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Summary

3D Gaussian splatting (3DGS) is an appealing implementation of novel view synthesis, with fast training

and render times compared to related methods. However, per-frame sorting and front-to-back alpha

compositing lead to a significant decline in performance for scenes with a high number of Gaussians. In

particular, the alpha compositing step in the original implementation inefficiently handles overdraw.

Therefore, dense clusters of Gaussians observed at a distance significantly increase frame times.

In this thesis, we propose a stochastic rendering approach that significantly improves performance in

large scenes, by integrating principles from stochastic transparency and compute-based point cloud

rendering. Each frame, we first compute a weight for each Gaussian based on its screen footprint and

opacity. These weights are then used to construct an alias table on the GPU. We then splat points, each

sampled from a Gaussian selected in proportion to its weight using the alias table, onto an interleaved

depth-and-color buffer. By using an atomic operation, we ensure that the points closest to the camera

are kept without sorting. To construct the final image, we average multiple samples per pixel, obtained

across multiple point cloud passes. Although our approach introduces noise at low sample counts and

minor artifacts due to the independent and identically distributed nature of the sampling, these effects

can be mitigated using temporal anti-aliasing and rejection sampling respectively.

Our evaluations indicate that the render time of our method depends primarily on the density of

Gaussians near the camera, rather than the total number in the scene. This allows our method to

efficiently handle large-scale scenes.
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1
Introduction

Novel view synthesis is a task in computer graphics that involves generating images from viewpoints

not in the original dataset, which typically consists of photographs of 3D scans captured by a camera

or depth sensor. Historically, novel view synthesis tackled the challenge of generating unseen views

using techniques such as image-based view synthesis [28], which often struggled with occlusion and

computational efficiency. Recent advances, such as neural radiance fields (NeRF) [14] have made this

task more achievable by introducing the concept of learning a continuous volumetric representation

from a set of images, at high computational costs.

Gaussian splatting [9] is a differentiable rendering technique that approximates a scene using 3D

Gaussian primitives. It achieves real-time novel view synthesis, outperforming NeRF in render times

while maintaining visual quality.

Gaussian splatting uses a set of 3D Gaussian primitives to approximate a scene, where each Gaussian

features a view-dependent color. In the original implementation, Gaussians are sorted based on distance

to the camera, and each Gaussian is projected onto the view plane of the camera. To divide the workload

better among GPU threads, the screen is subdivided into small tiles, and each tile collects the list of

projected Gaussians that intersect it. Then, per tile each gaussian is rasterized and the alpha blended.

This approach has some issues. The color of a pixel is computed by iterating over all Gaussians in

the tile. Therefore, overdraw becomes a serious problem. When the entire scene is seen at a distance,

the frame rate eventually drops below real-time, as more Gaussians start to occupy the same pixels.

Moreover, as the number of Gaussians in a scene grows, the sorting becomes increasingly problematic,

as the Gaussians have to be resorted every frame in accordance with the current view matrix.

We address these issues by introducing a stochastic approach following principles from stochastic

transparency [5] and compute-based point cloud rendering [23]. Stochastic transparency is a form of

order-independent transparency, thus forgoing the need for sorting. It replaces the alpha blending stage

by a stochastic process. Fragments are discarded with probability (1 − 𝛼), ensuring that after sufficient

samples, the result converges to the sorted alpha blending outcome. The use of stochastic transparency

not only eliminates the need for expensive sorting but also opens the door for novel sampling strategies

that adapt to the scene’s complexity.

For our approach, we propose to generate only the fragments that are not discarded, in the form of a

point cloud. Gaussians that are large on screen will have more points dedicated to them than small

Gaussians. To this end, we first compute the weight of a Gaussian every frame (see Section 3.2). Based

on these weights, we compute an alias table (see Section 3.3) on the GPU [11], to enable fast selection of

Gaussians proportional to their weight.

Then, we generate and directly splat a point cloud onto the screen, with the number of points proportional

to the sum of weights (see Section 3.4). Each point is independently and identically distributed, and

first selects a particular Gaussian using the alias table. The position of the point is sampled from the

selected Gaussian projected onto the screen. The point is splatted onto an interleaved depth-and-color
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buffer using an atomic min operation [23]. The atomic operation will efficiently and reliably provide the

closest point per view ray.

However, our approach does suffer from some limitations (see Section 3.5). Due to the independently

and identically distributed nature of the points, points drawn from the same Gaussian may splat to

the same pixel. Furthermore, we cannot guarantee that every pixel expected to reach full opacity will

receive enough points to do so. Using rejection sampling, we mostly mitigate this issue. Moreover, as

we use a stochastic process, our results are noisy. By increasing the number of samples per pixel, noise

is reduced. We also use progressive rendering and TAA to reduce the noise further.

Compared to related work, our method has several promising qualities. Firstly, it deals extremely well

with overdraw. Large clusters of Gaussians seen at a distance are rendered extremely quickly, whereas

existing techniques will experience a slowdown in frame times due to a large number of Gaussians

occupying the same pixel. Moreover, the render time of our technique correlates primarily with the

density of Gaussians near the camera, rather than with the overall number of Gaussians. Finally, we

propose some additional performance optimizations that results indicate to be beneficial when dealing

with extremely large scenes. Therefore, our technique is a promising approach to rendering vast

Gaussian splatting scenes.



2
Related Work

2.1. Novel View Synthesis
Novel view synthesis is a fundamental task in computer graphics, aiming to generate photorealistic

images from viewpoints that are new or not included in the dataset. Traditional techniques such as

image-based view synthesis [28] and view synthesis with multiplane images [24] struggle with handling

occlusions or view-dependent effects such as reflections. Recent advances have significantly improved

the quality and efficiency, enabling more use cases such as applications in virtual reality.

2.1.1. NeRF
Neural radiance fields (NeRF) [14] introduced a new approach to novel synthesis by learning a continuous

volumetric representation of a scene. It uses a neural network to map spatial coordinates and viewing

directions to color and density values of a radiance field, unlike traditional voxel-based methods. The

method is based on direct volume rendering (DVR), where it accumulates radiance along camera rays,

resulting in high-quality images with smooth view transitions. However, the training requirements and

render times associated with NeRF limit its applicability to real-time scenarios.

2.1.2. Gaussian Splatting
The original 3D Gaussian Splatting (3DGS) paper by Kerbl et al. [9] achieves novel view synthesis with

much faster render and training times compared to other state-of-the-art techniques such as NeRF.

It represents a scene as a collection of 3D-Gaussian distributions, each with a mean 𝜇 ∈ R3
, rotation

𝑟 ∈ R4
represented as a quaternion, scale 𝑠 ∈ R3

, a view-dependent RGB color (spherical harmonics

[15], with 48 coefficients), and an opacity. Unlike NeRF, 3DGS uses rasterization instead of direct

volume rendering. The Gaussians are projected onto the view plane, and an axis-aligned bounding

box (AABB) around them is rasterized directly onto the screen –similar to billboard rendering– with 𝛼
values computed based on the distance to the mean of the Gaussian. The Gaussians are transparent,

and the value of each pixel is composited using alpha blending. To this end, the Gaussians have to be

sorted based on the depth to the camera.

2.1.3. Improvements
Since the release of 3DGS there have been many subsequent works improving the technique. The original

approach has major popping issues, where small changes in the camera’s transformations displace the

render order of Gaussians. This issue can be solved by implementing alternative transparency methods,

such as hybrid transparency or other order independent transparency techniques, that do not rely on

global sorting sorting of the Gaussian primitives [7].

NeRF excels in image quality by volume rendering a radiance field directly. To this end, Mai et al.

employ ray tracing to directly render a volume of constant-density ellipsoids that represent the scene,

similar to 3DGS, rather than the rasterization pipeline [12]. Despite modern hardware, this still has a

worse computational performance compared to the original implementation.

3
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Our approach can approximate direct volume rendering and thus resolve popping artifacts by splatting

points in 3D, as discussed in Section 3.5. As we currently do not optimize scenes with this in mind, we

instead splat points onto 2D Gaussians projected onto the screen to better approach the results from

3DGS.

2.1.4. Stochastic Splats
A key limitation of 3DGS is its reliance on depth-sorted rasterization for accurate alpha compositing.

Kheradmand et al. [10] propose StochasticSplats, an alternative forward and backward rendering

method that removes the need for sorting by leveraging an unbiased Monte Carlo estimator of the

volume rendering equation. Much like 3DGS, it generates fragments on the AABB around each projected

Gaussian. However, instead of alpha blending, it uses stochastic transparency. Fragments are discarded

proportionally to their alpha value. Compared to 3DGS, it achieves up to 4× faster rendering. However,

resulting images suffer from noticeable noise at lower sample counts. This can be mitigated using

temporal anti-aliasing and denoising.

Our approach shares similarities with StochasticSplats, but we aim to generate only the fragments that

would not be discarded. To this end, our render pipeline is vastly different than theirs.

2.2. Transparency Rendering
Transparency is a challenge in computer graphics because it requires correctly combining multiple

surface layers that may be partially visible. Transparency as a property of a surface is commonly

expressed as an 𝛼 value ∈ [0, 1], where 𝛼 = 0 means the surface is completely transparent, and 𝛼 = 1

means that it is completely opaque. Given 𝑁 fragments sorted by ascending distance to the camera for a

particular pixel 𝑝, we compute its color 𝐶𝑝 based on the colors 𝐶𝑖 and opacities 𝛼𝑖 of the fragments:

𝐶𝑝 =

𝑁−1∑
𝑖=0

©­«𝐶𝑖 ∗ 𝛼𝑖 ∗
𝑖−1∏
𝑗=0

(1 − 𝛼 𝑗)ª®¬ .
As fragments are generated in arbitrary order during rasterization, a depth buffer is used to ensure

that the fragment closest to the camera for a given screen pixel is rendered. When a fragment is drawn

to the screen, the depth buffer is updated occluding any fragments further away in the process. Since

transparent objects only partially occlude other geometry, the depth buffer cannot be used as effectively,

as it traditionally only stores one depth value per pixel in the render target.

To render the transparency correctly, some approaches rely on sorting [19]. When the fragments are

sorted, they can be blended perfectly using the formula introduced prior. However, sorting introduces a

large overhead to the rendering, as it has to be repeated every frame due to changing camera parameters

or geometry.

2.2.1. Order-Independent Transparency
Alternatively, order-independent transparency (OIT) techniques aim to render transparent objects

without relying on sorting, thereby mitigating one of the key computational bottlenecks in traditional

transparency methods [26].

Hybrid Transparency
Hybrid transparency [13] combines the strengths of sorted and unsorted transparency. In this approach,

per-fragment depth-sorted transparency is applied to the 𝐾 fragments closest to the camera in each pixel

to ensure that the most significant contributions are composited accurately. The remaining fragments

are then accumulated using a weighted sum, which approximates their combined color without the

overhead of full sorting.

Moment-Based Transparency
Moment-based transparency [16] approximates the cumulative effects of transparency along each

viewing ray using a compact set of statistical moments. In an initial additive render pass, the method

computes the moments of the logarithmic transmittance per view ray, leveraging the logarithm to
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transform the multiplicative accumulation of transmittance into an additive formulation. In a second

pass, fragments are blended directly using this approximation of transmittance at any depth. For

more complicated scenes with many transparent surfaces, trigonometric moments improve robustness

by better capturing transparency variations across depth. Overall, this approach effectively avoids

numerical instability and popping artifacts, even in complex scenes.

Multi-Layer Alpha Blending
Multi-layer alpha [22] achieves order-independent transparency by maintaining a fixed-size blending

array 𝐵 per pixel, which stores the color, transmittance and depth values of transparent fragments

ordered by increasing depth to the camera. New fragments are inserted based on their depth values.

Since array size is fixed, the algorithm merges two adjacent rows to make room for a new fragment.

This operation preserves the combined color contribution and transmittance of the rows, and keeps the

closest depth. The resulting image is rendered using front-to-back compositing on the final values in 𝐵,

and compositing that result with the opaque background using the product of the transmittance in 𝐵.

Stochastic Transparency
Our approach uses stochastic transparency [5]. Instead of rendering transparent surfaces using alpha

blending, all fragments are rendered as either fully opaque or fully transparent. To achieve the desired

level of transparency, fragments are discarded with 1 − 𝛼 probability. This stochastic process introduces

noise. By taking multiple samples per pixel and averaging them in a later pass, this noise is mitigated,

and the final composited values approach the reference values rendered using per-fragment sorted

alpha blending.

Several techniques, such as depth sampled stochastic transparency and temporal anti-aliasing [27], can

help to reduce this noise.

2.3. Point Cloud Rendering
For our approach, instead of blending billboards using stochastic transparency, we sample points per

Gaussian, and render those. This requires an efficient way to render points. Schütz et al. [23] came up

with an optimized GPU-compute-based pipeline to efficiently do this, vastly outclassing the performance

of rendering points using OpenGL primitives. In a first pass, they use a 64-bit interleaved buffer, with

one 64-bit integer per pixel, that stores depth and color, where the last 24 bits represent a color with

eight bits per channel. Using a single atomic min operation, they write to this buffer for all points. Then,

in a second pass, they transfer the results from this storage buffer into a texture.

They directly use the linear depth value for the depth buffer, as no interpolation is required. As atomic

operations can be slow if many points occupy the same pixel, an early depth test is executed, essentially

comparing the computed value with the currently stored value. Only if the current value is lower is the

atomic min operation executed.



3
Method

3.1. Overview
Our approach presents an alternative compute-based renderer for Gaussian splatting scenes, optimized

using 3DGS, which builds upon the principles of point cloud rendering and stochastic transparency.

Rather than projecting Gaussians onto the view plane, rasterizing them as billboards and discarding

fragments stochastically with probability (1 − 𝛼), we generate only the necessary fragments in the form

of a point cloud that is regenerated every frame.

Figure 3.1: The rendering pipeline of our approach.

Our rendering pipeline has four primary stages: In the first preprocessing stage, all Gaussians are

processed to compute their weight, based on opacity, and the size of the projected 2D-Gaussian in the

view plane. Furthermore, the color of each Gaussian is computed based on the current camera position

relative to the mean of the Gaussian and its spherical harmonics constants.

In the second stage, the array of Gaussian weights is used to construct an alias table. This data structure

facilitates sampling a probability mass function (PMF) in constant time, thus enabling the efficient

stochastic selection of Gaussians with respect to their weights.

In the third stage, we generate a point cloud and splat it into a single interleaved depth-color buffer.

The total point count is directly proportional to the image resolution and the sum of all weights. Per

point, we select one of the Gaussians with probability proportional to their weight in that frame. The

selected Gaussian is projected onto the plane parallel to the view plane, positioned at the same depth as

the mean of the Gaussian. The point is then sampled independently and identically (i.i.d.) from this

projected Gaussian distribution, after which it will overwrite the value in the screen buffer at its screen

position if its distance to the camera is smaller than the current value present. We perform 𝑟𝑝 render

passes, corresponding to the number of samples per pixel (SPP), to mitigate noise introduced by this

stochastic method.

In the fourth and final stage, render passes are combined and written to the final screen buffer. We also

apply temporal accumulation techniques to improve the image quality over multiple frames.

6



3.2. Gaussian Preprocessing 7

3.2. Gaussian Preprocessing
3.2.1. Gaussian Weight
To accurately distribute points across all Gaussians, each Gaussian needs a weight value interpreted as

sampling probability. E.g., a Gaussian close to the camera requires more points than a Gaussian of the

same size but further away, due to perspective projection. Each Gaussian is geometrically defined by a

mean 𝜇𝑔 ∈ R3
, a scale 𝑠𝑔 ∈ R3

, and a rotation 𝑟𝑔 ∈ R4
, represented as a unit quaternion. Note that 𝑟𝑔

and 𝑠𝑔 can also be represented as transformation matrices 𝑅𝑔 ∈ R3×3
and 𝑆𝑔 ∈ R3×3

, respectively. To

compute the weight of the Gaussian, we evaluate the integral of the projected 2D-Gaussian defined by its

covariance matrix Σ′ ∈ R2×2
. The normalization factor

√
|2𝜋Σ′| is the result of this integral, representing

the area under the Gaussian, which we use as a scaling factor for determining its weight:

√
|2𝜋Σ| =

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1

2

(
[𝑢, 𝑣]𝑇 − 𝑚

)𝑇
Σ−1

(
[𝑢, 𝑣]𝑇 − 𝑚

) )
d𝑢d𝑣. (3.1)

We take the integral from (−∞,∞), as we want to sample points from anywhere in the Gaussian.

Gaussians that are visibly cut off by the screen boundary, i.e. the projected mean of the Gaussian is less

than 3 standard deviations outside the boundary, do not need to be corrected, as they will generate

points increasingly more outside the screen, the more cut off they are. This means Gaussians only

generate the correct number of points if their weight is treated as if a Gaussian is fully visible.

To obtain Σ′
, we use the local affine approximation of the projective transformation as introduced by

Zwicker et al. [29], and as defined for use in Gaussian splatting by Kerbl et al. [9]. Firstly, compute the

Jacobian of the projection transform:

𝐽 =
©­­«

1

𝑡𝑧
0 −

(
1

𝑡𝑧

)
2

· 𝑡𝑥

0
1

𝑡𝑧
−
(

1

𝑡𝑧

)
2

· 𝑡𝑦

ª®®¬ . (3.2)

Secondly, compute the view projection matrix 𝑇 ∈ R2×3
, and project the covariance matrix Σ =

𝑅𝑔 · 𝑆𝑔 · 𝑆𝑇𝑔 · 𝑅𝑇𝑔 by:

𝑇 = 𝐽 ·𝑊, Σ′ = 𝑇 · Σ · 𝑇𝑇 . (3.3)

Here, 𝑡 is the mean of the Gaussian projected into view space using the affine-inverse model matrix of

the camera 𝑉 ∈ R4×4
, and𝑊 is the top-left 3 × 3 block of 𝑉 .

Finally, based on Equation 3.1, the weight of each Gaussian equals

𝑤𝑔 =
√
|2𝜋 Σ′| · 𝛼𝑔 , (3.4)

where 𝛼𝑔 is the opacity of the Gaussian. To prevent unstable weight values caused by projection,

Gaussians are culled if their mean is in front of the near-plane. Moreover, we implement frustum culling

by computing the axis-aligned bounds of each Gaussian at three standard deviations in Normalized

Device Coordinates (NDC) and culling them if it does not intersect the clipbox: 𝑥, 𝑦 ∈ [−1, 1]. In either

case, we can trivially cull a Gaussian by assigning it zero weight. The bounds are computed as follows

[9]:

𝑝𝑥 = 𝑡𝑥 ± 3

√
Σ0,0 , 𝑝𝑦 = 𝑡𝑦 ± 3

√
Σ1,1. (3.5)

3.2.2. Color
In the original 3D Gaussian splatting approach, spherical harmonics are used to represent view-

dependent colors. Spherical harmonics are functions capable of encoding low-frequency signals over

the surface of a sphere [15]. The resulting signal is calculated as a weighted sum of spherical harmonics

basis functions evaluated at a specific angle, with the weights determined by a coefficient corresponding

to each basis function.
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For Gaussian splatting, we commonly use spherical harmonics of degree 𝐿 = 3, which results in

(𝐿 + 1)2 = 4
2 = 16 coefficients per color channel, totaling 48 coefficients per Gaussian to encode color

information. The colors are computed based on the view direction, i.e. the difference between the mean

of the Gaussian and the camera position. This results in uniform colors on the surface of any Gaussian

given an arbitrary camera position, and thus, colors can be precomputed once per Gaussian per frame.

In contrast, opacity is independent of the view direction and is represented by a single scalar value per

Gaussian.

3.3. Alias Table
Our implementation requires the ability to select a Gaussian proportional to its weight. Essentially, we

want to sample the following probability mass function (PMF):

𝑃(𝑋 = 𝑖) = 𝑤𝑖∑𝑁−1

𝑘=0
𝑤𝑘

. (3.6)

To select a Gaussian efficiently, we make use of an alias table [25]. Once built, this data structure enables

sampling a discrete PMF in constant time while requiring only two memory reads. This is achieved

by computing two arrays, a split 𝑠 and an alias 𝑎 array. The former dictates the probability 𝑠𝑖 that the

element i should be chosen, and 𝑎𝑖 provides an index to an alternative element.

The sampling process works as follows:

1. Generate a random uniform index 𝑖 ∈ {0, ..., 𝑁 − 1}, where 𝑁 is the size of the original PMF.

2. Choose 𝑖 with probability 𝑠𝑖 ; otherwise, select the index given by 𝑎𝑖 .

As the weights and, consequently, the PMF depend on the camera position, the alias table has to be

rebuilt every frame. Most implementations rely on splitting the input data set into two sets, a light and

a heavy set, based on whether the weight of an element is below or above the average weight. However,

these algorithms are challenging to implement on GPUs, as they rely on iterative loops that process the

light and heavy sets until one set is empty.

Lehmann et al. provide a way to efficiently build an alias table on the GPU [11]. Their approach splits

the building step into many subproblems, which can then be solved in parallel. It achieves building

speeds on consumer hardware (RTX 2080) in the order of ≈ 10
9

weights

s
, making it fast enough to be

integrated into a rendering pipeline.

3.4. Point Cloud Splatting
Each frame, we stochastically generate a point cloud to represent the scene geometry and we directly

splat the points onto a screen-space buffer with interleaved depth and color channels. In total, we

generate 𝑊 · 𝑟𝑤 · 𝑟ℎ · 𝑟𝑝 points, where 𝑊 is the sum of all Gaussian weights, 𝑟𝑤 , 𝑟ℎ are the resolution

width and height respectively, and 𝑟𝑝 is the number of samples per pixel.
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Figure 3.2: Illustration of the splatting process. For each point, a Gaussian is selected proportional to its projected size and

opacity, illustrated here by the number within each Gaussian. Then, the position of the point is drawn from the selected Gaussian

distribution. The depth value of each point equals the depth of the mean of the selected Gaussian. If this depth value is smaller

than the current depth value in the screen buffer, the point is splatted. This process is repeated independently for every render

pass, and averaged to obtain the final image.

For each point, we select a single Gaussian randomly. By generating a random uniform variate vector

𝑢 ∈ [0, 1)2 using PCG2D [8], we use 𝑢 to select a Gaussian using the alias table computed prior. For our

primary implementation, we compute the position of a point 𝑝 to be on a plane through the mean of the

Gaussian parallel to the view plane, to best match the 3DGS implementation. 𝑝 is computed as follows:

First, we compute the covariance matrix of the selected Gaussian Σ, and project it into Σ′ ∈ R2×2
once

again, as described in section 3.2.1. We also compute the projected mean of the gaussian 𝜇𝑁𝐷𝐶 ∈ R3
in

NDC using the view-projection 𝑀𝑉𝑃 ∈ R4×4
matrix:

𝜇𝑁𝐷𝐶 =
𝑀𝑉𝑃 · 𝜇𝑔

(𝑀𝑉𝑃 · 𝜇𝑔)3
(3.7)

Then, we sample a vector of standard Gaussian variates 𝑧 ∈ R2
(𝜇 = 0, 𝜎 = 1) using another PCG2D

uniform variate transformed by the Box Muller algorithm [3]:

𝑧 =

(√
−2 ln(𝑢0) cos(2𝜋𝑢1)√
−2 ln(𝑢0) sin(2𝜋𝑢1)

)
. (3.8)

We compute the Cholesky decomposition of Σ′
: 𝐿 ∈ R2×2

, and transform the standard Gaussian variates

into ones sampled from the selected Gaussian using 𝑧𝑔 ∈ R2 = 𝐿 · 𝑧 [6]. Then, we compute the final

screen-buffer position of the point 𝑝 =
(
𝑧𝑔0 𝑧𝑔1 0

)
+ 𝜇𝑁𝐷𝐶 , and transform 𝑝 from NDC to integer

screen-pixel coordinates. To remain faithful to the 3DGS implementation, we truncate the Gaussians

in an axis-aligned bounding box around the mean, computed in Section 3.2.1. We achieve this using

rejection sampling.

For each point, we construct a 64-bit value, using 28 bits to represent the linearly quantized Z-coordinate

of 𝜇𝑁𝐷𝐶 ∈ [−1, 1), concatenated by the previously computed color in 36 bits. By using 36 bits, 12 bits

are used per color channel. As we take multiple samples per pixel, 𝑝 is combined with the sample index

𝑖, to compute the index of the image buffer 𝑗 = 𝑟𝑝(𝑝0 + 𝑝1 · 𝑟𝑤) + 𝑖, ordered using Morton order [23]. We

splat 64-bit point values into the image buffer using an atomic min operation, as proposed by Schütz et

al. [23].

3.5. Limitations of Point Cloud Splatting
Fundamental Discrepancy in Sampling Approaches
As our points are independently and identically distributed (i.i.d.), points sampled from the same

Gaussian may occupy the same pixel in the buffer. Furthermore, it is impossible to guarantee that at
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least one of the points will fall into a given pixel, so 100% opacity cannot be reached. This is in contrast

with stochastic transparency, which considers every fragment exactly once. This is essentially identical

to stratified Bernoulli sampling in a discrete grid. Let the density value of a Gaussian at a position be

𝑔(𝑥, 𝑦). Then 𝐺(𝑖 , 𝑗) is the probability to splat into pixel 𝑖 , 𝑗:

𝐺(𝑖 , 𝑗) =
∫ 𝑖+1

𝑖

∫ 𝑗+1

𝑗

𝑔(𝑥, 𝑦)d𝑥d𝑦. (3.9)

Let 𝑛 be the total number of points we would sample for a particular Gaussian, given its weight and the

rendering resolution. The number of i.i.d. points 𝑁 that fall into a pixel 𝑖 , 𝑗 equals

𝑁 =

𝑛−1∑
𝑚=0

𝑋𝑚 , (3.10)

where

𝑋𝑖 :=

{
1 with probability 𝐺(𝑖 , 𝑗)
0 otherwise

(3.11)

The probability of points overlapping can be computed using the binomial distribution:

𝑃(𝑁 = 𝑘) =
(
𝑛

𝑘

)
𝐺(𝑖 , 𝑗)𝑘

(
1 − 𝐺(𝑖 , 𝑗)

)𝑛−𝑘
(3.12)

To compare stochastic transparency with our method, let 𝑂 be the pixel occupancy:

𝑂 :=

{
1 𝑁 > 0

0 otherwise.
(3.13)

For i.i.d. points: 𝐸[𝑂P] = 𝑃(𝑁 > 0) = 1 − (1 − 𝐺(𝑖 , 𝑗))𝑛 .

Stochastic transparency uses an alpha value per pixel, computed at the pixel center. For large Gaussians:

𝛼 = 𝑔(𝑖 + 0.5, 𝑗 + 0.5) ≈ 𝐺(𝑖 , 𝑗). For this method, 𝑁 is either 0 or 1, as each pixel is considered exactly

once using a Bernoulli trial with 𝑝 = 𝛼. Therefore 𝐸[𝑂ST] = 𝛼 ≈ 𝐺(𝑖 , 𝑗).
To match stochastic transparency, we want the same equation to hold for i.i.d. points 𝐸[𝑂P] = 𝐺(𝑖 , 𝑗).
However, this is only trivially true if either 𝐺(𝑖 , 𝑗) equals 0 or 1 –resulting in a completely opaque, or

completely transparent surface– or if 𝑛 = 1, i.e. when the Gaussian is very transparent or small. We

could bias 𝐺(𝑖 , 𝑗) to approximate 𝐸[𝑂P] = 𝐺(𝑖 , 𝑗) by weighting pixels closer to the mean of a Gaussian

higher, but it would come at the cost of greatly increasing the weight of a Gaussian. As this would

directly increase the number of points in the point cloud, we choose to use other methods.

Mitigating Sampling Artifacts
When we just consider a single Gaussian, we can take multiple samples occupying one pixel into account

by accumulating their color values if the existing depth at the pixel is the same as the newly computed

point. Just as before, if the depth of the new point is larger, we discard it. If it is smaller, we overwrite

the current value. This approach ensures all points are considered when computing the average like in

stochastic transparency. Therefore, we obtain the expected pixel value of 𝛼 · 𝑐𝑔 , where 𝑐𝑔 is the color of

the Gaussian. Extending the use of the atomic min operation by Schütz et al. [23], we achieve this using

an atomic operation written using the atomic compare and swap (CAS) operation, as seen in Algorithm

1.

However, when multiple Gaussians overlap in screen-space, the expected value of a pixel containing

both is still incorrect. Stochastic transparency relies on occluding fragments to get the correct expected

value. As sampled points may overlap, a larger than expected number of samples from occluded

Gaussians may pass through, resulting in the final pixel being weighted more by occluded Gaussian

than alpha blending dictates. We refer to this phenomenon as porous Gaussians, as they appear to
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Algorithm 1 Atomic operation to handle combining points into the screen buffer, taking the possibility

of multiple samples occupying the same pixel into account.

1 bool atomicAddColor(uint64_t* address, uint64_t value) {
2 const uint64_t MASK_DEPTH = 0xFFFFFFF000000000ULL; // Upper 28 bits
3 const uint64_t MASK_COLOR = 0x0000000FFFFFFFFFULL; // Lower 36 bits
4 const uint64_t target_depth = value & MASK_DEPTH;
5 uint64_t old = *address, assumed;
6 do {
7 assumed = old;
8 uint64_t assumed_depth = (assumed & MASK_DEPTH);
9 uint64_t new_value = value;

10 if (target_depth > assumed_depth) {
11 return true;
12 }
13 if (target_depth == assumed_depth) {
14 uint64_t new_lower = (assumed & MASK_COLOR) + (value & MASK_COLOR);
15 new_value = (assumed & MASK_DEPTH) | (new_lower & MASK_COLOR);
16 }
17 if (target_depth < assumed_depth) {
18 new_value = value;
19 }
20 old = atomicCAS(address, assumed, new_value);
21 } while (assumed != old);
22 return true;
23 }

have many more small holes in the center compared to the control rendered using standard stochastic

transparency, as seen in Figure 3.3.

Figure 3.3: Example of the porosity of a Gaussian with uniform color (1, 0.5, 1). Left is rendered using our technique without

rejections. Middle is rendered using our technique with 𝑁 = 10 attempts, but with the same number of points as left. Right is a

reference rendered using stochastic transparency. Notice how the middle Gaussian is a lot closer to the reference, and has much

fewer overlapping (white) pixels.

To largely resolve this discrepancy, we introduce a rejection sampling step. After the initial attempt, we

jitter the computed point by the projected covariance of the selected Gaussian, scaled down to 10% its

original size, up to 𝑁 times until a spot with unequal depth is found. While this introduces minor blur,

it significantly reduces the porosity of Gaussians, even at 𝑁 = 2 attempts. If a point has been rejected

(𝑁 − 1) times, the final attempt is allowed to add to the existing color as described previously. Both

the scale-down factor and the number of attempts have been empirically chosen based on experiments,

see Figures 3.5 and 3.6. Figure 3.4 shows how the porosity of a Gaussian affects its ability to occlude

Gaussians behind it, and how rejection sampling helps to mitigate it.
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Figure 3.5: The train scene rendered with varying numbers of rejection attempts: 𝑁 = 1 (left), 𝑁 = 2 (middle), and 𝑁 = 10 (right).

The 𝑁 = 1 case exhibits overexposure in the sky and on the train due to excessive point overlap. As the difference between 𝑁 = 2

and 𝑁 = 10 is unnoticeable, our approach uses 𝑁 = 2 attempts to balance quality and efficiency.

Figure 3.6: Effect of jittering scales on Gaussian rejection sampling. For the second attempt, points are, points are jittered using a

Gaussian with 1% (left), 10% (middle), and 100% (right) the size of the projected covariance matrix of the original Gaussian.

Points beyond 3 standard deviations are discarded. For our approach we choose a jitter scale of 10%—higher values push the

points away from the mean, fundamentally altering the Gaussian distribution, while lower values cause small Gaussians to suffer

from porosity.

Figure 3.4: Example of how the porosity of a Gaussian affect its ability to occlude other Gaussians. Left is rendered using our

stochastic splatting technique without rejections. Middle is rendered using our technique with 𝑁 = 10 attempts, but with the

same number of points as left. Right is a reference rendered using 3DGS, i.e. using alpha blending on depth-sorted Gaussians.

The middle case is closer to the reference, as it better occludes the generated points from the other Gaussian behind it.

Splatting Points in 3D
These limitations and modifications are in place to come close to the original Gaussian splatting

approach. Ideally, we sample the position of a point 𝑝 from the selected 3D Gaussian directly, and

project that point into NDC, i.e.

𝑝𝑁𝐷𝐶 = 𝑀𝑉𝑃

(
𝑅𝑔(𝑆𝑔 · 𝑧) + 𝜇𝑔

)
. (3.14)

This would approximate direct volume rendering of the Gaussian scene, as Gaussians will also blend

in the Z-axis of view-space. Additionally, the popping issue that plagues many implementations of

Gaussian splatting would be elegantly resolved. However, this method would require the scenes to be

optimized with a backward renderer that includes this additional blending. We have therefore chosen

to stick to the splatting points in the flat Gaussians projected onto the view plane for this thesis project,

but consider 3D splatting promising future work.
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3.6. Postprocessing
Once the point cloud has been generated and written into the screen buffer, we need to convert it into

a format displayable to the screen. Per screen space pixel 𝑝𝑢,𝑣 , we iterate through the render targets

𝑖 ∈ [0, 𝑟𝑝), and extract the last 36 bits per value stored in the buffer. We convert these 36 bits to a color

vector 𝑐𝑢,𝑣,𝑖 ∈ R3
. Our final color per pixel is the arithmetic mean of the 𝑟𝑝 samples per screen pixel

pixel coordinate:

1

𝑟𝑝

𝑟𝑝−1∑
𝑖=0

𝑐𝑢,𝑣,𝑖 . (3.15)

Furthermore, we increase the quality of the renderer when the camera is stationary using progressive

rendering, i.e. adding samples over time and displaying the average color per pixel.

Figure 3.7: Example of a scene rendered at 4 SPP and with TAA enabled. The camera has been moving forward for over 100

frames. Some ghosting around high frequencies areas can be observed.

Additionally, we use temporal anti aliasing (TAA) [27] to reproject and accumulate samples from

previous frames to handle camera motion. TAA uses a delta matrix 𝐷 = 𝑀𝑖 ·𝑀−1

𝑖−1
, constructed from

the current and previous view projection matrices 𝑀𝑖 and 𝑀𝑖−1 respectively, to reposition pixels from

the previous frame. This process requires depth values for computing normalized device coordinates,

which we obtain as the arithmetic mean from multiple samples per pixel. We then blend both the color

and depth per pixel using an exponential moving average, yielding a smoother depth buffer that is

more resilient to noise, such as from occlusions by mostly transparent Gaussians. Figure 3.7 shows an

example of a scene rendered with TAA enabled.

3.7. Performance Considerations
Several aspects of our render pipeline require some extra attention to be optimized. Here are some

decisions we have made to increase the computational performance of our approach significantly.

3.7.1. Alias Table
For larger scenes (𝑁 > 10

7), building the alias table becomes increasingly computationally expensive.

Compaction
Many of the Gaussians in the scene may be frustum culled by the preprocessing step, by setting their

weight to zero. It is wasteful to include these weights in the building step of the alias table, as their

respective Gaussians will not be able to be sampled. Therefore, we apply a stream compaction [2]

preprocessing step to the alias table-building process. We create a stencil for each weight, assigning 0 if
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≤ 0, and 1 otherwise. We then compute the exclusive prefix sum of this stencil. Non-zero weights are

written to their new index, and we store a mapping from the new to the old index using the result of the

prefix sum as a mapping. The alias table size is now reduced to the sum of the computed stencil vector.

Grouping
In large scenes, the number of Gaussians may approach or even exceed the point count. After

compaction, we accelerate alias table construction by grouping weights into clusters of size 𝑘. We define

the aggregated weight for each group 𝑔:

𝑠𝑔 =

𝑘−1∑
𝑗=0

𝑤(𝑔𝑘+𝑗). (3.16)

Using the alias table, we sample a group proportional to 𝑠𝑔 . We use inverse CDF sampling to sample a

weight proportionally to the weights within the group. As build times scale linearly with input size,

this effectively cuts the building time by 𝑘, at a slight increase in sampling cost.

Sampling
During the point cloud generation, we sample the alias table to select a Gaussian. However, as the input

to the alias table is uniform between 0 and 1, threads within a warp often access memory locations

scattered across VRAM. This randomness inhibits effective memory caching, causing significant latency

due to long scoreboard stalls. To enhance memory coherence, we adopt a jittered sampling approach [20].

Rather than selecting rows in the alias table using a uniformly distributed index 𝑢 ∈ [0, 1), we remap

the uniform variate to a smaller section given the thread block id 𝑖 of the active thread. Specifically,

given 𝑛 thread blocks:

𝑢𝑥 =
𝑖 + 𝑢𝑥
𝑛

. (3.17)

3.7.2. Deferred Spherical Harmonics
In the initial processing step, the color of each Gaussian is computed based on the camera position

relative to its mean and its spherical harmonics coefficients. This step is skipped for any Gaussians

that are culled in that frame, but when many Gaussians are fully occluded by Gaussians closer to the

camera, computational effort might be wasted. Similar to deferred rendering [18], we render the index

of the Gaussian instead of the color to the interleaved depth color buffer. In the postprocessing pass,

we load the coefficients corresponding to the index of the Gaussian of the pixel and compute the color

as explained in Section 3.2.2. We expect this method to improve performance over preprocessing the

spherical harmonics if the size of the buffer is smaller than the expected number of processed –not

frustum culled– Gaussians: 𝑟𝑤 · 𝑟ℎ · 𝑟𝑝 ≤ 𝐸visible[𝐺].

3.7.3. Data Quantization
Uncompressed, each Gaussian takes up 236 bytes, mostly due to the 48 SH coefficients. During the point

cloud generation stage we sample Gaussians in a less memory-coherent manner than in 3DGS, due to

the i.i.d. sampling. As our approach samples Gaussian randomly based on the alias table, we expect the

memory throughput to be lower due to fewer cache hits. To facilitate a higher Gaussian processing rate,

we compress each Gaussian using quantization. An approach has been explored and open sourced by

Niantic Labs [17]. However, we use a slightly different approach, as ours is intended to optimize for fast

memory reads rather than storage space. The resulting difference in storage size is illustrated in Figure

3.8.
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Figure 3.8: Visual comparison of the size in bytes of the original and quantized Gaussian structs. Blue represents the mean,

orange scale, green rotation, red SH coefficients, and purple opacity.

As discussed before, the Gaussian is comprised of three parts that describe its geometry; a mean 𝜇𝑔 ∈ R3
,

a scale 𝑠𝑔 ∈ R3
, and a rotation 𝑟𝑔 ∈ R4

, stored as a unit quaternion.

The mean is quantized linearly. First, we compute the scene bounds by finding the minimum and

maximum for each spatial dimension. We then normalize each coordinate to the unit interval and map

it to 7 bytes, yielding 19 bits of precision for the 𝑥 and 𝑧 coordinates and 18 bits for the 𝑦 coordinate.

For the scale, we first encode each component in logarithmic space and then apply a similar linear

quantization using 8 bits per component. This logarithmic encoding aids in capturing the vast dynamic

range expected from the scales, while using only 8 bits.

Unit quaternions have a redundancy: only three components need to be stored, as the fourth can be

reconstructed via the normalization constraint, i.e. quaternion 𝑞 can be destructed into 𝑣 and 𝑤:

𝑞 =
(
𝑣, 𝑤

)
with 𝑣 ∈ R3

and 𝑤 ∈ R. (3.18)

The remaining components cannot be directly linearly quantized, as this leads to extremely low precision

when 𝑤 is small. Instead, we apply an exponential mapping [21]. The forward exponential mapping

𝑓fem : R4 → R3
is given by:

𝑓fem(𝑞) =
2

𝜋

arctan

(√
1 − 𝑤2

𝑤

)
√

1 − 𝑤2

𝑣 . (3.19)

Similarly, for a vector 𝑣 ∈ R3
, the inverse exponential mapping 𝑓iem : R3 → R4

is defined as:

𝑓iem(𝑣) =
©­­«

sin

(
𝜋
2
∥𝑣∥

)
∥𝑣∥ 𝑣, cos

(
𝜋
2
∥𝑣∥

)ª®®¬ . (3.20)

To quantize the quaternion, the forward exponential mapping is applied, resulting in a vector 𝑣 ∈ R3
.

This vector is then mapped from [−1, 1] to [0, 255], quantized and stored in three bytes, one per

component. The inverse mapping is applied to retrieve the original unit quaternion.

To further optimize memory accesses, we store the geometry of the quantized Gaussian in an array of

structs. This reduces the number of memory lookup operations as all relative data is now located next

to each other in memory. This aids performance as we always require the mean, rotation and scale at

the same time.

Besides geometric properties, opacity and spherical harmonics (SH) values are quantized as well.

Opacity is linearly quantized within [0,1] and stored as an unsigned byte. For the SH values, the base
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coefficients are maintained at full precision, while the remaining coefficients are normalized relative to

the base and stored as bytes. Since these values are only needed during the initial processing stage, and

not during point cloud splatting, they reside in dedicated buffers. Moreover, if the weight of a Gaussian

falls below a given threshold, it will not be rendered that frame. Therefore we skip computing its color,

and also forgo the memory reads associated with it.



4
Results

We implemented our proposed render pipeline from scratch in CUDA 12.6. We refer to this as our

stochastic splatter. As discussed in section 3.5, we use 2 rejection steps to approximate 3DGS in terms of

rendering quality by reducing Gaussian porosity, while maintaining high performance.

Additionally, we created a simplified compute-based stochastic rasterizer similar to the one by Kherad-

mand et al. [10]. It generates a billboard for each Gaussian and stochastically discards fragments based

on their alpha value. The purpose of this secondary implementation is to validate the correctness our

algorithms, and thus show that the deviations between our results and the original implementation

likely originate from the independently and identically distributed points.

All our testing has been done on a single machine equipped with a 10 GB VRAM NVIDIA RTX 3080, at

stock settings. We render all the scenes in full HD 1920 × 1080 resolution.

Test Scenes
As our renderer is designed to match the output of the original implementations as closely as possible,

we have used scenes optimized using 3DGS, provided by the authors of the original paper, trained on

the MipNerf360 dataset [1]. More specifically, we have used the following eight scenes (in order of

increasing Gaussian count): train (1.0M), counter (1.2M), bonsai (1.2M), room (1.6M), kitchen (1.9M),

stump (5.0M), garden (5.8M), bicycle (6.1M).

We have created an additional scene to gauge how our implementation scales to even larger scenes. We

separated the train from the original train scene, and repeated it 5 × 5 times horizontally, which was the

largest configuration we could fit within the 3DGS renderer on our GPU. This resulted in a new scene

repeated_train with 17.8M Gaussians, as shown in Figure 4.1.

4.1. Quality
To measure the quality of our renders, we compare renders of our results with the original implementation.

Our renderer is designed to match the output given the same scenes as the original. Figure 4.2 shows

renders at different samples per pixel (SPP) for two scenes. The resulting images of our stochastic

Figure 4.1: The repeated train scene (17M Gaussians) rendered using our implementation. It is manually created by extracting the

train from the train scene, and repeating it.

17
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rasterizer closely match the original. Our stochastic splatter slightly deviates from the original, primarily

with respect to high-frequency details. Note how the tips of some grass blades lack a strong specular

highlight. Flat surfaces such as the side of the train are virtually identical to the reference.

1 SPP 4 SPP 16 SPP 128 SPP SR 3DGS

Figure 4.2: Quality Comparison of our renderer compared to the reference in the garden (top) and train (bottom) scenes. From

left to right, the images depict our stochastic splatter at different samples per pixel (SPP): 1 SPP, 4 SPP, 16 SPP, 128 SPP. The second

to last column contains results of our reference stochastic rasterizer (SR) at 1024 SPP, and the last column contains a reference from

the original Gaussian splatting implementation by Kerbl et al.

Figure 4.3 gives an impression of the rendering quality at different samples per pixel, measured as the

root mean squared error (RMSE) between our stochastic splatting method and 3DGS. Noise steadily

decreases as the number of samples increases.

1 SPP

32.68 RMSE

4 SPP

17.76 RMSE

16 SPP

10.48 RMSE

128 SPP

7.57 RMSE

Figure 4.3: Quality comparison of results from our stochastic splatting renderer compared to the 3DGS reference in the garden

scene. From left to right, the images depict the root mean squared error (RMSE) at 1, 4, 16, and 128 SPP.

4.2. Experiments
Frame Time Comparison
To compare our approach to 3DGS, we use the original viewpoints from the dataset used to generate the

scenes. We average the frame times over multiple viewpoints for each scene. For a fair comparison, we

disable Gaussian quantization in our renderer during these tests. Nevertheless, in a later experiment

discussed in Section 4.3 we show the quantization does not have a profound effect on the overall

runtime. We ran both the 3DGS forward renderer implementation and our stochastic Gaussian splatting

implementation on the same machine on a variety of scenes.

We present our measurements in Figure 4.4, sorted horizontally by increasing scene size. We see that



4.2. Experiments 19

our render method at one sample per pixel always beats 3DGS, even by a factor of two for some larger

scenes. The bicycle scene is the largest original scene tested at ≈ 6.1M Gaussians. The original approach

renders it roughly twice as slow compared to the smaller train and counter scenes, both having ≈ 1M

Gaussians. Meanwhile, our renderer at 1 SPP performs similarly in all MipNerf360 scenes. Finally, our

method renders the repeated_train roughly twice as fast, at both 1 and 4 spp.

We can observe a positive correlation between the number of Gaussian in a scene and frame times of

3DGS. The absence of this correlation from the results of our method indicates that our method is less

sensitive to the number of Gaussians in a scene compared to the original.

train
1.0M

counter
1.2M

bonsai
1.2M

room
1.6M

kitchen
1.9M

stump
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Figure 4.4: Comparison Performance between our (at 1 SPP & 4 SPP) and the 3DGS (original) implementation over multiple

scenes, scenes order by increasing Gaussian count. Note how ours performs better at 1 sample per pixel (SPP) for all scenes

compared to the original. Also note how ours lacks a clear correlation between frame time and overall gaussian count.

Frame Time Analysis
Further analysis also supports that our method is relatively unaffected by the number of Gaussians in a

scene. Recall from Section 3.1 that our render pipeline has 4 primary stages, preprocessing, alias table

construction, point cloud generation and postprocessing. As demonstrated in Figure 4.5, the frame time

is primarily determined by the point cloud generation step. This step also has the greatest variance,

primarily depending on the sum of the weight of all projected Gaussians in the view frustum. For the

larger scenes we have tested, the point cloud generation step is actually cheaper. This is likely caused by

Gaussians being more spread out, forming a skybox of sorts, rather than being densely concentrated on

a small part of the scene.
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Figure 4.5: Breakdown of the frame time for 4 SPP aggregated over two groups of scenes, under and over 3M Gaussians

–excluding the repeated_train scene– into the 4 primary stages of our render pipeline; preprocessing, alias table construction, point

cloud generation and postprocessing. Furthermore, each bar displays an error in terms of 1 standard deviation. The frame time

statistic is the time between frames measured on the CPU, and may be slightly larger than the sum of the other metrics, which are

measured using the CUDA API.

Our method experiences moderate variance in frame times between scenes. Figure 4.7 illustrates how

there is not necessarily a correlation between the number of Gaussian and the point count, and that it

varies per camera angle. As the point count in the bicycle scene is consistently low despite featuring

many Gaussians, evidence suggests that the placement or density of Gaussians in a scene has a larger

influence on render times with our method. For instance, many Gaussians may be frustum culled, or

further away in the bicycle scene, directly resulting in a relatively lower point cloud size.

The room scene has some notable outliers at camera indices 0 and 5 and 8. Camera 0 is closest to the

sofa, which is a highly dense object in the scene. Camera positions 5 and 8 have the best view of the

garden without having the top of scene in view, like in positions 4 and 7, resulting in fewer Gaussians

in the frame. The same can be said for the train scene, where outliers at camera positions 2 and 9 are

primarily caused by the train –the densest part of the scene– taking up a majority of the image or being

very close respectively.



4.2. Experiments 21

0 1 2 3 4 5 6 7 8 9 10
Camera Position Index

0

1

2

3

4

5

6

Av
er

ag
e 

Po
in

t C
ou

nt

1e7 Average Point Count per Camera Position for each Scene
Scene

train
room
bicycle

Figure 4.6: Measured point count at 1 SPP at the first 10 camera positions from the data set for the train scene (1.0M Gaussians),

the room scene (1.6M Gaussians) and the bicycle scene (6.1M Gaussians). Note how there is some notable variance within each

scene, and that the bicycle scene has a lower point count, despite containing many more Gaussians than the others.

0 1 2 3 4 5 6 7 8 9

Figure 4.7: The camera positions per scene. Each row is one scene (train, room, bicycle), each column is one camera angle (0, 1, ...9)

Frame Times Over Distance
The performance of the original 3DGS implementation suffers from overdraw. Larger scenes, or scenes

composited from multiple Gaussian optimized objects naturally exhibit more overlapping Gaussians.

To simulate this, we compare the performance of multiple scenes at increasing viewpoint distances from

the origin, while facing the origin. This slowly increases the number of Gaussians within the frustum,

and Gaussians that overlap per pixel, thus increasing overdraw. An example of what these viewpoints

look like can be seen in Figure 4.9.

For all scenes, at 256 units removed from the origin, all the Gaussians are in view, but not yet culled by

the far plane.

In Figure 4.8, we present our measurements. At close distances to the origin, the total number of

Gaussians in view is limited, and the original Gaussian splatting render method renders faster. However,

at further distances from the origin, we notice that our method has much lower frame times. The frame

times of our method primarily scale with point cloud size, which is much larger when many Gaussians

are viewed up close.
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Figure 4.8: Comparison frame time (ms) between our approach at 4 SPP and 3DGS at different viewpoint distances from the

origin, with the viewpoint facing the origin. Frame time is averaged over the same scenes as in figure 4.4. Note how ours

performs better at larger distances.
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Figure 4.9: Example of viewpoints used to compare ours and the original implementation at different distances. From left to right,

the image is taken at 1, 4, 16, 64, and 256 unit distance from the origin, all pointing towards the origin.

StochasticSplats
Since no source code has been published, we only provide a limited comparison between our approach

and StochasticSplats [10]. We have additionally ran our implementation on the same scenes from

the MipNerf360 dataset as StochasticSplats, and averaged the timings over all viewpoints and frames.

Compared to their reported NVIDIA RTX 3090 statistics, our frame times on an NVIDIA RTX 3080 are

higher for lower samples per pixel, but competitive for four and eight. Some increase in render time is

expected due to differences in hardware [4]. With this in mind, our method is within the same ballpark

as StochasticSplats. Overall it is hard to judge which method scales better to larger scenes. It may be

that the scenes used in the evaluation of StochasticSplats were less densely populated by Gaussians

than the scenes we used.

Table 4.1: Comparison of runtime performance. StochasticSplats ran on an RTX 3090 compared to our method running on an RTX

3080.

SPP RTX 3090 (Paper) [ms] RTX 3080 (Ours) [ms] Ratio (Ours/StochasticSplats)

1 SPP 3.25 4.39 1.35

2 SPP 4.18 5.24 1.25

4 SPP 6.42 7.05 1.10

8 SPP 15.31 13.79 0.90

4.3. Optimizations
To test the effectiveness of our optimizations, we compare the performance of the implementation

with them disabled and enabled. We ran all our tests on same scenes as before –the MipNerf360
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scenes, excluding the repeated_train scene– and hardware, at 4 SPP. The base case for all experiments

had quantization, jittered sampling, and alias table compaction enabled, and alias table grouping and

deferred spherical harmonics disabled, unless specified otherwise.

Quantized Gaussians
The quantization is used to compress the memory size of the Gaussians. As seen in Figure 4.10, this has

a meaningful positive impact on the preprocessing time of the Gaussians, and a small effect on the point

cloud step. However, the primary use for quantization is to increase the number of Gaussians that can

fit into VRAM, enabling us to render larger scenes.
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Figure 4.10: Comparison of the effect of quantization disabled (left), and enabled (right). Results are averaged over all view points

on the original eight MipNerf360 scenes.

Jittered Sampling
We jitter the input into the alias table to aim for higher memory read coherency for threads within a

warp. As seen in Figure 4.11, this has an extremely significant positive impact on render times, reducing

the point cloud generation time per frame by ≈ 4 times on average.
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Figure 4.11: Comparison of the effect of jittered sampling disabled (left), and enabled (right). Results are averaged over all view

points on the original eight MipNerf360 scenes.

Alias Table Compaction
We use stream compaction to remove all Gaussians that are frustum culled from the alias table

construction step. Depending on the viewpoint, this may greatly decrease the time it takes to build

the alias table, at the cost of an extra memory read required to map the alias table result back to the

right Gaussian. Figure 4.12 shows this. Without alias compaction, the point cloud generation times

are slightly lower, at the cost of a more expensive alias table construction step. Unless a majority of

Gaussians are expected to always be within the frustum, this method is effective at reducing frame

times, especially in larger scenes.
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Figure 4.12: Comparison of the effect of alias compaction disabled (left), and enabled (right). Results are averaged over all view

points on the original eight MipNerf360 scenes.
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Alias Table Grouping
Besides compaction, we group weights during alias table construction. In all prior testing, the group

size 𝐾 has been exactly one, meaning this step was omitted. As seen in Figure 4.13, group size 𝐾 = 4

results in slightly slower frame times. This is primarily due to the additional inverse CDF sampling step

per point, which involves a linear search of size 𝐾 = 4. While the overhead of grouping the weights is

lower than the time saved by constructing an alias table at a quarter of the original size, the point cloud

processing step outweighs the benefits for smaller scenes.
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Figure 4.13: Comparison of the effect of alias grouping disabled (left), and enabled (right). Results are averaged over all view

points on the original eight MipNerf360 scenes.

At a larger number of Gaussians, such as in the repeated_train scene, the technique is more effective.

Figure 4.14 shows a similar increase in point cloud splatting cost, but a larger decrease in alias table

construction times. This indicates that this technique is useful to render massive scenes, by cutting

down on the overhead associated with rebuilding the alias table every frame.
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Figure 4.14: Comparison of the effect of alias grouping disabled (left), and enabled (right). Results are averaged over all view

points on the repeated_train scene.

Deferred Spherical Harmonics
Deferred spherical harmonics postpone the computation of colors to the post processing step. As seen

in Figure 4.15, on the original scenes optimized by 3DGS, enabling deferred spherical harmonics results
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in worse frame times. As these scenes have fewer Gaussians than the amount of pixels in the render

passes, the more expensive postprocessing stage outweighs the cheaper preprocessing stage.
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Figure 4.15: Comparison of the effect of deferred sh disabled (left), and enabled (right). Results are averaged over all view points

on the original eight MipNerf360 scenes.

However, when many Gaussians are in view, for instance in the repeated_train scene, deferred spherical

harmonics helps to reduce the preprocess time significantly. For very large scenes, this approach could

therefore be a viable optimization technique.
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Figure 4.16: Comparison of the effect of deferred sh disabled (left), and enabled (right). Results are averaged over all view points

on the repeated_train scene.

4.4. Limitations
As discussed in Section 3.5, the differences between stochastic transparency and our i.i.d. point rendering

approach lead to minor discrepancies between the images produced by our stochastic splatter and

those from the reference stochastic rasterizer. In Figure 4.17, we show the nature of noise between the

two different render approaches. The resulting image of stochastic splatting exhibits more structured

error, which supports our analysis of the differences between i.i.d. point cloud rendering and stochastic

transparency in Section 3.5.
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Stochastic Splatting (1028 SPP)

2.50 RMSE

Stochastic Rasterizer (1028 SPP)

1.73 RMSE

Figure 4.17: Quality comparison of both of our renderers in the train scene. The images depict the root mean squared error

(RMSE) a resulting image of our stochastic splatting approach (left) and our stochastic rasterizer (right) compared to 3DGS.

Figure 4.18 displays the same camera viewpoint rendered using both stochastic splatting (top) and

stochastic rasterization (bottom). In the red box, we notice that the black background bleeds through

slightly more with the stochastic splatting approach. In the blue box, our method produces slightly

brighter results. In the green box, some light blue Gaussians in particular appear to have higher opacity

with our method. Finally, a slight blur is clearly perceivable in the orange box, with reflections and

specular highlights being less pronounced around the train’s lamps.

Therefore, our stochastic splatting method does not produce an image faithful to the original approach.

Issues such as blur can be traced back to our rejection sampling approach, as explained in Section

3.5. Nonetheless, our images remain very similar to the ground truth overall. We expect that scenes

optimized with our renderer in mind –by implementing a suitable backward renderer– will be even

closer, e.g. by using additional Gaussians to cover an opaque surface.
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Figure 4.18: Comparison between a resulting image of our primary approach stochastic splatting (top) and our reference

stochastic rasterization (bottom).

4.5. Discussion
Overall, results indicate that our method scales well to larger scenes. Unlike 3DGS, the frame time of

our method does not directly scale with the number of Gaussians in a scene. Instead, the performance

of our method is primarily dictated by the point cloud splatting pass. As its compute time depends

primarily on the density of the scene close to the camera, our method is able to handle a vast amount of

Gaussians on screen, unlike existing implementations like 3DGS.

Further experiments indicate that our optimizations are mostly effective. Jittered sampling, alias

table compaction and compression using quantization of Gaussians all positively affect the runtime of

our implementation, regardless of the scene rendered. Deferred spherical harmonics and alias table

grouping negatively impact performance across all tested MipNerf360 scenes. However, results in the

larger repeated_train scene indicate that these techniques may prove useful when scaling to extremely

large scenes with a higher number of Gaussians.



5
Conclusion

Overall, our approach offers a competitive rendering method for Gaussian splatting, with promising

scalability to larger scenes. While our method requires the reconstruction of an alias table every frame,

stream compaction helps to reduce its computational burden. Nevertheless, the cost is relatively small

in scenes with the number Gaussians only in the millions. Other optimizations such as alias table

grouping and deferred spherical harmonics can support our method to render larger scenes.

Compared to the original 3DGS implementation, our renderer scales better to larger scenes. The frame

time of our method is relatively stable with respect to the overall number of Gaussians in a scene.

Moreover, our method handles overdraw with ease compared to 3DGS, meaning that dense clusters

of Gaussians seen from further away hardly affect render times, unlike with 3DGS. Therefore, our

proposed method is a suitable candidate to render vast Gaussian scenes.

Future Work
Our method would be further enhanced if scenes were optimized specifically for it, which requires a

backward render pass. While our current sampling strategy leads to some deviations between images

resulting from our approach and the references from 3DGS, we expect that the images rendered using

these scenes would come closer to the ground truth. Moreover, this would enable sampling points

directly from the Gaussian primitives, rather than their projected counterparts, resulting in a more

accurate approximation of volume rendering. This approach would also elegantly resolve popping

issues that plague many Gaussian splatting algorithms.

Furthermore, the render quality may be improved by implementing a more robust TAA solution, or by

using a lightweight denoising algorithm designed for volumes.
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