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Abstract

In this thesis the theory of Markov processes and creation and
annihilation operators will be used to derive the time evolution of
a discrete reaction-diffusion system. More specifically, we make
use of transition rates to construct the generator of a process. We
then transform this generator through suitable quantum mechan-
ical operators to arrive at our result, namely that the Poisson dis-
tribution of a reaction-diffusion system stays Poisson distributed
in time with varying rate. This applies for the univariate case,
with only a simple birth and death process, as well as the multi-
variate case. Furthermore, simulations support this result while
also showing that an interacting particle system with pairwise an-
nihilation does not evolve according to the Poisson distribution.
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1 Introduction

Throughout the early twentieth century many microscopic physical phe-
nomena started to arise that could not be explained using classical physics
alone. A new theory had to be formulated, which is now better known
as quantum mechanics. An important concept in quantum mechanics is
that physical quantities such as position and momentum are represented
by observables, or operators. Any pair of observables that satisfy the
Heisenberg algebra commutation relation lead to corresponding uncer-
tainty relations.

Around the same time, in 1906, mathematician Andrey Markov published
his first paper on the topic of Markov processes, proving that the average
outcome of Markov processes would converge to fixed vector values under
certain conditions .

The purpose of this thesis is to solve problems of Markov processes via the
use of quantum mechanical knowledge, i.e., using appropriate creation
and annihilation operators to solve classical probabilistic questions.

We will start by laying the groundwork to construct the generator of some
relevant Markov processes. First, in chapter 2 we define the Markov
property and describe a process via transition rates, followed by the
Markov semigroup, which posesses some properties that will be listed.
From the semigroup we can compute the generator of a Markov process
that will be used later on. The final part of the chapter will be spent on
invariant measures.

In chapter 3 we introduce creation and annihilation operators, with the
most well known ones being the ladder operators. Subsequently, we de-
fine some operators and their intertwined relation to transform our gen-
erator. Moreover, all relevant operators satisfy the Heisenberg algebra
commutation relation.

The main derivation for the time evolution of a Markov process is de-
scribed in chapter 4. Starting with a birth and death process, we use the
Feynman-Kac formula to calculate the propagation of Poisson distribu-
tions. Furthermore, duality is introduced as a second method to calculate
this. Lastly, we expand the problem to a reaction-diffusion system and
calculate the time evolution of the distribution. The final results are
compiled in chapter 5.



2 Markov Processes

In this section we introduce some basic material for continuous-time
Markov processes on countable state spaces (1.

2.1 Markov property

Let X = {X; : t > 0} be a stochastic process taking values in a count-
able state space €2, which for our purpose we will only be considering
N=1{0,1,2,...}. A Markov process is then such that, given its current
state, the future state is independent of its past [1]. Or alternatively, the
distribution of future states is only depending on the current state and
not on the further past.

Definition 1. A process X is a Markov process if it satisfies the Markov
property

P(Xe,,, = ing1|Xey = t0, Xoy = Gty -0y Xo, = 0n) = P( X,y = 1] Xe, = in)
(1)

for all 0 S tl S tz S S tn S tn+1 and all io,il, ...,in+1 c Q.

An equivalent formulation of the Markov property is as follows.

E(f(Xt)\th, th, e th) = ]E(f<Xt)‘th) (2>

forall 0 <t; <ty <..<t,<tandforall f:Q—R|[2]
Additionally, a Markov process is time-homogeneous if the conditional
probability of equation 1 does not depend on the specific time instance

of the jump, but only on the time difference between jumps. All of the
Markov processes that will be discussed are time-homogeneous.

2.2 Transition rates

On finite or countable space continuous time Markov processes we define
a process via so called transition rates c(x,y) that satisfy

c(z,y) >0, N\, = Zc(w,y) > 0, for all x € Q.
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The description of the process with rates c(z, y) is then as follows. Start-

ing from X; = =z, the process waits for an exponentially distributed
time with parameter \,, after which it jumps to y with probability
m(x,y) = %y) Then the process repeats the same from y with in-

dependent waiting time, and so forth.

Note that > m(z,y) = 1. Furthermore, since the exponential distribu-
tion is memoryless, this process satisfies the Markov property. This is
only possible if the jump times are exponentially distributed and fails
with other waiting time distributions.

2.3 Markov semigroup

To define the Markov semigroup S;,t > 0 for finite or countable state
space continuous time Markov processes, we consider a Markov process

X = (X;:t>0)[3] [2]. We define

Sif(x) = E(f(X)|Xo = 2) = Y P(Xi=y|Xo=2)f(y), (3)

Y

for f: 2 — R. This semigroup has several properties that will be listed
below

Proposition 1. The semigroup S;,t > 0 satisfies the following proper-
ties.

Identity at time zero: Sof = f, for all f,

Right continuity: the map t — Sif is right continuous,

Semigroup property: for allt,s >0, f : Syisf = Si(Ssf) = Ss(Sef),
Positivity: f > 0 implies s, f > 0,

Normalization: S;1 =1,

Contraction: max, |S:f(x)| < max, |f(x)|.

S G Lo o~

For the Markov semigroup there exists a "generator" matrix L such that
S, = e'f where the matrix exponential is defined by the Taylor series

[e.e]

tTL
tL __ Y orn
e = Z n!L .
n=0
This generator can be computed via
L Sf-f _d
Lf = 11_1;% — = %Stf|t:0- (4)



Additionally, ¥(t,z) = S;f(z) is the unique solution to the differential

equation
oY(t,x) _

with initial condition 1y = f and where L works on the x variable. This
equation is known as the Kolmogorov backwards equation.

2.4 Examples

1 (Poisson process). One example of a continuous time Markov process
is the Poisson process.

Definition 2. A Poisson process N = (IV; : t > 0) with rate \ satisfies
the following conditions [1]:

1. NyeN

2. N() - O

3. Ny < N;if s <t

4. The number of jumps on the time interval (s,t] is independent of
jumps prior to time s.

5. There exists a rate A such that, for small positive h,

P(Nt+h =n-+ HNt = n) = \h+ O(h)
P(Niyp =n|Ny =n) =1— A+ o(h)
]:P)(Nt+h Z n -+ 2|Nt = n) = O(h/)7
where we write o(h) = {f(h) : f(h)/h — 0 as h — 0}.

To see that the process N, indeed satisfies the Markov property, we choose
0<t; <ty <..<t, <t. Using the independence of increments from
point 4 of definition 2 we get

]P)(Nt - k’|Nt1 - k17Nt2 - kQ, "'7Ntn - kn> -
]P(Nt - Ntn — k’ - kn|Nt1 — kl,th - Nt1 — ]{72 - ]{71, ceey
Ntn - Ntn—l - kn - knfl) — ]P)(Nt - Ntn - k - kn)
Similarly we have
P(N, = k|Ny, = k,) =P(N;, — Ny, =k — k)

Hence we indeed find that the Poisson process satisfies the Markov prop-
erty.



A Poisson process with rate \ has the following generator

Lfn) = SIPON = n+ 1Ny = m)(F(n+ 1)~ F))]| = A(f(n1)—F ).
- (5)

2 (Continuous time random walk). A continuous-time random walk on
a graph can be constructed as follows. Let p(x,y) denote a set of tran-
sition probabilities, i.e. p(z,y) > 0, >° p(z,y) = 1. Then the rate 1
continuous-time random walk based on p(zx,y), starting from Xy, = z,
waits an exponential time of parameter 1 and jumps with probability
p(z,y) © — y. In other words, the jumps take place on a rate 1 Poisson
process. The transition rates are ¢(x,y) = p(x,y). The number of jumps
N, is Poisson distributed with parameter 1, i.e.

Then for the continuous time random walk X = {X; : t > 0} the transi-
tion probabilities are given by

pi(w,y) = P(Xy = y|Xo =) = Y P(X, =y, N, = n| Xy = x) =

n=0
> - " —t pn t(P—1
2PN = nB(Xe = ylXo =2) = D Jpent Py = (¢ ey

Here we define the generator L = P — I which leads to

pi(w,y) = (etL)x,y' (6)

As a consequence, the generator acting on a function is given as

Lf(x) = plx,y)f(y) - f(x) (7)

yF

3 (Birth and death process). Consider a continuous time Markov process
on N moving with death rate An n — n — 1 and birth rate p n — n + 1.
In a similar way as discussed earlier in section 2.2, the process starts in
state n at time ¢ and waits an exponential time with parameter An + .
Then it jumps to n + 1 with probability pu/(An + u) or to n — 1 with
probability An/(An + p). Note that by the choice of transition rates we



have a death rate of 0 in state n = 0 , which makes sense intuitively since
we cannot have a negative number of particles.

The generator matrix is then given by
L 0

A “A—p I
L=110o 28 —2x—y

Thus we find for a birth and death process with death rate An and birth
rate p a generator L acting on a function f that

Lf(n) = An(f(n—1) = f(n)) + p(f(n+1) = f(n)). (8)

2.5 Invariant measures

The question one might ask is what happens to a process when ¢t — oc.
In other words, what shape does the invariant measure take?

We start by stating the definition of an invariant measure.

Definition 3. A measure y is invariant if
Y Sef(x)ul) =) f@)u(z) (9)

for all f: € — R and for all t > 0.

Some properties of invariant measures will be listed below.

Proposition 2. 1. p is invariant if and only if
> Lf(x)p(x) =0 (10)
forall f:Q — R.

2. If the measure u satisfies the detailed balance equation
p(n)e(n,m) = p(m)c(m,n), Vn,m (11)

with ¢(n,m) the element on the nth row and mth column of a transition
rate matriz L, then p is invariant.



Proof. 1. Assume p is invariant. Taking the time derivative evaluated at
t = 0 of equation 9 yields

Z Lf(z)u(z) = % Z Sif(@)p(x)

=0,

t=0 t=0

d
=
(12)

thus proving the implication from left to right. Now assume Equation 10
holds.

S (Sefa) = faDule) = [ LS. (@ds ua)

T T 0
0 (13)

- / S LS. f(x)u(x)ds =

which proves the reverse implication.

2. Assume p satisfies the detailed balance equation. An equivalent for-
mulation of Equation 11 is given by

p(@)e(z, y) = ) & Zu JLf(x Zu (),
for all f,g:Q — R.

To prove this equivalence we first assume the left side. Then we find

Zg )Lf(x Zg Z V)(f(y) = f@)nl)
:Zg p)e(a,y) f W) = gla)e(z,y) f(x)u(z)
= g: 9(@) f(y)ely, ©)uly) — g: 9W)f(y)ely, z)u(y)
- el 6) ~ o)
= i f(@)Lg(z)p(x),

proving the implication '=".

Now assuming the right-hand side, we choose the Kronecker delta func-
tion f(y) =9, and g(z) = 0,, where z # u.



Z p()e(z,y)dy 200 = Z p()e(z, y)0y u0s,.
zy zy

pu)eu, z) =p(z)e(z, u)

and thus proving the equivalence.

To prove invariance we take g(x) = 1, Vz € N, so we find that
> @) Lf() =Y ula) f(x) Ly(x)
=Y fW)ely, x)(g(=) — g(y))uly) =0,

which proves item (2) of the proposition. ]

Example (Birth and death process). Consider the invariant measure 7
of a birth and death process with rates \n n —-n —1 and yn —n+ 1.
Using the definition and taking f(x) =1 for all x € N, we have

Sy = . (14)

Using the detailed balance equation from Proposition 2 we get

m(n)e(n,n+1) =m(n+ 1)c(n+ 1,n)
m(n)p=m(n+1A(n+1)
m(n+1) f

m(n) Aln+1)

Substituting in the Poisson distribution 7(n) = %e* with an unknown
parameter c gives

m(n+1) cnt 1 c

w(n) (4D Zee ntl

Therefore the invariant measure 7 is Poisson distributed with parameter

—
cC= X



3 Creation and annihilation operators

Some quantities commonly used in quantum mechanics are the creation
and annihilation operators. A well-known example are the raising and
lowering operators in the context of the quantum harmonic oscillator
[4]. However, these operators will also be useful in connecting reaction-
diffusion systems with their corresponding Markov processes.

Creation and annihilation operators function in such away that particles
are added or removed from a many-body system. In fact, we are able to
rewrite the operator of a many-body system in terms of these operators.
In this section we will cover these operators to get a better understanding
of their usefulness.

3.1 Ladder operators

To see the usefulness of creation and annihilation operators, consider the
time-independent Schrodinger equation for harmonic oscillators

H|V) = E|V) (15)
where F is the energy eigenvalue and U denotes the eigenstate of the

system. The Hamiltonian is given by
~2

H= . + 2mw?a?
2m
where p = —ih% is the momentum operator and 2 is the position opera-

tor. Note that £ and p do not commute. This can be seen by calculating
the commutator acting on a test function:

2,51/ (2) = (29— p2) (x) = 2( i) o — (~ih) - (arf) =
(- T gy = inf),

and after dropping the test function we find [z, p| = ih.

We can define the raising and lowering operators, a, and a_ respectively,
in terms of Z and p

1 SN
a; = (mwi — ip)
2hmw (16)
1
= mwax + 1p).
2hmw( P)



These ladder operators will be a useful tool in finding the energy eigen-
values of the harmonic oscillator. It follows that

1 A N
a_a, = %(mwx +ip)(mwi — ip) =
L 2 2.2 | - Y 1 1
2hmw(p + m Wz + imw(Ip — pI)) = aH + 3
which yields the Hamiltonian
b= hwla_as — %) (17)

Now, using equation 17 and the following relation for the ladder operators
acting on the state |n)

ai|n)y=vn+1n+1)

18
a_ ) = vialn - 1), -
we can find the energy eigenvalues E,, for state |n):
N 1 1
Eqln) = Hn) = hw(a-ar = 5)|n) = hw(n = 5)n). (19)

3.2 Heisenberg algebra commutation relations

The Heisenberg algebra commutation relation can be formulated into the
following definition for any pair of quantities that satisfies it [5].

Definition 4. Any two quantities A and B with corresponding operators
A and B satisfy the Heisenberg algebra commutation relation if

(A, B] = 1. (20)

Moreover, A and B also satisfy the conjugate Heisenberg algebra com-
mutation relation

[A*, B*] = —1. (21)

Example. Earlier we have shown that the commutator of z and p is
given by [Z, p| = ih. This is a fundamental relation in quantum mechanics
called the canonical commutation relation and is derived from

d
—|=-1 22
7, 2] (22
Equation 22 can be easily shown by
d d d
o, lf = a0 f = (2f) = = F.

10



3.3 A second representation

We return to the Markov generator for the birth and death process with
death rate An and spontaneous creation rate p as described in Equation
8. The goal is to rewrite this equation such that the test function can be
dropped. To do this, we define the annihilation operator a and creation
operator a' in a similar fashion to the relation from Equation 18.

Definition 5. Consider the operators a and af. These operators are
defined for functions f : N — R via

af(n) =nf(n—1)
a'f(n) = f(n+1)

These operators are used to increase or decrease the number of parti-
cles from a many-body system as indicated by definition 5. Operator a
removes a particle from the system and af add a particle.

Proposition 3. 1. a and a' satisfy the Heisenberg algebra commutation
relation.

2. The following relation holds
aa' f(n) = nf(n). (23)

Proof. 1. Using a test function gives

[a,a']f(n) = (aa' —dla) f(n) = nf(n) — (n+1)f(n) = —f(n).

Thus we find that the commutator equals the identity matrix [a, a'] = —1,
satisfying the commutation relation.
2. From Definition 5 it follows that

aa' f(n) = a(a'f(n)) = na'f(n —1) = nf(n).
[l

As a consequence of Definition 5 and Proposition 3 we can rewrite the
generator from equation 8 as

Lf(n) = (Ma — aa') + p(a’ = 1)) f(n)
and after dropping the test function we are left with

L= (Ma— aa") + p(a’ — 1)), (24)

11



3.4 Intertwining

To study properties of the process with generator L, we will focus on
another representation of the Heisenberg algebra. These generators are
related via an intertwining of Markov processes described in the following
proposition.

Proposition 4. a, A and a', A" are intertwined via the generating func-
tion (Gf)(z) = >y f(n)=; defined for f: N — R. In other words,

(Gaf)(z) = AGf)(2)
)

(Ga'f)(2) = AUGS)(2)
with Af(z) = zf(z) and ATf(2) = Lf(z) for f : R = R.

~—

Proof. From the definition it follows that

(Gaf)z) =S nfn -5 = % _

G 1)) =3 fn+ )5 =3 flm) o =
= d 2" d & 2"
> )EEZEZN )= (G)(2)
! [
(Ga'£)(2) = 3 nfn) 5 = dZZf n) = AAGH().

Remarks. 1. The commutator of A and A" leads to [A, AT] = —
2. Intertwining has the property that it preserves sums and products:

Gla+a') =Ga+Ga' = (A+ ANG
G(aa') = (Ga)a' = A(Ga') = AA'G

12



As a consequence to Proposition 4 we can find a different representation
of the generator in Equation 24, namely

G(Lf)(2) = G(Ma — aa’) + p(a’ — 1)) f(2)
= (A(A = AAY) + p(AT = )G f(2)

= NG ()~ Ao G (=) + e GF(2) — uGF (2)
= LGf(2)

with £ = Az — p)¢ + (n — Az) L.

13



4 Discrete reaction-diffusion systems

As one might expect, discrete reaction-diffusion systems are stochastic
processes which cannot be described by classical mechanics. Instead,
they require quantum mechanics to analyse correctly.

In this context there are a few different ways to approach the problem.
Notable ones are the Langevin equation, which deals with the degrees of
freedom or observables, and the Fokker-Planck equation, describing the
probability density.

Our approach concerns writing down a Markov generator of the stochastic
processes first. The theory of operators and intertwining introduced in
Section 3 allows us to transform this equation and finally the Feynman-
Kac formula can be applied from which we can derive the time evolution
of the generator.

4.1 Birth and death process

Consider a system in which particles can appear and disappear with
certain rates, but where diffusion does not play a role yet. The time evo-
lution of the Markov process is described by the generator as in Section

2.3 a0
L= Ly (25)

where L is the same as in Equation 8. We have seen in Section 2.3
that the unique solution is given by the semigroup S;f = e!l'f with
f : N — R. The stochastic nature of the process prevents us from
accurately predicting what the exact analytical solution is. Instead, our
main focus of interest will be seeing what happens to this solution "on
average" when we let it propagate in time.

After writing the generating function of the solution we can use Section
4 to show that

G(Sif) = G(e'" f) = (G f) = St)(G ). (26)
So we are left with computing

ot — O A L] _ V() +b(2) L] (27)

14



We will see that Poisson measures are mapped to Poisson measures un-
der the birth and death process. A helpful tool in proving this is the
Feynman-Kac formula [6].

4.1.1 The Feynman-Kac formula

Consider a generator of the form Ly = b(z)%. Let Z° be the solution
of % = b(z) with initial condition Z5 = ¢. We will show that ¢(Z¢) is
mdeed the solution to dw = L.

Starting from the left hand side it follows that

d dze
S5 = ZH) =z ).
The right hand side gives
L) = ) () =
¢ ¢
b (26) o DU (26) ) = P EE).

To see that (%) holds we want to prove the next equality

dz; _ b(Z)
Az b(z) (28)

Put YC . Then it holds that

d ddz: ddz¢  d

—YS = - — (28 =V (ZYE.

dt’t T dt dz  dz dt dz(t) (Z0)Y:
Now if we set YtC = bl()(Z;))

equation. Indeed we have

it can be verified that this also satisfies the

b(Z;)
b(2)

d YC _ b/(ZtC)d_ZtC

Ly —y(7¢
dt " b(z) dt viZ)

=V (Z;)Y,.

Thus we have shown that the solution of % = L1 is given by e“4(z) =

1/)(Zf ). More generally, we have the the following proposition where
now the generator is given by Ly = b(z)‘;—f + V(2)y with V(z) the
multiplication operator.

15



Proposition 5. The solution of the equation dw = L is given by the
Feynman-Kac formula

D(t,€) = ep(C) = elo VFs (76 (29)

where the generator is of the form L = b(z)L + V(z) and Z¢ is the
solution to % = b(z) with initial condition Z5 = .

Proof. Substitution of Equation 29 yields
d d . tvizSas
ZUQ] =S VI (Z)]

t=0 t=0

= [V(Z5)eli V#0(25) + b(g)el V)

V(OO +b(0) 2

0 = £v(0).

Solving % = 4 — Az with initial condition Zg = ( one finds
— Ce—/\t 4 ﬂ(l o e—)\t)

A

Plugging this result into Equation 29 we then find

etﬁw(c) _ ef(f ,uf)\(Ce"\SJr%(lfe—)‘s))dsw(Cef)\t + %(1 . e*/\t))

Solving the integral term gives

t t
/ AMCe™ + %(1 —e™) — pds = / A e™ — pe ds =
0 0

(A —p)(I—e™) [ ot
\ = (=) —e).

Finally, Equation 26 can be rewritten explicitly as

CEGH(Q) = etem RO G p(e L K- e ). (30)

16



4.1.2 Propagation of Poisson

In section 2.4 we have shown before that the stationary distribution of
a birth and death process is Poisson distributed, however Equation 30
shows us more than that. The result of this is formulated into the fol-
lowing theorem.

Theorem 1. If we start the birth and death process from a distribution
vy ~ Poisson((), the process at time t will become vy ~ Poisson(Zf),
i.e. the Poisson distribution is conserved in time.

Proof. If we start with vy ~ Poisson(()

[e.e]

Blf] = Y eSS ) = G(5.) = e 4SG()

n=0

e GH(() = e TRITTIG (e + B(1— e,

If we begin with a distribution vy ~ Poisson((), then at time ¢ the
process has a distribution v, which is Poisson with rate Zf = (e M+

L1 —e™). [

If we now let ¢ — oo, we can find that the process has a stationary dis-
tribution that is Poisson distributed with rate £. This coincides exactly
with the result in Section 2.4.

4.1.3 Simulations

We want to compare the theoretic results with simulated data by pro-
gramming a Python code according to the birth and death process. To
do this, we apply the Euler approximation method [7]. Instead of simu-
lating a Markov process in the way described in Section 2.2, which takes
considerable computational time, we partition time into fixed intervals of
length 7. This method approximates our process via population changes
on T-intervals that are determined by Poisson random variables with pa-
rameters depending on population sizes at the beginning of the intervals.

Figure 1 shows the distribution of a birth and death process with 1000
realizations. One can see that this simulation agrees with Theorem 1

17



in the sense that the realizations indeed follow the distribution v, ~
Poisson(Z¢) in time.

Figure 2 shows 10 and 100 realizations respectively of a birth and death
process starting from a Poisson distribution with parameter 100 and the
expected number of particles at time ¢t. This follows from a distribution
v; ~ Poisson(Z}%). Furthermore, we find that they converge to 10
as time goes to infinity, which corresponds to the expectation of the
stationary distribution.

0.040{ — Poisson(Z%(0)) —— Poisson(z%(125))
B 1000 realizations 0.06 1 BN 1000 realizations
0.035 :
0.030 1 0.054
0.025 0.044
0.020 4
0.03 4
0.015 1
0.02 4
0.010
0.005 4 001
0.000 T T T T 0.00 T T T T T T
0 20 0 60 80 100 120 0 20 0 60 80 100 120
Number of particles Number of particles
0.12
—— Poisson(Z(250)) —— Poisson(Z4375))
0.10 4 EEE 1000 realizations BEE 1000 realizations
0.10
0.08
0.08
0.06
0.06
0.04 0.044
0.024 0.02
0.00 - T T T T T 0.00 - T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Number of particles Number of particles

Figure 1: 1000 realizations of a birth and death process. Each point starts
with an initial distribution sampled from Poisson(100). The number of
particles is plotted at four different times 0, 125, 250 and 375 seconds.
The birth and death rates are given by ¢ = 0.1 and A = 0.01.

18



—— Expected values 100 4 —— Expected values
—— Average values —— Average values

80

60

Number of particles
Number of particles

40 q

(a) (b)

Figure 2: The average of 10 realizations (2a) and 100 realizations (2b)
of the birth and death process are plotted with birth rate y = 0.1, death
rate A = 0.01 and initial condition { = 100. The expected value is given
by rate Zy = Ce ™ + £(1 — e~ M).

4.1.4 Duality

Here we give yet another method to prove propagation of Poisson, namely
duality. Duality has shown to be very powerful in describing interact-
ing particle systems. Often times duality allows to relate a complicated
process to a (usually) simpler process.

Theorem 2. Take the duality function D(n,z) = z". Then we have

aD(n,z) = AD(n, z)

a'D(n,z) = ATD(n, 2) (1)

with Af(z) = L f(2) and A1 f(z) = zf(2). In other words, a Ly A as well

z

as at 2 AT are dual to each other with duality function D(n,z) = 2".

Proof. Clearly a and a' work on the left variable, while A and A" work
on the right variable. It follows that

d

AD(n,z) = d—z” =nz""' = az" = aD(n, 2)
z

ATD(n,2) = 2% 2" = 2" = a'2" = a'D(n, 2)

which is indeed Equation 31. O]
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Remarks. 1. The commutator of A and A' is given by [A4, AT] = I. Note
that the sign has changed compared to 4 and A'.
2. As a consequence of Theorem 2

aal B ATA. (32)
and p p
D A~
L%L—A(E—za)—u(z’—l). (33)

3. To see why the the duality function is constructed in the way that it
is, we first have to remark that

AD(0,z) = 0,

because D(0, z) already represents the lowest possible number of parti-
cles. This then implies D(0,z) = 1. Moreover, the duality function for
arbitrary n can now be written as

D(n, z) = (ANH"D(0, z) = 2"

As a consequence of Equation 33

el By otl, (34)

so we have to compute etl.

e (Q) = el rH e p(Zf) (35)

with Z¢ the solution of % — A\ — Az and initial condition Z$ = ¢. This
results in

Z8 = (C—1e™M+1 (36)

We again solve the integral term to arrive at

el (o) = ST (28, (37)

We then show that the duality between S(t) and e'” again give us that

Poisson goes to Poisson. Denoting e“D(n, z), we can write the time
dependent generating function

m(c—1)

E,(z"®) = "5 (¢ = 1)e ™ + 1), (38)
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n(z—1)

Letting ¢t — oo, we find the stationary Poisson distribution e . Fur-
thermore, Poisson averaging over n gives us

>l E, Ze‘”p HEA-e ) (¢ = 1) 4 1) =

n

oM (1=e72) p((C=De ™ 41) = _ L(C—1)((p—K)e N +4)

This is exactly the Poisson generating function e*?*~*t with rate p, =
(p—%)e ™ + £ We can see that this result is indeed consistent with
Theorem 4.1.2.

4.2 A reaction-diffusion system

Now that it is clear what happens with a process when only particles
appearing and dying off is considered, we consider a graph G = (V, E)
with a set of vertices V' where birth and death occurs connected by a set
of edges F. Additionally, particles can jump from vertex to vertex, i.e.
diffusion is also considered [8].

The goal is again to prove that the Poisson distribution is preserved in
time, but with a different generator than before. We will deal with each
process separately first.

In Section 2.4 we considered random walk with a single particle. This can
be easily extended to a multi particle case, because each particle moves
independently of the others. On V' we consider transition rate p(i,j) > 0
for 7,7 € V. We only consider an irreducible random walk, i.e.

Vi,j € V,3n: p™(i,j) > 0. (39)

Then we have an independent random walk process that moves according
to p(7,7), so we write the generator

Lyf(n) =Y pli, )l f (n—=0i+6;) = f ()] +n;[f (n—=8;+6:)— f (n)]]. (40)

7]

Here §; represents a single particle at vertex ¢ and n = (1;);ey denotes
the number of particles at each vertex .

At each vertex particles can appear and disappear independently, so the
birth and death process with rates p; > 0 and \; > 0, for ¢ € V has
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generator

Lyf(n) = Z Nl f(n = 8:) — f()] + il f (n +6:) — f(n)]. (41)

Equations 40 and 41 are also independent, so the total generator is writ-
ten as

Lf(n) = Lif(n) + Laf (n) =
> ol Dl (n = 6+ 6;) — F(m)] + mslf (0 — 85+ 6:) — fF()]]
b (42)
+ Z )\iﬁi[f(ﬁ - 5z‘) - f(U)] + Mz‘[f(ﬁ + 52') - f(ﬁ)]

Similar to the simple birth and death process, we want to rewrite this
generator in terms of creation and annihilation operators.

Definition 6. We define the operators a; and aj for f: N = R as
follows

aif(n) =nif(n—6;)

alf(n) = f(n+6),

for all © € V. In other words, the annihilation operator a; removes a
particle at vertex ¢ while the creation operator a! adds one.

i

(43)

Remarks. 1. As a consequence

ailal f(n)] = nilal f(n — 6,)] = nif (n), for all i € V. (44)

2. It is important to note that operators acting on different vertices
commute. Thus, for all ¢ # j

la;, all f(n) = (aia} — ala;) f(n) = 0. (45)
On the other hand, operators acting on the same vertex do not commute.
lai,af] f(n) = (aial — ala;) f(n) = —f (). (46)

Assuming symmetry, i.e. p(i,7) = p(j,7) for all 7,5 € V, we can rewrite
Equation 42 as

Lf(ﬁ) - ZP(’L,j)(aZ — aj)(a; — a;r)f<n)_|_
! (47)
Z Ni(a; — azal) f(n) + pa(al = 1) f(n).

We then give an intertwined generator via a new generating function
defined for f : NV — R. Unlike the one dimensional case we need to
introduce new variables.
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Proposition 6. a;, Ay = z; and a AT % are intertwined via the

generating function (Gf)(z) =>_, f(n )f;,] foralli € V and for f : NV —
R. We denote z = (2;)icv, 2" = ey 2! and n! = M;cyn;!.

Proof. The proof is similar to the proof of Proposition 4. m

Intertwining now gives the following relation

gL = gszy a; — a;)( a—a +Z)\ N+ pial — 1)
=<Zp<z',j><A>— —A) +ZA A AL + (Al = 1))G
_co

(48)

So we find the generator

o o o 9, 0
L _Zp(z,j)(zi - Zj)(a_zj - 8zi) + ;)\i(zi - 218—22) + /M(a—zz —1)

(49)

where the multiplication operator is given by

V(z) = (Aizi — ). (50)

7

Remarks. 1. The generator £ = 3, (2 )— corresponds to the process

7y = s(2) (51)

with initial distribution ¢ = ((;)ev -

2. As a consequence of Equation 49 we have

eEF(Q) = VD F(Q) = eh VEDE £(76(1)) (52)
with Z¢(t) = (Z¢(t))sev the solution of Equation 51.
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4.2.1 Propagation of Poisson

Starting from a distribution v, ~ Poisson((;) ® Poisson((3) ® - --, we
find for f : NV = R

S m (S0 f)(m) =630 S s(h)

=e"*G(S(t)f)(C)
—e~Sels VZENdsG (76 (1))
——Cols V(Z(s))ds i Ze()"

n=0

t o0
—eSelo V(Z5())ds ,24(1) Z Vze(r) (f)

n=0

(53)
f(n)

n!

Choosing f = 1, we find for the exponential term

e~Celo V(Z8(9)ds ,Z6(8) _

and thus the result becomes

Y wm)SO) ) =Y vz (f). (54)

n=0

So once again, just like the simple birth and death process, we see in
Equation 54 that the Poisson distribution is preserved, despite diffusion
being added to the mix. Figure 3 supports this result in the case of a
two-point system. At time ¢ the fit is given by Poisson(ZtC )

However, propagation of Poisson distribution is not always the case, as
shown in Figure 4. The death rate is now according to A\;n;(n; — 1)
n; — n; — 2 for i € {1,2}. In other words, the particles are no longer
independent since they annihilate in pairs. This results in a collapse of
the Poisson distribution.
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0.06
—— Poisson(Z%(0)) —— Poissonfit
BN 1000 realizations EEE 1000 realizations
0.025
0.020
0.015
0,010
0.005
0.000
0 50 100 150 200 250 40 60
Total number of particles Total number of particles
0.07 - 0.06 R
—— Poissonfit —— Poissonfit
BEE 1000 realizations BN 1000 realizations

40 60 40 60
Total number of particles Total number of particles

Figure 3: 1000 realizations of a reaction-diffusion system with two points.
Each point starts with an initial distribution sampled from Poisson(100).
The total number of particles of both points combined is plotted at four
different times, namely 0, 125, 250 and 375 seconds. The rates are given
by p1 = pe = 1, A1 = 0.01, A2 = 0.05,p(1,2) = 0.1 and p(2,1) = 0.5.
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0.030
—— Poisson(Z%(0)) —— Poissonfit
BN 1000 realizations 0.14 EEE 1000 realizations
0.025
0.020
0.015
0.010
0.005
0.000
0 50 100 150 200 250 0 10 20 30 40 50
Total number of particles Total number of particles
—— Poissonfit —— Poissonfit
0.12 - 0.14
B 1000 realizations BN 1000 realizations
0.12
0.10
0.08
0.06
0.04 1

20 30 40 50

20 30
Total number of particles Total number of particles

Figure 4: 1000 realizations of a reaction-diffusion system with two
points, this time with pairwise annihilation according to rate \;n;(n; —1)
n; — n; — 2 for i € {1,2}. Each point starts with an initial distribu-
tion sampled from Poisson(100). The total number of particles of both
points combined is plotted at times 0, 125, 250 and 375 seconds. The
rates are given by pu; = ps = 1, = 0.01, Ay = 0.05,p(1,2) = 0.1 and
p(2,1) = 0.5.
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5 Conclusion

After rewriting the generator of certain Markov processes through a se-
ries of creation and annihilation operators and intertwined processes we
were able to calculate the time evolution of the corresponding distribu-
tions. All relevant operators satisfy the Heisenberg algebra commutation
relation.

5.1 Birth and death process

The birth and death was shown to move according to the Poisson distri-
bution in time. Moreover, the Poisson rate Zf was calculated explicitly
via the Feynman-Kac formula in Section 4.1.2. Starting from a Poisson
distribution with rate {, the rate at time ¢ becomes

78 = ce ™ ¢ %(1 _ e (55)

with p and A the birth and death rates respectively. As time increases the
distribution converges to an invariant measure m ~ Poisson(%), which
matches the result obtained in Section 2.5.

Duality was provided as an alternative method to prove propagation of
Poisson. Poisson averaging the time dependent generating function

En (") = 507 (¢ = e 4 1) (56)

resulted in showing the Poisson generating function e$”*~** with rate p;, =
(0 — By + &

5.2 A reaction-diffusion system

Expanding the Markov process to a graph and and adding in diffusive
motion did not affect the Poisson distribution. In Section 4.2.1 it was
shown that the process remained Poisson distributed in time with the
final result being
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ve(n)(S(0)f)(n) = vzeq. (57)

Independence of the particles is necessary to retain Poisson, which is
further supported by the simulations. The previously treated birth and
death process and reaction-diffusion process have been fitted with Poisson
probability mass functions in Figure 2 and Figure 3 respectively.

The same was done in Figure 4 with a process involving pairwise anni-
hilation with rate An(n — 1) n — n — 2. This simulation showed that
a non-independent process does not necessarily evolve according to the
Poisson distribution. T
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