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Abstract
Voltage imaging is a powerful technique for ob-
serving fast neural activity, but it often produces
images with a high level of noise, making analy-
sis difficult. Deep learning methods have shown
promise in denoising such data, but most re-
quire large datasets containing both clean and
noisy image pairs, which are hard to obtain in
real-world settings. To this end, several self-
supervised approaches that rely solely on noisy
images have been proposed in the literature. In
this paper, three self-supervised denoising models–
Noise2Void, AP-BSN, and DeepVID v2–are eval-
uated on both synthetic and real voltage imaging
datasets. For the synthetic data, the performance is
assessed using PSNR and SSIM, while for the real
data, the temporal signal-to-noise ratio (tSNR), a
metric well-suited to voltage imaging, is used. Re-
sults show that the self-supervised models are ef-
fective at denoising both synthetic and real image
datasets. In particular, models which use the tem-
poral information of the videos, such as DeepVID
v2, obtain the best results.

1 Introduction
All brain functions, such as cognition, emotion, behavior,
movement, and sensation, are the result of electrical signals
generated by neurons organized in systems of circuits. A cen-
tral goal of neuroscience is to find out how these neuronal cir-
cuits give rise to brain functions. One way in which the mech-
anisms of these circuits can be studied is by examining the be-
havior of large neuron populations in the cerebral cortex using
optical imaging methods. Complications in this procedure
arise from the fact that electrical responses, which take place
on a millisecond timescale, need to be analyzed. Namely,
the current state-of-the-art method for capturing neuronal ac-
tivity, calcium imaging, can’t provide data on inhibitory and
excitatory signals, which take place at all times in most neu-
rons.

Voltage imaging is a relatively new technique that enables
capturing rapid neural activity with high spatial and tempo-
ral precision using genetically encoded voltage indicators in
fluorescence microscopy. The advantage of voltage imaging
over calcium imaging is its temporal resolution. The method
is fast enough to capture all the stages of neural spikes (in-
cluding inhibitory and excitatory events) of each neuron in a
circuit [1].

Because of the low photon yield, the videos obtained using
this method have a low signal-to-noise ratio (SNR). In turn,
this impedes accurately localizing the neurons’ positions and
lowers the temporal precision of neural spike detection. In-
creasing the SNR experimentally through longer exposure or
stronger light excitation offers limited improvements. There-
fore, the preferred alternative is increasing the SNR through
image denoising.

Image denoising is an essential image processing task,
which aims to remove the noise and separate the clean image.

Before the rise in popularity of deep learning, the state-of-the-
art in microscopy denoising consisted of total variation-based
methods, non-local methods, sparse filtering, and variance-
stabilizing transforms [2]. More recently, convolutional neu-
ral network (CNN)-based methods have surpassed the perfor-
mance of traditional algorithms [3, 4].

Despite the promising performance of deep learning-based
methods, they have limited utility in a real-world setting,
since training these models requires a large number of pairs
of noisy and clean images of the same instance. This is es-
pecially problematic for voltage imaging because significant
changes in the frames happen on a millisecond timescale, so
obtaining clean images is very complicated.

To solve this problem, several self-supervised methods that
require only noisy images for training have been proposed
in the last five years [5]. More recently, self-supervised
models specialized in denoising microscopy images [6] have
emerged. Self-supervised methods have shown promising re-
sults on general datasets. Though, due to the recency of the
voltage imaging method and scarcity of such datasets, little
research has been done on the effectiveness of these models
on voltage imaging data.

This work aims to benchmark a wide variety of self-
supervised models on both real and synthetic voltage imaging
data, using suitable metrics, in order to answer the following
question:

How do different self-supervised denoising
models–Noise2Void, AP-BSN, and DeepVID v2–compare
in their effectiveness at denoising synthetic and real-world
voltage imaging data, as measured by PSNR, SSIM, and

temporal SNR?

2 Prerequisites and related work
In this section, prerequisites regarding the structure of noise
in voltage imaging videos, deep learning concepts and tech-
niques commonly used in self-supervised denoising will be
presented.

2.1 Noise distribution in voltage imaging
In voltage imaging videos, three different types of noise are
usually present [2]:

• Dark noise, caused by the thermal agitation of the elec-
trons in the camera’s detector.

• Photon noise, which results from the fluctuations in the
number of photons detected by the camera.

• Readout noise, introduced by imperfections in the elec-
tronics of the camera’s output amplifier.

The first two types of noise are described by Poisson pro-
cesses in literature, while the last one is described by a Gaus-
sian noise model. A widely used and realistic noise distribu-
tion in cases where all three aforementioned types of noise
are present is the Poisson-Gaussian noise model [7]. Math-
ematically this model is described for each pixel coordinate
by

P (y(s) = g) =
e−λs

√
2πσ2

×
+∞∑
p=0

λp
s

p!
e−

(γp−g)2

2σ2



where y(s) represents the pixel value at a coordinate s in the
image, g is a gray level value and σ is the standard deviation
of the noise model, λs is the Poisson random process of in-
tensity parameter and γ is a gain constant that modulates how
much the Poisson noise affects the model.

A method commonly used in self-supervised denoising
models is assuming this Poisson-Gaussian prior distribution,
estimating its parameters (or knowing them beforehand) and
then performing the training and prediction using both the
dataset and this information [8, 9]. However, the drawback of
such models is that they perform very well on synthetic data,
but fail to generalize on real world data [10].

2.2 Blind-Spot Networks
Among the self-supervised models used for image denoising,
the most popular approach is that of utilizing a Blind-Spot
Network [5].

The general denoising problem is described by a noisy im-
age x generated from a clean image s and some noise n on
top of it, in other words x = s + n. To solve the problem,
a way to compute a prediction ŝ as close as possible to the
original image s needs to be found.

In deep-learning terms, the solution is training a CNN to
learn a mapping from x to s. As a more illustrative view on
the problem, when predicting an image from a given input
image, every predicted pixel ŝi is influenced by certain pixels
in the input image xRF (i), this is called the receptive field of
the pixel. Thus the network can be seen as a function that
maps each receptive field to a predicted pixel, which can be
defined by:

f(xRF (i),θ) = ŝi

where θ represents the parameters of the model
The first ever Blind-Spot Network for denoising was pro-

posed in [11]. The idea behind this type of network is that
since no pairs of noisy-clean images on which the network
can be trained are available, one possibility is to use pairs
of the same noisy image for training. An important consid-
eration in this method is that the noise distribution is pixel-
wise independent. Using a classical CNN with this approach
would result in the model learning the identity function. The
reason for it is that, for every target pixel, its receptive field
would already contain that pixel and the model will learn to
simply output the original image at all times. To solve this is-
sue, certain pixels are blocked or neglected in the input image
during training.

The two general approaches to perform this procedure are
the following:

• Randomly selecting pixels from the original image dur-
ing training and substituting them with another ran-
domly chosen pixel from their vicinity (i.e. blocking
them). This modified image becomes the input of the
network and a special loss function is then computed
only on the blocked pixels for both the input and the
target image.

• Using convolutional filters that have zero entries at all
times on certain positions and a usual loss function.

The second method has the advantage that it is significantly
more computationally efficient, and therefore it is used pre-
dominantly in literature. These ideas have paved the way for
more advanced self-supervised denoising models which use
this blueprint together with more complex techniques.

2.3 Subsampling
In the context of image processing, subsampling refers to a
method which randomly selects a subset of pixels from re-
gions of an image and uses them to generate a smaller image.
This is typically done by sliding a window over the image
with a stride of s, and sampling one pixel from each window
position to form smaller images.

This technique can potentially offer a speed-up in the run-
time of models as the dimensions of the images used are
scaled down, but more importantly, when used in image de-
noising, along with Blind-Spot Networks, it has two potential
uses:

• A noisy image is subsampled into two smaller images,
which effectively should be similar to each other, that are
then treated as noisy - noisy pairs of the same instance in
a model such as Noise2Noise [12]. Such a strategy can
be found in the Neighbor2Neighbor model [10].

• The key assumption in the classical Blind-Spot Network
is that the noise distribution is pixel-wise independent.
This is not the case for real-world images, as the noise
in this case is highly spatially correlated. Consequently,
certain models, such as AP-BSN [13], use subsampling
techniques to reduce the spatial correlation of the noise
in images and afterwards input them into a Blind-Spot
Network.

3 Models selected for the experiment
This section presents representative self-supervised denois-
ing models benchmarked on synthetic and real-world voltage
imaging data.

3.1 Noise2Void
This is the paper that introduced the first version of the Blind-
Spot Network. It uses the U-Net architecture [14], but dif-
fers by randomly masking pixels during training, as discussed
in the previous section. In this model, for a predicted pixel
ŝi, the only input pixels affecting it are the ones in a square
neighborhood (i.e. a 2N +1× 2N +1 region centered at the
pixel) with the exception of the input pixel xi. Consequently,
the training of the model entails minimizing the following
empirical loss function:
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where the superscript j refers to a particular image in the
training set. The model is used as a baseline for future com-
parisons as, despite its age, it still performs well for certain
types of noise.



3.2 AP-BSN
This model is inspired by [15], particularly through the use of
pixel-shuffling down-sampling (PD), which is combined with
a Blind-Spot Network.

Pixel-shuffling down-sampling is a subsampling method
that preserves the noise distribution (i.e. mean and variance)
of the original image, while decreasing its spatial correlation
and allowing it to be used as input in a Blind-Spot Network.
The subsampling procedure, as described in [15], involves the
following steps:

1. Find the smallest subsampling stride s that makes the
downsampled spatial correlated sub-images match the
pixel-independent noise distribution.

2. Pixel-shuffle the image into a mosaic ys.

3. Denoise ys using the denoising model.

4. Refill each sub-image with noisy blocks separately and
pixel-shuffle up-sample them.

5. Denoise each refilled image again using the denoising
model and average them to obtain the texture details T .

6. Obtain the flat regions of the image F using a noise es-
timating model.

7. Combine T and F to get the final image.

The problem AP-BSN aims to solve is the inherent trade-
off in the classical PD between the pixel-wise independence
assumption and the reconstruction quality: for low stride fac-
tors s, image structure is preserved, but the spatial correlation
is not significantly reduced, whereas for high stride factors s,
the opposite occurs. The solution proposed in the paper is us-
ing different stride factors during training and inference time,
while also using a Blind-Spot Network as the denoiser.

Subsampling-based models like AP-BSN have not yet been
evaluated on voltage imaging data. Therefore, it is important
to compare their performance with models that use alternative
approaches to determine whether this technique is well-suited
for such data. AP-BSN was chosen for benchmarking as it is
the model using subsampling techniques which consistently
achieves the best denoising results in the literature on real-
world RGB data. Thus, out of the models of this type, it
is assumed that it will perform best on voltage imaging data
too.

3.3 DeepVID v2
The model is built on top of the usual Blind-Spot Network
architecture, but has two additional features specialized for
denoising voltage imaging videos:

1. It leverages the temporal information in the videos by us-
ing multiple consecutive frames (a total of N = 2N0+1)
centered around the frame to be denoised. These frames
help the network better understand motion and dynamic
changes.

2. It addresses the common denoising problem of over-
smoothed images by adding an edge extraction side
branch. This branch first computes a local mean frame
from a separate series of M = 2M0 + 1 frames, applies

Gaussian smoothing, and extracts directional edges us-
ing four Sobel filters (at 0°, 45°, 90°, and 135°). These
edge maps are then fed into the main denoising branch
as extra input channels to help preserve fine structures in
the image.

This model was chosen for benchmarking as it is the follow-
up version of DeepVID, a voltage imaging denoising model
used in the widely adopted VolPy pipeline [16]. It is an al-
ready established model, which is known to perform well on
this type of data. Comparing the other models to it can re-
veal whether non-specialized methods can achieve denoising
performance comparable to the state of the art.

4 Experimental setup and results
The experiment entails training the models presented in the
previous section on two datasets, one with synthetic voltage
imaging data and the other with real-world voltage imaging
data, and then evaluating their predictions on the respective
datasets using specific metrics. The training and prediction
were performed on a computer with 32 GB RAM and an
NVIDIA GeForce RTX 5080 GPU.

4.1 Datasets
For reproducibility, the two datasets were taken from litera-
ture related to voltage imaging.

The synthetic noise dataset was taken from the CellMincer
paper [17]. In the paper, four datasets at different noise levels
were created using the Optosynth tool. For the analysis in this
paper, only the dataset containing the most noisy images was
used. The dataset consists of 10 sets of 7,000 images resem-
bling neuron populations generated using Optosynth. Five
sets contain clean images, while the other five were obtained
by adding Poisson-Gaussian noise.

The real voltage imaging frames dataset was taken from
[18]. It consists of 13 videos of 15,000 frames each. The
dataset consists of images of neurons from different regions
of the hippocampi of mice and it does not contain any ground
truth. Due to the large size of the full dataset, only two videos
(the files ”00 02.tif” and ”00 03.tif”) were used for training
and evaluation.

Both datasets contain only grayscale images, as is gener-
ally the case for voltage imaging videos.

4.2 Metrics
One of the datasets does not have any ground truth. Therefore
the metrics used for the two datasets differ. In the formulas
below x represents the ground truth image and y represents
the denoised image, both of which have size n × m. More-
over, the final reported values for the metrics presented below
are computed for each pair of images in the dataset and then
averaged.

Synthetic dataset metrics
As this synthetic dataset contains ground truth images, met-
rics computed between a predicted image and a clean image
are used.

Structural Similarity Index Measure (SSIM) evaluates
the perceptual quality of images by comparing structural in-
formation between a denoised image and the ground truth.



Figure 1: Visual comparison of denoising performance across models. Each row shows a different dataset: the top row corresponds to the
real dataset, and the bottom row to the synthetic dataset. For each dataset, the noisy input, denoised outputs from each model, and (where
available) the ground truth are shown.

The SSIM score ranges from −1 to 1, with values closer to 1
indicating greater structural similarity. SSIM was chosen as
it better reflects perceptual image quality by comparing struc-
tural information.

The formula for SSIM between two standardized image
patches x and y is:

SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where:

• µx, µy are the means of x and y,

• σ2
x, σ

2
y are the variances of x and y,

• σxy is the covariance between x and y,

• C1 and C2 are small constants to stabilize the division.

Scale-invariant Peak Signal-to-Noise Ratio (PSNR)
measures the quality of reconstructed images. Higher PSNR
values indicate better denoising performance and greater sim-
ilarity to the ground truth. This version of PSNR standardizes
pixel values before computing the metric. The metric was
chosen as it is easy to compute and sensitive to even small
differences between the denoised image and the ground truth,
which complements SSIM well. Moreover, it is a widely used
metric in the image processing and microscopy communities
[2]. The formula used to calculate it is:

PSNR = 10 · log10
(
RANGE2

MSE

)
where RANGE is defined as

RANGE =
MAX(x)−MIN(x)

σx

and MSE is defined as:

MSE =
1

nm

n∑
i=1

m∑
j=1

(xij − yij)
2

Real dataset metrics
The metrics used for data without ground truth are gener-
ally scarce and uninformative, but in the context of denois-
ing voltage imaging, because of the temporal dependence of
the frames, a metric called Temporal Signal to Noise Ratio
(tSNR) can be computed. This metric is calculated by select-
ing a window (in this case with size of 7 frames) and calculat-
ing the ratio between the average and the standard deviation
of the frames in the window:

TSNR = 10 · log10
(µ
σ

)
Temporal Signal to Noise Ratio is commonly used in voltage
imaging denoising papers [19] and shows how similar frames
close to each other in the video are.

4.3 Results
Since the evaluated models are self-supervised, they can’t
overfit on the available data. Consequently, they were trained
on all of the noisy images for both the synthetic and real im-
age datasets. Moreover, each model was trained using the
hyperparameters suggested in their respective papers, as fine-
tuning them for these datasets is not an option due to the long
training times.

Figure 1 shows a comparison between the predictions of
the denoising models, along with the ground truth and noisy
images from each of the two datasets. Table 1 highlights the
obtained PSNR and SSIM values after training and inference
for each model on the synthetic dataset.



Model PSNR (dB) SSIM

Noise2Void 26.662 0.877

AP-BSN 13.130 0.074

DeepVID v2 33.193 0.970

Table 1: Quantitative denoising results for each model on the syn-
thetic dataset

For the real image dataset, a baseline value of the tSNR was
computed for the noisy dataset in order to see any potential
improvements. Table 2 shows the obtained tSNR values after
training and inference for each model on the real dataset.

Model tSNR (dB)

Baseline 5.36

Noise2Void 5.44

AP-BSN 6.41

DeepVID v2 5.82

Table 2: Quantitative denoising results for each model on the real
dataset

For the synthetic image dataset, results from Table 1 show
that DeepVID v2 performed best in terms of both PSNR and
SSIM by a large margin. The reason this model gave the best
results is its use of the temporal image stacks. This feature
gives more information about the current frame by analyzing
previous and future frames from the video. This increases
the performance on these metrics for the dataset, as frames
are quite similar to each other. The main differences between
frames are the patterns of the noise, not the positions or ap-
pearance (e.g. more intense lighting when a signal happens)
of the neurons.

For the real image dataset, the best tSNR value was ob-
tained for AP-BSN. The metric measures how different de-
noised frames that are close to each other in the video com-
pare in terms of overall structure. As a result, if images in the
temporal pack are very similar to one another, the value of
tSNR will be high. In the case of AP-BSN, the model over-
smoothed image details, making all frames look very similar.
As a result, the tSNR was high despite the poor visual quality
of the denoised images (see top right of Figure 1). By man-
ually checking the denoised images and comparing them to
the originals, the conclusion is that DeepVID v2 once again
performs the best as it removes part of the noise, while still
keeping the details of the image intact. Moreover, the same
model has also performed best in terms of tSNR outside of
AP-BSN. This is again due to the model’s use of both pre-
vious and future frames, which naturally leads to a higher
tSNR, by virtue of utilizing more temporal information.

5 Discussion
For the synthetic image dataset, the results generally align
with the initial hypotheses. Noise2Void is the oldest model
and is not specifically designed to handle voltage imag-
ing datasets or account for the time-dependence of frames.
Nonetheless, it scored reasonably well in terms of PSNR and
SSIM. On the other hand, DeepVID v2 achieved the best per-
formance, as expected, because it leverages the temporal de-
pendence of frames and addresses known denoising issues
such as oversmoothing. Surprisingly, AP-BSN yielded very
poor results. In many papers, it consistently ranks among the
best models for PSNR and SSIM on RGB image datasets, but
in the current evaluation, it performed the worst by a large
margin. Moreover, its output images are oversmoothed and
appear grayed out. This could be due to the model being pri-
marily designed for real-world RGB image denoising. It is
possible that the subsampling procedure used by AP-BSN is
simply ill-suited for simple images with very small areas of
interest–such as the dendrites of neurons–leading to a loss of
essential structure.

For the real image dataset, the highest tSNR value was
achieved by AP-BSN, but this appears to result from over-
smoothing rather than true denoising effectiveness. DeepVID
v2 shows a noticeable improvement in tSNR compared to the
baseline, which is expected, as it is the only model that uses
temporal stacks of frames. Noise2Void, on the other hand,
shows no significant improvement. Interestingly, for this
dataset, the images denoised by AP-BSN resemble the orig-
inal raw images more closely than those from the synthetic
dataset. This seems to support the hypothesis that AP-BSN
performs better on images with higher resolution or larger ar-
eas of interest. This conclusion is further supported by its
strong performance on real-world RGB datasets with large
images, as shown in [13].

The analysis presented here has several limitations. First,
the number of videos used from the real dataset is small due
to computational constraints, which may affect the generaliz-
ability of the results. Second, the absence of ground truth data
in the real dataset means that tSNR, while useful, is an im-
perfect proxy for actual denoising performance–evidenced by
the fact that the worst-performing model achieved the high-
est tSNR. Third, AP-BSN was evaluated using the hyperpa-
rameters recommended in the original paper, but the images
in this evaluation were grayscale, not RGB. This mismatch
could partly explain the reduced performance, although dif-
ferent sets of hyperparameters were not tested due to the long
training times of the model.

6 Conclusions and Future Work
To address the research question of how effective self-
supervised denoising methods are for cleaning voltage imag-
ing datasets, models were trained and evaluated on both syn-
thetic and real datasets using a variety of metrics.

Results obtained from the synthetic dataset, which includes
ground truth, show that self-supervised denoising models can
be highly effective on voltage imaging data. Interestingly,
simpler models that avoid subsampling and pixel shuffling



tend to perform better, suggesting that these techniques may
be ill-suited for such datasets.

For the real image dataset, lacking ground truth, the mod-
els demonstrated modest improvements in the tSNR metric,
indicating potential effectiveness. However, the model that
achieved the highest tSNR produced the poorest visual re-
sults, calling into question the validity of tSNR as a reliable
quality metric for denoising in this context.

To obtain more comprehensive insights into the effective-
ness of self-supervised denoising methods for voltage imag-
ing, further research is needed. In particular, this work does
not explore Blind-Spot Network–based models that incor-
porate subsampling or prior distribution assumptions, other
than AP-BSN. A challenge in evaluating such models lies in
their often outdated or incompatible codebases. Additionally,
more recent architectures–such as those based on Transform-
ers or Generative Adversarial Networks (GANs)–are promis-
ing for this task but were not included due to time constraints.

Another limitation of this paper is the reliance on a real
dataset without ground truth. More robust evaluation could
be achieved by using voltage imaging datasets that contain
both high-SNR (clean) and low-SNR (noisy) recordings of
the same scene. Unfortunately, such datasets are rare, as the
underlying biological processes are too fast to capture with-
out introducing significant noise.

7 Responsible research
In this section, the commitment to transparency, reproducibil-
ity, and the ethical context of the research is outlined to ensure
the work meets high standards of scientific integrity.

7.1 Reproducibility
To ensure that the findings can be independently verified and
built upon, the reproducibility of the experiments has been
prioritized.

• Public Datasets: The evaluation relies exclusively on
publicly available datasets from prior scientific litera-
ture. The synthetic data is from the Cellmincer study
[17], and the real-world voltage imaging data is from
[18]. The use of established, open datasets ensures that
other researchers can perform direct comparisons using
the same source material.

• Methodological Transparency: The specific models
evaluated and the metrics used for assessment have been
clearly detailed. These metrics are standard in the fields
of image processing and voltage imaging analysis.

• Hardware and Environment: The computational hard-
ware used for training and inference has been specified
to provide a baseline for performance replication.

• Open Source Commitment: Code developed for train-
ing the models and the final model checkpoints can be
found at https://github.com/ileolea317/voltage imaging
self supervised denoising.

7.2 Ethical Considerations
This research is computational in nature and focuses on im-
proving a data processing technique for basic scientific in-

quiry. While the direct work of developing a denoising algo-
rithm does not pose ethical issues, the context in which the
data is generated and the potential impact of the research are
acknowledged.

• Use of Animal Data: The real-world dataset used in this
paper was derived from experiments involving mice, as
documented in the original publication [18]. This work
relies on secondary data, and it is operated under the
assumption that the original researchers adhered to all
institutional and national guidelines for the ethical treat-
ment and welfare of laboratory animals.

• Societal Impact: The primary goal of improving volt-
age imaging analysis is to accelerate the understanding
of neural circuits. Enhanced denoising techniques can
lead to more accurate data, which in turn can advance
neuroscience and contribute to a better understanding of
brain function and pathologies. The application of this
work is believed to be firmly rooted in a positive contri-
bution to scientific and medical knowledge.
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