A Framework for Multi-Agent Planning

André Bos* Hans Tonino Mathijs de Weerdt” Cees Witteveen

Delft University of Technology
{email: A.Bos, J.FM.Tonino, M.M.deWeerdt, C.Witteveen} @its.tudelft.nl

Abstract

We introduce a computational framework, consisting of resources, skills,
goals and services to represent the plans of individual agents and to develop
models and algorithms for cooperation processes between a collection of agents.

Keywords: Teamwork and cooperation, multiagent planning, distributed resource al-
location.

1 Introduction

Cooperative planning is an important topic in multi-agent systems. Usually, the start-
ing point for research on this subject is the observation that there exist problems that
cannot be solved by a single agent in isolation, but require several agents to work
together, coordinating their plans and sharing their resources and goals.

Although this observation points out a necessary reason to cooperate, another, almost
equally important reason should not be overlooked: Even if agents may be able to solve
problems on their own, they might prefer to cooperate if sharing their resources and
coordinating their activities just may save costs. This observation refers to applications
such as, e.g. supply chain management in which individual planning and cooperation
phases can be clearly distinguished. Here, a chain manager first assigns each agent to
a part of a complex task via a task allocation process; next, the agents have to create
their plans to complete their part of the task; finally, the chain manager, responsible for
the quality of the overall planning, analyses these plans and may insist on cooperation
between some agents in order to satisfy (additional) constraints on costs or perfor-
mance. In such cases, cooperation can be accomplished by plan revision: to reduce the
total cost of his plan an agent tries to revise part of his plan by exchanging resources
and goals with other agents.

In the literature, some attention already has been given to the development and analy-
sis of efficient (approximately optimal) task allocation methods. We did not encounter,
however, computationally feasible approaches for solving the plan cooperation prob-
lem. Instead, often a coalition of agents is saddled with the computationally very hard
problem of constructing a joint plan to perform a complex task from scratch.

*Supported by research program Freight Transport Automation and Multimodality (FTAM).
TSupported by research program Seamless Multimodal Mobility (SMM). Both programs are carried
out within the TRAIL research school for Transport, Infrastructure and Logistics.

In this paper, we take a special approach to multi-agent cooperative planning. First,
we will introduce a new framework for representing plans and resources. The main
features of this framework are (i) the ability to treat plans as first-class citizens, (ii)
the distinction between resources, goals and side-products of resource production pro-
cesses and (iii) the idea to view plan cooperation as an iterated plan revision process.

2 Theplanning framework

Three primitive notions play a central role in our framework: (i) elementary production
processes, in our framework called skills of an agent, (ii) the resources needed to put a
skill into action, (iii) and the goals to be realized.

On top of these notions, we will introduce services as partially ordered sets of skills
to model more complex (generic) production processes. Next, we will introduce plans
as instances of services, that can be used to transform a given set of resources into
another set of resources satisfying a given set of goals. The connection between plans
and services is important: whenever we try to revise a part of the plan, we will have
to check whether the revised plan still satisfies the constraints that are imposed by the
service.

To discuss our framework into some detail, first we will introduce a many-sorted (re-
source) language to describe primitive notions like resources, resource schemes, goals
and goal schemes. Then we describe skills and services. Much of our concepts and
notational conventions have been taken from logic programming and are easy to grasp.

Language We use a many-sorted first-order language £ containing

e Sorts: S = {s1,52,..-Sd4};

Variables: Vs = {x%,...,xK ...} for each s € S; we will use Var = [JggVs t0
denote the set of all variables.

Predicate symbols: Pred = {p,r,..., } with rank function r : Pred — S*;

Function symbols: Fung = {fo, f1,...,} and rank function r : Fung — S* x {s}
foreachs € S;

e Constants: Cong = {ci,...cl,...,} foreach s € S.

Equality is dealt with as usual; the set Term = [Js.sTerm(s) of many-sorted terms
and Form of formulae are defined in the usual inductive way, where we distinguish
ground terms and ground formulae from general terms and formulae that may contain
variables. If x is a variable of sort s, we will use x : s to indicate its sort.

Resources and resource schemes In our language £, a resource fact, or simply
resource, is an L-atomic ground formula p(ty : S1,t2 : S2,...,th : Sp). As an example,
take a resource fact

taxi(1234 : id,ams : loc,100 : time,3 : cap)

referring to the taxi with identification 1234 at location Amsterdam at time 100 with a
capacity of 3 free seats.

Remark. It is essential to postulate that every resource (fact) is unique and can only
be used once. Uniqueness can be guaranteed by several means. For example we
could treat a resource p(ty : S1,t2 @ S2,...,th 1 Sn) as a database tuple with a uniquely
identifying key, occurring in some permanent store. Although in our planning world,
once a resources is consumed it disappears, every resource is preserved in the store
and once a resource is produced it is added to the store. The uniqueness postulate then
states that only resources can be created that not already do occur in the store. [|

Often, we don’t need to point out a specific individual resource: it is sufficient if the
resource we want, does have certain specific properties. That is, often, we are looking
for an arbitrary resource belonging to some class of resource facts instead of a specific
unique resource. To denote such a class, we use a resource scheme; a resource scheme
simply is an L-atomic formula (not necessarily ground). Resource schemes are useful
to denote arbitrary resources that are ground instances of a resource scheme.

For example,

taxi(x : id,ams : loc,t : time,3 : cap)

is a resource scheme denoting a taxi at Amsterdam with three free seats, where we
don’t care about the time t it is available.

Given some resource r and a resource scheme rs of course we would like to know
whether r indeed is a ground instance of rs. Hence, we introduce substitutions. A
substitution 8 is a finite set of pairs of the form x; = t; with x; € Var and tj € Term
satisfying the standard conditions®. We say that a resource r is an instance of the
scheme rs if there exists a substitution 8 such that rs6 = r. If we have a set RS of
resource schemes, we would also like to know if a set R of resources satisfies RS, i.e.,
whether R is a typical set of resources denoted by RS. Note that for each rs € RS we
have to find a unique resource r € R as an instance of rs. So an individual resource
cannot be used to satisfy more than one resource scheme. Therefore, we do not allow
a substitution 6 such that for two different schemes rs,rs’ € RS we have rsé = rs'0.
Hence, we need to introduce resource-identity preserving substitutions.

Definition 2.1 Let RS be a set of resource schemes. A substitution 0 is said to be
resource-identity preserving w.r.t. RS, if for every r1,r, € RS, ry # ro implies r10 # r,6.

Since for every substitution 8 we have |RS6| < |RS|, a substitution 6 is resource-
identity preserving w.r.t. RS iff |RS| = |RS6|.

Definition 2.2 We say that a set of resources R satisfies a set RS of resource schemes,
denoted by R |= RS, if there exists a resource-identity preserving substitution 6 w.r.t.
RS, such that RS6 C R.

1That is: (i) variables and terms match, i.e., if x; € Vs then t; is a term of sort s; (ii) i # j implies
Xj Z Xj; (iii) x; does not occur as a variable in t;.

Remark. This definition might appear to be too simple: for example, it might be that RS
contains resource schemes rs with terms that have to be evaluated after a substitution
0 in order to show that rs@ = r, for some r € R. We will simply assume that whenever
this evaluation process is needed, it is the result of such a substitution process. So in
fact rs@ = r does not indicate pure syntactical equivalence. [

Sometimes, we need to find a collection of resources that not individually, but together
satisfy some conditions. Corresponding classes of resources can be obtained by in-
troducing extended resource schemes: an extended resource scheme is a tuple (RS,C)
where (i) RS is a set of resource schemes and (ii) C is a set of constraints? for terms
with variables occurring in basic resources in RS.

For example, consider two resource schemes pass(x : loc,ts : time) : a passenger at
some location x and at some time tq, waiting for a (taxi)-ride ride(x : from,y : to,c:
cap,ty : time) from x to some place y, having c free seats and starting at time t,. To help
the passenger it would be nice if ¢ > 0 and t; < t. This is expressed by the following
extended resource scheme:

({pass(x : loc,ty : time), ride(x : from,y:to,c: cap,ty :time)},{t; <t,c > 0})

Every set R of resources containing at least one ride and one passenger resource meet-
ing these constraints will satisfy this extended resource scheme.

Goals Some resources we have, other resources we want to obtain. In general, we
do not care to obtain a specific (unique) resource, but only a resource having some
specific properties. So we will conceive an individual goal g as a resource scheme.
Even more general, usually we want to obtain a set of goals, meeting some constraints.
Therefore, we define goal schemes: if G = {g1,02,...,0m} is a set of goals and C a set
of constraints for terms occurring in G, GS = (G,C) is a goal scheme.

Of course, we would like to know whether a given set RS of resource schemes satisfies
a given goal scheme GS. Here, again, we use resource-identity preserving substitu-
tions.

Definition 2.3 We say that a set RS of resource schemes satisfies a goal scheme GS =
(G,C), abbreviated as RS |= GS, if there exists some resource-identity preserving sub-
stitution 8 w.r.t. G such that

1. GOCRS, and

2. COis a satisfiable set of formulae.

Skills Suppose we are given some set of resources R and we want to obtain some set
of resources R’ satisfying a given goal scheme GS. We clearly need a way to transform
the set R into another set R’. To this end, we introduce skills as (elementary) resource
consuming and resource production processes: a skill is represented as a rule of the
forms: RS’ « (RS,C). Here, s is the name of the skill and its intuitive meaning is as
follows: whenever there exists a set of resources R satisfying the extended resource

2We do not feel the need to specify exactly the type of constraints we will use; it suffices to use
standard relations.

scheme (RS,C), these resources can be consumed by the skill s and a new set of re-
sources R’ satisfying RS’ will be produced. To prevent reuse of resources, it is always
required that the set of output resource schemes out(s) = RS’ is disjunct from the set
in(s) = RS of input resource schemes. We will also identify the constraint C occurring
in a skill s by Cs.

Definition 2.4 [skill application to resources]

Let s: RS’ + (RS,C) and R,R' be sets of resources. We say that R’ can be produced
from R using s, abbreviated by R g R’ if there is a resource-identity preserving substi-
tution ® w.r.t. RSURS' such that

1. RSO CR, i.e., R contains sufficient resources to activate s,
2. =C8, i.e., the constraints reduce to true under 6 and

3. R"=(R—RSB)URS’'6, i.e., the resources consumed are removed from R while
the resources produced by s are added.

By the uniqueness postulate, we have to ensure that skills are not able to reproduce
resources. Note that the definition above ensures that a single skill application satisfies
this postulate:

Proposition 2.5 Whenever R g R’ for some skill s : RS’ « (RS,C) using a resource-
identity preserving substitution 6, it follows that RSON RS0 = 0.

PROOF Since 6 is resource preserving w.r.t. RSURS, it follows that [RSOURS'8| =
IRSURS|. Hence, since RSNRS' = 0, RSOBNRS'6 = 0. [|

Example 2.6 To give two concrete examples, take the following skills:

drive : taxi(y : loc,t; +t(x,y) : time),ride(x : from,y :to0,2 : cap,ts : time) « taxi(x: loc,t; : time),

{1}

travel : pass(y : loc,to +t(x,y) : time) «— pass(x : loc,ts : time),ride(x : from,y :to,c: cap,tz : time),

To explain the last skill, travel: for a passenger to travel from location x to location
y, two resources are needed. First of all, the passenger should be at location x at a
certain time t; and secondly, a ride (produced by a taxi) should be available at a time
t, > t; and with capacity at least 1. The time the passenger arrives at location y is
calculated using a pre-defined time-distance matrix t(x,y).

A ride resource can be produced by the first skill: Take the resource set {taxi(ams,10)}
suppose that t(adam,rdam) = 5 and let 8 = {x = ams,y = rdam,t = 10}. Then
{taxi(ams, 10) } Farive {taxi(rdam,15), ride(adam,rdam,2,10)}.

Application of a skill s: RS’ «+— (RS,C) to a set of resources can be lifted to the ap-
plication of s to an extended resource scheme (RS1,C;1). This enables us to consider
generic skill applications that are able to transform a given extended resource scheme
into another resource scheme®.

3Since a set RS of resource schemes is equivalent to the extended resource scheme (RS, {true}),
application of a skill to a set of resource schemes has to be considered as a special case.

{tl S t27C Z 1}

Definition 2.7 [skill application to extended resource schemes] Let s : RS’ + (RS,C)
be a skill and (RS1,C1) an extended resource scheme. We say that (RS},C7) can be
produced from (RS1,C1) using s, abbreviated by (RS1,C1) Fs (RS},C}) if there is a
resource-identity preserving substitution 6 w.r.t. RSURS’ such that

1. RSB CRSy;

2. C1 [=C6;

3. RS, = (RS—RSB) URS'6 and

4. C| ={ceCy|var(c) Cvar(RS))}

Remark. To see that Definition 2.4 is a special case of Definition 2.7, suppose that R ¢
R’ for askill s: RS’ +— (RS,C) and using a substitution 8. Note that a set R of resources
is equivalent to (R, {true}). We verify that (R, {true}) s (R',{true}) : firstly, RS6 C R
holds; hence 8 is ground; next, = C8 is equivalent to {true} = C6; furthermore R’ =
(R—RSB) URS'B and finally, {true} = {c € {true}|var(c) Cvar(R')} = {true}. =

Skills represent generic production processes that may be applied to different sets of
resources. Since the same skill may be used more than once, we should be able to
distinguish several uses of the same skill; therefore we introduce skill variants:

Definition 2.8 (skill variants) Two skills sq : RS] < (RS1,C1) and s, : RS, < (RS2,C2)
are said to be variants if there exist substitutions 8 and such that

1. RS18=RS), RS16 = RSy, C16 =Cy,
2. RSIZlIJ = RSI, RSzllJ = RSy, CzllJ =C;and
3. var(sg) Nvar(sz) = 0.

It is not difficult to see that whenever two skills s; and s, are variants, the substitutions
8 and g involved have to be resource-identity preserving w.r.t. RS; URS) and RS, U
RS, respectively?.

Services Given a set of resources R we may apply skills to it to produce another set
of resources R’. We want to study compositions of applications of skills that can be
used to transform a set of input resources into a set of output resources. Services are
skills organised in a partially ordered structure, indicating which skills are dependent
on others to produce certain resources.
Whenever we have a collection S of skills, by a suitable renaming of variables, we can
always assume that their associated sets of variables are disjunct.
So let S be a set of skills (including variants of the same skill). In(S) denotes the union
of the input resource schemes in(s) for every s € S and Out(S) is defined analogously.
Note that since in(s) Nout(s) = O for every s € S and for every s,s' € S, var(s) N
var(s') = 0, we have In(S) N Out(S) = 0.

41t suffices to observe that RS, 0 = RS, implies |RS;| > |RS,| and RS, = RS, implies |RS,| > |RS|.
Hence, |RS; | = |RS,| = RS, 6, implying that 6 is resource-identity preserving w.r.t. RS|. Analogously for
RS, RS, and RS,.

First we will address the concurrent application of a set S of skills to a given extended
resource scheme (RS,C).

Definition 2.9 Let (RS,C) and (RS’,C’) be extended resource schemes. We say that
(RS',C') can be obtained form (RS,C) by concurrent execution of the skills in S, de-
noted by (RS,C) s (RS',C'), iff there exists some resource-identity preserving substi-
tution B w.r.t. In(S),Out(S) and RS such that

1. In(S)6 C RS,

2. RS’ = (RS—In(S)B) UOut(S)6,
3. C = UsesCsB and

4, C'={ceC|var(c) Cvar(RS)}.

Note that since 6 is resource-identity preserving w.r.t. In(S) and Out(S) and In(S)N
Out(S) = 0, we also have In(S)0N Out(S) = 0. Hence the collection S of skills behaves
as a complex skill under concurrent applications.
A service Ss then is a poset (S, <) of skills. If for two skills s,s’ € S, we have s < &',
this means that s’ can only be executed if s has been executed before. If s and s’ are
not related by < then they can be executed simultaneously. Hence, we can define
the execution of a service on a set of resources as the concurrent execution of the
minimal elements (min(Ss)) of the skills in Ss followed by the execution of the service
Ss’ = Ss —min(Ss):
Definition 2.10 Ss produces (RS',C’) from (RS,C), abbreviated (RS,C) Fss (RS',C')
if
1. Ss=0and (RS',C’) = (RS,C) or
2. Ss # 0 and there exists an extended resource set (RS1,C;) such that
(@) (RS,C) |_min(Scs) (RSlacl)
(b) (RS]_,C]_) l_*$7min(Ss) (RSI7CI)'

Example 2.11 Consider the drive and travel skills discussed before,
let Ss = {drive < travel} and let

(RS,C) = ({taxi(x : loc,t : time), pass(y : loc,t’ : time)}, {x = y,t > 100,t' < 100})

be an extended resource scheme. Since min(Ss) = {drive} the following resource
scheme (RS1,C1), where

RS; = {taxi(u : loc,t +t(x,u) : time), ride(x : from,y : to,2 : cap), pass(y : loc,t’ : time)}
C;={x=y,t >100,t' < 100,}

can be derived from min(Ss). Hereafter, travel can be applied and we verify that the
following extended resource scheme can be obtained:

({taxi(u : loc,t 4+t(x,u) : time), pass(u : loc,t +t(x,u) : time) }, {t > 100})
Hence,
(RS,C) Fss ({taxi(u : loc,t +t(x,u) : time), pass(u : loc,t +t(x,u) : time)}, {t > 100})

Plans Given some set of input resources R and a goal scheme GS = (G, C), we would
like to have a plan P for transforming R into a set of resources R’ satisfying GS. Such
a plan would tells us exactly how the transformation process is performed. In our
framework, plans are simply ground instances of services.

Note that a service Ss, like a skill, can be applied to a given set of resources R to
produce a set of resources R’. During the application of the skills to the resources,
ground instances of these skills are obtained by resource-identity preserving ground
substitutions 6. Hence, we define a plan P for GS using Ss as follows:

Definition 2.12 Given a set of resources R, a goal scheme GS = (G,C) and a service
Ss, P = SsB is a plan for Gs given R using Ss iff there exist extended resource schemes
(RS,C) and (RS',C’) and a ground substitution 8 such that

1. (RS,C) s (RS,C);

2. RSB CR;

3. ECBand =C’6, i.e., both constraints evaluate to true under 6
4. 0 is resource-identity preserving w.r.t. RSURS’;

5. RS'0 |= GS.

Note that as a consequence, every resource scheme occurring in a plan P is ground
and therefore a resource. So both In(P) and Out(P) are sets of resources. Some of the
resources occurring in Out(P) are used to satisfy some goals, other resources are not
used so and occur as free resources or side-products.

Example 2.13 Consider again the drive and travel skills discussed before,let Ss =
{drive < travel} and let t(adam,rdam) = 40. Then P = SsB with 6 = {x = adam,y =
rdam,t = 100,t' =90} is a plan for GS = ({ pass(rdam,t”)}, {t” < 150)}) using Ss.

3 Cooperation in the resource skill framewor k

Multi agent planning At this point the reader might wonder why we used services
as an intermediate step before introducing plans. The reason is that we want to use
services to enable cooperative planning.

Consider a number of agents A1, Ao, ..., An having the sets of resources R1,Ro,...,Rn,
respectively, at their disposal. Suppose the agents have agreed upon to split up their
common goal scheme GS into n goal schemes GS;,GS,,...,GSy, such that GS =
(UGi,UGCi).

Using services Ss1,Sso,...,Ssn, the agents have constructed plans Py, P, ..., P, to re-
alise their goals schemes. For each plan Pj, it is possible to compute the costs of P;.
For example, these costs can be computed as follows:

costs(Pyy = z costs(r) + Z costs(s) — % value(g)
rein(P;) sePi geG;

Assuming that they have been able to create these plans on their own, we might con-
sider the situation that the coalition of agents tries to reduce their plan costs, while
maintaining goal realisability without having to rely on additional resources.

Assuming that costs of input resources and values of the goals are the same for every
agent involved, the only possibility to reduce the plan costs is to reduce the number of
skill applications in the plans.

We might consider the following possibilities to reduce plan costs:

1. exchanging goals
Suppose that an agent A; has a plan P; such that one of the final skill applications
in this plan realizes a collection G’ of goals. Without this skill application the
remaining part P/ of his plan is sufficient to realize the remaining set of goals. If
the other agents have free resources in the output of their plans that are able to
realize G', A; can use P/ as a cheaper plan, while the agents collectively are still
able to realize the total set GS of goals.

2. exchanging resources

More in general, each agent A; could try to find a smaller plan by (i) selecting
some occurrence of an instance of a skill s in his plan P;, (ii) computing the set
of resources that are missing to complete his plan if s would be removed from
his plan and (iii) asking the other agents for delivering the missing resources. If
A succeeds in this process, while the other agents are still able to complete their
plans, we have obtained a better plan by fusing the original plans of the agents.
Note that 2. contains 1, as a special case.

3. exchanging resources and skills

except resources, we could also exchange skills or services: suppose that agent
A; has to realise a goal scheme GS;. Now it might occur that he can produce
some intermediate set Ry of resources in a cheap way, but the remaining part of
the production process is rather costly. On the other hand, agent A; has a service
he can use very cheaply to produce a set of resources R, from R to realize GS;.
Then the agents could exchange services in order to make the total plan more
profitable. Note that is different from 2. since the service owned (known) by A;
might not be actively used by A;. Furthermore, the costs of a plan based on this
service might be different for the agents.

Fusion: an overview We have studied the second possibility for multi-agent coop-
eration, based on reducing plans by removing skills and exchanging resources ([4, 5]).
This process results in a fusion of separate plans, where some of the resources needed
by agent A; are delivered as outputs of plans of other agents.

This fusion process can be modeled as an iterated plan revision process. During a
single plan revision step, a given agent A; will try to reduce its plan P; by removing a
skill application. Removing a skill implies that

1. the resources produced by this skill have to be provided either by using other
(output) resources produced in his plan P; or by asking other agents to provide
them.

2. the input skills consumed by this skill are added to the free resources of agent
Ai.

Now A, first will try to use his own free resources in order to provide for the resources
missing; if there are still missing resources, he will ask the other agents if they can
provide free resources he can use. Note that using the service Ss; on which his plan
is based, A; does not need to rely on specific resources; instead, using Ss;, the agent
asks for resources satisfying an extended resource scheme that is computed from the
remaining plan and the underlying service. If A; succeeds, he will use a smaller plan
P/ to realise his goals, else he will keep his original plan (momentarily).

As the result of such a revision process, nothing has been changed globally, that is the
collection of agents still is able to satisfy the collection of goal schemes given the total
collection of resources; the difference is that the total cost involved may have been
reduced.

In each revision step goal-realisability is guaranteed: if a goal node g is affected, other
agents are asked either to take over g or to handover missing resources to realise g
fusion process stops if no agent is capable to remove a single skill from its plan.

This fusion process has been implemented in a fusion algorithm described elsewhere

([4, 5]).

4 Conclusions and future work

One of the unique features of multi-agent systems is that individual agents can coop-
erate in order to achieve their goals. One reason to cooperate is that agents cannot
realize their goals individually; another reason is that cooperation leads to a more effi-
cient means to realize their goals. In this paper, we concentrated on the latter.

We described a computational framework, consisting of resources and skills, to model
cooperation processes between different agents. Central in this framework is that we
model side products explicitly, so that other agents can exploit unused resources.
Another result of this framework is an algorithm that in polynomial time® fuses the
individual plans of a set of agents, such that the joint profit of the agents does not
decrease.

Future research will be focused on studying cooperation during the plan construction
process. In our framework, this means that except exchanging resources, we will also
model cooperation between agents w.r.t. the skills and services they manage. Extensive
literature about joint plan construction is available (see, e.g., [2, 3, 1, 6, 7, 8]), and we
believe this formalism helps us to model the negotiation process.

References

[1] M. d’Inverno, M. Luck, and M. Wooldridge. Cooperation structures. In Pro-
ceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
Nagoya, Japan, pages 600-605, 1997.

[2] Eithan Ephrati and Jeffrey S. Rosenschein. Multi-agent planning as the process
of merging distributed sub-plans. In Proceedings of The Twelfth International
Workshop on Distributed Artificial Intelligence, pages 115-129, May 1993.

5provided that constraints can be checked efficiently.

10

[3] D.E. Foulser, Ming Li, and Qiang Yang. Theory and algorithms for plan merging.
Artificial Intelligence, 57(2-3):143-182, 1992.

[4] H. Tonino M.M. de Weerdt, A. Bos and C. Witteveen. A plan fusion algorithm
for multi-agent systems. In CL-2000 Workshop on Computational Logic in Multi-
Agent Systems, (CLIMA-00), London, 2000.

[5] B.-J. Moree, A. Bos, H. Tonino, and C. Witteveen. Cooperation by iterated plan
revision. In Proceedings of the ICMAS 2000, 2000.

[6] J.P. Miller. The Design of Intelligent Agents: a layered approach. Springer, 1996.

[7] E. Werner. Distributed cooperation algorithms. In Y. Demazeau and J.-P. Miiller,
editors, Decentralized A.l., pages 17-31. Elsevier Science Publishers B.V., 1990.

[8] M. Wooldridge and N.R. Jennings. The cooperative problem solving process.
Journal of Logic & Computation, 9(4), 1999.

11

