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Disorder-induced topological transitions in multichannel Majorana wires

B. Pekerten,1,* A. Teker,1 Ö. Bozat,1 M. Wimmer,2 and İ. Adagideli1,†
1Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı - Tuzla, 34956, Turkey

2QuTech and Kavli Institute for Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
(Received 2 September 2015; revised manuscript received 11 January 2017; published 9 February 2017)

In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor
nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change
the topological index of the wire, we show that the closing and opening of a transport gap can also cause
topological transitions, even in the presence of nonzero density of states across the transition. Such transport gaps
induced by disorder can change the topological index, driving a topologically trivial wire into a nontrivial state or
vice versa. We focus on the Rashba spin-orbit coupled semiconductor nanowires in proximity to a conventional
superconductor, which is an experimentally relevant system, and we obtain analytical formulas for topological
transitions in these wires, valid for generic realizations of disorder. Full tight-binding simulations show excellent
agreement with our analytical results without any fitting parameters.

DOI: 10.1103/PhysRevB.95.064507

I. INTRODUCTION

Topologically nontrivial phases are exotic states of matter
that have an electronic band gap in their bulk and protected
gapless excitations at their boundaries [1–3]. Superconduc-
tors, being quasiparticle insulators, also feature topological
phases with a quasiparticle gap in the bulk and excitations
at their edges. For one-dimensional (1D) systems, these
edge states are fermionic zero-energy modes called Majo-
rana states [4–8]. These states attracted intense attention
due to their non-Abelian nature, which led to proposals
to use them as topological qubits immune to decoher-
ence [9,10]. Although predicted to appear in exotic condensed-
matter systems with unconventional superconducting pairing,
[11–16] recent proposals [17–20] involving hybrid structures
of more conventional materials have appeared [21]. This led
to the recent conductance measurements done on a proximity
coupled InSb nanowire [22], which showed possible evidence
of Majorana end states in the form of zero-bias conductance
peaks. Other experiments reported further observations of
zero-bias peaks (ZBPs) in similar settings [23–27]. Very
recently, scanning-tunneling spectroscopy experiments carried
out on magnetic adatom chains on a conventional supercon-
ductor reported ZBPs at the ends of the chains [28]. While
it is compelling to interpret the observation of these ZBPs as
signatures of Majorana states, the issue is still under intense
discussion [29].

Semiconductor nanowire structures that are proximity-
coupled to superconductors are technologically attractive
platforms for Majorana physics. However, disorder has been
prominently present in all such experimental samples to date.
This led to a renewed interest in disordered superconducting
wires, particularly focusing on the effects of disorder on
Majorana states [30–50]. These works focused mostly on
disordered p-wave superconducting wires (PW wires) and
showed that disorder is detrimental to the spectral gap as well
as to the formation of Majorana fermions in both strictly 1D
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systems [30–35] and in multichannel wires [40–42,51]. In a
recent study on the experimentally relevant hybrid structures
with Rashba spin-orbit interaction (SOI) proximity-coupled to
an s-wave superconductor (RSW nanowires for short), some of
us showed that disorder need not be detrimental to topological
order, and in fact can even create it in strictly 1D wires [34]. We
are not aware of a systematic study of the effects of disorder
on the phase diagram of multichannel RSW nanowires.

In Majorana experiments, the subband spacing is typically
considerably larger than the Zeeman splitting. For example,
in InSb nanowires a subband spacing of order 15 meV has
been measured [52,53] together with a g factor of 40–58.
Zero-bias peaks that might signal Majorana fermions in these
works are typically measured at magnetic fields from 0.1
mT to 1 T [22,54] and exceptionally up to 2.5 T. In all of
these cases, the Zeeman splitting remains smaller than the
level spacing. Hence, one can argue that RSW nanowires
are more experimentally relevant than PW nanowires, which
require Zeeman splitting to be much larger than level
spacing.

In this paper, we investigate the topological properties
of disordered multichannel RSW and PW superconductor
nanowires. The usual expectation for these nanowires is that
if their topological state is switched by modifying certain
external parameters (such as gate potential or magnetic field),
the spectral gap will close and open concomitantly with
this transition. We show that for disordered nanowires, the
closing and opening of a transport gap can cause further
topological transitions, even in the presence of a finite density
of states (DOS), extending our earlier work on single-channel
wires [34] to multichannel wires. We derive analytical
expressions for the boundaries of the topological phases of
a disordered multichannel RSW nanowire, and we find new
topological regions in the phase diagram that show up as
additional reentrant behavior in the experimentally relevant
parameter regimes. In particular, new topological regions
that show up in the low magnetic field limit require a full
description of all spin bands, as shown by our analytical results
(see Fig. 3). Hence, our results go beyond a simple p-wave
description that requires a fully spin-polarized wire. Finally,
we perform numerical simulations using a tight-binding (TB)
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approach, and we find very good agreement with our analytical
formulas.

This paper is organized as follows: We begin the next
section by specifying the system in question. We then derive
the topological index in terms of the Lyapunov exponents
and the effective superconducting length of the disordered
multichannel RSW wire in Sec. II A. In Sec. II B, we
analytically calculate this topological index using an exper-
imentally relevant system and transport parameters, and we
compare our results with numerical tight-binding simulations.
We then present our conclusions, finding that in disordered
multichannel RSW nanowires with experimentally relevant
parameters, the topological phase diagram is fragmented,
and previously unreported reentrant topologically nontrivial
regions appear. In the Appendixes, we detail the calculation of
the mean free path of the system (Appendix A), we outline
our numerical simulations (Appendix B), we present full
bandwidth versions of our plots in the main text as opposed
to the low-energy region (Appendix C), and finally we present
plots that are similar to the RSW system but produced for a
p-wave nanowire with disorder, as previously studied in the
literature, for completeness and comparison (Appendix D).

II. TOPOLOGICAL ORDER IN DISORDERED
MULTICHANNEL WIRES

In this section, we investigate the topological properties
of multichannel topological superconductor nanowires. Such
wires are experimentally realized by proximity coupling a
semiconductor nanowire with Rashba spin-orbit interaction
to an s-wave superconductor [RSW, see Fig. 1(a)]. The quasi-
particles in RSW nanowires are described by the following
Bogoliubov–de Gennes (BdG) Hamiltonian [18,20,55]:

H =
∫

�† HBdG� dr,

HBdG = [h0 + αSO(p × σ )]τz + Bσx + �τx, (1)

where h0 = ε(p) + V (r) and �† = [ψ†
↑,ψ

†
↓,ψ↓, − ψ↑] is the

Nambu spinor, with ψ↑(↓) being the destruction operator for
an electron with spin up (down). The kinetic energy term ε(p)
is given by p2

2m
− μ in a continuum system. We consider a

FIG. 1. The multichannel nanowire of width W , which is an
RSW topological superconductor with a Gaussian disorder having
an average value 〈V 〉 = 0. (a) In the leads, we take αSO, �, and
V (x,y) to be zero, making the leads metallic. Our analytical results
assume a semi-infinite wire (L → ∞), whereas in our numerical full
tight-binding calculations we use wires of length L � lMFP,ξ,lSO.
(b) The form of the wire used to construct the Majorana solutions in
Sec. II A. The part of the wire left of the scattering region is again
metallic.

2D wire with p = (px,py). The on-site potential is given by
V (r), μ is the chemical potential measured from the bottom
of the band, αSO is the spin-orbit coupling (SOC) strength, B

is the Zeeman field, and � is the proximity-induced s-wave
superconducting gap. The Pauli matrices σi (τi) act on the spin
(electron-hole) space.

In the limit of large B, the wire is completely spin-
polarized. Then the low-energy quasiparticles are described
by an effective p-wave Hamiltonian as discussed in the
literature [33–39,42–45,47,56]. For completeness, we discuss
this limit in Appendix D.

The Hamiltonian in Eq. (1) is in the Altland-Zirnbauer (AZ)
symmetry class D (class D for short) in two dimensions [57]
with a topological number QD ∈ Z2. In the absence of SOC
along the y direction, i.e., when the αSO py σxτz term is set
to zero, this Hamiltonian also possesses a chiral symmetry,
placing it into AZ symmetry class BDI (class BDI for short)
with an integer topological number QBDI ∈ Z [42,58]. In
the thin wire limit, i.e., W 
 lSO, chiral symmetry-breaking
terms are O[(W/lSO)2]. Hence, the system in Eq. (1) has
an approximate chiral symmetry [56,58,59]. We show in the
next section that the class-BDI (chiral) topological number
QBDI ∈ Z and the class-D topological number are related as
QD = (−1)QBDI [see Eq. (7)] [37].

A. Topological index for a disordered multichannel s-wave wire

To obtain the relevant topological index that counts the
number of Majorana end states for a RSW wire with dis-
order, we start with the BdG Hamiltonian HBdG in Eq. (1).
Following Adagideli et al. [34], we perform the unitary
transformation HBdG → H′

BdG = U†HBdGU , where U = (1 +
iσx)(1 + iτx)[1 + σz + (1 − σz)τx]/4. Having thus rotated the
Hamiltonian to the basis that off-diagonalizes its dominant part
and leaves the small chiral symmetry-breaking terms τzσz in
the diagonal block, we obtain

H′
BdG = −τy(σz h0 + αSO px) + τx(Bσx + �)

+ τzσy αSO py. (2)

We first set the chiral symmetry-breaking term τz σy αSO py

to zero and focus on E = 0. The eigenvalue equation then
decouples into the upper and lower spinor components. The
solutions are of the form χ+ = (φ+,0)T and χ− = (0,φ−)T ,
where φ± obey the following equation:

[ε(p)σz − i pxαSOσx ∓ B ∓ �σx]φ± = 0. (3)

Here, we have performed an additional rotation σz → σy ,
σy → −σz, and premultiplied with ±σx . We note that the
operator acting on φ± is not Hermitian.

We now perform a gauge transformation φ±(x,y) →
e−καxφ±(x,y) with a purely imaginary parameter iκα . We take
κα to be of first order in αSO and identify the following terms
in the non-Hermitian operator in Eq. (3) in order of increasing
power of αSO:

H0 = h0(p; x,y)σz ∓ B ∓ �σx,

H1 = ih̄καpx

m
σz − iαSOpxσx, (4)

H2 = −h̄2κ2
α

2m
σz + h̄αSOκασx,
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where we have indicated the (x,y) dependence of h0(p; x,y)
through the potential V (x,y). We absorb H2 into H0 by
redefining μ and �. We now identify κα with the inverse
of the effective superconducting length ξeff, setting κα =
∓ξ−1

eff = ∓mαSO�/h̄ε with ε = √
B2 − �2. With this choice,

{H0,H1}+ = 0, which allows us to write the local solutions as
follows:

φ± =
∑

n

ξ±(ε)e±καx[Anfn(x,y; ε) + Bngn(x,y; ε)]

+ ξ±(−ε)e∓καx[Cnfn(x,y; −ε) + Dngn(x,y; −ε)],
(5)

where ξ±(ε) are the eigenvectors of the 2 × 2 matrix εσz ∓
�σx with eigenvalue ±|B|, and fn and gn are the local
solutions of the equation h0ψ = εψ . The presence of a
multiple number of local solutions, which is the new aspect
of the present problem, reflects the multichannel nature of the
wire.

We then consider a semi-infinite wire (x > 0, 0 < y <

W ) described by the Hamiltonian in Eq. (1) with Gaussian
disorder. After going through the steps described above, we
choose (without loss of generality) fn to be the decaying
and gn the increasing function of x. We invoke a well-
known result from disordered multichannel normal state
wires, and we express the asymptotic solutions as fn =
e−�nxun(x,y) and gn = e�nxvn(x,y), where un(x,y),vn(x,y)
are O(1) functions as x → ∞ and �n > 0 are the Lyapunov
exponents [34,37,42,47,60].

We now focus on a tight-binding system, where the number
of Lyapunov exponents Nmax is finite. (In the continuum
limit, we have Nmax → ∞.) For the boundary conditions at
x = 0, we first extend the hard wall back to x = −L′ with
L′ a small value, and we consider a normal metal in the
strip −L′ < x < 0 and 0 < y < W [see Fig. 1(b); in Eq. (1),
αSO = 0, � = 0, V (x,y) = 0]. The hard-wall boundary con-
dition at x = −L′ can be expressed as R · b+ = b− with
b+ ≡ (. . . ,An,Cn, . . .)T , b− ≡ (. . . ,Bn,Dn, . . .)T , and R is
the extended reflection matrix [61]. We therefore have 2Nmax

boundary conditions, leaving 2Nmax of the 4Nmax parameters
undetermined.

The boundary conditions at x → ∞ require that φ± have
only exponentially decaying solutions. We focus on the B > �

case, yielding real κα and ε. (As discussed in Refs. [19]
and [20], the B < � case yields no solutions.) We take κα > 0
for definiteness. (The following arguments can be extended
trivially to the κα < 0 case.) The exponential asymptotic
factors in the solutions contain a factor of e±καx in various
sign combinations, affecting the overall convergence at x →
∞. In particular, the solutions φ+ have exponential factors
of e[κα−λn(ε)]x , e[κα+λn(ε)]x , e[−κα−λn(−ε)]x , and e[−κα+λn(−ε)]x ,
whereas the φ− solutions have the same form of exponential
factors with the sign of κα switched. For |κα| smaller than
all Lyapunov exponents, all Bn and Dn are set to zero as
they would represent diverging solutions at x → ∞. There
are therefore 2Nmax more conditions, bringing the total up to
4Nmax, to determine a total of 4Nmax parameters, yielding
only accidental solutions. However, for a given n = n∗, if
min(λn∗ (ε),λn∗(−ε)) < κα < max(λn∗ (ε),λn∗(−ε)), there are
three growing solutions for one of the φ± sectors and only one

for the other sector. [If λn∗ (ε) < λn∗ (−ε), the φ+ sector has the
three growing solutions and vice versa.] The sector with three
growing solutions thus has the number of boundary conditions
increased by 1 and the other sector has the number of boundary
conditions decreased by 1. If any sector has more than 4Nmax

boundary conditions in total, then there are no solutions for
that sector. Therefore, the BDI topological number QBDI ∈ Z
is given by the number of free parameters, which is equal to
4Nmax minus the total number of equations arising from the
boundary condition at x = −L′. We obtain

QBDI =
∑

n

�
(
ξ−1

eff − �n(ε)
)
�

(
�n(−ε) − ξ−1

eff

)

−
∑

n

�
(
ξ−1

eff − �n(−ε)
)
�

(
�n(ε) − ξ−1

eff

)
. (6)

We see that each Lyapunov exponent pair �n(±ε) contributes
a topological charge Q

(n)
BDI to the overall topological charge.

Hence QBDI = ∑
n Q

(n)
BDI, where

Q
(n)
BDI =

⎧⎪⎨
⎪⎩

+1 if �n(−ε) > ξ−1
eff > �n(ε),

−1 if �n(−ε) < ξ−1
eff < �n(ε),

0 otherwise.

We thus generalize the results of Ref. [34] to a multichannel
RSW wire. We note, however, that the total number of
Majorana end states for a multichannel RSW wire in class
BDI, given by |QBDI|, is not equal to the sum of the Majorana
states per Lyapunov exponent pair, i.e., |QBDI| �= ∑

n |Q(n)
BDI|.

We now consider the full Hamiltonian in Eq. (1) with the
chiral symmetry-breaking term included. This Hamiltonian in
two dimensions is in class D and only approximately in class
BDI. The chiral symmetry-breaking term pairwise hybridizes
the Majorana states described above, moving them away from
zero energy. However, because of the particle-hole symmetry
in the topological superconductor, any disturbance or any
perturbation that is higher order in αSO can only move the
solutions away from the zero-energy eigenvalue in pairs; i.e.,
for any solution moving away from the zero eigenvalue toward
a positive value, a matching solution must move to a negative
eigenvalue. Therefore, the number of zero eigenvalue solutions
changes in pairs. Hence, the parity does not change. The parity
changes, however, every time one of the Lyapunov exponents
passes through the value of ξ−1

eff . We therefore arrive at the
class D topological index QD = (−1)QBDI as [37]

QD =
∏
n,±

sgn[�n(±ε) ξeff − 1], (7)

indicating that there’s a class D Majorana solution at zero
energy (QD = −1) if there are an odd number of BDI
Majorana states per edge. Therefore, for the topological state
of the RSW wire to change from trivial to nontrivial or vice
versa, it is necessary and sufficient to have QBDI described in
Eq. (6) change by 1. The above equation thus constitutes the
multichannel generalization of Eq. (7) of Ref. [34].

To calculate the topological index QD in Eq. (7), we relate
the Lyapunov exponents in Eq. (6) to transport properties,
namely the mean free path, of a disordered wire. We first
note that as L → ∞, the Lyapunov exponents �n are
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self-averaging, with a mean value �̄n given by

�̄n(μeff) = n

[N̄ (μeff) + 1] lMFP
, (8)

where μeff = μ ± ε, N̄ (μeff) = �WkF (μeff)/π�,
kF =

√
2mμeff/h̄

2, n ∈ 1, . . . ,N̄ (μeff), and lMFP is the
MFP of the disordered wire [60]. We use Fermi’s Golden
Rule to approximate the mean free path lMFP by calculating
the lifetime of a momentum state and multiplying it with the
Fermi speed. We obtain, for a quadratic dispersion relation
ε(p) = p2/2m − μ,

l−1
MFP = 4m2γ

h̄4πkF

ζ−1
N , (9)

where ζ−1
N is a dimensionless number whose detailed form is

given in Eq. (A5). The details of this calculation can be found
in Appendix A.

To compare our numerical tight-binding results with the an-
alytical results obtained through Eqs. (7) and (6), we also cal-
culate the mean free path lTB

MFP for a tight-binding (TB) disper-
sion relation ε(kx,n) = 2t[2 − cos (kx,na) − cos (nπa/W )],
where t is the hopping parameter, a is the lattice parameter for
the TB lattice, W is the width of the lattice, and kx,n is defined
through k2

x,n + k2
y,n = k2

F with ky,n = nπ/W . We obtain

(
lTB
MFP

)−1 = γ

N̄TBWa2t2

(
ζ TB
N

)−1
, (10)

where N̄TB is given by �(W/πa) arccos (1 − ε/2t)� for 0 <

ε < 4t and �(W/πa) arccos [1 − (4 − ε/2t)]� for 4t < ε <

8t . The details of the calculation and the dimensionless
constant ζ TB

N are again found in Appendix A.
The topological phase boundaries, shown in Figs. 2 and 3

as the bold black lines, are calculated by equating ξ−1 to �n

obtained from Eqs. (8) and (10). We thus obtain the critical
field B∗ at which the system goes through a topological phase
transition via the following implicit equation:

B∗ = �

√
β �TB

n [μeff(B∗)] + 1, (11)

where β = (Wa2t2/γ lSO)2, μeff(B∗) = μ ±
√

(B∗)2 + �2,
and

�TB
n (μeff) =

(
N̄TB(μeff)

n

)2[
ζ TB
N (μeff)

]2
[N̄TB(μeff) + 1)]2.

Equation (11) constitutes the central finding of our paper. It is
an analytical expression that determines all topological phase
boundaries of a multichannel disordered wire.

An experimentally interesting point involves the largest
values of various system parameters that allow a topological
transition. Using Eqs. (6) and (7), we estimate the upper critical
field B∗|γ , i.e., the minimum value of B above which the
system is always in a topologically trivial state at a given
disorder strength γ , as

B∗|γ ∼ �
lmax
tr

lSO
, (12)

where lmax
tr = max({�−1

n }) is the maximum localization length
achievable in the system. For a fixed nonzero disorder, B∗|γ>0

is infinite for a continuum system as the localization length

FIG. 2. μ vs B vs QD for a five-channel system (compare
with Figs. 8 and 7.) The background red-white colors are obtained
using a numerical tight-binding simulation with L = 30 000a and
W = 5a, while the black lines, which represent the topological
phase boundaries, are obtained analytically using Eq. (7). Here, V0 =√

γ /a2 = 0.2t , αSO = 0.02h̄/ma (lSO = 4.08 μm), and � = 0.164t ,
where t = h̄2/2ma2 and a = 0.01lSO is the tight-binding lattice
spacing. The fragmented nature of the topological phase diagram
seen in (b) cannot be explained in a p-wave picture. See Appendix B
for a discussion of corresponding experimental parameters.

increases indefinitely with increasing Fermi energy. For a TB
system, the upper critical field B∗|γ>0 is finite because the
localization length is bounded in TB systems. For a clean
wire, B∗|γ=0 is infinite for both the TB and the continuum
models.

FIG. 3. μ vs V0 = √
γ /a2 vs Q for a multichannel RSW wire.

The black lines, which represent topological phase boundaries,
are obtained analytically using Eq. (7). The background red-white
colors are obtained using tight-binding numerical simulations with
L = 60 000a. In both cases, W = 4a, αSO = 0.015h̄/ma, � = 0.20t ,
and B = 0.35t , where t = h̄2/2ma2 is the tight-binding hopping
parameter and a is the TB lattice spacing. See Appendix B for a
discussion of corresponding experimental parameters.
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B. Numerical simulations

In this section, we obtain the topological index of a
disordered multichannel wire numerically, and we compare
it with our analytical results from the previous section. For our
numerical simulations, we take the TB form of the Hamiltonian
in Eq. (1), whose details can be found in Appendix B. We
consider a wire of length L � lMFP, ξ , or lSO, with metallic
leads [αSO = 0, � = 0, and V (x,y) = 0 in the leads]. We
use the results of Fulga et al. to obtain the topological
quantum number of the disordered multichannel wire from
the scattering matrices of the wires [37]. For a semi-infinite
wire in the symmetry class D, the topological charge is
given by QD = det(r), where r is the reflection matrix. For
a quasiparticle insulator, this determinant can only take the
values ±1. However, for a finite system this determinant can
in general have any value in the [−1,1] interval. We obtain
the reflection matrix of the TB system in our numerical TB
simulations using the KWANT library [62] and then use this
relation to calculate QD. We plot the topological phase diagram
in Figs. 2 and 3, where the red and white colors represent
QD = −1 and +1, respectively.

Figure 2 exemplifies our central result given in Eq. (11). We
find that for a nearly depleted wire [Fig. 2(a)], the topological
phase merely shifts to the higher values of the chemical
potential, in agreement with Ref. [34]. For higher chemical
potentials/doping, we observe a fragmented topological phase
diagram [Fig. 2(b)]. We find good agreement with our
analytical results from Eq. (11). We note in passing that this
fragmentation cannot be explained by a simple p-wave picture,
as these topological phases arise despite the incomplete spin-
polarization of the wire under a low magnetic field. For a
full phase diagram over the entire bandwidth, but for slightly
different material parameters, see Fig. 8, where the reentrant
phases are apparent.

In Fig. 3, we plot the topological number QD as a function of
μ and the disorder strength

√
γ /a2 for a constant BZeeman over

the full TB bandwidth. The reentrant nature of the topological
phase diagram can also be seen in this plot, for example by
following the μ = 1.5 line as γ is increased. As the disorder
strength increases, series of topological transitions occur,
similar to the PW wire [42]. However, unlike the PW wire, the
number of transitions is given by N̄ (μ + ε) + N̄ (μ − ε) rather
than N̄ (μ), with N̄ (μ) defined as N̄ (μeff) = �WkF (μeff)/π�.
For further discussion of the emergence of the effective p-wave
picture at high magnetic fields, see Appendix C.

III. CONCLUSION

In summary, we investigate the effect of disorder in
multichannel Rashba SOC proximity-induced topological su-
perconductor nanowires (RSW nanowires) at experimentally
relevant parameter ranges. We derive formulas that determine
all topological phase boundaries of a multichannel disordered
RSW wire. We test these formulas with numerical tight-
binding simulations at experimentally relevant parameter
ranges, and we find good agreement without any fitting
parameters. We show that there are additional topological
transitions for the RSW wires leading to a richer phase diagram
with further fragmentation beyond that of the p-wave models.
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thank The Science Academy—Bilim Akademisi—Turkey for
the use of their facilities throughout this work.

APPENDIX A: MEAN FREE PATH

We consider a long wire along the x axis, having a length
of L along the x direction and a width of W along the
y direction and metallic leads at the end, with a Gaussian
disorder of the form 〈V (r) V (r′)〉 = γ δ(r − r′). We obtain the
ensemble average of the matrix element between the nth and
lth transverse channels as k(kx,n) → k′(k′

x,l) as

〈|Vkk′ |2〉 = γ

LW

(
1 + δn,l

2

)
. (A1)

We then use Fermi’s Golden Rule to calculate the inverse
lifetime of a momentum state k, τ−1

k→k′ :

〈
l−1
MFP(kx ,n→k′

x ,l)

〉 =
(

1

h̄

∂ εk

∂kx

)−1 2π

h̄

γ

LW

×
(

1 + δn,l

2

)
ρ(εk′ ), (A2)

where εk gives the dispersion relation and ρ(εk) is the density
of states. We then sum over the initial and final states k′ in
Eq. (A2) to obtain the total inverse MFP:

〈
l−1
MFP

〉 =
∑

kx ,ky ;k′
x ,k

′
y

〈
l−1
MFP(kx ,n→k′

x ,l)

〉
. (A3)

We first apply Eq. (A3) to a free-electron dispersion of
the form ε(k) = h̄2k2/2m = h̄2/2m (k2

n,x + n2π2/W 2) for n ∈
1, . . . ,N̄ , where N̄ (μeff) = �WkF (ε)/π�. The resulting total
ensemble-averaged inverse MFP is

〈
l−1
MFP

〉 =
N̄∑

n=1

N̄∑
l=1

∫
dk′

n,x

π/L

m2

h̄4

2γW

Lπ

(
1 + δnl

2

)
π

W

× δ(k′
l,x ±

√
2mε/h̄2 − l2π2/W 2)√

2mε/h̄2 − n2π2/W 2
√

2mε/h̄2 − l2π2/W 2

= 4m2γ

h̄4πkF

ζ−1
N , (A4)

where kF =
√

2mε/h̄2 is the Fermi wave vector,

ζ−1
N = 3N̄

2

N̄∑
n=1

η2
n + 2N̄

N̄∑
n=1

N̄∑
l>n

ηn ηl, (A5)

and ηn = (W 2k2
F

π2 − n2)
− 1

2
, in agreement with Eq. (8) in the

supporting online material of Rieder et al. [42]. The value of
ζN just below the transition N → N + 1 (denoted ζN→N+1) is
plotted in Fig. 4.
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FIG. 4. ζ−1
N→N+1/(N + 1) vs N .

We now derive the MFP for a TB dispersion relation given
by

ε(kx,n) = 2t[2 − cos (kx,na) − cos (nπa/W )]. (A6)

The number of channels is given by N̄ =
�(W/πa) arccos (1 − ε/2t)� for 0 < ε < 4t and by
N̄ = �(W/πa) arccos [1 − (4 − ε/2t)]� for 4t < ε < 8t .
The resulting disorder-averaged inverse MFP reads

〈(
lTB
MFP

)−1〉 = γ

N̄Wa2t2

(
ζ TB
N

)−1
, (A7)

where the dimensionless (ζ TB
N )−1 is given by

(
ζ TB
N

)−1 = 3N̄

2

N̄∑
n=1

(
ηTB

n

)2 + 2N̄

N̄∑
n=1

N̄∑
l>n

ηTB
n ηTB

l . (A8)

Here, ηTB
n = | sin (kx,n a)|−1 and sin (kx,n) is obtained using

Eq. (A6).

APPENDIX B: NUMERICAL TIGHT-BINDING
SIMULATIONS

We start by obtaining the TB form of the RSW BdG
Hamiltonian [55] in Eq. (1) in the usual way using finite
differences (see, for example, Refs. [18,20,40,63]). It reads

HTB
BdG = {[4t + V (x,y) − μ(x,y)]τz + BZσz

+ �(x,y) τx} |x,y〉〈x,y|

+
[
−t τz − i

2
αSO(x,y) τz σy

]
|x + a,y〉〈x,y|

+
[
−t τz + i

2
αSO(x,y) τz σx

]
|x,y + a〉〈x,y|

+ H.c., (B1)

where t = h̄2/2ma2 is the hopping parameter, V (x,y) is
the Gaussian random potential, μ(x,y) is the relevant gate
potential, BZ is the Zeeman field, �(x,y) is the s-wave super-
conducting pairing (taken to be real), αSO(x,y) is the effective
Rashba SOC due to the proximity effect, and a is the lattice
constant for the TB lattice. Here, V (x,y), BZ, �(x,y), and
αSO(x,y) are nonzero only within the scattering region. BZ,

FIG. 5. μ vs V0 = √
γ /a2 vs QD for a multichannel RSW

wire for different B, obtained analytically using Eq. (7). (a),(b)
Low magnetic field B � � limit requires a full RSW model, and
topological order can survive up to high disorder strengths. (c),(d)
The spin-polarized system can be described by a PW model, and
topological order is completely destroyed with less disorder. Here,
W = 4a, αSO = 0.015h̄/ma, and � = 0.20t , where t = h̄2/2ma2,
and a is the tight-binding lattice spacing. See Appendix B for a
discussion of corresponding experimental parameters.

αSO(x,y), and �(x,y) are constant within the scattering region
except for the value of αSO(x,y) in the scattering region-lead
boundary, where we take it to be half of its value in the bulk.

The experimental values for InSb nanowires quoted in
Mourik et al. [22] are αSO = 0.2 eV Å, lSO ∼ 2000 Å,
� = 0.25 meV, EZ/B = 1.5 meV/T, m∗ = 0.015me, and
α2

SOm∗/2h̄2 ∼ 0.04 meV. We employ these values verbatim,
except for lSO (and correspondingly, αSO), for which we use
parameters much more accessible experimentally.

We use the KWANT library [62] to obtain the topological
phase diagram in our numerical plots. The KWANT library can
extract the scattering matrix (S matrix) [63], and therefore the
reflection matrix (r matrix) for a given tight-binding system
with leads. The topological index QD can be obtained from
the r-matrix through QD = det(r) (see Ref. [37]).

The numerical parameters quoted in the caption of Fig. 2
correspond to t = 1.5 meV, a = 40.8 nm, lSO = 4.08 μm, and
α = 6.3 × 10−6c. Disregarding screening, a Zeeman energy
of, say, 0.35t on the plot would correspond to a magnetic
field 0.35 T, a value easily accessible by the experiment. In
Figs. 3, 5, 7, and 8, lSO = 6.0 μm, t = 0.7 meV, a = 60.0 nm,
and α = 4.2 × 10−6c. A Zeeman energy of 0.35t corresponds
to B = 0.17 T.

The TB form of the effective PW Hamiltonian of Eq. (D1)
used in Appendix D is as follows:

HTB
PW = [4t + V (x,y) − μ(x,y)] τz |x,y〉〈x,y|

+
[
−t τz − i

2
�eff(x,y) τx

]
|x + a,y〉〈x,y|

+
[
−t τz − i

2
�eff(x,y) τy

]
|x,y + a〉〈x,y|

+ H.c. (B2)
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We use numerical values similar to the RSW case in our PW
simulations, except to impose �eff = �αSO/

√
B2 − �2.

APPENDIX C: TOPOLOGICAL PHASE DIAGRAM
OVER THE FULL BANDWIDTH

In this appendix, we present plots of the topological phase
diagram that we obtain analytically from Eq. (7) using a
TB dispersion relation (see Sec. II) over the full bandwidth.
Although only the low-μ regions in our plots correspond to
experimentally relevant nanowires, the full bandwidth range
would be important for systems that are inherently TB, such as
atomic chains [28] or photonic metamaterials [64] simulating
topological properties [65]. All analytical plots are produced
using Eq. (7) [Eq. (D2) for the PW case], but using a TB
dispersion relation for ε(p) in the relevant expressions. All
of the numerical results are obtained using a TB simulation
utilizing KWANT software, as discussed in the main text.

Figure 5 depicts the analytically calculated topological
phase diagram for an RSW wire as a function of μ and the
disorder strength, for various magnetic-field strengths. The
transition between a RSW wire and a pair of oppositely
polarized PW wires can be seen as increasing magnetic
field polarizes the system. The topological order is less
robust against disorder for higher magnetic fields, because the
coherence length becomes longer with increasing B. This is the
reason why the spin-polarized regimes where the PW model
applies is typically less robust than the lower field regimes
where both spin species exist,l as seen in Figs. 5(a) and 5(c) or
5(d). To complete the discussion, we also present an analytical
plot (Fig. 6) for an RSW wire for which B is greater than
the subband spacing but less than the bandwidth. While this
regime is experimentally very hard to achieve, it is useful
for comparing the PW and the RSW regimes. The vertical
blue line denotes the bottom of the higher-energy spin band
beyond which both spin species exist. We note that the critical
disorder strength increases with the chemical potential, hence

FIG. 6. μ vs V0 = √
γ /a2 vs QD for a multichannel wide RSW

wire, obtained analytically using Eq. (7), with W = 77a. Here,
αSO = 0.015h̄/ma (lSO = 100a), � = 0.20t , and B = 0.205t with
the hopping parameter t = h̄2/2ma2 = 0.7 meV and the lattice
spacing a = 60 nm. The blue vertical line at μ = ε = √

B2 − �2

is the bottom of the second spin band.

FIG. 7. μ vs B vs QD for varying disorder strengths for an RSW
TS with Gaussian disorder, analytically calculated using Eq. (7) for a
four-channel TB system. Part (c) matches the numerical data shown
in Fig. 8. The parameters used are αSO = 0.015h̄/ma and � = 0.2t ,
where t = h̄2/2ma2 and a is the lattice spacing. See Appendix B for
a discussion of the corresponding experimental parameters.

the spin-polarized regime, which appears at lower chemical
potential values, is less robust against disorder.

In Fig. 7, the analytically calculated phase diagram of a
wire with W = 4a is plotted with increasing disorder. We
see that the phase diagram gets fragmented as the number of
channels is increased. We also note that for a given amount
of disorder, there is a maximum Zeeman field Bmax above
which no topological order is present. The reason is that in
our numerical TB simulations, the localization length is not
a monotonous function of energy. It grows (with increasing
energy) until the middle of the band, and after that it decreases
as the energy comes closer to the band edge. This places an
upper magnetic field limit to topological regions since the
superconducting coherence length increases monotonically
with B. For pure quadratic dispersion, the upper limit is given
by the limitations of the approximations of Fermi’s Golden
Rule and would increase indefinitely with increasing energy,
as discussed in the main text. We note that the upper limit
discussed here has a different origin than that discussed by
Ref. [66] for finite-length wires.

We finally present the full TB bandwidth version of Fig. 2,
with slightly different material properties, here in Fig. 8. This
figure is the numerical simulation result that matches the last
of the analytical plots in Fig. 7. The relevant numerical values
are given in each of the figures’ captions.

APPENDIX D: TOPOLOGICAL PHASE DIAGRAM FOR
MULTICHANNEL EFFECTIVE P-WAVE

NANOWIRES WITH DISORDER

In this appendix, we present the effects of disorder on
PW wires, which is a system previously studied in the
literature [33–39,42–45,47,56], for completeness and for
comparison with the results of our paper for disordered
multichannel RSW nanowires. We start with the Hamiltonian
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FIG. 8. μ vs B vs QD for a four-channel system (compare with
Figs. 2 and 7). The black lines, which represent topological bound-
aries, are obtained analytically using Eq. (7). The background red-
white colors are obtained using tight-binding numerical simulations.
The parameters are V0 = 0.2t , � = 0.2t , and αSO = 0.015h̄/ma.
See Appendix B for a discussion of corresponding experimental
parameters.

in Eq. (D1) and present the topological charge in Eq. (D2). We
plot the topological phase diagram for a PW wire as a function
of μ and disorder strength for a fixed BZeeman (Fig. 9), and we
compare this plot with its analog for RSW wires (Fig. 3).

The BdG Hamiltonian for an effective p-wave wire with
spatially homogeneous effective SOC strength is

HPW
BdG = ε(p) τz + �eff p · τ. (D1)

Note that �eff has units of velocity while � in Eq. (1)
has units of energy. This effective SOC strength is related
to the corresponding RSW superconducting gap by �eff =
�αSO/

√
B2 − �2 [18]. We consider Gaussian disorder of the

form 〈V (r) V (r′)〉 = γ δ(r − r′) for r,r′ in the wire, with γ

as the disorder strength and 〈V (r)〉 = 0. This Hamiltonian is
useful for comparison with the fully polarized limit of the
RSW case.

The Hamiltonian in Eq. (D1) is in Altland-Zirnbauer (AZ)
symmetry class D in two dimensions [57] with aZ2 topological
number. This Hamiltonian also possesses a chiral symmetry,
broken by the �eff pyτy term. If this term is set to zero, the
Hamiltonian is also in class BDI [42,56,58,59] having a Z
topological number. (1D wires trivially satisfy this condition.)
In the thin wire limit, i.e., �eff 
 h̄/mW , the chiral symmetry-
breaking term is O[(m�effW/h̄)2]. The wire in class BDI can
have an integer number of Majorana fermions at its ends.
The chiral symmetry-breaking term pairwise hybridizes these
solutions. Hence the chiral topological number QBDI ∈ Z and

FIG. 9. μ vs
√

γ /a2 vs Q for a multichannel PW wire with
dimensions W = 4a and L = 60 000a (L used only in the numerical
tight-binding code) and with αSO = 0.01h̄/ma, where a is the
tight-binding lattice spacing. The red-white colors in the background
are obtained numerically with a tight-binding method, whereas the
black solid lines are obtained using Eq. (D2) with Eq. (10).

the class-D topological number QD ∈ Z2 are related as QD =
−1QBDI [37].

To solve the Schrödinger equation H� = E� at E = 0 to
obtain the Lyapunov exponents, we follow Adagideli et al. [34]
to off-diagonalize the Hamiltonian and apply an imaginary
gauge transformation. This allows us to reexpress QBDI in
terms of �n [42]:

QBDI =
N̄∑

n=1

�

(
ξ − 1

�n

)
, (D2)

where N̄ = �W/π
√

2mμ/h̄2� and �x� is the usual floor
function. We obtain �n again using Eq. (8). We obtain l−1

MFP
using Fermi’s Golden Rule (see Appendix A) first for a
quadratic dispersion relation and then for a TB dispersion
relation.

We compare the results found using Eq. (D2) with those
obtained by numerical simulations in Fig. 9, and we find an
excellent fit over the whole TB bandwidth. In a clean PW
wire (

√
γ /a2 = 0), Majorana modes appear if N̄ is odd, and

Majorana states fuse to form ordinary Dirac fermions if N̄ is
even. This behavior survives up to a finite disorder strength
(see Fig. 9). As in the case of RSW wires, a further increase
of the disorder strength gives a series of transitions between
nontrivial and trivial topological phases as each �n increases
and crosses ξ−1. While both multichannel RSW and PW wires
feature reentrant behavior, we see that there are additional
transitions for the RSW wires leading to a richer phase diagram
(compare Figs. 9 and 3), in agreement with our analytical
results presented in Eq. (11).
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