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Summary 
Rivers are identified as main sources of plastic litter in oceans. About 65% of the plastic litter is buoyant in 
fresh waters, meaning it has the capability to float, making transport over rivers relatively easy. A better 
understanding of how plastic litter is transported via rivers is crucial. Both for quantification and mitigation 
of the plastic problem. Most research on quantification of the plastic flux is based on surface-measurements 
only, up till about 50 cm water-depth. Thereby, most cleaning strategies focus on skimming only the surface. 
 

This research investigates the distribution of buoyant plastic litter over the water depth in rivers. Given the 
wide use of marginal buoyant plastics, it is hypothesized that a significant share of the plastic in rivers is 
transported below the first 50 cm surface-water, due to the mixing ability of turbulent flow. In such case, a 
great share of the plastic litter is overlooked in both flux estimates and riverine removal strategies. The 
question arises: How is plastic distributed over the water depth in rivers and how is this distribution related 
to prevailing flow conditions? The research is based on four pillars: Knowledge on the hydraulic plastic 
parameters (1), in combination with experimental observations (2), might lead to an explanation of the 
distribution with a theoretical approximation (3), based on existing literature from neighboring research 
fields. Lastly, manipulation (4) of this plastic distribution by hydraulic interventions is investigated.  
 

Two types of plastic sheets where used representing foil-like litter, referred to as HDPE and LDPE plastic. The 
factory-density of these two materials suggest a positive buoyant property (ρplastic ≈ 0.92 – 0.97 g/cm3). The 
floating ability of the plastic is expressed as the average rise velocity (wr), derived from stagnant water 
experiments. The rise velocity experiments showed two driving mechanisms: The bulk-density of the material 
together with the ability to trap or attach air, results in an effective-density determining the floating ability 
of the plastic. This effective-density can change over scales and is variable over time. Therefore, the 
distribution is also depending on many different (ambient) conditions and is variable over time and space.  
 

The vertical distribution of plastic was investigated in a small-scaled flume setup which represented uniform 
river flow. Turbulence intensity was increased by increasing the average flow velocity. Results showed that it 
is reasonable to assume significant transport below the surface layer for common turbulent flow conditions; 
With an increase of the flow velocity in an average urban river, from 0.10 to 0.50 m/s, the surface share of 
the HDPE plastic decreased from 95% to 25%. For the LDPE plastic experimented with, both sinking and rising 
behavior was found, and the distribution observed was close to uniform. Here, the dual buoyancy property 
dominates the observed distribution, rather than the mixing ability of the flow. The differences observed 
between the two materials shows the sensitivity of the distribution of marginal buoyant plastics. Small 
changes in (ambient) conditions can influence the distribution. In general, due to the marginal buoyant 
properties, suspension is found to be relatively easy.  
 

For in-depth comparison with existing theory, use is made of the well-known Rouse profile, describing the 
equilibrium distribution profile for sediments. A similar equation is established for the distribution profile of 
plastic particles. The profile is based on a balance between the inertial particle rise flux and the turbulent 
mixing flux, dictated by the ratio of particle rise velocity wr over flow shear velocity u*. From the theoretical 
analysis, a possible relation was found between the obtained average rise velocity and observed distribution 
profile, based on an estimate of the prevailing shear velocity: The shape parameters fitted through each 
observation follow the same trend as the theoretical estimate based on the wr/u* ratio. However, the extent 
to which the relation could describe and approximate the concentration distribution is not accurate and 
additional research is needed.  
 

Lastly, the influence of hydraulic obstructions on the vertical distribution is explored. A lesser decrease of the 
surface share with increasing flow velocities was observed, implying a positive effect of obstructions on the 
surface share. The observed deviations in distributions could not be explained, though the results make it 
plausible that hydraulic structures can be intentionally applied in waterways to increase the surface share. 
Further research to application and design of supportive structures is advised. 
 

With this research, a first insight is created on the vertical behavior of plastic in relation to the flow conditions. 
This study shows that marginal buoyant plastics can be sensitive to turbulent motions in flow and a significant 
amount of plastic might be transported below the surface. In order to create a complete picture of the 
behavior of different kinds of plastic in stream flows, more extensive research is needed. 
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1 
1. Introduction 

Forty years ago, marine plastic litter was seen more as an eyesore rather than a harmful risk (Derraik, 2002). 
Nowadays, about 8 million tons of plastic end up in our oceans every year, through multiple inputs including 
coastal industries, fishery and inland waste transported via rivers (Jambeck et al., 2015). Roughly 5 trillion 
pieces of plastic are floating at the ocean’s surface (Eriksen et al., 2014). The abundance of plastic waste in 
the oceanic environment is not only due to the worldwide single-use of plastic, it is also a result of its 
persistence against degradation and the ability to float, making transportation over rivers relatively easy 
(Moore, 2008). 

 

Figure 1.1: Riverine plastic flowing into oceans in tons per year + mismanaged plastic waste (MPW) production per 
country (Lebreton et al., 2017). 

1.1. Research context 
Contamination of waterbodies by these persistent plastics forms an environmental problem(van Emmerik & 
Schwarz, 2020). Effects range from the visible impacts such as entanglement of marine wildlife by 
macroplastics (> 5 mm), to the ingestion of microplastic fragments by organisms (< 5 mm). Even though the 
focus of research is mainly on the oceanic contamination, rivers are identified as the main sources of both 
oceanic- and coastal beaches litter (Rech et al., 2014). River networks may facilitate transport of plastic litter 
over long distances from land sources to the sea (Figure 1.1). Lebreton et al. (2017) and Schmidt et al. (2017) 
estimate that the global inflow of plastics from rivers into the ocean varies between 0.4-2.75 million tons 
plastic per year. These estimates are based on limited field data and subject to a substantial lack of knowledge 
on plastic behavior and transport, therefore great uncertainties are present.   
 
The plastic problem has received a lot of attention over the last few years. Start-ups (such as The Ocean 
Cleanup and Noria), Governmental and Non-Governmental Organizations (e.g. Rijkswaterstaat and 4Ocean) 
and multinationals (e.g. Tauw) are aiming for plastic free oceans and rivers, by setting up various studies and 
projects. Creating awareness against single-use plastic, and removal of the already present plastics, are both 
high profile topics. Both purposes ask for a better understanding of the behavior of plastic in water. 
 

Creating awareness 
In order to create awareness of the plastic problem, accurate and scientific-substantiated estimates of the 
plastic fluxes are crucial, which in turn give information for mitigation or policy strategies. Most research on 

https://theoceancleanup.com/
https://theoceancleanup.com/
https://www.noria.earth/
https://www.rijkswaterstaat.nl/water/waterbeheer/natuur-en-milieu/zwerfafval/index.aspx
https://4ocean.com/home/
https://www.tauw.nl/op-welk-gebied/duurzaamheid/shoreliner.html
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quantification of this flux is based on surface measurements only, up till about 50 cm water depth. This is 
partly due to sampling difficulties, as most sampling of macroplastic is done by visual counting or net sampling 
in the upper 30 to 50 cm of the water surface (González et al., 2016). A clear overview of plastic debris 
measurements is given by van Emmerik & Schwarz (2020). From the limited spatial and temporal information 
obtained, yearly average fluxes are estimated. Either a homogeneous distribution over the water column is 
assumed and the samples are spatially extrapolated (Dris, 2017; Lechner et al., 2014; Schmidt et al., 2017; 
Tramoy et al., 2018), or the transport below the surface is neglected, and the flux is solely based on the 
surface count (González & Hanke, 2017; Lebreton et al., 2017; Rech et al., 2015; Wilcox et al., 2017).  
 
However, a study to the presence of plastic near the riverbed in the river Thames concluded that the "unseen 
litter moving along river beds may represent an additional significant input to the marine environment” 
(Morritt et al., 2014). Presumed floating plastics, such as plastic bags and food wrappers, were found in the 
lowest 40 cm of the water column. Along with other studies (Dris, 2017; Gasperi et al., 2014), this research 
called for a further investigation to submerged macroplastics in river catchments globally. To improve the 
flux estimates and thereby substantiate the call for awareness.  
 
Two other studies stand out because of the focus on plastic found in deeper water layers. In a study 
conducted in the Danube, Austria, a multi-spot sampling method is applied (Figure 1.2). Samples over the 
entire cross-section are gathered from the surface water, the midwater and near the bottom, at two different 
sites. It was concluded that due to more turbulent flow at one of the locations “plastic particles show 
properties of suspended particles rather than floating particles, and therefore can be encountered in the entire 
river profile”. (Hohenblum et al., 2015). During a study in Jakarta, double-trawl samples were taken from the 
first meter below the surface. It was found that for marginal positive buoyant plastics, such as plastic bags, 
the surface-share of plastic sampled in the upper net relative to the lower net, decreased with increasing 
stream velocities. Highly positive buoyant plastics, such as foams, were only found in the upper net  (van 
Emmerik et al., 2019). These results indicate the influence of the prevailing flow conditions, with respect to 
the floating ability of the specific plastic group. In both papers, a reference is made to flow conditions 
influencing the distribution of plastic over the water depth. Either the turbulence intensity or the average 
flow velocity. However, the objective of both studies is the determination of yearly fluxes of plastic to the 
ocean, and the mechanisms behind the behavior are not further discussed.  

 

Figure 1.2: Triple-layered sampling net used for a study in the Danube (Hohenblum et al., 2015).  

Removal of plastic 
On top of the surface-focus in scientific research, most riverine cleaning techniques also focus on the floating 
plastics in the upper 50 cm of the water-column, e.g. Mr Trashweel and The floating barriers in Paris as 
referred to in Gasperi et al. (2014). This ‘surface plastic’ is the pollution that we can see and therefore calls 
for immediate action. In addition, these skimming techniques are most practical in rivers as they can be 
installed near river banks, minimizing stream flow and navigation interruption. However, it is uncertain how 
effective these skimming techniques are since there is almost no knowledge on the amounts of plastic 
transported below the water surface.  
 
A removal technique that stands out in the light of this ‘surface focus’ is the Great Bubble Barrier. In this 
design a curtain of air bubbles is released from the riverbed, directing plastic to the river banks without 
obstructing the waterflow. Because of the upward motion of the air-bubbles, it might be possible that the 
surface-share of plastic is increased. This is one of the only few examples in which there is a focus on vertical 
transport processes. More knowledge on the movement of (macro)plastic in water is needed, in order to 
react on the pollution with appropriate and efficient cleaning strategies. 

https://www.mrtrashwheel.com/
https://thegreatbubblebarrier.com/en/
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1.2. Problem statement 
A great share of plastic, about 65%, is positive buoyant in fresh and saline waters, meaning that it has the 
capability to float (Geyer et al., 2017). However, the density of these plastics is very close to the density of 
the ambient water, resulting in only a small buoyancy force (ρbuoyant plastics ≈ 0.92 – 1.01 g/cm3, ρfreshwater ≈ 0.98-
1.0 g/cm3) (Appendix E). Because of additional factors such as the entrapment of air, the combination of 
plastic materials and the deformability of plastic items, it is hard to predict where the plastic litter is located 
over the water depth and whether it will float, sink, or can be found in suspension. Thereby, the effects of 
the ambient flow play a key role in the distribution. Various factors could influence the location of plastic 
over depth, be it only temporarily. An overview of relevant factors includes: 
 

• Bed shear induced turbulent mixing (general turbulent flow) 

• Constant secondary flows (e.g. spiral flow in bends and eddies and wakes from structures) 

• Short term secondary flows (e.g. external forces by navigation) 

• Wind-waves induced turbulent mixing (if there is a long enough fetch, mainly an oceanic factor) 

• Density gradients (mostly salinity, but waste, temperature and turbidity could play a role) 

• Material property change (e.g. ageing of the material itself, fouling and other organic processes) 
 
Given the wide use of marginal positive buoyant plastic, and the preliminary results from previous studies to 
submerged plastics, the hypothesis of this research is that a significant share of the plastic litter in rivers is 
transported below the surface water of 50 cm depth. The commonly applied method for the yearly flux 
determination, in which it is assumed that the floating plastics contribute the vast majority of the flux, would 
then not suffice. In such case a great share of the plastic litter is overlooked in both flux estimates and removal 
strategies. The question arises how large this share is and what factors influence this share, summarized in 
the following problem statement: 
 

“How is plastic distributed over the water depth in rivers 
and how is this distribution related to prevailing flow conditions?” 

 

1.3. Objectives and Research questions 
With knowledge of the vertical distribution of plastic, we can not only improve flux estimates, but also look 
for methods to manipulate the vertical distribution of plastic. A goal can be to increase the surface-share of 
plastic relative to subsurface amounts, making surface skimming techniques more efficient. In addition, 
techniques can be applied at hotspots, were, based on the flow conditions, more plastic can be found near 
the surface. With the aim to contribute to the scarce knowledge on riverine plastic transport this master 
thesis research is responding to a pressing question: Are we missing the suspended plastics? 
 

1.3.1. Objectives 
The focus of this research is solely on the vertical distribution of positive buoyant macroplastics. This master 
thesis has two main objectives which are linked to the two requirements for the plastic problem, i.e. defining 
an accurate estimate of the plastic flux through rivers and developing effective removal techniques. The 
objectives of this MSc thesis are: 
 

1. Investigate the vertical distribution of plastic under normal turbulent flow, induced by bed shear 
stresses only: Rivers and urban channels are subject to turbulent flows as a result of shear stresses. 
Under this turbulent flow condition, the floating plastic might be brought and kept in suspension, 
and an equilibrium concentration-distribution over the water depth may develop.  

2. Explore the influence of constant secondary flows on the vertical distribution, induced by 
hydraulic obstructions: Trash racks and retention booms applied in rivers form an obstruction of 
the water flow and might affect the equilibrium concentration distribution, either increasing or 
decreasing the surface share of macroplastics in the stream. This can affect the removal efficiency. 
In addition, other hydraulic structures could play a role in the distribution as well and might even be 
intentionally constructed to increase the surface share.  
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These two described flow factors may also influence longitudinal and lateral movements of plastic over the 
horizontal plane. Lateral movements are out of the scope of this research.  
 
An additional objective in this master thesis is to link existing literature on particle movement, such as 
sediment distribution and ecological research to fish-egg transport, to the rather new field of plastic-
research.  It was found that in the riverine-plastic studies, almost no references are being made to studies 
from neighboring research fields. An in-depth comparison is made with existing theory on turbulent mixing 
of matter, mainly originating from the field of sediment dynamics. 
 

1.3.2. Research questions 
In order to conduct this research, supportive information on the plastic properties is needed for there is no 
research available that describes or quantifies the floating ability of different types of plastic. In that light, 
this research is built upon 4 pillars, as illustrated in Figure 1.3. For objective 1, the first three pillars are of 
interest: knowledge on the hydraulic plastic parameters, in combination with experimental observations, 
might lead to an explanation of the distribution with existing theory. For objective 2 a fourth pillar is 
introduced: manipulation of the plastic distribution by hydraulic interventions. 

 

Figure 1.3: Four pillars form the base of this MSc thesis research and are guiding for the research questions 

Based on the four pillars, four research questions are formulated. In Figure 1.4, a short description of the 
research conducted for each research question is given. 
 

1. How is the floating ability of the plastic defined and quantified, that counteracts the mixing 
behavior of turbulent flow? 
 

2. How is the distribution of plastic over the water depth influenced by bed shear induced 
turbulence? 

 
3. Can the vertical distribution of plastic be described with existing theory on turbulent mixing? 

 
4. How is the vertical distribution influenced by a partial vertical obstruction of the river flow? 
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1.4. Research approach and outline 
Belonging to the marginal positive buoyant plastics is the Polyethylene plastic type (PE). In this material-
group a distinction is often made between the types HDPE (high-density, ρ = 0.93-0.97 g/cm3) and LDPE (low-
density, ρ = 0.92-0.93 g/cm3). Both materials are widely used for i.e.  grocery- and shopping bags. Bags and 
foils form a great share of the plastic litter and are harmful to marine life (for additional information: 
Appendix E). Because of the small density difference with water (ρfreshwater = 0.98-1.0 g/cm3), and their 
deformability, this plastic is an example of litter that could be sensitive to motions exerted on the object by 
flow. It could therefore be possible that common turbulent river flow results in mixing of these plastics over 
the water depth. The focus of this research will be on these two types of plastic foil-materials, originating 
from two different types of grocery bags that are commonly used. These two plastics represent only a part 
of the marginal positive buoyant plastics, for other plastic materials, such as Polypropylene (PP), are slightly 
buoyant as well. Thereby, many other products of the same factory-material (HDPE and LDPE) exist in many 
different shapes and configurations. 
 
The research will be conducted in a small-scaled lab setup, using a flume with a maximum discharge of 0.1 
m3/s. This setup represents a free flowing, uniform river, in which flow velocities can be adjusted to vary the 
flow conditions. Because of the small scale, downsized plastic sheets will be used to represent the bag and 
foil materials. It can be expected that the trapping of air inside a bag has a great influence on the floating 
ability, which is eliminated when using single sided sheets. Research on plastic in a scaled lab setup is quite 
novel and therefore the issue of scaling will be a common thread throughout the report.  
 
The research presented in this report is based on the four pillars. Following this introduction, a theoretical 
framework will be outlined in Chapter 2, in which the base concept of turbulent mixing is explained. The 
turbulent diffusivity principle is explained which will be used for the analysis of this research. Chapter 3 
describes the methodology of this research, followed by the results and discussion in Chapter 4. These 
chapters are organized based on the four pillars. An overarching synthesis on the four sub-studies is 
presented in Chapter 5. Finally, conclusions and recommendations are drawn in Chapter 6. This chapter will 
provide answers to the stated research questions. In the Supplementary materials, additional experiments 
that are relevant for this research are described and discussed. References will be made throughout the 
report. 
 

 

Figure 1.4: Four pillars form the base of this research. Short descriptions of the research per pillar is given. 
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2 
2. Theoretical framework 

As discussed in the problem statement (1.2), it is hypothesized that turbulent motions can bring and keep 
plastic materials in suspension. This chapter starts with a theoretical elaboration on the mixing ability of 
turbulent flow and continues with a discussion of the turbulent diffusivity approach, used to model turbulent 
fluxes of matter. This particle mixing phenomenon is frequently studied in other fields of research. The 
parallel literature is narrowed down to two fields, i.e. Riverine sediment dynamics and Transport of positive 
buoyant (passive) fish-eggs in the open sea. In section 2.1.3 a short review on this literature is given, in which 
parallels to the objectives and approach of this master thesis can be found. In Methodology (Chapter 3), an 
approach towards the theoretical description of the vertical distribution of plastic is introduced, based on 
the theory and parallel studies as presented in this chapter.  
 

2.1. Theoretical background on turbulent mixing 
2.1.1. Turbulent mixing 
Most surface water systems are turbulent. As a rule, turbulence is fully persistent in open channel flow if the 
Reynolds number (the ratio of flow inertia over viscosity) is above 1000. If the conduit boundary is rough, 
fully turbulent flow can occur at lower Reynolds numbers. In turbulent conditions, eddies of many sizes are 
superimposed onto the mean flow. Figure 2.1 shows a schematic visualization of this turbulent movement. 
Dye that enters the turbulent region traces a path that is not only dictated by the mean flow, but also by the 
eddies and is mixed over the water depth, showing the movement of water particles (MIT, n.d.). Turbulent 
eddies create fluctuations in all velocity directions. In a uniform flow, without secondary flows, the average 
of the vertical velocity component equals zero. However, the fluctuation of the vertical velocity component 
around the mean, causes vertical movements of water. 

 

Figure 2.1: Dye enters the turbulent region and is mixed over the water depth by fluctuating eddies (MIT, n.d.) 

Between the bed and the free stream, the velocity varies over the vertical coordinate. This velocity gradient 
is called shear. Turbulence is an instability generated by shear and the turbulence strength scales on the 
shear. Because this scale relationship is not dimensionally consistent, a velocity scale is introduced to 
represent the shear strength: The shear velocity, or friction velocity: u* (‘u-star’).  
The definition of u* is based on the bed shear stress, τbed, as shown in equation (2.1). 

 
2

*
u

bed
 =  (2.1) 

The bed shear stress is a measure of the force of friction from a fluid (moving water) on a body (the river 
bed), depending on slope, depth and water density. For uniform flow, the bed shear stress can also be 
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expressed as a function of the friction coefficient cf and the depth average flow velocity, Uda (2.2). This results 
in equation (2.3) for the shear velocity. The equation shows that the shear velocity, and therefore also 
turbulence strength, increases with an increase in flow velocity.  

 
2

f
U

bed
ghi c

da
  = =  (2.2) 

 * f U
da

u c=   (2.3) 

The bed friction coefficient is subject of many researches. The relation between Manning’s n-value, Chezy’s 
C-value and the cf coefficient is given in equation (2.4). The friction coefficient cf does not depend strongly on 
depth and for the TU Delft flume a constant cf of 0.003 is assumed. Based on the geometrics of the conduit 
and Mannings estimate for several bed conditions and materials, other friction coefficients can be 
determined (Battjes & Labeur, 2017, p. 180). 

 
1 1/6

/R C g c
fn

= =

 

(2.4) 

2.1.2. Turbulent mixing modeled as a diffusion process 
Turbulence can generate net transport, referred to as mixing. Solid substances such as sediments and 
(passive) organisms are distributed over the water depth due to this mixing ability of the flow. This could also 
apply for solid pollutions such as plastic particles. This mixing occurs from high concentration to low 
concentration; hence, the turbulent flux is always in the opposite direction of the concentration gradient. 
Therefore, turbulent mixing tends to homogenize a suspension. However, this smoothing effect is 
continuously disturbed by the buoyancy force of the considered material itself. For sediments with a higher 
density than water and therefore a negative buoyancy, this results in a higher concentration near the bed. 
For particles with a lower density than the surrounding fluid, this would result in a higher concentration near 
the surface. Theoretically, neutral buoyant particles would have a uniform concentration distribution due to 
turbulent mixing. 
 
The turbulent flux can be modeled as an additional diffusion term in the equation of mass-conservation, given 
in equation (2.5), (MIT, n.d.). The additional term DT,z is determined by the strength of the turbulence and is 
much greater than the original diffusion term Dz, which is therefore ignored. 

 
( )

( ),

uCC C
D Dz T z

t z z z

  
+ = +

   
 (2.5) 

For the vertical mixing of matter due to turbulence, a one-dimensional equation is considered and the 
variation over time is neglected, this results in the following simplification of the equation of mass-
conservation: 

 
( )

( ),

uC C
DT z

z z z

  
=

  
 (2.6) 

Considering a balance between the settling flux and the turbulent flux, the vertical flux of particulate mass 
can be described by the differential equation (2.7). In which wp is the settling velocity of the particle (m/s). 

 
( )

( ) ,

dC z
w C z Dp T z

dz
− =  (2.7) 

The solution of this differential diffusivity equation is given in (2.8), which shows a concentration distribution 
equation. Where C(z) is the suspended sediment concentration at height z above the bed and c1 is the 
integration constant. The diffusion term DT,z is based on the assumption about the vertical profile of 
diffusivity, as does the resulting distribution profile (Heath et al., 2017). The settling velocity ws of the particle 
depends on both properties of the particle and ambient environment. 

 ( ) exp
1

,

wp
C z c dz

DT z

=  −

 
 
 
 

 (2.8) 
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2.1.3. Counteracting buoyancy force 
The terminal particle velocity wp in equation (2.8) is determined by a balance between the buoyancy force, 
the gravitational force and the fluid drag force acting on the particle, given by equations (2.9)(2.8) to 
(2.12)(2.8). In which ρf and ρp are the fluid- and particle-density respectively (kg/m3) and g is the 
gravitational acceleration constant (9.81 m/s2), Vp is the particle’s volume (m3), Ap the particle’s frontal area 
(m2). In order to determine the terminal rise velocity wp (m/s) numerically, the drag coefficient CD (-) must be 
determined. The drag coefficient is mostly based on experimental data and varies with the particle’s shape 
and also the particle’s velocity (Chanson, 2004, p. 334). 

 V g
B f p

F =    (2.9) 

 F V g
G p p

=    (2.10) 

 
1 2

2
F C A w
D D f p p

=      (2.11) 

 
1 2

( ) 0
2

V g C A wp p p pDf f
  −   −     =  (2.12) 

For small (rigid) spherical particles (d < 0.1 mm), the terminal particle velocity can be determined with Stokes’ 
law, given in equation (2.13)(2.8). For bigger spherical particles, the particle velocity can be approximated by 
empirically defined equations for the drag coefficient, depending on the particle Reynolds number (Chanson, 
2004, p. 334). For other shapes of particles and objects, a variety of drag coefficients is determined 
empirically. The coefficient of spherical particles is often estimated as 0.47, while the coefficient of a flat 
plate can lie around 2.0, partly depending on the orientation of the particle.  

 

( )2 2

9

g pf
w dp p

f

 



−
=  (2.13) 

 

2.2. Similar research to the vertical distribution of particles 
Research to the vertical distribution of suspended particles is nothing new. Two relevant fields of expertise, 
in which the vertical distribution of solid particles is considered, will be discussed and referred to further in 
this research: 

1. Sediment dynamics: sediments are (mostly) negative buoyant, spherical particles, with a density 
difference Δρ in freshwater of around 1.0 – 1.7 g/cm3

. There is a great interest in understanding the 
movement of different types of sediment for the sake of land- and river-management. A well-known 
equation describing the vertical distribution is the Rouse Profile (Rouse, 1937). Although there will 
be resemblance between the suspended transport of sediments and plastics in rivers, there is a clear 
difference due to buoyancy. The density difference between sediments and the transport medium 
is relatively big compared to the case of the considered plastics (Δρplastic ≈ 0.1 g/cm3). Thereby, the 
suspension of positive buoyant plastic is inversed to that of negative buoyant sediments. The 
behavior of floating particles might differ substantially from that of suspended sediment, as the 
particles are affected by hydrodynamic phenomena that develop at the free surface.  

2. Ecology (the transport of fish eggs): Another interesting link can be made with research to the 
transport of positive buoyant eggs, which is conducted from an ecological perspective; The spatial 
distribution of eggs determines the fate within specific geographical regions.  A researcher that will 
be referred to in this thesis is Sundby (1983, 1991). The positive buoyant eggs considered in this 
research have a relatively small density difference, ranging from 0.0005 to 0.005 g/cm3. Computed 
terminal rise velocities range between 0.96 and 1.80 mm/s. Even though the focus of this specific 
research is on oceanic transport (pelagic eggs), the established profile is based on the same principle 
as the Rouse profile. However, different mechanisms play key roles in the open ocean, different 
assumptions are applied for the development of a concentration equation. 
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2.2.1. From Sediment Dynamics: The Rouse profile 
In research to sediment dynamics, a well-known solution to the concentration distribution equation is given 
by H. Rouse (Rouse, 1937), the so-called Rouse profile. Many formulas have been developed sequentially, as 
summarized in the research of Huang et al. (2008). However, the Rouse formula is still the most extensively 
cited and will therefore be guiding for this research. This concentration profile is based on the assumption of 
a parabolic diffusivity profile, which is in line with a parabolic viscosity profile and correspondents with a 
logarithmic velocity profile.  
 
The parabolic diffusivity profile is described by the eddy diffusivity coefficient εT and can be related to the 
eddy viscosity νT with the Schmidt number σT, which is often taken to be 1 (Heath et al., 2017). Resulting in 
equation (2.14). However, other relations can be applied; For sandy beds the parameter is suggested to be 
equal to 0.7 (van Prooijen et al., 2018). The κ is the von Kármàn constant of 0.41, h the flow depth and z the 
height above the bed, increasing towards the surface. 

 
* 1,

u zTD zT z T
hT T




 
= = = −

 
 
 

 (2.14) 

Furthermore, for the derivation of the Rouse profile, a steady flow in a uniform channel is assumed and the 
settling velocity is considered as a constant (empirically defined) value. With implementation of the eddy 
diffusivity coefficient (εT) in equation (2.8), the concentration equation results in equation (2.15). The shape 
parameter (exponent of the equation) is called the Rouse parameter β, in which the settling velocity ws, shear 
velocity u*, von Kármàn constant κ and Schmidt number σT are included. This parameter is a characteristic 
scale parameter for the resulting distribution profile (2.16). 
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 (2.15) 

 

*
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u





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The integration constant c1 can be solved by considering a reference concentration ca that is measured at        
z = a. This reference concentration is taken as the near-bed concentration. The solution of the equation is as 
follows: 

 ( )
h z a

C z Ca
z h a


−

=
−

 
 
 

 (2.17) 

Other sediment profiles exist as well. These profiles are based on different assumptions for i.e. the eddy 
viscosity profile (van Rijn, 1993).  

 

Figure 2.2: Rouse profiles based on different β-values (βA > βB): A bigger ratio of ws over u* implies a smaller 

influence of turbulent diffusivity. The settling velocity is the determining factor (figure from Teles et al., 2016) 
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2.2.2. From fish-egg studies: Positive buoyant particles 
Based on the marginal positive buoyancy property of the considered plastics, studies to the distribution of 
(passive) fish-eggs resemble to this research on plastic distribution. The factors affecting the vertical 
distribution of eggs are studied and published in multiple papers (Sundby, 1983, 1991). These fish-egg studies 
are focused on the oceanic transport, and factors such as stratification and wind induced turbulence play a 
key role in the distribution. A comparison with these studies illustrates the possibilities in approaches towards 
a statistical approximation of concentration distributions and forms an important background for this thesis 
research. In the research conducted by Sundby (1983) the turbulent diffusivity theory also forms the base of 
the established distribution profile. However, since positive buoyant particles are considered, the particle 
flux is determined by the rise velocity (wr) of the particles and the turbulent flux is in the opposite direction 
because of a higher concentration near the surface, equation (2.18). In the study of Sundby, the diffusivity 
coefficient DT is assumed as a constant, rather than a parabolic profile described by εT. The solution to the 
diffusivity equation is then given by equation (2.19).  

 
( )

( ) ,

dC z
w C z Dr T z

dz
= −  (2.18) 

 

 ( )( ) exp
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DT

=  − −
 
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 (2.19) 

Furthermore, Sundby suggests a (Gaussian) distributed rise velocity parameter, instead of a constant average 
value. This results in an equation of higher order terms, depending on the depth considered for mixing 
(Sundby, 1983). By doing so, Sundby accounts for the variety of the rise velocity within a certain egg-group, 
which is due to differences in shape, size and particle density. This information was based on extensive 
preliminary research to the buoyancy of a variety of fish species of multiple authors referred to in Sundby 
(1983). With this approach, higher concentrations at deeper layers are computed because the more slower 
ascending eggs make a larger contribution at greater depths (Figure 2.3).The study focusses on pelagic (open 
ocean) fish-eggs, where wind induced turbulent mixing plays a key role and factors such as salinity and 
stratification are also considered. The assumption of the constant diffusivity coefficient DT is based on the 
influence of wind and the absence of the bed influence on the turbulence intensity found at the surface. In 
the research conducted for this master thesis, the wind factor is of less relevance and neglected. The 
assumption of a constant uniform diffusivity profile is therefore not considered.  

 
 

Figure 2.3: (left) An example of the vertical profiles of pelagic fish eggs. (right) Schematic representation of the profiles 
according to an average rise velocity (line 2) and a (Gaussian) distributed rise velocity (line 1) (Sundby, 1983) 
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2.3. Conclusion theoretical framework 
Turbulent motions in the flow can induce mixing of solid matter, if the turbulent intensity is great enough 
with respect to the floating or settling ability of the considered particle. However, both the buoyancy of the 
particle as the turbulent intensities of the flow have spatial and temporal variations. A theoretical definition 
of the turbulent mixing of matter therefore only returns an indication of the probability of occurrence. The 
distribution profile of the suspended concentration gives an estimate of the average distribution over time. 
From the conducted literature review on fields with similar interests, it may be concluded that the turbulent 
diffusivity approach forms an appropriate base for describing the vertical distribution of suspended particles, 
for both negative and positive buoyant particles, with relatively small and big density differences compared 
to the transport medium (|Δρsediment| =  1.0 – 1.7 g/cm3, |Δρfisheggs| = 0.0005 - 0.005 g/cm3). Nonetheless, 
both fields that are discussed study the distribution of small sized (< 5 mm), spherical particles. It is therefore 
likely that there are resemblances between the reviewed studies on sediments and fish-egg distribution, and 
this research to distribution of macroplastics, however, other effects might play key roles. In Chapter 3, the 
approach towards the development of plastic concentration-distribution-profiles is explained, which is 
mainly based on the assumptions considered for the sediment Rouse profile because of the focus on riverine 
transport. 
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3 
3. Methodology 

The sections in this chapter are organized based on the four pillars as introduced in the Introduction. The 
scheme is repeated below Figure 3.1. In additional section 3.5, attention will be given to the scale issue of the 
experiments. As a start, an overarching methodology for all experiments is presented below. 

 

Figure 3.1: The outline of this chapter follows the four pillars as indicated 

Overarching methodology 
This research focusses on the vertical distribution of plastic bags and foils and is conducted in a small-sized 
flume of 40 cm width. Bags and foils are mostly made of the plastic types HDPE and LDPE (High- and Low-
Density Polyethylene). These materials are characterized by a raw factory density between 0.93-0.97 g/cm3 
for HDPE and 0.92-0.93 g/cm3 for LDPE. Plastic of both materials is investigated, originating from two 
different commonly used plastic bags as presented in Table 3.1. These plastics are not factory clean, untreated 
LDPE or HDPE materials. Because of factors such as additives, coloring, glue and even the combination of 
materials, the plastic is characterized by a bulk density that can differ from the raw factory density. 
Nonetheless, the bulk density is expected to be close to freshwater density and therefore result in a marginal-
positive-buoyant property. A third density definition is introduced: the ‘effective density’, defined as the 
density difference between the object and the ambient water. This effective density defines the floating 
ability of the plastic and is of interest for this research.  
 
Because of the relatively small dimensions of the flume, it is not possible to experiment with plastic bags in 
their original form. Therefore, sheets of 3 x 4 cm2 of the same materials are used in the flume experiments. 
In order to define the key factors that drive the floating ability, bags and foils are compared in preliminary 
experiments to the plastic parameters. For simplicity, bags are represented as foils with a single layer 
thickness in further experiments. Even though plastic bags and foils come in various sizes and shapes, 
especially when considering fragmentation of the litter, the full-sized plastics of the dimension 30 x 40 cm2 
are considered as prototype-plastic for this research. The two used bag-materials will be referred to as HDPE 
and LDPE plastic further in this research. The prototype-river is considered as an average urban river, with 
flow velocities between 0.1 – 0.5 m/s, and a friction coefficient of 0.005 (clean and straight river).  
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Table 3.1: Summary of the experiment properties 

 Experiment setup 

 Flume River 
Range of flow velocities (m/s) 0.1 – 0.9 0.1 – 0.5 
Friction coefficient cf [-] 0.003 0.005 
Depth (cm) 25 250 
Plastic dimensions (cm2) 3 x 4 * 30 x 40  

 Plastic types 

 HDPE LDPE 
Raw factory density (g/cm3) 0.93 – 0.97 0.92 – 0.93 
Other Specifications (observed) Thin, flexible More thick, stiffer material 

Originating from bag 

   
*these dimensions result from the preliminary research on the scale influence of plastic, as will be discussed in section 3.1. 
 

3.1. Plastic parameters: Floating ability of plastic 
As described in the Theoretical framework, Chapter 2.1, the floating ability of the plastic particle can be 
expressed as the particle’s rise velocity (wr). The terminal rise velocity results from a balance of forces on the 
particle (gravity, buoyancy and drag), as shown in equation (3.1) derived from equation (2.12). The rise velocity 
depends on factors such as the volume and shape of the particle and the density difference with the ambient 
environment. For known particle shapes and sizes, estimations of the drag coefficient CD can be used to 
numerically determine the terminal particle velocity. According to equation (3.1), the change of the frontal 
area of the plastic (Ap) due to downsizing should not influence the terminal velocity of the plastic, since the 
thickness of the material remains the same and therefore the ratio Vp/Ap is constant. However, other factors 
such as (relative) flexibility of the material might play a role. 

 
( )2g Vp pf

wr
C ApD f

 



 − 

=
 

 (3.1) 

Since the drag coefficient for the plastic sheets is unknown, and other factors might play a key role, an 
average rise velocity was empirically determined in stagnant water rise-time experiments. The goal of these 
experiments is two-fold: 

1. To understand what defines the floating ability of the plastic, and how this is influenced by scaling 
of the experiment.  

2. To quantify the floating ability as an average rise velocity, that is needed for a theoretical 
approximation of the distribution profile. 

The results from this experiment are also used for the setup of the flume experiments and will therefore be 
shortly mentioned at the end of this section. 
 

3.1.1. Rise velocity of the plastic - experiment 
Two rise-velocity-experiments were conducted, both in a different setup because of equipment limitations.  
The first experiment was conducted to investigate the difference between bags and equally sized sheets, in 
which we may assume that the ability to trap air plays a role. In a tank filled with 1 meter of water (2 x 2 m2 
footprint), bags and full-sized sheets were pushed to the bottom and released. The first 40 cm was taken as 
acceleration length and the rise time over the left 60 cm was manually measured with a stopwatch (± 1 sec). 
This was done for both types of plastic (HDPE and LDPE) and repeated 30 times per bag and sheet. Since it 
was found that the influence of air trapped in the bags can be of such a great influence that it overrules the 
plastic property, an ‘average situation’ was pursued by stirring the plastic underwater before testing. Big air-
bubbles were released from the bags. This is considered as average situation for plastic that can be found in 
rivers.  
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In the second experiment, the influence of scale was explored. Multiple downscaled sizes of sheets were 
tested in a smaller container of 0.7 x 1.1 m2 and 0.5 m water depth. Because of the limited depth, acceleration 
length was not accounted for. Again, the rise time was manually measured and average rise velocities per 
sheet-size were computed. The sheet sizes used are depicted in Figure 3.2, in which the subscript indicates 
the scale of the plastic that is used in the experiment. For example: HDPE0 represents the prototype bag in 
its full size and form. HDPE1 indicates a single sided sheet of the same material, but with an area of 1% of the 
prototypes frontal area. All sheets were cut out of the original bag and therefore have the same thickness 
and material properties. The shape of the plastics was kept equal to the prototype bag.  

 

Figure 3.2: Used sizes in plastic experiments. The 1% sheet is used for further 
studies, based on the geometrics of the flume and results of the experiment. 

For all experiments, ‘fresh’ bags and sheets were taken. This means it was new plastic that was not in contact 
with water before the experiments. The bags were wetted and stirred before each experiment in order to 
release big air-bubbles and pursue an average condition. The experiments were repeated 30 times. It may 
already be mentioned that the time the plastic spends in the water can influence its floating ability. A small 
side experiment to this effect was conducted and is elaborated on in Supplementary materials B.2. The 
influence of time on changes of the materials properties is neglected further in this research. All 
considerations for the methodology of the experiments were to pursue conditions that are ‘as average as 
possible’. In which average is based on assumptions on for example the ambient water conditions (fresh 
water, 20˚ C) and conditions of the plastic (not extensively used, no presence of big air bubbles). 
 

3.1.2. Conclusion for flume-setup 
Based on this scale-research and the flume dimensions, the sheets of 1% frontal area, 3 x 4 cm2, were chosen 
for the successive flume experiments. Based on the plastic-prototype definitions of 30 x 40 cm2, this results 
in a geometric scale factor of 1:10 for further experiments. 
 

3.2. Observation: Vertical distribution of plastic 
3.2.1. measurement of the plastic distribution over depth – flume experiment 
The distribution of the plastic sheets over the water depth was measured in a flume setup. The flow in the 
flume represents river-flow, as can be found in a straight river reach with gradually varying flow. Therefore, 
the results of the experiments are to be considered as: The distribution over depth through a uniform, straight 
river reach, without influences of secondary flows or obstructions. The experiment was conducted under 
different average flow velocities (Table 3.2). Assuming a uniform flow over constant water depth (25 cm) and 
a constant friction coefficient (0.003), the distribution over depth can be assigned to a prevailing shear-
velocity, which increases with an increase of the average flow velocity, equation (2.3). The two types of plastic, 
HDPE and LDPE, size 3 x 4 cm2, were used. The measurement was done by counting how many times plastic 
sheets were present in each depth-section. For each velocity (and corresponding shear-velocity), 100 plastic 
sheets were released in the flume, one by one to prevent interaction. The flume setup is illustrated in Figure 

3.3 and associated considerations are explained below. A more detailed description of the setup can be found 
in Supplementary Materials C.1.  

Table 3.2: Experiment flow velocities and corresponding shear velocities (based on cf = 0.003) 

Experiment number 1 2 3 4 5 6 7 

Flow velocity (m/s) 0.10 0.20 0.35 0.45 0.55 0.65 0.95 
Shear velocity (cm/s) 0.5 1.1 1.6 2.2 2.7 3.3 4.9 
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Based on the plastic sheets and flume dimensions, a geometrical scaling factor of 1:10 was chosen. The water 
depth in the flume was kept constant at 25 cm for every velocity experiment. The ‘surface-share’ of plastic in 
rivers is considered as the amount of plastic found in the first 50 cm below the surface. In the flume, this 
surface-section equaled 5 cm. The inlet depth of the plastic was kept constant and was mostly based on a set 
of preliminary trial and error experiments. The inlet near the surface (5 cm below) assured the possibility to 
monitor downward movements as a result of turbulent motion. At two locations, A and B in Figure 3.3, 
cameras were used to capture the position of the plastic sheet over depth. The depth was divided in 10 
sections, of each 2.5 cm. The times that a sheet was present in each section was counted. However, only 
location B was considered as reliable measuring location. At this location, a developed flow and equilibrium 
profile is assumed, based on the configuration of flume length, flow velocities and average rise velocity of 
the plastic. Additional information on the flow profiles in the flume can be found in Supplementary Materials 
C.2. The data retrieved from location A was used to check whether a downward movement, linked to 
turbulent mixing, did occur in the velocity-experiment. A threshold of 10 % was chosen to indicate mixing, 
meaning that if less than 10 % of the tested sheets showed downward movement between location A and B, 
the distribution of the plastic at location B may have been due to effects of the inlet method rather than 
mixing ability of the flow. In that case the shear-velocity was considered as ‘below mixing threshold’.  

 

Figure 3.3: Flume setup for vertical distribution observations. Location B serves as measurement location, location A 
as reference. 

For this research, several assumptions were made, summarized as follows: 

• There is fully developed, uniform flow (constant in time and space).  

• The vertical component of the average velocity is caused by bed-shear induced turbulence and can 
be expressed as the shear velocity u*. 

• An equilibrium distribution profile can be assumed at the measuring location (camera B). Meaning 
that the distribution that is measured here, is representative for the distribution that would be 
measured at any location over an infinity long distance after an infinity of time (neglecting the 
influence of time on the floating ability of the plastic). 

• The floating ability of the considered plastic can be described with an average rise velocity wr. Even 
though the rise velocity may vary due to the influence of air and ambient factors such as water 
temperature etc. 
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Figure 3.4: The depth is divided in 10 sections. Section 1 and 2 form the surface-share (5 cm) 

3.2.2. Error definition of observation 
A difficulty with the observation method is handling the perspective on camera images. Since the focus of 
the research is on the relation between surface plastic and subsurface plastic, the camera’s horizon was set 
at section 1. As a result, the count was more prone to observation errors for deeper sections, because of the 
perspective. A count in section 10 could also have been in section 9. Each velocity experiment was conducted 
once, with 100 sheets. Therefore, it was not possible to compute a standard deviation over the individual 
velocity-measurements. Therefore, the uncertainty determination for the observation (the count per section) 
was defined as a spatial average over counts above and below the section of interest, as illustrated in Figure 

3.4. A standard deviation over the three measurements was taken to compute the standard relative error of 

the middle observation, as given by equation (3.2), in which c is the average count over the three considered 

sections. For the upper and lower boundary (section 1 and 10), the standard error of the section below (2), 
respectively above (9) was taken. This way, when the difference in count between the neighboring sections 
is big, we estimate a bigger error in count than when the difference is small.  

 
2 2 2

1 1( ) ( ) ( )

3

i i i
i

c c c c c c
 − +− + − + −

=  (3.2) 

 

3.3. Theoretical approximation: Concentration distribution profile 
3.3.1. Theory: Plastic distribution modeled as diffusion process 
The method for modeling the turbulent flux as a diffusion term, as described in Chapter 2.1.2, could 
theoretically be applied to the vertical distribution of (macro)plastics as well. This section discusses a 
proposed concentration equation to both analyze and approximate the vertical distribution of plastic over 
depth, based on the Rouse profile. 

Table 3.3: Main assumptions for the Rouse profile, that are adopted for the plastic distribution profile 

Main assumptions for the Rouse profile 

• Steady flow in a uniform channel 

• Parabolic eddy viscosity profile 

• Constant and uniform Schmidt number 

• Constant and uniform settling velocity 

• An equilibrium concentration profile (steady state distribution) 

 
Concerning the marginal positive buoyant properties of the considered plastic, there is a resemblance 
between the fish-egg studies and this research to plastic. However, the studies of Sundby (1983, 1991) are 
focused on open sea processes, including wind induced turbulent mixing. The assumption of a constant 
turbulent diffusivity profile used by Sundby does not suffice for this research. Therefore, the assumptions 
considered for the sediment Rouse profile are adopted. The parabolic diffusivity profile, based on a 
logarithmic velocity profile, is dictating the equation (Table 3.3). With these considerations, the concentration 
distribution equation for plastic equals the Rouse equation. However, because of the focus on positive 
buoyant plastics, rather than negative buoyant sediments, the settling velocity is replaced by the rise velocity 
(as was shown in the fish-egg studies). Therefore, the resulting concentration-distribution-profile is inversed 
with respect to the sediment profile. To cope with this change of directions of the fluxes, z is considered 
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increasing with depth and z = 0 now represents the water surface. The used equation in this research is then 
of the same form as the presented equation for the Rouse profile, equation (2.17), but distinguished by the 
use of a depth (d) rather than height (h) (3.3). The Schmidt number is taken as 1 and neglected. The reference 
concentration Ca is taken as a fixed near-surface measurement. 

 

( )
d z a

C z Ca
z d a


−

=
−

 
 
 

    with    

*

wr

u



=  (3.3)  

The shape parameter β is dictated by the ratio of inertia of the particle versus the turbulence of the flow: rise 
velocity (wr) over shear velocity (u*). However, the shape and size of plastic has a great variation in 
comparison to spherical sediment and egg-particles and no analytical solution exists to predict the rise 
velocity. The empirical determination of the rise velocity was discussed in previous section (3.1.1) and will be 
used as input parameter in this analysis. An overview of the distribution profiles as described in Chapter 2, 
and as defined for the plastic distribution is given below (Table 3.4). 

Table 3.4: Concentration distribution profiles for Sediment, Fish-eggs and Plastic 

Sediment Rouse profile Egg distribution profile Plastic distribution profile 
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DT = parabolic turbulent diffusivity profile DT = constant turbulent diffusivity profile DT = parabolic turbulent diffusivity profile 

z = height above bed (increases towards 
surface) 
Ca = near-bed concentration 
ws = settling velocity 

z = depth (increases towards bottom) 
 
Ca = near-surface concentration 
wr = rise velocity 

z = depth (increases towards bottom) 
 
Ca = near-surface concentration 
wr = rise velocity 

 

3.3.2. Analysis: From section-counts to a distribution profile 
The distribution of plastic over depth was measured over a 2.5 cm interval. In order to convert this discrete 
dataset in a continuous concentration-distribution profile, the count per section was first divided by the 
depth interval and then translated to point-measurements at half the depth sections (Figure 3.5). The 
datapoints are to be considered as concentrations (%/cm) and used to compute a concentration-distribution-
profile according to the equation based on turbulent diffusivity principle, repeated below (3.4). The reference 
concentration Ca was taken as the near-surface observation at a = 1.25 cm for each individual experiment. 

  
Figure 3.5: Left: Counts per section are translated to concentrations over depth, at half the section depth. Right: 
concentration distribution profiles are created, either fitted or approximated. The surface share can be calculated. 
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Two profiles based on this equation were developed per velocity-experiment. The first profile is an 
optimized fit of the concentration equation through the observed datapoints. The fit was optimized with 
a Least Mean Squared Error method (LMSE) for each velocity-experiment separately, with the shape 
parameter as estimator, called b. This was done in order to investigate the ability of the concentration 
equation to describe the observed distribution. This fitted profile was then compared to the theoretical 
profile, in which the shape exponent β is based on an estimate of the average rise velocity of the plastic 
wr (as determined) and the shear velocity u* (based on the prevailing flow velocity). This later profile will 
be referred to as the theoretical profile with the Rouse parameter β as shape parameter. κ represents a 
constant of 0.41.  
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In this analysis, no required conditions to the area below the distribution curve were given and therefore 
the profile loses its probability density attribute. The profile describes the relative concentrations over 
depth regarding the measured near-surface concentration (Ca). To compare the profiles of the different 
velocity experiments, the equation can therefore also be normalized over the near-surface observation, 
as shown in equation (3.5)). 

 
( )C z d z a

C z d aa


−

=
−

 
 
 

  (3.5)) 

In order to determine the surface share from the concentration distribution profiles, the following 
equation was established (3.6)), as illustrated in Figure 3.5 (right side). Because of the asymptotic behavior 
of the equation towards the surface, the concentration between the surface and first measurement (0, a) 
was considered as uniform. Else, the surface shear would be overestimated.  
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3.4. Manipulation: Influence of vertical obstructions 
In the final experiment, the influence of obstructions on the surface-share of the plastics, relative to the 
undisturbed equilibrium distribution, was investigated. The underlying goal of this research was to 
investigate the influence of a surface skimming technology itself, which is in fact a permeable gate structure 
(such as a trash rack). Thereby, the potential of hydraulic structures to increase (or decrease) the surface 
share of plastic was studied. Three obstruction-scenarios with a crosswise orientation towards the waterflow 
were tested, all obstructions were sharp-crested, solid obstructions.  

1. Sluice gate submerged till 5 cm underwater (1/5th water depth) 
2. Bottom sill (bump) of 5 cm height 
3. Half-depth obstruction of 5 cm height 

 
Both the distribution 50 cm in front of the obstruction and at the obstruction (above or below) were 
monitored.  In order to investigate the influence of the obstruction relative to the equilibrium distribution, 
the approach conditions and measurement location were the same as in the undisturbed experiments as 
described in 3.2.1. The obstruction was placed downstream of measurement location B. For each scenario, 
three of the 7 velocities were investigated: 0.1 m/s, 0.3 m/s and 0.5 m/s. In all cases, the flow was subcritical. 
The obstruction effects propagate upstream and therefore the downstream conditions were used to set the 
experiment conditions equal to the undisturbed conditions, which were a water depth of 0.25 m and a set 
flow velocity per experiment. Since we cannot assume uniform conditions with obstructed flow, we cannot 
assume equilibrium concentration profiles for these scenarios. The focus is on the change of the surface share 
and deviation of the equilibrium profile, as found in the previous experiments, due to the obstructions. 
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Figure 3.6: Setup of the obstruction experiment, similar to the previous experiment with undisturbed flow 

The behavior of the plastic behind the obstruction was also of interest. However, due to limited length in this 
setup between the obstruction and the outlet of the flume, this downstream behavior was monitored in a 
different setup. In this setup, a sluice gate was placed more upstream of the flume and the downstream 
behavior of the plastic as monitored. Based on the results from this experiment it was decided to not test 
this for the other scenarios. The results are presented in Supplementary materials 0 
 
Lastly, two additional orientations of the sluice gate were tested, in order to investigate the influence of 
secondary flows near the obstruction such as a wake formation in front and behind the sluice gate. The three 
following configurations of the sluice gate were compared: 

1. Perpendicular to the water, 90˚ orientation. 
2. 70˚, oriented against the flow direction. 
3. 110˚, oriented with the flow direction. 

These results will be presented in Supplementary Materials 0 as well, for this study was very explorative. 

 

3.5. From lab experiment to reality: The scale issue 
All experiments were scaled, and results might deviate from reality. The possibility of plastic to mix over the 
water depth can be explained by the ratio of the vertical forces acting on the plastic. This ratio is used as 
kinematic scale factor. Considering only primary turbulent flows (induced by bed shear stresses), the ratio 
can be described as: 

1. The floating ability of the plastic itself, expressed as the rise velocity (wr).  
2. The vertical component of the flow velocity expressed as the shear-velocity (u*).  

 
We assume that, if the shear velocity is greater than the rise velocity of the plastic (u* > wr), a net downward 
force is possible, and mixing over the water depth can occur. Both components can be influenced by scaling 
of the experiment. To relate the flume experiments to reality, the ratio between the two acting vertical 
velocities should be equal (3.7). Hence, information about these two velocities (wr and u*), for both model 
and prototype, is needed. Under uniform conditions, the shear velocity is a result of the average flow velocity 

and the bed friction: *u c Uf da=  . This results in the following kinematic scale factor between experiment 

and prototype flow velocities (3.8): 
 

*, *,

, ,

u up m

w wr p r m

  (3.7) 

 
, ,

, ,
, ,

w cr m f p
U U

da m da p
w cr p f m

 (3.8) 

 



 

20 
 

In this research, rough assumptions for a prototype river were made to be able to link the experiment to 
reality. It is assumed that the distribution is linked to the prevailing shear velocity. However, multiple 
configurations exist to come to equal shear velocities and therefore the experiments represent a possible 
river condition rather than a one-to-one comparison with a case-study. The prototype river can be described 
as a shallow urban river or channel, with a velocity range between 0.1 and 0.5 m/s. The bed friction coefficient 
(cf) is estimated as 0.005 (straight clean river). The flume has a friction coefficient of 0.003 (PVC bottom). 
Consequently, the shear velocity in the flume is relatively low with respect to the prevailing flow velocity, 
when compared to real-conditions. Apart from the fact that subcritical flow was a requirement for the flume 
experiments, in which the Froude number is below 1 (3.9), other effects from scaling on for example the 
relative importance of plastic elasticity or fluid viscosity, are considered as less important and neglected.  

 Uda

g d
Fr


=  (3.9) 
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4 
4. Results and discussion 

Because of the iterative approach of this research, results and discussion are treated together. The sections 
are divided by the four sub-studies (Figure 4.1). In each section, first the results and observations are 
presented, the section ends with a discussion of the sub-study. In Chapter 5, an overall synthesis is given in 
which underlying relations and influences between the studies are discussed, together with relations found 
with discussed literature. Note that the two plastic materials used for this research are referred to as HDPE 
and LDPE plastic. The used material originates from prototype plastic bags and therefore properties can 
deviate from the raw form of the materials. 

 

Figure 4.1: The outline of this chapter follows the four pillars as indicated 

4.1. Plastic parameters: Floating ability of the plastics 
As described in section 2.1.2, the floating ability can be expressed as the rise velocity (wr) of the particle, 
which depends on the effective density, the volume, shape and other (ambient) factors. Experiments to the 
rise velocities were conducted with two different plastic materials from the types HDPE and LDPE. Before 
extrapolating the vertical distribution of macroplastics, as found in lab experiments, to a real-world river 
prototype, it is of importance to investigate the effects of scaling. Section 4.1.1 presents the differences 
between bags and single-sided foils of the same dimension, in which the ability to trap air is important. In 
Section 4.1.2 the scale of the plastic sheets is investigated and rise velocities are compared. Based on these 
scale-results, a geometric scale factor of 1:10 was chosen for further experiments, and sheets of 3 x 4 cm2 
were used as model-plastic for further experiments. In Section 4.1.3, the information on the rise velocity of 
this model-plastic (both HDPE and LDPE sheets) is presented separately. These average rise velocities are 
needed in the approximation of the concentration-distribution profile, as will be discussed in Section 4.3. 
 

4.1.1. Define the floating ability: from bags to sheets 
Because of the open form of bags, air and water can be trapped inside, influencing the bulk density of the 
object. To investigate this factor, the rise velocity of bags is compared to the rise velocity of foils with equal 
material and equal dimensions of 30 x 40 cm2 (simply bags cut in single sided sheets). Figure 4.2 shows the 
probability density curves of the rise time over 1-meter depth, for respectively the HDPE and LDPE plastic 
bags and foils. The results are based on 30 experiments for each plastic type. The average rise velocities 
determined from these experiments are given in Table 4.1. 
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Figure 4.2: Probability density graphs of rise-time over 1-meter depth, assuming a normal distribution (the area below both 
graph line and bars equals 1). For HDPE plastic (left) and LDPE plastic (right).  

Table 4.1: Found average rise velocities for plastic bags and foils 
 

HDPE LDPE  
Plastic Bag Foil (full size) Plastic Bag Foil (full size) 

Average rise velocity (cm/s) 6.6 2.6 5.0 0.9 

RSE* 7.9% 10.9% 12.4% 18.8% 

min velocity (cm/s) 2.3 1.1 1.7 0.3 

max velocity (cm/s) 30.0 10.0 30.0 5.0 

*RSE = Relative standard deviation of the mean 

 
The main observations from these results are as follows: 

• For the HDPE material, the average rise velocity of the bag equals 6.6 cm/s and for the foil the rise 
velocity equals 2.6 cm/s. There is a factor of 2.5 in between the HDPE plastic forms.  

• For the LDPE material, the bag rise velocity is 5.0 cm/s, whilst the foil rise velocity comes to an 
average of 0.9 cm/s, resulting in a difference of factor 5.6. 

• For the HDPE plastics the rise velocity is higher than for LDPE plastics. Furthermore, the HDPE rise-
times show less spreading than the LDPE rise-times, for both the bag and foil experiments. 

• To determine the average rise velocity and spread of the dataset, a uniform distribution profile is 
used. However, the datasets appear to be positively skewed. 

• Only rising behavior of these full-size plastic is observed, and therefore the used plastics are 
considered as positive buoyant plastics. 

 
A noteworthy difference between the two materials, is that the LDPE plastics have a lower average rise 
velocity than the HDPE plastics, while LDPE is made of a material with a lower factory density than the HDPE 
plastic. Assuming the density plays a determining role in the buoyancy of the plastic, it was expected the 
LDPE plastic would show higher rise velocities. From these counterintuitive results, a question on the 
assumed factory-properties arose. A side experiment to the materials’ density is conducted and explained in 
Supplementary materials B.1. This experiment showed relatively high bulk density estimates for both plastics, 
as showed in Table 4.2 . Therefore, it is important to bear in mind that the names of the both plastics, High-
Density and Low-Density Polyethylene, are not descriptive for the material plastic’s properties in this 
research. 

Table 4.2: Results from additional experiment to the material densities of the plastics (as presented in Appendix B.1.) 
 

HDPE LDPE 

average density (g/cm3) 1.01 1.03 

min density 0.85 0.95 

max density 1.21 1.12 
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4.1.2. The influence of scale on the floating ability 
In the results mentioned above, the difference in terms of floating ability between the bags and their 
corresponding flat sheets was shown. The effect of scaling is investigated in this section. However, it 
appeared this experiment was only valid for the HDPE plastics. A short explanation based on observations is 
as follows:  
 
While conducting experiments with different sizes of sheets, it appeared that the LDPE plastic is sensitive for 
scaling regarding the influence of air. For the downsized sheets, both rising and sinking behavior was 
observed. Small air-bubbles (diameter ±1 mm) were seen to be attached to the material under water for both 
the HDPE and LDPE plastic. However, for the downsized sheets of LDPE plastic, all air-bubbles could be 
released, and the sheets were able to lose their rise-ability. This effect seemed to be depended on scale: 
smaller sheets lose their air more quickly; and variable for each individual attempt: the difference between 
settling or rising of the plastic was defined by the attachment of just one single air-bubble. In this experiment 
setup, it was not possible to monitor both sinking and rising velocities simultaneously. For that reason, the 
results of the scale experiments are applicable for the HDPE plastics only and these results are guiding for 
the experiments that will follow. The observed sinking behavior does support the results of the density 
experiments showed in the previous section (Table 4.2).  
 
For HDPE plastics, the rise velocity is investigated for 5 different scales and for completeness again compared 
to the rise velocity of the prototype bag Figure 4.3. Since the sheets are all cut out from the original prototype 
bag, the material properties and thickness of all scales is equal. For practical reasons, the setup of this 
experiment differs from the experiment setup used for the results in section 4.1.1. The results also differ 
from the results mentioned earlier. The results from this experiment will be considered guiding for further 
experiments. 

 

Figure 4.3: Probability density graph of rise-times per size of HDPE plastic, including comparison to the prototype bag. 
Assuming a normal distribution (the area below both graph line and bars equals 1). 

Table 4.3: Found average rise velocities of the scaled sheets, compared to the prototype bags 
 

Bag 
 

Sheet(% frontal area)  
 

HDPE0 HDPE100 (= foil) HDPE10 HDPE5 HDPE3 HDPE1 

Dimensions (cm2) 30 x 40 30 x 40 12 x 9.5 7 x 8.5 5 x 7 3 x 4 

Average rise velocity (cm/s) 2.4 1.0 1.0 1.0 1.0 1.0 

RSE 7.6% 11.7% 11.0% 12.0% 12.4% 11.7% 

min velocity (cm/s) 1.2 0.3 0.4 0.4 0.4 0.5 

max velocity (cm/s) 5.0 3.6 4.12 4.2 4.2 3.9 
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On can observe the following from the results: 

• All sheet sizes show an equal average rise velocity of around 1.0 cm/s (± 0.05), with similar minimum 
and maximum rise velocities. 

• All sheets of the material HDPE show rising behavior in stagnant water and are therefore considered 
positive buoyant. 

• Between the bag and sheet rise velocities in this experiment, there is a factor of 2.4 difference. For 
the results presented in Section 4.1.1, the factor difference between the HDPE bag and its sheet is 
about the same (= 2.5). However, the average rise velocity differs between the experiments. Above 
mentioned results will be guiding for further research. 

• As well for these experiments, the datasets are positively skewed. However, a uniform distribution 
is assumed for simplicity. 

 
Based on the results of the HDPE plastic, and in conjunction with the possibilities in the flume, the 1% sized 
sheets of 3 x 4 cm2 are used in further research to the vertical distribution of plastic, resulting in a geometric 
scale factor of 1:10 for the flume experiments.  
 

4.1.3. Quantify the floating ability: Average rise velocity of plastic 
In this section the rise-velocity results of the plastic that is used for further experiments, which are both HDPE 
and LDPE sheets of 3 x 4 cm2, are presented separately for a clear overview (Figure 4.4). The HDPE sheet has 
an average rise velocity of 1.0 cm/s. The LDPE 3 x 4 cm2 sheets showed settling behavior in stagnant water. 
However, rising motion was observed under flow conditions. Based on this observation and for the sake of 
simplicity, the LDPE sheets are considered as neutrally buoyant with a rise velocity of 0.0 cm/s. LDPE will be 
used for further experiments, even though the effect of scaling could not be properly investigated. The LDPE 
sheets represent the lower limit of this research to positive buoyant plastics (Table 4.4).  
 

Table 4.4: Found average rise velocities for both plastics. A velocity of 0 cm/s is assumed for the LDPE plastic 
 

HDPE LDPE* LDPEassumed 

Average rise velocity (cm/s) 1.0 -0.4 0.0 

RSE 11.7% 6.7% - 

min velocity (cm/s) 0.5 -0.2 - 

max velocity (cm/s) 3.9 -0.9 - 
*These results will be neglected, for the focus is on positive buoyant plastics. 
 

 
 

Figure 4.4: Probability density graph of rise and settling times of 3x4 cm2 sheets, assuming a normal distribution. HDPE (left) and 
LDPE (right). The red line indicates the average rise time over depth (s/m), which is converted into an average rise velocity (m/s). 
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4.1.4. Discussion of results: plastic parameters 
It is clear that air bubbles are of great influence on the rise velocity of the plastics. Not only the entrapment 
of air inside the bags, but also the attachment of air to the material was found to be important. On the surface 
of both plastics, multiple small air-bubbles (diameter ±1 mm) are attached to the material and can be 
released while underwater (Figure 4.5). Based on the conducted experiments, two driving mechanisms for the 
floating ability of the plastic can therefore be distinguished: 

1. The floating ability of the plastic defined by its own properties, relative to ambient conditions such 
as the water density.  

2. The influence of air trapped inside the shape or attached to the material, which is considered as an 
average condition for riverine plastic.  

However, the ability to attach air to the material can also be seen as a material property and both 
mechanisms are strongly interrelated. Observations are discussed thematically below. Note that the plastic 
is referred to as HDPE and LDPE plastic. The material however originates from bags and is not to be 
considered as raw material. The results are therefore also not general for these two types of plastic but show 
bandwidths of results that are representative for the group of marginal positive buoyant plastics with similar 
properties such as the air-attachment ability, flexibility of material, shape and dimensions. 
 
Influence of the plastic itself: From the full-sized experiments it can be concluded that trapped air can be the 
key factor for the rise velocity. Since twice-as-high rise velocities for the bags relative to the foils were found, 
and the maximum rise velocities of both plastic bags is equal. However, the minimum and average rise 
velocities differ between the two plastic types (with about 25%). So, when little to no air is trapped inside the 
form, the object properties are dictating the floating ability. However, the ability to attach air to the materials’ 
surface was found to be a property as well. As was seen, the LDPE plastic bag had less attached air-bubbles 
on the material than the HDPE bag material did on average. We can say the air-attachment ability is less for 
the LDPE plastic bag. This is clearly seen in the decrease of average rise velocities from bags to foils. The 
factor difference between the LDPE bag and sheet rise velocity (= 5.6) is greater than the factor found for the 
HDPE plastic (= 2.5). In other words, for the LDPE plastic, the floating ability decreases greatly when the 
opportunity of trapping of air-bubbles inside the form is eliminated. Thereby, the used HDPE material is more 
flexible and therefore more prone to folding. In between folds, bigger air-bubbles can be trapped as well. In 
conclusion, the HDPE plastics used in the experiments have a greater floating ability in general.  
 
Positive buoyancy due to air: It is striking that the LDPE plastic shows settling behavior and therefore a 
smaller floating ability than the HDPE plastic, since the material definitions presume differently. The side 
experiment to the materials densities clarifies this observation. Even though the experiment was rudimentary 
and prone to large errors, it can be concluded that the factory densities of the plastic material do not match 
the actual bulk densities. This could be due to used additives and coloring in the production of the bags. Both 
materials have a bulk density that lies within the range of fresh water and could therefore also be negative 
buoyant based on purely their product bulk density (ρparticle > ρfluid). However, it was observed that all full-
sized foils and bags do show rising behavior. The positive buoyancy can therefore be ascribed to the average 
effect of air-attachment and is considered as an average property of the plastic. These results show that the 
classification of plastic litter based on the base-material and corresponding factory density could suggest 
other behavior than reality.  
 
Influence of scale on air attachment: For downsized LDPE plastic, it was seen that with scale the air 
concentration on the plastic was variable. Air bubbles literally roll over the surface and are released mostly 
at the edges of the sheet, as was visually observed during the experiments. On a smaller surface, the air-
bubbles roll of the material more easily (less distance relative to the air-bubble size). For a material that has 
less adhesion properties, this can result in a total loss of air-bubbles. Because of this phenomenon, the plastic 
can show both rising and settling behavior and the behavior can change over time. For the downsized HDPE 
plastics, the average air attachment appeared to be independent of the scale; the rise velocity is equal over 
all scales and so is the spreading around the average. Therefore, we can conclude there is no change in the 
driving mechanisms causing the floating ability of this plastic type. However, for smaller scales it might be 
possible this material loses its floating ability as well.  
 
Variability over time makes floating ability complex: In a side-experiment it is found that the average ability 
of the plastic to attach air, and therefore the floating ability, decreases with the time of submergence 
underwater. Foils and bags were submerged for 5 weeks and the rise-time experiment was repeated. This 
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experiment and results can be found in Supplementary materials B.2. One can imagine that the plastic 
properties can change over time as well, due to deterioration of the material. Thereby, multiple additional 
driving factors for the floating ability can be thought of.  Such as organisms that attach to the material, fouling 
effects and trapping of e.g. sediments. These other effects are not considered in this research, but the 
combination of these driving factors add to the complexity of the definition of an ‘average rise velocity’ for a 
certain type of plastic. The floating ability of a plastic is therefore a time-depending property and should be 
considered when ascribing properties to plastic litter. 
 
Positively skewed dataset: The rise-time data shows outliers towards longer rise times and therefore 
towards lower rise velocities. The average rise velocity cannot become higher than its maximum velocity 
under air-saturated conditions. In these cases, the presence of air is considered as ‘overruling the plastic 
property’. But with the lack of air-bubbles, either trapped or attached, the rise velocity can decrease 
remarkably, causing a wider variety towards longer rise-times. 
 
Scaling to reality: Downsized LDPE sheets are not representative for the defined prototypes of plastic (bags 
and 30 x 40 cm2 foils), since the mechanisms of floating ability change with scale. As such, the further research 
conducted to the LDPE plastic represents the lower limit of buoyant plastics: neutral buoyant plastics. The 
HDPE plastics are representative for the prototype foil material, since it was shown scaling does not have 
effects on the floating ability. However, since the influence of scaling was found to be variable with the plastic 
type, it is better to not consider the downsized plastic as a representation of full-scaled plastic, but merely as 
a representation of a certain type of plastic with a certain found floating ability defined as the average rise 
velocity. 
 

 

Figure 4.5: Image showing the presence of air-bubbles on the plastic, with a diameter of about 1 mm 

 

4.2. Observation: Vertical distribution of plastic 
In this section, only the vertical distribution under bed shear induced turbulence is considered. If the 
turbulent intensity of the flow is big enough with respect to the floating ability of the plastic, particles should 
be able to get in suspension and be distributed over the water depth. In flume experiments the influence of 
an increasing shear velocity on the vertical distribution of plastic was investigated, both for HDPE and LDPE 
plastic sheets (3 x 4 cm2). The focus is mainly on the surface-share; the plastic found in the upper 50 cm of 
the river. The results for the HDPE and LDPE plastic are presented separately, an overview of the found 
surface-shares is given in Table 4.5. For comprehensibility, the average flow velocity is used to identify each 
experiment in the figures, rather than the corresponding shear velocity. However, it must be kept in mind 
that multiple configurations of average flow velocities with friction coefficients are possible to achieve equal 
shear velocities and, as reasoned in this research, would lead up to equal distribution profiles. 
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Table 4.5: Surface-shares of plastic found in experiments, for both HDPE and LDPE plastic, with respect to the average 
flow velocity and corresponding shear velocity. 

Experiment number 1 2 3 4 5 6 7 

Uda flow velocity (m/s) 0.10 0.20 0.35 0.45 0.55 0.65 0.95 

U* shear velocity (cm/s) 0.5 1.1 1.9 2.5 3.0 3.6 5.2 

HDPE Surface share (%) 95 74 52 34 28 25 17 

LDPE Surface share (%) 28 15 33 22 10 15 25 

 
Noteworthy is the decrease of the surface-share for HDPE plastic, with increasing flow- and shear-velocities. 
While the surface share of LDPE plastic does not show a visible trend with increasing velocities.  
 

4.2.1. HDPE plastic 
 

Table 4.6: Observed surface-shares for HDPE plastic and observed downward movements between camera A and B 

Experiment number 1 2 3 4 5 6 7 

Uda av. Velocity (m/s) 0.10 0.20 0.35 0.45 0.55 0.65 0.95 

U* shear velocity (cm/s) 0.5 1.1 1.9 2.5 3.0 3.6 5.2 

HDPE Surface share (%)  95 74 52 34 28 25 17 

Downward movements (%) 1 15 26 37 32 45 45 

 
From the results in Figure 4.6, one can observe the following: 

• For a flow velocity of 0.10 m/s, the threshold of mixing (≥10%) is not met. For the experiment with 
0.20 m/s flow the threshold is met, and the observed distribution is related to turbulent mixing. 

• The surface share decreases with an increasing flow velocity Uav and shear velocity u*. The surface 
share decreases from 95% to 25% between a flow velocity of 0.10 - 0.65 m/s. 

• For experiment 1 to 3, the surface-share is above 50% of the total amount of plastic. From Uda = 0.4 
m/s, the surface share is below 50% of the total. In Figure 4.7 the surface share decline is visualized. 

• Counts in section 10 (between 22.5 and 25 cm depth) are below 2% at all time. 
 

4.2.2. LDPE plastic 
 

Table 4.7: Observed surface-shares for LDPE plastic and observed downward movements between camera A and B 

Experiment number 1 2 3 4 5 6 7 

Uda av. Velocity (m/s) 0.10 0.20 0.35 0.45 0.55 0.65 0.95 

U* shear velocity (cm/s) 0.5 1.1 1.9 2.5 3.0 3.6 5.2 

LDPE Surface share (%)  28 15 33 22 10 15 25 

Downward movements (%) 36 40 32 44 47 39 29 

 
The most particular observations in Figure 4.8 are as follows: 

• The threshold of downward movements between the two observation points is met in all 
experiments, which should indicate the role of turbulent mixing in the distribution of plastic. 

• For the LDPE plastic, there is no surface decrease with an increase in flow velocity. The surface share 
is always lower than 30% of the total.  

• There is no clear pattern in the change of the distribution over depth. This is illustrated in Figure 4.9, 
in which surface, midwater and bottom share are presented.  

• The count in section 10 is below 2% in all experiments. 
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Figure 4.6: Histograms showing the count of sheets per section of HDPE, in % of the total, for each velocity experiment. 
Error bars are based on spatial averaging of the surrounding measurements. 

 

 

Figure 4.7: HDPE surface share and bottom share (upper and lower 5 cm respectively) with increasing flow 
velocity. A decrease of the surface share with increasing flow velocities is clearly visible. The remaining share is 
the plastic share found in the middle water layer (between 5-20 cm depth). 

 
 



29 
 

 

Figure 4.8: Histograms showing the count of sheets per section of LDPE, in % of the total, for each velocity experiment. 
Error bars based on spatial averaging of the surrounding measurements are given. 

 

 

Figure 4.9: LDPE surface share and bottom share (upper and lower 5 cm respectively) with increasing flow velocity. 
No clear trend for either surface or bottom share is visible. The remaining share is the plastic share found in the middle 
water layer (between 5-20 cm depth). 
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4.2.3. Discussion of results: Observation 
The results found per experiment can be translated to real-scale situations, as proposed in Methodology 
Section 3.5. A decrease of about 75% of the surface share can then be observed for the HDPE plastic with an 
increase of the average flow velocity in the prototype river from 0.10 to 0.50 m/s approximately (Table 4.8). 
For this calculation it is presumed that the rise-velocity is independent of scale, as was found for the HDPE 
plastic. Therefore, the corresponding flow velocity in the prototype river is based on the difference in friction 
coefficients only, with cf,flume = 0.003 and cf,river = 0.005 (the equation is repeated below (4.1)). For the LDPE 
results, no trend was observed, and a translation from observations to prototype river flow velocities is 
irrelevant. It can only be concluded that this plastic can be found all over the water depth, possibly due to 
both the great variability in buoyancy and the near-neutral buoyancy property which allows for the 
homogenizing property of turbulent flow. 

Table 4.8: Surface-share for HDPE plastic as observed in the experiments, related to prototype river conditions. Based 
on cf = 0.005 for the river, corresponding average flow velocities can be calculated. 

Experiment number 1 2 3 4 5 6 7 

Uda av. Velocity flume (m/s) 0.10 0.20 0.35 0.45 0.55 0.65 0.95 

U* shear velocity (cm/s) 0.5 1.1 1.9 2.5 3.0 3.6 5.2 

HDPE Surface share (%)  95 74 52 34 28 25 17 

Uda av. Velocity river (m/s) 0.08 0.15 0.27 0.35 0.43 0.50 0.74 

 
For the HDPE plastic, it is assumed that the same distribution of the used plastic would be found if the same 
shear velocity applies. However, this assumption is arguable, other scale effects could play a role. Thereby, 
the determination of the shear velocity is based on rough assumptions on uniform flow and bed conditions. 
In practice, it is very difficult to estimate a bed friction coefficient over an entire river reach. The results do 
show a clear decrease of surface share with increasing shear velocity. This indicates that plastic that is close 
to neutral buoyant has a great chance of being mixed over the water depth due to turbulent motions, which 
can be found under average flow conditions in urban rivers. Additional relevant observations and results are 
thematically discussed below. 
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Threshold of mixing: Shear velocity represents the vertical component of the flow. Therefore, if shear 
velocity and rise velocity are in the same order of magnitude, mixing of the plastic should become possible. 
This hypothesis seems to be substantiated by the results found for the HDPE plastic. As stated in Chapter 
3.2.1, mixing is concluded when at least 10% downward movement is observed. HDPE had an average rise 
velocity of 1.0 cm/s, the threshold of mixing is found to be between a shear velocity of 0.5 cm/s and 1.1 cm/s: 
At 0.5 cm/s, no mixing is concluded for there was only 1% downward movement, at 1.1 cm/s, this was 15% 
and mixing is concluded. In case of the LDPE plastic, the threshold is met for every experiment, but there is 
no clear trend with an increasing average flow velocity. For LDPE, the dual buoyancy property could be a 
cause of the distribution rather than the mixing ability of the flow. 
 
Plastic at the bottom: counts in section 10 are barely made. For the positive buoyant plastic (HDPE) this is 
expected: Because of the net upward flux, there is only a slight chance sheets will be found near the bed. 
However, for the assumed neutral buoyant LDPE plastics, we expect a uniform distribution and therefore also 
plastic in the lowest sections. Especially considering that the sheets showed settling behavior in stagnant 
water. The absence of observed plastic close to the bed could partly results from the observation 
methodology: Due to the perspective and the focus of the camera on the surface sections, plastics passing in 
section 10 could easily be assigned to section 9. Another more physical explanation might be because of 
stronger upward motions near the bed, counteracting the symmetrical behavior of turbulence. Lastly, it is 
not certain if the observed decrease over depth is independent of the total water-depth, or that the 
suspension can only occur over a limited depth. The influence of water depth should be investigated further. 
 
Inlet depth of the plastic: all plastic sheets are released at 5 cm below the water surface. Assuming there is 
an equilibrium distribution achieved at the observation location (camera B), the inlet depth should not be 
relevant; the plastic is distributed over the water depth due to the equilibrium state of the rising flux and 
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turbulent flux. However, it is possible that the equilibrium distribution is not yet achieved over the available 
length (6.7 m). In this case, releasing the plastics more near the flume bottom could result in a higher count 
of plastics near the bottom sections and therefore indicate more suspension of the positive buoyant plastics. 
It was found that the releasing of plastic at the water surface did not result in mixing at all. Sheets would 
remain at the surface due to surface tension. With the inlet just below the surface, at 5 cm depth, it is possible 
to clearly observe downward movements that are assumed to occur due to turbulent mixing. 
 
Reproducibility of the experiment: Each experiment is only conducted one single time, with 100 sheets per 
experiment. The velocity experiments should be repeated in order to prove the equilibrium condition and 
ensure reproducible results.  
 

4.3. Theoretical approximation: Concentration distribution profile  
Distribution profiles based on the turbulent diffusivity principle can be established for each velocity-
experiment. The first profile is fitted through the observed distribution, in which the shape parameter is 
estimated with estimator b. The second profile is the theoretical profile, based on the empirically found 
average rise velocities of the plastics (in Section 4.1.3) and the prevailing shear velocity per experiment. The 
equations are repeated below (4.2). In which k is the von Karman constant (= 0.41), wr is the average rise 
velocity of the considered plastic (m/s) and u* is the shear velocity of the flow (m/s), based on the friction 
coefficient of cf = 0.003. The value for Ca at z = a is represented by the observed concentration nearest to the 
surface, at depth a = 1.25 cm. 
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The two profiles are plotted for each velocity experiment. The fitted profile is investigated on its ability to 
describe the observed distribution and then compared to the theoretical approximation. For each fitted 
profile, a shape parameter bi is found. The parameter is compared to the theoretical β parameter, by plotting 
both against the average flow velocity, in which wr = 1.0 cm/s for the HDPE plastic and 0.0 cm/s for LDPE are 
taken. Uncertainties regarding the found rise velocity and calculated shear velocity are considered. The 
results are presented separately per plastic type (HDPE and LDPE). On the x-axis the percentage of occurrence 
over depth is given (%/cm). However, with the fitted profiles, the area does not equal 100%, because of 
under- and overestimations of the fitted profiles. The percentage should be considered as an absolute 
concentration. 
 

4.3.1. HDPE plastic 
From Figure 4.10 the following overarching observations can be made: 

• For each experiment, the best-fit profile through the observed datapoints indicates more plastic in 
suspension, than estimated with the theoretical approach. The theoretically approximated profile 
underestimates the observed suspension. 

• The estimator b decreases with an increasing flow velocity and is always lower than β (and therefore 
the predicted profile shows less suspension than the fitted profiles). 

• There is no uniform increase or decrease in the computed RMS (Root Mean Square deviation) for 
the fitted profile with increasing flow velocity. The RMS of the theoretical profile increases over the 
experiments, except between experiment 4 and 5. 

 

HDPE – shape parameter 
The shape parameters, bi and β are plotted against the average flow velocity in Figure 4.11. The average flow 
velocity is related with the shear velocity through the friction coefficient cf. It is important to notice that the 
theoretical parameter β is defined by an estimate of the friction coefficient cf, and an estimate of the average 
rise velocity of the plastic wr. Upper and lower limits can be defined for these estimates according to their 
errors (given in Table 4.9). 
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Table 4.9: Upper and lower limits for the parameter estimates HDPE 
 

Lower Upper 

Wr (m/s) 0.009 0.011 

Cf (-) 0.002 0.004 

 
Based on the rise-velocity experiments of the plastic sheets, a standard error of ± 0.001 m/s is found. The 
upper and lower limits for β according to this error are shown in Figure 4.11.B. The estimate of the friction 
coefficient in the flume is based on empirical data from the TU-Delft flume. Manning’s friction coefficient n 
lies between 0.010 – 0.014 m-1/3s for glass, plastic and smooth concrete walls (Battjes & Labeur, 2017). 
Therefore, a friction coefficient cf range is chosen between 0.002 – 0.004, based on a hydraulic radius of the 
flume R = 0.11 m (Figure 4.11.C). These limits combined result in an error range as illustrated in Figure 4.11.A. 

 

4.3.2. LDPE plastic 
For the LDPE plastic, the theoretical profile is based on a rise velocity of 0.0 cm/s, resulting in β = 0. The 
theoretical approach results in a homogeneous distribution with the measured concentration Ca as a constant 
over the entire depth. From Figure 4.12, the following observations can be made: 

• The distribution profile varies greatly, without a visible trend with an increasing shear velocity.  

• For exp. 5 and 6, it appears the distribution flips over the vertical, with higher concentrations at 
lower water depths. This profile is possible for the best fit equation, resulting in a negative shape 
parameter b. For the theoretical profile, this would however not be possible due to the assumed 
boundary condition of ‘no concentration at the bottom’. 

 

LDPE plastic – shape parameter 
The average rise velocity of the LDPE plastic is considered as 0 m/s. Because this estimation is based on a 
combination of observations and measurements, there is no applicable uncertainty range. Instead, the found 
settling velocities for the downsized sheets is considered as lower boundary, while the rise velocity for the 
full-sized foils is considered as upper boundary. For the uncertainty of the cf value, the same range applies as 
is used for the experiments with HDPE plastic. The upper and lower limit range based on the rise- and settling 
velocity of the LDPE plastic, show the difficulty of the combination of both positive and negative buoyant 
properties. The uncertainty is big and entirely different profiles are estimated when using other assumptions 
than the neutral buoyant property. 
 

Table 4.10: Upper and lower limits for the parameter estimates LDPE 
 

Lower Upper 

Wr (m/s) -0.4 0.9 

Cf (-) 0.002 0.004 
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Figure 4.10: Concentration distribution profiles fitted through the observation with estimator b (red 
lines), and approximated based on an estimate of the shape parameter β (b in graph) (blue lines). For 
the approximated profile, the error of the observation Ca at a is considered and an envelope around 
the profile is given. 

 

 

Figure 4.11: fitted exponents (b) per velocity experiment vs the theoretical estimate of the shape 
parameter, β. In A, a combination of both uncertainty limits is given, based on the uncertainty in the 
rise velocity (B) and friction coefficient (C) 
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Figure 4.12: Concentration distribution profiles fitted through the observation with estimator b (red lines), 
and approximated based on an estimate of the shape parameter β (b in graph) (blue lines). For the 
approximated profile, the error of the observation Ca at a is considered and an envelope around the profile 
is given.  

 

Figure 4.13: fitted exponents (b) per velocity experiment vs the theoretical estimate of the shape 
parameter, β. In A, a combination of both uncertainty limits is given, based on the uncertainty in the rise 
velocity (B) and friction coefficient. 

B 
 

A 
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4.3.3. Iteration of results 
For the LDPE plastic, the concentration equation cannot properly describe the observed distribution. For the 
HDPE plastic however, it was found that the concentration equation shows an accurate fit through the 
observed counts, with a maximum RMS value of 2.29%. The surface-shares defined by the distribution 
profiles are computed according to the method stated in Chapter 3.3.2. The found shares under both the 
fitted profiles and approximated profiles are given in Table 4.11. The shares found with the fitted profile 
generally agree with the observed share (except for experiment 2 and 3, where there is a difference of about 
20%). 

Table 4.11: The observed and computed surface-shares for HDPE (%) under increasing flow (and shear) velocities 

Experiment number 1 2 3 4 5 6 7 

Uda average velocity (m/s) 0.10 0.20 0.35 0.45 0.55 0.65 0.95 

U* shear velocity (cm/s) 0.5 1.1 1.9 2.5 3.0 3.6 5.2 

observation (%)  95 74 52 34 28 25 17 

fitted profile (%) 99 93 73 38 35 22 23 

approximated profile (%) 100 96 84 74 66 59 46 

with additional α-value (%) 99 87 68 59 52 46 37 

Uda prototype river (m/s) 0.08 0.15 0.27 0.35 0.43 0.50 0.74 

 
The theoretical profile underestimates the suspension of the plastic sheets in all HDPE-experiments. In this 
subsection, an additional parameter is added to the Rouse parameter, by fitting a profile through the found 
exponent parameters b. The additional shape parameter, α, is defined as in equation (4.3). A LMSE-curve fit 
of the alpha value results in α = 0.64. The plot is shown in Figure 4.14, in which the upper and lower limits for 
the HDPE experiments are shown, based on the uncertainties mentioned before. 

 
optimized

  =      (4.3) 

 

 

Figure 4.14: optimized Rouse parameter with addition of parameter 
alpha = 0.64 

In Figure 4.15 three sets of profiles are plotted, normalized over the concentration ca (x-axis), so that the 
development of the profiles over the average flow velocity is clearly visible. The first graph (A) shows the 
theoretical evolvement of the profile, with β as shape parameter. Graph B shows the best-fit profiles through 
the observed datapoints. The last figure shows a new estimate for a theoretical profile in which the additional 
parameter α is considered (the surface share values are added to Table 4.11). From Figure 4.14 and Figure 4.15, 
it may be observed that with the use of the additional parameter α, the approximated profiles move towards 
the observation. However, for the higher flow velocity experiments, the approximation still heavily 
underestimates the suspension of the plastic as observed.  
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Figure 4.15: normalized distribution profiles (to the near surface measurement Ca). A: based on β. B: optimized 
fits with bi. C: based on additional parameter α and β. In grey lines, the original profiles of A are given. 

4.3.4. Discussion: Approximation of the distribution profile 
The analysis of the vertical distribution of the LDPE plastic showed the consequences of the dual-buoyancy 
behavior found for this plastic: It is not possible to describe the distribution profile with the diffusivity 
equation, for which either a positive or negative concentration-gradient is assumed. For the HDPE plastic 
however, it appears the proposed equation can describe the observed distribution profile. Nevertheless, the 
estimated shape parameter does not match the theoretical defined parameter; the resulting profile 
underestimates the suspension of plastic as observed. Possible reasons are discussed below. 
 
Rouse parameter is debatable: The theoretical defined parameter is subject of many uncertainties, since the 
inner parameters are based on empirical measurements and estimations. Thereby, the Rouse approach that 
forms the base of the equation is subject of many studies still and other profiles have been developed. 
Additional parameters could be needed in order to describe plastic rather than spherical small sized sediment 
particles. 
 
Turbulent diffusivity relation: For the HDPE plastic, one of the reasons for the underestimation of the 
suspension could be the assumed relation between the eddy diffusivity and eddy viscosity. For the conducted 
analysis, the relation is considered as one to one (Rouse, 1937, van Rijn 1984, 1993) and the additional 
Schmidt parameter (σ) in the Rouse parameter is neglected. However, this relation is subject of many studies. 
In sediment dynamics, a constant of σ = 0.7 is considered for sandy beds (van Prooijen et al., 2018), decreasing 
the overall Rouse parameter and therefore suggesting more suspension. The found value for α could indicate 
this relation.  
 
Additional effects on the plastic: There is however another reason that could explain this deviating behavior, 
which lies in the factor of air-attachment: It was found that for higher shear velocities the fitted profile 
deviates more from the theoretical approximation, more plastic is found in suspended than would be 
estimated. It could be plausible that with an increase of turbulent mixing, and therefore movement of the 
plastic, more air is released during the transport. The floating ability would therefore also decrease when in 
more turbulent flow.  
 
Other uncertainties: The observations itself are prone to uncertainties, in order to compare approximations 
with observations, more observations are needed. Another uncertainty lies in the assumption for the near-
surface measurement Ca at a. The count over the section is translated to a point-measurement at z=1.25 cm, 
by dividing the count over section depth. Therefore, a linear or constant distribution over the section depth 
is implicitly assumed. Lastly, as discussed earlier, the inlet height of the plastic could influence the observed 
distribution. If the equilibrium distribution is not yet developed over the available length, the choice of the 
inlet near the surface could influence the distribution. The observed distribution could in this case show less 
suspension with respect to the equilibrium. The underestimation of suspension that was seen in the 
theoretical approximated profile, can therefore not be ascribed to a possible effect of the inlet height. 
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4.4. Manipulation: Influence of vertical obstructions 
In urban rivers, hydraulic structures such as weirs, bottom sills and sluice gates can be frequently found. 
Secondary flows evolving around the structure can influence the vertical distribution of the plastic 
approaching the structure, relative to the undisturbed equilibrium distribution under bed shear influenced 
conditions as investigated in Chapter 4.2. From the results in the previous chapters, it is decided to only 
experiment with the HDPE plastic in this sub-study. The obstructions that were investigated in this research 
are listed below. 

1. A solid gate with a depth of 5 cm (1/5th water depth).  
2. A bottom sill of 5 cm is placed at the bottom.  
3. A half-depth obstruction of 5cm. Flow passes above and underneath the structure. 

 

4.4.1. Surface share 
Figure 4.17 shows the distribution count of plastic per section for all obstructed experiments compared to the 
previous experiments in undisturbed flow. Three velocities are tested. The first row shows the distribution 
as was found for the undisturbed flow situation, presented in chapter 5.2, the rows below consist of the 
results from the obstructed scenarios. The hatched areas in the figures show the 5 cm high structure at the 
surface, halfway and at the bottom respectively. Both the distribution 50 cm in front of the structure (blue) 
and at the structure (red) are measured. Plastic cannot go through the obstruction and always passes 
underneath or above. The surface share of plastic, comprising of the count in both section 1 and 2 (5 cm), is 
given in Table 4.12 for the different scenarios.  

Table 4.12: Surface shares for HDPE found with obstructions, compared to the share found in undisturbed flow 

Experiment number 1 3 5 

Approach velocity  0.10 m/s 0.35 m/s 0.55 m/s 

Undisturbed flow (%) 95 52 25 

Gate (%) 84 72 55 

Bottom Sill (%) 94 84 75 

Halfway obstruction (%) 65 56 65 

 
From the results in Figure 4.17, summarized in Table 4.12, the following observations are noteworthy: 

• In the case of the surface and bottom obstruction, the surface share decreases with an increasing 
flow velocity, as was seen for the undisturbed condition as well.  

• However, in the halfway-obstruction scenario, the surface share stays more or less equal (56-65%). 
The distribution does clearly change between section 1 and 2 for the halfway-obstruction. 

• For the surface and bottom obstructions, the decrease of the surface-share over increasing flow 
velocities, is smaller than for the undisturbed scenario: Over the velocities (0.10-0.55 m/s), there is 
a difference of 30% and 20% respectively for the gate and sill obstruction. While the difference for 
the undisturbed flow is 70%.  

• In case of the sluice gate, with a relative low velocity (0.10 m/s) plastic is mostly passing just 
underneath the gate. With higher velocities more plastic is passing in deeper layers. 

 

4.4.2. Concentration profile development 
In order to compare the distributions, the best-fit profiles through the observations are plotted in Figure 4.16 
as relative concentrations. The results show the following: 

• For a low velocity of 0.1 m/s, all profiles lie close to each other. The same applies for the surface 
shares as was shown in Table 4.12. Only the results of the halfway obstruction show noteworthy 
differences (65% surface share). 

• No clear trend is visible for the halfway obstruction. Not relative to the other profiles or surface 
shares, neither based on the own development. Even though the surface share appears to be about 
equal (± 60%), the suspension underneath the surface seems to increase and then decrease again. 
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Figure 4.16: concentration distribution profiles normalized to the near surface measurement Ca 
for three velocities. The three obstructions are compared with the undisturbed distribution. 

4.4.3. Discussion of results: Manipulation 
Obstructions seem to result in higher surface shares, relative to undisturbed conditions. An explanation is 
sought in two mechanisms: 

1. An additionally created upward motion in the water brings more plastic to the surface. 
2. The overall shear velocity decreases when the flow is obstructed, resulting in lower mixing abilities.  

 
Additional vertical motions: The first mechanism does not explain the increased surface share in case of the 
sluice gate, since the sluice gate causes an additional downward motion of water flowing underneath rather 
than an additional upward motion. There is however a notable difference between the surface shares found 
in the gate scenario and the bottom sill scenario. The surface share of the gate decreases with an absolute of 
25% over the experiments, the surface share under bottom sill conditions decreases with 15%. This difference 
could be related to the additional downward motion below the gate and the opposite effect of the additional 
upward motion above the bottom sill. The effect of the half-way obstruction is not clear. 
 
Decrease of shear velocity: The second mechanism could be theoretically possible: An obstruction introduces 
a backwater curve. The upstream depth increases and therefore the flow velocity decreases, which results in 
a lower shear velocity. However, the backwater curve in front of the obstructions was negligible small, with 
± 1 mm water-level difference between plastic inlet and in front of the obstruction. This increase in water-
depth is too small to explain the increase of surface share relative to the undisturbed conditions.  
 
Effects of an obstruction: There is no reason to assume a decrease of surface-share due to obstructions, such 
as a trash rack. However, with a solid sluice gate, almost all plastic eventually passes underneath the gate. 
When a permeable trash rack or net gets clogged, it starts to behave as a solid obstruction and will cause 
plastic to pass underneath and be mixed over the entire water depth, where after it will need time to find its 
original distribution. In an additional experiment, the orientation of the sluice gate is altered to 70˚ and 110˚ 
with respect to the waterline. The surface share did not differ noteworthy. The movement of the plastic 
underneath the gate however is clearly influenced, with a counter-stream orientation (70˚), more plastic 
passes under the gate via deeper sections. These results are presented in Supp. materials B.3.  
 
Setup limitations: All in all, the found results could indicate a positive effect of obstruction on the surface 
share. However, the setup of the experiment forms limitations. For example, it is not possible to investigate 
a developed distribution profile simultaneously with the effects of obstructions, due to length limitations. 
Thereby, these experiments are exploratory and great simplifications of the real-life situations are applied. 
The results do encourage further research to the layout and dimensions of litter retention structures, and 
also to plausible supportive obstructions such as a bottom sill, that could increase the surface share by forcing 
suspended plastic towards the surface. 
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Figure 4.17: Distribution counts for the three obstructions, compared with the undisturbed distribution. The hatched 
area indicates the obstruction, plastic cannot go through the hatched areas and the red bars are equal to zero. 
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5 
5. Synthesis 

In this chapter, an overarching discussion is given. The relation between the four presented sub-studies is 
discussed and results are compared to literature. References will be made to studies of colleague-students 
that are of interest in combination with this research. 
 

Plastic floating ability in relation to the vertical distribution 
It was found that a large variability of the rise velocity was driven by the fluctuating amount of air attached 
to the plastic (Chapter 4.1). For the LDPE plastic, this resulted in both settling and rising behavior, which could 
be the main cause of the observed vertical distribution (Chapter 4.2), rather than the mixing ability of the 
flow. The theoretical distribution based on the diffusivity equation (Chapter 4.3) makes use of the empirically 
found average rise velocity. Deviations between the observation and approximation could partly be explained 
by the uncertainty and variability of the rise velocity. In a study to the vertical distribution of fish-eggs 
(Sundby, 1983), the distribution of the particles’ rise velocity is accounted for. With supportive information 
from previous studies to the buoyancy of a range of egg-species, a Gaussian distributed rise velocity was 
computed. This distribution was inserted in the diffusion equation, instead of a constant average value. The 
more slowly ascending particles contributing to the concentration found in deeper water layers are thus 
accounted for. The underestimation of the approximated plastic distribution could partly be explained by the 
use of an average rise velocity, since the rise velocities for the plastics was skewed towards slower upward 
motion. In order to account for a distributed rise velocity, more extensive research to the floating ability of 
specific plastics is needed.  
 

Particle velocities are strongly dependent on ambient factors, such as water temperature and salinity. 
Additional results on several of these factors may be found in appendix B.2. With a great share of the plastic 
litter being marginally buoyant, small changes in ambient water could influence the floating ability and 
therefore the vertical distribution. This is an attribute that could especially become interesting considering 
tidal rivers. Additionally, factors such as the arbitrary shape of the plastic, deterioration over time and the 
influence of organisms, drive further complexity of determining the vertical distribution with a theoretical 
approximation. Importantly, these plastic characteristics change continuously over time. The rise velocities 
found for the HDPE and LDPE plastic in this research are therefore not to be considered as general material 
properties but give insights in a certain scenario. 
 
In conclusion, the uncertainties of the rise velocity measurements are great. In reality, these uncertainties 
are even greater due to e.g. the wide variety of shape, size, local (heterogeneous) flow conditions etc. The 
experiments however do show a possible relation between the found average rise velocity and observed 
distribution profile, based on an estimate of the prevailing shear-velocity: The fitted shape parameters follow 
the same trend as the theoretical estimate. The extent to which the relation could describe and approximate 
the concentration distribution is however not accurate, development of an additional parameter, such as 
was intended with the fitted parameter α (Chapter 4.3.3), could improve the estimation.  
 

From controlled lab research to a greatly varying reality 
Firstly, there is little information on the consequences of scaled research to plastic behavior. In this research, 
sheets were cut out of the bags to use in the flume. With that, the ability to trap air and water inside the 
volume is eliminated. It was found that the extent of the influence of shape and scale is dependent on the 
specific type of plastic, e.g. for HDPE it was found the scale is of no importance with respect to the air-
attachment, for LDPE the scale was of great importance. Reasoning back from the experiment results to the 
distribution of the prototype bags in the prototype river is not recommended. 
 



41 
 

Secondly, only two types of plastic materials are tested in a controlled ambient environment. The 
experiments give information on a scenario, in which the distribution of a plastic with a specific floating ability 
is investigated under a shear velocity, which could in turn be found in different configurations of river-
systems. In the light of the variable effective density, grouping plastics based on the original (presumed) 
material properties, as is mostly done in literature, may not be efficient. There are a lot of dimensions in 
plastic that define the floating ability and possibility to scale, additionally to the base material. For an 
understanding of the behavior of plastic in rivers, the range of effective densities is of interest and plastic 
should be grouped by the average floating ability as is found on site. With extensive information on the 
floating abilities of a wide spectrum of plastics found in rivers, expectations on the vertical distribution of 
these plastics can be established, in relation with the prevailing flow conditions.  
 

Possibilities for the approximation of the distribution 
Assuming the concentration distribution profile could be approximated with the right adjustments of the 
diffusivity equation, it is good to understand what the applicability of this approximation is. First of all, the 
approximation could return an estimate of the total flux of plastic with only measurements of the surface-
share of plastic (Ca). This is convenient, since there are a lot of difficulties concerning the monitoring of 
plastics. In order to then compute an estimate of the distribution profile, sampled plastic must be clustered 
and the floating ability per cluster should be determined. Data collected from the discussed studies in Austria 
(Danube river) and in Jakarta (Hohenblum et al., 2015; van Emmerik et al., 2019) were used in an effort to 
test the applicability of this approach.  In case of the Danube research, no distinction of plastic types is made, 
and it is not possible to estimate an average rise velocity for the bulk of plastic. Based on the concentrations 
found over the three depth sections, the composition of the samples is probably made up of both positive 
and negative buoyant plastics (Supp. Materials A.2. ). It was found that at the “turbulent” sampling site about 
60% of the sampled plastic was found below the surface-section (50 cm). At the second sampling location, 
flow was considered “less turbulent”, 75 % of the total plastic was located at the surface. In case of the Jakarta 
research, a distinction on plastic types was made. However, only double-trawl measurements of the first 1-
meter water depth are available, and apart from the average flow velocities, information on the river 
conditions are lacking. Based on rough assumptions, a profile through the two surface-measurements is 
computed for the POsoft group, where plastic bags belong to. The analysis can be found in Supplementary 
Materials A.1. In general, an increase of suspension with an increasing flow velocity may be observed. 
 

A second approach for the use of distribution profiles, is to measure the concentration of plastic over the 
entire water-depth and approximate the corresponding diffusivity coefficients, in order to create an 
understanding of the distribution that can be found under certain flow conditions. This approach could help 
in the understanding of the additional factors determining the profiles, such as an additional shape parameter 
that was explored in this research. For this objective, the multi-spot sampling method as described by 
Hohenblum et al. (2015) could be applied. Another method is currently being investigated by colleague 
master student Broere. Broere studies the ability of acoustic sensing to identify submerged macro plastics in 
rivers, with the use of a Fishfinder (deeper chirp+).  
 
The presented results substantiate the findings from the studies in the Danube and Jakarta, in which it is 
hypothesized that surface-share of the plastic decreases with an increase of the turbulent intensity and 
therefore also with an increase of the average flow velocity (Supp. Materials A). One can imagine that 
interaction of litter can influence the distribution of the plastic. Especially when imagining the extreme rivers 
covered in plastic, the possibility to determine a distribution profile decreases, as well does the relevance. 
 

Influence of obstructions 
The influence of obstructions on the plastic distribution is explored. It is found that the surface and bottom 
obstructions increase the surface share with respect to the corresponding undisturbed conditions. The 
structures could indirectly influence the floating ability of the plastic, by an additional vertical velocity term. 
An interesting example of a removal technology responding on the suspension of plastic, is the Great Bubble 
Barrier. The curtain of air forms an obstruction for the plastic, adding an upward flow motion that could trap 
plastic and bring it to the surface. It could even be possible that the use of air for this cause increases the 
floating ability of the plastic by adding air to the material, either trapped in folds or attached to the material.  
However, in this research, this phenomenon is not further investigated. An interesting, more elaborated 
study on the effects of an obstruction at the surface, is conducted by Honingh (2018). This study shows the 
effects of clogging in front of a trash rack.  
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6 
6. Conclusions and Recommendations 

For this research, two objectives were stated. The first objective was to investigate the vertical distribution 
of plastic under normal turbulent flow, induced by bed shear stresses only. In order to generalize the results 
of this research for the overall plastic problem, an in-depth comparison was made with existing theory on 
turbulent mixing of suspended matter. The second objective was to explore the influence of obstructions on 
the depth-distribution of plastic. The extent of surface-share changes due to obstructions, and the manner 
by which the distribution is altered compared to undisturbed equilibrium distribution, was investigated. In 
this chapter, conclusions are structured according to the two objectives. Recommendations are given in 
Section 6.2. 

  

Figure 6.1: The four pillars of this research, with a short indication of the conducted experiments and analyses. 

6.1. Conclusions 
Vertical distribution of plastic 
The results of this laboratory study showed that it is reasonable to assume a considerable amount of plastic 
transport below the surface layer, for average turbulent flow conditions found in urban rivers. It was 
demonstrated that with an increase of the shear velocity (u* from 0.5 to 3.6 cm/s), which is an indicator of 
turbulence intensity and scales on the average flow velocity (Uda), the surface-share of the positive buoyant 
plastic of the type HDPE decreased from 95% to 25%. For the defined prototype river, the 25% surface-share 
would go with an average flow velocity of 0.5 m/s. In multiple studies on the yearly fluxes of riverine plastic 
transport, the hypothesis of a uniform vertical distribution was used, e.g. the studies of Dris and Schmidt et 
al., (2017; 2017). The results of this research would substantiate this hypothesis.  
 
However, the conducted research was focused on only two types of marginally positive buoyant plastics: foils 
of the material HDPE and LDPE. The floating ability of these plastics is relatively small and therefore these 
plastics are sensitive to turbulent mixing. Other plastics come with other floating abilities, depending on 
much more than the density and size only. Thereby, the experiments were scaled and the plastic was 
downsized. From the experiments it was found that the presumed buoyant plastics of the material LDPE even 
showed settling behavior for downsized sheets, implying a material density higher than the ambient water 
density (ρwater = 0.98-1.00 g/cm3). It became clear that the floating ability of the plastic used in these 
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experiments is highly dependent on the influence of air. It can be expected that for bigger sheets of plastic, 
and especially for plastic bags, air trapped inside the shapes and folds can dominate the vertical movement 
through the water and more plastic would be found near the surface than was found in the scaled 
experiments. If we however consider the fragmentation of these bags over time, there would be more 
resemblance with the experimented small-scaled sheets (3 x 4 cm).  
 
In this paragraph, the influence of air on the floating ability is elaborated on, and an answer will be given to 
the first research question stated in this thesis: “How is the floating ability of the plastic defined and 
quantified, that counteracts the mixing behavior of turbulent flow?”. It was found that small air-bubbles 
are attached to the materials’ surface, for both the HDPE and LDPE plastic. If all air was released, which was 
observed for the downsized LDPE sheets, the plastic would lose its floating ability. Therefore, two driving 
mechanisms can be distinguished that define the floating ability of the plastic: 1. The properties of the plastic 
itself in relation to the ambient water properties (e.g. density difference, shape and size) and 2. The influence 
of air, either trapped in the shape or attached to the surface of the plastic. Technically, the ability to attach 
air to the material could also be defined as a material property and was found to be either dependent or 
independent of scale. Additionally, in supplementary research it was found that this air-attachment 
decreased over time of submergence of the plastic, slower rising motions were observed for ‘older’ plastics. 
In conclusion, the floating ability of the plastic is quantified as an empirical average rise velocity. Because of 
the limitations of this research on only positive buoyant plastics, it was decided to consider the dual-buoyant 
LDPE plastic as neutral buoyant for further analysis, with an average rise velocity of 0.0 m/s. The HDPE plastic 
was found to be positive buoyant in general and an average rise velocity of 1.0 cm/s was found. 
 
As an answer to the second research question: “How is the distribution of plastic over the water depth 
influenced by bed shear induced turbulence?”, the following conclusions are drawn: When the shear velocity 
is low, the distribution is mainly governed by the floating ability of the plastic whereas turbulent mixing plays 
a minor role. For higher shear velocities, which correspond with higher flow velocities, the role of turbulent 
mixing gets more substantial and a uniform distribution can develop. The two materials showed different 
floating abilities in terms of average rise velocities, mainly due to the ability to attach air. Because of this, 
different developments of the vertical distribution can be distinguished. For the HDPE plastic, air-attachment 
was found to be an average condition. The distribution developed to a more uniform spread: an increase in 
shear velocity resulted in a decrease of the plastic surface-share. For the experiments conducted with the 
LDPE plastics however, it was found the air-attachment ability of the plastic was dependent on scale and the 
floating ability was extremely variable. Under flow these plastic sheets would show both rising and settling 
behavior. This great variety in floating ability could explain the random distribution of this plastic found under 
the investigated flow conditions, in which no trend could be concluded. It is possible that the resulting 
distribution is governed by primarily the chance of air attached to the tested sheet, rather than the effect of 
turbulent motions of the flow.  
 
In order to generalize the results from this research, an in-depth comparison of the observed results is made 
with existing theory on the vertical distribution of suspended matter. In the following paragraph, answer will 
be given to the third research question: “Can the vertical distribution of plastic be described with existing 
theory on turbulent mixing?”. Concentration distribution profiles were fitted through the observed 
distributions, for each velocity experiment separately. The profiles were based on a concentration 
distribution equation, adapted from the Rouse profile. The shape of the theoretical Rouse profile is dictated 
by the ratio between the shear velocity and the rise velocity of the plastic (β = wr / κ u*). This represents the 
ratio between the floating ability and turbulent mixing. The optimal LMSE-fit through the observed data per 
velocity-experiment is based on an estimator for β for each experiment, bi, and the measured concentration 
near the surface (Ca at z = a). The optimal estimators (bi) were then compared to the theoretical Rouse 
parameter, β, which is based on an empirically determined rise velocity and a calculated shear velocity. For 
the LDPE plastic, this theoretical shape parameter equals 0, since the rise velocity was set as 0 cm/s on 
average. The theoretical profile for this plastic therefore shows uniform distributions over depth in all cases. 
This was not observed in the experiments, but deviations can be explained by the dual buoyancy behavior of 
this plastic. For the HDPE plastic, it was seen that the fitted concentration equation can accurately describe 
the observed distribution. The theoretically approximated profile however underestimated the suspension 
of the HDPE plastic in all cases. But, even though the fitted and theoretical profiles for each velocity-
experiment showed strong deviations, the fitted shape parameters (bi) do follow a similar trend as the 
theoretical parameter β when plotted against the flow velocity. This indicates a possible relation between 
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the observed distribution and the ratio of velocities wr/u*. This result suggests that it is possible to describe 
the distribution with existing knowledge, based on the turbulent diffusivity principle. Additional parameters 
to describe the distribution of plastic might be needed. An attempt was made by optimizing the shape 
parameter β with an additional parameter α, for which a value of 0.64 was found. However, the deviations 
between observed and approximated profiles remains large. An explanation could lie in the possible variation 
of the floating ability under flow conditions: higher shear velocities and more mixing may cause air to be 
released from the plastic. An additional parameter should then be variable with the flow condition. It would 
also be possible to consider the entire distribution of rise-velocities rather than an average value, as applied 
in research of Sundby to the distribution of fish-eggs (1983). The great variability due to the role of air-
attachment could then be accounted for.  Important note is the fact that the equation can only be applied to 
either positive buoyant or negative buoyant particles, with neutral buoyancy as a limit. A combination of both 
is not possible. 
 

Influence of obstructions on vertical distribution of plastic 
In addition to the investigation of the equilibrium distribution of plastic, the influence of obstructions on the 
distribution was studied. A sluice gate, bottom sill and half-way obstruction with the size of 1/5th of the water 
depth were placed in the flume setup, with the requirement of subcritical flow fulfilled. The underlying goal 
of this second part of the research was to investigate both the influence of a surface skimming technology 
itself, which is in fact a permeable gate structure (such as a trash rack), and the potential of hydraulic 
structures to increase (or decrease) the surface share of plastic. This sub-research was explorative. All 
obstructions were solid, sharp crested structures and the design and layout of the structures is not 
experimented with. In the following paragraph, answer will be given to the final research question: “How is 
the vertical distribution influenced by a partial vertical obstruction of the river flow?”. From the results it 
was seen that the plastic surface-share is greater with the presence of a sluice gate and a bottom sill. With 
increasing shear velocities, the surface-share still decreases, but to a lesser extent than was observed under 
undisturbed conditions. The observed surface-share decrease does imply the increasing relevance of 
turbulent mixing. However, in case of the half-way obstruction this trend was not observed. The surface share 
was about equal over a range of 0.1 to 0.5 m/s flow velocity. The cause of this discrepancy is not clear. It is 
possible that limitations of the flume- and obstruction-setup resulted in the observed distribution. Even 
though, no negative effects were observed, and the results make it plausible that hydraulic structures can be 
intentionally applied in waterways to increase the surface share. Further research to application and design 
of supportive structures is advised. 
 

Relevance of research placed in context 
A better understanding of how plastic litter is transported via rivers is crucial. Both for quantification and 
mitigation of the plastic problem. This research contributed to the overall knowledge on the behavior of 
plastic in rivers, by investigating the overarching problem statement: How is plastic distributed over the 
water depth in rivers and how is this related to prevailing flow conditions? Even though this study is not 
extensive enough to create a complete picture of the influence of turbulence on the behavior of plastic, it 
does show that marginal buoyant plastics can be sensitive to turbulent motions in flow. There is a chance of 
missing these suspended plastics when focusing on only the surface share, causing underestimations of the 
yearly fluxes. With this research, a first insight is created on the vertical behavior of plastic in relation with 
flow conditions. This insight can however not stand on its own, due to the complexity of river flow. More 
extensive research on the 3D-transport mechanisms of plastic is needed. It was shown that there are 
possibilities to approach the vertical distribution according to existing theory, based on studies on sediment 
dynamics and more ecological minded research. This link to neighboring fields is missing in the field of plastic 
research. Collaboration between different expertises is therefore encouraged.  
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6.2.  Recommendations  
The hypothesis of this research is that a significant share of the plastic litter in rivers is transported below the 
surface water of 50 cm depth. It is recommended to either strengthen this hypothesis by further laboratorial 
research to a wider variety of plastic materials, or to test the hypothesis in a real-life context. For both 
options, main recommendations that should be considered in a follow-up research proposal are discussed. 
 

Strengthen hypothesis with laboratorial research 
For the first option, more extensive research to the floating ability of the plastic tested could be of interest. 
One can imagine that the properties of the plastic, such as stiffness, rigidness and texture, can result in 
different (key-)driving mechanisms for the floating ability. The method of grouping plastics based on their 
material type (HDPE, LDPE, PVC etc.) is debatable and other classifications might give more information on 
the behavior of the plastic group. Additionally, variations in ambient conditions such as water temperature 
and salinity levels, could be added to the research scope. These factors could especially be of interest in tidal 
areas and lakes, where stratification plays a role. Furthermore, the applicability of the Rouse profile, or other 
distribution profiles found in literature, can be further investigated. If chosen to continue in line with the 
conducted experiments in this research, some main recommendations on the methodology are given: 

• The main improvement is the scale of experiment. Firstly, the length of the flume is of importance, 
since an assumption is made on an equilibrium plastic distribution. Ideal would be an infinite flow, 
so that the equilibrium distribution can be ensured. This could be imitated with a carousel flume. 
However, the floating ability of the plastic could form an issue in this set-up. Secondly, in more deep 
and wide flumes bigger plastics could be experimented with and the effects of deformability of the 
plastic could be investigated. Thereby, the bigger the scale, the lesser the scale influences.  

• In order to properly investigate the effect of obstructions relative to the undisturbed distribution, a 
longer flume would be needed. There should be enough length to reach a developed, undisturbed 
distribution before the plastic reaches the obstruction and is influenced. Behind the obstruction, 
enough length is needed to achieve the equilibrium distribution once again. 

• Since it was found that the theoretical approach towards the distribution is promising, but needs 
improvement, it might be interesting to study plastic particles that are more easily confined within 
this theory, e.g. spherical particles (pellets). So that factors such as orientation and deformation of 
shape are excluded.  

 

Test hypothesis in real-life context 
In order to test the hypothesis in a real-life context, fieldwork measurements of the vertical distribution of 
plastic are needed. In the study of Hohenblum (2015) a multi-spot sampling approach is introduced. However, 
this method is quite expensive and labor intensive. The sampled plastics should be investigated on site, so 
that the floating ability corresponding to the local ambient conditions can be defined. The methodology 
described in this thesis can be applied on site; see through containers can be filled with water retrieved from 
the location and the rise velocities of sampled plastic can be measured. It is advised to test the plastics 
immediately after retrieval, to prevent warming of the water and other changes. The depth-location of each 
sampled plastic should be noted, and the plastics should then be grouped on the found rise velocity, in order 
to establish a distribution profile that is based on the rise velocity of the plastic in relation to the prevailing 
flow condition. Determination of the prevailing flow conditions, expressed as the shear velocity, is difficult.  
The roughness coefficient must be estimated and is prone to great uncertainties. The average stream flow 
velocity can be measured on site. 
 
During this thesis research, an attempt was made to investigate the plastic distribution in a real-scale 
scenario, namely in a sluice: The Borgharen Sluice in Maastricht is not in use and Rijkswaterstaat is developing 
this sluice into a river-test-facility at the moment. As further explained in Supplement D, the sluice could 
serve as a 1:1 flume model. However, the turbulent vortex flows that were found during the fieldwork made 
further investigation in this sluice not suitable. The flow conditions should be altered in order to be able to 
do scientific research in this sluice. Rijkswaterstaat is working on improvements of this test-facility and is 
happy to help students and startups to conduct research and pilot projects at this location. This study would 
serve as a step between controlled laboratorial research and uncontrolled reality 
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Recommendations for implementation 
For practical applications in line with this research, such as cleaning strategies based on surface skimming, 
the following recommendations are given: 

• It was found that higher turbulent flow conditions significantly increase the chance on plastic 
suspension, and therefore this litter might be overlooked in cleaning strategies. Surface skimming 
techniques should therefore be placed at locations where the flow is less turbulent (lower flow 
velocities or at locations that have a smoother conduit) and mixing due to external factors (such as 
navigation or behind a hydraulic structure) does not occur.  

• In line with previous recommendation, an open question exists: Is most plastic present at the 
locations where we see the most accumulation? For example, in stagnant water such as in harbor 
basins, often accumulation of litter is seen. A technique such as the Shoreliner of Tauw acts on this 
observed accumulation. However, the plastic we observe is a snapshot in time. It could be that at 
the locations where flow velocities are higher, more plastic passes per time interval and hotspots 
would actually be where we do not expect them to be. For this question, a focus on both vertical as 
horizontal distribution would be needed. The focus is less on the behavior of the plastic, more on 
the quantity. 

• It might be interesting to investigate the influence of obstructions in the 1:1 flume of Borgharen. For 
example, the influence of a ramp, that could guide plastic to the surface where it is more easily 
removed. 

• Lastly, within the context of this research, the following question may arise: should all plastic be 
made in such a way that it always floats? Since it was concluded that we might miss a great amount 
of plastic. If all plastic would stay afloat, it would be easier to remove. Industries should then focus 
on the use of low-density plastics for example. However, floating plastic is seen as prey for animals 
such as birds and seals. Thereby, the ability to float makes the transport mobile and easily 
transported to the ocean.  
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A 
A. In depth comparison with literature 

A.1.  Jakarta: Multi-trawl sampling (in depth comparison) 
In Jakarta, double-trawl samples were taken from the first meter below the surface, divided in two depth 
sections (van Emmerik et al., 2019). The objective of the study of van Emmerik et al (2019) in Jakarta was to 
provide an estimation of macroplastic emission from rivers and canals that run through the city of Jakarta 
into the sea. A part of the research was conducted with a double-trawl, which sampled from 0 to 0.35 m and 
0.5 to 1.0 meter below the surface simultaneously. In a supplementary analysis retrieved from Emmerik, the 
relative concentrations (%) sampled in the surface net with respect to the total of the two nets, are plotted 
against the measured flow velocities (Fig. 1). The results are presented per plastic type (as classified in the 
paper of van Emmerik et al). It was observed that with an increasing flow velocity (from about 0.1 up till 0.4 
m/s) the surface-share of the PO-soft plastic, to which plastic bags belong, decreases from around 80% to 
below 60% (with respect to the lower net). For highly positive buoyant plastics, such as foams, belonging to 
the group PS-E (expanded polystyrene), there is no plastic found in the lower net. On average for all sampled 
plastics, the measured concentration in the upper layer was found five times as high as in the lower net. Even 
though the plastic concentration was found to vary considerably in time, the concentration in the upper net 
was always higher than in the second net. 
 

 
Fig. 1: Daily average results of the relative percentage found in the upper trawl (0-0.5 m) with respect to the lower trawl 
(0.5-1 m). Bags belong to the POsoft group. With higher flow velocities, the share measured in the upper trawl seems to 
decrease. (Supplementary analysis retrieved from van Emmerik (2019)) 
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Analysis on Jakarta measurements 
The results of the POsoft group are analyzed based on the proposed approach in this thesis. This data set only 
comprises of 2 measurements over depth (near the surface), for 7 different measured velocities. In Chapter 
3.3.1 the diffusivity principle is used to define a concentration equation for positive buoyant plastics, this 
equation is applied on the retrieved dataset of Jakarta. Since no additional information on the river conditions 
or sampled plastic is given, rough assumptions are made: 

• The river depth is set on 5 m, the width was measured (from Googlemaps) and equals 50 m.  

• An assumption for the friction coefficient is based on a n-value of 0.035 (weedy river), this results in 
a friction coefficient cf = 0.007. 

• The plastic classified as POsoft are assumed to have equal floating abilities as was found for plastic 
sheets in this MSc research, and the rise-velocity is set equal to 0.01 m/s. 

 
Based on these assumptions, the corresponding shear velocity for each measured flow velocity is computed. 
It was hypothesized that the ratio of the prevailing shear velocity and the rise velocity of the plastic dictates 
the concentration profile and its shape parameter β. Therefore, the equation is fitted through the two 
observation points (upper trawl and lower trawl) and the optimized parameter bi for each velocity is plotted 
against the shear velocity (Fig. 3 and Fig. 4). The found shape parameters are compared to the shape 
parameters found in this MSc research. The optimized profile of the shape parameter, with an additional 
factor of α = 0.64 (as found in Chapter 4.3.3), is plotted as well for comparison (dashed green line). The initial 
profile of the theoretical parameter β shows an underestimation of suspension for all velocities. The 
optimized theoretical parameter (αβ) shows an improvement of the approximation.  

 
Fig. 2: Plastic bags were classified as POsoft. These measurements (surface share versus average 
flow velocity) are taken as input data to compute distribution profiles over the entire depth. 
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Fig. 3: Concentration distribution profiles of the 7 measured velocities in Jakarta (normalized to the near-surface 
measurement). Since two observed measurements are used for the fit, the RMS of the fit equals zero. The theoretical profile, 
based on rough assumptions on the shear velocity and rise velocity, is plotted as well. 

 

 
Fig. 4: Optimized shape parameters for each flow velocity are plotted against the corresponding 
shear velocity, so that comparison with the found shape parameters of the experiments is possible. 
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A.2.  Danube: Sampling over entire depth 
In a study conducted in the Danube, Austria, the horizontal and vertical variability of plastic transport is 
investigated by using a multi-spot sampling method (Hohenblum et al., 2015). With a triple-layered sampling 
net, samples are gathered from the surface water, the midwater and near the bottom at two locations 
(Hainburg and Aschach). From these samples, an annual average of plastic transport was calculated. The 
focus of this research was not particularly on the influence of flow conditions on the found distribution. 
However, it was concluded that due to more turbulent flow at the sampling site of Hainburg, “plastic particles 
show properties of suspended particles rather than floating particles, and therefore can be encountered in 
the entire river profile”. Based on the data presented in this study, it was found that at the location of Aschach 
(the less turbulent location) about 75% of the total sampled plastic concentration (mg/m3) was found at the 
surface, while for Hainburg the surface-share equaled about 40%. There is however no elaboration on the 
definition of the turbulent intensity for both sampling sites, it is only stated that the location of Hainburg was 
“more turbulent”. 
 
The gathered data from the study of Hohenblum et al. could not be used for a comparison with the found 
results in this research, since the plastic samples were not classified by type or buoyancy. The samples exist 
of a variety of plastic, most probably both positive and negative buoyant. A profile based on either a positive 
or negative concentration gradient does not suffice. In Fig. 7 it can be seen that the relative concentrations 
(with respect to the total) varies over the horizontal coordinate. Variation of flow conditions over the width, 
depth and length of a natural river exist. 
 
 

 
Fig. 5: Multispot measurements of concentration of plastic (both micro and macro) in the Danube at Aschach (above) 
and Hainburg (Below). The site of Aschach showed less turbulent flow than Hainburg. (Hohenblum et al., 2015).  
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Fig. 6: Own analysis: Concentration of plastic (both micro and macro) at Aschach (left) and Hainburg (right).   
 

 

 
Fig. 7: Own analysis: Relative concentrations with respect to total sampled plastic at Aschach (left) and Hainburg (right). On 
average, the surface-share at Aschach is about 75%, at Hainburg about 45%.   

 

A.3.  Thames: Samples near the riverbed 
A study to the presence of plastic near the river bed is conducted in the Thames River, London (Morritt et al., 
2014). Samples of the water up till 40 cm above the water bed were taken with eel-fykes. Within 87 days of 
measuring, a total of 8490 items of rubbish were counted, of which about 1.50% plastic bags (127 bags). The 
plastic sampled could both originate from the bed, eroded and brought in suspension, or positive buoyant 
plastics that are mixed over the water-depth. No additional measurements were conducted to other water-
depths, such as the surface-share. Therefore, no comparison over depth can be made. In Fig. 8, the 
composition of litter found near the river bed at multiple sites is given. Even though the share of the bags is 
small with respect to other plastics, the presence does substantiate the hypothesis that marginal positive 
buoyant plastics can be found over the entire water depth. Food wrappers are also often made of materials 
with a lower density than water and therefore positive buoyant. From the classification used it is however 
not possible to get information on the buoyancy of the plastics found. 
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Fig. 8: Results of the Thames sampling campaign. Composition of litter intercepted in fyke nets at 
different sites in the Upper Thames estuary (Morritt et al., 2014) 
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B 
B. Additional Experiments 

B.1.  Density determination of the plastic 
Sheets of the size 10 x 10 cm (± 0.1 mm) are tested for their material density. 10 sheets were weighted 
(Mettler AE 240 ± 0.001 g) of both the HDPE and LDPE material. The thickness was determined with a digital 
caliper (±0.01 mm), by stacking of 4, 8 and 16 sheets. From this thickness measurement it was clearly seen 
the HDPE material is thinner. This plastic was found more flexible. The range of densities is determined by 
including the uncertainties of each measurement (mass, thickness and size). Even though the range indicates 
both positive and negative buoyant properties, it was found that when the sheets, both HDPE and LDPE, lost 
all air bubbles attached, the floating ability would be eliminated. All sheets would sink. For the HDPE plastic 
it was however found that the air attachment is an average condition, intensive stirring was needed to get 
rid of all air. 
 
Table  1: Densities as found in experiment  

HDPE LDPE Water 

average density (g/cm3) 1.01 1.03  

min density 0.85 0.95  

max density 1.21 1.12  

Average thickness (mm) 0.001 0.004  

Average mass (g) 0.15 0.41  

    

Estimated density (g/cm3) 0.93-0.97 0.92-0.93 0.98-1.0 

Density difference with water 0.03-0.07 0.05-0.08  

 

B.2.  Time of submergence: changing properties 
In a tank of 2 x 2 m, with a water depth of 1 m, the rise time of ‘old’ plastic was compared to the rise time of 
the new plastic. In these experiments as well, the plastics are stirred under water before released from the 
bottom, to get rid of the bigger air bubbles trapped inside the bag or folds of the sheets. Plastic bags and 
sheets are submerged for 5 weeks, in order to investigate the influence of watering time on the floating 
ability. It is very clearly from this experiment that air attachment gets less (Fig. 10). Also, it could be that there 
are changes on molecular levels. This is not further investigated. The probability density graphs are plotted 
in      Fig. 9.  

HDPE HDPE_5weeks LDPE LDPE_5weeks 

average rise velocity (cm/s) 6.9 4.1 5.1 2.4 
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     Fig. 9: rise times of fresh bags versus wetted bags (5 weeks submerged), left = HDPE, right = LDPE 

 

  
Fig. 10: Observed difference between fresh bag (left) and a bag that has been 
submerged for 5 weeks (right). Almost no air bubbles are attached to the material. 

 

Other influencing factors on the floating ability of plastic 
Volume: The volume of a particle is a key characteristic determine the buoyancy force. Since the 
plastic was downsized without decreasing the thickness of the material, the volume was constant. 
A small experiment was conducted with different thicknesses of the plastic sheet. A greater volume 
resulted in higher rise velocities. Sheets are melted together under low temperature (ironing)  
 
Temperature influence: In a first set of experiments, it became clear that the ambient water 
temperature has an influence on the rise time of the plastic when using a small container. The 
average times differed over days in which the temperature differed greatly due to a heatwave. It 
appeared that the marginal positive buoyant plastics is sensitive for such small changes. Alternating 
ambient conditions can occur in reality, due to tidal flows, sediment currents, pollution etc. 
 
Orientation of the plastic: It was observed that the orientation of the rectangular, flat sheet, was 
of importance as well. Higher rise velocities were noticed when the frontal area was smallest, and 
the sheet would ascend vertically through the water. For bigger sheets, the material would fold and 
the horizontal versus vertical orientation is of less interest. However, this indicates the complexity 
of the movement of arbitrary shaped plastics, with respect to spherical sediments and other 
particles. 
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Fig. 11: Left: The thickness is multiplied, d=1 represents a single sheet, d=4 means 4 layers. With this, the volume of the plastic particle 
is increased (without changing the frontal area). Right: when repeating the rise velocity experiments with the same sheets, the rise 
time increases (rise velocity decreases). This indicates the effect of watering. Thereby, measurements of two different days show 
different results, this could be due to the heat wave at day 1 

 

B.3.  Additional experiments Gate structure 
Two other factors of the gate structure are investigated under an approach flow velocity of 0.34 m/s 
(experiment number 3). Those factors are: 

1. The angle of the gate with respect to the water surface (0 degrees). 
2. The influence of the gate on the distribution downstream of the gate. 

 
Results on the first factor are showed in Fig. 12. Results on the second factor are described below. It was seen 
that for all three orientations of the gate, the distribution in front of the gate only differs slightly. The surface 
share is about equal (72, 64 and 63% respectively). What is noteworthy, is the difference observed 
underneath the gate. In case of the 70 degrees gate, which is oriented opposite of the flow direction, more 
plastic is passing through deeper sections below the gate structure. However, behind the gate it can be seen 
that plastic is taken in the wake-flow and stirred over the entire water depth. Only for the lowest velocity 
and 90˚ orientation, some trapping in front and behind the gate was observed (20% in front, 14% behind). 
Also, some temporal trapping was observed, in which the plastic was trapped in the wake in front and/or 
behind the gate but released from the wake during the experiment. For the higher velocities, no trapping or 
temporarily trapping was observed, irrespective of some stirring behind the gate, in each orientation.  
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Fig. 12: The gate structure (0-5 cm below water depth) is placed perpendicular to the water, under 110 degrees 
with the current and under 70 degrees against the current direction. With this last orientation, more plastic is 
passing via deeper water layers. 

 
Additionally, the development of the vertical distribution behind the gate is monitored. To do so, the setup 
was changed so that there was enough length behind the gate. It can be seen from Fig. 13 that there is no 
positive effect on the surface share behind the gate. Plastic is mixed over the water depth behind the gate 
and most probably develops to an average distribution profile as was found from the experiments in section 
5.2. The length however is not enough to develop to a constant distribution, and we cannot use these results 
as comparison. 
 

 
Fig. 13: Behind the gate, plastic is brought in suspension. With higher flow 
velocities, plastic passes through deeper depths. 
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B.4.  Flume roughness: additional experiment 
Plates with gravel were placed in the flume and experiments were conducted as described in this report in 
Chapter 3.2. The results were not as expected. It was hypothesized that with an increased bed roughness, 
the resulting shear velocity would increase and therefore, with the same average flow velocities, more mixing 
of plastic would be observed. From Table  2 it can be seen that this was not the case. For the HDPE plastic, 
the surface share is lower at 0.2 m/s flow velocity and then shows higher shares for increasing velocities with 
respect to the ‘smooth’ flow conditions. For the LDPE plastic there is no trend, but also relatively high surface-
shares are found. In Fig. 14 the vertical velocity series can be seen. It may be observed that the vertical 
fluctuation does increase in case of the rougher bed. The observed results for the plastic distribution cannot 
be explained. These results can be dictated by other processes in the flume setup rather than the influence 
of an increased friction coefficient. Therefore, these results are neglected in the main report.  
 

  
Fig. 14: Vertical fluctuations of velocity at half-depth for a smooth bed (left) and rough bed (right), for a stream 
velocity of 0.2 to 0.9 m/s. For the rough bed, greater fluctuations are seen and we can expect higher shear velocities.  

 
Table  2: Surface shares for increased bed roughness scenarios 

Experiment number 1 2 3 4 5 6 7 

Uda flow velocity (m/s) 0.10 0.20 0.35 0.45 0.55 0.65 0.95 

U* shear velocity (cm/s) 0.5 1.1 1.6 2.2 2.7 3.3 4.9 

HDPE Smooth Surface share (%) 95 74 52 34 28 25 17 

HDPE Rough Surface share (%)   51   45  21 

LDPE Smooth Surface share (%) 28 15 33 22 10 15 25 

LDPE Rough Surface share (%)  13   43  17 
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C 
C. Experiment setup and 

considerations 

C.1.  Flume setup 
A more elaborate description of the flume setup used for the experiments is given in this section, belonging 
to Chapter 3.2.1. The setup is schematically shown in Fig. 15. 

 

Fig. 15: Flume setup for vertical distribution observations. Location B serves as measurement location, location A as 
reference. 

 
Dimensions flume: The flume has a length of 15 m and width of 0.40 m (figure). The water depth in the flume 
is kept constant for every velocity experiment to create equally scaled distribution profiles. Based on the 
dimensions of the flume and desired range of flow velocities, the depth is set on 0.25 m. The setup is 
schematically visualized in figure X, in which distances and dimensions are given. For the sake of developed 
flow and a possibility for an equilibrium distribution of plastics, length scales are of importance. There must 
be a considerable distance between measuring location and flume in- and outlet. In addition, there must be 
a considerable distance between the inlet of plastic and measuring location; taking into account both the 
longitudinal flow velocity, vertical shear velocity and the rise velocity, it must be possible for the plastic to be 
distributed over the entire water depth.  
 
Velocity range: The velocity range in the flume is from 0.10 m/s up till 0.90 m/s, under a constant water 
depth of 25 cm. Based on the bed friction coefficient of the flume in relation to a prototype river, 0.003 and 
0.005 respectively, this range is applicable for the experiments to be compared to prototype conditions of 
0.1 – 0.5 m/s. 
 
Geometrically scaling: Based on the plastic sheets and flume dimensions, a geometrical scaling factor of 1:10 
is chosen. The ‘water surface’ equals 50 cm (as described in the introduction, section 1.2). In the flume, this 
equals 5 cm. The influence of water depth on the distribution of plastic is not further investigated. The sheets 
are cut out of the two prototype bags, the thickness (and elasticity/ deformability) of the sheets is therefore 
not scaled. This is neglected for simplicity. 
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Plastic inlet: At 2.5 meters from the inlet of the flume, plastic is released through a pipe (diameter = 2 cm) at 
5 cm below the water surface (1/5th of total depth). This depth is mostly based on a set of preliminary trial 
and error experiments: Plastic is not released at the surface, because suspension is prevented due to surface 
tension. Releasing plastic just under the surface gives the plastic the opportunity to move over the entire 
depth before it reaches the measuring location (based on the average rise velocity and the flow velocities in 
the flume). Since we want to indicate mixing, and therefore especially downward movement, releasing plastic 
near the flume bed is not ideal. 
 
Measuring the distribution (camera): At two locations, A and B, cameras are used to capture the position of 
the plastic sheet over depth. The depth is divided in 10 sections, of each 2.5 cm. The times that a sheet is 
present in each section is count. After a pre-analysis, only location B is considered as reliable measuring 
location. This is because of the distance between the inlet of the plastic and the camera location A, in relation 
to the rise velocity and average flow velocities used; The distance should be great enough to ensure a 
developed distribution, which is assumed for location B. The data retrieved from location A is used to check 
whether a downward movement, and therefore mixing, does occur. A threshold of 10 % is chosen to indicate 
mixing, meaning that if less than 10 % of the tested sheets shows downward movement between location A 
and B, the distribution of the plastic at location B may be due to effects of the inlet method rather than mixing 
ability of the flow. In that case the shear-velocity is considered as ‘below mixing threshold’. 
 
Number of experiments: Each velocity experiment (7 experiments) is conducted once (for the sake of time), 
in which 100 sheets of both plastics are released one by one.  

  

Fig. 16: Flume setup for vertical distribution observations. Location B serves as measurement 
location, location A as reference. Plastic is manually put in the flume at a constant location. 

C.2.  Flow development over flume 
The flow profile was investigated in order to setup the experiment. Measurement location A and B were 
compared to see if both of them could be used as measurement location for the plastic distribution. This 
would only be possible for lower flow velocities, because the length until measurement location must be long 
enough for the plastic sheet to find an ‘equilibrium position over depth’. With too high flow velocities, the 
rise velocity of 0.010 m/s would be to low to be able to bring the sheet to the surface. It was found that the 
velocity profiles differ between A and B, especially for higher flow velocities. It is decided to only use location 
B as measurement location and A as reference. Secondly, it is checked if there is a certain influence of the 
inlet (height) and the foam plate used to smoothen the flow at the inlet. From Fig. 17 it can be seen there is 
no influence noticed. In Fig. 18 it may be observed there is a decrease of the flow velocity near the surface. 
The measurement equipment is sensitive for interfering signals, the vertical differences in flow velocities 
could partly be an effect of this sensitiveness since the measurements are manually done per height. 
However, a ‘velocity-dip’ at the surface is also a more often seen phenomenon in channel flow. 
 
Lastly, the vertical component of the flow is investigated. Due to the sensitivity of the equipment, the found 
flow is not considered as absolute information. The average vertical velocity should equal 0. The fluctuation 
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around the average however can be compared for increasing velocities. In Fig. 19 it may be observed that 
with increasing velocities, the vertical fluctuation increases and therefore so does the shear velocity. 
 

   

Fig. 17: Stream flow velocity measurements in flume at (1) 0.3 m/s, (2) 0.5 m/s and (3) 0.9 m/s average flow velocity, at location A 
and B in flume. With higher velocities, the profiles diverge more from each other. B is considered as ‘developed flow’ 

 

 
Fig. 18: Influence of the setup components in the flume are examined. These are a (foam) plate at the inlet, 
decreasing waves, and the inlet pipe through which plastic is inserted. These components do not influence the flow  

 

 
Fig. 19: Velocity fluctuation over depth, at half water depth for 0.2, 0.3, 0.5 and 0.9 m/s (above 
to below). With an increasing flow velocity, the fluctuation around the average increases.  
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C.3.  Impression of lab experiments 
 
 

A  B  

C  D  
Fig. 20: A: HDPE bag and different sizes of sheets, B: the container used for rise velocity experiments with 
different scales, C: the tank used for the rise velocity experiments with bags and foils, D: an obstruction 
placed in the flume. In this scenario it is a bottom sill (5 cm). 

 
  



65 
 

D 
D. Fieldwork: Borgharen Sluice 

The ambition during this master thesis was to compare the lab results in with findings from the field. Field 
measurements are however difficult, no general method exist for the sampling of plastics, especially not over 
the entire water depth. During this research, I was brought in contact with Rijkswaterstaat. The Borgharen 
sluice in Maastricht is not in use anymore, and the plan existed to develop a 1:1 scale river test facility. 
Together with Rinze de Vries of the startup Noria, I have investigated the possibility of research to the vertical 
distribution of plastic in this sluice. Unfortunately, the conclusion after a week of testing flow conditions was 
that this possibility is not yet there. The sluice is too turbulent due to the inlet method. A study to the 
distribution of plastic would only represent the motion of plastic in this specific sluice and could therefore 
not be compared to lab results. The developments around the sluice are however promising. Because more 
startups and projects are involved, Rijkswaterstaat is exploring opportunities to improve the flow conditions 
in this sluice, in order to create more uniform flow. The sluice doors and inlet gates will be altered by the 
coming year (2020). This offers great opportunities for students of the TU Delft (and other universities) in 
cooperation with relevant startups and organizations. In this appendix, a short overview of the 
measurements conducted in the flume is given, indicating the complex situation that was not suitable for 
further research. For more information and contacts, please contact me (the author of the report). 
 

 

 
Fig. 21: Borgharen sluice schematically. Below: top view. 

 
 

 
Fig. 22: flow velocity measurements with ADCP catamaran. Average flow velocity = 0.25 m/s. There is no uniform profile in 
the sluice, the flow velocity varies greatly, both temporal as spatial. 
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Fig. 23:Vertical profiles of flow velocities over transect. The datapoints are averaged over  

 
 

A  
B 

 

C 

 

D 

 
Fig. 24: Impression of Borghare Sluice measurements. A: sluice next to Grensmaas, B: inlet doors and inlet sewers 
below, C: flow measurements with ADP flow meter, D: flow measurements with ADCP catamaran, executed by RWS. 
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E 
E. Plastic Problem in figures 

For plastic classification, different approaches are used. In Table  3 a combination of classifications as found 
in literature is shown, including remarks on the buoyancy, based on the found material density. However, 
due to the use of multilayered plastic, additives and dye, the density can differ from factory-specifications. 
Plastic bags form a great part of the plastic litter found in rivers, natural water bodies and on beaches (Fig. 

25). These plastics are very harmful because of their form. They are often confused for food by marine wildlife 
and are a cause of suffocation. These plastic bags are presumed to be buoyant because of their material 
density and expected to float at the surface (Fig. 26). However, as was found in this MSc research, this 
(marginally) positive buoyant plastic can be brought in suspension and therefore missed when focusing on 
the surface plastics. This is part of an explanation to the “Missing plastic question” that is growing in publicity 
(Lebreton et al., 2019). The balance of production and observation is not closed. Other explanations are e.g. 
degradation and circulation dynamics on a great scale. While conducting this MSc research, more studies and 
reviews were published considering the transport mechanism of plastic. Something that was found to be 
missing. In yet unpublished work, Sebille et al, (2019) made a review of the existing literature on transport of 
floating marine plastic debris, referring to insights from neighboring fields. As was stated as underlying goal 
of this thesis. Fig. 27 shows an overview of processes defined in the ocean. 
 

 
Fig. 25: Top 10 trash found during the International Coastal Cleanup 
2017 (Ocean Conservancy). Plastic bags were abundantly found 
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Fig. 26: Classification of plastics by their floating ability in sea water (ρ=1.02-1.03 g/cm3) 

 
 

 
Fig. 27: Schematic of the physical processes that effect the transport of plastic the ocean (Sebille et al., 2019).  

 
Table  3: classification of plastic types (based on a combination of different classes found in literature) 

Type Sub Sub2 Name Product Buoyant/density 

PET   Polyethylene 
terephthalate 

Bottles soft drinks, salad containers Non buoyant  
1.38-1.39 g/cm3 

PS   Polystyrene Plastic cutlery, cups, casings, toys Non buoyant 
1.05 g/cm3 

 EPS  Expanded polystyrene Foams, packing material, foam cups, 
meat trays 

buoyant 

PO   Polyolefin   

 PP  Polypropylene Plastic furniture, jerry cans, bottle 
tops, straws, chips bags, ice cream tubs 

Buoyant 
0.90 g/cm3 

 PE  Polyethylene  buoyant 

  LDPE Low-density 
polyethylene 

Soft plastics, cling film, carry bags 0.92-0.93 g/cm3 

  HDPE High-density 
polyethylene 

Containers, pipes, shampoo bottles, 
milk bottles 

0.94-0.97 g/cm3 

PVC   Polyvinylchloride Sewage pipes, window frames Non buoyant 
1.29-1.44 g/cm3 

O   Other   
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Fig. 28: example of a campaign against plastic bags. Bags are often confused for food and cause 
entanglement and suffocation of marine life (Medasset, n.d.) 
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F 
F. Photo impressions 

  

  
Fig. 29: A: Press day at Borgharen Sluice with team RWS and Noria. B: With the help of RWS testing in the sluice. C: 
Competition of Dopper, for the best thesis award (unfortunately there was no best proposal price). D: Pitching my 
research proposal at the Dopper challenge. 

 
 

Fig. 30: Interview for artist (sound artist) about plastic research.  
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