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Abstract

In electronic warfare information about radio signals is gathered. Parameters as the direction-
of-arrival (DOA) and the frequency can be estimated from sampled data received on antenna
arrays. The objective of this thesis is to investigate the use of circular arrays for joint angle-
frequency estimation (JAFE). A 1-D (azimuth and frequency) and 2-D (azimuth, elevation
and frequency) JAFE algorithm is presented. Both algorithms use phase-mode excitation
and ESPRIT. The 1-D algorithm with spatial smoothing is introduced. With this algorithm
it is possible to estimate signals with similar frequencies, when the elevation is the same and
known for all signals of interest. Simulations demonstrate that when two signals are coherent
and a spatial smoothing factor of two or higher is applied the algorithm is able to estimate
the azimuth correctly. It is also demonstrated that when two signals have the same DOA a
temporal smoothing factor of two is necessary and that more temporal smoothing reduces the
standard deviation of the azimuth estimation. It is shown that the phase-mode excitation
technique introduces a systematic error that is considerably high for few antenna elements
and an even number of elements. It is demonstrated that interpolation can reduce this error
in case a UCA of 5 elements, but not for a UCA of an even number of 12 elements. The
sample rate used for sampling can be adjusted to the Nyquist rate or higher. Simulations
demonstrate that a little bit oversampling reduces the RMSE (Root Mean Square Error) of the
azimuth, elevation and frequency. It shows that after a certain point oversampling increases
the RMSE error of the elevation and especially the frequency estimation. An ESPRIT-based
algorithm for joint angle-frequency-delay estimation is introduced. For the delay estimation,
using a matched filter approach with ESPRIT, it is possible to estimate the delay correctly
for a SNR above 40 dB only, since it is very sensitive to imperfections in the signal separation.
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Chapter 1

Introduction

In wireless communication baseband data signals are modulated on a carrier frequency in order
to transmit them. Since these signals are transmitted wirelessly they can be intercepted from
arbitrary locations as long as the power of a particular signal is not too weak at that particular
location. From intercepted signals a lot of useful information, besides the data they transfer,
can be derived including the directions they are coming from, the delays of multipath rays,
the frequencies and the polarizations. This information can be used for example in electronic
warfare, telecommunications and geophysics. This thesis focuses on joint angle-frequency
estimation (JAFE) for electronic warfare where information of signals can be used to gather
as much information as possible about radio communication in an environment.

1-1 Context

To gather information about the location of some transmitter, special antennas and antenna
arrays are used to find the direction of incoming signals. TNO has a demand for joint angle-
frequency estimation with a circular array. The algorithm used for this estimation should
be able to gather information about frequencies and directions of the radio sources in the
environment.
A lot of research is done on JAFE for the uniform linear array. One drawback is that
linear antenna arrays can only estimate directions from −90 degrees to 90 degrees relative
to any axis perpendicular to the linear array. Circular arrays are able to estimate signals
from 0 to 360 degrees in azimuth and 0 to 90 degrees in elevation. For some purposes the
geometry of a circular array is more convenient than that of a linear array, for example when
they must be mounted around a mast. Another advantage of uniform circular arrays is the
uniform performance from all azimuth angles and the spatial symmetry between the elements
which is advantageous when compensating for mutual coupling [1]. One drawback of circular
arrays is that the array manifold is not of the Vandermonde form like it is for uniform linear
arrays. This structure offers a lot of opportunities for signal processing, like the application
of root-MUSIC (MUltiple SIgnal Classification), ESPRIT (Estimation of Signal Parameters
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2 Introduction

via Rotational Invariance Techniques) algorithm [2, 3] and the spatial smoothing technique
which makes it possible to separate signals that are correlated or coherent [4].

1-2 JAFE techniques

To obtain the DOA and matching frequency of signals different methods could be used. The
maximum likelihood method reaches the lower bound on the estimation variance asymptotic-
cally. In case of multiple parameter estimation the maximum likelihood estimator (MLE) re-
quires a multidimensional optimization problem, which is computationally expensive. There
is a lot of research done and going on about more efficient techniques for the estimation of
signal parameters. The DOA estimators can be divided into two types of estimators: spectral-
based and parametric estimators [5].

A spectrum-based estimator, like the Bartlett method or MVDR (Minimum Variance Dis-
tortionless Response), could be used for DOA estimation and when the DOAs are estimated,
beamforming on the data matrix makes it possible to estimate the matching frequencies. A
disadvantage is that the resolution of the DOAs is not very high. For a circular array antenna
with 8 elements the half-power beamwidth is circa 21 degrees and for an array with 16 ele-
ments the half-power beamwidth is circa 10 degrees [6]. Another disadvantage is that it has
sidelobes. So despite of the attenuation in directions other than the main lobe, signals outside
the center of the main lobe or signals in the sidelobes can still be stronger than the signal in
the direction to be estimated. In that case the frequency of the wrong signal dominates and
thus a wrong result is obtained from the estimator.
When after beamforming two or more signals with different frequencies are obtained the fre-
quency estimation results in multiple frequency estimates. Then it is not clear which frequency
belongs to which signal, which is important information in some situations, for example for
tracking or in case the delay between multipaths is to be estimated.
Another option is to estimate the frequency first and then use a frequency filter, to filter out
the other frequency components. But, as with beamforming, the algorithm does not exactly
estimate the angle-frequency couples and the algorithm does not combine the temporal and
spatial information for better results.
Besides options that operate in two steps a peak-finding algorithm for a 3-D spectrum, with
2-D DOA (azimuth and elevation) and frequency, can be used. Then no beamforming or
filtering is required to suppress other signals. A disadvantage is that it is computationally
not efficient.
To enhance the resolution of the spectral-based estimators the singular value decomposition
can be used to reduce the data matrix to the signal subspace. This is used in for example
MUSIC [2]. Besides the spectral-based estimators there exist parametric estimators, like root-
MUSIC [7], Matrix Pencil [8] and ESPRIT [7]. These techniques can achieve a high resolution.

In literature frequently JAFE-algorithms based on ESPRIT [9] are used. ESPRIT is an
estimation technique which exploits the shift invariant structure of vectors to compute a
parameterized variable, for example the delay, DOA or frequency. This is done from a sig-
nal subspace which is first obtained by performing a singular value decomposition on the
data. DOA estimation in ESPRIT is based on the array geometry, which must have a shift
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1-2 JAFE techniques 3

invariant structure. Therefore it requires accurate calibration. Usually MUSIC has a bet-
ter performance than ESPRIT, but ESPRIT requires less computations [10]. ESPRIT is
also more robust with respect to array imperfections than MUSIC [10]. Cherntanomwong,
Takada and Tsujitested tested the ESPRIT algorithm with and without spatial smoothing in
an anechoïc chamber and outside [11]. Both tests are performed with a uniform linear array
and a SNR of 36 dB. The measurements show that ESPRIT is able te estimate DOAs with
an estimation error below 0.5 degrees.
In 1996 an ESPRIT-based algorithm for joint 2-D-angle-frequency estimation for rectangular
arrays was developed [12]. Here 2-D means that the azimuth and elevation are estimated.
The data matrix is constructed with spatial and temporal samples in the vectors before es-
timating the signal subspace. Then the signal subspace contains orthonormal vectors from
which the frequencies and DOAs can be computed. ESPRIT is only applicable when there
is a Vandermonde structure, although the spacing between the antennas does not have to be
uniform in case some correction is applied [13] [14].

For 2-D angle estimation the geometry has to be 2-D as well, so ESPRIT for L-shaped ar-
rays [15] and uniform circular arrays is developed [16]. Since these arrays span a planar area
they cannot distinguish from which side of the plane the signals come. In order to be able to
uniquely estimate a signal’s direction in three dimensions an array that spans a three dimen-
sional area must be used, such as a spherical array [17] or concentric circular array [18]. With
one or more directional antennas the ambiguity problem of the side from which the signals
impinge the planar array can be solved.
This thesis concentrates on the circular array. For this type of array several possibilities for
joint angle-frequency estimation exists. Some algorithms are based on beamspace transfor-
mation and some on fourth-order cumulants [19]. The technique using fourth-order cumulant
matrices for DOA and frequency estimation uses three cumulant matrices: one reference ma-
trix, one with a spatial sample shift and one with a temporal sample shift. The spatial shifted
matrix is used for the estimation of the DOAs and the temporal shifted matrix is used for the
estimation of the frequencies, just as in ESPRIT. An advantage of fourth-order cumulants is
that they are zero for Gaussian variables. It does not matter if they are white or colored [20].
For short data blocks the result of second-order statistics is better than that of high-order
statistics [21]. This thesis focuses on ESPRIT, which can only be used, but not directly, when
the beamspace transform is applied.

MUSIC and ESPRIT exploit the singular value or eigenvalue decomposition to achieve a high
resolution. These decompositions require the data matrix to be of a rank equal to the number
of signals. When signals are coming from the same direction or have the same frequencies and
and a matrix with only spatial samples in the rows and temporal samples in the columns this
results in a rank deficiency. When sources are coherent or highly correlated, spatial smoothing,
with or without forward-backward averaging [22], can restore the rank of the data matrix.
This technique requires the Vandermonde structure [4], so it can not be directly applied to
the data matrix of a uniform circular array. With phase-mode excitation the array manifold
of the uniform circular array can be transformed to a virtual linear array manifold [23]. Then
spatial smoothing can be applied and algorithms that require the Vandermonde structure, like
root-MUSIC [24] and ESPRIT [10], can be used. This transformation of the array manifold
requires knowledge of the elevation.
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4 Introduction

1-3 Problem Formulation and Thesis Outline

A.N. Lemma has investigated JAFE algorithms extensively for different array geometries and
describes some solutions for the circular array geometry [3]. His work is a basis for this thesis.
There is a interest at TNO in more knowledge about JAFE-algorithms for multiple signals
with a circular array. In electronic warfare all types of signals can be present, for example
coherent signals, signals that are coming from the same direction and signals with a signal
power density below the noise level. The number of antennas that is required for the algo-
rithm to perform well should not be too high. Fewer antennas has the advantage that it costs
less and the size of the whole array can be smaller.

This thesis describes the research for the possibilities in electronic warfare with a circular
array with the following characteristics:

• The algorithm estimates the right combinations of angles and frequencies of multiple
signals with high resolution.

• The algorithm is applicable on a (uniform) circular array with a small number of antenna
elements, preferably between 5 and 10.

• It is important that the algorithm is computationally efficient.

• The algorithm must be able to estimate the parameters of coherent signals and signals
with the same DOA.

• The algorithms must be able to estimate signals with both high and low signal-to-noise
ratio (SNR).

In this thesis the performance of JAFE for circular arrays [16] is investigated for a small
number of antenna elements, between 5 and 20. It is shown that interpolation can improve
the performance of this algorithm as an uneven number of physical antenna elements is used.

First I will introduce the data model in chapter 2. In chapter 3 a description of a trans-
formation of the circular array geometry to a virtual linear array is given. In chapter 4 the
JAFE-algorithm for 1-D (azimuth) and 2-D DOA (azimuth and elevation) estimation is de-
scribed. These algorithms are evaluated in chapter 5. The singular value decomposition is
used to obtain a high resolution. A common problem of DOA and frequency estimation when
the singular value decomposition is used is that the performance deteriorates when the DOAs
or carrier frequencies of two or more signals come close together. Some extra possibilities of
the algorithm are described in chapter 8.
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Chapter 2

The Data Model

To find a good data model the transmitter, channel and receiver must be taken into account.

Transmitter: data are generated by an information source and in case of a digital transmitter
the source produces a bit stream which is modulated according to a certain modulation
scheme. This baseband signal s̄(t) is transformed to a passband signal, r(t) by putting
the data symbols on a certain carrier frequency or frequencies. Information is carried
in the frequency, phase and/or amplitude of the signal.

Channel: once the signal is generated it is transmitted over a wireless channel. The signal
reflects, attenuates, etc. Furthermore there are other signals causing interference and
there are sources causing noise, like radiation from electronics.

Receiver: signals are received by an antenna or antenna array. The analogue signal is
sampled and quantized and some signal processing like beamforming and demodulation
takes place in the receiver.

A simplified data model is used for the described algorithms and simulations. Section 2-1
describes the narrowband assumption, section 2-2 describes the array manifold of the uniform
circular array and section 2-3 describes the received signal representation.

2-1 Narrowband Signals

In case of narrowband signals the bandwidth B of the observed band is much higher than
the bandwidth W of the signals in it. This is depicted in figure 2-1. This implies that the
baseband signals do not change over small time delays and time delays can thus be translated
to a phase shift [3]. The narrowband assumption also states that the center frequency fc of
the observed band is much higher than the bandwidth of the observed band B, which implies
that all signals in that band have the same phase shifts for a certain time delay [3]. This can
be clarified with the following equations.

Master of Science Thesis Joost Geelhoed



6 The Data Model

P [W ]

f [Hz]
fcf

B

W

Figure 2-1: Narrowband signal in observed band

The received signal s(t) be represented as follows:

s(t) = s̄(t)ej2πfct (2-1)

where s̄ is the complex envelope of the signal s(t) (see section 2-3), also called the baseband
signal. When the narrowband assumption holds true the baseband signal does not change
over small time delays τ :

s̄(t− τ) ≈ s̄(t) (2-2)

This is true if |2πWτ | � 1. Then a delay in the received signal s(t) causes a phase shift
determined by the frequency of the signal which is approximately the same as the center
frequency of the observed band B according to the narrowband assumption:

s(t− τ) = s̄(t− τ)ej2πfc(t−τ) ≈ s̄(t)ej2πfc(t−τ) = s(t)e−j2πfcτ (2-3)

2-2 Uniform Circular Array Geometry

All antennas are assumed to be isotropic antennas, which is only possible in theory. In
a uniform circular antenna array all M antennas are equally spaced from each other and
distributed in a circle as in figure 2-2.
The linear spacing between the antenna elements is related to the radius. The relation between
the radius r and the spacing d between the elements can easily be derived and is given in the
following equation:

d = 2r sin( π
M

) (2-4)

where d and r are measured in fractions of the signal wavelength. Spacing d is the length
of the straight line between two elements. The second statement about narrowband signals
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2-2 Uniform Circular Array Geometry 7

Figure 2-2: Circular geometry

states that all frequencies in the observed band B cause the same phase-shift when fc is much
higher than B. Therefore this spacing d in wavelengths holds true for all observed signals in
that band, which simplifies the model of the array manifold, also referred to as the steering
vector. This could lead to biased estimates of the angles if fc is not much higher than B.
When the frequency belonging to that angle is correctly estimated correction for this bias is
possible.
Figure 2-2 depicts the circular array geometry. The dot on the x-axis represents the first
value of the array manifold. The other dots represents the other antennas and θ represents
the elevation, φ the azimuth and r the radius of the antenna array. The azimuth angle
between the first antenna and the mth antenna is represented by φm and φm = 2πm

M . The
array manifold this figure belongs to is represented by a column vector auca(θ, φ) [25]:

auca(θ, φ) =


a1(θ, φ)
a2(θ, φ)

...
aM (θ, φ)

 =


ejkr sin(θ) cos(φ)

ejkr sin(θ) cos(φ− 2π
M

)

...
ejkr sin(θ) cos(φ− 2(M−1)π

M
)

 (2-5)

Here θ and φ is the elevation and azimuth angle in radians, k = 2π
λ , in which λ is the wave-

length of the signal, is the wavenumber in radians per meter and r is the radius expressed in
meters. To prevent ambiguities in the phase angle estimation, just like in a uniform linear
array, the element spacing must be less than λ

2 [2].
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8 The Data Model

Physical Effects of the Circular Geometry
The resolution of the elevation angles is at best when the signals arrive normal to the antenna
array. This is because the result of sin θ, varies the most for small changes in θ when θ is
close to 0 degrees. Noise will cause the estimates of the elevation to deviate around the true
value, but when the resolution is poor this deviation will result in bigger errors than when
the resolution is good. So the smaller the elevation angles the more accurate the elevation
estimation is.

2-3 Complex Signal Representation

The frequency spectrum is divided in frequency bins and signals are modulated on a certain
carrier frequency to transmit the original baseband signals. After the received signal passes
a quadrature signal detector the carrier frequency, fr,i, is down-converted to an intermediate
frequency (IF) fIF,i = fr,i − flo. Here flo is the frequency of the local oscillator of the
quadrature signal detector. From now on fIF,i is indicated by fi and s(t) represents the
signal after they passed the quadrature detector. The ith down-converted signal, si(t), is
represented by the following formula [3]:

si(t) = s̄i(t)ej2πfit (2-6)

where s̄i(t) is the complex envelope of the ith received signal and fi is the intermediate
frequency of the ith signal.

Every antenna receives the signal with a phase-shift determined by the array manifold and
every signal has is multiplied with a complex scalar β. βi = bie

−j2πυi , in which the attenuation
bi and phase shift υi is caused by factors as the propagation distance and source power. The
ith signal that is received on the mth antenna is described by the following equation:

xm(t) = amβisi(t) (2-7)

The received signals are sampled with sample rate fs, which must be at least twice the
(maximum) intermediate frequency according to Nyquist Sampling Theorem [26] in order to
estimate frequencies up to the intermediate frequency.

xm[n] = xm(nTs) = xm
( n
fs

)
with n = 0, 1, . . . , N − 1 (2-8)

Noise at the antenna elements is modeled by adding complex white Gaussian noise to the
received signals.

The received signals are represented by a down-converted signal s[n], an array manifold vector
auca and a complex scalar β representing the amplitude and phase of the received signal. A
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2-3 Complex Signal Representation 9

data matrix X, which is used in the algorithms, can be constructed by collecting the samples
on each antenna element in a different row.

X = AucaBS +W (2-9)

with

Auca =
[
auca(θ1, φ1) auca(θ2, φ2) . . . auca(θdφd)

]
∈ CM,d (2-10)

B =


β1 ∅

β2
. . .

∅ βd

 ∈ Cd,d (2-11)

S =


s1[0] s1[1] . . . s1[N − 1]
s2[0] s2[1] . . . s2[N − 1]
...

... . . . ...
sd[0] sd[1] . . . sd[N − 1]

 ∈ Cd,N (2-12)

W =


w1[0] w1[2] . . . w1[N − 1]
w2[0] w2[2] . . . w2[N − 1]
...

... . . . ...
wM [0] wM [2] . . . wM [N − 1]

 ∈ CM,N (2-13)

(2-14)

where d is the number of sources, M is the number of antennas and N is the number of
samples. The array manifold auca(θi, φi) describes the phase shifts between the antenna
elements that are caused by the ith source. This depends on the geometry of the antenna
array and the direction from which the signal impinges the array. The direction of the ith
source is defined by the azimuth φi and the elevation θi. βi = bie

−j2πυi is a complex scalar in
which the attenuation bi and phase shift υi due to the propagation and source is taken into
account. The complex white Gaussian noise of the nth sample for the mth antenna element is
represented by wm[n]. These noise samples of each element are collected in the noise matrix
W .
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Chapter 3

Transformation of Array Manifold

In a uniform linear array incoming plane waves arrive with a certain constant time delay be-
tween the antenna elements. In case of narrowband signals this results in the Vandermonde
structure [27]. Unfortunately the uniform circular array is not of this form. A way to restore
this form is with the theory of phase-mode excitation, which is described in Appendix B. The
most important steps of the transformation are described in section 3-1.

3-1 Transformation to Beamspace

To understand the beamspace transformation it is important to understand that each element
m of the array manifold of a UCA can be expressed as a sum of Bessel-functions [28]:

aUCA,m(θ, φ) = ejkr sin(θ) cos(φ−2π m
M

) (3-1)

=
∞∑

q=−∞
jqJq(kr sin(θ))ejq(φ−2π m

M
) for m = 0, 1, . . . ,M − 1 (3-2)

where aUCA,m(θ, φ) represents the mth entry of the uniform circular array manifold, which is
described by a sum of Bessel-functions from q = −∞ to∞. Jq(kr sin (θ)) represents the Bessel-
function of the qth order with kr sin (θ) as argument. Then a discrete Fourier Transform is
performed over the array manifold. This results in the following Fourier Coefficients:
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12 Transformation of Array Manifold

ap(θ, φ) = 1
M

M−1∑
m=0

aUCA,m(θ, φ)ej2π
m
M
p (3-3)

= 1
M

M−1∑
m=0

∞∑
q=−∞

jqJq(kr sin(θ))ejq(φ−2π m
M

)ej2π
m
M
p (3-4)

= 1
M

∞∑
q=−∞

jqJq(kr sin(θ))ejqφ
M−1∑
m=0

ej2π
m
M

(p−q) (3-5)

where p is the phase-mode number. The last sum equals M in case the difference between p
and q is M times an integer; q − p = Ml where l is an integer. Otherwise it is zero, because
the complex numbers over the unity circle cancel each other out. Therefore instead of the
sum over all values of q the sum of l integers from −∞ to ∞, where q is replaced by p+Ml,
is used to represent this equation. This leads to the following equation:

ap(θ, φ) =
∞∑

l=−∞
jp+MlJp+Ml(kr sin(θ))ej(p+Ml)φ for p = −∞, . . . ,∞ (3-6)

0 2 4 6 8 10
−0.5

0

0.5

1

J
m
(k

r
si
n
θ
)

kr sin θ
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 2
 3
 4
 5
 6
 7
 8
 9
10

Figure 3-1: Behaviour of the Bessel Functions for varying orders (order is given in the legend)
and arguments

When the order of the Bessel-function becomes larger than the argument, the result is more
or less zero [2]. This is illustrated in figure 3-1 where each line represents the Bessel-function
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3-1 Transformation to Beamspace 13

of the order indicated by the legend. The goal now is to choose the number of phase-modes
p and antennas M in a way that only when l = 0 the Bessel-function within the summation
ap(θ, φ) is not approximately zero. This happens when p is small and M is big. Hyberg gives
the following equation to compute the number of the maximum phase-mode P that cannot
be neglected [28].

P = bkrc = b2πr
λ
c (3-7)

When the spacing between the antenna elements is fixed the radius r increases as the number
of elements M increases. If M and P are well chosen equation 3-6 can be simplified to the
following equation:

ap(θ, φ) ≈ jpJp(kr sin(θ))ejpφ (3-8)

and after multiplying each pth element by j−p the resulting virtual uniform circular array
manifold ao(θ, φ) is as follows:

ao(θ, φ) = Co



j−PJ−P (kr sin(θ))e−jPφ
...

j0(kr sin(θ))
...

jPJP (kr sin(θ))ejPφ


=



J−P (kr sin(θ))e−jPφ
...

J0(kr sin(θ))
...

JP (kr sin(θ))ejPφ


(3-9)

where

C0 =



j−P

. . .
J0

. . .
jP


(3-10)

The number of virtual elements Mp = 2P + 1, which is always an odd number. The phases of
the elements in this virtual array are defined by the azimuth ot the signals and the magnitudes
are dependent on the elevation. When the elevation θ is the same for all signals and known,
the Vandermonde form can be obtained by multiplying the approximation with Jζ [29]:

Jζ =



1
J−P (kr sin(θ))

. . .
1

J0(kr sin(θ))
. . .

1
JP (kr sin(θ))


(3-11)
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14 Transformation of Array Manifold

where ζ = kr sin(θ).

This leads to the following formula for the virtual ULA aζ(φ):

aζ(φ) = Jζao(θ, φ) =



e−jPφ

...
1
...

ejPφ


(3-12)

3-2 Errors due to Finite Number of Elements

The phase-mode excitation transform is based on a perfect circle and a circular antenna array
only approaches a circle. A bias in the azimuth estimation is caused since the array is not
a perfect circular due to the finite number of elements [30]. Especially when the number of
elements is small a circle is not approached very well, so errors occur. This errors appear
as higher-order terms in equation 3-6. These higher-order terms have a magnitude that is
defined by the Bessel-function. The higher the order of this Bessel-function the smaller the
magnitude. The magnitude is also small when the argument, kr sin θ, of the Bessel-function
is small. So for a fixed kr the error is the highest when the elevation θ = 90. Belloni and
Koivunen describe a method to reduce this error [30]. Since the error depends on the DOA
it has to estimate the DOA first.
When applying a DOA estimation algorithm as ESPRIT or root-MUSIC the performance
seems te be much better when an odd number of elements is used than when an even number
of elements is used [30]. This can also be seen in figure 5-1 for an algorithm based on
ESPRIT.
In equation 3-6 the terms where l ≥ 1 are ignored in the model, but these terms give an
systematic error in some cases. Especially the first order error, where l = 1 or l = −1, has
a big contribution to the error as can be seen in table 1 in [30]. In [30] also an expression
for the first order error, ε(1), which is represented in 3-13. This error consists of two parts:
ε(1) = ε

(1)
1 + ε

(1)
2 . In this error ε(1)

1 is the error caused by the l = 1 term and ε(1)
2 is the term

caused by the l = −1 term.
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3-2 Errors due to Finite Number of Elements 15

ε
(1)
1 =



j(M+P )J(M+P )(ζ)e−j(M+P )φ

j(M+P−1)J(M+P−1)(ζ)e−j(M+P−1)φ

...
jMJM (ζ)e−jMφ

...
j(M−P+1)J(M−P+1)(ζ)e−j(M−P+1)φ

j(M−P )J(M−P )(ζ)e−j(M−P )φ


(3-13)

ε
(1)
2 =



j(M−P )J(M−P )(ζ)ej(M−P )φ

j(M−P+1)J(M−P+1)(ζ)ej(M−P+1)φ

...
jMJM (ζ)ejMφ

...
j(M+P−1)J(M+P−1)(ζ)ej(M+M−1)φ

j(M+P )J(M+P )(ζ)ej(M+P )φ


(3-14)

Except for the exponential part ε(1)
2 is a flipped version of ε(1)

1 . The exponential parts are
flipped conjugated versions of each other. In figure 3-1 it can be seen that for small ζ the
Bessel-functions of small orders have a much bigger amplitude than bessel-functions of higher
orders. The effect of this characteristic is that in the first-order error the terms where the
order of the Bessel-function is small have the largest influence on the error. Especially the
parts where J(M−P )(ζ) have a big contribution. The lower part of ε(1)

1 and the upper part of
ε

(1)
2 have a small order Bessel-function and only those parts are therefore taken into account
in the following equations, although the same principles described in the part below hold true
for these ignored parts. The two vectors are combined by summing them and ignoring the
upper part and the center of ε(1)

1 and ignoring the lower part and center of ε(1)
2 . When the

array manifold is transformed to the Vandermonde form the error is multiplied by Co and Jζ .
Then the error looks as follows:

bζ(φ) = Jζao(φ) + JζCoε
(1) = aζ(φ) + JζCoε

(1) (3-15)

=



e−jPφ

e−j(P−1)

...
1
...

ej(P−1)

ejPφ


+



j(M−2P ) J(M−P )(ζ)
JP (ζ) ej(M−P )φ

j(M−2P+2) J(M−P+1)(ζ)
JP−1(ζ) ej(M−P+1)φ

...
. . .
...

jM
J(M−P+1)(ζ)
J−P+1(ζ) e−j(M−P+1)φ

jM
J(M−P )(ζ)
J−P (ζ) e−j(M−P )φ


(3-16)
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16 Transformation of Array Manifold

The following equations are now useful:

Jp(ζ) = (−1)pJp(ζ) (3-17)
jM−2p = jMj−2p = jM (−1)−p (3-18)

These equations can be used to transform 3-15:

bζ(φ) = Jζao + JζCoε
(1) = aζ(φ) + JζCoε

(1) (3-19)

=



e−jPφ

e−j(P−1)

...
1
...

ej(P−1)

ejPφ


+



(−1)−P jM J(M−P )(ζ)
JP (ζ) ej(M−P )φ

(−1)−P+1jM
J(M−P+1)(ζ)
JP−1(ζ) ej(M−P+1)φ

...
. . .
...

(−1)P−1jM
J(M−P+1)(ζ)
JP−1(ζ) e−j(M−P+1)φ

(−1)P jM J(M−P )(ζ)
JP (ζ) e−j(M−P )φ


(3-20)

=



e−jPφ[1 + (−1)−P jM J(M−P )(ζ)
JP (ζ) ejMφ]

e−j(P−1)φ[1 + (−1)−P+1jM
J(M−P+1)(ζ)
JP−1(ζ) ejMφ]

...
. . .
...

ej(P−1)φ[1 + (−1)P−1jM
J(M−P+1)(ζ)
JP−1(ζ) e−jMφ]

ejPφ[1 + (−1)P jM J(M−P )(ζ)
JP (ζ) e−jMφ


(3-21)

When ULA-ESPRIT is used the estimate φ the upper and lower Mp − 1 elements of the aζ
are selected.

aa,ζ(θ) = 4a,θaζ(θ) (3-22)
ab,ζ(θ) = 4b,θaζ(θ) (3-23)

where

4a,θ = [IMp−1 01] (3-24)
4b,θ = [01 IMp−1] (3-25)
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3-2 Errors due to Finite Number of Elements 17

Then the Moore-Penrose pseudo-inverse, indicated by †, is used to obtain ejφ:

ejφ = a†b,ζ(θ)aa,ζ(θ) (3-26)
= (aHb,ζab,ζ)−1aHb,ζaa,ζ(θ) (3-27)

Since (aHb,ζab,ζ)−1 is only a scalar and φ, the parameter of interest, is defined by the phase of
the obtained result, this scalar can be ignored. So the equation becomes as follows:

arg{ejφ} = arg{aHb,ζaa,ζ(θ)} (3-28)

Then the complex conjugate of the pth element of ab,ζ is multiplied by the pth element of
aa,ζ :

aHb,ζaa,ζ(θ) = sum{a∗P,ζaP−1,ζ(θ) + a∗P−1,ζaP−2,ζ(θ) + . . . + (3-29)
a∗−P+1,ζa−P+2,ζ(θ) + a∗−P,ζa−P+1,ζ(θ)} (3-30)

Each mth element in this Mp − 1-element sum has a counterpart at position Mp − 1−m. In
reality bζ(φ) instead of aζ(φ) is used and therefore an error is present in the terms in the sum.
Then the errors in these counterparts cancel each other out in case an odd number of elements
is used. This is shown by the following equations for the first and last elements in the sum,
where bp,ζ is the pth element of bζ(φ). For the following equation the Bessel-functions, which
are real scalars, are interchanged:

Y =
J(M−P+1)(ζ)

JP (ζ) (3-31)

Z =
J(M−P )(ζ)
JP (ζ) (3-32)

This works as follows:

b∗P,ζbP−1,ζ(θ) + b∗−P+1,ζb−P,ζ(θ) (3-33)
=

[
e−jPφ[1 + (−1)−P jMZejMφ]

]∗[
e−j(P−1)φ[1 + (−1)−P+1jMY ejMφ]

]
+ (3-34)[

ej(P−1)φ[1 + (−1)P−1jMY e−jMφ]
]∗[
ejPφ[1 + (−1)P jMZe−jMφ

]
(3-35)
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18 Transformation of Array Manifold

The following equations are used to simplify equation 3-33:

(uv)∗ = v∗u∗ (3-36)
(1 + u)∗ = (1 + u∗) (3-37)

(jM )∗ = (−j)M (3-38)

The order of the variables does not matter in case the variables are just values instead of
vectors. So equation 3-33 can be rewritten to:

b∗P,ζbP−1,ζ(θ) + b∗−P+1,ζb−P,ζ(θ)
=

[
ejPφ[1 + (−1)−P (−j)MZe−jMφ]

] [
e−j(P−1)φ[1 + (−1)−P+1jMY ejMφ]

]
+[

e−j(P−1)φ[1 + (−1)P−1(−j)MY ejMφ]
] [
ejPφ[1 + (−1)P jMZe−jMφ

]
= eiφ

[
[1 + (−1)−P (−j)MZe−jMφ][1 + (−1)−P+1jMY ejMφ] + (3-39)
[1 + (−1)P−1(−j)MY ejMφ][1 + (−1)P jMZe−jMφ]

]
When the term after ejφ is just a scalar or in other words when it has no phase, there will be
no bias.

[
[1 + (−1)−P (−j)MZe−jMφ][1 + (−1)−P+1jMY ejMφ] + (3-40)

[1 + (−1)P−1(−j)MY ejMφ][1 + (−1)P jMZe−jMφ
]

=
[
[1 + (−1)−P (−j)MZe−jMφ + (−1)−P+1jMY ejMφ + (−1)−2P+1Y Z] + (3-41)

[1 + (−1)P−1(−j)MY ejMφ + (−1)P jMZe−jMφ + (−1)−2P−1Y Z
]

(3-42)

This equation is a scaler when the phase-terms cancel each other out:

(−1)−P (−j)MZe−jMφ + (−1)P jMZe−jMφ = 0 (3-43)
jM + (−j)M = 0 (3-44)

(−1)M (j)M + jM = 0 (3-45)

and

(−1)−P+1jMY ejMφ + (−1)P−1(−j)MY ejMφ = 0 (3-46)
jM + (−j)M = 0 (3-47)

(−1)M (j)M + jM = 0 (3-48)

Joost Geelhoed Master of Science Thesis



3-2 Errors due to Finite Number of Elements 19

So if (−1)M = −1 the terms cancel each other out. This happens if and only if M is odd.
Therefore the error will be much bigger if the number of antenna elements is even then if it
is odd.

Effect of the Elevation on the Estimation Performance
The transformation of the UCA manifold to a ULA manifold is a transformation of the
geometry and has effect on the estimation performance for different angles. If the argument
of the Bessel-function is small, the non-zero terms of the Bessel-functions in formula 3-6
are smaller, so it is more appropriate the discard them. So the estimation of the elevation
and azimuth should be less biased if θ is close to zero, which is the case at angles that are
perpendicular to the plane.
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Chapter 4

ESPRIT-Based JAFE

The Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algo-
rithm gives numerical estimates from data that have a shift invariant structure. It attempts
to separate the d signals from the noise by applying a singular value decomposition (SVD),
which works in case the data matrix has a column rank d and M − 1 ≥ d, where M is the
number of antenna elements. This results in a shift invariant signal subspace. This shift
invariance makes it possible to estimate the parameters.
This chapter first describes JAFE for uniform linear arrays. The ESPRIT algorithm for 1-D
DOA estimation with a UCA is described in section 4-2. Then it describes the ESPRIT
algorithm for 2-D DOA estimation in section 4-3, which a simple version of the UCA-JAFE
algorithm of Tuo Fu, Shi Jin, and Xiqi Gao [16]. This is followed by the extension of the
algorithm to a JAFE algorithm for circular arrays in 4-4.

4-1 ULA JAFE

The array manifold matrix of an ULA for d signals is described by the following equation:

A =
[
a(θ1) a(θ2) . . . a(θd)

]
(4-1)

=


1 1 . . . 1

ei2π41 sin θ1 ei2π41 sin θ2 . . . ei2π41 sin θd

...
... . . . ...

ei2π4M−1 sin θ1 ei2π4M−1 sin θ2 . . . ei2π4M−1 sin θd

 (4-2)

where θ is the direction of the signal in degrees, M is the number of antenna elements and 4
is the element spacing expressed in wavelengths of the signal. The shift-invariant structure of
the ULA manifold vectors can be used the estimate the DOAs. In standard ULA-JAFE [3]
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22 ESPRIT-Based JAFE

as described by A.N. Lemma first the data matrix X, as described in 2-9, is extended with
temporal smoothing. This is done in order to obtain a shift-invariant structure in the columns
from which the frequencies of signals can be estimated. With a temporal smoothing factor
m this results in a matrix Xm which consists of m time-shifted versions of X stacked upon
each other. To construct this matrix Xm consider the following vector xk , which represents
a sample vector of the data matrix X:

xk = As[k] ∈ CM,1 (4-3)
(4-4)

where A is consists of the ULA manifolds and the down-converted signals s[k]. A signals
s[k] can be represented by ej2πfks̄[k]. In this equation s̄ is the baseband signal and f is the
frequency of the signal. With this vector the temporal smoothed data matrix is formed as
follows [3]:

Xm =


x0 x1 . . . xN−m
x1 x2 . . . xN−m+1
...

... . . . ...
xm−1 xm . . . xN−1

 (4-5)

=


A
[
s̄[0] Ωs̄[1] . . . ΩN−ms̄[N −m]

]
AΩ

[
s̄[1] Ωs̄[2] . . . ΩN−ms̄[N −m+ 1]

]
...

...
...

AΩm−1
[
s̄[m− 1] Ωs̄[m] . . . ΩN−ms̄[N − 1]

]

 (4-6)

where for d sources,

s̄[k] =


s̄1[k]
s̄2[k]
...

s̄d[k]

 (4-7)

,

Ω =


ρ1

ρ2
. . .

ρd

 (4-8)
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4-1 ULA JAFE 23

and ρi = ej2πfi .
According to the narrowband assumption the following relation holds true for the baseband
signals s̄(t):

s̄[n] ≈ s̄[n+ 1] ≈ · · · ≈ s̄[n+m] (4-9)

Using this relation the stacked data matrix of 4-78 can be modeled as follows:

Xm = AmFs (4-10)

where

Am =


A
AΩ
...

AΩm−1

 (4-11)

and

Fs =
[
s[0] Ωs[1] . . . ΩN−ms[N −m]

]
(4-12)

The stacking causes a shift-invariant structure for Ω, ignoring A, when the signals are nar-
rowband. This Ω contains the frequencies of the signals and must be estimated in order to
compute the frequencies. The array manifolds of each signals are not directly available in
practice, but are present in the signal subspace, which can be estimated with help of the
singular value decomposition (SVD). The columns of the signal subspace Um,s have a shift
invariant structure from which Ω can be estimated [3]. This works as follows. First the signal
subspace of the extended data matrix Ym is estimated:

Xm = UmΣmV
H
m (4-13)

= [Um,s Um,n]
[
Σm,s 0

0 Σm,n

]
[Vm,s Vm,n]H (4-14)

The diagonal matrix Σm contains the singular values of the signals and the noise. If the
signal-to-noise ratio is high enough and the matrix has rank d, the first d largest singular
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values correspond to the singular values of the signal. From Um the, mM × d sized, signal
subspace Um,s can be extracted. Here M is the number of antenna elements.

Um,s is a mixture of the array manifold:

Um,s = AmT
−1 (4-15)

where T is an d× d transition matrix.

From Am, m submatrices can be extracted which all contain A, see equation 4-11. To estimate
the DOAs from A with ESPRIT, the upper M − 1 and lower M − 1 rows must be selected
first. Since an extended matrix is used which consists of stacked versions of X and thus A,
from all these stacked matrices the upper and lower M − 1 rows can be used for the DOA
estimation. An extended selection matrix can be used to extract m times M − 1 upper and
lower rows. This is done with Im, an identity matrix of size m, and the kronecker product:

4a,m,θ = Im ⊗4a,θ (4-16)
4b,m,θ = Im ⊗4b,θ (4-17)

where

4a,θ = [IM−1 01] (4-18)
4b,θ = [01 IM−1] (4-19)

Then Ua,θ and Ua,θ can be selected from Us,m:

Ua,θ = 4a,m,θUm,s (4-20)
Ub,θ = 4b,m,θUm,s (4-21)

Although the left singular signal subspace is a mix of the array manifolds the following
relationship holds true:

Ua,θ = 4a,m,θUm,s = 4a,θAmT
−1 (4-22)

Ub,θ = 4b,m,θUm,s = 4b,θAmT
−1 = 4a,θAmΘulaT

−1 (4-23)

where
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Θula =


ej2π4 sin θ1

ej2π4 sin θ2

. . .
ej2π4 sin θd

 (4-24)

Then:

U †x,θUy,θ = TθT−1 (4-25)

An eigenvalue decomposition on U †x,θUy,θ gives the eigenvalues on the diagonal of diagonal
matrix Θula and the eigenvectors in matrix T. Then the final step is to calculate the azimuth
angles from the eigenvalues. The diagonal of Θula contains d elements. The ith eigenvalue is
described by ejθi , so the ith azimuth can be computed as follows:

θi = sin {arg(ej2π4 sin θi)
2π4 } (4-26)

To estimate the frequencies Ω must be estimated by from the extended array manifold 4-84.
The first step is selecting the right submatrices Ua,Ω and Ub,Ω from Um,s as follows:

Ua,Ω = 4a,M,ΩUm,s (4-27)
Ub,Ω = 4b,M,ΩUm,s (4-28)

where the selection matrices Ja,Ω and Jb,Ω are formed in the following way:

4a,M,Ω = [Im−1 01]⊗ IM (4-29)
4b,M,Ω = [01 Im−1]⊗ IM (4-30)

The obtained matrices Ua,Ω and Ub,Ω can be expressed as follows:

Ua,Ω = Aa,ΩT
−1 (4-31)

Ub,Ω = Ab,ΩT
−1 = Aa,ΩΩT−1 (4-32)
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where Aa,Ω contains the first and Ab,Ω contains the last (m − 1)M rows of Am and the
transition matrix T here is the same as for the DOA estimation. This is what makes it
possible to match the parameters with ESPRIT. Using the same matrix T for both DOA and
frequency estimation from this temporal smoothed matrix is called joint diagonalization. The
matching frequencies can be calculated from Ω and Ω can be obtained as follows [3]:

U †a,ΩUb,Ω = TA†a,ΩAa,ΩΩT−1 = TΩT−1 (4-33)
(4-34)

Since T is already obtained from the eigenvalue decomposition for DOA estimation it can be
used here to calculate diagonal matrix Ω from TΩT−1. Then the final step is to calculate the
frequencies from the ith value on the diagonal of Ω:

fi = argρ
2π (4-35)

4-2 Standard ESPRIT for 1-D DOA Estimation

In standard ESPRIT the SVD is performed on the ULA data matrix. When a UCA is used the
data matrix X must be transformed to a virtual ULA matrix Yo with the technique described
in chapter 3. This is done by left multiplying the data with a Fourier transform matrix V H

which results in a matrix with N data samples on Mp = 2P + 1 rows, which represent the
phase modes [31]. This is multiplied with Co, see 3-10.

Yo = FHo X = CoV
HX ∈ C2P+1,N (4-36)

V H =
√
M [w−P . . . w0 . . . wP ]T (4-37)

wHp = 1
M [1 ej2πp/M . . . ej2πpM/N ] (4-38)

This transformation to Yo is performed on X. The model of X is as follows: X = AucaBS.
The column vectors are described by the array manifold Auca. This analysis focuses on Auca,
ignoring B and S

Ao = FHo A = CoV
HAuca (4-39)

Then for d signals Ao looks as follows:

Ao = [ao(θ1, φ1) ao(θ2, φ2) . . . ,ao(θd, φd)] (4-40)
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The columns of Ao contain the transformed array manifolds ao(θ, φ), which contains Mp =
2P + 1 complex values:

a(θ, φ)o =
√
M



J−P (kr sin(θ))e−jPφ
...

J0(kr sin(θ))
...

JP (kr sin(θ))ejPφ


(4-41)

When the elevation θ is the same for each source and known, or some elevation angle is chosen,
the Vandermonde form can be obtained by multiplying the approximation with Jζ [29], where
ζ = kr sin(θ), see equation 3-11. Then the multiplications performed on Auca are as follows:

Aζ = JζF
H
o A = JζCoV

HAuca (4-42)

where

Aζ = [aζ(φ1) aζ(φ2) . . . ,aζ(φd)] (4-43)

and

aζ(φ) =



e−jPφ

...
1
...

ejPφ


(4-44)

Then the model of Y is as follows:

Y = AζBS (4-45)

After complex white Gaussian noise is added to X in the simulation it is transformed too.
Then a singular value decomposition on Y is performed, the signal and noise subspace, Us
and Un respectively, are obtained:

Y = UΣV H (4-46)

= [Us Un]
[
Σs 0
0 Σn

]
[Vs Vn]H (4-47)
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The diagonal matrix Σ contains the singular values of the signals and the noise sorted by the
magnitudes in descending order. If the signal-to-noise ratio is high enough and the matrix
is not rank deficient the first d largest singular values correspond to the singular values of
the signal. From U the signal subspace M × d sized Us can be extracted, which contains the
signal direction vectors.
Us is a mixture of the array manifolds:

Us = AζT
−1 (4-48)

where T is an d× d transition matrix, which describes how the estimated array manifolds are
mixed.
Then with selection matrices 4a,Φ and 4b,Φ two submatrices are selected form the signal
subspace:

Ux,Φ = 4a,ΦUs (4-49)
Uy,Φ = 4b,ΦUs (4-50)

where

4a,Φ = [IM−1 01] (4-51)
4b,Φ = [01 IM−1] (4-52)

Due to the shift invariance in Aζ the obtained matrices Ua,Φ and Ub,Φ can be expressed as
follows [3]:

Ua,Φ = 4a,ΦUs = 4a,ΦAζT
−1 (4-53)

Ub,Φ = 4b,ΦUs = 4b,ΦAζT
−1 = 4a,ΦAζΦT−1 (4-54)

where

Φ =


ejφ1

ejφ2

. . .
ejφd

 (4-55)

Then:
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U †x,ΦUy,Φ = TΦT−1 (4-56)

An eigenvalue decomposition on U †x,ΦUy,Φ gives the eigenvalues in matrix Φ and the eigenvec-
tors in matrix T. Then the final step is to calculate the azimuth angles from the eigenvalues.
The diagonal of Φ contains d elements. The ith element is described by ejφi , so the ith
azimuth can be computed as follows:

φi = arg(ejφi) (4-57)

4-3 2-D Direction of Arrival Estimation

This algorithm is a simple version of the UCA-JAFE algorithm of Tuo Fu, Shi Jin, and Xiqi
Gao [16]. For 2-D DOA estimation the UCA manifold must be transformed according to
equation 4-39 in order to obtain array manifolds of the form of equation 4-41.
After the beamspace transformation, the columns of Ao contain the virtual linear array man-
ifold ao(θ, φ) that consists of Mp elements. Each element p is described as follows [31]:

ao,p(θ, φ) =
√
MJp(kr sin(θ))ejpφ for − P < p < P (4-58)

To find both the elevation and azimuth angles the following relationship of the Bessel function
can be used [31]:

2p
ζ
Jp(ζ) = Jp−1(ζ) + Jp+1(ζ) (4-59)

When ζ is replaced by kr sin(θ) this equation looks as follows:

2p
krsin(θ)Jp(kr sin(θ)) = Jp−1(kr sin(θ)) + Jp+1(kr sin(θ)) (4-60)

From the top to the bottom every element of ao(θ, φ) represents the exited phase-mode p
beginning at −P and incremented by 1 until row P . So when three submatrices are formed
by selected the upper, middle and lowerMp−2 rows, these matrices have a similar relationship:

Λa(θ, φ)o,y = sin θejφa(θ, φ)o,x + sin θe−jφa(θ, φ)o,z (4-61)
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where

Λ = 2
kr



−P + 1
−P + 2

. . .
0

. . .
P − 2

P − 1


(4-62)

,
For multiple signals Ax, Ay and Az can be extracted from A, where Ax contains the upper
Mp − 2 rows, Ay contains the middle Mp − 2 rows and Az contains the lower Mp − 2 rows.
Subsequently this equation can be rewritten to:

ΛAy = ΥAx + Υ∗Az (4-63)

=
[
Ax Az

]
×
[

Υ
Υ∗

]
(4-64)

where for d sources

Υ =


ψ1

ψ2
. . .

ψd

 (4-65)

and ψi = sin θiejφi . Of course the array manifold Ao is not available, but Us = AoT
−1 is

available after the selection of the first d columns of the signal subspace that is the output
of the singular value decomposition performed on Yo. The relationship still holds true for the
rows of Us. So now the same selection of three matrices from Ao is done for Us. The following
multiplication must be done to select the right submatrices:

Us,x = 4xUs (4-66)
Us,y = 4yUs (4-67)
Us,z = 4zUs (4-68)

where the selection matrices 4x, 4y and 4z are built as follows:
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4x = [IMp 0Mpx1 0Mpx1] (4-69)
4y = [0Mpx1 IMp 0Mpx1] (4-70)
4z = [0Mpx1 0Mpx1 IMp] (4-71)

Equation 4-64 can be transformed to estimate Υ. When the system is overdetermined unique
solutions for ψ can be obtained. This happens when Mp − 2 > 2d [32].

[
Υ
Υ∗

]
= [Ax Az]†ΛAy (4-72)

where † is used to denote the Moore-Penrose pseudo-inverse. Since Us = AζT
−1 the subma-

trices of the subspace have the same relationship with T : Us,x = AxT
−1, Us,y = AyT

−1 and
Us,z = AzT

−1. Therefore the following equation can be used to estimate Υ with an eigenvalue
decomposition [32]:

[
TΥT−1

TΥ∗T−1

]
= [Us,x Us,z]†ΛUs,y (4-73)

By taking the eigenvalues of TΥT−1, which is the upper half of the obtained matrix after the
right-hand side multiplication, the azimuths and elevations can be obtained with the following
formulas [31]:

θi = arcsin(|ψi|) (4-74)
φi = arg(ψi) (4-75)

This part of the algorithm can estimate the 2-D DOAs of up to bMp−2
2 c uncorrelated signals

[33].

4-4 Joint Angle-Frequency Estimation

Just as in JAFE for ULAs the data matrix Y used for DOA estimation has to be extended
in order to estimate the frequencies. This is done in a similar way as for ULA-JAFE. Let yk
represent a sample vector of the data matrix:
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yk = As[k] ∈ CM,1 (4-76)
(4-77)

where A can be the transformed array manifold Ao or Aζ and s contains the down-converted
signals, which can be represented as si[k] = s̄[k]ei2πfik, where s̄[k] is the baseband signal and
fi is the frequency of the ith signal. Then the new data matrix is formed as follows:

Ym =


y0 y1 . . . yN−m
y1 y2 . . . yN−m+1
...

... . . . ...
ym−1 ym . . . yN−1

 (4-78)

=


A
[
s̄[0] Ωs̄[1] . . . ΩN−ms̄[N −m]

]
AΩ

[
s̄[1] Ωs̄[2] . . . ΩN−ms̄[N −m+ 1]

]
...

...
...

AΩm−1
[
s̄[m− 1] Ωs̄[m] . . . ΩN−ms̄[N − 1]

]

 (4-79)

where for d sources,

Ω =


ρ1

ρ2
. . .

ρd

 (4-80)

where ρi = ei2πfi , and

s̄[k] =


s̄1[k]
s̄2[k]
...

s̄d[k]

 (4-81)

According to the narrowband assumption the following relation holds true for the baseband
signals s̄(t):

s̄[n] ≈ s̄[n+ 1] ≈ · · · ≈ s̄[n+m] (4-82)
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Using this relation the stacked data matrix of 4-78 becomes as follows:

Ym = AmFs (4-83)

where

Am =


A
AΩ
...

AΩm−1

 (4-84)

and

Fs =
[
s[0] Ωs[1] . . . ΩN−ms[N −m]

]
(4-85)

The stacking causes a shift-invariant structure for Ω when the signals are narrowband. This
Ω contains the frequencies of the signals and must be estimated. After the signal subspace is
extracted with help of the singular value decomposition the columns of the signal subspace
Um,s have a shift invariant structure from which Ω can be estimated [3]. The method used
works as follows. First the signal subspace of the extended data matrix Ym is estimated:

Ym = UmΣmV
H
m (4-86)

= [Um,s Um,n]
[
Σm,s 0

0 Σm,n

]
[Vm,s Vm,n]H (4-87)

The diagonal matrix Σm contains the singular values of the signals and the noise. If the
signal-to-noise ratio is high enough and the matrix is not rank deficient, the first d largest
singular values correspond to the singular values of the signal. From Um the, mM × d sized,
signal subspace Um,s can be extracted. Here Mp is the number of virtual antenna elements.
Um,s is a mixture of the array manifold:

Um,s = AmT
−1 (4-88)

where T is an d× d transition matrix.
From Am, m submatrices can be extracted which all contain A, see equation 4-84. From the
stacked submatrices the 1-D DOAs (only azimuth, fixed elevation) or 2-D DOAs (azimuth
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and elevation) can be estimation as described in section 4-2 and 4-3, respectively, depending
on whether Aζ or Ao is used. To do this correctly the selection matrices for DOA estimation
must be expanded. This is done with Im, an identity matrix of size m, and the kronecker
product:

4a,m = Im ⊗4a (4-89)
4b,m = Im ⊗4b (4-90)

and

4x,m = Im ⊗4x (4-91)
4y,m = Im ⊗4y (4-92)
4z,m = Im ⊗4z (4-93)

Then the DOA algorithms can be used in the same manner as before only with these extended
selection matrices.
To estimate the frequencies Ω must be estimated by selecting the right submatrices Ua,Ω and
Ub,Ω from Um,s as follows:

Ua,Ω = 4a,ΩUm,s (4-94)
Ub,Ω = 4b,ΩUm,s (4-95)

where the selection matrices Ja,Ω and Jb,Ω are formed in the following way:

4a,Ω = [Im−1 01]⊗ IMp (4-96)
4b,Ω = [01 Im−1]⊗ IMp (4-97)

The obtained matrices Ua,Ω and Ub,Ω can be expressed as follows:

Ua,Ω = Aa,ΩT
−1 (4-98)

Ub,Ω = Ab,ΩT
−1 = Aa,ΩΩT−1 (4-99)

where Aa,Ω contains the first and Ab,Ω contains the last (m − 1)Mp rows of Am and the
transition matrix T here is the same as for the DOA estimation. This is what makes it possible
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to match the parameters with ESPRIT. Using this matrix T for both DOA and frequency
estimation from this temporal smoothed matrix is called joint diagonalization. The matching
frequencies can be calculated from Ω and Ω can be obtained as follows [3]:

U †a,ΩUb,Ω = TA†a,ΩAa,ΩΩT−1 = TΩT−1 (4-100)
(4-101)

Since T is already obtained from the eigenvalue decomposition for DOA estimation it can be
used here to calculate Ω. Then the final step is to calculate the frequencies from the ith value
on the diagonal of Ω:

fi = argρ
2π (4-102)

4-5 Summary of 1-D DOA and 2-D DOA algorithm

In this section a summary of both algorithms is given.

Algorithm 1: JAFE algorithm with 1-D DOA estimation
1: Construct a temporal smoothed matrix Xm with temporal smoothing factor m ≥ 1.
2: Compute P = bkrc and perform the beamspace transform and divide the elements by

the inverse Bessel function coefficients: Ym,ζ = (Im ⊗ JζCoV H)Xm.
3: Perform SVD on data matrix Ym,ζ and apply a detection algorithm to estimate the

number of sources d. Then extract the d left singular vectors that belong to the highest
d singular values and form the signal subspace Um,s.

4: Use the right selection matrices: Ua,Φ = 4a,mUm,sΦ and Ua,Φ = 4b,ΩUm,s.
5: Perform an eigenvalue decomposition on U †a,ΦUb,Φ to obtain diagonal matrix Φ with the

eigenvalues and transition matrix T with the eigenvectors.
6: Select Ua,Ω = ([Im−1 01]⊗ IMp)Um,s and Ub,Ω = ([01 Im−1]⊗ IMp)Um,s. Then

compute T−1U †a,ΩUb,ΩT = Ω with matrix T obtained from the previous step.
7: Φ contains eigenvalues φ on its diagonal and Ω contains eigenvalues ρ on its diagonal.

For the ith signals the azimuth φi = arg(ejφi) and the frequency fi = argρ
2π .
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Algorithm 2: JAFE algorithm with 2-D DOA estimation
1: Construct a temporal smoothing matrixed matrix Xm with temporal smoothing factor
m ≥ 1.

2: Compute P = bkrc and perform the beamspace transform: Ym,o = (Im ⊗ CoV H)Xm.
3: Perform SVD on data matrix Ym,o and apply a detection algorithm to estimate the

number of sources d. Then extract the d left singular vectors that belong to the highest
d singular values and form the signal subspace Um,s.

4: Use the selection matrices: Us,x = 4x,mUs,m, Us,y = 4y,mUs,m and Us,z = 4z,mUs,m.
5: Compute

[
[TΥT−1]T [TΥT−1]H

]T = [Us,x Us,z]†ΛUs,y.
6: Perform an eigenvalue decomposition on TΥT−1 to obtain diagonal matrix Υ with the

eigenvalues and transition matrix T with the eigenvectors.
7: Select Ua,Ω = ([Im−1 01]⊗ IMp)Um,s and Ub,Ω = ([01 Im−1]⊗ IMp)Um,s. Then

compute T−1U †a,ΩUb,ΩT = Ω.
8: Υ contains eigenvalues ψ on its diagonal and Ω contains eigenvalues ρ on its diagonal.

For the ith signals the azimuth φi = arg(ψi), the elevation θi = arcsin(|ψi|) and the
frequency fi = argρ

2π .
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Chapter 5

Evaluation of the JAFE-Algorithm

In this chapter the performance of the ESPRIT-based JAFE-algorithms is investigated for
different scenarios. Section 5-1 describes the effect of the number of antenna elements on
the estimation error. Then the relation between the SNR and the number of samples is
investigated in section 5-2. This is followed by an investigation about the influence of the
sample frequencies on the RMSE of the azimuth, elevation and frequency when number of
samples is constant in section 5-3. The signals used in the simulations are constructed as
described in appendix A.

5-1 Effects of the Array Geometry

In this section the effect of the array geometry on the performance of the 2-D JAFE-algorithm
is investigated. In section 5-1-1 the effect of the number of elements on the systematic error
in the azimuth estimation is investigated, because the accuracy of the approximations in the
transformation of the UCA manifold to the virtual UCA manifold, Ao, is influenced by the
number of elements, see equation 3-8. Section 5-1-2 shows how the algorithm performs in
noisy environments for different numbers of antenna elements.

5-1-1 Noiseless Case

The beamspace transform requires that the number of elements is higher than the number of
phase-modes. Otherwise systematic errors occur due to the improper approximations made
in the transform by discarding the non-zero Bessel coefficients. Here the effect of the number
of physical antenna elements on the correctness of the approximations is investigated. The
systematic error is not exactly the same for every azimuth angle as can be seen in figure
6-1 for an antenna array of 5 elements. The peak is the worst-case root-mean-square error
(RMSE) of the azimuth and the angle at which this peak occurs is dependent on the number
of antenna elements. For the simulation this peak error for each number of antenna elements
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Figure 5-1: Performance in case of a varying number of elements

is chosen. In Figure 5-1 the maximum systematic azimuth error is given for a varying number
of antenna elements from 5 to 20. The number of phase-modes is chosen according to formula
3-7 and the spacing between the antenna elements is λ

2 . In this simulation N = 100, β = 1,
θ = 90 degrees, φ = 70 degrees, f = 100 Hz, fs = 1 kHz and the temporal smoothing factor
m = 10. No spatial smoothing is used. Figure 5-1 shows that when the number of antenna
elements is even the bias in the DOA estimation has larger peaks than when the number of
antenna elements is odd. The reason for this is not that the error made in the transformation
is bigger, but that for an odd number of elements the first-order error, which is the biggest
part, has no influence. This first-order error is the error caused by neglecting the Bessel-
function contributions for l = 1 in equation 3-6. In case of an odd number of elements the
error in elements −P to P of the vector cancel each other out as explained in section 3-2.
For 5, 7, 9 and 11 antenna elements the RMSE of the azimuth decreases when the number of
elements increases. For higher number of elements the RMSE of the azimuth is more or less
the same. Notice that the number of phase-modes that cannot be neglected increases when
the radius r increases. This can be seen in formula 3-7 by looking at the radius r. In case of
a fixed antenna elements spacing this happens as the number of antenna elements increases
according. The Bessel-functions of a higher order represents higher phase-modes that are
excited. As seen in figure 3-1 the magnitude of the Bessel-functions descends for increasing
orders, but does not become zero. This is the same with the error when formula 3-7 is used.

5-1-2 Influence of Noise

In this section the effect of the number of antennas is investigated in presence of additional
complex white Gaussian noise. When the antenna array has more elements, more spatial
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Figure 5-2: Effect of the signal-to-noise ratio on the PME azimuth estimation error for (a) 9
elements and (b) 17 elements

samples are taken at once at each sampling time. With more samples the variance of in-
dependent Gaussian variables decreases, which leads to more accurate estimates. For this
simulation N = 100, β = 1, θ = 90 degrees, φ = 70 degrees, f = 100 Hz, fs = 1 kHz and the
temporal smoothing factor m = 10. No spatial smoothing is used and the element spacing
is 0.42λ. Figure 5-2 shows that, while the systematic error of more elements than 9 may be
lower, in noisy situations more antenna elements lead to lower RMSE than fewer antenna
elements. When the same number of phase-modes is used for antennas with more elements
instead of taking the maximum of equation 3-7, the systematic error may be lower, but too
few phase-modes leads to systematic errors too and affects the resolution [34].

5-1-3 Conclusion

An odd number of elements seems to lead to a smaller RMSE in the azimuth estimation. For
an odd number of elements the RMSE does not decrease significantly for when more than
11 elements are used. The systematic error is remarkably low with 9 antenna elements, but
figure 5-2 shows that for low SNR the azimuth estimation with 17 elements is better. So
depending on the noise an array of 9 elements can be better than an array of 17 elements.
This simulation is performed for two antenna array with a fixed element spacing, so the
aperture of the antenna array with 17 elements is bigger than that of the antenna array with
9 elements, which may causes the improved performance, but the fact that there are more
spatial samples play a role too.
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5-2 Effect of the Number of Samples and Different SNRs

In this section the effect of the number of samples on the performance of the algorithm is
evaluated for different SNRs. For this investigation the 2-D DOA JAFE algorithm is used.

5-2-1 Spatial versus Temporal Samples

The data matrix is constructed from the sample data which are subject to noise. To reproduce
the true version of these matrices theoretically an infinite number of samples are required,
but depending on the SNR, a very proper approximation can be made with a finite number
of samples.

The effect of the SNR and number of samples on the RMSE of the parameter estimation is
investigated for 9 and 17 antenna elements. Figure 5-3 shows the effect for both situations.
For these simulations one signal that impinges the array from θ = 50 degrees and φ = 70
degrees is used, f = 200 Hz, fS = 1 kHz. the element spacing of d = 0.42λ, no spatial
smoothing is used and the temporal smoothing factor m = 10.

5-2-2 Conclusion

At −15 dB both simulations result in an error of circa 103.9 degrees, because the singular
value decomposition is not able to separate the signal subspace from the noise, and the RMS
value of totally random estimates between −180 and 180 degrees is

√
1

360
∫ 180
−180 φ

2dφ = 103.923
degrees. It is clear that more antennas causes the algorithm to converge faster to the true
azimuth angle when the number of samples or the SNR is increased. The simulation shows
that when more antennas are used the required number of samples to achieve a certain RMSE
is smaller. A reason for this is that more antennas lead to more spatial samples. Notice that
the array of 17 elements has a bigger aperture too.

5-3 Effect of Different Sample Times with a Constant Number of
Samples

In this section the effect of the sample rate on the RMSE is investigated for the 2-D DOA
JAFE-algorithm. This should show if it is better to sample very fast over a part of a period,
to sample a couple of periods or to sample slow so that the samples are distributed over a lot
of periods. For the simulations a QPSK-signal is used as described in appendix A.

5-3-1 Dependency on Sample Time and Frequency

All samples have a signal component and a noise component. When infinite samples are
taken these noise samples cancel each other out. In practice a finite sample set is obtained
and the noise is not fully canceled out. The noise causes errors in the parameter estimation.
For frequency estimation Nyquist stated that at least two samples per period are required
for detection of that frequency. So a signal sequence of N

2 periods can be sampled with two
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Figure 5-3: Effect of the number of samples and signal-to-noise ratio on the azimuth estimation
error for (a) 9 elements and (b) 17 elements
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Figure 5-4: RMSE for different samples rate and constant number of sample

samples per period, a short part of one period can be sampled with N samples or some sample
frequency between those frequencies can be chosen.
The DOA estimation in the described JAFE-algorithm is based on the phase differences be-
tween the particular antenna elements and does not depend on the sample frequency according
to the model. At every time the phase differences between the antenna elements are the same
if the frequency of a signal does not change. The sample period influences the validity of the
narrowband assumption.

Figure 5-4 compares the performance of both algorithms for different ratios between the
sample frequency and sample period varying from a sample frequency of 10, 100 and 1000 MHz
with a constant number of 1000 samples. This is done by measuring the RMSE for a 1000
test runs. The following parameters are used for every test run: M = 18, N = 100, λ = 1,
β = 1, θ = 70 degrees, φ = 10 degrees, f = 0.1 GHz, fs = 1 GHz, SNR = 1 dB, no spatial
smoothing is used and the temporal smoothing factor m = 10. Here the chosen elevation is
not 90 degrees, because this is a maximum and wrong estimates that are higher than this
maximum results in imaginary values, which have no physical meaning. Because an elevation
of 70 degrees is chosen the error can result in both smaller and bigger elevation angles.

5-3-2 Conclusion

For low sample frequencies the RMSE of the azimuth, elevation and frequency is high and it
reduces fast when the sample frequency is increased. The azimuth error becomes stable at a
certain point, but the error of the elevation and especially the frequency increases after the
sample rate is increased to a certain amount of oversampling. The big RMSE for the azimuth,
elevation and frequency at the beginning is because of the low sample frequency. When the
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sample frequency is low many symbol periods of the QPSK-signals are sampled. A temporal
smoothing factor of m = 10 is used, so according to 4-82 the m consecutive samples of the
signal should approximately be the same. For very low frequencies this is not true, so the
assumption used in this part of the algorithm is not correct. For higher sample frequencies
the RMSE of the elevation and frequency increases. When only a small part of the signal
periods is sampled the sample sequences contain multiple samples of more or less the same
phase. In that case it is harder to estimate the right frequency when there is noise. This is
similar to the reason that a bigger aperture is better for DOA estimation.

Master of Science Thesis Joost Geelhoed



44 Evaluation of the JAFE-Algorithm

Joost Geelhoed Master of Science Thesis



Chapter 6

Improved Transformation with
Interpolation

Swingler and Davies described a technique for uniform circular arrays that uses extrapolation
which mitigates the neglecting of the virtual elements where the Bessel weighting factors are
more or less zero [35]. In this chapter I describe how linear interpolation between the physical
elements of the circular array can improve the azimuth estimation. Due to this interpola-
tion the data matrix represents a data matrix of the same sized antenna array with more
elements. This chapter explains a similar technique to reduce the bias of the phase-mode
excitation transformation.
The correctness of the transformation depends on the number of antennas, the spacing be-
tween the antennas and the number of phase modes. One can compensate for the errors
introduced by the beamspace transformation as is described in [30]. A disadvantage is that
it costs extra computations and the technique assumes one fixed elevation for received signal.
The Bessel-function approaches zero faster when the wavenumber, k, is small [36]. This is
because the argument in the Bessel-function gets smaller. So for a smaller radius the higher
order Bessel-function coefficients approaches zero earlier too. On the other hand it increases
the effects of mutual coupling between the antenna elements. A different way to deal with
this problem of improper approximations by the Bessel-function is to make up data of virtual
antenna elements to form an antenna array of the same size with extra antennas. In this case
the virtual antennas are placed between each pair of physical antennas and the all the true
and imaginary antennas must be uniformly distributed. This way the spacing between the
real antenna elements can still be large enough in order to have a good aperture and not too
much effect of mutual coupling. This degree of interpolation must be chosen in order that
the obtained number of total, real and interpolated, elements Mu is big enough in order to
neglect the terms where l is not zero in formula 3-6. Here u is the factor by which the number
of antenna elements, M, is upsampled, so Mu = uM . The performance is investigated for a
uniform circular antenna array of 5 elements, because this is a small number of antennas and
12 elements, because it is even. The reason that an even number of antennas is chosen for the
simulation is because the beamspace transformation is a lot less correct for an even number

Master of Science Thesis Joost Geelhoed



46 Improved Transformation with Interpolation

of antennas than an odd number of antennas. This characteristic is discussed in chapter 5.
As Belloni and Koivunen [30] show in their error analysis of the beamspace transform, the
maximum bias occurs at an elevation of 90 degrees. For an interpolation factor of u = 1, 2, 5
and 10 the RMSE of the azimuth is shown at an elevation angle of 90 degrees. No noise is
added and the antenna element spacing is λ/2. Figure 6-1 and 6-2 show the results for 5
and 12 elements respectively. For the simulation N = 100, d = 0.5λ, β = 1, θ = 90 degrees,
f = 100 Hz, fs = 1 kHz and the temporal smoothing factor m = 10. No spatial smoothing
is used. From these figures it is clear that upsampling leads to better approximation of the
beamspace transform in case 5 or 12 elements are used.
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Figure 6-1: RMSE of azimuth after interpolation for an array of 5 elements
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Figure 6-2: RMSE of azimuth after interpolation for an array of 12 elements
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Chapter 7

Solutions for Rank Deficiency

Subspace based algorithms use a singular value (or eigenvalue) decomposition to separate the
signals from noise. This results in a high resolution, but causes some instabilities. When
the azimuth and elevation of two or more signals is the same the array responses are linearly
dependent on each other. In case the array responses of two or more signals are linearly
dependent or the frequency of two or more signals is the same the data matrix is rank defi-
cient. Then the signal subspace is too small and not all parameters can be estimated correctly.

7-1 Signals With Similar DOAs

Temporal smoothing is frequently used in DOA estimation. When the narrowband assumption
is valid it can restore the rank of the data matrix in case multiple signals with different
frequencies are coming from the same direction. The time-shift between the stacked matrices
causes different phase-shifts for different frequencies. Therefore the stacked array manifolds
Am can elevate the linear dependency between the array manifolds.
The maximum number of sources with different frequencies, but with the same DOA that
can be separated from the noise is equal to the amount of stacked matrices, the temporal
smoothing factor [27]. It also strengthens the array manifold vectors compared to the zero-
mean Gaussian noise vectors. It also makes it possible to estimate the parameters of more
sources than antennas at once.

7-2 Signals With Similar Carrier Frequencies

In case of multipath propagation multiple rays of the source signal arrive at different angles
at the array. Besides the DOA there is probably also a difference in the power and the delay
between all the copies of the signal. In other cases different sources use the same frequency.
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For example in UMTS (Universal Mobile Telecommunications System), where CDMA (Code
Division Multiple Access) is used. Another situation that can occur is that two cell phone
users transmit signals to different base stations and use the same channel. In this situation
the signals carry different data symbols and probably have different codes too. Therefore
they are not coherent, but they are correlated.

7-2-1 Long Time Sampling

The signals described in chapter 2 are narrowband. Therefore when the frequencies are the
same the signals are very much correlated with each other. But in case the signals are not
narrowband and the sampled signals represent data sequences with a lot of different symbols,
the correlation is not very high. Because of this the data matrix used for the SVD is not rank
deficient. But when the narrowband assumption does not hold true the following relationship
is not correct.

s̄(t− τ) ≈ s̄(t) (7-1)

where s̄ is the baseband signal. This means that baseband signals change in the time they
impinge on the first and last antenna. Therefore the the phase-shift between the antennas is
not just defined by the frequency and delay, but also by the baseband signal which cannot
be predicted. Thus errors in the DOA estimation will occur. Depending on how correct
the narrowband asumption is these errors may be small. To achieve that the data sequences
contain a lot of symbols a low sample rate may be required. A problem in electronic warfare is
that nothing is known about the signals. So it is hard to decide what sampling time is required
for the rank to restore, especially since this is not the same for every signal. Depending on
the baud rate it can take a long time and the signals can not be considered as narrowband
since the sample frequency approaches the baud rate. It is necessary to sample at least at
twice the (intermediate) frequency of the signal, so this technique may result in a large wide
data matrix. To cope with this problem it is possible to take periodically two samples at
the nyquist rate to achieve ’time’ doublets instead of ’antenna’ doublets as is required for
ESPRIT.

7-2-2 Spatial Smoothing and Forward/Backward Smoothing

Spatial Smoothing is commonly referred to in research papers about uniform linear arrays
and also in some papers about uniform circular arrays [3]. This technique cannot be applied
on uniform circular arrays directly, because it can only be applied on arrays that have a
Vandermonde structure, such as uniform linear arrays. Mathews and Zoltowski described
a real beamspace method that uses phase-mode excitation to transform the array structure
[2]. With phase-mode excitation the array manifold of the uniform circular array can be
transformed to a virtual linear array manifold. Then spatial smoothing and forward/backward
smoothing can be applied. A disadvantage of this technique is that it requires the elevation
angle to be the same for all angles and to be known or chosen.
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Below, the principle of spatial smoothing is explained. This is the similar to what A.N.
Lemma described in "ESPRIT based on Joint Angle-Frequency Estimation: Algorithms and
Simulations" for uniform linear arrays [3]. The spatial smoothed data matrix is constructed
by stacking L submatrices horizontally. These submatrices consist of ML = M −L+ 1 rows.

XL = [J1X J2X . . . JLX] (7-2)

where

Ji = [0i−1 IML
0L−i] (7-3)

where 0q is a matrix consisting of q columns with zeros. The array manifolds in Aζ have a
shift invariance structure:

aζ(φ) =



e−jPφ

...
1
...

ejPφ


(7-4)

So the value of every element is the product of the value above and ejφ. Due to this shift
invariance property the following relation is true:

JiAζ = J1AζΦi−1 = A′ζΦi−1 (7-5)

where

Φ =


ejφ1

ejφ2

. . .
ejφd

 (7-6)

Then XL has the following form:

XL = A′ζ [Fs ΦFs . . . ΦL−1Fs] (7-7)

where A′ζ are the first M − L+ 1 rows of Aζ and Fs is described in equation 4-78.
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7-3 Evaluation of Temporal and Spatial Smoothing

In this section the angular and frequency resolution is investigated for the 1-D DOA JAFE-
algorithm. Usually algorithms that use the singular value or eigenvalue decomposition dete-
riorate when the DOAs of multiple signals are the same or when the frequencies are similar.
The singular value decomposition separates the data into orthogonal signal subspace compo-
nents. When two or more DOAs or frequencies are the same, the data matrix is not full rank.
This results in a wrong signal subspace. In case two or more signal sequences are correlated
the resulting signal subspace is also affected. To prevent this rank loss spatial and temporal
smoothing is used. The effect on the accuracy of the estimates is investigated.

7-3-1 Effect of Temporal Smoothing on Closely Spaced Azimuth Angles

To cope with the problems of closely spaced DOAs temporal smoothing is used. In this section
the performance improvement is shown in case temporal smoothing is used. The joint angle-
frequency estimation that is used has standard temporal smoothing of a factor of m ≥ 2 to
obtain temporal samples in the columns. This is used for frequency estimation. This section
shows the improvements when a temporal smoothing factor higher than 2 is used.
First the resolution is investigated by estimating the DOAs of two signals for separations
from 0 to 8 degrees. The spacing between the angles will have some effect on the mean of the
estimates. Therefore not just the RMSE is computed, but both the mean and the standard
deviation of the estimates. Besides the effect of the separation between the two signals on
the mean and standard deviations also the effect of noise on the estimation performance is
investigated. In this case the mean and standard deviation are computed for the same reason
as for the error due to the angle separation. Since both signals have their own standard
deviations the combined standard deviations are in both situations computed by averaging
the variances of both azimuth estimates.

The first simulation is performed with two signals without modulation, one with a frequency
of 0.1 kHz and one with a frequency of 0.2 kHz. The elevation for both signals is 90 degrees.
The number of antenna elements is 9 and the antenna spacing is 0.42λ. The number of
samples is 100, d = 0.42λ and the sample frequency is 1 kHz. The SNR is 1 dB and the signal
separation goes from 0 degrees to 8 degrees. The result is given in figure 7-1 and 7-2. For the
simulation 1000 Monte Carlo simulations are performed.
When two signals are closely spaced the singular value decomposition results in one big
component and a small one which may have a singular value in the order of the noise. When
temporal smoothing is applied the singular values of the signals get bigger, which makes it
possible to separate both signal components from the noise. The noise in the vectors that are
stacked is in this simulations zero-mean Gaussian and independent and identically distributed
(i.i.d.) and because of this the singular values of the noise components are not increased when
the noise samples are stacked. In reality this i.i.d can usually not be assumed if the sample
frequency is very high, because then the adjacent noise samples are correlated due to physical
effects which are not included in the model. Therefore the singular value decomposition can
separate the closely spaced signals. This causes the singular value decomposition to give
output vectors with a better signal-to-noise ratio. This section investigates the resolution
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Figure 7-1: Mean of DOA estimation
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Figure 7-3: Mean estimate of closely spaced angles for varying SNR

in case of different signal-to-noise ratios. For the simulation the following parameters are
used:M = 15, N = 100, d = 0.42λ, β1 = β2 = 1, θ1 = θ2 = 90 degrees, f = 100 Hz and
fs = 1 kHz.
Figures 7-1 and 7-2 show that temporal smoothing helps in case the DOAs of the signals are
close to each other. The temporal smoothing factor that is required for the algorithm to work
properly depends on the number of signals that are closely spaced. For a DOA separation of 7
degrees or more and a temporal smoothing factor of m = 2, the mean estimation is very close
to the true azimuth angles, but the standard deviation is more than 2 degrees. A temporal
factor of m = 3 or m = 5 reduces the standard deviation and makes it possible to estimate
the azimuth angles without a bias when the separation is small. A higher temporal smoothing
factor has no influence on the mean azimuth estimation, but reduces the standard deviation
a little bit. The blue lines in figure 7-1 crosses each other. Since the estimated DOAs belong
to a certain frequency it is for sure that which DOA estimate belongs to which true DOA
even if it is closer to the other one. Therefore this is an effect of the algorithm.
The blue line in figures 7-3 and 7-4 represents the azimuth estimation in case a temporal
factor of m = 2 is used and shows the performance deteriorates below a SNR of 0 dB. Figure
7-4 shows that the SNR has a lower bound on the performance in this case for a temporal
factor m = 2 at circa −2 dB.

7-3-2 Effect of Spatial Smoothing on Correlated Signals

With spatial smoothing, defined in section 7-2-2, it is possible to separate correlated signals
as well as coherent signals. The smoothing factor has influence on how many coherent sig-
nals can be separated, but more smoothing than necessary also decorrelates the signals more,
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Figure 7-4: Standard deviation estimate of closely spaced angles for varying SNR

which leads to more accurate separation. On the other hand, spatial smoothing does decrease
the aperture of the antenna array and thus the resolution. This section shows when spatial
smoothing technique [3] works and when not with the 1-D DOA JAFE-algorithm for the
uniform circular array.

The following simulations show the effect of spatial smoothing on the RMSE of the azimuth
estimation of two correlated signals. The simulation is performed with different smoothing
factors in order to show it works and to show how more smoothing contributes to the decor-
relation of the signals. A spatial smoothing factor of L = 1 indicates that the array is divided
into 1 subarray which means no spatial smoothing. Notice that the smoothing factor also
defines the maximum number of coherent signals that can be separated theoretically. The
following parameters are used: M = 9, N = 500, d = 0.5λ, SNR = −5 dB, β1 = β2 = 1,
θ1 = θ2 = 90 degrees, φ1 = 10, φ2 = 90 degrees, fs = 1 kHz and the temporal smoothing
factor t = 10.

Figure 7-5 shows that spatial smoothing helps when the carrier frequencies of different signals
approach each other. A spatial smoothing factor L ≥ 2 is necessary for proper estimation.
More spatial smoothing than necessary results in a smaller standard deviation as can be seen
in figure 7-6.

7-3-3 Conclusion

This section shows how temporal and spatial smoothing can be applied to uniform circular
arrays and how it can contribute in certain scenarios. For linear arrays this was already

Master of Science Thesis Joost Geelhoed



56 Solutions for Rank Deficiency

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

frequency seperation [kHz]

m
ea

n 
az

im
ut

h 
[d

eg
re

es
]

 

 
L=1
L=2
L=5
true DOAs

Figure 7-5: Mean of DOA estimation
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Figure 7-6: Standard deviation of DOA estimation
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demonstrated by [3]. The temporal smoothing factor must be at least the same as the num-
ber of the maximum closely spaced signals at the same direction. More temporal smoothing
makes the algorithm able to still separate closely spaced azimuth angles in noisy environ-
ments.
Spatial smoothing is necessary for proper mean azimuth estimation when the carrier frequen-
cies of two different signals are close to each other or the same. More spatial smoothing leads
to a smaller standard deviation in case the signals have the same frequency, but leads to
a slightly higher standard deviation when the frequencies are not the same, but almost the
same. The reason for this must be the reduced aperture.
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Chapter 8

Additional Options with
ESPRIT-based JAFE-algorithm

.

8-1 Joint Angle-Frequency-Delay Estimation

In case of multipath propagation it can be advantageous to find the delays between the
multipath rays. This can be used for better detection of the symbols as is done with a RAKE
receiver or the information of the delays can be used to get information about the environment
or location of the transmitter.

8-1-1 Data Model

The model described in chapter 2 has to be extended so that it contains the time delays
between the signals. The following model is used to represent r multipath rays of one signal
that impinge on the antenna array.

x(t) =
r∑
i=1

a(θi, φ1)[δ(τi) ∗ s1(t)] (8-1)

where s represents the down-converted signals, which are time-shifted copies of each other,
δ(τ) represents the kronecker delta pulse and r is the number of multipath rays.
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8-1-2 Blind Signal Separation

To estimate the delays between the multipath components the signals must be separated.
Then one signal can be used as reference signal for the others. After ESPRIT for linear
arrays on the transformed circular array data matrix is performed for DOA estimation, signal
separation is not very hard. The SVD already separated the signal subspace from the noise
subspace. The signal subspace appears in the columns of Us and Vs with singular values Σs.
The columns of Us and Vs are a combination of the columns of the array manifolds and the
signals:

Xs = UsΣsVs = AT−1ΣsTS (8-2)
Us = AT−1 (8-3)
Vs = TS (8-4)

(8-5)

where Xs is an estimation of the data matrix by removing the noise with the singular value
decomposition and Σs is a diagonal matrix with the singular values of the signals on the
diagonal. With ESPRIT the parameters of the DOAs can be estimated from Us by dividing
the upper part by the lower part of this matrix and performing an eigenvalue decomposition on
the result. Then the eigenvalues contain the DOA information and the obtained eigenvectors
form the T matrix. This can be used along with Σs to obtain an estimation Ŝ of the signal.

Ŝ = T−1Vs (8-6)

Then the first row can be used as reference for estimating the delay of the other signals.

8-1-3 Delay Estimation with ESPRIT

This chapter describes how the delay can be estimated using an ESPRIT technique. It is
assumed that only one signal is present which arrives at the array via multiple reflections.
The different rays have different path lengths from source to array, which causes the delay.
To estimate the signals with an ESPRIT technique the signals has to be transformed to the
frequency domain. By applying a digital Fourier transform (DFT) to that data a time delay
translates to a phase shift [37]:

S̃ = ŜF (8-7)

where
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F =


1 1 1 1
1 γ . . . γN−1

1 γ2

1
...

...
1 γN−1 . . . γ(N−1)2

 (8-8)

with γ = e−j2π/N . The columns of S̃ represent the multipath rays 1 to r of one source:

S̃ =


s̃1
s̃2
...
s̃r

 (8-9)

where s̃i is a row vector containing the N samples of the ith signal. Since the signal is not
known one of the rays has to be chosen as a reference signal, for example the first. The
other signals are then delayed versions of the reference and in the Fourier domain this delay
is described as follows:

s̃i = s̃1e
−j2πfτi = s̃1γ

τiN
i (8-10)

By multiplying the signals with the pseudo-inverse of the reference signal a vector with the
following shift invariance structure is obtained. This technique is based on a similar technique
used in [37]:

s̃1
† � s̃i = Zi = [γτi1i γτi2i . . . γτiNi ] (8-11)

where � is a point wise multiplication of the elements. By selecting the first N − 1 elements
and the last N − 1 elements and multiplying the first vector with the pseudo-inverse of the
other vector the phase shift is obtained with a ESPRIT technique. From the phase-shift the
delay can be computed as follows:

Z†x,iZy,i = γτii (8-12)

where
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Zx,i = Zi[IN−1 01] (8-13)
Zy,i = Zi[01 IN−1] (8-14)

From the phase-shift the delay τi can be computed as follows:

τi = log(γτii ) N

−j2π (8-15)

8-1-4 Simulation

When two signals are transformed to the frequency domain and one of them is a delayed
version of the other it results in the same Fourier transform except for a phase shift. The first
sample of the data of the delayed version are not present in the reference signal, because this
part of the data data arrived earlier in the reference signal. Because of this the two are not
just delayed versions of each other, but contain some different samples. Therefore the Fourier
transforms are not exactly the same, but as long as only a few samples differ this only causes
a small error. The simulations in this chapter are performed with the following parameters:
M = 18, N = 375, β1 = β2 = 1, d = 0.42λ, θ1 = θ2 = 90 degrees, φ1 = 10 degrees, φ2 = 130
degrees, f = 8 kHz, fs = 100 kHz and the symbols rate is 0.8 kHz. No temporal and spatial
smoothing is used. For the first simulation signal pulses are used to test if the theory works.
Figure 8-1 shows an example of the received pulses with a delay of 2 µs.
In figure 8-2 it can be seen that the SNR must be very high to obtain reasonable results, which
is unrealistic. The problem can either occur at the signal separation or the algorithm, but it is
clear that the SNR has a big influence. The first step of the signal separation is performed by
separating the signal subspace from the noise with the singular value decomposition. Figure
8-3 shows the first 7 singular values for the case that two multipath rays are received from an
azimuth angle of 10 and 130 degrees. No spatial or temporal smoothing is used. The first two
singular values represent the singular values that belong to the signals and the other singular
values belong to the noise. When there is no noise the first singular value, which belongs
to the first vector, should be big and the second a bit smaller, depending on the amount of
dependency on the first vector. Just as in figure 8-2 the result is very good for SNRs of 40
dB or higher. For SNRs lower than 40 dB the noise has more impact on the result. Then
the signal subspace is not a perfect mixture of the signals, but is changed a little bit by the
noise. A little bit of noise apparently causes the algorithm to fail. One of the reasons for this
is that a lot of noise outside the pulse period is taken into account and another reason is that
the delays are very small and therefore the effect of the noise dominates.

8-1-5 Further Research

There are two possibilities to improve the estimation of the delays with ESPRIT. The first
possibility is to improve the signal separation. In case the SNR is not very high the signal

Joost Geelhoed Master of Science Thesis



8-1 Joint Angle-Frequency-Delay Estimation 63

0 50 100 150 200 250 300 350 400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [µsec]

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

Figure 8-1: Signal pulses

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

SNR [dB]

R
M

S
E

 d
el

ay
 [s

]

Figure 8-2: RMSE of delay estimation when pulses are used
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Figure 8-3: Singular values of signal ans noise vectors

subspace obtained from the singular value decomposition is not perfect, which causes the
algorithm to fail. So the signal separation can be improved by adding structure to the data
matrix or using a different technique for signal separation. The second possibility is to improve
the algorithm to estimate the delay when the signals are not perfect. In case delay estimation
based on the Fourier transform is used, as in the before presented ESPRIT algorithm, the
correctness on the Fourier transformed model for noisy and imperfect signals must be checked.
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Chapter 9

Conclusions and Recommendations

In this chapter the conclusions and recommendations of this research project are presented.
The research objectives and the results of the research are described. Then the scientific
contributions are presented, which is followed by the recommendations.

9-1 Conclusions

Information about radio communication in an environment is of interest in electronic warfare.
With antenna array processing joint angle-frequencies can be estimated. The objective of this
research project is to design an algorithm that can be used for joint angle-frequency estimation
in electronic warfare scenarios with a circular antenna array. A circular antenna array can,
due to its 2D geometry, estimate the azimuth angle from 0 to 360 degrees without ambiguities
plus the elevation. Other geometries that span a planar array can be used to estimate the
DOA of signals 360 degrees around the array, but for some purposes the circular geometry
can be advantageous. An advantage of a uniform circular antenna array is that when one
wants to cope with mutual coupling uniform antenna arrays are more convenient [1]. There
is no hard constraint on the number of antenna elements, but it is preferred the algorithm
gives good results with a number of antennas between 5 and 10. Furthermore the algorithm
must be able to estimate signals with low SNR, singals that are coherent and signals with
similar DOAs.
To achieve this objective the following approach is used. First the possible solutions and
existing algorithms are described. Then an algorithm is chosen and extended for coherent
signals and a technique to improve the algorithm in case few antenna elements are used is
given in chapter 6. After that the performance is investigated for different numbers of antenna
elements, different SNRs and different sample rates is given. This is followed by a investiga-
tion of the effects of temporal and spatial smoothing for JAFE with a circular array. Finally
the possibilities for an extension of the algorithm for joint angle-frequency-delay estimation
is investigated.
As algorithm for the uniform circular array an ESPRIT based algorithm is chosen for its
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high resolution and efficiency. ESPRIT requires a Vandermonde structure and therefore the
beamspace transform is applied to the data to transform the structure of the uniform circular
array to the proper structure for the shift-invariance technique. Pre-processing is required
for ESPRIT to make it suitable for the estimation of coherent signals. When all signals have
the same elevation, this elevation can be chosen to transform the manifold to the structure
necessary for spatial smoothing. The spatial smoothing technique is tested by simulating the
RMSE azimuth error in case of two coherent signals and noise. From the simulation results it
can be seen that in case of two coherent signals a spatial smoothing factor of two is required,
but a higher factor reduces the standard deviation of the RMSE of the azimuth angles. In case
of signals with slightly different frequencies a higher spatial smoothing factor than necessary
is a little bit worse. In case multiple signals have the same DOA or closely spaced DOAs
the algorithm cannot estimate the right joint frequencies, but simulations demonstrate that
temporal smoothing make it possible to estimate signals with the same azimuth angle. A
higher temporal smoothing factor than two reduces the standard deviation and is necessary
for estimating two closely spaced azimuth angles in case of low SNRs. With temporal smooth-
ing it is also possible to estimate more sources than antennas. One of the constraints was
that the algorithm should perform well in case few antenna elements are used. Simulations
show that the number of elements has large effect on the systematic error in the azimuth
estimation caused by the beamspace transform. An even number of elements is causing a
much larger systematic error than an odd number of elements. When 5 elements are used the
bias in the azimuth estimation can reach up to almost 0.9 degrees, which may be too much
for some purposes. Spatial interpolation of the data matrix of the circular array can reduce
this bias to circa 0.05 degrees when the number of 5 elements is interpolated to 10 elements
as is described in chapter 6. For an even number of antenna elements the same principle is
demonstrated with a circular array of 12 elements. For 12 elements the systematic error of the
azimuth estimation reaches up to 3.7 degrees. With interpolation this error can be reduced
to a little bit less than 1 degrees.
Besides the DOA and frequency signals possess more parameters. In case of multipath prop-
agation the delays between the multipath rays can be estimated. The algorithm can be
extended with the estimation of the delay with the ESPRIT technique. It is necessary to
separate the signals first, since nothing about the signals is known on forehand, and then use
the Fourier transform to obtain the required shift-invariance structure with delay information.
Simulations show that when the signals are not recovered perfectly, which happens when the
SNR is not very high, the algorithms fails.

9-2 Scientific Contributions

This section points out the scientific contribution made in this thesis

• A JAFE-algorithm that can estimate the azimuth angles and frequencies of signals
using the linear ESPRIT variant on a circular array which can estimate correlated and
coherent signals as well as signals from the same direction is described in section 4-2
and section 7-3-2.

• The performance of a JAFE-algorithm that uses an ESPRIT-based algorithm for a
uniform circular array is simulated for varying numbers of elements, samples and SNRs;
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• The effects of spatial and temporal smoothing on the estimation of the azimuth and
frequency of signals with almost similar DOAs and frequencies is investigated;

• The effect of the sample rate on the RMSE of the azimuth, elevation and frequency is
shown in simulations where QPSK-symbols are used.

• The possibility of a joint angle-frequency-delay algorithm with ESPRIT are described
and problems of this technique for low SNR are demonstrated;

• It is demonstrated that improvement of the beamspace transform for uniform circu-
lar arrays is possible by linear spatial interpolation of the array before applying the
transform.

9-3 Recommendations

The following recommendations can be made, based on the results of this thesis.

• For the data model the signals are assumed to be narrowband. Research could how the
algorithm must be modified to be able to estimate broad and/or wideband signals.

• Antennas could break down or be out of position. Research should show if the algorithm
can cope with broken antenna elements and antenna misplacements.

• When the circular array manifold is transformed to a linear array manifold with a
Vandermonde structure by fixing the elevation at 90 degrees it is assumed all sources
are in the plane of the array. The effect of sources, that are not exactly in that plane,
on the angle estimation error should be investigated.

• The spatial interpolation technique, used for reducing the systematic error induced by
the beamspace transform, works well for 5 elements, but for an even number of 12
elements the error is reduced, but it is still almost 1 degrees. Smarter interpolation
techniques may reduces the systematic error more.

• The computational efficiency of the algorithm could probably be improved.

• ESPRIT is dependent on the array geometry and requires a calibrated array. Research
on techniques that make it possible to use ESPRIT with uncalibrated arrays could lead
algorithms that are more practical to use.

• Circular arrays are advantageous when compensating for mutual coupling [1]. The
influence of this compensating on the algorithms described in this thesis could be in-
vestigated.

• The model used in this thesis assumes a uniform circular array consisting of isotropic
antennas. Isotropic antennas are a theoretical concept and do not exist in reality. The
algorithm for 1-D DOA estimation could use omnidirectional antennas as well if it is
only used in environments where signals in the plane of the array are to be estimated.
Research on the performance of the algorithm with omnidirectional antennas could show
a more realistic image of the performance of the algorithm.
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Appendix A

Simulation

The Monte Carlo simulations in this thesis are performed in MATLAB. The signals are
complex sinusoidal signals unless mentioned otherwise. In all simulations complex white
Gaussian noise is added to the signal received on a particular antenna element.

A-1 Signal Types

The easiest way to construct a signal is just implementing a complex harmonic signal of a
certain frequency. After the signals is sampled noise is added. Figure A-1 represents such a
signal with frequency 20 kHz, sample frequency 500 kHz, 1000 samples and a signal-to-noise
ratio of 10 dB.

In some cases it is interesting to see what happens to the result of some algorithm when some
kind of modulation technique is applied. Figure A-2 represents a QPSK-signal with a carrier
frequency of 2 kHz, sample frequency 500 kHz, 1000 samples and a signal-to-noise ratio of 10
dB is depicted.

Figure A-3 depicts some samples of 100 QPSK data symbols for signal-to-noise ratios of 5
and 10 dB.
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Figure A-1: Complex sinusoidal signal
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Figure A-4: a single CDMA-QPSK signal
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Figure A-4 depicts a single CDMA signal with QPSK modulation. The CDMA code has 16
random bits of +1 and −1 of which the sum equals zero. From the power spectrum it is clear
the frequency is harder to estimate well.
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Appendix B

Phase-mode Excitation

This appendix described the technique of phase-mode excitation. It is based on citeHy-
berg7119,rudge,MPZ94,belloni. In a uniform linear array incoming plane waves arrive with a
certain constant time delay between the antenna elements causing a constant phase shift be-
tween the antenna elements. This results in the so called Vandermonde structure [27] shown
by following equation:

aULA = [1 ei2π1∆ sin(φ) ei2π2∆ sin(φ) . . . ei2π(M−1)∆ sin(φ)]T (B-1)
= [1 ψ ψ2 . . . ψM−1]T (B-2)

where ∆ is the spacing between the antennas in wavelengths. This special structure is used in
algorithms as ESPRIT (Estimation of signal parameters via rotation invariance techniques).
Unfortunately the array manifold of a uniform circular array is not of this form. A way to
restore this form is with the theory of phase-mode excitation [38].

First of all the array manifold can be expressed as a Bessel function [39] with help of the
following mathematical formula:

ez
t−t−1

2 =
∞∑

q=−∞
tqJq(iz) (B-3)

If t is replaced by ju the following equation is obtained:

ejz
u+u−1

2 =
∞∑

q=−∞
jquqJq(iz) (B-4)
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When the cosinus part in the equation of the array manifold of a uniform circular array is
written in exponentials this equation can be used to express the array manifold of this kind of
array in Bessel functions [28]. By letting z = kr sin(θ) and u = eφ−φm the following equation
results for the mth array element:

aUCA,m(θ, φ) = ejkr sin(θ) cos(φ−φm) = ejkr sin(θ) e
j(φ−φm)+e−j(φ−φm)

2 (B-5)

=
∞∑

q=−∞
jqJq(kr sin(θ))ejq(φ−φm) (B-6)

=
∞∑

q=−∞
jqJq(kr sin(θ))ejq(φ−2π m

M
) (B-7)

The subscript m denotes the specific antenna element and φm = 2π mM . Since circular arrays
are continuous the array manifold can be expressed as a periodic function with a period of
2π. Therefore array manifold can be represented in terms of a complex Fourier series. The
Fourier series of a function f(x) ∈ L2([−π, π]) has the form

fm =
∞∑

p=−∞
cpe

jp2π m
M (B-8)

cp = 1
M

M−1∑
m=0

fme
−jp2π m

M (B-9)

In this case of a uniform circular array the function fm is replaced by aUCA,m(θ, φ). The
Fourier Series of the array manifold is the sum of an infinite number of phase-modes p [28]:

aUCA,m(θ, φ) =
∞∑

p=−∞
ap(θ, φ)e−jp2π

m
M (B-10)

In this equation the Fourier Coefficients ap(θ, φ) are given by

ap(θ, φ) = 1
M

M−1∑
m=0

aUCA,m(θ, φ)ej2π
m
M
p (B-11)

= 1
M

M−1∑
m=0

∞∑
q=−∞

jqJq(kr sin(θ))ejq(φ−2π m
M

)ej2π
m
M
p (B-12)

= 1
M

∞∑
q=−∞

jqJq(kr sin(θ))ejqφ
M∑
m=1

ej2π
m
M

(p−q) (B-13)
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The last sum equals M in case the difference between p and q is M times an integer; q−p = Ml
where l is an integer. Otherwise it is zero, because the complex numbers over the unity
circle cancel each other out. Therefore instead of the sum over all values of q the sum of l
integers from −∞ to ∞ is taken where q is replaced by p + Ml. This leads to the following
equation [2, 38]:

ap(θ, φ) =
∞∑

l=−∞
jp+MlJp+Ml(kr sin(θ))ej(p+Ml)φ (B-14)

The Bessel function has the property that if the order becomes larger than the argument it
decreases. So when p + Ml becomes larger than krsin(θ), which is less than or equal to kr,
the Bessel function decreases. When for example p = 2 and M = 10 then p+Ml = 2 + 10l.
This results in p+Ml = −8 for l = −1, p+Ml = 2 for l = 0 and p+Ml = 12 for l = 1. The
result of the Bessel function of the case of l = 0 dominates over the case l = −1 and l = 1
and over cases with larger l [2]. So if M � p then the l=0-term dominates, so the term for
6= 0 can be ignored and the equation becomes:

ap(θ, φ) ≈ jpJp(kr sin(θ))ejpφ (B-15)

An approximation is made by stating that the part of the phase-mode where l = 0 dominates
over the other parts of the sum. So to achieve a good performance the following assumption
must hold:

|Jp(kr sin(θ))| � |Jp−M (kr sin(θ))| (B-16)

When p becomes large the magnitude of the Bessel-function of that order is more or less zero,
so can be neglected. The following equation can be used to compute this maximum number
of p that cannot be neglected [28,38] :

P = bkrc = b2πr
λ
c (B-17)

This P depends on the wavelength of the signal and the radius of the antenna array. This
radius is dependent on the number antenna elements and the spacing between them.

Finally the obtained phase-modes from −P to P form the following beamspace UCA vector:

âuca ≈



A−P (θ, φ)e−jPφ
...
1
...

Ap(θ, φ)ejPφ


=



j−PJ−P (kr sin(θ))e−jPφ
...

J0(kr sin(θ))
...

jPJP (kr sin(θ))ejPφ


(B-18)
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List of Acronyms

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques

MVDR Minimum Variance Distortionless Response

MUSIC Multiple SIgnal Classification

DOA Direction-of-Arrival

JAFE Joint Angle-Frequency Estimation

MLE Maximum Likelihood Estimation

UCA Uniform Circular Array

ULA Uniform Linear Array

SNR Signal-to-Noise Ratio

RMSE Root-Mean-Square Error

std standard deviation

CDMA Code Division Multiple Access

BPSK Binary Phase Shift Keying

QPSK Quadrature Phase Shift Keying

List of Symbols

M Number of antenna elements

N Number of samples

θ Elevation(degrees)
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82 Glossary

φ Azimuth (degrees)

Mp Number of phase modes

p Phase-mode number

P Maximum phase mode

λ Wavelength (m)

τ Delay (s)

r Received signal

r̄ Complex envelope

s Received down-converted signal

s̄ Complex envelope of down-converted signal

fc Carrier frequency (Hz)

f Intermediate frequency (Hz)

fs Sample frequency (Hz)

B Observed bandwidth (Hz)

W Signal bandwidth (Hz)

r Radius (m)

d Antenna spacing (m)

k Wavenumber (radians/m)

a Array manifold

Ts Sampling time (s)

m Temporal smoothing factor

L Spatial smoothing factor

Jq Bessel function of qth orher

u Spatial upsampling factor
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