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A B S T R A C T

We study linearity assumptions in the transient macroscale mechanical aspect of additive manufacturing (AM)
process simulation. Linearity assumptions are often resorted to in combination with calibrated inelastic de-
formation components to arrive at computationally tractable yet reasonably accurate AM process models. We
point out that linearity assumptions permit the independent computation of the response increment in each step
of the AM process, and the total mechanical response is the superposition of all the process-step increments. In
effect, process-step increments are computed with respect to the stress-free reference configuration in each step.
The implication is that the mechanical response increment in each linearised AM process step may be computed
in parallel. Trivial process-step-wise parallel computability breaks down, however, if nonlinearity (i.e. geometric
or material) is modelled. In our investigation the influence of geometric nonlinearity on part distortion is small
(but this is of course part-geometry specific), and more realistic stresses are obtained by imposing a nonlinear
elastoplastic material law after the parallel computation and superposition of the linear AM response increments.
It is demonstrated that simulation wall-clock time is reduced by exploiting process-step parallel computability in
the linear regime. Moreover, numerical experiments suggest that process-step parallelization scales better (in
wall-clock time) than conventional parallelization in the sequential computation of each response increment.

1. Introduction

Descriptions of additive manufacturing (AM) processes are often
dedicated to the notion that the parts and structures which are pro-
duced, arise in a layer-by-layer fashion [1–4]. In principle, sufficient
control of AM processes (e.g. material properties, deposition order,
energy input) permit the production of near net shape parts and
structures with tailored microstructural features [5,6]. Due to the
minimal (re)tooling costs associated with the production of a diverse
range of structural geometries, AM processes are seen to have novel
implications with respect to the usual economies of scope and of scale
[7–10]. From a design-engineer's point of view, the main advantage of
AM is the liberty afforded in the (quick) realization of complex and
efficient parts and structures—by exploiting, potentially, computational
design-optimization techniques—with less assembly time and more
flexible functional integrations [11,12].

AM manufacturing techniques operate on a range of materials.
Herein we focus on metal AM, particularly notorious for defects, di-
mensional inaccuracy, and difficulties in micro-structural control.
Megahed et al. [13] classify existing metal AM processes based on the

manner in which the material is deposited prior to fusion, referring to
powder-bed, blown-powder, and wire-feed processes. The predominant
metal AM technology is selective laser melting (SLM), a powder bed
process [14–18]. In general, metal AM technology is characterized by a
localized heat (energy) input directed in such a way as to (at least
partially) melt and fuse the deposited material with the existing
structure. The phase changes and temperature gradients cause de-
formation, stress, and part distortion [13,15,16]. The properties of the
deposited material and the action by which it is bonded or fused—in
terms of thermofluid effects—determine the mechanical properties of
the consequential structure [14,19–21]. Megahed et al. [13] highlight
the multiphysics character of the process, and the fact that the small
time and length scales associated with the heat source have to be ac-
counted for (relative to the macroscopic scale of the part). In varying
degrees, the aforementioned phenomena contribute to undesirable
surface finishes and material properties, dimensional inaccuracy, de-
graded performance, and premature failure of the part (in service). In
short, violation of design tolerances. In the extreme, the part or struc-
ture may distort excessively and/or fail during the build, and cause
failure (typically obstruction) of the AM machine [22,23].
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The complexities which per se accompany the strengths of AM im-
plicate computational simulation in an attempt to predict, control, and
potentially exploit the (seemingly undesirable) side-effects of the pro-
cess [7]. If computational simulation is not available, costly and time-
consuming physical trial-and-error experiments have to be resorted to
[24–26]. Simulation technology permits a designer to compensate a
priori for the process responses with design modifications [27], design-
optimization of the part with respect to the process [28], or optimiza-
tion of the process itself as a function of the process parameters [16].

Due to the predominance of thermomechanical effects, one branch
of fast AM process simulation is focused on the efficient calculation of
the thermal history of the build. Depending on the particular thermo-
mechanical coupling—invariably one-way—the temperature histories
form the input to a macroscale mechanical analysis in order to predict
residual stress fields and part distortion. Zeng and co-workers [29,30]
employ a dynamically meshed finite element (FE) model to reduce the
number of degrees of freedom (and thereby reduce the computational
burden) [29,30]. Yang et al. [31] also manage to decouple (to some
extent) the FE discretization from the accuracy of the thermal history
calculation. To reduce computation time, cheap analytical solutions of
the steep thermal gradients in and around the heat source are super-
imposed on a relatively course FE mesh [31]. Both approaches [29–31]
permit the simulation of specific scanning paths and patterns in SLM.
However, Heigel et al. [32] point out that a measurement-based con-
vection model may be necessary in order to predict accurate thermal
histories in metal AM. Moreover, Ghosh and Choi [19] advocate mod-
elling of the phase transformation kinetics in laser-aided metal AM in
order to calculate accurate residual stress distributions. Similarly, Mu-
kherjee et al. [33] propose a transient heat transfer and fluid-flow SLM
model—in order to simulate, in particular, the convective thermal in-
teractions associated with the meltpool—combined with a thermo-
mechanical analysis to determine accurate macroscale stress and dis-
tortion. Yet, the computation of only the transient thermofluid fields in
the equivalent of a 5-layer build (using an adaptive FE mesh), requires
about 5 h of wall-clock time on a contemporary hardware platform (the
simulation requires about 30 h using a conventional ‘brute-force’ FE
mesh) [34].

With an eye on the computational burden, Neugebauer and co-
workers [27,35] develop a hierarchical multiscale computational pro-
cedure (for SLM) whereby a generic microscale heat source model is
mapped to a layer-wise hatching model, serving as input to a ‘lumped’
mechanical layer equivalent (MLE) analysis. Li et al. [36] adopt much
the same approach. To the end of fast computation of the mechanical
process responses, the sub-macroscale models are used to predetermine
a so-called inherent strain, accompanying each layer in the MLE. A si-
milar technique is used successfully in welding distortion prediction
[37]. Reportedly, calculation time is reduced by two or more orders of
magnitude if the sub-macroscale phenomena are predetermined and
averaged (‘lumped’) in this way. Zaeh and Branner [23] also lump
several layers (in SLM) in order to reduce computation time to rea-
sonable levels. Alvarez, San Sebastian, Setien and co-workers [38,39]
refer to the MLE as the inherent shrinkage method (originally devel-
oped for multi-pass welding processes), and employ calibrated aniso-
tropic inherent strain fields to model different hatching patterns in SLM
[40].

In this paper we adopt the philosophy outlined directly above, and
follow the conventional inherent strain approach. That is to say, to the
end of fast computation of the mechanical AM process responses, the
macroscale manifestation of the phase-changes and thermal gradients
are predetermined and applied as an inelastic deformation field, within
a FE-based representation of a growing structural configuration.
Throughout, we highlight and explore the fact that standard linearity
assumptions permit the independent computation of the mechanical
response increment in each step of the AM process simulation. Section 2
departs with an outline of the relevant structural behaviour from a
computational mechanics point of view, followed by the formulation of

the AM process model itself. Section 3 contains discussions on im-
plementation aspects, numerical demonstrations, and experiments,
devised to shed light on the accuracy and the speed of the linearised AM
process simulation. Section 4 provides a final discussion and conclu-
sions.

2. The AM process model

2.1. Elastoplastic structural behaviour under geometric linearity
assumptions

We choose to study structural configurations by computational
means, using the well-known finite element (FE) method. To avoid
cumbersome descriptions of the details of the FE's, we employ a gen-
eralized description. To this end, we introduce an array of generalized
deformation components ε which describe the deformation of the
structure. The total number and composition of deformation compo-
nents is determined by the discretization and types of elements (cum-
bersome details of which we can thus avoid). In matrix notation, the
array of generalized deformation components is = …ε ε ε( , , )T T T

1 2 , in
which εe is a column representing the generalized deformations of
element e. Similarly, we have energetically conjugate generalized
stresses σ and σe, such that the inner products σe · δεe and σ · δε yield the
(correct) internal virtual work at element—and system-level respec-
tively. For example, consider a standard FE representation of a con-
tinuum body, with Se the second Piola-Kirchhoff stress tensor and Ee the
Green-Lagrange strain tensor—see, for example, Holzapfel [41]—as-
sociated with element e. Element e is demarcated by a volume Ve (in the
reference configuration), with the relation

∫ = σ εδ V δS E: d · ,
V e e e e

e (1)

taken to hold. Furthermore, u and f are the generalized nodal degrees of
freedom (dofs) and the work equivalent external nodal loads. Static
equilibrium is inferred with the Principle of Virtual Work, which states
that

=σ εδ δf u· · , (2)

for all kinematically admissible variations, δu. In reality, the general-
ized deformations are related to the dofs by

=ε ε u[ ], (3)

in a nonlinear manner, and variations follow as

= =ε εδ δ δ δD u u D u u[ ] , [ ] ,e e e e (4)

on element—and system-level, respectively; De and D being the de-
formation-dof differentiation matrices, which follow from the operation
∂
∂ u[ ]ε

u
i
j

; ue are the nodal dofs associated with element e. Square brackets
[·] denote functional dependency (‘evaluated at’). The functional de-
pendency notation [·] will be used and dropped freely to indicate the
nature of a particular quantity at a particular point in our description.
Geometric linearity assumptions (small strains and rotations) manifest
in constant differentiation matrices

= =ε εu D 0 u u D 0 u[ ] [ ] , [ ] [ ] ,e e e e (5)

with respect to the dofs u. That is, under geometric linearity assump-
tions, D and De are evaluated at the reference configuration u= 0, ir-
respective of the current (computed) state of the configuration.

The generalized stresses σ are related to the generalized deforma-
tions ε by a material model. In the linear regime, stress components are
related to the deformations with a generalized form of Hooke's law. In
the presence of inelastic deformations, a material law is represented by
an operation on the elastic part of the deformation components, at
element—and system-level

= − = −★ ★σ ε ε σ ε εS u S u( [ ] ), ( [ ] )e e e e e (6)
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respectively, with Se and S generic elasticity matrices. As is common, it
is assumed that the total deformation ε may be decomposed into elastic
εe and inelastic ε★ contributions, i.e.

= + ★ε ε ε .e (7)

The inelastic deformation components ε★ may be used to model such
things as initial deformations, thermal deformations, eigenstrains,
misfit strains, and plastic strains. If any of the aforementioned aspects
are modelled in a nonlinear fashion, then it is meant to imply that the
inelastic deformations depend on the state of the configuration. Such
inelastic deformation components ε★ may, consequently, modify the
effective stiffness of the configuration. Typically, if plastic material
behaviour is modelled, the inelastic deformation components are taken
to be a function of the stress state itself

= − = −★ ★σ ε ε σ ε σ ε ε σ εS S( [ , ]), ( [ , ]),e e e e eq qe (8)

along with equivalent plastic deformations (internal variables) εq.
Plastic deformation is modelled to occur if the stress state exceeds the
yield surface. The stress term σe (or σ) on the right-hand side of Eq. (8),
and the representation of the onset of plastic deformation (stress limit),
which may depend on the history of the state of the configuration, make
the material law (and the static equilibrium conditions which follow)
nonlinear. The interested reader is referred to Dhondt [42], for ex-
ample, for further details.

Regardless of the intricate details of the material law (8), by sub-
stitution of the linear (geometric) deformation relations (5) in the vir-
tual work equation (2), one finds that

=σ δ δD u f u( )· · ,T (9)

which should hold true for all kinematically admissible variations δu at
static equilibrium. Assuming that prescribed kinematic boundary con-
ditions are dealt with in an appropriate way, the static equilibrium
equations for the entire FE model follow as

=σD f.T (10)

Considering linear structural behaviour: the linear material law (6),
the linear deformation relations (5), and the static equilibrium equa-
tions (10), culminate in the well-known representation of static equi-
librium

= + ★Ku f f , (11)

in terms of the system-level stiffness matrix K=DT[0] S D[0], and the
equivalent nodal loads f★=DT[0] S ε★ ‘induced’ by the inelastic de-
formations (e.g. in the modelling of thermomechanics).

Typically, in the presence of nonlinearity, Newton's method,1 which
operates on a variable (preferably consistent) tangent stiffness matrix
∂

∂ σD u( )[ ]T
u , evaluated at the current state of the configuration (and the
associated equivalent nodal loads), is employed to establish the static
equilibrium state. In terms of the computational burden, solving the
linear equilibrium conditions (11) is equivalent to a single iteration in
Newton's method.

2.2. A single AM process step

In AM process simulation a single process (time) step corresponds to
(i) the stress-free merger of a new part of the structural configuration to
the existing structural configuration, and (ii) solidification and cooling
of the newly added material, causing an increment in the equilibrium
state of the configuration. Thus, we have to distinguish between two
collections of mechanical field quantities in the configuration. The first
collection is the dofs u, deformations ε, and stresses σ which measure
the state of the structural configuration prior to the AM process step.
The second collection contains the additional dofs ū, deformations ε̄,

and stress σ̄ components, those associated with the newly added ma-
terial. An increment relative to the equilibrium state which holds prior
to the AM process step, to establish the equilibrium state after the AM
process step, is denoted by quantities with a preceding Δ symbol. Fig. 1
is a graphical illustration of what we describe here. In Fig. 1 the grey
region represents the existing configuration, the white region indicate
the new part of the configuration, and the Δ…'s denote an incremental
step in the associated quantity to establish the new static equilibrium
state (the state after the process step). Without a loss in generality,
external nodal loads are neglected in the presentation of the AM process
model.

The complete set of dofs in the extended configuration, prior to the
introduction of the increment to establish the new state equilibrium
state, is written as

= ( )u u
u¯ ¯ . (12)

The same notation is used to denote the complete sets of deformations,
stresses, and inelastic deformations, for example

= =( ) ( )ε ε
ε σ σ

σ¯ ¯ and ¯ ¯ . (13)

Importantly, deformation components in the new part of the config-
uration ε̄ are dependent on some dofs in the pre-existing configuration
u (nodes on the old-new configuration interface). This has implications
for the representation of the AM process step as ‘stress—or strain—free’
(common practice in AM process modelling); we return to this aspect
further below. Naturally, before the new part of the configuration is
introduced, the deformations in the already existing configuration obey
(under geometric linearity assumptions)

=ε u Du[ ] , (14)

and the stresses follow from the material law, as before

= −σ ε εS u( [ ] ),0 (15)

wherein initial (inelastic) deformations ε0 are introduced to represent
the current state of the configuration, representing such quantities as
thermal, plastic, or ‘inherent’ deformations which are present in the
existing configuration. Note that, the source (or cause) of the initial
(inelastic) deformations ε0 is inconsequential: it is the collection of
those (inelastic) deformations which, if subtracted from the total de-
formation ε u[ ], yield the elastic deformation components on which the
material model (15) operates. Having neglected external nodal loads,
static equilibrium implies that

=σD 0,T (16)

wherein handling of the appropriate boundary conditions (e.g. base-
plate) is implied.

A structural configuration in an AM process exhibits evolving de-
formation and stress fields due to the transient thermal gradients,
(solid-state) phase transformation and nonlinear material behaviour
induced by the localized heating, melting, fusion, solidification and
cooling of the new and existing parts of the configuration. This culmi-
nates in macroscale stress and distortion. However, in order to describe
(and model) the merger of a new part of the configuration to the ex-
isting configuration, it is useful to first imagine an ideal AM process
step. That is an AM process step which causes zero thermal gradients,
for example, and thereby zero distortion (a zero increment Δ…= 0 in
the mechanical field quantities already present prior to the ideal step).
An ideal AM process step is characterised by a zero change in the in-
elastic deformation components ε★, and the new dofs are at zero =u 0¯ ,
reflecting zero distortion. Yet, assuming that, in general, a nonzero
displacement field may be present prior to the AM process step, the
deformations of the newly added material

= ⎛
⎝

=
≠

⎞
⎠

ε u D u 0
u 0¯ [ ¯ ] ¯ ¯ ,

(17)1 Also referred to as the Newton-Raphson method.
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may be nonzero, due to the dependency on the dofs in the pre-existing
configuration u. This is associated with nonzero stress components and
a static equilibrium imbalance, generating an increment in the static
equilibrium state Δ…. That is distortion—-not an ideal AM process step.
In order to describe an ideal AM process step, initial deformation
components equated to the deformation mismatch between the existing
and new part of the configuration

= =( )ε u D u 0
u¯ [ ¯ ] ¯ ¯ ,0

(18)

are included in the material law, which, in turn, causes the stress
components to vanish

= − =σ ε εS u u 0¯ ¯ (¯ [ ¯ ] ¯ [ ¯ ]) .0 (19)

Physically speaking, the liquid state of the (melted) material when
the new part of the configuration is seen to merge (perfectly) with the
existing part, is taken to imply that the new part is connected stress-free.
Therefore, static equilibrium of the new, extended configuration—with
the ideally merged, new part of the structure, connected—dictates that

=σD 0¯ ¯ ,T (20)

wherein the extended deformation-dof differentiation matrix D̄ is taken
to define the (linear) relation

=ε u Du¯ [ ¯ ] ¯ ¯ , (21)

as before, but with respect to the extended configuration.
The static equilibrium conditions (20), after an ideal AM process

step, imply a zero change in the pre-existing dofs u and the new dofs ū,
deformations ε̄ and stresses σ̄ . That is to say, the new dof components ū
retain their reference values =u 0¯ at the existing static equilibrium
state, and static equilibrium of the pre-existing structure is not affected.
Having no misfit between the existing and new part of the structural
configuration at the moment an element (or layer) is activated, is re-
ferred to as a ‘strain-free model change’ in some contemporary FE
analysis packages [43]. This is also closely related to element ‘birth-
and-death’ techniques in welding simulation—see for example Chen
et al. [44].

The distortions and residual stresses associated with an actual (not
ideal) AM process step is caused by an increment in the inelastic de-
formation components

⎜ ⎟+ = ⎛
⎝

+
+

⎞
⎠

★
★

★ε ε ε ε
ε ε

¯ Δ ¯ ¯ Δ¯
Δ

,0
0

0 (22)

and a corresponding increment in the static equilibrium state

+ =σ σD 0¯ ( ¯ Δ ¯ ) ,T (23)

according to the material law

+ = + − − ★σ σ ε ε ε εS u u¯ Δ ¯ ¯ ( ¯ [ ¯ ] Δ ¯ [Δ ¯ ] ¯ Δ ¯ ).0 (24)

To be clear: the …0 terms denote initial deformations, either present in
the existing configuration, and/or required to merge material stress
free; while the …★ terms denote inelastic deformation increments, seen
to model the inelastic deformations induced by the process. Typically,
in SLM process modelling, the predetermined inherent (inelastic) de-
formation components are applied to the new material layer in each

step of the process. In general however, the inelastic deformation in-
crement associated with the process step may extend into the old part of
the configuration.

In the geometrically linear AM process model, it is the nature of the
inelastic deformation component increments ★εΔ ¯ which determine
whether the process step is linear or nonlinear. For example, if an one-
way coupled linear thermomechanical analysis is conducted, then the
increments ★εΔ ¯ are a function of the temperature field and the material
expansion coefficients. However, computation of the mechanical re-
sponse uΔ ¯ requires a single linear analysis. If nonlinear plastic de-
formations form part of the inelastic deformation component increment

★εΔ ¯ , then the process step is nonlinear.

2.3. Linearisation of the AM process model

It is clear to see that linearity assumptions permit the expression of
the static equilibrium equations (23), subsequent to the AM process
step, in superimposed form

+ =σ σD D 0¯ ¯ ¯ Δ ¯ .T T (25)

The components relating to the existing equilibrium state (16), ex-
panded to the extended configuration with the notion of an ideal
(stress-free) AM process step (20), are known to be in balance. There-
fore, the incremental component

=σD 0¯ Δ ¯ ,T (26)

may be computed independent of the current state of the configuration
ū, in terms of an incremental material law

= − ★σ ε εSΔ ¯ ¯ (Δ ¯ Δ ¯ ). (27)

As before, the static equilibrium increment may be written in terms of
the (newly extended) system-level stiffness matrix

= ★K u f¯ Δ ¯ Δ¯ , (28)

and the increment in the equivalent nodal loads; that is
=K D 0 S D 0¯ ¯ [ ] ¯ ¯ [ ]T , and =★ ★εf D 0 SΔ¯ ¯ [ ] ¯ Δ ¯T , respectively. Notice how the

initial deformations ε̄0, required to fit the new part of the configuration
to the old part in a stress-free manner, and, for the representation of the
current state of the configuration, have dropped out: a static increment
is computed with respect to a stress-free reference configuration. In-
elastic deformation increments in either or both the pre-existing or new
part of the configuration ★εΔ ¯ are taken to be representative of thermal
deformations, or predetermined inherent deformations, for example.
The linear formulation of the AM process model permits quick and easy
computation of the equilibrium state of the configuration. The incre-
mental conditions for static equilibrium after each process step (26) and
the quantities required in the definition of the material law (27), render
the relative increment in the state of the configuration (28) computable
completely independent of what went before. The implication is that
the static equilibrium increment generated by each and every process
step in the linear AM simulation may be computed independently and in
parallel.

Now, consider a total of P linear AM process steps, each of which
turns out to be a static equilibrium increment with respect to the

Fig. 1. Sets of mechanical field quantities considering an AM process step.
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corresponding (stress-free) reference configuration

= ★K u f¯ Δ ¯ Δ¯ ,p p p{ } { } { } (29)

for p=1, 2, …, P. If we permit ourselves to conduct summation op-
erations on arrays of different sizes—for notational convenience—the
final dofs, relative to the reference configuration ū0, are easily rendered
according to

∑=
=

u u¯ Δ ¯ .P

p

P
p{ }

1

{ }

(30)

That is to say, the dof (displacement) components which are not yet
present in the particular configuration after process step p, are taken to
be zeros (the computationally minded reader may be reminded of
sparse storage formats and matrix-vector operations). In the final
equilibrium state of the configuration, the accumulated inelastic de-
formation components

∑ ∑+
= =

★ε εΔ ¯ Δ ¯
p

P
p

p

P
p

1

{ }0

1

{ }

(31)

adhere to the material law

∑ ∑=
⎛

⎝
⎜ − −

⎞

⎠
⎟

= =

★σ ε ε εS u¯ ¯ ¯ [ ¯ ] Δ ¯ Δ ¯ ,P P P P

p

P
p

p

P
p{ } { } { } { }

1

{ }0

1

{ }

(32)

with the stress components governed, in turn, by the conditions of static
equilibrium

=σD 0¯ ¯ .P T P{ }, { } (33)

The εΔ ¯ p{ }0 terms are intended to show that, in general, any number of
process steps may contribute to the misfit deformation which is present
when a new part of the configuration is connected ε̄ p{ }0, but the com-
putation of the final equilibrium state is an independent summation of
the process step increments, nevertheless. It is expected (imagining the
physics of the process) that a linear material law may not yield an ac-
curate representation of the stress state of the configuration. However,
the displacement dofs may be accurate, particularly if the inelastic
deformation components are calibrated to experimental distortion data.
To incorporate a nonlinear material law in the linear AM process si-
mulation outlined above, we consider the following computationally-
minded approximation: having combined (superimposed) all the in-
crements to construct the final equilibrium state (33), the linear elastic
material law (32) is replaced by an elastoplastic material law, as de-
fined in (8), and the increment to establish the new equilibrium state is
computed. This type of nonlinear static equilibrium computation is of
course required in every process step (and trivial process-step parallel
computability breaks down) if nonlinear plastic material behaviour is
modelled throughout the process, often leading to a prohibitive com-
putational burden. Geometrically nonlinear structural behaviour, on
the other hand, is expected to be mild (if present at all) in the structural
geometries considered herein (which are neither thin-walled nor
slender).

3. Numerical implementation, demonstrations, and experiments

3.1. Implementation and deposition order

In Fig. 2 flowcharts of the conventional (sequential) AM process
simulation (left) and the parallel process-step AM simulation (right) is
given. Throughout, to compute static equilibrium is meant to imply that a
set of equations of the form

+ = + =★ ★ ★K u u f f K u f¯ ( ¯ Δ ¯ ) ¯ Δ¯ , or ¯ Δ ¯ Δ¯ ,p p p p p p p p{ } { } { } { } { } { } { } { } (34)

is assembled and solved. In the sequential setting (left), the equilibrium
state is updated according to ⟵ ++u u u¯ ¯ Δ ¯p p p{ 1} { } { }, etc., for each process
step p=1, 2, …, P. In the independent (parallel computable) process-

step setting, the final equilibrium state is computed at once

∑⟵
=

u u¯ Δ ¯ .P

p

P
p{ }

1

{ }

(35)

In order to demonstrate some properties of the AM process simu-
lation framework detailed above, a 100×100×100mm cube geo-
metry, discretized with 1000 equally-sized eight-noded brick elements,
is employed. See Flanagan and Belytschko [45] for details of the ele-
ment. All the displacement components on the lower surface of the cube
are fixed at zero (representative of baseplate-boundary-conditions). The
material is taken to be isotropic, with a constant Young's modulus of
125 GPa and a Poisson ratio of 0.333. Each process step is taken to
cause an isotropic increment in the inelastic deformation components
associated with the new part of the configuration (the new layer or
block in that step), with the relevant components prescribed at ★εΔ j̄

p{ }

= -0.005. This value is taken to be representative of a thermal con-
traction from the melting temperature of the material to the tempera-
ture of the build chamber—see Appendix A. Two AM process dis-
cretizations are considered, as depicted in Fig. 3. The first (left) is a
depiction of a layer-by-layer AM process discretization; the second
(right) shows a block-wise AM process discretization, with an alter-
native deposition order. The former is standard practice in SLM process
models, while the latter is more reminiscent of directed material de-
position—e.g. wire-feed or blown powder—processes. Note that we
here assume that the effects of respective scanning patterns and other
detailed process characteristics can be captured in a tailored inherent
strain tensor.

The linear AM simulation conducted as per the layer-by-layer dis-
cretization yields the distortion prediction depicted in Fig. 4. The dis-
tortion predictions yielded by the block-wise AM simulation is given in
Fig. 5.2 In the linear AM process simulation reported above, it is irre-
levant whether the depicted equilibrium states were computed with a
sequential or parallel process-step implementation—the results are ex-
actly the same in the linear regime. This numerical experiment confirms
and validates our theory that the superposition principle still applies to
linearized AM process simulations on growing structural domains. The
examples given of two different AM process discretizations are intended
to emphasise that independent parallel computability of the process-
step increments hold all the same. The block-wise-case is intended to
show that the process need not be layer-wise, and that any number of
process steps may contribute to the misfit deformation which is present
at the moment a new part of the configuration is activated. In general,
after each independent static equilibrium increment computation, the
deformations present in the part of the reference configuration which is
not yet deposited (or solidified) are recorded—this does not, however,
involve a static equilibrium computation. Subsequently, the accumu-
lated initial deformation increments are superimposed to render the
equilibrium state after some process step of interest (after the build, for
example). In the layer-by-layer case the aforementioned procedure is
simpler because only one process step contributes to the initial de-
formation which is present when a layer is merged to the config-
uration—in a sequential simulation, it is the displacement and de-
formation caused by the merger of the layer that went immediately
before.

3.2. Distortion and stress predictions

In the linear elastic simulation, yielding of the material is not
modelled to occur. Therefore, it is expected that the stress field will be

2 Note that it is the (amplified) warpage of the geometry which makes it seem
that the displacement field is discontinuous in (d), as a number of elements
become hidden in the visualisation. This is not the case, see (c) by comparison.
The equilibrium state always satisfies the same continuity, material and equi-
librium laws as in the equivalent sequential simulation.
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overestimated. The final equilibrium state is the starting point for the
modelling of the ‘posterior’ elastoplastic material law, to the end of
(more) accurate stress predictions. To show the effect of this, the con-
ventional, sequential, nonlinear elastoplastic AM simulation is com-
pared to the linear elastic simulation (with independent process-step

increments), followed by the imposition of an elastoplastic material
law. Because material nonlinearity is present in every process step in
the former, linear superposition and parallel process-step computation is
not available—and the simulation may be time-consuming. Here we
consider only the layer-by-layer version of the process, applied to the

Fig. 2. Flowchart representations of sequential AM process simulation (a) and parallel process-steps with an appended elastoplastic material law (b).

Fig. 3. Illustration of layer-wise and block-wise AM process discretizations.

Fig. 4. Layer-wise AM process simulation of a 10-step process, 100×100×100mm cube build, discretized with 10×10×10 FE's. Plots of the magnitude of the
distortion vector after Step 5 and Step 10. Geometry warpage amplified by a factor of 20.
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100×100×100mm cube from above, but discretized with 50 ele-
ments along each coordinate axis. In all cases, the yield curve is taken
from Mukherjee et al. [33]. In Fig. 6a the von Mises stress field pre-
dicted by the linear elastic AM process simulation is plotted. In order to
study the predicted stress fields, a section midway through the cube is
considered. In Fig. 6c the von Mises stress field predicted by the se-
quential, elastoplastic AM process simulation, is depicted. For the sake
of comparison, the stress field corresponding to the linear elastic AM
process simulation is plotted again in Fig. 6b, but limited at the max-
imum value of the elastoplastic simulation. In Fig. 6d the von Mises
stress field computed with the imposition of the nonlinear elastoplastic
material, after the final equilibrium state of the linear elastic simulation

is obtained, is plotted. Clear to see is that the imposition of a posterior
elastoplastic material law leads to reduction of the stress field to rea-
sonable values. In Fig. 7 the corresponding distortion predictions are
plotted (on warped geometries). At close inspection it is possible to
discern that the elastoplastic simulation and the posterior elastoplastic
simulation correspond well along the verticals of the corners of the
cube, whereas a slight discrepancy occurs at the uppermost layer due to
(re)equilibriation of the stresses.

To gain some insight into the possibility of encroaching into the
geometrically nonlinear regime, numerical experiments with geome-
trically nonlinear behaviour included in the linear elastic simulation,
with increasing multiples of the inelastic deformation increment, are

Fig. 5. Block-wise AM process simulation of a 20-step process, 100×100×100mm cube build, discretized with 10× 10×10 FE's. Plots of the magnitude of the
distortion vector after Step 5, 10,15 and 20. Geometry warpage amplified by a factor of 20.

Fig. 6. Predicted von Mises stress fields at mid section of the 100× 100×100mm cube, layer-wise build: (a) and (b) linear AM process simulation; (c) elastoplastic
AM process simulation; (d) linear AM proves simulation with posterior enforcement of an elastoplastic material law.
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conducted. In Fig. 8 the maximum displacement magnitude and von
Mises stress is plotted, for multiples of the inelastic deformation in-
crement introduced above. It is clear to see, for the simple structural
geometry considered here—which is neither thin-walled nor slen-
der—geometrically nonlinear behaviour is hardly observed, even for
excessive inelastic deformation increments. That is to say, layer-by-
layer element activation (‘strain-free’ model changes) and inelastic
deformation increments do not introduce any additional or unconven-
tional geometric nonlinearities.

The simple (cube) structural geometry studied here is of course by
no means indicative of the behavior and predictions of the simulation
procedures, in general. With this simple geometry we wish merely to
highlight some basic mechanical aspects, and future work is planned for
comparison with and calibration to physical experiments.

3.3. Simulation wall-clock time

Next, the speed-up in wall-clock time which may be achieved by
exploiting parallel process-step computability in the linear regime, is
reported. For the sake of brevity, we consider only the layer-wise ver-
sion of the AM process model. It is obvious that the necessity of
Newton's method (typically) in every step of the sequential, nonlinear
elastoplastic simulation, is much more time-consuming than the linear
case appended with an elastoplastic step. The wall-clock times required
to simulate each process step in the layer-wise AM build independently
and in parallel, followed by superposition, are measured, and sum-
marised in Table 1. The structural configurations range from small—10
layers made-up of 1000 elements (10× 10×10) in total—to

large—refined to 100 layers, made-up of 1 000 000 elements
(100× 100×100) in total. Please note, mesh-refinement is done with
respect to all the axes, not only the printing direction. The wall-clock
times required using a 4-core laptop architecture (i7-4770HQ CPU @
2.20 GHz, 7.7 GB RAM), considering the 10–50 layer AM builds, are
plotted in Fig. 9a. Using more than one core, the parallel process-steps
are arranged in such a way that each core is tasked with roughly an
equal computational burden (in terms of the sizes of the configurations
corresponding to each process-step increment). Using 2 cores, wall-
clock time is halved. Using 3 and 4 cores, wall-clock time is reduced
proportionally, although the relative speed-up diminishes slightly with
respect to the ideal due to summation operation carried out at the end

Fig. 7. Plots of distortion (magnitude) of the 100×100×100mm cube, layer-wise build: (a) linear elastic (b) elastoplastic, and (c) posterior plastic; geometries
warped ×10.

Fig. 8. Comparison of distortion and stress quantities predicted by a linear and geometrically nonlinear AM process simulations, for increasing inelastic deformation
increments.

Table 1
Problem sizes for wall-clock time measurements of parallel process-step com-
putation and superposition.

Layers Per layer Total

Elements dofs Elements dofs

10 100 363 1000 3993
20 400 1323 8000 27 783
30 900 2883 27 000 89 373
40 1600 5043 64 000 206 763
50 2500 7803 125 000 397 953
60 3600 11 163 216 000 680 943
70 4900 15 123 343 000 1 073 733
80 6400 19 683 512 000 1 594 323
90 8100 24 843 729 000 2 260 713
100 10 000 30 603 1 000 000 3 090 903
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(which is not parallelized here). The wall-clock times achieved on a
computational cluster, applying 10–50 cores on the 50–100 layer
builds, are reported in Fig. 9b.

The same wall-clock time scaling as in the small-scale (laptop) set-
ting is observed. This is quite remarkable, as conventional domain-level
parallelization techniques rarely achieve wall-clock time scaling in this

way, approaching the ideal. For both the small—and large-scale im-
plementations a modified version of CalculiX [46] (a free and open-
source FE analysis code) is used. We can report that the default domain-
level parallelization procedures implemented in CaluculiX (i.e. applied
in a conventional sequential simulation) yield nowhere the same
amount of speedup: 4 cores require over 1000 s to simulate the 40 layer
case. In Section 3.4 wall-clock times are compared to domain-level
parallelization in the equivalent Abaqus simulation, considering an
industrial build. The wall-clock time measurements reported here show
that process-step parallelization is faster than domain-level paralleli-
zation techniques, and reasonable wall-clock time scaling can be
achieved with this simple avenue of AM process simulation. Moreover,
process-step parallel computation illustrates rather nicely the nature of
AM process simulation in the linear regime.

3.4. Industrial test case

Here we present and discuss the application of the method to a
distortion prediction of a layer-wise AM simulation (representative of
an SLM process), conducted on an industrial structural geometry. In
Fig. 10a and b two views of an STL representation of the considered
part, are given. The part is voxelised based on a regular grid suited to a
layer-by-layer process, assuming the interior is 100% filled. (Homo-
genization techniques may be resorted to capture fine structural fea-
tures on relatively coarse meshes.) The regular grid forms a natural
starting point for a hexagonal FE discretization. The part is enclosed by
128× 119×100 elements, with a characteristic length of 1mm. That
is, the simulation comprises 100 process steps. The corresponding views
of the voxelised part are given in Fig. 10c and d. As before, each process
step involves an inelastic deformation increment applied to the upper-
most layer of the structural configuration deemed to be in existence at
that point in the process. The material properties are retained from
before. The simulation quantities are representative of a generic Ti-6AL-
4V SLM process.

For the sake of comparison, two AM simulation methodologies are
considered: conventional, sequential simulation with elastoplastic ma-
terial behavior and geometric nonlinearity taken into account vs. the
step-wise parallel linear elastic simulation, as delineated in this paper.

Fig. 9. Wall-clock time required for layer-wise AM process simulation ex-
ploiting parallel process-step computation.

Fig. 10. Industrial test case 128×119×100mm: STL model (a,b), voxelised model (c,d).
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In Fig. 11a and b two views of the distortion predicted by the sequential
nonlinear simulation are given. In Fig. 11c and d the corresponding
views of the distortion prediction yielded by the step-wise parallel
linear elastic simulation are given. The displacement field is evaluated
on the STL surface via the element interpolation functions, in each case.
Based on this depiction of the part distortion, there is little to no dif-
ference between the distortion predictions yielded by the sequential
nonlinear and the linear, step-wise parallel simulations. In Fig. 11e a
histogram plot of a deviation analysis of the two distortion predictions
is given. The part geometry is warped with both displacement fields
(sequential, nonlinear and step-wise linear). Following this, points are
sampled on the part warped with the result of the linear simulation, and
a deviation analysis to the reference geometry (warped according to the
sequential nonlinear simulation) is conducted. The mean discrepency is
0.00011mm, and the standard deviation of the discrepancy is
0.00518mm. That is, about 95% of the warped geometries agree within
10 μm.

Finally, we compare the wall-clock time speed-up achieved with a
conventional, commercial FE simulation package, and the method of
process-step parallelization—valid under linearity

assumptions—delineated herein. The commercial FE simulation
package is Abaqus, with default settings, utilizing domain-level paral-
lelization in each sequential step. In both cases the linear elastic si-
mulation conducted above, is repeated. In Fig. 12a the wall-clock times
are reported, using 1–6 cores. The results indicate that the Abaqus si-
mulation is associated with a substantial amount more computational
overhead, although it should be noted that the simulations could not be
conducted on exactly the same hard-ware platforms (although similar).
Nevertheless, comparison of the absolute wall-clock time is not the
main purpose of this investigation. To discern more clearly the relative
speed-up achieved with the different methods of parallelization, the
wall-clock times are normalised with the single-core time in each case,
and plotted on a log-scale in Fig. 12b. A line representing the theore-
tically ideal speed-up which may be achieved is included for the sake of
comparison. These results show quite clearly that process-step paral-
lelization, available under linearity assumptions, provides a better
speed-up—close to ideal—compared to the conventional domain-level
parallelization utilized in state-of-the-art commercial FE software.

Fig. 11. Industrial test-case distortion predictions; sequential simulation with elastoplasticity and geometric nonlinearity taken into account (a,b), linear, step-wise
parallel simulation (c,d).
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4. Concluding discussion

In closing we wish to state clearly that the total computational

burden is not decreased under process-step parallel computation of AM
simulation, only wall-clock time. However, parallel computability of
the process steps—confined to the linear elastic regime—is a simple
avenue of reasonably fast AM simulation, with the potential to mitigate
the severe wall-clock-time scaling of the simulation with respect to finer
mesh and process discretizations.

The fact that the mechanical aspect of the AM process may be re-
presented and computed in this fashion elucidates the computational
structure which underlie AM process models. In particular, the notion
that a new part of the configuration is merged to the existing config-
uration in a stress-free manner; a notion necessitated to describe the
trivial case of an ideal AM process step. Moreover, the fact that linearity
assumptions imply that a static equilibrium increment in each step of
the process is computed with respect to the stress-free reference con-
figuration in existence at that point in time. In the end, the development
of fast AM simulation techniques will aid designers in predicting the
responses due to AM processes, which enables the study of computa-
tional design-for-manufacturing—e.g. topology optimization embedded
with AM process simulation responses—and process parameter opti-
mization with efficient gradient-based techniques.

Further exploration of combining optimization and AM process si-
mulation forms a clear direction for future research, as well as the ex-
perimental validation of the obtained designs.
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Appendix A. Isotropic inelastic deformation approximation

We consider the thermal deformation components which arise due to temperature equilibration from the melting temperature of the material Tm
to the temperature of the build chamber T0. Herein a simple isotropic representation of the thermal stress components

∫=σ E T α T TΔ * [ ] [ ]d ,
T

T

m

0

(A.1)

wherein E[T] and α[T] is the temperature dependent Young's modulus and thermal expansion coefficient of the material, is considered. The ac-
cumulated thermal stress is normalised with the material stiffness at the temperature of the build chamber

= σε
E T

Δ * Δ *
( )

,
0 (A.2)

to obtain representative inelastic deformations components. Using the temperature dependent material properties kindly published by Mukherjee
et al. [33], a value of −0.006 is obtained—in the numerical experiments we take it as −0.005.
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