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ABSTRACT
The Gamma constant-stress accelerated degradation model is a natural model for monotonous degradation processes. However,
unit heterogeneity often exists in practice, necessitating a more realistic model. This study develops a Gamma process with
random effects to accurately capture accelerated degradation data for reliability analysis, encompassing both point and interval
estimation. First, the Expectation-Maximization (EM) algorithm is developed to obtain point estimates of the proposed model.
Since these estimates are sensitive to initial values, potentially impacting the outcomes, an improved EM algorithm is proposed,
which iteratively refines the estimation quality by executing two differentM-steps, thereby enhancing overall estimation accuracy.
Secondly, given the complexity of the model and the constraint of small sample sizes and limited stress levels, a three-step interval
estimation method is devised. This method segregates the parameters into three distinct parts and addresses them individually
using the generalized pivotal quantity method, which simplifies the parameter interval estimation process and enhances the
estimation accuracy. Finally, simulation studies and a real example of O-rings are presented to demonstrate the effectiveness
of the proposed method.

1 Introduction

For many highly reliable products, conducting degradation tests
under normal operating conditions requires a significant amount
of time to gather sufficient degradation data for reliability analysis
[1]. An effective approach for obtaining enough degradation
data within a reasonable time duration is to conduct accelerated
degradation tests (ADTs) at higher stress levels [2]. ADT can be
categorized into various types depending on the application of
different stress loadings [3]. When conducting reliability analysis
from the accelerated degradation data, the primary focus is on
both point estimation and interval estimation of accelerated
degradation model parameters.

The stochastic process model can effectively capture random
fluctuations in the degradation process [4], numerous studies
have employed stochastic processes (i.e.,Wiener process, Gamma
process, and inverse Gaussian process) to characterize the degra-
dation process [5]. In most cases, the degradation path of product
performance characteristics is monotonic, and the Gamma pro-
cess is an important model for describing this degradation
phenomenon. Park and Padgett [6] investigated inferential pro-
cedures for accelerated degradation models utilizing geometric
Brownianmotion andGamma processes. Pulcini [7] introduced a
non-stationary Gamma process incorporating a power-law shape
function to model the accumulation of mileage processes. In the
field of reliability demonstration, based on the Gamma process,
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Zhang et al. [8] discussed the reliability demonstration byADT for
high-reliability products, and Zheng et al. [9] proposed an optimal
design method for qualification sampling plan and acceptance
sampling plan considering the unit heterogeneity.

In real-world scenarios, there are always uncertainties surround-
ing factors like environmental conditions, material properties,
and usage patterns, among others. Effectively accounting for
these uncertainties is crucial for ensuring the credibility of
reliability analysis based on degradation laws [10]. There are
various random effects models based on the Gamma process.
Lawless and Crowder [11] developed a convenient Gamma pro-
cess model with covariates and random effects for constant stress
accelerated degradation test (CSADT). In this model, the rate
parameter is treated as a function of the accelerated stress, while
the scale parameter follows a Gamma distribution. Luis Alberto
Rodríguez-Picón et al. [12] proposed two modifications of the
parameters’ structure of the Gamma process and derived two
Gamma degradation models with random effects, respectively.
One modification implies that the random effects only affect
the volatility, and the other implies that the random effects
only affect the rate. Wang et al. [13] investigated the Gamma
degradation model with random effects by assuming the scale
parameter follows a Gamma distribution. Duan and Wang [2]
gave the theoretical plan of the CSADT design problem based on
a Gamma process with random effects, where the relationship
between the scale parameter 𝛽𝑘 and stress level 𝜁𝑘 is expressed as
𝛽𝑘 = 𝛽0 exp(𝑏𝜁𝑘), and the scale parameter under constant stress
levels, 𝛽0, follows a Gamma distribution.

In many cases, particularly whenmodels involve latent variables,
it is common to use the maximum likelihood method (MLE) and
Expectation-Maximization (EM) algorithm for parameter estima-
tion [14]. These methods typically rely on likelihood functions
to estimate parameters by maximizing them [15]. For complex
models with latent variables, the EM algorithm is a widely used
and effective approach [16]. It iteratively computes maximum
likelihood estimates of parameters even in the presence of
latent variables. EM is especially suited for exponential family
models, as their likelihood functions are often concise, making
EM implementation more convenient [17]. Duan and Wang [18]
studied the stepped-stress test design problem based on the
Gamma model with random effects, and used the EM algorithm
to estimate the unknown parameters in the model. However, for
the EM algorithm, the choice of initial values often affects the
convergence and quality of estimation results [19]. The greater
the number of initial values that need to be given, the greater the
impact on the estimation results of parameters.

Regarding the interval estimation of model parameters, numer-
ous methods have been developed. For example, Wang [20]
obtained confidence intervals (CIs) using the asymptotic normal
likelihood methods. Lawless and Crowder employed Bootstrap
method to derive CIs for the model parameters. Ling et al. [21]
established approximate CIs for the model parameters based on
the observed Fisher information matrix. Wang et al. [13] also
extended the inference procedures from the degradation case to
the accelerated degradation case through the normal distribution
approximation. Zhao et al. [22] derived CIs based on large-sample
approximations for a stepwise Wiener degradation process with
covariates. However, their coverage probabilities often do not

meet practical requirements, especially in cases of small sample
sizes and measurement numbers. In addition, the constant stress
ADTs are often conducted with only 3 or 4 stress levels, and the
limited number of stress levels makes it challenging to ensure the
estimation accuracy of the accelerated parameters.

The challenge of small sample sizes and the need for accurate
inference have prompted researchers to develop more effective
interval estimation methods. In this case, the generalized pivotal
quantity (GPQ) procedure can be employed to establish CIs
for its independence from large sample sizes [13]. In addition,
once the GPQs of model parameters are obtained, the invariance
property of the GPQ procedure (similar to MLE) allows for the
GPQs derivation for reliability indexes through a simple plug-
in [23]. Qin et al. [24] applied the GPQ procedure to obtain
the generalized prediction interval for the remaining useful life
(RUL) of a product under Weibull constant stress accelerated
life test with Type II censoring. Jiang et al. [25] proposed an
interval estimation method for the inverse Gaussian process with
the GPQ procedure. Chen and Ye [26] used the GPQ method to
derive the interval estimation for the Gamma process. Chen et al.
[27] also developed a comprehensive R package for the Gamma
distribution, facilitating the estimation of model parameters
using the GPQ method. Zheng et al. [28] proposed a novel
two-step interval estimation method for the inverse Gaussian
accelerated degradation model with unit heterogeneity based on
the GPQ procedure, whose good performances are assessed by
Monte Carlo simulation in terms of the coverage percentage and
average interval length.

Consequently, this study proposes a parameter estimation
method for accelerated degradation data based on the Gamma
CSADT model with random effects, including the point and
interval estimation. The basic principles of the proposed method
are presented in Figure 1. Given the practical occurrence of
unit heterogeneity, we employ a Gamma CSADT model with
random effects to capture the complexity of accelerated degra-
dation data. Initially, given the complexity of the model and its
involvement of latent variables, as well as the susceptibility of
the EM algorithm to initial values, an improved EM algorithm is
proposed by executing twodifferentM-steps to reduce the effect of
initial values. Moreover, considering the imperative for accurate
inference and the constraints imposed by small sample sizes and
limited stress levels, we propose a three-step interval estimation
method. This method divides the parameters into three distinct
parts and addresses them separately using the GPQ method. The
main contributions of this work are as follows.

1. Considering the unit heterogeneity, a more realistic model
based on the nonlinear accelerated model and Gamma
process is developed to depict the accelerated degradation
data for reliability analysis.

2. Based on the proposed model, an improved EM algorithm
is presented by executing two different M-steps to reduce
the effect of initial values, improving parameter estimation
accuracy.

3. A novel three-step interval estimation method is proposed,
wherein the proposed model parameters are divided into
three distinct parts and separately addressed using the GPQ
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FIGURE 1 The basic principles for the interval estimation of the Gamma CSADT model with random effects.

method, which simplifies the parameter interval estimation
process and enhances the estimation accuracy.

The rest of this study is organized as follows. Section 2 provides an
in-depth exploration of the Gamma CSADT model with random
effects. Section 3 presents an improved EM algorithm to enhance
the accuracy of point estimations for model parameters proposed
in this study. In Section 4, a three-step interval estimation
method is proposed to derive the generalized confidence interval
(GCI) of model parameters and predictive reliability indexes.
Section 5 is dedicated to the execution of simulations designed
to assess the performance of the proposed method. In Section 6, a
practical application involving the sealing of O-rings is presented
to demonstrate the real-world implementation of the proposed
method. Finally, Section 7 provides a comprehensive conclusion
to this work.

2 The Gamma CSADTModel

Suppose that the CSADT is conducted using 𝐾 accelerated stress
levels 𝑠1 < 𝑠2 < ⋯ < 𝑠𝐾 and 𝑠0 be the normal operating stress
level. Additionally, 𝑛𝑘 products are tested under the stress level 𝑠𝑘
with 𝑚 measurements , 𝑘 = 1, 2, … , 𝐾. The degradation data of 𝑖
th product at the time 𝑡𝑖,𝑗,𝑘 is denoted as𝑋𝑖,𝑗,𝑘 , and the test interval
Δ 𝑡𝑖,𝑗,𝑘 = 𝑡𝑖,𝑗+1,𝑘 − 𝑡𝑖,𝑗,𝑘 is denoted as ℎ𝑖,𝑘 , where 𝑖 = 1, 2, … , 𝑛𝑘, 𝑗 =
1, 2, … ,𝑚, 𝑘 = 1, 2, … , 𝐾.

Let {𝑋𝑡, 𝑡 ≥ 0} denote the degradation process of the product,
which is assumed to follow a Gamma process [2]. Specifi-
cally, 𝑋𝑡 has statistically independent increments and follows
a Gamma distribution, 𝑋𝑡 ∼ 𝐺𝑎(𝜇, 𝜂𝑡), 𝑡 > 0, where 𝐺𝑎(𝜇, 𝜂𝑡) is

the Gamma distribution with the shape parameter 𝜂𝑡 > 0 and the
rate parameter 𝜇 > 0.

According to the relevant research [2], the GammaCSADTmodel
can be described as 𝑋𝑡 ∼ 𝐺𝑎(𝜇, 𝜂𝑡) with a nonlinear function,
that is, 𝜇 = 𝛽 exp(𝑏𝜁), and 𝜁 presents the standardization of stress
levels [2]. Additionally, the random effect in the Gamma process
is incorporated by letting the parameter 𝛽 follows a Gamma
distribution with parameter 𝛿 and 𝛾, that is, 𝛽 ∼ 𝐺𝑎(𝛾, 𝛿), 𝛿 >

0, 𝛾 > 0. In summary, the accelerated degradation model can be
expressed as

𝑋𝑡 ∼ 𝐺𝑎 (𝜇, 𝜂𝑡) , 𝜇 = 𝛽 exp (𝑏𝜁) , 𝛽 ∼ 𝐺𝑎 (𝛾, 𝛿) . (1)

Denoting𝑋𝑡 = 𝑋(𝑡), and the PDF 𝑓(𝑋𝑡) can be written as follows,

𝑓(𝑋𝑡) = ∫
+∞

0

𝑓 (𝑋𝑡|𝛽) × 𝑓 (𝛽) 𝑑𝛽
=

𝑋𝑡
𝜂𝑡−1

𝛾𝛿[exp (𝑏𝜁)]
𝜂𝑡
Γ (𝛿 + 𝜂𝑡)

Γ (𝜂𝑡) Γ (𝛿) [𝛾 + 𝑋𝑡 exp (𝑏𝜁)]
𝛿+𝜂𝑡 , (2)

where 𝑓 (𝑋𝑡|𝛽) = 𝑋𝑡
𝜂𝑡−1[𝛽 exp(𝑏𝜁)]𝜂𝑡𝑒−𝑋𝑡𝛽 exp(𝑏𝜁)

Γ(𝜂𝑡)
, 𝑓 (𝛽) = 𝛽𝛿−1𝛾𝛿𝑒−𝛾𝛽

Γ(𝛿)
, and

Γ (𝑧) = ∫ +∞
0

𝑥𝑧−1𝑒−𝑥𝑑𝑥 is the Gamma function. Note that 𝑋𝑡|𝛽 ∼
𝐺𝑎(𝛽 exp(𝑏𝜁), 𝜂𝑡), and 𝛿 exp(𝑏𝜁)𝑋𝑡

𝛾𝜂𝑡
follows F-distribution with 2𝜂𝑡

and 2𝛿 degrees of freedom, therefore, the CDF of 𝑋𝑡 can be
expressed as

𝐹 (𝑋𝑡) = 𝑃 (𝑋𝑡 ≤ 𝑥) = 𝑃

(
𝛿 exp (𝑏𝜁)𝑋𝑡

𝛾𝜂𝑡
≤ 𝛿 exp (𝑏𝜁) 𝑥

𝛾𝜂𝑡

)
= F2𝜂𝑡,2𝛿

(
𝛿𝑥 exp (𝑏𝜁)

𝛾𝜂𝑡

)
. (3)
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The useful life 𝑇 = inf (𝑡|𝑋(𝑡) ≥ 𝐷) be the first passage time of
the degradation path to a degradation threshold 𝐷, and the CDF
of 𝑇 [11] can be expressed as

𝐹𝑇 (𝑡|𝜂, 𝑏, 𝛾, 𝛿) = 𝑃 (𝑇 ≤ 𝑡) = 𝑃 (𝑋 (𝑡) > 𝐷)

= 1 − F2𝜂𝑡,2𝛿

(
𝛿𝐷 exp (𝑏𝜁)

𝛾𝜂𝑡

)
. (4)

Similarly, the RUL of the system at time 𝑡𝜔 is defined as 𝑇𝜔 =
inf {𝑡 ∶ 𝑋(𝑡 + 𝑡𝜔) > 𝐷|𝑋(𝑡𝜔) < 𝐷}, and the CDF of 𝑇𝜔 can be
written as

𝐹𝑇𝜔 (𝑡|𝜂, 𝑏, 𝛾, 𝛿, 𝑋 (𝑡𝜔)) = 𝑃 (𝑋 (𝑡 + 𝑡𝜔) − 𝑋 (𝑡𝜔) ≥ 𝐷 − 𝑋 (𝑡𝜔))

= 1 − F2𝜂𝑡,2𝛿

(
𝛿 exp (𝑏𝜁) (𝐷 − 𝑋 (𝑡𝜔))

𝛾𝜂𝑡

)
,

(5)

where 𝑋(𝑡𝜔) is the degradation data at time 𝑡𝜔.

3 Point Estimation

In this study, EM algorithm is used to estimate parameters
in model (1), that is, Θ = {𝜂, 𝑏, 𝛾, 𝛿}. Firstly, under the given
parameter 𝛽𝑖,𝑘 , the likelihood function of the degradation data of 𝑖
th sample 𝑋𝑖,𝑘;1∶𝑚𝑖,𝑘

= {Δ𝑋𝑖,1,𝑘, Δ𝑋𝑖,2,𝑘, … , Δ𝑋𝑖,𝑚𝑖,𝑘 ,𝑘
} can be written

as

𝑃(𝑋𝑖,𝑘;1∶𝑚𝑖,𝑘
|𝛽𝑖,𝑘) = 𝑚𝑖,𝑘∏

𝑗=1
𝑓
(
Δ𝑋𝑖,𝑗,𝑘|𝛽𝑖,𝑘)

=
𝑚𝑖,𝑘∏
𝑗=1

Δ𝑋𝑖,𝑗,𝑘
𝜂Δ𝑡𝑖,𝑗,𝑘−1(𝛽𝑖,𝑘 exp (𝑏𝜁𝑘))𝜂Δ𝑡𝑖,𝑗,𝑘 𝑒−𝛽𝑖,𝑘 exp(𝑏𝜁𝑘)Δ𝑋𝑖,𝑗,𝑘

Γ
(
𝜂Δ𝑡𝑖,𝑗,𝑘

) . (6)

Based on Equation (1), the conditional density distribution of 𝛽𝑖,𝑘
can be written as

𝑃
(
𝛽𝑖,𝑘|𝑋𝑖,𝑘;1∶𝑚𝑖,𝑘

)
∝ 𝑃

(
𝑋𝑖,𝑘;1∶𝑚𝑖,𝑘

|𝛽𝑖,𝑘)𝑓 (
𝛽𝑖,𝑘

)
∝ 𝛽

∑𝑚𝑖,𝑘
𝑗=1 𝜂Δ𝑡𝑖,𝑗,𝑘+𝛿−1

𝑖,𝑘
e
−𝛽𝑖,𝑘

(
𝛾+exp(𝑏𝜁𝑘)

∑𝑚𝑖,𝑘
𝑗=1 Δ𝑋𝑖,𝑗,𝑘

)
.

(7)

According to Equation (7), under the given
observations of 𝑋𝑖,𝑘;1∶𝑚𝑖,𝑘

, the parameter 𝛽𝑖,𝑘 still
follows the Gamma distribution, that is, 𝛽𝑖,𝑘|𝑋𝑖,𝑘;1∶𝑚𝑖,𝑘

∼

𝐺𝑎(𝛾 + exp(𝑏𝜁𝑘)
∑𝑚𝑖,𝑘

𝑗=1 Δ𝑋𝑖,𝑗,𝑘,
∑𝑚𝑖,𝑘

𝑗=1 𝜂Δ𝑡𝑖,𝑗,𝑘 + 𝛿). Therefore, based
on the properties of the Gamma distribution, the conditional
expectations of 𝛽𝑖,𝑘 and ln(𝛽𝑖,𝑘) are derived,

𝐸
(1)

𝑖,𝑘 (Θ) = 𝐸
(
𝛽𝑖,𝑘|𝑋𝑖,𝑘;1∶𝑚𝑖,𝑘

)
=

∑𝑚𝑖,𝑘

𝑗=1 𝜂Δ𝑡𝑖,𝑗,𝑘 + 𝛿

𝛾 + exp (𝑏𝜁𝑘)
∑𝑚𝑖,𝑘

𝑗=1 Δ𝑋𝑖,𝑗,𝑘

, (8)

𝐸
(2)

𝑖,𝑘 (Θ) = 𝐸
(
ln

(
𝛽𝑖,𝑘

) |𝑋𝑖,𝑘;1∶𝑚𝑖,𝑘

)
= 𝜓

(
𝑚𝑖,𝑘∑
𝑗=1

𝜂Δ𝑡𝑖,𝑗,𝑘 + 𝛿

)
− ln

(
𝛾 + exp (𝑏𝜁𝑘)

𝑚𝑖,𝑘∑
𝑗=1

Δ𝑋𝑖,𝑗,𝑘

)
,

(9)

where 𝜓 (𝑥) = 𝑑ln(Γ(𝑥))

𝑑𝑥
is the digamma function, and its first-

partial derivative 𝜓′(𝑥) > 1.

Meanwhile, based on degradation data {Δ𝑋𝑖,𝑗,𝑘, 𝑗 = 1, 2, … ,𝑚𝑖,𝑘; 𝑖

= 1, 2, … , 𝑛𝑘; 𝑘 = 1, 2, … , 𝐾} and random effects 𝛽𝑖,𝑘 , the log-
likelihood function ln(𝐿𝑐(Θ)) can be written as

ln(𝐿𝑐(Θ)) =
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1
[(𝜂ℎ𝑖,𝑘 − 1) ln(Δ𝑋𝑖,𝑗,𝑘) + 𝜂ℎ𝑖,𝑘 ln(𝛽𝑖,𝑘)

+ 𝜂ℎ𝑖,𝑘𝑏𝜁𝑘 − 𝛽𝑖,𝑘 exp(𝑏𝜁𝑘)Δ𝑋𝑖,𝑗,𝑘]

−
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

ln(Γ(𝜂ℎ𝑖,𝑘)) +
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖

[(𝛿 − 1) ln(𝛽𝑖,𝑘)

+ 𝛿 ln(𝛾) − 𝛾𝛽𝑖,𝑘 − ln(Γ(𝛿))]. (10)

Based onEquations (8)–(10), the detailed EMalgorithm is derived
and presented as follows.

E-step: Assuming that the current value of the model param-
eter is Θ(𝑙) = {𝜂(𝑙), 𝑏(𝑙), 𝛾(𝑙), 𝛿(𝑙)}, based on Equations (8)–
(10), the Q-function 𝑄 (Θ|Θ(𝑙)) = 𝐸(ln(𝐿(𝑋, 𝜇))|Θ(𝑙)) can be
expressed as

𝑄
(
Θ|Θ(𝑙)

)
=

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

[
(𝜂ℎ𝑖,𝑘 − 1) ln(Δ𝑋𝑖,𝑗,𝑘) + 𝜂ℎ𝑖,𝑘𝐸

(2)

𝑖,𝑘
(Θ(𝑙))

+ 𝜂ℎ𝑖,𝑘𝑏𝜁𝑘 − 𝐸
(1)

𝑖,𝑘
(Θ(𝑙)) exp(𝑏𝜁𝑘)Δ𝑋𝑖,𝑗,𝑘

]
−

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

ln
(
Γ
(
𝜂ℎ𝑖,𝑘

))

+
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

[
(𝛿 − 1)𝐸

(2)

𝑖,𝑘
(Θ(𝑙)) + 𝛿 ln(𝛾)

− 𝛾𝐸
(1)

𝑖,𝑘
(Θ(𝑙)) − ln(Γ(𝛿))

]
. (11)

M-step: Computes the first derivative of Equation (11) with
respect to parameter Θ = {𝜂, 𝑏, 𝛾, 𝛿}, set the results of them
to 0, and obtains the system of Equation (12).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕 ln (𝐿𝑐 (Θ))

𝜕𝜂
=

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

[
Δ𝑡𝑖,𝑗,𝑘 ln

(
Δ𝑋𝑖,𝑗,𝑘

)
+ ℎ𝑖,𝑘𝐸

(2)

𝑖,𝑘

(
Θ(𝑙)

)
+ ℎ𝑖,𝑘𝑏𝜁𝑘 − ℎ𝑖,𝑘𝜓

(
𝜂Δ𝑡𝑖,𝑗,𝑘

) ]
= 0,

𝜕 ln (𝐿𝑐 (Θ))

𝜕𝑏
=

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

[
𝜂ℎ𝑖,𝑘𝜁𝑘

− 𝐸
(1)

𝑖,𝑘

(
Θ(𝑙)

)
exp (𝑏𝜁𝑘) Δ𝑋𝑖,𝑗,𝑘𝜁𝑘

]
= 0,

𝜕 ln (𝐿𝑐 (Θ))

𝜕𝛾
=

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖

[
𝛿

𝛾
− 𝐸

(1)

𝑖,𝑘

(
Θ(𝑙)

)]
= 0,

𝜕 ln (𝐿𝑐 (Θ))

𝜕𝛿
=

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖

[
𝐸
(2)

𝑖,𝑘

(
Θ(𝑙)

)
+ ln (𝛾) − 𝜓 (𝛿)

]
= 0.

(12)
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Solve this system of Equation (12), and the next iteration
of parameters Θ(𝑙+1) = {𝜂(𝑙+1), 𝑏(𝑙+1), 𝛾(𝑙+1), 𝛿(𝑙+1)} can be derived.
Repeat the E-step and M-step until ∥ Θ(𝑙+1) − Θ(𝑙)∥∞ is less than
the predetermined threshold 𝜖, where ∥ ⋅∥∞ is the infinite norm.
Then, Θ(𝑙) can be used as parameter estimators.

The estimators from the EM algorithm are highly sensitive
to the choice of initial parameter values [29]. According to
Equation (12), four initial parameter values are required, and
a nonlinear optimization algorithm is employed to calculate
the parameters Θ(𝑙+1). Consequently, reducing the number of
initial parameter values and formulating the explicit expression of
parameters can contribute to improving both the parameter point
estimation accuracy and convergence speed.

According to model (1), under the given 𝛽𝑖,𝑘, 𝑖 = 1, 2, … , 𝑛𝑘, 𝑘 =
1, 2, … , 𝐾, the log-likelihood function under given 𝛽𝑖,𝑘 can be
written as can be written as

ln(𝐿) =
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1
[(𝜂ℎ𝑖,𝑘 − 1) ln(Δ𝑋𝑖,𝑗,𝑘) + 𝜂ℎ𝑖,𝑘 ln(𝛽𝑖,𝑘 exp(𝑏𝜁𝑘))]

−
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1
[𝛽𝑖,𝑘 exp(𝑏𝜁𝑘)Δ𝑋𝑖,𝑗,𝑘 + ln(Γ(𝜂ℎ𝑖,𝑘))]. (13)

The detailed derivation of Equation (13) in Appendix A. Based on
this, the first derivative of Equation (13) on 𝛽𝑖,𝑘 can be written as

𝜕 ln (𝐿)

𝜕𝛽𝑖,𝑘
=

𝑚𝑖,𝑘∑
𝑗=1

[
𝜂ℎ𝑖,𝑘

𝛽𝑖,𝑘
− exp (𝑏𝜁𝑘) Δ𝑋𝑖,𝑗,𝑘

]
. (14)

Therefore, the estimators 𝛽𝑖,𝑘 can be derived as

𝛽𝑖,𝑘 =
𝑚𝑖,𝑘𝜂ℎ𝑖,𝑘

exp
(
𝑏̂𝜁𝑘

)∑𝑚𝑖,𝑘

𝑗=1 Δ𝑋𝑖,𝑗,𝑘

, (15)

where 𝜂 and 𝑏̂ are the parameter estimation of 𝜂 and 𝑏, respec-
tively. Furthermore, based on the estimators 𝛽𝑖,𝑘 and the MLE
method, the estimators 𝛿̂ and 𝛾̂ can be obtainedwith the following
equations [30].

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿̂ =
𝑁
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1 𝛽𝑖,𝑘

𝑁
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

[
𝛽𝑖,𝑘ln

(
𝛽𝑖,𝑘

)]
−
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

[
ln

(
𝛽𝑖,𝑘

)∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1 𝛽𝑖,𝑘

] ,
𝛾̂ = 𝑁2

𝑁
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

[
𝛽𝑖,𝑘ln

(
𝛽𝑖,𝑘

)]
−
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

[
ln

(
𝛽𝑖,𝑘

)∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1 𝛽𝑖,𝑘

] ,
(16)

where 𝑁 =
∑𝐾

𝑘=1 𝑛𝑘 .

Therefore, the M-step can be updated, and an improved EM
algorithm is introduced to enhance the accuracy of parameter
estimation.

M-step-1: Computes the first derivative of Equation (10) with
respect to parameter {𝜂, 𝑏}, set the results of them to 0, and
obtains the system of Equation (17).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕 ln(𝐿𝑐(Θ))

𝜕𝜂
=

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

[
Δ𝑡𝑖,𝑗,𝑘 ln(Δ𝑋𝑖,𝑗,𝑘) + ℎ𝑖,𝑘𝐸

(2)

𝑖,𝑘
(Θ(𝑙))

+ ℎ𝑖,𝑘𝑏𝜁𝑘 − ℎ𝑖,𝑘𝜓(𝜂Δ𝑡𝑖,𝑗,𝑘)
]
= 0

𝜕 ln(𝐿𝑐(Θ))

𝜕𝑏
=

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

[
𝜂ℎ𝑖,𝑘𝜁𝑘

− 𝐸
(1)

𝑖,𝑘
(Θ(𝑙)) exp(𝑏𝜁𝑘)Δ𝑋𝑖,𝑗,𝑘𝜁𝑘

]
= 0

(17)

Solve the system of Equation (17), the next iteration of parameters
𝜂(𝑙+1), 𝑏(𝑙+1) can be derived.

M-step-2: With the parameters 𝜂(𝑙+1), 𝑏(𝑙+1) and Equation (15),
the parameters 𝛿(𝑙+1) and 𝛾(𝑙+1) can be derived,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿(𝑙+1) =
𝑁
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1 𝛽
(𝑙+1)
𝑖,𝑘

𝑁
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

[
𝛽
(𝑙+1)
𝑖,𝑘

ln
(
𝛽
(𝑙+1)
𝑖,𝑘

)]
−
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

[
ln

(
𝛽
(𝑙+1)
𝑖,𝑘

)∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1 𝛽
(𝑙+1)
𝑖,𝑘

] ,
𝛾(𝑙+1) = 𝑁2

𝑁
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

[
𝛽
(𝑙+1)
𝑖,𝑘

ln
(
𝛽
(𝑙+1)
𝑖,𝑘

)]
−
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

[
ln

(
𝛽
(𝑙+1)
𝑖,𝑘

)∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1 𝛽
(𝑙+1)
𝑖,𝑘

] , (18)

where 𝛽(𝑙+1)
𝑖,𝑘

= 𝑚𝑖,𝑘𝜂
(𝑙+1)ℎ𝑖,𝑘

exp(𝑏(𝑙+1)𝜁𝑘)
∑𝑚𝑖,𝑘
𝑗=1 Δ𝑋𝑖,𝑗,𝑘

. Repeat the E-step and M-step

(M-step-1 and M-step-2) until ∥ Θ(𝑙+1) −Θ(𝑙)∥∞ is less than the
predetermined threshold 𝜖. Then, Θ(𝑙) can be used as parameter
estimators.

4 Interval Estimation

Considering the significance of interval estimation in the field
of reliability analysis [31], in this section, a three-step interval
estimation method is proposed to derive the GCIs of accelerated
degradation model parameters. Then, the generalized prediction
intervals under normal stress levels are derived.

4.1 Three-Step Interval Estimation Method for
Model Parameters

Considering the complexity of this Gamma CSADT model with
random effects, the GPQ procedure is a good choice for construct-
ing interval estimations for the proposed model parameters.

The main point of this procedure is to find the GPQs for
model parameters, which are difficult to derive. According to
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the proposed model in Equation (1), the parameters that need
to be estimated can be divided into three parts, that is, {𝜂}, {𝑏},
and {𝛿, 𝛾}, which are from the degradation model, accelerated
model, and random effects, respectively. According to Zheng et al.
[28] and Luo et al. [32], the producer of interval estimation for
proposed model parameters can also be divided into three parts
and addressed them separately, thereby simplifying the interval
estimation procedure.

4.1.1 The GPQs for 𝜹 and 𝜸

Based on Equation (1), 𝛽𝑖,𝑘 follow the Gamma distribution,
that is, 𝛽𝑖,𝑘 ∼ 𝐺𝑎(𝛾, 𝛿), 𝑖 = 1, 2, … , 𝑛𝑘, 𝑘 = 1, 2, … , 𝐾. Let  =

ln(
(
∏𝐾
𝑘=1

∏𝑛𝑘
𝑖=1 𝛽𝑖,𝑘 )

1
𝑁

𝑌̄
), where 𝑌̄ =

∑𝐾
𝑘=1

∑𝑛𝑘
𝑖=1 𝛽𝑖,𝑘

𝑁
, 𝑁 =

∑𝐾

𝑘=1 𝑛𝑘 . Accord-
ing to S. Weerahandi [33], the random variable 𝑈 = 𝐹 follows
the standard uniform distribution 𝑈(0, 1), where 𝐹 is the CDF
of the statistic. Then, leveraging the Cornish-Fisher expansion
and pivoting the CDF, as discussed in Chapter 9.2.3 of Casella and
Berger [34], for a given 𝑈 ∼ 𝑈(0, 1),

𝐻 = 𝜘1 (𝛿) + [𝜘2 (𝛿)]
1

2 𝑄1 (𝛿,𝑈) , (19)

where 𝑄1(𝛿,𝑈) in Equation (19) can be expressed as

𝑄1 (𝛿,𝑈) = 𝑧𝑈 + 1

6
𝜘′
3 (𝛿)

(
𝑧2𝑈 − 1

)
+ 1

24
𝜘′
4 (𝛿)

(
𝑧3𝑈 − 3𝑧𝑈

)
− 1

36

[𝜘′
3 (𝛿)

]2 (
2𝑧3𝑈 − 5𝑧𝑈

)
+ 1

120
𝜘′5 (𝛿) (𝑧4𝑈 − 6𝑧2𝑈 + 3

)
− 1

24
𝜘′
3 (𝛿)𝜘′4 (𝛿)

(
𝑧4𝑈 − 5𝑧2𝑈 + 2

)
+ 1

324

[𝜘′
3 (𝛿)

]3 (
12𝑧4𝑈 − 53𝑧2𝑈 + 17

)
, (20)

𝜘𝑖(⋅) is the 𝑖 th (𝑖 = 1, 2, 3, 4, 5) cumulant of, 𝜘 ′
𝑖
(⋅) = 𝜘𝑖 (⋅)

[𝜘2(⋅)]
𝑖
2

, 𝑖 =

3, 4, 5, and 𝑧𝑈 is the𝑈 percentile of standard normal distribution
𝑁(0, 1). According to Wang and Wu [35], the unique solution
𝐺𝛿 = 𝑔(, 𝑈) can be derived based on Equation (19) for the value

of 𝜘1(𝛿) + [𝜘2(𝛿)]
1

2 𝑄1(𝛿,𝑈) is a strictly increasing function of 𝛿
under the given 𝑈.

According toWang andWu [35], the statistics (, 𝑌̄) are complete
and sufficient, and 2𝑁𝛾𝑌̄ ∼ 𝜒2(2𝑁𝛿). Then, for the given𝑈,𝑉1 =
2𝑁𝐺𝛾𝑌̄ ∼ 𝜒2(2𝑁𝐺𝛿), where𝐺𝛾 represents the GPQ for parameter
𝛾 and can be written as

𝐺𝛾 =
𝑉1

2𝑁𝑌̄
. (21)

4.1.2 The GPQ for Parameter 𝜼

Under the fixed parameter 𝛽𝑖,𝑘 , let 𝑍 =
∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1
∑𝑚𝑖,𝑘

𝑗=1 ℎ𝑖,𝑘 ln

(Δ𝑋𝑖,𝑗,𝑘𝛽𝑖,𝑘) −
∑𝐾

𝑘=1 𝑄𝑘ln(𝑋𝑘), the 𝑟 th cumulant of 𝑍 is given by

𝜅𝑟 (𝜂) =
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

𝜓𝑟−1
(
𝜂ℎ𝑖,𝑘

)
×
(
ℎ𝑖,𝑘

)𝑟
−

𝐾∑
𝑘=1

𝜓𝑟−1 (𝜂𝑄𝑘) 𝑄
𝑟
𝑘
, 𝑟 = 1, 2, … (22)

where 𝜓𝑟−1(⋅) is the 𝑟 − 1 th derivative of 𝜓(⋅), 𝑄𝑘 =∑𝑛𝑘

𝑖=1
∑𝑚𝑖,𝑘

𝑗=1 ℎ𝑖,𝑘 , 𝑋𝑘 =
∑𝑛𝑘

𝑖=1
∑𝑚𝑖,𝑘

𝑗=1 Δ𝑋𝑖,𝑗,𝑘𝛽𝑖,𝑘 , Δ𝑋𝑖,𝑗,𝑘𝛽𝑖,𝑘 ∼ 𝐺𝑎(𝜂ℎ𝑖,𝑘,

exp(𝑏𝜁𝑘)), 𝑋𝑘 ∼ 𝐺𝑎(𝜂𝑄𝑘, exp(𝑏𝜁𝑘)), and its proof can be seen in
Appendix B.

Similar to the proof of Lamma 1 in Iliopoulos [36], the CDF
𝐹𝑍(𝑧|𝜂) of 𝑍 is a strictly decreasing function of 𝜂. Denoting
𝜅′
𝑖
(⋅) = 𝜅𝑖 (⋅)

[𝜅2(⋅)]
𝑖
2

, 𝑖 = 3, 4, 5, and 𝑧𝑈 is the 𝑈 percentile of standard

normal distribution𝑁(0, 1). According to the procedure proposed
by Wang and Wu [35], the GPQ for parameter 𝜂 (i.e., 𝐺𝜂) can be
obtained by solving the following equation:

𝑍 = 𝜅1
(
𝐺𝜂

)
+
[
𝜅2

(
𝐺𝜂

)] 1
2 𝑄2

(
𝐺𝜂,𝑈

)
, (23)

where 𝑄2 (𝜂,𝑈) = 𝑄1 (𝜂,𝑈).

4.1.3 The GCIs for parameter 𝒃

According to model (1), we have ln( 𝜇𝑖,𝑘
𝛽𝑖,𝑘
) = 𝑏𝜁𝑘 with the fixed 𝛽𝑖,𝑘 ,

𝑖 = 1, 2, … , 𝑛𝑘; 𝑘 = 1, 2, … , 𝐾. Therefore, the variance of ln( 𝜇𝑖,𝑘
𝛽𝑖,𝑘
),

that is, 𝐷𝑘 = 𝑉𝑎𝑟(ln(𝜇𝑖,𝑘∕𝛽𝑖,𝑘)), can be written as

𝐷𝑘 = 𝑉𝑎𝑟

(
ln

(
𝜇𝑖,𝑘

𝛽𝑖,𝑘

))
= 𝜁2

𝑘
𝑉𝑎𝑟 (𝑏) . (24)

After calculating the value of 𝐷𝑘 , the following weighted sum of
squares is considered

𝑂 (𝑏) =
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

(
ln

(
𝜇𝑖,𝑘

)
− ln

(
𝛽𝑖,𝑘

)
− 𝑏𝜁𝑘

)2
𝐷𝑘

. (25)

By minimizing Equation (25), we have

𝑏 =

∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1
𝜁𝑘(ln(𝜇𝑖,𝑘)−ln(𝛽𝑖,𝑘))

𝐷𝑘∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1
𝜁2
𝑘

𝐷𝑘

=

∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1
𝜁𝑘(ln(𝜇𝑖,𝑘)−ln(𝛽𝑖,𝑘))

𝜁2
𝑘
𝑉𝑎𝑟(𝑏)∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1
𝜁2
𝑘

𝜁2
𝑘
𝑉𝑎𝑟(𝑏)

=

∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1
ln(𝜇𝑖,𝑘)−ln(𝛽𝑖,𝑘)

𝜁𝑘

𝑁
.

(26)

Based on this, we proceed to the GPQ for the parameter 𝑏. First,
let

𝑉 =

∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1
ln(𝑋𝑖,𝑘)+ln(𝛽𝑖,𝑘)

𝜁𝑘

𝑁
+ 𝑏 =

∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1
ln(𝑆𝑖,𝑘)

𝜁𝑘

𝑁
, (27)

where 𝑋𝑖,𝑘 =
∑𝑚𝑖,𝑘

𝑗=1 Δ𝑋𝑖,𝑗,𝑘, 𝑆𝑖,𝑘 = 𝜇𝑖,𝑘 𝑋𝑖,𝑘 ∼ 𝐺𝑎(1, 𝜂𝐵𝑖,𝑘), 𝐵𝑖,𝑘 =
𝑚𝑖,𝑘 ℎ𝑖,𝑘 . Therefore, the GPQ for parameter 𝑏 can be expressed as

𝑊1 = −

∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

ln(𝑋𝑖,𝑘)+ln
(
𝛽∗
𝑖,𝑘

)
𝜁𝑘

𝑁
+

∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1

ln
(
𝑆∗
𝑖,𝑘

)
𝜁𝑘

𝑁
, (28)

where 𝐵∗
𝑖,𝑘
∼ 𝐺𝑎(𝐺𝛾, 𝐺𝛿), 𝑆

∗
𝑖,𝑘
∼ 𝐺𝑎(1, 𝐺𝜂𝐵𝑖,𝑘).

With the GPQ for parameters 𝛿, 𝛾, 𝜂, and 𝑏, the percentiles of
them can be obtained by the following Monte Carlo algorithm
(i.e., Algorithm 1).

6 of 18 Quality and Reliability Engineering International, 2025
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ALGORITHM 1 GCIs for 𝛿, 𝛾, 𝜂, and 𝑏.

Input: The degradation data
{𝑋𝑖,𝑗,𝑘, 𝑡𝑖,𝑗,𝑘, 𝜁𝑘}, 𝑗 = 1, 2, … ,𝑚; 𝑖 = 1, 2, … , 𝑛𝑘; 𝑘 = 1, 2, … , 𝐾;

Parameter estimation results of the accelerated degradation
model, i.e., 𝜂, 𝑏, 𝛽𝑖,𝑘 , and denoted as 𝜂, 𝑏̂, 𝛽𝑖,𝑘; The expected
percentile 𝜌.
Output: GCIs for 𝛿, 𝛾, 𝜂, and 𝑏.
1. Calculate 𝑌̄ =

∑𝐾

𝑘=1
∑𝑛𝑘

𝑖=1 𝛽𝑖,𝑘 ∕𝑁, and

 = ln[(
∏𝐾

𝑘=1
∏𝑛𝑘

𝑖=1 𝛽𝑖,𝑘)

1

𝑁
∕𝑌̄];

2. Generate 𝑈1 ∼ 𝑈(0, 1), calculate the value of 𝐺𝛿 = 𝑔(, 𝑈1)

based on Equation (19);
3. Generate 𝑉1 ∼ 𝜒2(2𝑁𝑔(, 𝑈)), calculate the value of 𝐺𝛾

based on Equation (21);
4. Generate 𝛽∗

𝑖,𝑘
∼ 𝐺𝑎(𝐺𝛾, 𝐺𝛿), calculate 𝑋𝑖,𝑘 =

∑𝑚𝑖,𝑘

𝑗=1 Δ𝑋𝑖,𝑗,𝑘;

5. Calculate 𝑍, generate 𝑈2 ∼ 𝑈(0, 1), calculate the value of
𝐺𝜂 = 𝑔(Z,𝑈2) based on Equation (23);

6. Generate 𝑆∗
𝑖,𝑘
∼ 𝐺𝑎(1, 𝐺𝜂𝐵𝑖,𝑘), based on Equation (28),

calculate the value of𝑊1;
7. Repeat steps 3 to 8 for 𝐵 times, then there are 𝐵 values for
𝑊1,𝐺𝛾, 𝐺𝜂 , and 𝐺𝛿 respectively;

8. Arrange all 𝐺𝛿 , 𝐺𝛾, 𝐺𝜂 and𝑊1 values in ascending order:
𝐺𝛿,1 < 𝐺𝛿,2 < ⋯ < 𝐺𝛿,𝐵, 𝐺𝛾,1 < 𝐺𝛾,2 < ⋯ < 𝐺𝛾,𝐵, 𝐺𝜂,1 <

𝐺𝜂,2 < ⋯ < 𝐺𝜂,𝐵, 𝑊1,1 < 𝑊1,2 < ⋯ < 𝑊1,𝐵;
9. Then, the 100(1 − 𝜌)% GCIs for parameters 𝛿, 𝛾, 𝜂, and 𝑏
can be derived as [𝐺

𝛿,
𝐵𝜌

2

, 𝐺𝛿,𝐵(1− 𝜌

2
)], [𝐺𝛾,

𝐵𝜌

2

, 𝐺𝛾,𝐵(1− 𝜌

2
)],

[𝐺
𝜂,
𝐵𝜌

2

, 𝐺𝜂,𝐵(1− 𝜌

2
)], and [𝑊1,

𝐵𝜌

2

,𝑊1,𝐵(1− 𝜌

2
)], respectively.

4.2 Interval Estimation Method for Predictive
Reliability Indexes

As described in Section 2, the CSADT is conducted under
the accelerated stress level. However, in practical applications,
engineers pay great attention to the percentiles of some significant
reliability indexes at the normal operating stress level 𝜁0, such as
the mean of degradation 𝐸(𝑋𝑡0), the reliability 𝑅(𝑡0) at time 𝑡0,
the quantile lifetime 𝑡𝑝, the mean of lifetime 𝐸(𝑇0), and the mean
remaining useful life 𝐸(𝑇𝜔) at time 𝑡𝜔. According to Ye et al. [37],
they can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸 (𝑋𝑡0) =
Γ (𝛿 − 1) 𝛾𝜂𝑡0

Γ (𝛿) exp (𝑏𝜁0)

𝑅 (𝑡0) = 1 − 𝐹𝑇 (𝑡0|𝜂, 𝑏, 𝛾, 𝛿) = F2𝜂𝑡0,2𝛿

(
𝛿𝐷 exp (𝑏𝜁0)

𝛾𝜂𝑡0

)
,

𝑡𝑝 =
𝛿𝐷 exp (𝑏𝜁0)

𝛾𝜂𝑧1−𝑝
,

𝐸 (𝑇0) = ∫
+∞

0

[1 − 𝐹𝑇 (𝑡|𝜂, 𝑏, 𝛾, 𝛿)] 𝑑𝑡
= ∫

+∞

0

F2𝜂𝑡,2𝛿

(
𝛿𝐷 exp (𝑏𝜁0)

𝛾𝜂𝑡

)
𝑑𝑡,

𝐸 (𝑇𝜔) = ∫
+∞

0

[
1 − 𝐹𝑇𝜔 (𝑡|𝑋 (𝑡𝜔))] 𝑑𝑡

= ∫
+∞

0

F2𝜂𝑡,2𝛿

(
𝛿 exp (𝑏𝜁0) (𝐷 − 𝑋 (𝑡𝜔))

𝛾𝜂𝑡

)
𝑑𝑡,

(29)

where 𝑧1−𝑝 represents the 𝑝-th quantile of F(2𝜂𝑡, 2𝛿) distribution.

ALGORITHM 2 GCIs for 𝐸(𝑋𝑡0), 𝑅(𝑡0), 𝑡𝑝 , 𝐸(𝑇0), and 𝐸(𝑇𝜔).

Input: The degradation data
{𝑋𝑖,𝑗,𝑘, 𝑡𝑖,𝑗,𝑘, 𝜁𝑘}, 𝑗 = 1, 2, … ,𝑚; 𝑖 = 1, 2, … , 𝑛𝑘; 𝑘 = 1, 2, … , 𝐾;

Parameter estimation results of the accelerated degradation
model, i.e., 𝜂, 𝑏, 𝛽𝑖,𝑘 , and denoted as 𝜂, 𝑏̂, 𝛽𝑖,𝑘; The expected
percentile 𝜌.
Output: GCIs for 𝐸(𝑋𝑡0), 𝑅(𝑡0), 𝑡𝑝, 𝐸(𝑇0), and 𝐸(𝑇𝜔).
1. Follows steps 1 to 6 from Algorithm 1 to derive the values of
𝑊1,𝐺𝛾, 𝐺𝜂 , and 𝐺𝛿;

2. Calculate𝑊𝑙, 𝑙 = 2, 3, 4, 5, 6 based on Equation (30);
3. Repeat steps 1 and 2 for B times to generate 𝐵 values for𝑊𝑙;
4. Arrange all𝑊𝑙 values in ascending order:
𝑊𝑙,1 < 𝑊𝑙,2 < ⋯ < 𝑊𝑙,𝐵;

5. Then, the 𝜌 percentiles of 𝐸(𝑋𝑡0), 𝑅(𝑡0), 𝑡𝑝, 𝐸(𝑇0), and 𝐸(𝑇𝜔)
can be estimated by𝑊𝑙,𝐵𝜌, 𝑙 = 2, 3, 4, 5, 6, respectively.

Then, according to Equation (29) and the substitute method in
Chapter 2.4 [33], the GPQs of 𝐸(𝑋𝑡0), 𝑅(𝑡0), 𝑡𝑝, 𝐸(𝑇0), and 𝐸(𝑇𝜔)
can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑊2 =
Γ (𝐺𝛿 − 1) 𝐺𝛾𝐺𝜂𝑡0

Γ (𝐺𝛿) exp (𝑊1𝜁0)
,

𝑊3 = F2𝐺𝜂𝑡0,2𝐺𝛿

(
𝐺𝛿𝐷 exp (𝑊1𝜁0)

𝐺𝛾𝐺𝜂𝑡0

)
,

𝑊4 =
𝐺𝛿𝐷 exp (𝑊1𝜁0)

𝐺𝛾𝐺𝜂𝑧1−𝑝
,

𝑊5 = ∫
+∞

0

F2𝐺𝜂𝑡,2𝐺𝛿

(
𝐺𝛿𝐷 exp (𝑊1𝜁0)

𝐺𝛾𝐺𝜂𝑡

)
𝑑𝑡,

𝑊6 = ∫
+∞

0

F2𝐺𝜂𝑡,2𝐺𝛿

(
𝐺𝛿 (𝐷 − 𝑋 (𝑡𝜔)) exp (𝑊1𝜁0)

𝐺𝛾𝐺𝜂𝑡

)
𝑑𝑡.

(30)

Let𝑊𝑙,𝜌 represents the 𝜌 percentile of𝑊𝑙. Then, the 100(1 − 𝜌)%

GCIs for 𝐸(𝑋𝑡0), 𝑅(𝑡0), 𝑡𝑝, 𝐸(𝑇0), and 𝐸(𝑇𝜔) are determined
by [𝑊𝑙,

𝜌

2
,𝑊𝑙,1− 𝜌

2
], 𝑙 = 2, 3, 4, 5, 6, respectively. Similarly, the

percentiles of𝑊𝑙 can be obtainedusing the followingMonteCarlo
algorithm (i.e., Algorithm 2).

5 Simulation Study

In this section, two simulation studies are conducted to demon-
strate the performances of the proposed method, that is, the
improved point estimation method and interval estimation
method, respectively.

5.1 Point Estimation Simulation Study

In this subsection, we evaluate the performance of the pro-
posed point estimation. Suppose the ADT is conducted under
four different conversion-stress levels, 𝜁1 = 1.5, 𝜁2 = 2.0, 𝜁3 =
2.5, 𝜁4 = 3.0, and the degradation data under these four levels are
collected with themeasurement intervals ℎ1 = ℎ2 = ℎ3 = ℎ4 = 1,
respectively. The proposed improved EM algorithm is compared
with the traditional EM algorithm across 18 distinct parameter
settings as outlined in Table 1, sample size 𝑛 and measurement
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TABLE 1 Parameter setting for point estimation simulation study.

Case 𝜼 𝒃 𝜸 𝜹

I 4.0 −1.5 2.0 19.0
II 4.0 −1.0 2.0 19.0
III 4.0 −0.5 2.0 19.0
IV 5.0 −1.5 2.0 19.0
V 5.0 −1.0 2.0 19.0
VI 5.0 −0.5 2.0 19.0
VII 4.0 −1.5 1.0 10.0
VIII 4.0 −1.0 1.0 10.0
IX 4.0 −0.5 1.0 10.0
X 5.0 −1.5 1.0 10.0
XI 5.0 −1.0 1.0 10.0
XII 5.0 −0.5 1.0 10.0
XIII 4.0 −1.5 0.5 5.0
XIV 4.0 −1.0 0.5 5.0
XV 4.0 −0.5 0.5 5.0
XVI 5.0 −1.5 0.5 5.0
XVII 5.0 −1.0 0.5 5.0
XVIII 5.0 −0.5 0.5 5.0

times 𝑚 are set to 8 and 10, respectively. The predetermined
threshold 𝜖 is set as 10−6 and the initialization for the traditional
EM is set as {𝜂, 𝑏, 𝛾, 𝛿} = {1,−1, 1, 5}.

Then, the root mean square error (RMSE) and root mean square
percentage error (RMSPE) are adopted to measure the feasibility
and effectiveness of the proposed method quantitatively. RMSE
is calculated by taking the square root of the mean of squared
differences between observed and predicted values. RMSPE rep-
resents the average percentage error of predicted values relative to
actual values, whose advantage lies in its robustness in terms of
percentage error. Generally, a smaller RMSE and RMSPE indicate
more accurate parameter estimation results. The expression of
RMSE and RMSPE are described as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RMSE =

√√√√√∑𝐵𝑟𝑒𝑝

𝑖=1

(
𝜃̂𝑖 − 𝜃𝑡𝑟𝑢𝑒

)2
𝐵𝑟𝑒𝑝

,

RPMSE =

√√√√√√∑𝐵𝑟𝑒𝑝

𝑖=1

[
(𝜃̂𝑖−𝜃𝑡𝑟𝑢𝑒)

𝜃𝑡𝑟𝑢𝑒

]2
𝐵𝑟𝑒𝑝

,

(31)

where 𝜃̂𝑖 , 𝑖 = 1, 2, … , 𝐵𝑟𝑒𝑝 represent the estimator vector for the 𝑖
th simulation, and 𝜃𝑡𝑟𝑢𝑒 represents the true values, respectively.

Based on 5000 replications, Table 2 presents the simulation
results. Across all parameter settings, the traditional EM algo-
rithm exhibits larger RMSE and RMSPE values compared to
the proposed improved EM algorithm. Hence, we recommend
utilizing the proposed method for obtaining point estimators of
the proposed model parameters.

TABLE 2 The point estimation simulation results.

RMSE RMSPE

Case
Traditional

EM

The
proposed
method

Traditional
EM

The
proposed
method

I 659.1584 51.6687 4.5549 0.4098
II 924.0342 51.8752 5.3453 0.4199
III 976.1503 51.8119 6.3304 0.4653
IV 464.5907 42.2726 2.8913 0.3277
V 211.1476 41.7254 1.4478 0.3309
VI 248.5212 41.3628 1.6407 0.3655
VII 27.7100 9.2538 0.7624 0.3159
VIII 30.5530 9.1019 0.8435 0.3260
IX 32.5900 9.3801 0.9305 0.4117
X 24.9581 8.2654 0.6892 0.2642
XI 22.3792 7.9029 0.6326 0.2685
XII 26.0479 8.1924 0.7677 0.3279
XIII 4.3970 1.9071 0.6563 0.3008
XIV 4.6628 1.9525 0.7414 0.3323
XV 4.5838 1.9307 0.7996 0.4408
XVI 3.9827 1.8723 0.6307 0.2803
XVII 4.1575 1.9467 0.6143 0.2951
XVIII 4.0467 1.9153 0.6949 0.3958

Abbreviations: EM, Expectation-Maximization; RMSE, root mean square
error; RMSPE, root mean square percentage error.

Additionally, to investigate the impact of different sample sizes
𝑛 and measurement times 𝑚 on the results of parameter point
estimation, we conducted a sensitivity analysis. The simulation
results, corresponding to three combinations, namely (𝑛,𝑚) ∈
{(8, 10), (6, 10), (6, 8)}, and the initial six parameter settings from
Table 1, are presented in Table 3.

According to Table 3, it is observed that, across all combinations
and parameter settings, the RMSE and RMSPE values associated
with the traditional EM algorithm are consistently larger than
those of the proposed improved EM algorithm. Moreover, with
an increase in both sample size 𝑛 and measurement times 𝑚,
the RMSE and RMSPE results for the traditional EM algorithm
decrease. Notably, the impact of changes in sample size is more
pronounced. In contrast, the results for the proposed improved
EM algorithm exhibit smaller variation as sample size and
measurement times increase. Consequently,we can conclude that
the proposed improved EM algorithm in this study demonstrates
greater robustness.

5.2 Interval Estimation Simulation Study

In this subsection, we undertake a Monte Carlo simulation
study to showcase the effectiveness of the proposed interval
estimation method. The specific parameter configurations are
outlined in Table 4, with assumed values for 𝑡0, threshold 𝐷, and

8 of 18 Quality and Reliability Engineering International, 2025

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3730 by T

u D
elft, W

iley O
nline L

ibrary on [27/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 3 The point estimation simulation results.

RMSE RMSPE

(𝒏,𝒎) Case
Traditional

EM
The proposed

method
Traditional

EM
The proposed

method

(6,8) I 7581.7860 66.4239 43.3874 0.4962
II 9689.0550 65.4983 54.4557 0.4946
III 12365.7900 64.0458 69.2448 0.5443
IV 4241.3500 52.8997 23.6704 0.3887
V 5125.2580 53.1757 29.2484 0.3982
VI 4310.2460 53.0647 26.4332 0.4385

(6,10) I 6693.3990 53.7234 36.0521 0.3870
II 5230.0580 54.0937 29.3180 0.3968
III 2812.1540 53.1531 16.2314 0.4344
IV 1460.7460 45.3898 8.3793 0.3232
V 979.9735 46.2199 6.4027 0.3408
VI 1580.3480 46.0635 9.9962 0.3722

(8,10) I 659.1584 51.6687 4.5549 0.4098
II 924.0342 51.8752 5.3453 0.4199
III 976.1503 51.8119 6.3304 0.4653
IV 464.5907 42.2726 2.8913 0.3277
V 211.1476 41.7254 1.4478 0.3309
VI 248.5212 41.3628 1.6407 0.3655

Abbreviations: EM, Expectation-Maximization; RMSE, root mean square error; RMSPE, root mean square percentage error.

TABLE 4 Parameter setting for interval estimation simulation
study.

Case 𝜼 𝒃 𝜸 𝜹

i 4.0 −1.0 10.0 10.0
ii 4.0 −1.0 10.0 20.0
iii 4.0 −1.0 5.0 10.0
iv 5.0 −1.0 10.0 10.0
v 5.0 −1.5 10.0 10.0
vi 5.0 −0.5 10.0 10.0

degradation data 𝑋𝑡𝜔
set at 𝑡0 = 120, 𝐷 = 40, and 𝑋𝑡𝜔

= 𝐷∕10,
respectively.

5.2.1 The Interval Estimation Results for Model
Parameters

For the proposed model parameters, utilizing 5000 replications
and the parameter settings outlined in Table 4, along with three
combinations of (𝑛,𝑚), we calculate the coverage percentages
and average interval lengths (in parentheses) for parameters
𝜂, 𝑏, 𝛿, and 𝛾 at nominal levels 0.9 and 0.95. The results are
detailed in Tables 5–8. Generally, the closer the coverage per-

centage is to the nominal level, the more accurate the reliability
estimation result.

To further demonstrate the efficiency of the proposed method,
we derive the coverage percentages and average interval lengths
for these four parameters at nominal levels 0.9 and 0.95 using
the Bootstrap-p method. The Bootstrap-p method primarily
involves generating parameter interval estimates through data
resampling and subsequent point estimation of model parame-
ters. In essence, the precision of interval estimations using the
Bootstrap-pmethod is directly influenced by the accuracy of point
estimations. By combining the point estimationmethod proposed
in this study, the results of interval estimation based on the
Bootstrap-p method are also presented in Tables 5–8.

As indicated in Tables 5–8, the coverage percentages for param-
eters 𝜂, 𝑏, 𝛿, and 𝛾 closely align with the nominal levels, with
errors within 1% across all parameter settings. This observation
underscores the efficiency of the proposedmethod. Furthermore,
the average interval lengths decrease as anticipated with the
increase in both 𝑛 and𝑚.

Certainly, as evident from Tables 5–8, the coverage obtained
from the Bootstrap-p method deviates significantly from the
nominal levels, with errors well exceeding 1%. Moreover, the
average interval lengths obtained by the Bootstrap-p method are
larger than those obtained by the proposed method. Therefore,
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TABLE 5 The coverage percentages and average interval lengths (in parentheses) of parameter 𝜂 for nominal levels 0.9 and 0.95.

𝜼 (the proposed method) 𝜼 (Bootstrap-p method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.8926 (1.0110) 0.9488 (1.2047) 0.8450 (3.0463) 0.9070 (3.8230)
(6, 10) 0.8992 (1.1700) 0.9472 (1.3942) 0.8378 (4.0982) 0.9056 (5.8485)
(6, 8) 0.8960 (1.3157) 0.9488 (1.5676) 0.8554 (6.5088) 0.9068 (7.8386)

ii (8, 10) 0.9036 (1.0114) 0.9526 (1.2049) 0.8440 (2.2896) 0.8910 (2.8390)
(6, 10) 0.9002 (1.1706) 0.9488 (1.3950) 0.8158 (3.7965) 0.8824 (4.8656)
(6, 8) 0.9002 (1.3189) 0.9498 (1.5718) 0.8204 (6.2435) 0.8630 (8.1239)

iii (8, 10) 0.9004 (1.0097) 0.9492 (1.2031) 0.8490 (3.0568) 0.9098 (3.8277)
(6, 10) 0.9018 (1.1700) 0.9528 (1.3939) 0.8240 (4.9688) 0.8904 (5.6867)
(6, 8) 0.9022 (1.3142) 0.9488 (1.5661) 0.8456 (5.5451) 0.8960 (7.8580)

iv (8, 10) 0.9002 (1.2735) 0.9520 (1.5171) 0.8452 (3.8160) 0.9044 (4.8735)
(6, 10) 0.8978 (1.4807) 0.9504 (1.7636) 0.8554 (4.5088) 0.9086 (5.8380)
(6, 8) 0.8892 (1.6570) 0.9450 (1.9753) 0.8378 (7.2686) 0.8980 (9.4412)

v (8, 10) 0.9004 (1.2754) 0.9466 (1.5195) 0.8174 (2.7804) 0.8666 (3.4954)
(6, 10) 0.9048 (1.4755) 0.9500 (1.7580) 0.8204 (3.2435) 0.8630 (4.1239)
(6, 8) 0.8926 (1.6567) 0.9452 (1.9746) 0.8316 (7.8832) 0.8892 (10.3264)

vi (8, 10) 0.8976 (1.2759) 0.9460 (1.5201) 0.8464 (3.8011) 0.9038 (4.8301)
(6, 10) 0.8948 (1.4820) 0.9452 (1.7654) 0.8456 (4.5451) 0.8960 (5.8580)
(6, 8) 0.9012 (1.6582) 0.9520 (1.9758) 0.8288 (7.1546) 0.8848 (9.2879)

TABLE 6 The coverage percentages and average interval lengths of parameter 𝑏 for nominal levels 0.9 and 0.95.

𝒃 (the proposed method) 𝒃 (Bootstrap method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.8970 (0.1293) 0.9466 (0.1541) 0.9002 (0.3745) 0.9514 (0.4461)
(6, 10) 0.9012 (0.1496) 0.9508 (0.1783) 0.8968 (0.4187) 0.9430 (0.4988)
(6, 8) 0.8928 (0.1681) 0.9426 (0.2003) 0.8916 (0.4418) 0.9456 (0.5264)

ii (8, 10) 0.9084 (0.1293) 0.9544 (0.1540) 0.8916 (0.2886) 0.9440 (0.3436)
(6, 10) 0.9012 (0.1496) 0.9494 (0.1783) 0.8915 (0.3486) 0.9520 (0.4088)
(6, 8) 0.9080 (0.1682) 0.9554 (0.2004) 0.8942 (0.4136) 0.9484 (0.4993)

iii (8, 10) 0.9016 (0.1293) 0.9484 (0.1541) 0.9014 (0.3747) 0.9546 (0.4464)
(6, 10) 0.9054 (0.1496) 0.9512 (0.1783) 0.8802 (0.4181) 0.9400 (0.4980)
(6, 8) 0.8980 (0.1681) 0.9520 (0.2004) 0.8840 (0.4418) 0.9406 (0.5263)

iv (8, 10) 0.9066 (0.1282) 0.9488 (0.1528) 0.8872 (0.4299) 0.9470 (0.5122)
(6, 10) 0.8958 (0.1484) 0.9484 (0.1769) 0.8916 (0.4418) 0.9456 (0.5264)
(6, 8) 0.8912 (0.1667) 0.9448 (0.1987) 0.8868 (0.4581) 0.9474 (0.5302)

V (8, 10) 0.9002 (0.1283) 0.9480 (0.1528) 0.8892 (0.3299) 0.9448 (0.3928)
(6, 10) 0.9040 (0.1484) 0.9508 (0.1768) 0.8942 (0.3436) 0.9484 (0.4092)
(6, 8) 0.8932 (0.1667) 0.9464 (0.1987) 0.8940 (0.4290) 0.9464 (0.5113)

vi (8, 10) 0.9016 (0.1282) 0.9516 (0.1528) 0.8868 (0.4301) 0.9438 (0.5124)
(6, 10) 0.8976 (0.1484) 0.9438 (0.1768) 0.8840 (0.4418) 0.9406 (0.5263)
(6, 8) 0.9050 (0.1667) 0.9530 (0.1987) 0.8854 (0.4570) 0.9414 (0.5388)
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TABLE 7 The coverage percentages and average interval lengths of parameter 𝛾 for nominal levels 0.9 and 0.95.

𝜸 (the proposed method) 𝜸 (Bootstrap method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.9014 (8.9017) 0.9476 (10.6272) 0.8576 (9.3645) 0.9094 (11.5330)
(6, 10) 0.8982 (10.5612) 0.9496 (12.6175) 0.8506 (11.3020) 0.9016 (14.2051)
(6, 8) 0.9030 (10.5698) 0.9502 (12.6275) 0.8594 (11.3706) 0.9094 (14.3203)

ii (8, 10) 0.8958 (8.8646) 0.9464 (10.5812) 0.8664 (9.1947) 0.9154 (11.3264)
(6, 10) 0.8994 (10.6523) 0.9492 (12.7251) 0.8506 (11.2804) 0.9036 (14.0838)
(6, 8) 0.9032 (10.4587) 0.9514 (12.4907) 0.8510 (11.4519) 0.9032 (14.3186)

iii (8, 10) 0.8898 (4.4499) 0.9422 (5.3111) 0.8590 (4.6714) 0.9076 (5.7513)
(6, 10) 0.9018 (5.3239) 0.9478 (6.3598) 0.8538 (5.6847) 0.9044 (7.0969)
(6, 8) 0.8982 (5.3266) 0.9494 (6.3642) 0.8544 (11.4680) 0.9026 (14.3351)

iv (8,10) 0.8946 (8.9300) 0.9474 (10.6580) 0.8610 (11.3083) 0.9120 (14.1214)
(6, 10) 0.8970 (10.6266) 0.9464 (12.6896) 0.8594 (11.3706) 0.9094 (14.2103)
(6, 8) 0.9054 (10.5684) 0.9540 (12.6237) 0.8520 (11.3840) 0.9014 (14.2186)

v (8, 10) 0.8918 (8.9352) 0.9442 (10.6656) 0.8532 (11.2509) 0.9028 (14.0644)
(6, 10) 0.8990 (10.5997) 0.9482 (12.6622) 0.8510 (11.2819) 0.9032 (14.0886)
(6, 8) 0.9018 (10.5771) 0.9498 (12.6361) 0.8512 (11.3284) 0.9028 (14.1520)

vi (8, 10) 0.8970 (8.9357) 0.9482 (10.6676) 0.8488 (5.6744) 0.9022 (7.0956)
(6, 10) 0.8994 (10.6143) 0.9508 (12.6782) 0.8544 (5.6847) 0.9026 (7.0969)
(6, 8) 0.8956 (10.5418) 0.9500 (12.5914) 0.8454 (11.4400) 0.8952 (14.2962)

TABLE 8 The coverage percentages and average interval lengths of parameter 𝛿 for nominal levels 0.9 and 0.95.

𝜹 (the proposed method) 𝜹 (Bootstrap method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.9062 (8.6813) 0.9472 (10.3612) 0.8646 (9.1008) 0.9124 (11.2040)
(6, 10) 0.9032 (10.2740) 0.9514 (12.2754) 0.8548 (10.9000) 0.9040 (13.5246)
(6, 8) 0.8972 (10.3116) 0.9480 (12.3188) 0.8618 (10.9055) 0.9166 (13.6174)

ii (8, 10) 0.8978 (17.5158) 0.9648 (20.9073) 0.8678 (20.0691) 0.9198 (22.2620)
(6, 10) 0.8964 (21.0271) 0.9488 (25.1199) 0.8570 (21.0441) 0.9078 (25.7992)
(6, 8) 0.9036 (20.6193) 0.9514 (24.6215) 0.8578 (22.0187) 0.9094 (27.4853)

iii (8, 10) 0.8880 (8.6715) 0.9466 (10.3510) 0.8682 (9.0806) 0.9174 (11.1802)
(6, 10) 0.9000 (10.3803) 0.9450 (12.3393) 0.8630 (11.0674) 0.9118 (13.8320)
(6, 8) 0.8988 (10.4689) 0.9510 (12.3895) 0.8600 (11.9729) 0.9124 (14.7002)

iv (8, 10) 0.8980 (8.6813) 0.9436 (10.3629) 0.8650 (9.9968) 0.9134 (13.6113)
(6, 10) 0.8990 (10.3693) 0.9496 (12.3854) 0.8618 (10.9055) 0.9166 (13.7374)
(6, 8) 0.9048 (10.2989) 0.9538 (12.3035) 0.8572 (11.0133) 0.9092 (13.7502)

v (8, 10) 0.8934 (8.7036) 0.9480 (10.3891) 0.8556 (12.1123) 0.9082 (17.6322)
(6, 10) 0.8986 (10.3248) 0.9474 (12.3334) 0.8578 (12.2187) 0.9094 (17.6853)
(6, 8) 0.9010 (10.3317) 0.9516 (12.3674) 0.8590 (13.8992) 0.9110 (18.6082)

vi (8, 10) 0.9012 (8.6982) 0.9488 (10.3848) 0.8572 (10.7971) 0.9050 (13.5454)
(6, 10) 0.9018 (10.3284) 0.9480 (12.3362) 0.8600 (10.9720) 0.9124 (13.7002)
(6, 8) 0.8982 (10.2716) 0.9482 (12.2717) 0.8524 (11.0656) 0.9024 (13.8183)
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TABLE 9 The coverage percentages and average interval lengths of index 𝐸(𝑋𝑡0) for nominal levels 0.9 and 0.95.

𝑬(𝑿𝒕𝟎) (the proposed method) 𝑬(𝑿𝒕𝟎) (Bootstrap method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.8928 (379.9209) 0.9476 (459.0710) 0.8650 (1321.0300) 0.9260 (1644.2240)
(6, 10) 0.9002 (450.2017) 0.9500 (547.6145) 0.8582 (1907.0290) 0.9222 (2440.6070)
(6, 8) 0.8978 (465.2028) 0.9494 (565.2519) 0.8574 (2507.3890) 0.9198 (3201.4150)

ii (8, 10) 0.9014 (137.8676) 0.9484 (165.2107) 0.8508 (463.2625) 0.9086 (570.0734)
(6, 10) 0.9036 (160.5060) 0.9524 (192.7990) 0.8368 (556.4410) 0.8950 (885.2740)
(6, 8) 0.8972 (171.3945) 0.9452 (205.7613) 0.8250 (642.2855) 0.8796 (887.6425)

iii (8, 10) 0.9042 (190.4188) 0.9498 (230.1312) 0.8634 (663.5742) 0.9220 (824.2199)
(6, 10) 0.8920 (224.1197) 0.9418 (272.6827) 0.8318 (961.6478) 0.8986 (888.5330)
(6, 8) 0.9082 (232.1119) 0.9512 (281.9996) 0.8452 (1481.785) 0.8982 (1224.7310)

iv (8, 10) 0.9060 (476.4188) 0.9520 (575.9286) 0.8654 (1642.9310) 0.9198 (2074.7410)
(6, 10) 0.8904 (560.9168) 0.9486 (682.5941) 0.8574 (1907.0290) 0.9198 (2440.6070)
(6, 8) 0.8928 (580.9434) 0.9484 (705.6332) 0.8422 (2943.2880) 0.9142 (3796.3420)

v (8, 10) 0.9016 (783.2282) 0.9482 (946.6290) 0.8268 (862.9460) 0.8846 (940.0691)
(6, 10) 0.9072 (925.8110) 0.9570 (1126.9380) 0.8250 (942.2855) 0.8796 (1207.6425)
(6, 8) 0.8996 (958.9635) 0.9510 (1165.4000) 0.8286 (1223.7100) 0.8930 (1790.0540)

vi (8, 10) 0.9000 (288.6317) 0.9504 (348.7957) 0.8510 (824.6184) 0.9056 (1036.0270)
(6, 10) 0.8994 (341.1171) 0.9448 (415.0613) 0.8452 (961.6478) 0.8982 (1224.7310)
(6, 8) 0.8964 (353.3636) 0.9502 (429.3448) 0.8214 (1752.5740) 0.8832 (2254.7400)

the method proposed in this study is superior to the traditional
Bootstrap-p method.

5.2.2 The Interval Estimation Results for Predictive
Reliability Indexes

As discussed in the Introduction, the percentiles of certain
reliability indexes at the normal operating stress level hold
significant importance in practical applications. Utilizing the
proposed Algorithm 2 and conducting 5000 replications, we
estimate the 𝜌 percentiles of 𝐸(𝑋𝑡0), 𝑅(𝑡0), 𝑡𝑝, 𝐸(𝑇0), and 𝐸(𝑇𝜔),
respectively. The coverage percentages and average interval
lengths (in parentheses) of these reliability indexes at nominal
levels 0.9 and 0.95 are detailed in Tables 9–13, and corresponding
simulation results obtained from the Bootstrap-p method are also
provided in Tables 9–13.

It can be observed that the coverage percentages of the reliability
indexes 𝐸(𝑋𝑡0), 𝑅(𝑡0), 𝑡0.1, 𝐸(𝑇0), and 𝐸(𝑇𝜔) from the proposed
method are all close to the nominal levels, with errors within
1% under all the parameter settings. In contrast, the coverage
percentages from the Bootstrap-p method deviate significantly
from the nominal levels.

In summary, whether in terms of point estimation for model
parameters or predictive reliability indexes, the coverage results
of the proposed method outperform those of the Bootstrap-
p method. Therefore, the proposed method can better guide
practical applications.

6 Case Study

The Gas-Insulated Transmission line (GIL) [38] is a new alterna-
tive underground technology developed to meet the necessity of
enforcing the electrical transmission network. As an important
component of the GIL system, the sealing O-rings play a crucial
role in ensuring that the system operates within a well-sealed
environment. Its primary function is to prevent gas leakage and
mitigate the adverse effects of external environmental factors,
thereby maintaining the stability, reliability, and longevity of the
system. Therefore, this section takes the sealing O-rings as an
example to illustrate the implementation of the proposedmethod.

To evaluate the reliability of the sealing O-rings, a CSADT
was conducted under four different temperatures (i.e., 50◦C,
60◦C, 70◦C, and 80◦C). For each temperature, experiments
were carried out with sample size 𝑛 = 8, measurements inter-
val ℎ = 24 (hour), and the measurement times 𝑚 = 10. The
degradation data (i.e., strain level) from the sealing O-rings
{𝑌𝑖,𝑘(𝑡), 𝑖 = 1, 2, … , 8; 𝑘 = 1, 2, 3, 4}, subjected to normalization,
are shown in Figure 2.

Let𝑋𝑖,𝑘(𝑡) = 1 − 𝑌𝑖,𝑘(𝑡),𝑋𝑖,𝑘(𝑡) is a random variable that increases
with time 𝑡. According to model (1), it is necessary to test whether
𝑋𝑖,𝑘(𝑡) and the rate parameter 𝜇 under different temperatures
subject to the Gamma process, respectively. Therefore, we ini-
tially employ the Kolmogorov–Smirnov (K–S) test to assess the
degradation data 𝑋𝑖,𝑘(𝑡). The resulting p values are presented
in Table 14 and are found to surpass the specified significance
level 𝜌 = 0.05. Furthermore, we calculate and document the
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TABLE 10 The coverage percentages and average interval lengths of index 𝑅(𝑡0) for nominal levels 0.9 and 0.95.

𝑹(𝒕𝟎) (the proposed method) 𝑹(𝒕𝟎) (Bootstrap method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.9022 (2.7707× 10−14) 0.9520 (2.1796× 10−13) 0.8330 (8.1703× 10−10) 0.8936 (3.6182× 10−9)
(6, 10) 0.8972 (1.2557× 10−12) 0.9512 (7.6919× 10−12) 0.8106 (2.9191× 10−9) 0.8768 (1.2802× 10−8)
(6, 8) 0.9014 (3.1674× 10−12) 0.9492 (2.4230× 10−11) 0.8318 (4.7801× 10−9) 0.8932 (1.7841× 10−8)

ii (8, 10) 0.8928 (2.1364× 10−11) 0.9484 (1.1264× 10−10) 0.8396 (3.3302× 10−9) 0.8932 (1.1697× 10−8)
(6, 10) 0.9000 (1.0353× 10−9) 0.9486 (4.3626× 10−9) 0.8016 (5.0302× 10−9) 0.8708 (1.2804× 10−8)
(6, 8) 0.9056 (1.1833× 10−9) 0.9476 (5.9154× 10−9) 0.8066 (4.0492 × 10

−8) 0.8640 (1.4542× 10−7)
iii (8, 10) 0.8914 (2.1520× 10−7) 0.9444 (5.9819× 10−7) 0.8362 (1.0502× 10−5) 0.8994 (2.2310× 10−5)

(6, 10) 0.9062 (8.6923× 10−7) 0.9522 (2.5479× 10−6) 0.8194 (3.5404× 10−5) 0.8834 (1.0589× 10−4)
(6, 8) 0.8970 (1.51772× 10−6) 0.9500 (4.1517× 10−6) 0.8288 (5.7320× 10−5) 0.8914 (1.0732× 10−4)

iv (8, 10) 0.8968 (2.1305× 10−17) 0.9496 (3.3389× 10−16) 0.8272 (4.3000× 10−9) 0.8890 (1.4500× 10−8)
(6, 10) 0.8982 (4.4732× 10−15) 0.9490 (4.1657× 10−14) 0.8318 (4.7899× 10−9) 0.8932 (1.7788× 10−8)
(6, 8) 0.9004 (5.0513× 10−15) 0.9544 (6.5382× 10−14) 0.8178 (2.3853× 10−8) 0.8796 (7.1542× 10−8)

v (8, 10) 0.8910 (2.0044× 10−17) 0.9422 (4.0880× 10−16) 0.8108 (4.0301× 10−8) 0.8744 (1.3911× 10−7)
(6, 10) 0.8988 (5.6636× 10−15) 0.9478 (9.0525× 10−14) 0.8066 (4.0499× 10−8) 0.8640 (1.4478× 10−7)
(6, 8) 0.8984 (8.1937× 10−14) 0.9494 (7.6540× 10−13) 0.8088 (4.9719× 10−8) 0.8752 (3.0418× 10−7)

vi (8, 10) 0.8968 (2.0572× 10−18) 0.9482 (4.4553× 10−17) 0.8268 (3.4013× 10−5) 0.8908 (6.8102× 10−5)
(6, 10) 0.8960 (6.5642× 10−15) 0.9508 (7.6169× 10−14) 0.8288 (3.7279× 10−5) 0.8914 (1.4489× 10−4)
(6, 8) 0.8996 (1.3876× 10−14) 0.9516 (1.6793× 10−13) 0.8098 (5.6234× 10−5) 0.8774 (6.7523× 10−4)

TABLE 11 The coverage percentages and average interval lengths of index 𝑡𝑝 for nominal levels 0.9 and 0.95.

𝒕𝒑 (the proposed method) 𝒕𝒑 (Bootstrap method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.8940 (4.9908) 0.9478 (5.9882) 0.8374 (9.0962) 0.9004 (10.8415)
(6, 10) 0.9016 (5.8264) 0.9492 (7.0136) 0.8268 (9.3032) 0.8872 (11.0714)
(6, 8) 0.8970 (6.2701) 0.9494 (7.5411) 0.8406 (11.0398) 0.8992 (13.1522)

ii (8, 10) 0.8978 (8.0507) 0.9528 (9.6360) 0.8356 (12.8424) 0.8880 (13.3289)
(6, 10) 0.9060 (9.3728) 0.9520 (11.2418) 0.8084 (13.3479) 0.8732 (15.1259)
(6, 8) 0.9034 (10.2191) 0.9500 (12.2562) 0.8076 (15.4757) 0.8590 (18.5006)

iii (8, 10) 0.8976 (9.9350) 0.9474 (11.9252) 0.8434 (18.0028) 0.9032 (20.4576)
(6, 10) 0.9010 (11.5955) 0.9502 (13.9599) 0.8216 (19.3397) 0.8828 (21.1200)
(6, 8) 0.9028 (12.4114) 0.9520 (14.9280) 0.8356 (21.8023) 0.8892 (25.9746)

iv (8, 10) 0.9030 (4.0041) 0.9522 (4.8046) 0.8342 (10.2210) 0.8922 (12.1858)
(6, 10) 0.9024 (4.6848) 0.9486 (5.6391) 0.8406 (11.0398) 0.8992 (13.1522)
(6, 8) 0.8920 (5.0404) 0.9494 (6.0634) 0.8202 (19.9514) 0.8850 (21.8226)

v (8, 10) 0.8946 (4.0046) 0.9462 (4.8056) 0.8088 (14.2669) 0.8650 (17.0567)
(6, 10) 0.9078 (4.6988) 0.9502 (5.6539) 0.8076 (15.4757) 0.8590 (18.5006)
(6, 8) 0.8960 (5.0417) 0.9456 (6.0653) 0.8160 (20.0214) 0.8758 (21.9001)

vi (8, 10) 0.8918 (3.9996) 0.9478 (4.7993) 0.8302 (20.1823) 0.8924 (24.0649)
(6, 10) 0.8996 (4.6669) 0.9456 (5.6165) 0.8356 (21.8023) 0.8892 (25.9746)
(6, 8) 0.9028 (5.0422) 0.9526 (6.0663) 0.8154 (22.9424) 0.8792 (26.8243)
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TABLE 12 The coverage percentages and average interval lengths of index 𝐸(𝑇0) for nominal levels 0.9 and 0.95.

𝑬(𝑻𝟎) (the proposed method) 𝑬(𝑻𝟎) (Bootstrap method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.8932 (3.2066) 0.9426 (3.8354) 0.8492 (5.9688) 0.9062 (7.0938)
(6, 10) 0.8992 (3.7247) 0.9490 (4.4615) 0.8332 (6.0605) 0.8950 (7.1925)
(6, 8) 0.9020 (4.0397) 0.9490 (4.8399) 0.8504 (7.2259) 0.9002 (8.5870)

ii (8, 10) 0.9030 (5.7758) 0.9514 (6.9009) 0.8378 (6.3376) 0.8850 (7.1287)
(6, 10) 0.9031 (6.7100) 0.9564 (8.0251) 0.8128 (9.1028) 0.8778 (11.2444)
(6, 8) 0.9042 (7.3515) 0.9520 (8.7970) 0.8076 (11.2709) 0.8572 (13.4541)

iii (8, 10) 0.9040 (6.3945) 0.9504 (7.6474) 0.8460 (6.9433) 0.9084 (7.1971)
(6, 10) 0.8974 (7.4392) 0.9492 (8.9097) 0.8242 (11.0923) 0.8858 (14.2323)
(6, 8) 0.9092 (8.0322) 0.9544 (9.6199) 0.8398 (14.4384) 0.8898 (17.1541)

iv (8, 10) 0.9066 (2.5724) 0.9538 (3.0764) 0.8442 (6.6675) 0.8962 (7.9287)
(6, 10) 0.8990 (2.9980) 0.9496 (3.5916) 0.8504 (7.2259) 0.9002 (8.5870)
(6, 8) 0.8906 (3.2489) 0.9460 (3.8928) 0.8280 (16.5146) 0.8896 (17.7165)

v (8, 10) 0.8996 (2.5743) 0.9462 (3.0784) 0.8106 (10.3358) 0.8612 (12.3409)
(6, 10) 0.9078 (3.0048) 0.9568 (3.5988) 0.8076 (11.2709) 0.8572 (13.4541)
(6, 8) 0.8968 (3.2494) 0.9476 (3.8945) 0.8204 (16.5623) 0.8826 (17.7711)

vi (8, 10) 0.8968 (2.5711) 0.9472 (3.0749) 0.8384 (13.3105) 0.8946 (15.8273)
(6, 10) 0.8996 (2.9865) 0.9468 (3.5765) 0.8398 (14.4384) 0.8898 (17.1541)
(6, 8) 0.9014 (3.2490) 0.9528 (3.8926) 0.8220 (16.5257) 0.8792 (17.7355)

TABLE 13 The coverage percentages and average interval lengths of index 𝐸(𝑇𝜔) for nominal levels 0.9 and 0.95.

𝑬(𝑻𝝎) (the proposed method) 𝑬(𝑻𝝎) (Bootstrap method)

Case (𝒏,𝒎) 0.9 0.95 0.9 0.95

i (8, 10) 0.8934 (2.8885) 0.9426 (3.4549) 0.8492 (5.3786) 0.9062 (6.3925)
(6, 10) 0.8990 (3.3552) 0.9488 (4.0188) 0.8332 (5.4615) 0.8950 (6.4815)
(6, 8) 0.9020 (3.6392) 0.9490 (4.3600) 0.8504 (6.5116) 0.9002 (7.7381)

ii (8, 10) 0.9030 (5.2010) 0.9514 (6.2141) 0.8378 (8.4093) 0.8850 (10.0223)
(6, 10) 0.9031 (6.0422) 0.9564 (7.2265) 0.8130 (9.4996) 0.8778 (10.5283)
(6, 8) 0.9042 (6.6201) 0.9522 (7.9217) 0.8076 (10.1505) 0.8572 (12.1166)

iii (8, 10) 0.9040 (5.7576) 0.9504 (6.8857) 0.8460 (10.7558) 0.9084 (12.7854)
(6, 10) 0.8974 (6.6982) 0.9492 (8.0223) 0.8242 (11.4901) 0.8858 (13.5174)
(6, 8) 0.9094 (7.2325) 0.9544 (8.6621) 0.8398 (13.0029) 0.8898 (15.4486)

iv (8, 10) 0.9066 (2.3172) 0.9538 (2.7712) 0.8442 (6.0083) 0.8962 (7.1448)
(6, 10) 0.8986 (2.7006) 0.9496 (3.2353) 0.8504 (6.5116) 0.9002 (7.7381)
(6, 8) 0.8904 (2.9268) 0.9458 (3.5068) 0.8282 (6.8707) 0.8896 (7.9538)

v (8, 10) 0.8998 (2.3189) 0.9462 (2.7730) 0.8106 (9.3083) 0.8612 (11.1140)
(6, 10) 0.9074 (2.7067) 0.9568 (3.2417) 0.8076 (10.1505) 0.8572 (12.1166)
(6, 8) 0.8970 (2.9273) 0.9474 (3.5084) 0.8202 (15.9137) 0.8826 (17.0031)

vi (8, 10) 0.8968 (2.3161) 0.9472 (2.7698) 0.8384 (11.9870) 0.8946 (14.2535)
(6, 10) 0.8996 (2.6902) 0.9470 (3.2217) 0.8398 (13.0029) 0.8898 (15.4486)
(6, 8) 0.9014 (2.9269) 0.9528 (3.5067) 0.8220 (15.8808) 0.8794 (16.9710)
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FIGURE 2 The sealing O-rings degradation data under four different temperatures.

TABLE 14 The p values and the estimator 𝜇̂ of the 32 samples under four temperatures.

50◦C 60◦C 70◦C 80◦C

Sample p value 𝝁̂ p value 𝝁̂ p value 𝝁̂ p value 𝝁̂

1 0.7791 675.5415 0.8967 1442.7750 0.7624 1316.2810 0.8681 1591.4020
2 0.9092 1105.1280 0.9124 1137.1790 0.9256 2419.4580 0.9269 1324.8120
3 0.994 491.8748 0.8373 3335.8310 0.7817 933.8665 0.7801 1126.0600
4 0.9046 504.7680 0.8554 1897.5560 0.9941 1378.1490 0.9491 948.8634
5 0.7281 583.7786 0.8738 1736.1400 0.6829 2230.5480 0.8357 1587.2310
6 0.7757 823.2154 0.9024 1216.5610 0.9002 1439.8150 0.8795 826.1626
7 0.7396 615.1634 0.8107 1066.2790 0.9079 1237.9580 0.8444 716.7788
8 0.9119 495.6190 0.8036 1672.1320 0.933 1547.7890 0.9441 1631.609

TABLE 15 The p values of the estimator 𝜇̂ under four temperatures.

Temperatures 50◦C 60◦C 70◦C 80◦C

p value 0.8737 0.8273 0.7888 0.7318

estimators for μ𝑖,𝑘 across various temperatures in Table 14.
Subsequently, Table 15 provides the derived p values for the
estimator 𝜇̂𝑖,𝑘 , all of which surpass 0.05. Therefore, it is suitable
to fit the degradation data of O-rings with the proposed model in
Equation (1).

TABLE 16 The point estimation results for model parameters of O-
rings data.

Parameter 𝜼̂(×𝟏𝟎−𝟐
) 𝒃̂(×𝟏𝟎𝟑) 𝜸̂(×𝟏𝟎−𝟏𝟐

) 𝜹(×𝟏𝟎−𝟏
)

Point estimation 10.4005 −6.1647 8.793069 11.8615

Based on the conclusions drawn in Subsection 5.1, it is advisable
to utilize the proposed improved EM algorithm for estimating
model parameters. The point estimation results of the O-rings are
subsequently derived and presented in Table 16.
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TABLE 17 The interval estimation results for model parameters and predictive reliability indexes.

The proposed method Bootstrap-p method

Parameter 90% 95% 90% 95%

𝜂(×10−2) [9.8601, 12.5887] [9.6405, 12.8449] [98.0221, 346.0354] [96.78659, 356.7403]
𝑏(×103) [−6.1929, −6.1000] [−6.2030, −6.0916] [−5.5745, −5.1538] [−5.5887, −5.1489]
𝛾(×10−12) [5.6553, 14.3152] [5.1182, 15.3049] [2.2511, 3.6968] [2.2158, 3.7099]
𝛿(×10−1) [8.3178, 17.5215] [7.6488, 18.6040] [8.5122, 10.5762] [8.4335, 10.5799]
𝑅(𝑡0)(×10

0
) [0.3798, 0.6069] [0.3594, 0.6267] [0.6420, 0.7163] [0.6379, 0.7307]

𝐸(𝑇0)(×10
2) [3.0438, 5.2860] [2.9037, 5.5823] [6.7510, 9.5561] [6.6365, 9.6892]

𝐸(𝑇𝜔)(×10
2) [2.5443, 4.4120] [2.4270, 4.6588] [5.6266, 7.9637] [5.5312, 8.0746]

𝑡𝑝(×10
2
) [6.6445, 11.9121] [6.3686, 12.6585] [15.4667, 22.4986] [15.1360, 22.9697]

Moreover, utilizing Algorithm 1 and 2 with 𝐵= 5000 replications,
we present detailed interval estimations for parameters (𝜂, 𝑏,
𝛾, 𝛿) and predictive reliability indexes (𝑅(𝑡0), 𝐸(𝑇0), 𝐸(𝑇𝜔) and
𝑡𝑝) under the normal stress level (i.e., 𝑠0 = 25◦C) in Table 17,
respectively. The specified conditions include with 𝑡0 = 300, 𝐷 =
0.7, 𝑋 (𝑡𝜔) = 0.95. Additionally, results from the Bootstrap-p
method are included in Table 17 for comparison. Significant
differences are observed when comparing the outcomes of these
twomethods (i.e., the proposedmethod andBootstrap-pmethod).
Combined with the conclusion derived in Subsection 5.2, we
recommend the proposed method.

At the same time, the runtime of both methods under 𝐵 =5000
is also recorded. The proposed method demonstrates a runtime
of 89.34 s, whereas the Bootstrap-p method requires 7180.17 s,
markedly surpassing the runtime of the proposed method. The
marked disparity in runtimes clearly indicates that the proposed
method can enhance the efficiency of reliability analysis. From a
practical standpoint, it is recommended to employ the proposed
method.

7 Conclusion

In this study, a more realistic model is developed to depict the
accelerated degradation data based on the Gamma process and
the nonlinear accelerated model; an improved point estimation
method and a novel three-step interval estimation method of
model parameters are presented for reliability analysis. First,
considering the unit heterogeneity in practice and combining
the nonlinear accelerated model, a Gamma CSADT model with
random effects is used to depict the accelerated degradation data
for reliability analysis. Given the complexity of the model and
its involvement of latent variables, as well as the susceptibility of
the EM algorithm to initial values, an improved EM algorithm is
proposed. In this algorithm,we perform two consecutive different
M-steps after each E-step, reducing the number of required
initial values from four to two, which not only mitigates the
impact of initial values but also enhances parameter estimation
accuracy. Then, considering the complexity of the model and the
constraint of small sample size and few stress levels, a three-step
interval estimation method of model parameters is established
by dividing them into three distinct parts and addressing them
separately using theGPQmethod,which simplifies the parameter

interval estimation process and enhances the estimation accu-
racy. To demonstrate the performance of the proposed method,
two simulation studies are conducted. In the point estimation
simulation study, under 18 different parameter settings, theRMSE
and RMSPE of the traditional EM algorithm are larger than those
of the proposed improved EM algorithm, which indicates the
effectiveness of the proposed point estimation method. In the
interval estimation simulation study, under different parameter
settings, the coverage percentages of all parameters and predictive
reliability indexes from the proposed method are close to the
nominal levels, with errors within 1%. In contrast, the results
from the existing method are mostly larger than 1%, further
emphasizing the advantage of the proposed interval estimation
method. Finally, a real example of sealing O-rings is presented
to illustrate the feasibility of the proposed method. According to
the estimation results, the interval estimation results of the two
methods (i.e., the proposed method and the Bootstrap-p method)
are different, and the runtime of the Bootstrap method is far
longer than that of the proposed method. Therefore, combined
with the conclusion derived from the Simulation study, we
recommend the proposed method.

This study provides a parameter estimationmethod for a Gamma
CSADT model with random effects. The Gamma CSADT model
has multiple forms, and it is necessary to study other model
forms. In further research, exploring different forms of the
Gamma CSADT model can be considered to gain a more com-
prehensive understanding of its applicability and performance.
In addition, measurement errors in the observed degradation
process may affect the accuracy of reliability analysis, which
should also be considered. Finally, reliability analysis of mul-
tivariate degradation processes is also an area that deserves
attention.

Nomenclature

𝑠𝑘, 𝑘 = 1, 2, … , 𝐾 accelerated stress levels

𝜇 > 0, 𝛾 > 0 rate parameter for Gamma distribution

𝑚𝑖,𝑘 measurement times

𝑠0 normal operating stress level

𝑛𝑘 sample size under 𝑘 th stress level
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CDF cumulative distribution function

𝑋𝑖,𝑗,𝑘 degradation data 𝑖 = 1, 2, … , 𝑛𝑘, 𝑗 =
1, 2, … ,𝑚𝑖,𝑘

Δ𝑋𝑖,𝑗,𝑘 degradation increments

Δ𝑡𝑖,𝑗,𝑘, ℎ𝑖,𝑘 time increments

𝑋𝑡 = 𝑋𝑡 degradation data

𝐸(𝑋𝑡0) the mean of degradation

𝑅(𝑡0) the reliability at time 𝑡0
𝑡𝑝 the quantile lifetime

𝐸(𝑇0) the mean of lifetime

𝐸(𝑇𝜔) the mean RUL at time 𝑡𝜔
𝜁𝑘 standardization of stress levels

𝜂 > 0, 𝛿 > 0 shape parameter for Gamma distribution

RUL remaining useful life

𝛽 random effect parameter

𝑏 accelerated parameter

PDF probability density function

𝐺𝜂,𝑊1, 𝐺𝛾, 𝐺𝛿 generalized pivotal quantity for parameters
{𝜂, 𝑏, 𝛾, 𝛿}

𝑁 the total sample size

𝑓(𝑋𝑡) PDF of 𝑋𝑡
𝐹(𝑋𝑡) CDF of 𝑋𝑡
𝐷 the degradation threshold

𝐹𝑇 CDF of lifetime

𝐹𝑇𝜔 CDF of RUL at time 𝑡𝜔
Θ parameters set

𝜖 predetermined threshold for EM
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APPENDIX A: The detailed derivation of Equation (13)

According to model (1), under the given 𝛽𝑖,𝑘, 𝑖 = 1, 2, … , 𝑛𝑘, 𝑘 =
1, 2, … , 𝐾, the pdf of degradation increment data Δ𝑋 =
{Δ𝑋𝑖,𝑗,𝑘, 𝑗 = 1, 2, … ,𝑚𝑖,𝑘; 𝑖 = 1, 2, … , 𝑛𝑘; 𝑘 = 1, 2, … , 𝐾}

𝑓 (Δ𝑋) =
𝐾∏
𝑘=1

𝑛𝑘∏
𝑖=1

𝑚𝑖,𝑘∏
𝑗=1

×
Δ𝑋𝑖,𝑗,𝑘

𝜂ℎ𝑖,𝑘−1[𝛽 exp (𝑏𝜁)]
𝜂ℎ𝑖,𝑘 𝑒−Δ𝑋𝑖,𝑗,𝑘𝛽 exp(𝑏𝜁)

Γ
(
𝜂ℎ𝑖,𝑘

) , (A1)

Therefore, the log-likelihood function under given 𝛽𝑖,𝑘 can be written as

ln (𝐿) =
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

[(
𝜂ℎ𝑖,𝑘 − 1

)
ln

(
Δ𝑋𝑖,𝑗,𝑘

)
+ 𝜂ℎ𝑖,𝑘 ln

(
𝛽𝑖,𝑘 exp (𝑏𝜁𝑘)

)]

−
𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

[
𝛽𝑖,𝑘 exp (𝑏𝜁𝑘) Δ𝑋𝑖,𝑗,𝑘 + ln

(
Γ
(
𝜂ℎ𝑖,𝑘

))]
.

APPENDIX B: Proof of Equation (22)

Let 𝑈𝑖,𝑗 = Δ𝑋𝑖,𝑗,𝑘𝛽𝑖,𝑘∕𝑋𝑘 , according to [36], it is easy to verify that
(𝑈1,1, 𝑈1,2, … ,𝑈𝑛𝑘,𝑚𝑖,𝑘

) follows the Dirichlet distribution, and the PDF
can be written as

𝑓
(
𝑢1,1, 𝑢1,2, … , 𝑢𝑛𝑘,𝑚𝑖,𝑘

)
=

Γ (𝜂𝑄𝑘)∏𝑛𝑘
𝑖=1

∏𝑚𝑖,𝑘

𝑗=1 Γ
(
𝜂ℎ𝑖,𝑘

) 𝑢𝜂ℎ1,𝑘−11,1
𝑢
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1,2

⋯𝑢
𝜂ℎ𝑛𝑘 ,𝑘−1
𝑛𝑘,𝑚𝑖,𝑘

, (B1)

where 𝑢𝑖,𝑗 > 0,
∑𝑛𝑘

𝑖=1
∑𝑚𝑖,𝑘

𝑗=1 𝑢𝑖,𝑗 = 1. Notice that 𝑍 = ln(
∏𝐾
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∏𝑛𝑘

𝑖=1∏𝑚𝑖,𝑘

𝑗=1 𝑈
ℎ𝑖,𝑘
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), the moment generating function of 𝑍 is thus derived
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Therefore, the 𝑟 th cumulant of 𝑍 can be derived by

𝜅𝑟 (𝜂) =
𝑑𝑟 ln (𝑀𝑍 (𝑡))

𝑑𝑡𝑟
𝑡 = 0 =

𝐾∑
𝑘=1

𝑛𝑘∑
𝑖=1

𝑚𝑖,𝑘∑
𝑗=1

𝜓𝑟−1
(
𝜂ℎ𝑖,𝑘

)
×
(
ℎ𝑖,𝑘

)𝑟

−
𝐾∑
𝑘=1

𝜓𝑟−1 (𝜂𝑄𝑘)𝑄
𝑟
𝑘
. (B3)
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