failure, an analytical
study is performed using three different shear models, Eurocode 2, Critical Shear Crack Theory (CSCT) and
Critical Shear Displacement Theory (CSDT). Shear resistances are obtained using these models for each
composite concrete slab specimen, considering two separate cases of homogeneous slabs, one with substrate
properties and other with overlay concrete properties. The average shear resistances obtained from these
two limiting cases are compared with each other and their accuracy with the experimental results is also
tested. Furthermore, appropriate guidelines are proposed to evaluate the shear capacity of composite concrete
sections with the help of these homogeneous slabs with some validation by a numerical analysis. One shear
model among the three, depending on the accuracy of results and the least Coefficient of Variation (COV),
is chosen to further give a foundation to the analysis of composite concrete slabs. The composite concrete
slab is modeled and a four point bending test is simulated by finite element analysis using ATENA. Although
CSDT is developed for homogeneous cross-sections, in this research CSDT provides good estimation of shear
behaviour for composite slab cross-section. The theory also explains the experimental results better than any
other analytical model with an accuracy of almost 90 % with the least COV of 2.53 %. Crack propagation
is observed considering two different homogeneous slab specimens and some changes in the formulae given
by CSDT are proposed. A slab factor is also introduced to explain the increase in shear capacity of concrete
slab specimen. Effect of bond strength on the shear distribution along the composite slab cross-section is
studied with the help of analytical models and equivalent area method. Striking resemblance in the shear
stress distribution is observed in case of NSC homogeneous slab and composite concrete slab thus, further
validating the idea that shear capacity of a composite concrete slab can be estimated by considering the
substrate homogeneous concrete slab properties. Effect of the HSC overlay is not significant in this study.
Two limiting cases are considered for further check for de-bonding/delamination of the interface between the
two concrete layers. First case with perfect bond and second with no bond between the two concrete layers
are considered. No delamination is observed in case of monotonic loading which agrees with the experimental
observations as well.
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1
Introduction

Concrete structures have a service life of minimum 40-50 years. Structures built in the early 20th century
were designed as per the old design specifications which now, with the advancement in research and technol-
ogy, have become obsolete. Many of these existing structures are reaching their respective design age. With
the increasing demand of road and rail networks, the present structures have to be maintained and repaired
as well. With this respect, for example in case of concrete bridges, it is sometimes practically impossible to
reconstruct a bridge by demolishing the existing structure. Measures have to be taken to improve the service
life of concrete bridges until a better alternative is implemented.

The knowledge regarding the shear capacity of composite concrete slabs is limited until recent times. Here
an attempt is made to understand the behaviour of composite concrete slabs undergoing shear failure. Many
researchers focus their attention in understanding the shear capacity or shear resistance of a homogeneous
concrete slab. Hence, not much literature can be found for heterogeneous cross-section or as described before
a composite concrete slab. The discussions in this report mainly include an analytical study performed using
different shear theories to understand the shear behaviour and estimate the shear capacity of a composite
concrete slab specimen. Furthermore a numerical analysis is performed to validate some of the findings from
the analytical study. The model considered is a normal strength (NSC) reinforced concrete (RC) slab with
a high strength concrete (HSC) overlay and a four-point loading is applied to understand the failure mode
of the slab (in this case a shear failure).

First, a literature review is carried out to understand different shear models used to calculate the shear
capacity of a beam or slab element. The three models namely; the Eurocode 2 (EC2) shear model, critical
shear crack theory (CSCT) proposed by Muttoni [1] and the critical shear displacement theory (CSDT)
proposed by Yang in his report [2], are studied. Eventually, these shear models are applied on a case study
specified by Dr. Randl [4]. Based on the experimental results and the input parameters mentioned in the
case study, shear resistances with all the three models are calculated. The values obtained from the models
are compared with the actual experimental results. The model with the most accurate results is then used
for further development of a pertinent numerical model.

The cracking pattern in the homogeneous slabs is compared with the cracking pattern obtained from the
numerical analysis of the composite slab specimen. Furthermore, a shear check is performed to observe the
behaviour of the interface between the RC concrete slab and the HSC overlay. Two cases are considered;
uncoupled and coupled members. These two cases define the limiting values of shear stress capacities for
the different range of roughness and cohesion parameters. Normal concrete stress in the tension zone is used
to calculate the shear stress at a cracked cross-section for further accuracy. Analytical model proposed by
Tung and Tue [5] is also verified with the experimental and numerical model results.

ATENA is a finite element software used specifically to study concrete structures by developing numeri-
cal models. The software is used especially in case of concrete structures as it provides ease in developing a
structural model with concrete material and gives accurate results while studying the stress-strain properties,
creep, shrinkage and strength properties. To further validate the findings of this report, simulations are
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2 1. Introduction

run using material properties described in the case study report. In this report, behaviour of a composite
concrete slab undergoing four-point bending test is studied. The finite element analysis will thus provide a
better view and realistic approximation of a composite concrete structure behaviour.



2
Shear Models

As explained in the previous chapter, the three shear models provide different approaches and distinct
parameter relationships to check the shear strength of a concrete member.

• Eurocode

• Critical Shear Crack Theory

• Critical Shear Displacement Method

2.1. Eurocode (EC2)
As described in NEN-EN 1992-1-1 the shear resistance VRd ,c of a concrete member without shear reinforce-
ment is given by Equation 2.1.

VRd ,c = [CRd ,c k(100ρl fck )1/3 +k1σcp ]bw d (2.1)

The minimum value of VRd ,c is given by Equation 2.2.

VRd ,c = (vmi n +k1σc p )bw d (2.2)

vmi n = 0.035k3/2 f 1/2
ck (2.3)

In case of shear at the interface concrete cast at different times, shear stress in the interface should satisfy,
vE d ,i ≤ vRd ,i (Equation 2.5) where, vE d ,i (Equation 2.4) is the design value of the shear stress at the interface

vE d ,i =βVE d /(zbi ) (2.4)

vRd ,i = c fctd +µσn +ρ fy d (µsinα+cosα) ≤ 0.5ν fc d (2.5)

where, c and µ are factors depending on the roughness of the interface.

2.2. Critical Shear Crack Theory (CSCT)
The Critical Shear Crack Theory developed by Muttoni and Ruiz [1] gives an insight on the shear resistance
of concrete members without transverse reinforcement as a function of critical shear crack width. This theory
accepts the following hypotheses,

• The shear strength is checked in a section where the width of the critical shear crack can be sufficiently
represented by the strain at a depth of 0.6d from the compressive face (Figure 9 [1])

• The critical crack width w is proportional to the product of the longitudinal strain in the control depth
ε and the effective depth of the member d

w ∝ εd

3



4 2. Shear Models

Figure 2.1: Critical shear crack model: (a) critical section for point loading and distributed loading; (b) determination of
longitudinal strain in control depth using internal forces N and M[1]

In case when only bending moment M is acting on the critical cross-section without any axial force, strain
in the control depth can be derived with the Equation 2.6.

ε= M

bdρEs (d − c/3)

0.6d − c

d − c
(2.6)

where, c the depth of the compression zone is given by Equation 2.7.

c = dρ
Es

Ec

(√
1+ 2Ec

ρEs
−1

)
(2.7)

where, Ec is taken as Ec ≈ 10000f1/3
c in MPa

Finally, shear strength of the member is calculated using the critical crack width, the aggregate size and the
concrete compressive strength as given by Equation 2.8.

VR

bd
√

fc
= 1

6
× 2

1+120
εd

16+dg

(2.8)

2.3. Critical Shear Displacement Theory (CSDT)
2.3.1. Introduction
In his research, Yang [2] uses the parameter of critical shear crack displacement for calculating the shear
capacity of a reinforced concrete member without shear reinforcement. The model proposes that the opening
of the critical inclined crack can be considered as a lower bound for the shear capacity of a structural member.
Moreover, the unstable opening of the critical inclined crack is triggered when the shear displacement in an
existing flexural crack reaches a critical value ∆cr [2]. There are two types of crack patterns in a concrete
member.

• First one is defined as a flexural crack which has two secondary branches, one approaching the support
at the level of the tensile reinforcement and the other to the point having maximum rotation in the
compression zone. This crack is usually diagonal in nature and is called as a flexural shear crack.

• The second type of crack is a shear compression crack which results from a failure caused by crushing
of the concrete in the compression zone.
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The Critical Shear Displacement Method (CSDM) considers the flexural shear failure and the relation between
the forces in the vicinity of the crack to determine the shear strength of a concrete specimen. The relations
established are mainly for concrete beam specimens with large slenderness ratio (a/d more than 3.0) and for
beams without transverse reinforcement.

2.3.2. Simplified Crack Pattern

In this section, a free body is examined by considering different shear transfer mechanisms. It has been
generally accepted that if a flexural crack is observed in a concrete beam, the shear force can be transferred
by four mechanisms as summarized by ASCE-ACI Committee 445, as shown in Figure 2.2.

• Shear stress transfer in the uncracked compression zone

• Shear stress transferred due to the aggregate interlock across a crack

• Shear transfer due to the dowel action of the longitudinal reinforcement

• Residual tensile stress at the limited crack opening

Figure 2.2: Shear transfer mechanisms in a free body defined by a flexural crack [2]

Flexural cracks are distributed almost evenly near the tensile reinforcement. However, due to the stress
reduction in the vicinity of the crack, stress reduction takes place and all cracks do not reach the compression
zone of the concrete member.
The crack pattern observed in the tests reported in Yang [3] are shown in Figure. 2.2
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Figure 2.3: Crack profile simplification based on flexural cracks found in shear tests [2]

As Yang’s research mainly focuses on cracks at cross sections having large M/Vd values, some simplifications
are considered to the crack pattern. The main features of these findings are,

• The crack comprises of two branches: the major part is formed directly after the crack initiates and
the secondary branch is in the compression zone.

• The major crack is simplified as being perpendicular to the longitudinal direction of the concrete
member

The crack spacing lcr,m is described as suggested in Bazant and Wahab [6] in Equation 2.9. Krips [2]
estimated the value of kc as 1.28. scr is the vertical height of the major crack part.

lcr,m = scr

kc
(2.9)

The major cracks then develop to form critical inclined cracks. Using Equation 2.9 and simplifying the
expression, the crack width wb is estimated as shown in Equation 2.10.

wb = lcr,mεs (2.10)

Considering the cross-sectional equilibrium the vertical height scr is calculated as given in Equation 2.11

scr =
[

1+ρs ne −
√

2ρs ne + (ρs ne )2
]

d (2.11)

2.3.3. Simplified Shear Force-Displacement Relationship
In this shear force-displacement relationship, shear stress transfer due to aggregate interlock is the most
important. This is calculated by using the parameters of shear crack displacement and the crack width. The
shear stress expression for aggregate interlock is τai (∆, w) (Equation 2.13) which is integrated along the
vertical crack to obtain the shear force as shown in Equation 2.12.

Vai =
∫ scr

0
τai [∆, w(s)]bd s (2.12)

In the above Equation 2.12, the analytical shear stress expression is proposed by Walraven [7].

τai =σpu{µAx [∆, w(s)]+ Ay [∆, w(s)]} (2.13)

The complex form of Equation 2.12 can be modified using simplified crack profile and then applying Wal-
raven’s aggregate interlock expression. Substituting Equation 2.13 and using expression for σpu = 6.39 f 0.56

c ,
Equation 2.12 takes form of Equation 2.14

Vai = 6.39 f 0.56
c bscrνai (2.14)
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where,

νai =
∫ wb

wt

[µAx (∆, w)+ Ay (∆, w)]d w

Ax and Ay are the projected areas of the crack surface for a unit crack length as described by Walraven.
These are functions of tangential and normal displacement (∆,w) of the crack faces. From the reference
document for this method, it can be observed that this expression of shear force can be further simplified as
Equation 2.15.

Vai = f 0.56
c scr b

0.03

wb −0.01
(−978∆2 +85∆−0.27) (2.15)

When the results obtained by using Equation 2.15 are compared with those of Equation 2.14, a striking
similarity is observed in the results as described in the reference document [2].

2.3.4. Determination of the Critical Shear Displacement ∆cr
The total shear force transferred along the crack is expressed by a final expression shown in Equation 3.3.4.

V =Vai +Vc +Vd (2.16)

Where, Vai can be calculated using Equation 2.14 or the simplified version Equation 2.15. The shear force
in the compression zone is calculated using Morsch’s [8] approach. Here, the residual tensile stresses are
neglected and a linear stress distribution is assumed as given by Equation 2.17.

Vc = 2

3

zc

z
V = d − scr

d +0.5scr
V (2.17)

Baumann and Rusch [9] proposed an expression for the shear force transferred by dowel action (Equation
2.18), considering that the maximum value of dowel force is obtained when ∆cr is reached.

Vd = 1.64bnφ
3
√

fc (2.18)

For calculating the value of Vai , crack width at the bottom part of the flexural crack is needed which is
obtained by Equation 2.19

wb = M

z As Es
lcr,m (2.19)

Figure 2.4: Calculated critical shear displacement ∆cr against the effective depth d [2]

The graph in Figure 2.4 clearly shows that ∆cr values are greatly influenced by the depth of beams. But
these ∆cr values are comparable in the lower range of d values. Therefore, an expression for ∆cr is suggested
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in the reference document as given in Equation 2.20.

∆cr = d

29800
+0.005 ≤ 0.025mm (2.20)

Moreover, Yang [3] proposed that the rebar diameter influences the ∆cr values as well. For instance, under
the same dowel force, lower dowel displacement is obtained due to a larger rebar diameter because of higher
flexural stiffness. Hence, the Equation 2.20 was changed to account for the rebar diameter for calculating
∆cr as given in Equation 2.21.

∆cr = 25d

30610φ
+0.0022 ≤ 0.025mm (2.21)

2.3.5. Evaluation of Shear Capacity based on Critical Shear Displace-
ment

To get a clear idea for calculating the shear capacity using CSDM a pictorial representation is shown in
Figure 2.5.

Figure 2.5: Flowchart for finding the shear capacity
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2.3.6. Slab Factor: Influence of specimen width
In his research, Yang [3] discusses the influence of specimen width on the shear capacity of a concrete mem-
ber. The observations of the research show that the shear capacity of a concrete member is greatly affected
by the width-depth ratio. In case of a slab, the width-depth ratio is larger than that of a beam and so it has
a greater shear capacity than a concrete beam. Yang also compares the results with other researchers, like
Conforti, Minelli [3] with their respective experimental results on shallow specimens.

To explain this behaviour, a one way homogeneous slab was considered. Any strip of the slab in the
transverse (width) direction should exhibit a similar behaviour as per the theory since the boundary condi-
tions and structural performance are the same for all. Therefore, the shear capacity of any strip in the span
direction should be approximately the same as compared to the entire slab specimen.

Furthermore, there is also a substantial difference in the deformation of the slab specimen along the trans-
verse direction, as compared to the beam element. In a beam, the crack at a local weak cross section
propagates through the entire width. Whereas, in case of a slab, the crack profile along the span direction
doesn’t spread homogeneously throughout the width, rather it spreads by connecting all the local weak spots
along a critical zone. It finally develops into a final crack pattern through the width. There is a random
distribution of weak spots along the transverse direction as well. These weak spots are assumed to form a
wavy shape of the cracks for ease of calculation. This shape influences the shear stress transferred through
the aggregate interlock component in following two ways,

• The shear force transferred through aggregate interlock increases (Equation 2.22) as the wavy crack
profile subsequently increases the length of the crack profile.

V ′
ai =

bcr

b
Vai (2.22)

where, bcr is the real length of the critical crack.

• A shift of the crack position occurs in the longitudinal direction (thick crack shown in Figure 2.6)
because of the wavy crack profile. This also means that a single crack does not propagate entirely
through the transverse direction. This shift can be observed between the two red lines in Figure 2.6.
Dowel action is a plastic mechanism. Until the stress in the reinforcement does not reach its yield
strength, full capacity of the slab will not be utilized. Vertical displacement of the cracked concrete
(part c in Figure 2.3) is keen in causing this dowel action phenomenon. Once the vertical displacement
in the bottom part of the slab reaches ∆cr value throughout the width of slab, then the dowel crack
develops. Therefore, rotation capacity increases and also the critical shear displacement ∆cr value.

Figure 2.6: Crack distribution along section A-A showing average crack variation (d x′cr ) and crack length in longitudinal
direction (xcr )
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∆′ = θ(xcr +d x ′
cr ) =∆cr (1+ d x ′

cr

xcr
) (2.23)

where,

xcr : length of the inclined crack in longitudinal direction,
d x ′

cr : average variation of the transverse crack profile.

Both the above parameters greatly depend on the random crack profile in the span direction. In other words,
the crack profile can be assumed as a triangular wave by considering the simple geometry of the wave. This
consideration explains the crack profile depending on its amplitude and wave length.
Refer Figure 2.7 in which a simply supported slab is shown and a strip in the transverse direction is considered
to explain the slab factor.

Figure 2.7: Simplified model of slab to understand the slab factor ([3])

Amplitude
The variation of the crack profile must be in the limits of the maximum crack spacing, created due to the
bond between concrete and reinforcement. Thus, the amplitude (Ap) can be defined as the average crack
spacing lcr =Ψs lt , where Ψs = 1.5 and lt can be defined by Equation 2.24.

lt = fctmφ

4τbmρe f f
(2.24)

where,
fctm :Mean tensile strength of concrete
φ :Diameter of rebar
τbm : Friction between concrete and steel reinforcement
ρe f f :Effective reinforcement ratio, ρe f f = As /Ac,e f f

Wave Length
To explain this phenomenon the influence area of the crack is studied. Outside this influence area a crack
developed in the adjacent zone will have no effect on the nature of the crack in consideration. A new peak
can be formed in this new adjacent zone and the distance between the two peaks is equal to half of the
average wave length of the curve.

The final expression for calculating the wave length is given by 2.25. For further information on the
calculation of the wave length refer Yang’s research [3].

lw =π 4

√
4E Ix

kw
=π 4

√
4x2(l −x)2d x

3l
(2.25)

where,
d x :width of the transverse strip, also the average crack spacing lcr

Thus, the average wave length of the crack profile will be equal to 2lw .
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Estimation of these two factors assist in the calculation of the crack length and the critical shear dis-
placement. By calculating values of amplitude and wave length for the given specimen, the actual crack
length can be calculated by Equation 2.26.

bcr = b
T√

T 2 + A2
p

(2.26)

Moreover, for the vertical shear displacement, it can be calculated using Equation 2.23, where, the additional
length is d x ′

cr = Ap /2. In the reference document [3], details of the numerically proven data can be checked
for further clarification. In general, for slabs subjected to multiple point loads or line loads, a good estimation
can be made according to the described phenomenon. An average increase of 18.2% (slab factor = 1.182)
is observed which is a quite stable estimation, also proven in [3]. Furthermore, as an engineering approach,
a rough width factor of γw = 1.1 can be assumed for a more accurate evaluation of the shear capacity of
concrete slabs.

A MATLAB code was developed for the ease of calculation of shear capacity by Critical Shear Displacement
Theory which is attached in the appendix A. However, the code doesn’t consider the slab factor since it was
developed considering concrete beam elements. Thus, the slab factor has to be considered separately for
calculating the shear capacity of concrete slab by CSDM.

In the procedure prescribed by Eurocode2, number of assumptions are made to calculate the shear capacity
of a concrete member. This is evident from the use of various factors in the formulae leading to the shear
capacity of the concrete member. Also, the effect of concrete in compressive zone is neglected while cal-
culating the shear capacity. In the critical shear crack theory, contribution of the concrete in compressive
zone is taken into consideration to improve the accuracy of results. The micro cracks in the shear band
subsequently lead to the critical inclined crack, thus improving the shear capacity of the concrete member.
This can also be explained by the strut and tie phenomenon. Finally, in the critical shear displacement
theory, effect of the vertical displacement caused by cracking is also taken into consideration along-with
the effect of concrete in compressive zone. In case of a concrete slab, the vertical displacement caused by
cracking of the secondary diagonal crack (Figure 2.3), leading from a vertical crack, increases the shear
capacity substantially. Moreover, a cracking pattern is obtained in the transverse direction along all the
weak spots that enhances the aggregate interlocking effect along the cracked planes. For example, in case
of concrete beams the maximum vertical shear displacement is achieved as soon as the entire cross-section
cracks along the width of the beam. Whereas, in case of concrete slab, width of the member is much larger
as compared to a concrete beam, thus a greater force is required to induce cracks throughout the width
of the slabs. Moreover, the reinforcement quantity is substantially higher in slabs. A higher shear force is
needed to achieve necessary crack width throughout the width in order to activate yielding of reinforcement.
As the dowel action is a plastic phenomenon, reinforcement in the slab has to reach its plastic state for full
effect on shear transfer by dowel action. This greater shear force is thus responsible for the maximum shear
displacement. The following research question is proposed considering the knowledge from the literature
study performed.

How can the shear capacity of a composite concrete slab be calculated?

An attempt is made to calculate the shear capacity of a composite concrete slab specimen by performing
an extensive analytical study considering the three shear models described in the literature section. The
shear models propose theories for homogeneous slabs but in this case some alterations and assumptions are
made to understand the response of composite concrete slab specimens. To start with the comparison, two
separate homogeneous slab specimens are considered having material properties of substrate concrete layer
(N SC) and overlay concrete layer (HSC). Shear resistance of these homogeneous slabs is calculated using
the propositions of the shear models. Furthermore the shear resistance obtained from the slab is assumed
to give an upper and lower limit value for the actual composite slab specimen. An average is calculated
considering these upper and lower bound limiting values and a direct comparison is done among the different
shear models and further findings from an experiment performed by Dr. Randl are considered as basis for
the comparison of analytical results. Finally a validation is performed by comparing the results to a numerical
model. Validation of the shear stress values at the interface of the two concrete layers is also carried out
with a numerical analysis performed using ATENA finite element software.





3
Case Study

The use of high strength concrete has been widely acclaimed in the form of an overlay over the existing
concrete structures. Many experiments have been carried out to understand the behaviour of the composite
concrete beams and slabs to understand the shear and bending behaviour. One such experiment was carried
out by Dr. Randl on a concrete slab with a concrete topping. The concrete topping/overlay was cast over
the specimen after the reinforced concrete (RC) slab had started hardening. Details about this case study
and findings of the experiment are discussed in this chapter.

3.1. Preparation of the test specimens
To increase the strength of a RC bridge, a high strength concrete overlay is applied and the results of these
experiments are documented in Dr. Randl [4]. He conducted this research using 10 concrete slab specimens
(360 × 100 × 24cm ) in the form of test plates which were formed as an in-house service by the construction
company Strabag. On the basis of detailed planning (load capacity, reinforcement and measurements) of
the test plates, a smooth production process was achieved.

Figure 3.1: Reinforcement layout of the test specimens [4]

A 24cm thick base plates were provided with strong bending reinforcement, to avoid a premature bending
failure during the four-point bending test. The goal was to transfer the failure load such that the point
with highest shear stress is recognized. The experiment included 3 test plates finished with Normal Strength
Concrete (NSC) and the remaining 7 plates were applied a High Strength Concrete (HSC) topping.

13
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Figure 3.2: Preparation of the test plates [4]

After the curing of almost 3 weeks, the surface of the test specimens was roughened by means of high-
pressure water jet (about 2000 bar). The roughness was fabricated as per the Eurocode 2 classification:
smooth, rough and toothed. The measurement of the surface roughness was carried out by the sand surface
method according to Kaufmann and also by the creation of digital surface models. Later, the specimens
were transported to the storage area of the FH-Baulabors where the concreting of 6 cm thick topping was
done.

Figure 3.3: Surface treatment and concreting at construction yard [4]

Corresponding to the large body test plates, small body specimens were also developed to examine the
surface properties in more detail.

Figure 3.4: Digital surface models of a rough(left) and smooth(right) specimen section [4]

Table 3.1 gives an overview of the test specimens with the variations in surface roughness, layer of concrete
and the load peaks that were reached.
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Table 3.1: Specimen details and respective Load Maxima [4]

No. Roughness
[mm] Topping 1.LM

[kN]
2.LM
[kN]

3.LM
[kN]

1 1.6 NSC 902.4 917.7 950.9
2 3.0 HSC 951.3 993.7 1056.8
3 3.0 NSC 914.1 878.8 ×
4 0.8 NSC 942.6 928.9 ×
5 1.5 HSC 951.9 967.3 ×
6 1.7 HSC 896.7 × ×
7 0.8 HSC 1014.9 878.6 ×
8 0.8 HSC 947.2 1003.1 1438.0

3.2. Implementation of four-point bending test
This section mainly describes the implementation of the four-point bending test, carried out for the deter-
mination of the structural behaviour of the test plates.The test setup is shown in the Figure 3.5.

Figure 3.5: Test setup for 4-point bending test [4] [all dimensions are in cm]

The test plates were loaded using a hydraulic press. The loading was applied static-path-monotonically with
about 1.0 mm/min (piston stroke). The main condition of the experiment was to achieve highest possible
shear stress.

Figure 3.6: Actual test setup in the laboratory [4]
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3.3. Comparison of shear models based on the input parame-
ters from the case study

Three shear models are described in chapter 2 which are dependent on different parameters to calculate the
shear capacity of a concrete member. These models are compared in this section to have a basis for further
development of a numerical model required for a composite concrete slab specimen. The procedure for the
comparison and the necessary checks have been described hereafter.

3.3.1. Procedure for comparison of the shear models

The following section explains the difference between the aforementioned shear models in detail, and the
steps involved in the comparison of these models. The input data used for the comparison of the models
is taken from the report of Dr. Randl [4]. The model of the case study under consideration is a slab with
composite cross-section having two layers with different concrete compressive strengths. The bottom layer
is called the substrate and the top layer is overlay layer.

Figure 3.7: Slab cross-sections (a) Composite slab (b) with
substrate concrete properties (lower bound) (c) with overlay

concrete properties (upper bound)

An estimation of the shear resistance for a compos-
ite concrete slab has to be performed. There are no
guidelines available for modeling such a composite
slab specimen. Hence, to start with the modeling it
is assumed that, the slab is made of only one homo-
geneous material at a time, out of the two different
compressive strengths. Thus, a range of shear re-
sistances will be obtained for two separate homoge-
neous concrete slabs. These two values are assumed
to be the limiting cases for the composite concrete
slab specimen. That means shear capacity of the
composite concrete slab should lie in between the
shear capacities of these two homogeneous slabs.
Slab made of low strength concrete is assumed to
have shear capacity in the lower limit of the afore-
mentioned shear range. Whereas, the one with high
strength concrete should have the upper limit values
for shear capacity.

For the shear resistance range estimation, as de-
scribed before, two different homogeneous concrete
slabs with exact same dimensions, as in the exper-
iment, are considered as shown in Figure 3.7. This
will also help in the comparison of the shear mod-
els. The first slab in the figure is the composite slab
as in the case study experiment, the second slab
has the substrate concrete layer material properties
(normal strength concrete) for the analysis while the
third slab has the overlay concrete material proper-
ties (high strength concrete). The loading and boundary conditions in all the cases are identical as in the
actual experiment for the respective slab specimens. Thus, an identical nature of shear force at a critical cross
section is ensured. Next step is to compare the results obtained from these homogeneous slab specimens to
conclude the choice of a shear model which best describes the shear behaviour in a composite concrete slab.
Table 3.2 gives the material properties of the actual experiment carried out by Dr. Randl [4]. The table
gives the values of the compressive strength of concrete cubes cast with the same material as used in the
experiments. To use these values in the computation of shear resistance calculation, (as per the guidelines of
the shear models) they have to be converted into cylindrical concrete compressive strength. For this purpose
a factor of 0.8155 is assumed which is multiplied with the fc,cube values, (as per the observations in Eurocode
2 NEN-EN 1992-1-1 (Figure B.2 of appendix B)) to obtain the compressive strength of concrete cylinder
fc,c yl .. Henceforth, fc,c yl . is considered as the concrete compressive strength used for all the calculations.
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Table 3.2: Material properties used in experiment

Slab no. Layers fc,cube

[MPa]
Modulus of

Elasticity [MPa]

1
Substrate 62.09 28390
Overlay 50.47 25470

2
Substrate 61.80 28640
Overlay 88.40 36510

3
Substrate 61.96 28390
Overlay 49.79 25470

4
Substrate 61.74 28390
Overlay 47.30 25470

5
Substrate 59.48 28640
Overlay 97.59 36510

6
Substrate 49.01 28640
Overlay 101.79 37450

7
Substrate 66.86 28640
Overlay 93.27 36510

8
Substrate 57.28 28990
Overlay 98.79 37450

3.3.2. Shear resistance calculation using Eurocode
A sample calculation is shown below, using the input data of slab specimen 8 based on relations in section
2.2. Detailed calculations are given in appendix B in Figure B.3.
For slab with homogeneous material properties of substrate,
b = 1000 mm,
h = 300 mm,
d = 257 mm (d = h − cover − φ

2 ),
fc,cube = 57.28 MPa,
fc,c yl . = 57.28×0.8155 = 46.71 MPa

k = 1+
√

200

257
= 1.882

vmi n = 0.035× (1.882)3/2 × (46.71)1/2 = 0.618 MPa

VRd ,c,mi n = (0.618+0.15×0.00)×1000×257 = 158.75 kN

VRd ,c,LB = [0.12×1.882× (100×0.02×46.71)1/3 +0.15×0.00]×1000×257 = 247.04 kN

(3.1)

For slab with homogeneous material properties of overlay,
b = 1000 mm,
h = 300 mm,
d = 257 mm (d = h − cover − φ

2 ),
fc,cube = 98.79 MPa,
fc,c yl . = 98.79×0.8155 = 80.56 MPa

k = 1+
√

200

257
= 1.882

vmi n = 0.035× (1.882)3/2 × (80.56)1/2 = 0.811 MPa

VRd ,c,mi n = (0.811+0.15×0.00)×1000×257 = 208.48 kN

VRd ,c,U B = [0.12×1.882× (100×0.02×80.56)1/3 +0.15×0.00]×1000×257 = 304.53 kN

(3.2)

Thus, from Equations 3.1 and 3.2 for slab 8, the lower bound limit for shear force capacity is 247.04 kN while
the upper bound limit is 304.53 kN. An average of these values is compared with the actual experimental
shear force value.
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Table 3.3: Variation of eurocode model with experimental results (Slab 8)

Slab no.
Lower Bound
shear force

(VRd ,c,LB) [kN]

Upper Bound
shear force

(VRd ,c,U B) [kN]

Average
shear force
(VEC ) [kN]

Shear Force
(experimental)

(Vexp) [kN]
VEC /Vexp

8 247.04 304.53 275.79 473.60 0.58

Table 3.3 shows a very large variation of shear force results obtained from calculations based on Eurocode
model and the experimental results. This significant variation is clearly not desirable. Rest of the data from
remaining slabs is tabulated in Table 3.4 with their respective experimental results.

Table 3.4: Variation of eurocode model with experimental results (All slab specimens)

Slab no.
Lower Bound
shear force

(VRd ,c,LB) [kN]

Upper Bound
shear force

(VRd ,c,U B) [kN]

Average
shear force
(VEC ) [kN]

Shear Force
(experimental)

(Vexp) [kN]
VEC /Vexp

1 234.62 255.11 244.87 451.20 0.54
2 254.64 292.20 273.42 475.65 0.57
3 233.31 254.90 244.10 457.05 0.53
4 228.37 254.54 241.45 471.30 0.51
5 250.80 303.16 276.98 475.95 0.58
6 231.78 307.91 269.85 448.35 0.60
7 262.64 298.11 280.37 507.45 0.55
8 247.04 304.53 275.79 473.60 0.58

Mean Value 0.56

This variation of shear force calculated using Eurocode guidelines has a COV of 4.99 % which can be seen
in Figure 5.1.

3.3.3. Shear resistance calculation using Critical Shear Crack Theory
A sample calculation is shown, using the input data of slab specimen 8 based on relations in section 2.2.
Detailed calculations are given in appendix B in Figure B.4.
For slab with homogeneous material properties of substrate,
b = 1000 mm,
d = 257 mm,
dg = 32 mm,
fc,c yl . = 46.71 MPa,
Es = 210000 MPa,
Ec = 28990 M pa,
M =V ×a,

M = 473.60×0.780 = 369.41 kN −m

c = 257×0.02× 210000

28990
×

(√
1+ 2×28990

0.02×210000
−1

)
= 114.98 mm

ε= 369.41×106

1000×257×0.02×210000× (257−114.98/3)
× 0.6×257−114.98

257−114.98
= 3.46×10−4

VR,LB = 1

6
× 2×1000×257×p

46.71

1+120× 3.46×10−4 ×257
16+32

= 479.07 kN

(3.3)

For slab with homogeneous material properties of overlay,
b = 1000 mm,
d = 257 mm,
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dg = 32 mm,
fc,c yl . = 80.56 MPa,
Es = 210000 MPa,
Ec = 37450 M pa,

M = 473.60×0.780 = 369.41 kN −m

c = 257×0.02× 210000

37450
×

(√
1+ 2×37450

0.02×210000
−1

)
= 104.74 mm

ε= 369.41×106

1000×257×0.02×210000× (257−104.74/3)
× 0.6×257−104.74

257−104.74
= 4×10−4

VR,U B = 1

6
× 2×1000×257×p

80.56

1+120× 4×10−4 ×257
16+32

= 611.57 kN

(3.4)

Thus, from Equations 3.3 and 3.4 for slab 8, the lower bound limit for shear force capacity is 479.07 kN while
the upper bound limit is 611.57 kN. An average of these values is compared with the actual experimental
shear force value.

Table 3.5: Variation of CSCT model with experimental results (Slab 8)

Slab no.
Lower Bound
shear force
(VR,LB) [kN]

Upper Bound
shear force
(VR,U B) [kN]

Average
shear force

(VC SC T ) [kN]

Shear Force
(experimental)

(Vexp) [kN]
VC SC T /Vexp

8 479.07 611.57 545.32 473.60 1.15

Table 3.5 shows a small variation of the shear force capacity, calculated using CSCT, to the experimental
results. Moreover, the variations of rest of the specimens is tabulated below in Table 3.6.

Table 3.6: Variation of CSCT model with experimental results (All slab specimens)

Slab no.
Lower Bound
shear force
(VR,LB) [kN]

Upper Bound
shear force
(VR,U B) [kN]

Average
shear force

(VC SC T ) [kN]

Shear Force
(experimental)

(Vexp) [kN]
VC SC T /Vexp

1 461.27 504.39 482.83 451.20 1.07
2 497.99 579.46 538.72 475.65 1.13
3 457.20 502.74 479.97 457.05 1.05
4 443.37 499.13 471.25 471.30 1.00
5 488.50 608.75 548.63 475.95 1.15
6 448.13 627.64 537.89 448.35 1.20
7 511.78 587.22 549.50 507.45 1.08
8 479.07 611.57 545.32 473.60 1.15

Mean Value 1.10

This small variation due to shear force calculated using critical shear crack theory (CSCT) has a COV of
5.54 % as also can be seen in Figure 5.1.

3.3.4. Shear resistance calculation using Critical Shear Displacement
Theory

A detailed MATLAB code developed by Yang is attached in the appendix A. Through this code, the relations
in section 3.8 are used to compute the shear force capacity of a concrete member subjected to similar loading
conditions as in the experiment.
In the code, the main function depends on a number of parameters which have to be defined as per the
experimental conditions. (The symbols shown hereafter in parentheses are used in the MATLAB code for the
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parameters as described further) These parameters are the M/V d ratio (mvd) of the concrete beam, concrete
compressive strength ( fc), effective depth of the beam (d), width of the beam (bw), maximum aggregate
size (d a), reinforcement ratio (r ho) and the reinforcement configuration (Re), where Re is expressed as a
two column matrix. The first column is the number of rebar while the second column is the diameter of the
rebar. For example, if the beam consists of 3 steel bars of 20 mm diameter then the Re matrix will be [3,
20].
In Table 3.7, the input parameters that are used to obtain the required results and the respective outputs
are tabulated.

Table 3.7: Input parameters and output for lower and upper bound limits using CSDT method (Slab 8)

Description Symbol Unit
Lower bound
(substrate
properties)

Upper bound
(overlay

properties)
INPUT PARAMETERS

Aspect ratio M/Vd (-) 3.035 3.035
Maximum aggregate size dg mm 32 32

Effective depth of the beam de f f mm 257 257
Width of the beam b mm 1000 1000

Concrete compressive strength fc MPa 46.71 80.56
Reinforcement ratio ρ (-) 0.02066 0.02066

Reinforcement configuration Re (-) [10 26] [10 26]
OUTPUT

Maximum shear displacement ∆ mm 0.0103 0.0103
Average crack spacing of major cracks scr mm 116.95 124.64

Major crack height hcr mm 147.70 159.53
Shear force due to aggregate interlock Vai kN 154.32 167.64
Shear force due to uncracked concrete Vc kN 127.37 122.98

Shear force due to dowel action Vd kN 112.19 134.30
Total shear force V kN 393.88 424.92

The results obtained are tabulated below in Table 3.8 for clear understanding. Detailed calculations are given
in appendix B in Figure B.5.

Table 3.8: Variation of CSDT model with experimental results (Slab 8)

Slab no.
Lower bound
shear force
(Vi ,LB) [kN]

Upper bound
shear force
(Vi ,U B) [kN]

Average shear
force excluding
SF (VESF ) [kN]

Shear Force
(experimental)

(Vexp) [kN]
VESF /Vexp

8 393.88 424.92 409.40 473.60 0.86

The variation (VESF /Vexp) obtained by this method is still not satisfactory. This may be because the code
developed by Yang is for a concrete beam and not for a concrete slab. To refine the results further, the slab
factor mentioned in section 2.3.6 is implemented to estimate the results as close to that of a concrete slab
as possible.

This slab factor can be incorporated in two ways. One way is by calculating the actual slab factor depending
on the amplitude and wave length of the crack profile considering the wave profile to be a wave function.
Second way is to use the slab factor estimation as described in section 2.3.6. The slab factors from both the
methods are incorporated in the results obtained from CSDT as following.
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Method 1: Actual calculation of Slab Factor (SFact )
The actual slab factor (SFact ) is calculated by using the Equations 2.22 - 2.26 from section 2.3.6. This
slab factor comprises of two parameters; Amplitude (A) and Wavelength (T) which enhances the shear
capacity in case of a concrete slab. In the calculation of amplitude, the term ρe f f is different from the
actual reinforcement ratio. It is the reinforcement ratio near the tension zone which is the effective region
in cracking of material. The expression for ρe f f = As /bhc,e f f is valid, where hc,e f f = 2.5(h −d). Therefore,
following calculations can be carried out.

ρe f f = ρ
d

hc,e f f
= 0.02066× 257

2.5× (300−257)

ρe f f = 0.04939

Ampl i tude (A) = lcr =Ψlt = 1.5× 26

4×2×0.04939
Ampl i tude (A) = 98.70 mm

(3.5)

This is assuming the bond strength equal to twice the value of the tensile strength τbm = 2× fctm . The
amplitude will be same for all slab specimens. But as far as the wave length is considered, it will change for
every slab specimen depending on the critical moment values which will be discussed further in section 3.4.
A sample calculation of the wave length is shown below.

W avel eng th (T ) = 2× lw = 2×π 4

√
4×304.722 × (3600−304.72)2 ×98.70

3×3600

W avel eng th (T ) = 2753.06 mm

(3.6)

In such a manner, all the wave lengths are calculated for individual specimens. It is observed that there is no
substantial difference between the wave lengths. Moreover, the values of these wave lengths are significantly
high which reduces it’s effect on the shear strength.

The factor f = (1+ d x′
cr

xcr
) in Equation 2.23 is calculated with an average value of 1.104 considering all 8

slab specimens. This factor ′ f ′ is incorporated in the MATLAB code (while obtaining the del t a(∆) value as
can be seen in Figure 3.8 ) to obtain new values of shear forces transferred by all the mechanisms described
in section 2.3.2.

Figure 3.8: Modified delta in MATLAB code

The modified shear force values are then documented for all the 8 slab specimens used in the experiment.
The results are tabulated in Table 3.9
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Table 3.9: Comparison of outputs for lower and upper bound limits using CSDT method excluding and including the slab
factor respectively (Slab 8)

Symbol Unit Excluding Slab factor Including Slab factor
Lower bound
(substrate
properties)

Upper bound
(overlay

properties)

Lower bound
(substrate
properties)

Upper bound
(overlay

properties)
OUTPUT

∆ mm 0.0103 0.0103 0.0113 0.0113
scr mm 116.95 124.64 116.95 124.64
hcr mm 147.70 159.53 149.69 159.53
Vai kN 154.32 167.64 170.28 185.20
Vc kN 127.37 122.98 134.99 130.13
Vd kN 112.19 134.30 112.19 134.30
V kN 393.88 424.92 417.47 449.62

Table 3.9 shows that with a slight increase in the delta values there is a consequential difference in the shear
force values. This is especially for the shear force transmitted due to aggregate interlock and the uncracked
concrete in compression zone mechanisms. The shear force transmitted due to dowel action is unaffected, as
the delta value doesn’t affect the dowel action mechanism which is also clear from the expression described
in Equation 2.18.

After obtaining the lower and upper bound values for both the cases, an average value of the limiting
cases is considered for direct comparison.

Table 3.10: Comparison of CSDT model with experimental results (Slab 8) after incorporating the slab factor (SF) (actual
calculation)

Slab no.
Shear Force

(experimental)
(Vexp) [kN]

Average shear
force excluding

SFact (VESF )
[kN]

Average shear
force including
SFact (VI SF act)

[kN]

VESF /Vexp VI SF act /Vexp

1 451.20 394.60 418.17 0.87 0.93
2 475.65 412.44 436.90 0.87 0.92
3 457.05 393.70 417.22 0.86 0.91
4 471.30 390.61 413.95 0.83 0.88
5 475.95 412.15 436.44 0.87 0.92
6 448.35 401.39 425.04 0.90 0.95
7 507.45 418.26 442.96 0.82 0.87
8 473.60 409.40 433.55 0.86 0.92

Mean Value 0.86 0.91

Table 3.10 shows the variation between the shear force values obtained directly from code and the shear
force values obtained after incorporating the actual slab factor. The values inclusive of slab factor agree to
the results of the experiment with a COV of 2.53 % as can be seen in Figure 5.1. Detailed calculations of
actual slab factors for remaining slab specimens are given in appendix B in Figure B.6.
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Method 2: Slab Factor estimation (SFest )
In this method, the value estimated for slab factor is considered for further comparison. A factor of 1.182
(18.2 % increase) is recommended for RC slabs according to section 2.3.6. A sample calculation is done for
slab specimen no. 8.

Lower bound Shear For ce (Vi ,LB ) = 393.88 kN

Upper bound Shear For ce (Vi ,U B ) = 424.92 kN

Aver ag e o f LB −U B (VESF ) = 409.40 kN

Enhanced Shear For ce (VI SFest ) = 409.40×1.182 = 483.91 kN

V ar i ati onol d (VESF /Vexp ) = 409.40

473.60
= 0.86

V ar i ati onnew (VI SFest /Vexp ) = 483.91

473.60
= 1.02

(3.7)

As shown in Table 3.7, for remaining slab specimens the same procedure is followed to obtain the shear force
values. The results are as shown in Table 3.11.

Table 3.11: Comparison of CSDT model with experimental results (Slab 8) after incorporating the slab factor (SF)
(approximation)

Slab no.
Shear Force

(experimental)
(Vexp) [kN]

Average shear
force excluding

SFest (VESF )
[kN]

Average shear
force including
SFest (VI SFest)

[kN]

VESF /Vexp VI SFest /Vexp

1 451.20 394.60 466.42 0.87 1.03
2 475.65 412.44 487.50 0.87 1.02
3 457.05 393.70 465.35 0.86 1.02
4 471.30 390.61 461.70 0.83 0.98
5 475.95 412.15 487.16 0.87 1.02
6 448.35 401.39 474.44 0.90 1.06
7 507.45 418.26 494.38 0.82 0.97
8 473.60 409.40 483.91 0.86 1.02

Mean Value 0.86 1.02

As seen from Table 3.11, after incorporating the slab factor using approximation, the results obtained are
most accurate with COV of 2.54 %. Though this method may produce results that resemble the experimental
shear force values, its still an approximation unlike the slab factor calculated using actual parameters. Slab
factor calculated using actual parameters is closest to reality. Thus, it is advisable to use SFact for further
calculation. Detailed calculations of slab factors are given in appendix B in Figure B.7 and B.8.

Crack height check using CSDT
As described in section 3.3.1, two cases are considered to be the limiting cases for a composite concrete slab,
a homogeneous normal strength concrete slab and a homogeneous high strength concrete slab. Cracking
pattern is observed for both these cases. The calculations are performed based on the critical shear displace-
ment theory.

Sample calculation is carried out for slab no. 8 and the results are tabulated in Table 3.7 under the output
head. The crack pattern will be discussed in this section. Detailed calculations of all slab specimens are
given in appendix B Figure B.1.

As observed, the maximum vertical crack height obtained in both slabs is below 240 mm from bottom.
This means that in all cases, the vertical crack is present only in the substrate region without it getting
propagated further to the interface. This leads to the main equation described as per CSDT, i.e, Equation
3.3.4.

V =Vai +Vc +Vd
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As described in the research done by Dr. A. G. Mphonde [10], the contribution of aggregate interlock to
concrete beams made of high strength concrete decreases significantly as the concrete compressive strength
increases. Conversely, the contribution due to dowel action increases while that of the concrete in un-
cracked/compressive zone remains fairly constant as the concrete compressive strength increases.

• Contribution due to dowel action ′V ′
d in above equation is obtained according to the plastic dowel

mechanism and it has it’s influence only in the substrate region (normal strength concrete region).
Hence, in this case, addition of an overlay irrespective of it’s material properties has no effect on the
shear force transmitted due to dowel action.

• On the other hand, the contribution due to uncracked concrete ′V ′
c is obtained considering equilibrium of

forces in the composite slab cross-section and considering the high strength concrete overlay. It’s effect
on the shear force transmitted due to uncracked concrete is almost unaltered as material properties
don’t influence the equilibrium conditions.

• Thus, only the shear force transfer due to aggregate interlock action ′V ′
ai is important in modifying

the equation for a more general case for composite concrete members. It is, therefore, recommended
to alter the limits of the integration in Equation 2.12 and Equation 2.14. As explained earlier, the
contribution of aggregate interlock is reduced significantly in high strength concrete region. Thus, the
maximum effect would be expected to happen in aggregate interlock in the substrate region while the
effect in the HSC region will be handled by the uncracked concrete contribution as per the equilibrium
conditions.

Crack distribution is later monitored in case of numerical analysis in order to check the variation of vertical
crack height in case of composite concrete specimen. If the crack distribution is similar to the case as in
the homogeneous slabs then the above recommendations can be applied for a composite concrete slab as well.

In the next section, stress distribution along the cross-section of a composite concrete slab is studied in
order to support the argument that shear capacity of composite concrete slab can be calculated by assuming
it to be homogeneous slab with substrate concrete material properties, with the dimensions as described
in this report. Moreover, a check for a probable interface failure when the composite section is loaded in
bending is performed. Again two different limiting cases are considered for the analysis. In the first case,
there is no bond between the two concrete layers whereas, in the second case the two layers are perfectly
bonded with each other. In both cases shear stress values at the interface are calculated depending on
the governing scenarios. For uncoupled members (no bond), the governing case would be when the shear
stress at interface is zero as there is no connection before cracks occur if any. While, in case of coupled
members (perfect bond), the governing case is when cracks occur along the critical cross-section and there
is redistribution of stresses. The slab will have minimum shear stress value in this case beyond which the
bond will fail due to shear failure.

3.4. Stress distribution along a critical cross-section of com-
posite concrete slab

In case of RC slab with a high strength concrete overlay applied on the deck, the interface between the two
layers has to be tested for a possible failure mechanism. For this purpose, a shear check is performed to
understand the slip behaviour of the interface between concrete (NSC)-concrete (HSC) bond.

3.4.1. Concrete-concrete interface shear check
To perform the shear check, limiting values depicting the best and the worst case scenarios are considered.
The worst case is when there is no bond between the concrete-concrete interface, i.e, the case of full slip
behaviour. Whereas, the other case is when the concrete surfaces are fully bonded and exhibit a no-slip
behaviour. In both the scenarios, critical cases will be considered to set the limiting shear stress values along
a critical cross-section.
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Case 1: Full slip/Uncoupled members

In this case both the elements; concrete substrate slab and the HSC overlay are considered as two separate
concrete members having no bond in the interface. This is the worst case possible for the model, as the full
bearing capacity of the slab would not be used. The moment and the reaction forces on these members will
be distributed according to the bending stiffness of the respective members.

(a) (b)

Figure 3.9: Uncoupled members (a) Loading (b) Stress and strain distribution along cross-section
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(3.8)

The curvature for both the members will be same in case there is no bond present in the interface. The
Equation 3.8 explains the distribution of moment and stress in uncoupled members. As mentioned above,
the normal stress data is used to calculate the shear stress along the cross section in both the concrete layers.
In uncoupled members, the shear stress is zero at the end fibres of both concrete members and also at the
interface. While, the fibres at the centroidal axis of bottom concrete slab has the maximum shear stress.
The shear force distribution is same as that of the moment distribution in these members depending on their
respective bending stiffness. Thus, considering the relations in Equation 3.8, the shear force distribution will
be as shown in Equation 3.9.

V1

E1I1
= V2

E2I2
(3.9)

Hence, the shear stress distribution can be approximated to be parabolic along the cross section of both the
concrete layers, substrate as well as the overlay as can be seen in Figure 3.10. Detailed calculation of normal
and shear stress is given in appendix B in Figures B.11 and B.13.

Figure 3.10: Shear stress distribution in uncoupled members
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Case 2: No slip/Coupled members

Unlike the previous case, now the interface between the two concrete layers is fully bonded or there is no
slip in the interface. Assuming a linear stress-strain relationship, following behaviour can be observed in the
coupled members.

(a)
(b)

Figure 3.11: Coupled members (a) Loading (b) Stress and strain distribution along cross-section

The critical value of shear stress is obtained when the concrete member cracks and there is redistribution of
stresses along the cross-section. N.D. Tung and N.V. Tue [5] in their research have proposed an approach for
the shear design of slender concrete members without transverse reinforcement taking into consideration the
stress redistribution once the member cracks. For this, they took into account the normal stress in concrete
tension zone, which is often neglected. They further explain that damage is normally localized in a narrow
band in the concrete tension zone just below the compressive zone which eventually results in the creation
of a critical inclined crack. Detailed stress distribution calculation along the cross-section, in case of coupled
members, is given in appendix B in Figure B.12 and Figures B.14 - B.17.

To calculate the stress distribution along the cross-section, the concept of equivalent area is used, as the
stiffness difference needs to be accounted for. For this, the width of the overlay concrete member is multi-
plied by a factor ’r ’. A new composite cross-section is developed considering a uniform elasticity modulus
of the substrate concrete member for the entire section;
r is the ratio between the elastic modulus of overlay to that of the substrate concrete layer, r = Eo/Es .

Figure 3.12: Equivalent area method

The concept of shear band is introduced in the report by Tung and Tue [5]. In their research, they explain
that the formation of a critical shear crack takes place through coalescence of the micro cracks in a shear
band in the concrete tensile zone. When this shear band reaches a critical width, the critical inclined crack is
formed. This critical shear band width depends on the concrete fracture properties and the concrete strains
in the tension zone.

• Concrete strength: The crack propagation behaviour is aided by a high strength concrete member
since it is brittle in nature. Thus, the critical width of shear band is decreased with the increase of
concrete strength

• Reinforcement ratio: The crack propagation is favoured with a larger reinforcement ratio, thus, with
the increase in the reinforcement ratio, the critical width of the shear band also increases.
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Figure 3.13: Normal and shear stress of concrete in a segment between two primary flexural cracks [5]

In the above Figure 3.13, the stress distribution according to Tung and Tue can be seen. A main assumption
considered in this theory is that, even the cracks appear diagonal for calculation purposes and simplification
of the model, a vertical crack is considered to estimate the normal and shear stresses at the cross-sections.
The steps involved in calculating the shear stress along the cracked cross-section in a concrete member are
given by Equations 3.10 - 3.19.

db,cr i t = 0.5 · (100ρs )0.9

fc
(3.10)

x ′ = εct

εc
· (d −x) (3.11)

εs = 1

Es ·ρs ·bw ·d
·
(

M

z
+ V

2

)
≤ 1

Es ·ρs ·bw ·d
·
(

Mmax

z

)
(3.12)

x =
[√

(ρs ·n)2 +2ρs ·n −ρs ·n

]
·d (3.13)

fct = 0.3( fck )2/3 for concrete grades≤C 50

= 2.12l n(1+0.1 fc ) for concrete grades>C 50
(3.14)

x ′′ = G f

fct ·wk
· (d −x −x ′) (3.15)

wk = sr m · (εsm −εcm)

= sr m · 1

Es
·
[
σs −0.5 · fct

ρp,e f f

(
1+n ·ρp,e f f

)] (3.16)

σxm = fct ·
(
1−0.5 · db,cr i t

x ′+x ′′

)
if db,cr i t < x’+x”

= fct ·
(
0.5 · db,cr i t

x ′+x ′′

)
if db,cr i t ≥ x’+x”

(3.17)

τu =
√

fct · ( fct −σxm) (3.18)

τmax = τu

1− ( x′
x )2

τRc = 2/3τmax · x +1/2(τmax +τu) · x ′+τu · (d −x −x ′)
d

(3.19)
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where,
bw :width of the member
d : effective depth of member
db,cr i t : critical width of the shear band
fc : compressive strength of concrete
fct : tensile strength of concrete
G f : fracture energy of concrete
n :modular ratio for reinforcement steel
sr m : crack spacing of primary cracks
wk : primary cracks crack width
x : neutral axis depth of cracked concrete section
x ′ : distance from the peak of the concrete tensile stress to the N.A
x ′′ : height of the region with softening of concrete in the tension zone
εct : strain of concrete by reaching tensile strength
εs : strain in longitudinal rebar
ρs : reinforcement ratio
ρp,e f f : reinforcement ratio in the effective area near the rebars
τu : allowable shear stress in the critical width of the shear band
τmax :maximum shear stress at neutral axis
τRc : relative shear capacity, τRc =VRc /(bd)
σxm : average normal stress of concrete in the shear band width

From the above relations, the shear stress along a coupled member cross-section is calculated using the
equivalent area method as shown in Figure 3.12. The shear stress distribution is as shown below. Figure
3.14 shows the shear stress distribution of specimen no. 8.

Figure 3.14: Shear stress distribution in coupled members after cracking (for slab no. 8)

The variation of shear stress at the interface as shown in Figure 3.14 is because the value at the interface
cannot be found out perfectly with the help of the analytical models. But, the maximum value of shear
stress in the substrate region can be calculated perfectly. Thus, it is assumed that the value at interface
won’t exceed the maximum allowable shear stress value, since, the overlay is still in elastic region as cracks
haven’t reached the interface level. In the Figure 3.14, the red curve denotes the estimated shear stress
distribution in case when a high strength concrete overlay is applied over the NSC substrate. Whereas, the
blue curve represents the estimated shear stress distribution in case a normal strength concrete overlay is
applied over the NSC substrate.
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Another important assumption in the analytical model proposed by Tung and Tue [5] is that the crack
which initiates at the critical moment is vertical in nature. This gives a stress distribution as shown in Figure
3.13. For further verification of the numerical model, shear stress at a cracked section where the initial crack
is vertical in nature is compared with the analytical model in further sections.

In the next chapter the stress distribution along the cross-section of a composite concrete slab in a nu-
merical model is analyzed and a correlation between the analytical and numerical results is shown. The shear
stress between the composite slab specimen, NSC homogeneous slab and HSC homogeneous slab is also
compared to further support the argument that the shear capacity of a composite slab specimen, such as
described in this report, can be calculated by assuming it to be a NSC concrete homogeneous slab with same
dimensions. Moreover, the shear stress distribution along the interface is checked for a possible de-bonding
in the numerical model to verify the interface behaviour with the experimental observations.
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Numerical Model using ATENA

According to the new fib Model Code 2010, the design shear resistance of a reinforced concrete (RC)
structure can be evaluated through analytical and numerical calculation methods that fall into four different
levels of approximations. The complexity and the accuracy of the calculated shear resistance increase with
increasing the level of approximation. Nonlinear finite element analysis (NLFEA) belongs to the highest
level of approximation (Level IV) because of their advantage to consider real material properties and some
more ’hidden’ capacities of the structure [11]. In today’s world NLFEA is used as a basic step to simulate
real-life situations. Since in olden times such advanced models were not developed, to check the service life
and durability of existing structures, many companies especially in Netherlands, are using NLFEA. ATENA
is used especially in case of concrete structures as it provides ease in developing a structural model with
concrete material and gives accurate results while studying the stress-strain properties, creep, shrinkage and
strength properties. Figure 4.1 shows the experimental set-up of the four-point bending test performed on
a RC slab with a HSC overlay as also described before in section 3.2.

Figure 4.1: Test setup for 4-point bending test [4] [all dimensions are in cm]

31
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4.1. Numerical Model
4.1.1. Introduction on FE Model creation

Figure 4.2: Details of test specimen using symmetry (All measurements are in meters)

Figure 4.2 shows the test specimen depicting the actual experimental loading and boundary conditions. It
is a four-point bending test. However, only half of the slab is modelled using symmetry along a vertical
axis through the mid-plane of the slab. For ease of modeling the reinforcement details shown in bottom
only consists of the longitudinal main reinforcement as shown in the reinforcement configuration of Figure
3.1. This is also done because in bending, the main reinforcement is more important than the transverse
reinforcement, which is placed mainly to hold the main rebar together.

The bottom part of the slab is a normal strength concrete while the shaded region above it, is a high
strength concrete overlay in Figure 4.2. ’F ’ is a point force acting on one half of the slab such that total
force acting on the slab is ’2F ’. The bottom left support restricts the translation in y-direction while the
roller supports on the right most edge of the slab, restricts the movement in only x-direction and allows
translation in vertical direction. Actual test set-up is shown in Figure 3.5.

4.1.2. Comments on FE model preparation

Figure 4.3: Finite element model used for analyzing cracking pattern in RC slab with HSC overlay on top

Figure 4.3 shows the FE model created for slab specimen no. 8. The material properties and other input
parameters are prescribed as follows.
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Materials
Concrete of both slabs (overlay and substrate) is modeled by ’Non-linear cementitious’ material model, with
parameters given in Table 4.1. Material of the reinforcement is represented by Bilinear Von Mises stress
model (Table 4.2). In addition, the concrete-concrete 2D interface and the 2D interface between steel
plate and concrete both are modeled with properties as described in Table 4.3. Also, the steel plate model
properties are given in Table 4.4 which are designed using the plane stress elastic isotropic model.

Topology
Design of the model is distributed among four macroelements representing the two concrete slabs; substrate
and overlay, and the two steel plates used for load application and support conditions. The connection
between the two concrete surfaces is specified as 2D interface, gap type with a mesh refinement as per
number of elements. Similarly, the connection between steel plates and their respective concrete slab is also
specified as 2D interface, gap type but mesh refinement is not applied for these interfaces. The previously
defined interface models are assigned to these interfaces.

Loads and supports and Run
As symmetry is used to design the model, support to the left is fixed in y-direction and is applied as a point
support. Whereas, the right edge of the half-slab model is fixed in x-direction and is applied as line support
(load case LC1). A point load is applied at mid point of the top steel plate by prescribing uniform vertical
displacement of 0.1 mm (load case LC2). The loading is applied with a step multiplier of 2 in 140 load steps.
The Modified Newton-Raphson solution method with parameters listed in Table 4.5 is employed.
The finite element mesh properties are defined in Table 4.6. Thickness of the macroelements is defined as
1.0 m as per the dimensions of the RC slab defined in Figure 3.1.
The overall response is recorded at two monitoring points - loading as reaction at the top loading point and
displacement at the bottom of the slab on the symmetry plane.

Table 4.1: Material properties of concrete

Material type Symbol
Non Linear

cementitious
material

Units

Overlay
Elastic Modulus Eo 37450 MPa
Poisson’s ratio ν 0.2 -

Compressive cube strength fc,cube 98.79 MPa
Tensile strength ft 5.75 MPa
Crack Model Fixed

Substrate
Elastic Modulus Es 28990 MPa
Poisson’s ratio ν 0.2 -

Compressive cube strength fc,cube 57.28 MPa
Tensile strength ft 4.82 MPa
Crack Model Fixed

Table 4.2: Material properties of reinforcement

Material type Symbol Bilinear steel Von
Mises Units

Elastic Modulus Esteel 210 GPa
Yield strength σy 550 MPa
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Table 4.3: Material properties of interfaces

Material type Symbol 2D Interface Units
Concrete-concrete interface

Normal stiffness Knn 1.4×108 M N /m3

Tangential stiffness Kt t 1.4×108 M N /m3

Tensile strength ft 4.80 MPa
Cohesion c 1.70 MPa

Friction coefficient µ 0.6 -
Steel (Steel plate)-concrete interface

Normal stiffness Knn 2×1010 M N /m3

Tangential stiffness Kt t 2×1010 M N /m3

Tensile strength ft 0 MPa
Cohesion c 0 MPa

Friction coefficient µ 0.5 -

Table 4.4: Material properties of steel plates

Material type Symbol Plane stress
elastic isotropic Units

Elastic Modulus Esteel 210 GPa
Poisson’s ratio ν 0.3 -

Table 4.5: Solution parameters

Solution method Newton-Raphson (Modified)
Stiffness/update Elastic/each step

Number of iterations 40
Error tolerance 0.01
Line search on, with iterations

Table 4.6: Finite element mesh

Finite element type concrete Quadrilateral
(CCIsoQuad)

Finite element type steel plates Quadrilateral
(CCIsoQuad)

FE mesh element size concrete 15 mm
FE mesh element size steel plates 20 mm

Element shape smoothing on
Optimization Sloan
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Results and Discussion

Simulations run using ATENA software have been compared with the experimental as well as analytical
results. Discussions explaining the nature of the results are also documented in this chapter. The results
obtained are very helpful in understanding the behaviour of the finite element model.

5.1. Results

Table 5.1: Comparison of three shear models with experimental results

Slab no. (VEC /Vexp) (VC SC T /Vexp)
(VI SF act /Vexp)
(with SFact )

(VI SFest /Vexp)
(with SFest )

1 0.54 1.07 0.93 1.03
2 0.57 1.13 0.92 1.02
3 0.53 1.05 0.91 1.02
4 0.51 1.00 0.88 0.98
5 0.58 1.15 0.92 1.02
6 0.60 1.20 0.95 1.06
7 0.55 1.08 0.87 0.97
8 0.58 1.15 0.92 1.02

Mean Value 0.56 1.10 0.91 1.02
COV 4.99 % 5.54 % 2.53 % 2.54 %

A summary of the three shear models compared in the previous sections is tabulated in Table 5.1. In Figure
5.1, all the coefficients of variations are compared as per the aforementioned methods. Detailed calculation
of the coefficients of variation is given in B in Figure B.9. The red data points represent the shear stress
in HSC homogeneous concrete slab (upper bound). Whereas, the blue data points represent shear stress
in NSC homogeneous concrete slab (lower bound) and the black data points represent average of these
two values. The comparison among the COV clearly shows the accuracy of CSDT method. Here, the ra-
tio between the shear force values due to analytical model and experimental results is closest to unity (or
the diagonal line shown in the graphs). The cluster of data is densely located in these two graphs as the
COV is closest to zero, especially when the slab factor (SFact ) is incorporated with actual calculated method.

35



36 5. Results and Discussion

(a) (b)

(c) (d)

Figure 5.1: Comparison of shear models (a) Eurocode 2; (b) CSCT; (c) CSDT (Slab factor estimation) (d) CSDT (Slab factor
actual calculation)

Figure 5.2: Comparison of numerical results between Composite slab (Slab no.8) and homogeneous slab
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Figure 5.2 shows a comparison between the numerical results obtained from slab specimen 8, that is the
composite slab and the two homogeneous models that are made of high strength concrete and normal
strength concrete, depicting the upper and the lower bound limits, respectively.

The load displacement curve for the composite slab specimen lies in between the two graphs which justify
the assumption made in section 3.3.1. Moreover, the load - displacement curve for the composite slab
specimen and the curve with normal strength concrete properties are very similar in nature. Both the graphs
show a brittle behaviour as compared to the high strength concrete homogeneous slab which shows a ductile
behaviour. Although, the load carrying capacity of the composite slab lies in between the two limiting cases,
failure behaviour in the former two cases is rather comparable.

Figure 5.3: Comparison between experimental (platte 8_Rt=0.8mm) [4] and numerical model (Slab no.8)

In Figure 5.3, a comparison between experimental results for slab plate no. 8 (Rt = 0.8mm) and numerical
results obtained by NLFEA of slab specimen no. 8 is shown. The nature of graph obtained by the numerical
model is similar to that of the experiment, which means the numerical model agrees with a real time
experimental slab model. Although, a slight difference can be observed in the initial stiffness between
the two graphs. This can be due to a certain level of in-homogeneity in the real time concrete member
composition which is completely ignored while modeling the slab in ATENA. This reason also explains the
slight difference between the peak load values in experiment and in numerical model. Three representative
load steps are marked in the numerical model graph namely; A, B and C.

• Point A represents load step no. 5 (displacement of the bottom most node on the symmetry axis
reaches 1.33 mm) at which the concrete slab bottom-most fibres reach their tensile strength and start
to crack.

• Point B represents load step no. 26 (displacement of the bottom most node on the symmetry axis
reaches 6.94mm) at which the initiation of the critical inclined crack takes place.

• Finally, point C represents load step no. 89 (displacement of the bottom most node on the symmetry
axis reaches 22.10mm) which is the maximum load the concrete slab can carry, in other words the load
carrying capacity of the composite concrete slab.

Crack profile obtained in the numerical analysis is now compared with the experimental cracking pattern
observed by Dr. Randl.
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(a) Crack pattern observed in experiment carried out in lab [4]

(b) Crack pattern obtained in numerical model of slab specimen no.8 modeled using symmetry
(deformed shape of slab with scale = 5.0)

Figure 5.4: Comparison of cracking pattern between experimental and numerical model

The cracking pattern obtained, in case of monotonic loading, with the numerical model agrees with the
experimental results which is diagonal in nature in both models, thus further validating the model. In
the experiment, further load increment does not lead to failure of the interface between the two concrete
layers. Similarly on further increasing the prescribed deformation in the numerical model, the crack slowly
propagates through the interface and then in the high strength concrete overlay but does not lead to failure
of the interface. The numerical failure mode was due to the diagonal critical crack formation, which caused
collapse of the slab if the loading is further increased. Further research can be done in case of dynamic
loading.

Normal and shear stress distribution in concrete slab before and after
cracking

(a) Normal stress distribution before cracking in the shear span

(b) Shear stress distribution before cracking in the shear span

Figure 5.5: Normal and shear stress distribution in numerical model before and after cracking of the shear span
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(c) Normal stress distribution after cracking in the shear span

(d) Shear stress distribution after cracking in the shear span

Figure 5.5: Normal and shear stress distribution in numerical model before and after cracking of the shear span (contd.)

Figure 5.6: Shear stress distribution in (a) NSC homogeneous slab and (b) HSC homogeneous slab

In this section a validation to the argument that a composite concrete slab can be assumed to be a homoge-
neous slab with substrate concrete properties, with the dimensions as provided in this report, for estimating
the shear capacity of a composite concrete slab.

From Figures 5.5a and 5.5b, the elastic behaviour of concrete before the slab starts cracking in the shear
slab is evident from the linear stress distribution of normal stress and an approximate parabolic distribution
of shear stress. On the other hand, Figures 5.5c and 5.5d explain the non-linear behaviour of concrete which
corresponds to the stress distribution obtained by analytical methods in Figures 3.13 and 3.14. The critical
cross-sections shown in the above figures are shown at such load steps where the cracks occurring at these
respective cross-sections are vertical thus, satisfying the main assumption considered in the model proposed
by Tung and Tue. However, a minor difference between the analytical and numerical stress results is observed
in the bottom part of both the stress distributions after occurrence of vertical cracks. This is as a result
of an approximation in the analytical model that no other cracks appear, not even micro cracks, near the
vertical crack at the bottom fibre. While, in reality there are always cracks present in the vicinity of the
vertical crack which gives a difference in the stress distributions near the bottom fibre.

In Figure 5.6, the shear stress distribution at critical cross-sections is shown for two homogeneous concrete
slab cases. First case (a) is for normal strength concrete (NSC) homogeneous slab and second case (b) is
for high strength concrete (HSC) homogeneous slab. Shear stress distribution in Figure 5.5d resembles with
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the results in the NSC homogeneous slab shear stress distribution. Thus, this further proves the correlation
between the normal strength concrete homogeneous slab and the composite concrete slab.

Figure 5.7 shows the shear stress distribution along the interface of the composite concrete specimen. The
maximum value at the interface for shear stress is around 0.88 MPa and the shear diagonal failure has
already occurred. This means there is no failure at the interface in such loading conditions. Shear failure of
the substrate is governing for this analysis which is evident from the experimental results as well.

Figure 5.7: Shear stress distribution at the interface of the composite concrete slab

Figure 5.8: Comparison of numerical models with perfect bond and interface properties from experiment

Another comparison is carried out between a perfectly bonded composite slab and another one with interface
properties as given in Table 4.3. As can be seen from Figure 5.8, the force displacement curve for the
perfectly bonded specimen has a slightly higher load carrying capacity than the slab with the given interface
properties. The difference between the two models is not significant because the interface properties assigned
to the model has a tensile strength almost equal to the substrate concrete tensile strength, which makes the
model resemble closely to a perfectly bonded specimen.
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5.2. Discussion
Guidelines for examining the behaviour of a composite concrete slab, under examination of a point load or
uniformly distributed load are not available. But in case of a homogeneous concrete slab or beam, various
theories and models are already defined. Therefore, as a first step the behaviour of a homogeneous concrete
slab is studied. This develops some basis for guidelines to proceed with the study of a composite concrete
slab element. Out of the various models available, three shear models are studied in this work; the Eurocode
2, the Critical shear crack theory (CSCT) and the Critical shear displacement theory (CSDT).

In section 3.3.1, for each slab specimen tested by Dr. Randl , two cases are considered. The first one
as a homogeneous slab with exclusively the substrate concrete layer properties (normal strength concrete
NSC) and second one as a homogeneous slab with only overlay concrete layer properties (high strength
concrete HSC). As a result, two limiting values are obtained for each composite concrete slab specimen.
Shear resistances obtained from three shear models are used as a measure of direct comparison between
these models. These values are considered as the lower and upper bound limiting values for estimating the
shear resistance of a composite slab. An average of these limiting values is calculated for each shear model
which are then compared directly to each other and with the experimental shear resistances. Furthermore,
the variation of these results is documented.

The results obtained by adopting the procedure specified in Eurocode2 fetches results having least accuracy
giving a mean variation of 0.56 with COV 4.99 %. Whereas, by using critical shear crack theory the accuracy
is improved substantially giving mean variation of 1.10 but a COV of 5.54 %, which is still not in allowable
limits. The critical shear displacement theory gives the most accurate results with mean variation of 0.91-1.02
depending on the two different slab factor methods and COV of almost 2.53 % for both methods considered.
The mean variation as close to unity and the COV as close to zero, is better for acceptability of the model.
This is achieved when shear force is calculated using CSDT.

In the procedure prescribed by Eurocode2, number of assumptions are made to calculate the shear capacity
of a concrete member. This is evident from the use of various factors in the formulae leading to the
shear capacity of the concrete member. Also, the effect of concrete in compressive zone is neglected while
calculating the shear capacity. In the critical shear crack theory, contribution of the concrete in compressive
zone is taken into consideration to improve the accuracy of results. The micro cracks in the shear band
3.4.1, which subsequently lead to the critical inclined crack, improve the shear capacity of the concrete
member. This can be explained by the strut and tie phenomenon. Finally, in the critical shear displacement
theory, the effect of the vertical displacement caused by cracking is also taken into consideration along-with
the effect of concrete in compressive zone. In case of a concrete slab, the vertical displacement caused by
cracking of the secondary diagonal crack (Figure 2.3), leading from a vertical crack, increases the shear
capacity substantially. Moreover, a cracking pattern is obtained in the transverse direction along all the
weak spots that enhances the aggregate interlocking effect along the cracked planes. For example, in case
of concrete beams the maximum vertical shear displacement is achieved as soon as the entire cross-section
cracks along the width of the beam. Whereas, in case of concrete slab, width of the member is much larger
as compared to a concrete beam, thus a greater force is required to induce cracks throughout the width
of the slab. Moreover, the reinforcement quantity is substantially higher in slabs. A higher shear force is
needed to achieve necessary crack width throughout the width in order to activate yielding of reinforcement.
As the dowel action is a plastic phenomenon, reinforcement in the slab has to reach its plastic state for full
effect on shear transfer by dowel action. This greater shear force is thus responsible for the maximum shear
displacement. In other words, the critical shear displacement theory is an advanced version of critical shear
crack theory.

The model described by CSDT is mainly developed for homogeneous concrete beams, wherein the width
of the specimen is very small as compared to width of a slab. However, as described before, load bearing
capacity of a slab is much higher than a concrete beam if rest two dimensions and material properties
are kept constant. In a slab the cracking pattern is not uniform but it can rather be approximated as a
wave pattern having it’s own amplitude and wave length, which determine the spread of the cracks and
their behaviour in the longitudinal direction. This phenomenon of wavy crack pattern in addition to higher
quantity of longitudinal reinforcement, leads to an increase in the vertical shear displacement of the slab
which is a substantial increment. This enhanced vertical displacement gives a boost to the shear capacity
by increasing the aggregate interlock resistance thereby increasing the load carrying capacity of the slab. A
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slab factor is introduced confirming the effect of both amplitude and wave length of the cracking profile. It
is calculated using two methods, first one, uses an exact calculation technique. In this method, wavelength
and amplitude of the crack profile are calculated, depending on the material parameters. Thus, an effective
width is calculated along-with the enhanced vertical shear displacement, which in turn increases the final
load carrying capacity by increasing the resistance due to aggregate interlock. Another method to calculate
the slab factor is by using an approximation as proposed by Yang. He proposes a rise in the final load carrying
capacity by 18.2 %. The results obtained by the second method agree with the experimental results perfectly
but after all it is an ideal approximation. The first method is based on realistic crack distribution and the
exact calculation improves the accuracy of the method as well.

In high strength concrete material the contribution of aggregate interlock reduces significantly, as the cracks
in the specimen go through the aggregate rather than around them (along the cement-aggregate boundary)
which is usually the case in normal strength concrete specimen. Also, the contribution due to dowel action
increases while that of uncracked concrete is approximately constant [10]. An important observation in the
case of composite concrete slab specimens with an overlay on top of NSC slab referring to the CSDT is
that, as, only the shear force transferred due to aggregate interlock ′V ′

ai is mainly affected in the substrate
region, thus, modifications to the aggregate interlock parameter in the formulae, proposed in CSDT, are
prescribed. The limits for the shear resistance transferred through aggregate interlock can be changed to the
substrate slab thickness dimension. The expression for shear force transferred due to dowel action will be
unaltered as, new material is introduced on top of the slab which does not affect the reinforcement-concrete
bond keeping the value ′V ′

d constant. Whereas, uncracked concrete’s contribution ′V ′
c will be calculated as

per the equilibrium in the system. Thus, shear capacity of a composite concrete slab can be estimated by
considering the substrate concrete properties mainly for the calculation of shear resistances transferred due
to aggregate interlock, longitudinal reinforcement dowel action, the uncracked concrete and some residual
stresses in the secondary diagonal crack.

For further validation of the above argument, effect of bond between the two concrete layers is also studied.
For this, two cases are considered; one with no bond and another with perfect bond between the concrete
layers. Results are also compared with analytical methods, where stress distribution at a critical cross-section
is compared. To obtain the values of stress at a cross-section using analytical methods, the composite slab
is considered as one slab with homogeneous material and equivalent area method is used to determine these
values. Hence, in the shear stress distribution graph in Figure 3.14, the black line represents a rectangular
cross-section and the graph follows smoothly governing a parabolic equation. However, in case, if a HSC
overlay is applied on top of NSC substrate, then by equivalent area method the width of top overlay will
increase and the cross-section will appear to be T-shaped. Similarly, in case of a NSC overlay the cross-
section will appear as inverted T-shaped. Hence, the red and blue lines representing the same behavior.

There is striking similarity in the stress distribution obtained in the numerical analysis and results from
analytical propositions, except at the bottom fibres. This is because in the analytical model, although cracks
in the slab appear to be inclined, for simplification of model and ease in calculation, it is assumed that
there are only vertical cracks present at regular spacing. Whereas, in the numerical model the cracks are
distributed throughout the bottom part of the slab with very few vertical cracks in the first half of the analysis.
Eventually, some vertical cracks can be observed in the shear span of the slab before their development into a
diagonal inclined crack. This can also be visualized as a strut-tie cracking model. Furthermore, a comparison
between HSC and NSC homogeneous slabs and the composite concrete slab is carried out. The shear stress
distribution in the composite slab resembles quite perfectly with the shear stress distribution in a NSC
homogeneous slab thus, further agreeing with the above argument. Moreover, on studying the interface
shear stresses in the composite section, there is no de-bonding observed ,i.e, shear stresses in the interface
are well in limit (maximum shear stress around 0.88 at the time of diagonal shear failure), when compared
with the analytical models as well. Numerical analyses performed on the composite slab specimen gives
satisfactory results in accordance with these conditions, wherein, the load carrying capacity of the model
with interface properties (as in the experiment) is slightly lower than the load carrying capacity in a model
with perfect bond between the concrete layers. This is because, the interface is as strong as a perfect
bond between the two concrete layers, thus, diagonal shear failure of the substrate is governing in all cases
described in the case study. Considering all the discussions of this report, final conclusions are drawn, in the
next chapter regarding the estimation of shear capacity of a composite concrete slab.
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Conclusions and Recommendations

The report describes an analytical study performed to understand the shear behavior of a composite concrete
slab with a validation of results using NLFEA with the help of ATENA software. The findings of this report
explain the necessity and the nature of the finite element software, which is developed especially for reinforced
concrete structures. The model thus explained is in accordance with the case study report of Dr. Randl [4].
For now, the report mainly concentrates on a specific case, where, a HSC overlay is applied on a RC slab. The
results explain the stress distribution at the interface and the limiting values obtained from analytical models.
Thus, this chapter includes the conclusions from these findings. Furthermore, some recommendations are
prescribed in the end as prospective research topics.

6.1. Conclusions
• Homogeneous slabs with HSC (upper bound) and NSC (lower bound) properties pertaining to overlay
and substrate layers respectively have been studied in previous sections and cracking pattern in each
specimen is observed. Shear resistances are obtained using all shear models and a direct comparison
is done with the experimental results. Values obtained using CSDT relate closely to the experimental
results with lowest COV of 2.53%. Thus, the critical shear displacement theory gives a good estimate
of shear capacity in case of composite concrete slabs.

• Among the two slab factor methods described, in the critical shear displacement theory, the method
which uses actual wave parameters of amplitude and wave length gives a better estimation of shear
resistance as compared to the approximate slab factor of 18.2 %. This is also because the actual
calculation method considers the realistic crack pattern to calculate the change in shear displacement.

• From the cracking pattern obtained from CSDT, it can be concluded that the vertical cracks only
propagate in the lower region, which is evidently the substrate region, if compared with the composite
slab specimen. However, the vertical cracks later develop into a inclined critical crack which eventually
reach the interface.

• Homogeneous slab with substrate concrete properties give good approximation of the shear behaviour
for a composite concrete slab. By making changes to the limits in CSDT formulation according to the
substrate thickness dimension, shear resistance for composite slab can be calculated.

• This is further validated with the load-displacement curve obtained for HSC and NSC homogeneous
and composite concrete slabs. NSC homogeneous slab resembles the nature and failure criteria with
the composite slab section. Both these curves exhibit brittle behavior whereas, the HSC homogeneous
slab exhibits a ductile behavior. Furthermore, the shear stress at critical cross-sections complies with
the argument thus giving similar values at the interface and at the critical section.

• In all cases, delamination of the interface does not occur. Diagonal shear failure is governing over the
strength of interface. Maximum shear stress at the interface, once the shear span fails in diagonal
shear, is 0.88. This is well in limit in case of the two limiting scenarios of perfect bond and no bond
between the two concrete layers.

43



44 6. Conclusions and Recommendations

• Effect of bond between the two concrete layers is also studied. The interface properties in case of
experimental set-up are as strong as a perfect bond condition. Hence, the nature of load - displacement
curve in Figure 5.8, is very similar for perfect bond and bond with interface properties. Also, the load
carrying capacities in both these cases do not differ significantly.

• The numerical results are compared with the experimental results to validate the numerical analysis.
The maximum load carrying capacity in case of numerical model is slightly more than the experimental
result. Also, the numerical model is a bit stiffer in the beginning which eventually leads to a higher
value. The cracking pattern observed is also similar to the experimental crack pattern.

6.2. Recommendations
• The model is tested mainly for monotonic loading, further research can be done for fatigue/dynamic
loading which will justify the loading pattern on a concrete bridge in real time.

• Changes in the overlay thickness can be incorporated to check for any changes in the shear behavior.

• A parametric study can be done further by varying the interface properties and studying the behavior
of the composite slab.

• An improved numerical model based on the observations of this report can be tested. The results ob-
tained might help in proper modelling of a composite concrete specimen, using ATENA FEM software.

• In ATENA Engineering 2D software, it is difficult to model a ’no connection’ as the results obtained
under this report’s observations are not satisfactory for an ’uncoupled behavior’ of the concrete layers.
Only an analytical study was hence possible in this report regarding an uncoupled model.



A
CODE for Critical Shear

Displacement Theory Method

To calculate the shear capacity using the critical shear displacement theory the following code needs to be
run by using the input variables as shown in Table 3.7
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B
Excel calculation sheets

Following section contains all the excel calculation sheets used for the completion of this additional thesis
report.
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