Circuits and Systems
Mekelweg 4, CAS-2012-08

2628 CD Delft

The Netherlands
http://ens.ewi.tudelft.nl/

M.Sc. Thesis

Compile Time Analysis for Hardware
Transactional Memory Architectures

Anupam Chahar, B.Tech.

Abstract

Transactional Memory is a parallel programming paradigm in which
tasks are executed, in forms of transactions, concurrently by different
resources in a system and resolve conflicts between them at run-time.
Conflicts, caused by data dependencies, result in aborts and restarts of
transactions, thus, degrading the performance of the system. In case
these data dependencies are known at compile time, then the transac-
tions can be scheduled in a way that conflicts are avoided, thereby, re-
ducing the number of aborts and improving significantly the system’s
performance. This thesis presents the Compiler insights to Transac-
tional memory (CiT) tool, an architecture independent static analyzer
for parallel programs, which detects all potential data dependencies
between parallel sections of a program. It provides feedback about
load-store instructions in a transaction, dependencies inside of a loop
and branches, and severals warnings related to system calls which can
can affect the performance. The efficiency of the tool was tested on
an application including different types of induced data dependencies,
as well as several applications in the STAMP benchmark suit. In the
first experiment, a 20% performance improvement was observed when
the two versions of the application were executed on the TMFv2 HTM
simulator.

5
TUDelft

Delft University of Technology

Compile Time Analysis for Hardware Transactional

Memory Architectures
A GCC Plugin Support for Hardware Transactional Memory

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
n
EMBEDDED SYSTEMS

by

Anupam Chahar, B.Tech.
born in Agra, India

This work was performed in:

Circuits and Systems Group

Department of Microelectronics & Computer Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

]
TUDelft

Delft University of Technology

Copyright (© 2012 Circuits and Systems Group
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF
MICROELECTRONICS & COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Compile Time Analysis for Hardware Transactional Memory Archi-
tectures” by Anupam Chahar, B.Tech. in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: August 2012

Chairman:

prof.dr.ir. A.J. van der Veen

Advisors:

dr.ir. T.G.R.M. van Leuken

ir. Sumeet S. Kumar

Committee Members:

dr. K.L.M. Bertels

iv

Abstract

Transactional Memory is a parallel programming paradigm in which tasks are executed,
in forms of transactions, concurrently by different resources in a system and resolve
conflicts between them at run-time. Conflicts, caused by data dependencies, result in
aborts and restarts of transactions, thus, degrading the performance of the system. In
case these data dependencies are known at compile time, then the transactions can be
scheduled in a way that conflicts are avoided, thereby, reducing the number of aborts
and improving significantly the system’s performance. This thesis presents the Com-
piler insights to Transactional memory (CiT) tool, an architecture independent static
analyzer for parallel programs, which detects all potential data dependencies between
parallel sections of a program. It provides feedback about load-store instructions in a
transaction, dependencies inside of a loop and branches, and severals warnings related
to system calls which can can affect the performance. The efficiency of the tool was
tested on an application including different types of induced data dependencies, as well
as several applications in the STAMP benchmark suit. In the first experiment, a 20%
performance improvement was observed when the two versions of the application were
executed on the TMFv2 HTM simulator.

vi

Acknowledgments

First of all, I would like to thank my advisor dr.ir. T.G.R.M. van Leuken for allowing
me to do this thesis under his supervision. Thanks for giving me the freedom of choosing
the direction in the field which was unknown to me. Your inputs in every meeting was
really important and helpful.

I would like to thank my mentor ir. Sumeet S. Kumar for his support from the first
day to the last month. Thanks for keeping me motivated all throughout the duration of
the thesis. Thanks for answering all my questions so patiently. Thanks for all long hour
discussions we had with your great inputs. It would not have been possible without
you.

Thanks Tasos for keeping the environment in the workspace really cheerful. Also,
helping and guiding me whenever I required.

I would also like to thank to Kuchbhi group. Pavan, Kaushal and Rakshith, you
guys rock. Thanks for sharing your experience and, guiding and helping me during my
masters. Rakshith J, Nadeem, Nakul, Karthik for being such lovely housemates. I had
an awesome time with you guys which I can’t forget. Vignesh, thanks for being such a
lovely friend and companion since the starting of masters in embedded system. Thanks
for nice discussions we had about studies, careers and space and also for guidance,
suggestions, help and support in the end.

A special thanks to Chesta, Nadeem, Harshad and Vignesh, for their full support and
help in the toughest phase of my life. You all are amazing. Ankita, special thanks for
your all support from such a long distance, which always has encouraged and motivated
me throughout my masters.

In the last but not the least, a very special thanks to my family which has been
supporting and encouraging me since my childhood. You always believed me without
any single penny of doubt. With your motivation only I have reached so far. Once
again thanks for your infinite love.

Anupam Chahar, B.Tech.
Delft, The Netherlands
August 2012

vii

viii

Contents

Abstract

Acknowledgments

1 Introduction

2

1.1 Motivation
1.2 Thesis Goals
1.3 Contribution
1.4 Thesis Organisation
Background
2.1 Multicore Systemo
2.2 Transactional Memory Lo
221 TMFab and TMFv2
2.3 Related Work
2.4 Algorithm Analysis
2.5 Data dependency in parallel programming
2.6 Static program analysis Lo Lo
2.6.1 Flow in/sensitive analysis
2.6.2 Context in/sensitive analysis
2.7 Compilationo
2.8 GNU Compiler Collection
2.8.1 GENERIC Trees
282 GIMPLE
283 Plugin Lo
2.9 Summary
The CiT Overview
3.1 Overview
3.2 Data Dependency in Transactions
3.3 Approach
3.4 Intra-procedural analysiso oo
3.4.1 Killed definition oo
3.4.2 Dependency among variables 000
3.4.3 Conditional definition. 0L
3.5 Imter-procedural analysis oo
3.6 Detection of data dependency
3.7 Feedback
3.7.1 Dependency within Loop
3.7.2 Dependency inside a branch 000
3.7.3 Load and Store
3.8 Warnings

ix

vil

DO DN DN = =

3.8.1 Abnormal termination
3.8.2 Memory management functions
3.8.3 Recursive

4 CiT Tool- Architecture

4.1 CiT plugin placement
4.2 CiT Architecture
4.3 Initial analysiso
4.4 Intra-procedural analysis 0L
4.4.1 Variable information extraction
4.4.2 Building Dataflowo
4.4.3 Building Call graph
4.5 Inter-procedural analysiso
4.6 Address detection in Transactions
4.6.1 Implemented algorithm
4.7 Control Flow
4.8 Extraction of information for feedback
4.8.1 Loop Information
4.8.2 Load-Store instructions
5 Results
5.1 Experimental Evaluation
5.1.1 Custom Application L.
5.1.2 Realistic Applications L.
5.2 Application in TMFv2 with existing scheduler
6 Conclusion
6.1 Summary
6.2 Future Worko
A Porting
A.1 Stack Conflicts
A2 Solution
A.2.1 Linker Script
A.22 GCC - Plugin (Proposal)

B Data Structures

C Test Applications
C.1 Code Testl
C.2 Code Test2

List

of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
2.3
0.4
3.5

Al
A2
A3

B.1

a) Data flow b) Control flow 10
Difference between flow sensitive and insensitive 11
Example code for context in/sensitive analysis 11
compiler 11
GCC Architecture 12
A GENERIC tree representation of a function 13
Gimple transformationo 14
Gimple tuple 15
Plugin pass insertion in GCC 16
Roadmap 20
Dependency through stack section of caller function 21
Approach 23
Example statement of acode. L. 24
Killed definitiono 25
Dependency relation 26
Conditional definition 27
a) Example code for a task b) Call graph 27
A potential dependency under condition 29
CiT Plugin placement oL 31
CiT Architecture 32
a)Source code b) Variable database 35
a)Source code b) Variable database 35
a) Approach I b) Approach IT 36
Building context sensitive call graph00 38
Call graph of a transaction 39
Methodology to detect data dependency 40
Control Flow graph 41
a) Weighted control flow graph b) Conditions inside control flow 43
Loop in a control flow 44
Dependent tasks in Test application 46
Graph generated for test codeo L 47
Control flow of learnstructure and createtasklist 49
A thread in Non-blocking linkedlist 51
Improvement in performance with sequential scheduling 52
Stack Memory usage 55
Stack space contention between txn L. 56
Stack solution 56
Control flow graph for function work in Kmeans 59

xi

xii

List of Tables

4.1
4.2

5.1
5.2
2.3
0.4
2.5
2.6
2.7
5.8

B.1
B.2
B.3

Data flow analysis algorithm 41
Tracking algorithm 42
Result of the CiT tool 46
Feedback for custom application 47
Characteristics of Kmeans and Bayes [24]. 47
Feedback report for Kmeans 48
Feedback report for Bayes transaction createTasklist 49
Feedback report for Bayes transactions createTasklist and learnStructure 50
Feedback report for Bayes transaction learnStructure 50
Results for Non-blocking linked list 51
Data structure of variableo 57
Data structure of Function 58
Declarations 58

xiil

xiv

Introduction

1.1 Motivation

Multiprocessing is becoming prominent in this era due to constraints in uniprocessors.
Consequently, parallel programming is being more emphasized in order to exploit mul-
tiprocessors. Hence, programmers are required to parallelize sequential software. Over
the years, there were tools developed [9] which can help programmers to find the po-
tential parallelism. However, the problem for the programmer is not limited to the
parallelization of a sequential software. In the parallelized code, the programmer needs
to consider synchronization of shared data between parallel sections of the software.
Although, synchronization can be achieved using conventional lock based system, it is
expensive in terms of memory usage and can cause problems like deadlock, convoying
and priority inversion. Moreover, the programmer needs to be aware of concurrent ac-
cesses of the shared data. To relieve the programmer from these constraints, researchers
have explored ways to ease the programmability of software. Transactional Memory
[16] is one of the solutions which is promising in reducing the developer’s effort in par-
allel programming. In transactional memory, all data dependencies due to shared data
between parallel sections are resolved at run-time, thereby, making the programmer
relaxed about synchronization of shared data.

TMFab [18] and TMFv2 [23] are hardware transaction memory based multiprocessor
system on chip architectures. In these architectures, a hardware scheduler is responsible
for scheduling transactions on different processors. After the complete execution, each
transaction validates all its speculative writes to other transactions. If there is a conflict
due to shared data in between transactions then one transaction has to abort and
restart, and other commits to the memory. Due to abort, the transaction has to be
executed again, which results in degradation in performance. If conflicts are known at
compile time, transactions can be scheduled in order to reduce the number of aborts and
restarts by which there can be a significant improvement in performance as mentioned
in [23].

In this thesis, we propose the Compiler insights to Transaction memory (CiT), a tool
for statically analyzing transactions to find the potential data dependencies between
them. Feedback about loops, load-store instructions and system calls is given to the
programmer about the transaction in order to aid him to write an optimized code. The
CiT tool is the plug-in to GCC and gets instantiated during compilation. The CiT tool
works on internal representation of the language in the compiler which is independent
to any architecture.

1.2 Thesis Goals

The thesis describes the development of a software tool chain in order to provide details
of data dependencies between parallel tasks. The main objectives of the thesis are:

e To develop a software tool which can support scheduler of TMFab and TMFv2
architecture in bringing the best performance out of the architecture.

e To help programmer, to write an optimized code for transactions.

1.3 Contribution

In this thesis, we have developed an architecture independent static analyzer for parallel
transactions. The main contributions of the thesis are:

e An architecture independent static analyzer for parallel transactions is developed
through which, in a given a parallelized program, all static dependencies can be
detected and make the programmer aware of possible dynamic dependencies.

e All potential data dependencies are detected in the test application with different
scenarios and few STAMP benchmarks.

e Provides feedback about load-store instructions in a transaction, dependencies
under loop and warnings related to system calls which can affect the performance.

e Improvement in the simulation time of TMFv2 using the tool.

e Several parallel applications including STAMP benchmarks are successfully ported
on these architectures.

1.4 Thesis Organisation

The 2nd chapter provides the overview of the multi-core systems, techniques used to
provide synchronization among parallel processes and issues related to them. Trans-
actional Memory is also introduced as a solution to the issues in the multi-core pro-
gramming. The existing Transactional Memory architectures (TMFab and TMFv2) is
discussed. Also, it introduces to the algorithm analysis and methodologies for the same,
in the context of data dependencies. Static program analysis and various methodology
used inside compiler are discussed. Further, Compilation procedure is mentioned which
is followed by precise details of GCC architecture. Moreover, GCC internal represen-
tations (GENERIC and GIMPLE) is briefly described. Plugin, new feature of GCC,
is explained with its benefits. In the 3rd chapter, a conceptual overview of CiT tool is
explained. First, the necessity and features of CiT is mentioned. Also, what is data de-
pendency in transaction and their causes, are illustrated. It is followed by the approach
used and conceptual detail of it. Further, each feedback is briefly explained. In the 4th
chapter, the implementation of CiT is discussed in detail. First, CiT plugin placement
in the GCC architecture is explained. Thereafter, CiT architecture is briefly explained.

Intra and Inter procedural analysis is illustrated in detail. It is followed by explanation
of algorithm to detect potential data dependencies. In the end, process of extracting
feedback information is discussed. The 5th chapter describes the validation of the Ci'T
tool by testing it on test application and real applications. Moreover, application in
TMFv2 with existing scheduler is discussed, which is supported by a experimental re-
sult. The 6th chapter summarizes the goal, motivation and the methodology of the CiT
tool. Further, intuitive areas related to the CiT which can be explored in the future
are described.

Background

This chapter provides the overview of the multi-core systems, techniques used to pro-
vide synchronization among parallel processes and issues related to them. 'Transactional
Memory is also introduced as a solution to the issues in the multi-core programming.
The existing Transactional Memory architectures (TMFab and TMFv2) is discussed.
Also, it introduces to the algorithm analysis and methodologies for the same, in the
context of data dependencies. Static program analysis and various methodology used
inside compiler are discussed. Further, Compilation procedure is mentioned that is
followed by precise details of GCC architecture. Moreover, GCC' internal representa-
tions (GENERIC and GIMPLE) is briefly described. Plug-in, new feature of GCC, is
explained with its benefits.

2.1 Multicore System

In this modern technology era, parallelism has critical role for optimized use of re-
sources and saving time. Parallel computing is becoming important because of speed
and instruction level parallelism limits in uni-processor [15]. Therefore, multi-core ar-
chitectures are being explored in modern systems.

A Multi-core system can have number of processors ranging from two to thousands.
System can have memory that is distributed, shared and hybrid. Applications on these
systems require communication and synchronization between parallel sections. This is
achieved through two well-known techniques:

Message passing : In this technique, each process can communicate and send /receive
the data through message to/from other processes;

Shared memory : In shared memory systems, the same memory space is shared by
all processes. Intercommunication is done through shared variables in this memory.
Message-passing has relatively simple hardware configuration, but it makes pro-
gramming more complex as the programmer must explicitly write his program as com-
munication process. Also, the programmer has to keep the data packet’s size small as
the communication latency increases with the size of the packet. On the other hand,
shared memory has complex hardware, but it makes the programmer with an illusion of
a single memory common to all processes. All parallel tasks can work with a common
dataset resident memory. In order to provide a coherent view of memory to all parallel
tasks, there are mechanisms, like snoopy protocol over a shared-bus [11] or directory
based coherence on interconnects [3], inside hardware. Despite several advantages over
the message passing, in shared memory, programmers are required to have synchroniza-
tion in the shared data. Thus, hardware rules like memory consistency models [1] have

been devised and software routines have been developed around these rules to provide
necessary synchronization.

Locking is one of the techniques to provide the synchronization. In conventional
lock-based systems, any task before accessing the shared data needs to get ownership
of accessing rights through lock. Subsequently, the task has to release the lock after
accessing the shared data that allows other task to access that. This process of acquiring
and releasing a lock makes programming complex as the programmer needs to know
the exact data which is being shared. Further, locks are expensive as they need extra
memory space and time to initialize and destroy. Moreover, lock based programming
model is always prone to various problems:

1. Priority Inversion: occurs when lower priority process is holding a lock needed
by higher priority process.

2. Conwvoying: occurs when a process holding a lock no longer exists or descheduled,
other processes which need it won’t be able to proceed.

3. Deadlock: can occur if processes attempt to lock same set of objects in different
order.

To resolve these problems with lock-based system methodology, concept of transac-
tional memory is introduced [16].

2.2 Transactional Memory

It is an architecture intended to make lock-free synchronization as efficient as con-
ventional techniques based on mutual exclusion. In this model, the critical section
is marked as a transaction. A transaction is finite sequence of machine instructions,
executed by a single processor, satisfying following properties:

o Serializability: Transactions appear to execute serially, meaning that the steps
of one transaction never to be interleaved with steps of another. Committed
transactions are never observed by different processors to execute in different
orders.

e Atomicity: Each transaction makes a sequence of tentative changes to shared
memory. When the transaction completes, it either commits, making its changes
visible to other transactions (effectively) instantaneously, or it aborts, causing its
changes to be discarded.

Concept of transaction can be implemented in the software and hardware.

Software Transactional Memory In software transactional memory (STM)[28][13]
[8], the architecture is build either as a library or at compiler level [17]. For a trans-
action, STM allocates two data structure at run-time: Read set: every memory read
is stored in it; Write set: every memory written is stored in it. Once the transaction
is complete, it try to commit to the memory by verifying read and then performing

write. If the read set is mismatched then the transaction aborts and restarts. As

the above mentioned process is done through the software, it is slower than hardware
transactional memory. However, it does not required any specific hardware.

Hardware transactional Memory In hardware transaction memory architectures
[16] [12] [10], the programmer just specify the critical section as a transaction and
hardware resolves all conflicts at run-time. A transaction after complete execution
need to validate all its speculative writes with others transactions on several processors
to find conflicts. Once validated, it is allowed to commit writes to the shared memory.

There are existing hardware implementations of the transaction memory like TCC [12],
TMFab [18] and TMFv2 [23].

2.2.1 TMFab and TMFv2

TMFab [18]is a stacked-die transactional many-core processor architecture with
goals of having scalability, processor independent architecture and the ease of multi-
programming. It is composed of three main components: Scheduler, Processing Ele-
ment (PE) and L2 Data Cache. Each processing element has its own L1 instruction
cache and transactional data cache. A Speculative Write Buffer (SWB) resides in
L1 data cache to hold all speculative writes. L2 data cache is shared among all the
processing element. A hardware scheduler is responsible for scheduling transactions
to various processing elements. For communication between all tiles, network-on-chip
based interconnect architecture is used in order to provide scalability.

In the TMFab, all transactions are scheduled on different processors by a hardware
scheduler. A transaction starts execution immediately once it is scheduled. TMFab
uses lazy version management, which means that the transaction’s speculative writes
are held in a local-write buffer, i.e. Speculative Write Buffer(SWB), instead of updating
to the cache. Once the transaction is completely executed, all addresses in SWB has to
be validated with other transactions being executed. Conflict detection scheme checks
whether there are conflicting addresses between any transactions or not. If there is
a conflict, then contention management scheme handles the conflict by aborting the
lower priority transaction. When a transaction aborts, data cache and speculative
write buffer get refreshed and the transaction restarts.

In terms of performance, TMFab has best case speed of 3.44x over single core
execution while maintaining the ease of programmability. However, the performance
of TMFab is restricted by its validation scheme as it is not scalable. According to
the scheme, once a transaction is complete it sends broadcast message on the network
with addresses it needs to validate. The increase in number of processing elements
will induce more congestion in the network and overhead of validation process at every
processing elements. Further, in TMFab only one transaction is allowed to validate at
a time. Consequently, all other transactions has to wait to get network cleared of any
other validation process.

TMFv2 [23] is based on the TMFab architecture. The main goal of this architecture
is to reduce the overhead of validation and traffic congestion in the network. It is archi-
tecturally different from TMFab in terms of its validation scheme and banked memory.

In TMFv2, a transaction after completion validate all addresses it has written over at
the shared memory, instead of validating them with other transactions. Thus, it uni-
cast on the shared memory instead of broadcast to all processing elements. This avoids
significant amount of traffic in the interconnect. Also, other processing elements can
continue their execution without any interruption unlike in TMFab. Further, TMFv2
allows more than one transaction to validate in parallel.

The speedup of 2.5x was achieved in the validation process and 2.7x reduction in
the memory latency. Although it reduces the overhead of validation but it introduces
the concept of hazards. In the architecture, a write to the memory is at the granularity
of a byte but the conflict detection scheme checks at the level of word. A hazard is in-
troduced when the conflict detection scheme detects the conflict when bytes are written
at two different location on the same word by two different transactions respectively. A
hazard detection scheme is introduced to resolve this issue. Every validated cache line
goes to the hazard detection module which compares each byte of old and new cache
line. If there is no conflict then the transaction is allowed to commit. Due to hazard,
every cache line has to be re-validated which cause an overhead.

As it is mentioned in [23], that a software toolchain is needed, to track the static
and dynamic dependencies at compile-time. Using this information, a new scheduling
scheme could be devised, which orders transactions in a way that aborts are avoided,

or stalls transactions before speculatively accessing conflicting addresses in the shared
L2D.

2.3 Related Work

There are techniques and tools available for the static and dynamic analysis to detect
data dependencies. Some of them discover data dependencies within the loop, thereby
exposing opportunities for data level parallelism. For example, many static analyzers
are using techniques mentioned in [27] for finding the data dependency within loop.
On the other hand, profiling tool Embla [9] allows user to discover data dependency in
a sequential program, thereby, exposing opportunities for task level parallelism. Simi-
larly, tools like QUAD [2], a dynamic analyzer, focus on discovering data dependencies
between functions. Embla and QUAD use Valgrind framework[25] and Pin [19] run-
time binary instrumentation system respectively. At present, QUAD does not explicitly
show data dependencies between functions when they are executing in parallel. How-
ever, there is a paper [20] which detects data dependencies between transactions, but
it is meant for software transaction memory. Since, there is no relevant information
about the implementation part, it is not possible to transform the paper for hardware
transactional memory architectures. We believe, this thesis is the first compile time
methodology for the data dependency analysis for parallel transactions programs with
a feedback about the transaction for hardware transaction memory architectures.

In order to track static and dynamic dependencies at compile time, it is required to

analyze the algorithm. Therefore, in the next section brief introduction about algorithm
analysis is mentioned.

2.4 Algorithm Analysis

Many times it is necessary to know how a newly developed algorithm by a program-
mer will behave on machine. To know the behavior of the algorithm at run-time, an
algorithm is analyzed. There are two methods through which an algorithm is analyzed:
static analysis and dynamic analysis. The goal of both methods is common i.e. to
extract relevant information from algorithm which affects the behavior of the program
but in different ways.

Dynamic analysis is done at run-time. It records the behavior of algorithm dur-
ing execution. This is achieved by inserting instrumented code inside the algorithm.
Through this an algorithm is monitored step by step. Dynamic analysis is also called
Profiling. Static analysis, on the other hand, is done at compile time. Thus, algorithm
need not to be run on the machine or completely compiled. These analysis techniques
can be used to detect data dependencies in parallel programs.

2.5 Data dependency in parallel programming

Parallel programming is becoming more promising in terms of performance. But the
complexity of the writing parallel sections is also increasing due to consistency issue in
the shared memory. It is difficult to figure out relations between parallel sections in
terms of the shared data. One of the relations between parallel sections is called data
dependency. Two parallel code sections are said to be data dependent when they try
to access the data at the same address in the shared memory. There can be two types
of data dependencies- static and dynamic. A static data dependency is a dependency
which is explicit to the programmer, for instance, accessing a global variable. On the
other hand, dynamic data dependency occurs when an address is accessed implicitly
like in the case of pointer.

In order to help programmer in the case of a data dependency, both type of algorithm
analysis can be used. In dynamic analysis, the exact address can be detected which is
being accessed by the algorithm when it is executing especially in the case of dynamic
data dependency. But in static analysis, it can only be sure of static data dependencies.
Consider, for example, an array being accessed in a loop with undetermined number
of iterations. Dynamic analyzer can detect each and every element accessed for all
the iterations executed at run-time. In static analyzer, since it is not possible to
determine number of iterations, it can only inform about the array but not the exact
element which is being accessed. In this case, dynamic analyzer outperforms static
analyzer. However, static analyzer is really helpful for developers concerned of a worst
case analysis. Static analyzer apart from detecting static data dependencies, can also
estimate dynamic dependencies. Now, for a developer it is really important to take
worst case in consideration while writing the code. In dynamic analyzer, to detect each
and every dependencies, developer has to execute the algorithm for every possible case
which is tedious to do. Instead, to save time and effort, programmer can take worst
possible case model from static analyzer. Therefore, in this thesis it is believed that
static analyzer is better than dynamic.

2.6 Static program analysis

To analyze a program statically for data dependencies, it is necessary to check the
behavior of the program in terms of data. A load and store of data in the memory, i.e.
data definition and use of that definition is the main concern. A data definition can be
of interest if it is being used by some other definition later in the program. Analyzing
this ”def-use” or "generation and consumption” relationships is analyzed through data
flow analysis [6] [5].

main () main () ¢
{
) s . —q. Input a
int a,b,c,d,e=8; inta,b,c,d,e=8; if (a >2)
a= 4; input a;
if (a>2) _ _
Txb=a+4; b=a + 4; [o=e] [b=a+a]
else
=g b=6;
“:::A“i d= 4+ b; c=Db+ a;
} }
a) b

Figure 2.1: a) Data flow b) Control flow

The Figure 2.1 a) is depicting one such example of data flow. Control flow of a
program represents sequential paths of execution of code sections in the program as
shown in the Figure 2.1 b). The data flow is not limited to a function, but also between
functions. Similarly, control flow can be of inside a function and between functions.
Generally, the control flow is called as call graph when it is between functions, as
it basically represents calls from inside a function to other functions. The data flow
and control analysis inside a function is called Intra-procedural analysis, and between
functions is called Inter-procedural analysis. The intra and inter procedural analysis can
further be categorized into flow in/sensitive analysis and context in/sensitive analysis
respectively.

2.6.1 Flow in/sensitive analysis

In flow sensitive [7], intra procedural control flow is considered when data flow anal-
ysis is being done. In flow insensitive, the data flow inside the function is developed
without considering the control flow.. For example, in the Figure 2.2 data definitions
at particular statement is according to the control flow, but in flow insensitive all data
definitions is considered.

2.6.2 Context in/sensitive analysis

In context sensitive, when a function invoke another function context is considered,
i.e. data being passed through arguments. For example, consider the example code
given in the Figure 2.3 a). In context sensitive, fO calls fl twice with context a and

10

Function { Flow sensitive Flow insensitive

p=r; <p,r> <g,t><q,s><q,p > <p,r>

Ifq =p <q,p ><p,r> <g,t><q,s> <q,p > <p,r>
else

q=s <q,s> <p,r> <q,t> <Q,s> <q,p > <p,r>

<q,s> <q,p > <p,r> <q,t><q,s> <q,p > <p,r>

a=t <qt> <p,r> <q,t><q,s> <q,p > <p,r>

Figure 2.2: Difference between flow sensitive and insensitive

b respectively is considered (Figure 2.3 b)). On the other hand, context insensitive
just consider calls made by a function without any context (Figure 2.3 c)). To make
data dependency check more accurate, it is important to have context sensitive as it is
necessary to know which data is being passed to other functions.

fo () fl(intp) f2()

{225 e {ifrlmt(:?;. fo(-a RO
. o ...(); ¢ fge f0 fl*'() f2()
) b
f1(b); “>£1 ()

}

a) b))

Figure 2.3: Example code for context in/sensitive analysis

This work is focused on the static analysis during compilation. Therefore, it is
required to know fundamentals of compilation process. In the next section, compilation
process is briefly explained which is followed by our target compiler (GNU Compiler
Collection (GCC)) architecture description and succinctly explained its internals and
later about the plug-in feature which is used in this thesis.

2.7 Compilation

Compilation process is composed of four main stages which eventually convert the
source code of a computer programming language into the machine language. The
process is being shown in Figure 2.4.

Source code Assembly code Object code Machine code

#ir}clude(stdio.h)) T =G, W 6 e87f4calfd... i 001010101...
gl —»[Compiler =+ " T Assembler comapseer.. = 9=| LINKEr —f 110010001
{ ADDK rl, rl9, r0 b200ba34c6, 111000110...
int i=2; SWI rl, rl9, 4 T

}

Libraries

Figure 2.4: compiler

11

Compiler take the source code as input and transform into assembly language ac-
cording to the instruction set of targeted architecture.

Assembler converts the assembly code into the objective code which contains different
code segments (text, data, bss etc.) and the symbol table. A symbol table is required
by the linker to link other libraries.

Linker integrates existing libraries which is required by the source code. It uses
linker script, which describes the memory of the target architecture, to mark data and
instruction in their respective address space.

2.8 GNU Compiler Collection

GNU Compiler Collection (GCC) is one of the oldest and widely used compiler. In
GCC, a language source code goes through three main stages- front-end, middle-end

and back-end; before it gets converted into the machine language, as Figure 2.5 depicts
the architecture of GCC.

e FRONT END
PARSER P GENERIC
C++ code /
#include<iostream.h>
GIMPLE
LANGUAGE +
INDEPENDENT
TREE SSA MIDDLE END
OPTIMIZATIONS|
RTL
Object code RTL
<€ CODE <
I - | CENERATOR OPTIMIZATIONS
BACK END

Figure 2.5: GCC Architecture

Front End : The front-end of GCC is responsible for parsing the source code and
convert it into trees which is used for further compilation and analysis in the later stages
of the compiler. Inside the front-end, source code goes through lexical and syntax anal-
ysis. It is then converted into intermediate language representation called GENERIC
[22] [29]. The purpose of GENERIC is simply to provide a language-independent way
of representing an entire function in trees (explained in the section 2.8.1).

12

Middle End : The output from front-end, i.e. GENERIC trees, is converted into a
simplified form called GIMPLE [22][30] (mentioned in the section 2.8.2). This process
is known as gimplification. Inter-procedeural optimizations and all optimizations inside
the function, i.e. intra-procedural, is done at GIMPLE. This follows the development
of Register Transfer Language (RTL) from intermediate representation(IR). RTL is
basically definition of statements in the form of registers.

Back End : The back-end part of the compiler converts the intermediate representa-
tion into machine dependent code. Therefore, for each target the back-end is separate.
It takes the RTL developed in the middle-end as input and does optimizations accord-
ing to target architecture. Further, it gets converted into assembly and assembler takes
control from there which eventually end up on generating objective code.

2.8.1 GENERIC Trees

GENERIC is a simple way of representing a function in the form of trees. It reorganizes
the abstract syntax trees from the parser, so that every function has a separate tree.
Further, each statement is a subtree of the function tree. An operand points to other
nodes which are representing characteristics of it. For example, in the Figure 2.6-a the
C code function int g() is conceived in the GENERIC form of tree as Figure 2.6-b
depicts. GCC internals provides separate macros in order to access nodes.

int g() {
int a =5;
int b; e
b=a+ 10;
return b;

linteger_typel lidentlfier node

string

a)

Figure 2.6: A GENERIC tree representation of a function

13

2.8.2 GIMPLE

GIMPLE is a part of middle-end of GCC. It is a language independent and simplified in-
ternal representation of the source code. It mainly uses trees developed at the front-end
as GENERIC is already providing a language independent representation of a function.
However, GIMPLE breaks down complex statements or expressions into three addresses
form. This simplified version of intricate statements is achieved through introduction
of temporary variables. For example, the following left expression is converted into
simple and three operands form statements.

Tl = c * d;

a=>b / Tl;

T2= b;

b=T2 + 1;

a=Dbt+t / (c *d) ; —>

The gimplified version of the source code can be dumped by using the flag -fdump-
tree-gimple. The Figure 2.7-a shows a original C code and Figure 2.7-b is a GIMPLE
representation of the function void £() of the same C code.

£ 0

{
struct A { ... // declarations of temp and local
int a; D.2560 = object.b;
D.2561 = D.2560 + 2;

int b; 2
. object.a = D.2561;
b i.0 = i;
il =1i.0 - 1;
int i; PR
int g(); i.2 = i;
void £() 5= 1.2 == 0;
{ X = 42;
int x; goto <D.1692>;
struct A object; <D.1691>:
D.2565 = g ();

. . D.2566 = D.2565 + 8;
object.a= object.b + 2;

int j = (--1i, 1 2 0 : 1);

i.3 = 1i;
i.4 = D.2567 + i.3;

for (x = 42; x > 0; --Xx) i=1i.4;

{ X =x - 1;

i += g()*4 + 32; <D.1692>:

} if (x > 0) goto <D.1691>; else goto <D.1693>;

<D.1693>:
}
}
a) b)

Figure 2.7: Gimple transformation

A statement in GIMPLE are present in the form of tuple. Each tuple has sev-
eral components reflecting the information about the statement like code, sub-code,
operands etc. A code is an identifier for a GIMPLE instruction. Further, to identify
the type of instruction, GIMPLE has separate instruction set. For example, an as-
sign or modify operation is named as GIMPLE_ASSIGN ; an condition is named as
GIMPLE_COND:; a call for a function is named as GIMPLE_CALL and etc. To know
the whole instruction set one can refer [30]. To distinguish different variants of the
same basic instruction, a sub-code is used to give more detail about the instruction.
In assignments, sub-code has most prominent use, to indicate the operation done on

14

right hand side of the assignment. For example, the statement a = b + ¢ is encoded
as GIMPLE_ASSIGN<PLUS_EXPR, a, b, ¢>. In this example, code (or better say in-
struction) is GIMPLE_ASSIGN through which a value is assigned to operand ”a” (left
hand side) by an operation PLUS_EXPR on the operands ”b” | ”7c¢”. Similarly, every
statement of the function void f() of the C code used in Figure 2.7-a), in GIMPLE
is converted into a tuple as Figure 2.8 b) is showing.

£ () £ ()<

{ ...// declarations of temp and local

gimple_assign <component ref, D.2562, object.b, NULL>
gimple_assign <plus_expr, D.2563, D.2562, 2>
gimple_assign <var_decl, object.a, D.2563, NULL>
gimple_assign <var_decl, i.0, i, NULL>

... // declarations of temp and local
D.2560 = object.b;

D.2561 = D.2560 + 2;

object.a = D.2561;

i.0 = i;
i1 = i.0 - 1; gimple_assign <minus_expr, i.1, i.0, 1>
i=i.l; gimple_assign <var_decl, i, i.1l, NULL>
i.2 = i; gimple assign <var_decl, i.2, i, NULL>
j = i.2 == 0; gimple_assign <eq_expr, j, i.2, 0>
x = 42; gimple assign <integer cst, x, 42, NULL>
goto <D.1692>; gimple goto <<D.1692>>
<D.1691>: gimple label <<D.1691>>
D.2565 = g (); gimple_call <g, D.2567>
D.2566 = D.2565 + 8; gimple_assign <plus_expr, D.2568, D.2567, 8>
D.2567 = D.2566 * 4; gimple_assign <mult_expr, D.2569, D.2568, 4>
i.3 = i; gimple assign <var_decl, i.3, i, NULL>
i.4 = D.2567 + i.3; gimple_assign <plus_expr, i.4, D.2569, i.3>
i=1i.4; gimple_assign <var_decl, i, i.4, NULL>
x =x-1; gimple_assign <minus_expr, x, x, 1>
<D.1692>: gimple label <<D.1692>>
if (x > 0) goto <D.1691>; else goto <D.1693>; gimple cond <gt_expr, x, 0, <D.1691>, <D.1693>>
<D.1693>: gimple label <<D.1693>>
¥ >
a) b)

Figure 2.8: Gimple tuple

2.8.3 Plugin

As GCC is a open source compiler, it is open to any customization. GCC is a huge
compiler and not easy to understand as it has millions of lines of code. In GCC, a source
code goes through several passes. In order to customize GCC, a developer can build
his own pass. To include the new pass in the actual stream of passes, the developer
has to modify pass manager and manually insert the pass at appropriate location. To
compile the new pass, full GCC has to be compiled which takes a lot of time. Therefore,
customization is a cumbersome job.

To solve all aforementioned problems in customizing the compiler, GCC developers
community has introduced the option of Plugins. It allows developer to build the new
pass separately as it can be compiled using GCC as a normal C code. However, it
needs special make file for that which is mentioned at [I]. To use GCC internals,
developer can include GCC header files directly into the code. All data structures in
GCC can directly be used and there is no need to declare them. To use the plugin,
the programmer need to use the option -fplugin (arguments can also be given) while
compiling a source code with GCC. Since, the plugin is compiled as a share object
file, the path of folder where plugin is residing can be given to GCC through option.
Further, developer doesn’t need to change the pass manager, instead, he only need to
mention the pass characteristics like location, type and name of the pass in the code.

15

.............. > paSS A paSS B pass C ooonnoooo000d) >

Plugin.so

pass X o

pass Y 0

pass Z

Figure 2.9: Plugin pass insertion in GCC

A plugin can have more than one pass. It also can replace existing pass in the
GCC. When a source code is compiled using plugin, the pass manager initiate the
plugin and insert addresses of all passes at appropriate locations. After insertion, GCC
goes through passes which are newly included at their locations. As Figure 2.9 is
depicting. after pass A , pass X is executed instead of pass B which eventually be
executed once pass X is finished. Similarly, pass Y, C and Z are executed. With all
advantages mentioned above, we decide that it is suitable to make tool as a plugin and
use the information which GCC already have in the front end and middle end.

2.9 Summary

Multicore systems are becoming prominent due to limits in speed and instruction level
parallelism. Therefore, parallel programming is emphasized more to exploit multicore
systems. For synchronization in parallel programs conventional lock based system is
used which requires extra memory and can cause problems like deadlock, convoying
and priority inversion. Transactional memory can resolve these issues and make pro-
grammer’s life easier, by resolving all conflicts related to the shared data at run-time.
Software implementation of transactional memory is slower and expensive in terms of
memory usage. Hardware transactional memory architectures, TMFab and TMFv2,
provides a good speedup for independent transactions. However, they lose perfor-
mance if a conflict occurs. They can have improvement in the performance if conflicts
details are known at compile time by analyzing algorithm. Algorithm can be analyzed
statically or dynamically. As to detect data dependencies, dynamic analysis requires
multiple execution with different data set to know all dependencies. Therefore, we be-
lieve static analysis is better as it detects all potential data dependencies at one time.

16

To analyze algorithm statically, data and control analysis inside and between functions
are required. A plugin feature can be useful in developing a static analyzer, as it can be
used together with GCC and can access internal language representation information

from GCC.

17

18

The Ci'T Overview

In this chapter, a conceptual overview of the CiT tool is explained. First, the necessity
and features of the CiT tool is mentioned. Also, causes for data dependency between
transactions are illustrated. It is followed by the approach used and conceptual details
of it. Further, feedback provided by the CiT is briefly explained.

3.1 Overview

As parallel programming is becoming more complex, there are architectures which
make it simpler for the programmer. TMFab and TMFv2 are examples of these kind
of architectures which ease the programmability. In these architectures, hardware is
responsible to find data dependencies and resolve them at run-time. Although, during
this process these architectures lose performance. For instance :

e In TMFab, the overhead of validation increases with increase in the number of
processors as well as data dependencies.

e In TMFv2 and TMFab, an abort can cause significant amount of wastage of time
when transactions are huge in size.

e In TMFv2, hazard detection scheme can cause an overhead.

As the programmer doesn’t need to be awared of concurent accesses of the shared data
while writing a transaction, he may end-up with an unoptimized code for a transaction
which can lower the performance.

The CiT! is a tool which analyzes parallel transactions statically. By using inter and
intra-procedural analysis, it predicts potential data dependencies between transactions.
Moreover, the CiT develops data flow and control flow graphs of the transaction which
can aid the programmer to know how a transaction can behave at run-time. It provides
feedback about load-store instructions in a transaction, dependencies inside loops and
warnings related to system calls which can affect performance. The aforementioned
collection of information allows programmer to write a transaction in an optimized way
to improve the performance. We believe that CiT is the first tool which can detect,
statically, potential data dependencies among transactions for hardware transactional
memory.

At present, hardware schedulers of TMFab and TMFv2 can’t execute according to
the information provided by the CiT tool. The dependence aware hardware scheduler
is next step to the CiT. Therefore, the CiT tool is in the mid-way of the road-map
presented in Figure 3.1.

LCiT is derived from Sanskrit word “Chit”which means consciousness

19

Past TMFab and TMFv2

Y

Present C i T tool

[
Y

Future TMFv3

Figure 3.1: Roadmap

If data dependencies details from the CiT are passed on to the hardware scheduler,
the performance of the TMFab and TMFv2 can be improved in the following way:

e In TMFab, if the dependencies are known then a transaction can validate with
only those transactions to whom it is dependent. Therefore, a transaction doesn’t
need to validate with all other transactions which are not dependent, resulting in
improvement of the execution time of the transaction.

e In TMFv2 and TMFab, if there is a data dependency between transactions then
scheduling can be done according to the producer-consumer relationship found
in the flow graph. Therefore, it can avoid validate, abort, restart and hazard
detection overhead.

e In TMFv2 and TMFab, if there is a branch or loop, in which data dependency lies,
is not taken then there is no need to validate. Scheduler can allow the transaction
to commit to the memory.

e A transaction should be descheduled or restart if an abnormal termination occurs.
This will unnecessary validation and abort overhead.

In subsequent sections, causes of a potential data dependency between transactions are
discussed. Later, the CiT approach to detect them and feedback and its meaning in
terms of performance is explained.

3.2 Data Dependency in Transactions

Basically, each transaction is a task which has to be executed in parallel on a separate
processor. Before analyzing for data dependencies, it is required to investigate how a
data dependency can occur between transactions. In other words, it is to be explored
how can one transaction accesses addresses which are not local to it and possibly be
a data dependency. There can be three ways through which transaction can access an
address outside of its stack.

20

Global variables: As global variables are visible throughout the program, any func-
tion can access it directly from the data section of the memory. There is no restriction
on writing or reading on a global variable. Therefore, information about all global
variables should be collected before analysis.

To detect whether a transaction is accessing a global variable, this information can
be used. During analysis, each variable in the transaction can be checked if it is a
global variable. All global variables being used in the transaction can be pushed to a
bin or collecter which collects all potential data dependency addresses for a particular
transaction.

Stack section : Local variables in a function are stored on the stack which are local
to that function only. However, these local variables can be accessed from another
function as well. This situation occurs when a caller function passes the local variable
by reference as an argument to the callee function. As a result of this, callee function
can write or read the data at the address passed by the caller. If the callee function is a
transaction then the address passed by the caller can potentially be a data dependency
for other transactions. For instance, in the Figure 3.2 the variable j, which is on
the stack of main() function, is being passed by reference to two forked functions
functionl () and function2() on two separate transactions TXN1 and TXN2. The
variable j, is being modified in TXN1 and used in TXN2 which leads to a conflict.
Therefore, a data dependency occurs due to the stack variable of a caller function
outside transactions.

main () ..t
intj'¥2; Functionl (*.b)'.' Function2 (*q)
txnl{ e e
Functionl(&j); " rc-- » *p=5; A g=x*q;
txn2{ } }
Function2(&j);
oo
} TXN 1 TXN 2

Figure 3.2: Dependency through stack section of caller function

To detect this type of dependency, call graph of the transaction with context is
required. All indirect references should be monitored to check the address which is
being accessed whether it is coming from outside the transaction through parameters
or is it a local address.

Heap section: Dynamic allocation inside a transaction can also cause a potential
data dependency [21]. When a memory management function like malloc() is invoked
to allocate some amount of data, it checks the heap section for the availability of blocks
of data which is equal or more than the amount required. Once blocks are allocated,
they are removed from the list of available blocks. The list of available blocks can
be accessed at the same time if malloc() is invoked in two transactions which are

21

concurrent. Therefore, it may allocate same blocks of data to both transactions which
can lead to the occurrence of a data dependency.

It is not possible to detect this type of dependency statically. Therefore, a warning
can be issued to the programmer about usage of a memory management system call.

Combination of global and heap section: Another situation can also cause a po-
tential data dependency, i.e., combination of global and heap section. An address
generated through memory management function can also be accessed by any trans-
action through global variable. Linked list is the best example of this case, where any
node can be generated, added or deleted anywhere in the program to/from the list by
accessing the Head and Tail node, which are global. In this case, it would be difficult to
detect the potential data dependency statically. However, a warning can be issued to
the user that transaction is using global pointer and can access same addresses which
may conflict with other transactions.

Apart from aforementioned causes for data dependencies, in TMFab and TMFv2
there are other conflicts between transactions. It is found that stack space of trans-
actions can cause conflicts. Since GCC is a sequential compiler, it doesn’t consider
transaction as parallel task which leads every transaction to use the same stack. These
kind of conflicts are unnecessary as they are not supposed to occur. The possible solu-
tion is to have separate stack for every transaction. It is explained in detail in appendix

A.

3.3 Approach

In order to detect aforementioned data dependencies, it is necessary to track all ad-
dresses which are being passed into the transaction through arguments of the function
and global variables. Therefore, it is required to have data flow between functions.
To know whether data is being read or written on outside addresses which are being
passed into the function, data flow inside the function is a requisite. Thus, the following
information is required:

e Intra-procedural data flow, to keep track of data definitions (assignments and
reading of variables) inside the function.

e Intra-procedural control flow, to keep track of control paths which decide the data
flow inside the function.

e Inter-procedural data flow, to keep track of data flow between functions, i.e.
through arguments.

e Inter-procedural control flow, to keep track of call graph inside a transaction.

In the compiler, the information about Intra and Inter- procedural data flow analysis
is done in order to have optimizations like constant propagation, copy propagation, dead
variable etc. In this thesis, we are analyzing parallel sections but the optimization in
compilers is meant for sequential code. Thus, existing analysis in the compiler cannot be
used and it is required to build new data flow analysis. Similarly, new call graph has to

22

be build for each transaction. However, existing control flow information of a function
Ji.e. intra-procedure, can be used since it is separate for every function. Therefore, data
flow (both intra and inter procedural) and inter procedural control flow is developed
and information regarding intra-procedural control flow from compiler is used for the
analysis.

To understand the flow of the approach, Figure 3.3 can be referred. As it is depicting,
the information from the intra-procedural analysis is used by inter-procedural analysis,
i.e., the information about data flow inside the function, which is developed with the
help of control flow of the function, is required to analyze the flow of data between
functions. Call graph, from the control flow of the transaction, is required to know
which functions are being invoked in the transaction.

Moreover, during the intra-procedural analysis feedback for the code of transaction
written is prepared, as most of the information regarding loops, branches, load-store
instructions, and system calls can only be analyzed within a function. Warnings related
to recursion are analyzed during control flow of transactions.

INTRA-procedural analysis INTER-procedural analysis

e Data Flow |-

N 3 | Data Flow
A .

S

------ Control Flow

AOX>mmQOMmMmmMm™T

Control Flow

.......... t I—

WARNINGS

Figure 3.3: Approach

3.4 Intra-procedural analysis

Data flow analysis is a technique to observe the generation and consumption of a
particular datum through variables. Generally, generation and consumption of the data
refers to definition-use relationship. At every statement, the set of data definitions that:

e Reach the beginning of the statement is called En| |, which can also be referred
as can be consumed.

e Generated in the statement called gen[|, which always have one element in the
set in the case assigning and null in other type of statement.

e Used in the statement called use] |.

e Reach the end of the statement called Ex| |.

23

All four above mentioned conditions can be represented in the data flow equation
3.1. This equation is used to build up the database for variables.

Ez[S] = En[S] U gen|[S|U wuse[S] (3.1)

For instance, consider the statement s in the Figure 3.4 in which z is being assigned

Figure 3.4: Example statement of a code

using y and z. Using equation 3.1

En[s] = {y, 2}
gen[s] = {x}
use[s] =y, z

- Bals) ={x,y, 2}

At the beginning of the statement s, y and z exist in the database. But these definitions
are being used to generate x. Therefore, x is added to the database while y and z already
exist. In the case when En[s] = () and, y and z are being used to assign a value to x
then both y and z should have been added to the database. There can be a case when
x is again defined with older definition already exist. The older definition is termed as
killed definition and discussed in the next section.

3.4.1 Killed definition

It is possible that gen[] and En[] have common elements, i.e. same variable has two
definitions. In that case, each definition is considered to be a data definition of a
new variable. Since instructions are executed sequentially inside a processor, previous
definition is killed and no longer used. Therefore, making a new data definition for
that variable is necessary.

For example, in the Figure 3.5, at statement sl:

Ez[sl] =y, z,a,b = En[s2]

. Generating data variables at s2 is gen[s2] = x, since the element = belongs to En[s2],
it is considered that data definition of x is killed after that statement for whole function.
Therefore, data flow equation is :

Ez[s2] = En[s2] U gen[s2] U con[s2]
Ez[s2] = Ex[sl] U gen[s2] U con[s2]
Ezx[s2| =y,z,a,bUxUc
Ex[s2| =y,z,a,b,c

24

3.4.2 Dependency among variables

From the statement s (Figure 3.4), it can be inferred that definition = is derived by
using y and z on operation op. It means x is dependent on the data definitions y and
z. This information is necessary in order to track variables inside the function. As
this tool is operating on internal representation, a lot of data definitions are in terms
of temporaries. The dependency information also helps to reach actual variable in the
source code, which user can understand while giving feedback.

Consider V, a set of all variables (including parameters and global variables) used
in a function. Dependency relation between two variables can be denoted as function
f with domain X and co-domain Y:

f: X =Y where X, Y € V

For instance, for statement s (in the Figure 3.4) dependency relation of x can be defined
as:

z(s) = f(y, 2)

Further, if y and z have dependencies on a and b respectively then x can be defined at
statement s as:

z(s) = f(fi(a), f2(D))

Suppose a and b are pointer parameters and x is a indirect reference. Through de-
pendency functions z can be traced down to a and b. Hence, it is recognized that an
outside address is being accessed.

In the case of killed information (Figure 3.5), dependency relation of older definition
of x remains intact as that definition exists before the statement s2. Further, in the case
when new definition is dependent on older definition directly or through some other
variables, the dependency relation can still be defined.

Figure 3.5: Killed definition

For instance, the dependency relation at s2 (above) for x is:

25

S2: ¥ =V op-c

Figure 3.6: Dependency relation

x(s2) = f(y,c) = z(s2) = f(f(a,z(s0)),c) where x(s0) = f(b, k)

By now, data definitions generated and consumed considering killed data definition
information. Figure 3.6 can aid in visualizing the dependency relation between data
definitions. In this figure, each data definition is shown in distinct color. It can be seen
that there are two definitions of x and both have different color due to killed definition
of older one at statement S2. In the next section, it is mentioned how a condition can
affect a data definition.

3.4.3 Conditional definition

The code written inside each function is divided into basic blocks according to the
control flow. Therefore, each node in the control flow graph is represents a basic block
of the function. A basic block is a linear sequence of program instructions having one
entry point (the first executed instruction) and one exit point (the last instruction
to be executed). The order of execution of these basic block is defined by control flow.

Control flow can also affect the definition of a variable. One of the typical cases
is if and else condition. As only one condition can be taken at a time, if a variable
is defined under both conditions, it is not known, statically, which definition is taken
actually until run-time. For example, for the section of code in the Figure 3.7, basic
blocks BO and B1 are under the condition in which y is being defined at statement SO
and S1 respectively. Consider, the basic block B2 which eventually is to be executed
after BO or B1. At the statement S2, definition of y is being used by x. The dependency
relation of x can be defined straight in terms of y but definition of y is not certain.
Therefore, all the dependency relations of y, have to be considered for x as well. Hence,
the dependency relations for x and y are:

z = [y
fla,m) when BO is taken
f(b, k) when Bl is taken

3.5 Inter-procedural analysis

Call graph information from compiler cannot be used as it is context insensitive. But
as this thesis is focusing on the parallel task, it is required to make context sensitive

26

Figure 3.7: Conditional definition

call graph. The solution is already in the intra-procedural analysis. In intra-procedural
analysis , information about calls which are being invoked from every function can be
stored. Later, when the entry point (function) of the task is known, inter-procedural
analysis can be done through each call made by that function. For instance, consider
the code given in the Figure 3.8 a).

ENTRY
fo () f1() f2()
{ { { fo() '« ..
f1(); %é() f10) K
Ly " 3 ()
f2(); » f2 ()
b
EXIT =
a) b)

Figure 3.8: a) Example code for a task b) Call graph

For functions fy and fi, calls are:

Jo= {fl,fQ}
fi=A{/s}

Thus, if the entry point? of the task is function fy then call graph would be like as
it shown in Figure 3.8 b). It can also be defined as:

fentry - f(fcalleela fcall6627 ceey fcalleeN)

It can also be defined in terms of dependency function. So, in this example depen-
dencies for fy and f; are:

2 In parallel tasks, entry point and exit point of the task is only one function which can be called as forked
function.

27

fo=f(f1, f2)
fi=f(f3)

Therefore, through entry point function all the other calls, which can possibly be in-
voked, can be reached.

3.6 Detection of data dependency

In above sections, data dependency inside functions and call graph of the transaction
are build up. Using this information, data flow analysis is done between functions in
order to detect data dependency between two transactions. Each external address being
accessed inside the transaction is stored. Later, it is compared with other transactions.
Suppose, the call graph for any transaction is:

fillo, 91) = fo(li, g2) = f3(l2, 93) = o = fai(ln—2,9n-1) = fu(ln-1, gn)

where:

— - data flow between functions.

l; € L; - set of local memory addresses which are passed on by caller function 7. [y is
set of locals from the parent function i.e. outside the transaction.

g; € G - set of Global memory addresses.

fi € F - set of Functions

Every address passed as a argument in the function is tracked through the depen-
dency relation build up inside a function. All outside addresses in a function on which
a data is being read or written is stored.

.. For any transaction Ti potential data dependency set:

Dri = fi(lo, 91) U fa(li, g2) U ... U fu(ln-1, gn)
= Dependency between transactions T7 and T'j:
D = Dy N Dy

D =) when both Dy; and Dr; contain only read set or write set (when in same phase).

3.7 Feedback

Using inter and intra procedural analysis, there are several feedback which CiT provides
to the programmer in order to have optimized code for the transaction.

3.7.1 Dependency within Loop

Dependency in a loop may act as catastrophic element for the performance of the archi-
tectures TMFab and TMFv2. As it is already explained in background chapter that in
transactional memory architecture, a transaction only validates when it completes the
execution of the code inside it. Hence, if there is a conflicting memory access inside a
loop in transactions, then it is detected only when it completes all the iterations of that

28

loop. Consequently, one transaction has to abort when it has completed all iterations,
which may prove be really expensive. To provide this information to the programmer
is important, to have an optimized code for the transaction.

3.7.2 Dependency inside a branch

Knowledge about a potential data dependency in terms of control flow can be really
useful to hardware. If a potential data dependency is there in a branch then it may
be speculated whether that branch can be taken or not through branch predictor,
thereby, allowing hardware to take action according to the condition. For example,
in the Figure 3.9, assume that there is a data dependency at node 4. If the path
1 - 2 — 3 — 5 is taken then the transaction has avoided the data dependency.
Therefore, if scheduler get to know this situation, it can avoid validation overhead and
can directly commit to the memory.

1

2

N

3

/
i

Figure 3.9: A potential dependency under condition

Each variable has information in which block and line it is used. Once the potential
data dependency detected it can be checked through the control flow graph of the
function. This information can be pass on to scheduler to take necessary action at
run-time.

3.7.3 Load and Store

The number of load and store instructions can be inferred as the dataset. This dataset
information can be useful in terms of cache size. Assuming all load and store instruc-
tions are different, the transaction can reside completely in the cache or not.

The load-store information is extracted through temporaries in the GIMPLE inter-
nal representation. Basically, each temporary variable used in internal representation
eventually gets converted to registers. Rest of the variables which are declared by pro-
grammer are resides in the memory. Hence, accessing them is a load/store instruction.
The total number of load and store operation are stored for each block. Using control

29

flow graph, the maximum number of load store instructions can be calculated. How-
ever, loop should be considered but as statically it is not possible for estimating number
of iterations, only one iteration is considered for each loop.

3.8 Warnings

CiT gives warning about the possible cases which may happen during execution. The
following are warning descriptions:

3.8.1 Abnormal termination

Using GCC information about control flow, the CiT extracts the information about
entry and exit of a basic block. It checks and warns if there is no exit from a basic
block. If a basic block doesn’t have any exit and it is not the terminal of the function
then it is considered that it can be a abnormal termination of the program. Any
abnormal termination in the transaction should mean that the transaction has to be

descheduled.

3.8.2 Memory management functions

As it is discussed in section 3.2, invoking a memory management function like malloc
may create a potential data dependency. Therefore, it is necessary to inform program-
mer about it. While making call graph inside the function, it can be checked whether
there is any call to such system calls. A warning can be issued on discovering such
memory management calls.

3.8.3 Recursive

Recursive functions are many times useful in programming. But it can cause an over-
flow of the stack or if there are speculative writes inside that function it may cause
Speculative Write Buffer overflow. Also, if there is recursive call loop and if it is not
programmed carefully then it can cause infinite call loop. For example, if a function
A is invoking function B and further function B is invoking A then program may fall
in the loop with functions A and B calling each other. To make programmer aware of
this situation, the CiT checks this condition during interprocedural analysis.

30

CiT Tool- Architecture

In this chapter, the implementation of CiT is discussed in detail. First, CiT plugin
placement in the GCC architecture is briefly explained. Thereafter, Ci'T architecture
is introduced. Intra and Inter procedural analysis is illustrated in detail. It is followed
by explanation of algorithm to detect potential data dependencies. In the end, process
of extracting feedback information is discussed.

4.1 CiT plugin placement

The CiT tool is a plugin for GCC 4.5 and works on GIMPLE internal representation
(IR) which is at middle end of GCC architecture. In GCC, there are several passes
which work on GIMPLE IR; a set of them do inter-procedural optimization and others
intra-procedural optimization. This (CiT) plugin is inserted between inter-procedural
optimization and intra-procedural optimization as it is shown in Figure 4.1.

To detect a potential data dependency a data flow inside and within functions, i.e.
intra and inter procedural, is required as it is already explained in chapter 3. Since
there is no such data flow in GCC specifically for transactions or parallel tasks, it is
required to implement it. To develop the data flow between functions call graph is
required which can be extracted through intra-procedural analysis. However, GCC
also has call graph information but it is context insensitive which is not suitable for
our objective. Therefore, plugin should be placed as GIMPLE intra-procedural pass.
At intra procedural optimization, intermediate language becomes more complex in
terms of temporary variables. Thus, Ci'T plugin is placed just before intra-procedural
optimization passes (Tree SSA is the first pass of this kind).

GIMPLE

Inter- procedural
optimizer

CiTPlugin - >

S SSA optimizer

Figure 4.1: CiT Plugin placement

31

4.2 CiT Architecture

CiT plugin composed of various passes as shown in Figure 4.2: Initial analysis, Flow
sensitive analysis, Context sensitive analysis.

e Initial Analysis: All declarations of functions (with their arguments) and outside
functions, like global variables, are analysed in inter-procedural analysis(IPA) in
GCC. Therefore, to get the information about these declarations from GCC, this
pass is inserted as a GCC inter-procedural analysis pass.

e Intra-procedural analysis: To analyze each function individually, this pass
is inserted as an intra-procedural in GCC. In this pass, each variable at every
statement is extracted with all information related to it and stored it into a new
database. Further, it builds up the flow sensitive data flow tree using dependency
among variables and kill information as explained in the chapter 3. Moreover, con-
trol flow graph is made using the basic block details in GCC to help in developing
the data flow and feedback.

e Inter-procedural analysis: This pass is used to build up inter-procedural data
and control flow using details from previous pass for each transaction. During
this analysis, all addresses (which may occur as potential data dependency) and
feedback information are stored. Later, another analysis is done to detect conflicts
and report is generated.

CiT Plugin
Initial Analysis Intra—?rocedural Inter-procedural
Analysis Analysis

Globall variables ——>| Flow-sensitive |———>| lcontext-sensitive
Analysis analysis anlaysis

Figure 4.2: CiT Architecture

4.3 Initial analysis

The main purpose of this pass is to have details of global variables and function dec-
larations with their arguments. Global variables are one of the most potential data
dependencies as they can be accessed anywhere in the program. Thus, the set of global
variables is made up so that it can be used to detect a global variable while analyzing
variables in intra-procedural pass.

In GCC, during its inter-procedural analysis, information about global variables
is stored in the linked list data structure called varpool_node. Since, it cannot be
accessed in intra-procedural passes, it is required to make a new database for them
which can be accessed during data flow in the next pass. The new data structure

32

for the same is named as gbs. In this database, every global variable is stored in
their corresponding type of bin. Here, a bin is an array type of data structure gbs
and for each data type, there is a separate bin. For example, a global variable is of
structure(record) type then it is put into bin called recglobal.

For inter-procedural data flow analysis, it is required to know the arguments of
the functions as to identify the data transfer. GCC stores all declarations information
about functions in a tree which can be accessed through a pointer to structure called
cgraph_node. Each node in the tree is a function. Since arguments of the function are
also stored as a tree, DECL_ARGUMENTS macro is used to get the address of the root of
the tree of arguments. By traversing the tree, all arguments can be accessed and stored
into a separate database for functions.

4.4 Intra-procedural analysis

In intra-procedural analysis, every function is analyzed individually and all details are
stored in an array data structure called func (refer Table B.2 in Appendix C). It
contains information related to variables, parameters, callee functions with arguments
pushed to them, and basicblocks. In this analysis, variables are extracted through GCC
trees which are used in building the data flow. Also, the control flow of the function is
analyzed.

In order to perform aforementioned analysis, GCC internal macro FOR_EACH_BB tra-
verses through all basic blocks. Subsequently, to work at granularity level of statements,
each statement is processed through statement iterator as given below.

FOR_EACH_BB(bb) { // Traversing each basic block

gimple_stmt_iterator gsi;

gsi = gsi_start_bb(bb);

for (gsi; !'gsi_end_p(gsi); gsi_next(&gsi)) // Statement iterator
processGimpleStatement (gsi_stmt(gsi), &gsi);

Each statement is further identified as an assignment (GIMPLE_ASSIGN), call
(GIMPLE_CALL) and condition (GIMPLE_COND). To extract variables, GIMPLE_ASSIGN
and GIMPLE_COND is used. To make call graph with arguments, i.e. for context sensi-
tivity, GIMPLE_CALL is useful.

4.4.1 Variable information extraction

Before building the data flow, it is necessary to extract a variable with its at-
tributes from GCC trees. Most of the variables are extracted by analyzing
GIMPLE_ASSIGN statement. GIMPLE_ASSIGN can have three types of statements:
GIMPLE_BINARY_RHS (operands with binary operation), GIMPLE_UNARY_RHS (operands
with unary operation) and GIMPLE_SINGLE_RHS (single assignment). Each operand is
taken individually and analyzed using a general framework called processOperand. In
this framework, all types of declarations (given in Table B.3 in Appendix C) are checked

33

through macro TREE_CODE of the operand and stored with their attributes information
into database in the form of variable data structure (Table B.1 in Appendix C) as
sample code is given below.

processOperand (operand) {
switch(TREE_CODE (operand)) {
case VAR_DECL: variable[].name= DECL_NAME (operand) ;
case INDIRECT_REF: variable[] .referas =INDREF ;
case ARRAY_REF: variable [].type = AR;
}
}

There can be many combinations of declaration for a variable, e.g. *P, where a pointer
is dereferenced. It is indirect reference and also a variable declaration. For such cases,
GCC extends the tree and both (or more) information can be extracted through nodes.
Some important cases which are required to know are mentioned below.

Dereference of a pointer It is necessary to know the pointer declaration in the case of
indirect reference. Thus, processOperand is again invoked to get the exact declaration,
e.g. indirect reference of a parameter or structure.

Array offset In the case of an array, apart from a variable declaration the offset
which represents a particular element in the array can also be extracted. It may be a
constant or another integer type variable. Using the offset, it may be predicted that
which elements are being accessed or which variable is responsible for that.

Structure field Sometimes it is not enough to know a structure variable as it is
comprises of many fields. Therefore, to be more precise in terms of memory it is
necessary to know which field is being accessed.

Each variable can be of three types: pointer, integer, real. It is important to know
the type as it depicts whether a declaration holds a address or a value. For example,
in the statement below:

int* p;
p = &a;
*p = b;

p is a pointer type which is holding address of a but *p is a integer type declaration
which is holding the value b. Therefore, *p is considered as a new variable data defini-
tion which is different from p. In the Figure 4.3 b) an example of a database created
for source code in Figure 4.3 a) is given.

4.4.2 Building Dataflow

In creating variable database, data flow equation 3.1 mentioned in the chapter 3 must
be applied. This is done by following conditions:

34

Variable Database

funcq{
. . Function Array/ Record Variable Array Global Constant? Constant
sO intp =4; name Record name Name Type element o Fonsien Value
struct character m;
char r[4]; .
4] func p int - No N
s1 q=p + 2; func AR rint 4 No N
52 m.a= &p; func RE m a point - No N -
<3 M2]='c": func int - No Y 2
}
a) b)
Figure 4.3: a)Source code b) Variable database
Generation and Consumption : According to eq 1, if set En[sland use[s| have

common variable, then variable in use[s| is not pushed to the database. Instead, the
variable inEn|s] is considered. For instance, consider the code given in the Figure 4.3.
At statement s1, En[sl] = {p} and use[s1] = {p, 2}, thus, in database existing variable
p is considered. But at the same statement, constant ”2” which didn’t exist before sl
is pushed to the database.

Kill information : It is possible that gen|] and En[] have common elements. It
means a data definition is generated which is also being consumed. Thus, a new value
is being assigned to a variable which has already been read before. Since, it is sequential
execution inside a function, the older value is not used further. Therefore, it is necessary
to create a new variable in the database. Thus, the database has now two duplicate
variables. Figure 4.4 is depicting an example of it. At the statement sb, En[sb] =
{p,q,2,m.a,r]2]} and gen[s5] = {p}. Hence, new variable p is pushed to the database.
Now, generated definition of p is killing the older definition which is not pop out of the
database. It is important to have both definitions of the variable, since dependency
relation of older definition has to be maintained. It is explained in detail in the next
section.

func{ Variable Database
struct character m; Egrr]ncgon nggr/d ifﬁféd m:ﬁ:le Type :|rerfnyent lobal Conston \C/gﬁ:ant
char r[4];
unc p int - No
sl: q=p + 2; func AR r int 4 No N
s2: m.a= &p; func RE m a point - No N
s3: rM2]= 'c" func int - No Y 2
s4; —fonep it - No N _=——
}
a) b)

Figure 4.4: a)Source code b) Variable database

Dependency between variables : It is necessary to know the dependency of variable
in order to estimate exact value by tracking dependencies of the variable. Consider the
source code below, for instance, we need to know the value of variable a.

35

c =17,
b = c;
a=>b+ 3;

Now, variable a is dependent on variable b and constant 3. Further, b is dependent
on ¢ which is defined as 7. It can be observed that the ultimate value of a is 7 op 3,
since ¢ has value of 7 and b is equal to c. As op can also be known, then actual value

is calculated which is 10 in the case of +’.

4.4.2.1 Approach

In order to make dependency relation, two approaches are conceived. In the approach
I, right hand side variable, i.e. assigning variable, points to the left hand side variables
as shown in Figure 4.5 a). On the other hand, Figure 4.5 b) shows the approach
IT in which left hand side variables are pointing to right hand side variable. In the
approach I, a variable can be the dependency for many other undetermined number
of variables. Thus, a variable in the database needs unknown number of pointers.
Dependency relation is made from source to destination. Therefore, all the destinations
can be reached. But in approach II, a variable is dependent to maximum two operands.
However, operands may have their own dependencies which must be taken care of at
the time of their assignment. Therefore, for any assignment there are maximum two
dependencies which limit the number of pointers required to two. In the approach
I, dependency relation from destination to the source is build up. Hence, from any
destination the source can be reached.

’ A
c=7 c=7
b=c b=c
§=b+3 4=b+3

O~
I
Q
0
Il
Q

Q
c

c->7

b->c->7
7->c->b->a->c a->b->c->7
3->a->cC a->3

c>a->b->c>7

c->a->3

) d)
Figure 4.5: a) Approach I b) Approach II

Apart from implementation difficulty in the approach I as it needs unknown amount
of pointers, there is one conceptual problem for the requirement of this thesis. The

36

problem is in order to track each and every dependency, we have to start with the
source. For all reachable destinations, context can’t be cleared. For instance, consider
the approach I used in the Figure 4.5 a). In the dependency relation in Figure 4.5 ¢)
constant 7 and 3 can be reached to a but with out any context of a being used. On the
other hand, through dependency relation in Figure 4.5 d), developed using approach 11
(Figure 4.5 b)), a is reaching both 7 and 3. Now, if operation + is recorded in database
of a when it is being defined then the context is known. Therefore, context can be
known in approach I.

Although, the approach I can be useful when parameter is a pointer. Through
parameter pointer all destinations where it is dereferenced can be reached. However,
the case where dereference of pointer is being assigned, is not reachable since its source
is different. Therefore, it can only be helpful when dereference parameter pointer is
being read or address in the pointer is assigned to other pointer.

In approach II, source can be reached from any destination. It maintains the se-
quential consistency, i.e. at every statement it considers all the definitions reached to
that statement. It is quite useful in the point-to analysis where it tries to include all
offsets. Hence, the approach I fits perfect to our requirement. To hold the right hand
side operands in left hand side variable database, two pointers variable *value and
variable *valuel are used. By accessing these pointers, dependency of the variable
can be reached.

Special Cases There are special cases where dependency relation is considered in
different style.

e Address reference (&p): An address of the variable can be assigned to a pointer
using an address operator. For this case, a special pointer variable *addr is
included in the variable database. Thus, a pointer variable points the variable
whose address is being assigned but in context is different. While accessing the
pointer during analysis, through variable *addr the variable can be reached
whose address is stored.

e Dereference of pointers (*p) When the pointer is dereferenced, a new variable
is generated which points to the pointer variable ,which is being dereferenced,
using the special pointer variable *addr.

e Condition When a variable is dependent on two definitions of other variable in
condition then special pointers variable *condl, *cond?2 is used.

4.4.3 Building Call graph

A call to a function can be recognized using GIMPLE_CALL statement. Callee func-
tion name is extracted using GCC internal function gimple_call_fndecl(stmt).
All calls in a function is recorded in the database of the function, i.e. function
,as first come first basis so as to maintain sequential consistency. Basically, fnptr
array field in the function structure points to all callee functions. Moreover, the
arguments can also be extracted which is being pass to the callee function using
gimple_call_arg(stmt,argno). As we are only interested in checking arguments

37

which are passing the addresses, all the pointer type variables are only considered. To
record arguments, argu array points to all variables which are arguments to a particu-
lar function call. Figure 4.6 is depicting an example call database of a function. This
information is really useful as it has context calling which is required in our work.

f0 {
q j zaar [(01; 0
P ! Efl arg{p}
oo £f2 arg{sb, ar}
£1 (p); £1 arg{q}

£f2 (&b, ar);
£l (q);

}

Figure 4.6: Building context sensitive call graph

Normally, only functions which are defined in the source code are considered to be
recorded. All library functions and system calls are ignored. System calls related to
memory management can be a cause of data dependency which cannot be detected
as it is explained in the chapter 3. Therefore, these calls are recorded so as to issue
a warning if a function which is invoking them comes under transaction. Further,
it recognizes function calls which spawns a transaction or parallel task. For example,
if there is a call like transaction_start which spawns transactions, it searches call
arguments for the function pointer (the entry point of the transaction). Further,
variables are recorded which are being passed to it as arguments.

4.5 Inter-procedural analysis

In inter-procedural analysis, addresses which are potential data dependency in the
transaction is detected by using context sensitive call graph. In the section 4.4, all the
callee functions is recorded with the context, i.e., argument being passed. Further, the
entry point of the transaction is also perceived through the parent function which is
spawning transaction. Using this information, transaction call graph can be developed.
For example, consider the transaction in the source code given in Figure 4.7. In this
code, main function is spawning transaction with entry function £0 and m as argument
to it. The function £0 is further invoking functions |f1|and £2 with arguments a
and b as context. To simulate the execution of the code in the transaction, the call
graph is made up accordance to the location and context, functions are being invoked
with. In this example, {0 is calling f1 which is further calling f3. Subsequently, 2 is
being invoked by f0 , which eventually invoked f3. Hence, call graph for transaction is
developed as it is shown right hand side of the Figure 4.7.

38

ENTRY of txn

Q’ Transaction Call graph
main { £0 { £1 { £2 {
txn (£0,m) £1(a) £3(p) £3(q) £0(m) —£1(a)—£3 (P)
S~ £2(b)—>£3 ()
} £2(b) } }

}

EXIT of txn

Figure 4.7: Call graph of a transaction

4.6 Address detection in Transactions

In the intra-procedural analysis, variable information is extracted and stored into a
database. Dataflow equations are considered while building up the the database. Fur-
ther, dependency relation is made up among variables. Also the call graph for each
function is recorded which is used in inter-procedural analysis . Therefore, to detect
the dependencies every information is available.

In order to detect the potential data dependency, it is required to know whether
the address being accessed inside the transaction is local or not. To check this, each
variable in the function is tracked. It is done using the dependency graph created among
variable in the data flow. The source of the variable can be outside the function. This
will be the case for most of the potential data dependencies except global variables.
Therefore, it is necessary to use the call graph of transaction.

The process of analyzing the transaction is being depicted in Figure 4.8. The process
starts with analyzing the entry function. First, each variable in the entry function is
tracked and the address is recorded which is not local to transaction and might be a
potential data dependency in transaction’s address collector or bin. By now, entry is
analysed but there can be a case where other calls in the call graph might be accessing
shared data. Therefore, using the call graph, the callee function is connected with
context to the caller to do data flow analysis i.e. tracking variables. Further, the
process is repeated for calls inside the callee functions. This process is done for each
call invoke by any function inside the transaction.

In data flow analysis, objective is to track: 1) external addresses which can be ac-
cessed through parameter, 2) global variables. All indirect references are main concern,
where a pointer is dereferenced and the address, residing in it, is accessed.

4.6.1 Implemented algorithm

In the data flow analysis algorithm (Table 4.1), each variable is tracked if it is a indirect
reference. In tracking algorithm (Table 4.2); every dependency of concerned variable
is tracked to reach the source. For example, in the following code, if we need to reach
the source of indirect reference *m, algorithm checks pointer containing the address i.e.
m. After reaching m, it can reach to another pointer 1 and also the offset 4. Here, 1
is first and 4 is second dependency of m. The offset is stored to have precision. Using

39

11

TRANSACTION

ENTRY

Func0 ()
DATAFLOW ANALYSIS

Data transfer Funcl()
CALLEE FUNCTION 1 —— DATAFLOW ANALYSIS

CALLEE FUNCTION 1 ----+ >

: Data transfer
Y P « Punc2()
CALLEE FUNCTION 2 —> DATAFLOW ANALYSIS

CALLEE FUNCTION 1

EXIT

Figure 4.8: Methodology to detect data dependency

the dependency of pointer variable 1, parameter pointer p is reached which further
connected to its dependency in the caller function. So, if caller function lies outside
transaction then reached variable through pointer parameter p is the source. The source
is stored with offset 4. It is compared with stored addresses in other transactions to
detect the dependency. In the case of structure, when there is indirect reference to a
field then it is stored as offset. Although, tracking continues to search for the actual
data structure variable.

func (p) {

int *1;
1=rp;
m=1+4 4;
*m=7

*p = 53

fn2 (m,1l,p);

4.7 Control Flow

A function is composed of several basic blocks which has linear sequence instructions
with one entry and one exit instructions. Conditions inside a function decide which
basic block to be executed. Thus, the flow of these basicblocks is called control flow of
the function. As it is mentioned in B.1, each basic block can be accessed by traversing
the tree in which they are store. In GCC, information about preceding and succeeding
basic blocks is stored in the form of a tree, where a node is a basicblock and each edge

40

Algorithm for data flow analysis

for all variables in function

{

if cur. var. is refered as INDIRECT referece

{
source var. = track (cur. var.)
if source var. outside of txn.
txn. add. = source var.
if cur. var. is record
txn. add. offset = cur. var.
}

if cur. var is GLOBAL
txn. add = cur. var.

Table 4.1: Data flow analysis algorithm

out of that node are successors of it. Using macro FOR_EACH_EDGE, all the succeeding
or preceding edges can be accessed. If a basicblock has condition as a last instruction,
it has two edges: true and false. It can be checked which edge is true through the
flag EDGE_TRUE_VALUE and similarly EDGE_FALSE_VALUE for false. However, in the case
of switch number of edges is equal to number of cases. This can be recognized when
statement is GIMPLE_SWITCH. Therefore, the control flow graph can be build up using
all the aforementioned information as it being depicted in Figure 4.9.

function { a=1
a=1; a>2
if (a>2) T F
b =3;
else b=3 b=4
b = 4; N N S- Switch
. T- True
switch (b) F- False
{ N-Normal
1: =3.
case c =3; | C=3| s || =%
case 3: ¢ = 5; N N
default: c = 6; N
} a =cC
a=c;

}

Figure 4.9: Control Flow graph

A basicblock must have atleast one edge coming out of it. If a basicblock is the
terminal then there is no edge out of it. However, many times a normal basicblock may
not have any succeeding edge, e.g., in the case of exit (a system call which terminate the
program) or assert. This type of termination can be termed as ” Abnormal termination”
and discovery of it will be given to the user as warning.

41

Algorithm for tracking a variable

while variable exists

{

if var. is a parameter
{
if var. resides outside txn
return var.
else
var. = dependency of var. in caller function
}
else // if var. is not a parameter
{ if var. resides outside txn
{
if var. is pointer
if var. has 2nd dependency
tx. addr. offset = 2nd dependency
if var. has 1st dependency
return 1st dependency of var.
return var.
}
if var. is pointer
if var. has 2nd dependency
tx. addr. offset = 2nd dependency
if var. has 1st dependency
if var. is para
return track var.
else // var is not a pointer
var. = lst dependency of var.
if var. is paratmeter
return track var.

Table 4.2: Tracking algorithm

4.8 Extraction of information for feedback

Warnings related to recursive functions and loop, abnormal termination and suage of
memory mangement function is discussed in previous sections. In the following sections,
extraction of loop information and load-store information is explained.

4.8.1 Loop Information

Loops in GCC are broken into several basicblocks at GIMPLE level. Thus, loops can’t
be recognized until unless control flow is analyzed. However, GCC while breaking
the loop store its characteristics and mark each basicblock according to them. The
basicblock which is entry to the loop body is named as header and the back edges

42

leading to the entry block from inside the loop is called latch.

Loop analysis done by GCC can be used by initiating loop_optimizer_ini. In
this analysis each basicblock has information regarding the loop. A basicblock data
structure contains loop number if it comes under a loop. Also, it has information
regarding loop depth, i.e. if a basicblock is in nested loop. Now, this information is
passed on to the variables being defined or used in that basicblock. Therefore, every
variable has information whether they are in a loop or not and at which depth. This
is one of the feedback given to the programmer if the variable is a potential data
dependency.

4.8.2 Load-Store instructions

Load and store can be percieved in GIMPLE internal representation. All temporaries
are eventually converted into registers at assembly langauge. Therefore, all variables
declared by programmer resides in the memory. Thus, load and store instructions is
used to fetch them form he memory. CiT does make difference between temporaries and
actual variables. Fach variable has information in the database about being temporary
or actual variable.

In order to calculate maximum number of load-store instructions, it is necessary to
consider the control flow which decides which instructions are going to be executed.
As control flow graph is developed in terms of basic blocks, number of load-store in-
structions for each basic block is calculated. Now, control flow graph can be considered
as weighted directive graph with number of load-store instructions as weight as shown
in Figure 4.10 a). All paths are considered to find out the longest weighted path. At
each node, all possible path is taken as one by one. For instance, Figure 4.10 b), from
node 1 red is chosen first. Moving on red path, again at node 3 there are two different.
First, teal color path is taken and then blue path. Similarly, when all paths are covered
with node 3, it returns back to node 1 to cover all possible path through green. While
traversing through the graph, maximum weight is calculated.

a) b)

Figure 4.10: a) Weighted control flow graph b) Conditions inside control flow

43

A control flow graph can’t be always directed acyclic graph. It become cyclic when
there is a loop inside it. The methodology explained above will not work since a node
find itself in the loop and it again try to search the same path. To overcome this
problem, header information from loop can be used. Every loop start and end with
header. It is the condition which decides whether to take iteration or not. Using the
loop information, the basic block with header is named as header (H). The approach is
to skip the header and go out of the loop. For instance, in the Figure 4.11, from node
1 which is header if path taken for node 2 then after node 6 it will again reach to node
1 header. To avoid it before reaching to node 1 it check the next node if it is header
then it skip and choose the other path. Therefore, node 6 skips node 1 and reach node
3. Thereby, it covers one iteration of the loop and avoid to get stuck in infinite loop.

Figure 4.11: Loop in a control flow

44

Results

This chapter describes the performance of the CiT tool when it was tested with a
custom made application, more realistic application found in literature. Moreover,the
first application was tested on the TMFv2 simulator, and the results are analyzed.

5.1 Experimental Evaluation

The evaluation of the CiT tool is done on the basis of its efficiency in detecting data
dependencies. Efficiency is measured in terms of detecting dependencies which are
static, and will certainly produce a conflict. To verify the CiT tool, applications are
required in which data dependencies are already known. These applications should
have characteristics which can bring out the feedback aspects and all types of data
dependencies that the tool can detect. In order to do so, we have written a custom
application. Further, several applications from the STAMP benchmark suite [24] are
also chosen. Based on the feedback remarks are made for each application.

5.1.1 Custom Application

All data dependencies which are induced into the custom application are through:
1. Global variables.
2. Accessing addresses which are passed through parameters.

3. Accessing elements through global pointers in the heap section of the memory,
like for example, in a linked list.

In this test, there are six parallel tasks. All data dependencies between tasks are
already known. The dependency relations between tasks are shown in Figure 5.1 and
explained below:

Task 1 and Task 2 : Task 1 and Task 2 are accessing the same address in the stack of
the main function, which is being passed to both tasks as an argument. Task1 is writing
on the address by passing it to the callee function. However, Task2 is accessing the
address in itself.

Task 2 and Task 5 : Task 5 is reading the address of a local variable in the function
which is outside the transaction, while Task 2 is modifying it.

Task 2 and Task 3 : Both tasks are accessing the same array C.

45

Task 1 and Task 4 : Task 1 is writing on array A and Task 4 is reading the same
array. However, they are not accessing the same element.

Task 3 and Task 4 : Task 3 and Task 4 both are writing on a field of the structure
in the function.

Task 5 and Task 6 : Task 5 is generating a node of the list and Task 6 is changing
the key of the given node.

TASK1

4

TASK2 TASK4

TASK6

TASK3

Figure 5.1: Dependent tasks in Test application

The application was compiled with the CiT tool and created the dependency graph
of Figure 5.2. This graph is similiar to the one depicted in Figure 5.1. In Table 5.1,
the results are almost as expected except in one case. In case there is an array access,
the CiT doesn’t take the offset into consideration and shows dependency if any element
is being accessed . Therefore, Task 1 and Task 4, which access different elements, are
shown as dependent.

Type Expected Result
Static conflicts 5 6
Dynamic conflicts 2 2

Table 5.1: Result of the CiT tool

All the green lines represent static dependencies between tasks, while the red lines
are depicting dynamic dependencies. Since Task 5 and Task 6 both are accessing the
global pointer variable, they might access addresses which are residing in the heap
section. Therefore, the CiT tool is showing dynamic dependency. In case there is
a memory management function being used, by a transaction a warning is produced
that indicates a potential dynamic dependency when another transaction uses the same
function. In this application, only Task 6 is invoking the function and subsequently the

46

Thread #0 Approx. Data written =12 Bytes

task5 task3

task6 task4

Figure 5.2: Graph generated for test code

‘ Test Application ‘ ‘

Dependency under loop 2

Warning abnormal termination Yes
Warning recursive No
Warning memory management system calls | Yes

Table 5.2: Feedback for custom application

warning can be ignored. An abnormal termination warning is generated when system
call assert is being used.

WARNING: memory management function is being used
WARNING: Abnormal Termination found

5.1.2 Realistic Applications

There are many realistic applications in STAMP benchmark suite [24] version 0.9.10 in
which static conflicts are known through [20]. The native (non-simulator) input sets of
the STAMP benchmarks suite are used. In order to test the tool, we have chosen two
applications, Kmeans and Bayes, with different characteristics as shown in Table 5.3.

5.1.2.1 Kmeans

Kmeans groups objects in an N-dimensional space into K clusters. In the transac-
tional memory version of it, the update of cluster’s center that occurs in each iteration

Application Tx Length R/W Set Tx Time Contention
bayes Long Large High High
kmeans Short Small low low

Table 5.3: Characteristics of Kmeans and Bayes [241].

47

is protected through transaction. The application has only one transaction, there-
fore, is compiled using GCC with the CiT plugin integrated. The output of the CiT
tool is depicted in the following graph in which the green lines show the data de-
pendencies. The two static data dependencies were then compared with the results
of [20] and found to be the same. In addition to those, the CiT is depicting also
dynamic data dependency. According to STAMP benchmark paper [24], the vari-
able which is being detected as a dynamic dependency by CiT, can’t be changed by
other transactions. The reason for which CiT is detecting it as a dynamic depen-
dency is that the argument passed to both transactions is the same. If the argument
is changed, the CiT doesn’t show any dynamic dependency. According to the feed-
back report, which is summarized in Table 5.4, both static dependencies are found
inside the loop and also inside the branch. This information is confirmed by the con-
trol flow graph inside the transaction as it shown in B.1 in Appendix C. There can
be a possibility when loops are not taken then the static conflicts may not occur.
Therefore, even static data dependencies are not always the cause for conflicts, which
is contrary to the definition of always conflicting atomic sections in this paper[20].

Thread #0 Approx. Data written =16 Bytes

| : Thread #2 Approx. Data written =16 Bytes Thread #1 Approx. Data written =16 Bytes
(3]s X g =t o = ~ \2
(34 134
Static conflicts 2
Dynamic conflicts 1
Maximum load and store assuming one iteration per loop | 78
Dependency inside loop 2
Dependency inside branch 2
Warning abnormal termination No
Warning recursive No
Warning memory management system calls No

Table 5.4: Feedback report for Kmeans

5.1.2.2 Bayes

Bayes is a machine learning algorithm. It is focused on learning the structure of a
Bayesian network. In the transactional memory version, Bayes has two transactions
containing different methods: createTasklist and learnStructure. In [20], 5 static con-
flicts are found, however it is not mentioned that which methods of transactions are
considered. We have considered four transactions, to predict conflicts in each combina-
tion of methods. Figure 5.3 is showing the graph buildup between createTasklist and
learnStructure by compiling Bayes with the CiT tool.

48

““““““““““
I |
(IHT ‘
J
—_— e/

N —_—

Figure 5.3: Control flow of learnstructure and createtasklist

Transactions containing the method createTasklist Two static dependencies be-
tween transactions having the same method createTasklist are found. As depicted
in Table 5.5 , both are in the loop. Assuming that the branches are taken then the
percentage of performance degradation will be dependent on the number of iterations.

‘ Transactions - createTasklist and createTasklist ‘ ‘

Static dependencies 2
Dynamic dependencies 0
Maximum load and store 1122
Dependency inside loop 2
Dependency inside branch 2
Warning abnormal termination No
Warning recursive No
Warning memory management system calls No

Table 5.5: Feedback report for Bayes transaction createTasklist

Transactions containing methods createTasklist and learnStructure In transac-
tions with methods createTasklist and learnStructure, 2 static conflicts are found.
Besides that, there is a warning about memory management functions being called.
However, only transaction with method learnStructure is invoking as it is not found
with createtasklist mentioned in the above section. As it is mention in the Chap-
ter 3 section 3.2, if two transactions are using memory management system calls then it
may cause a dynamic dependency. Therefore, it is safe to use memory management sys-
tem calls when createtasklist and learnStructure are transactions. As Table 5.6
is depicting, it is also found that there are warnings about abnormal termination and
recursive functions. When abnormal termination occurs then the amount of work done
till termination is wasted. Therefore, if it happens inside of a transaction, then the
processor should not validate and commit but rather should be descheduled.

49

‘ Transactions - createTasklist and learnStructure ‘ ‘

Static dependencies 2
Dynamic dependencies 0
Dependency inside loop 2
Dependency inside branch 2
Warning abnormal termination Yes
Warning recursive Yes
Warning memory management system calls Yes

Table 5.6: Feedback report for Bayes transactions createTasklist and learnStructure

Transactions with method learnStructure In transactions with the same method
learnStructure, 5 static data dependencies are found (Table 5.7) . Since both transac-
tions are using memory management functions, there is a possibility of having dynamic
data dependencies. In these transactions, the programmer needs to be careful about
using recursive functions as they can overflow the speculative write buffer. The pro-
grammer needs to check whether the arguments are being passed to the function.

‘ Transactions - learnStructure and learnStructure ‘ ‘

Static of dependencies 5
Dynamic dependencies 0
Maximum load and store 2870
Dependency under loop 5
Dependency under branch 4
Warning abnormal termination Yes
Warning recursive Yes
Warning memory management system calls Yes

Table 5.7: Feedback report for Bayes transaction learnStructure

It can be observed from Table 5.4 and Table 5.7 that load and store information is
representing the size of transactions. According to the above results, kmeans is much
smaller in size than compared to bayes. Also, it can be inferred from the resulting
control flow graphs of kmeans and bayes that the occurrence of context switching is
much more often in bayes. However, it is assumed that loops have taken only one iter-
ation. Therefore, the number of context switches may change according the number of
iterations and branches taken if there are calls inside them. To avoid context switch-
ing the programmer can check if any function can be in-lined. As mentioned earlier
in Table 5.3, bayes has higher contentions than kmeans, the CiT tool report is also
suggesting the same in terms of static dependencies and number of warnings related to
dynamic data dependencies.

5.1.2.3 Non blocking Linked list

The non blocking linked list implementation [14] is used in applications where there
can be multiple accesses to a single list. It is chosen for testing the tool since two

50

tasks are accessing the same linked list, and therefore there is a possibility of having
dynamic dependencies between them. Also, the insertion method is using the memory
management system call malloc which can again cause a potential data dependency,
in case there are two requests for insertion. This implementation with two tasks, which
can call both insertion or deletion method, is compiled with the CiT plugin. The
output graph of the CiT tool is shown in Figure 5.4. Table 5.8 is depicting results, in
which it can be seen that there are two dependencies between task, which are basically
global pointers. These data dependencies are taken as dynamic since the list can be
accessed and modified using global pointers. Furthermore, both transactions are using
memory management functions which will cause a dynamic data dependency, since
both transactions are working on the same list.

aaaaaa

((

g

Caetmanedo

7
DO e

Aﬂ“‘— N -ﬁ E\\' 2

([(=

nnnnn

Figure 5.4: A thread in Non-blocking linkedlist

Static dependencies 0
Dynamic dependencies 2
Maximum load and store 140
Dependency inside loop 0
Dependency inside branch 0
Warning abnormal termination No
Warning recursive No
Warning memory management system calls | Yes

Table 5.8: Results for Non-blocking linked list

5.2 Application in TMFv2 with existing scheduler

In TMFv2, when a transaction completes the execution it validates all speculative
writes on the shared memory but not with other transactions which are being executed
in parallel. Consider two transactions A and B working on same dataset, for example.
If transaction A has committed all its speculative writes to the memory, transaction
B which was being executed on the same data will get aborted when it validates.
Transaction B has to abort but the time frame from the time when transaction A
committed to the time transaction B validates was wasted. Therefore, the performance
degradation depends on the difference between the size of two transactions. However,
the CiT tool can help resolve this issue for both for existing scheduler.

o1

Using the information given by CiT about conflicts can help the scheduler to sched-
ule conflicting transactions on the same processor. Consequently, it does not only avoid
the overhead of abort and restart, but also the execution time difference between the
two transactions. The programmer can also combine these two transactions together
which can even, further reduce the validation overhead. Eventually, reduction in the
overhead of abort, restart and validation will cause decrement in the traffic on the
network.

The custom made test application (Appendix C.2) was tested on the TMFv2 sim-
ulator. At first, both transaction were scheduled and executed in parallel on different
processors. Upon completion of execution, task 2 validated its read set and detected a
conflict with task 1 that had already committed. This caused for task 2 to abort and
restart the execution. In the second case, the tasks were scheduled one after the other,

so that there are no conflicts between the two tasks. This mode of execution resulted
in a 20% performance improvement in comparison to the previous one as Figure 5.5 is

depicting.

Normal Sequential
Scheduling Scheduling

Figure 5.5: Improvement in performance with sequential scheduling

52

Conclusion

This chapter summarizes the goal, motivation and methodology of the CiT tool. Fur-
ther, intuitive areas related to the CiT tool which can be explored in the future are
described.

6.1 Summary

In hardware transactional memory architectures like TMFab and TMFv2, all conflicts
due to shared data between transactions are resolved at run-time , thereby, the pro-
grammer is relieved from the synchronization of the shared data between transactions.
However, these architectures lose performance in the process of finding and resolving
conflicts. Although, as it is mentioned in [23], if conflicts are known before execu-
tion then these architectures can have improvement in terms of performance. This
was the primary goal of the thesis, to find out all possible data dependencies between
transactions at compile time.

In this thesis, the Compiler insights to Transaction memory (CiT) tool is presented
which statically analyzes transactions and predicts potential data dependencies between
them. Further, it gives the feedback report which helps the programmer to write an
optimized code for transaction. In order to develop the tool, the plugin feature of GCC
is used. The CiT analyzes each function individually to extract information about vari-
ables and creates a variable database. Using the database, all variables are connected to
each other according to dependencies, thereby, making a data flow. Further, it records
all calls (with arguments) made by a particular function. Subsequently, call graph for
each transaction is developed when entry point/function is known. Using call graph
with arguments information, data flow between functions is analyzed. Consequently,
all addresses in a transaction which can be potential data dependencies are collected
and compared with other transactions to get the final result. Further, during analysis
information about abnormal termination, recursion, memory management system calls,
maximum load and store instructions and loops as feedback report is delivered.

To validate the CiT tool, several test applications and some applications from the
STAMP benchmark suite, in which data dependencies are already known, are compiled
on it. Experimental results stands on expectations as CiT tool detects all the static
data dependencies and predict dynamic dependencies with the correct feedback report.

The output of the CiT tool can be used as an input to the hardware scheduler in
TMFab and TMFv2. Since, existing scheduler doesn’t support this, it can be modified
in order to avoid overhead of validation, abort, restart and hazard detection in these
architectures.

93

6.2 Future Work

This section describes following suggestions for future work based on this thesis, in
terms of improvement of the performance on TMFab and TMFv2 architectures and
enhancing the functionality of the CiT tool:

1. The simple scheduler of both architecture TMFab and TMFv2 can be modified
to accept data dependencies information from the CiT tool. Subsequently, the
scheduler can take necessary actions to avoid conflicts, overhead of abort, validate,
restart and hazards.

2. To provide a processor independent software interface in the form of a protocol to
send the output of the CiT tool to the above mentioned new hardware scheduler.

3. CiT tool only supports language C. As object oriented programming is becoming
prominent, it can be extended to support C++ or JAVA language.

4. Using control flow and data flow, independent sections of the code inside a function
can be recognized, thereby, exposing a opportunity to divide a transaction into
several transactions.

5. This plugin can be extended to search data dependencies in a sequential program
[26], subsequently, dividing a sequential program into parallel sections. This ex-
tension can convert the CiT into tool-chain which can programmer completely
discharged from any difficulty in parallel programming.

o4

Porting

This chapter describes one of the problems in porting an application on TMFab and
TMFv2 architecture which is followed by the solution.

A.1 Stack Conflicts

In a program, there is separate memory section for the stack which is used to keep
the local variables of a function. When a function is invoked, each local variable and
parameter is pushed to the stack. On the return of the function call, all local variables
are pop out of the stack to make it free. In the case, when a function invokes another
function, a contiguous memory space in the stack is allocated for the callee. Therefore,
stack space for callee grows over the caller’s one as it is shown in Figure A.1.

Functionl () High Memory ,

{ /_\ Function 1
Function2(); Function2 () Function 2
{

} S /\;unctionB 0 Function 3

Function3(); {
} e i
¥ Low Memory

Figure A.1: Stack Memory usage

There is no compatible library or compiler for parallel transactions for TMFab and
TMFEv2. In GCC, which is a sequential compiler, all transactions are considered as
sequential code. Subsequently, when transactions are invoked their stack grows over
the caller’s stack. But in TMFab and TMFv2, transactions are scheduled on different
processors and are executed in parallel. Consequently, stack space allocated for both
transactions are on the same memory space as it is shown in Figure A.2. Since both
transactions are accessing same stack memory, when one of them validate all speculative
writes (which also includes local variables residing in the stack), it results in conflict.
As the stack is local to every function, this conflict is unnecessary.

A.2 Solution

The solution conceived for this aforementioned problem is to have separate stack space
for each transaction. This can be done in two ways.

55

Processor 1 Processor 2 High Memory
Function1 () TRANSACTION 1 | TRANSACTION 2 Function 1
{ Time
START TXNI; Function2 () Function3 () Function2 |
Function2(); 3 .
START_TXN2 int a=4; i =421
Function3(); int 1=17; :
Low Memory
a) b))

Figure A.2: Stack space contention between txn

A.2.1 Linker Script

Apart from the stack space for the program, a separate stack space is allocated especially
for transactions by modifying the linker script. Further, the newly created section of
the memory can be divided into number of transactions. Each transaction has its
own stack space. Therefore, all functions, inside the transaction, stack can grow in
the allocated memory space as it is shown in Figure A.3. However, it is required to
mention the amount of memory for each transaction. Also, the stack pointer at start
has to be reset according the address of the stack memory allocated for the transaction.
Therefore, there is a need of a tool/script which can automate it. However, there is
another solution which doesn’t require any script and discussed in the next section.

Processor 1 Processor 2

High Memory
TRANSACTION 1 TRANSACTION 2 Function 1 Function 2
Time
Function2 () Function3 () : :
{ { v v
int a=4; int b=5;
int1=17; Function 3
} Y v \/
Low Memory
a) b)

Figure A.3: Stack solution

A.2.2 GCC - Plugin (Proposal)

A Plugin to GCC can be used to reset the stack pointer at the start of the transaction.
This can be done by developing two passes, one GIMPLE and another RTL. At the
GIMPLE pass, marker indicating the start of a transaction can be perceived. This
information can be used at RTL pass to reset the stack pointer at the appropriate
location.

o6

Data Structures

Variable

function Name of the function where variable defined
type To identify variable is record or array
recordname | Record name

name Name

vno Number of variable

isglobal For global variable

funcno Number of the function where variable defined
write If variable is assigned

line Line number

read variable is read

inloop variable in loop

istemp variable is temporary

ispara parameter

referas Indirect refernece or with Address operator
bytes Size of variable

valueis Pointer, Integer or Real

value Value of the constant

value2 value of the offset in array

bbno basicblock number

loopno loopno

cond1 in case of conditional dependency

cond?2 in case of conditional dependency

varl Pointer to right hand side operand

var2 Pointer to 2nd right hand side operand

adr Pointer to the pointer variable or variable (with address expression)
paradr Pointer to point parameter

arrsize for pointing variables for offset in the array

Table B.1: Data structure of variable

o7

Function

byteamount Amount of byte written in the function
varno-s Starting variable of the function
varno_f Last variable of the function

paras|] Parameters of the function

variable *arg[][] | Pointer to all arguments for each callee
block][] All basicblocks in the function
function *fnptr[] | Pointer to all callee functions

Table B.2: Data structure of Function

Declarations

FIELD_DECL field of the structure
VAR_DECL variable
PARM_DECL Paramter
INDIRECT_REF Indirect reference
ARRAY _REF Array
INTEGER_CST Integer number
REAL_CST real number
COMPONENT_REF | Structure variable
STRING_CST Constant string
ADDR_EXP address expression (variable with unary operator &)

FUNCTION_DECL

function decalaration

Table B.3: Declarations

o8

BB 2
load_store 11
Reg op 1
Level= 1
startline= 812
endline= 831

BB_13
load_store 0

BB_3
load_store 3
Reg op 0
Level= 2
startline= 834
endline= 835

BB_10
load_store 0

startline= 835
endline= 835
Header

BB_11

BB_4 _
load_store 4 load_store 1

BB_12
load_store 4

BB_14
load_store 4

BB_S
load_store 1

endline= 870
latch

BB_6
load_store 10

endline= 857

endline= 857
Header

BB_7 BB_9
load_store 13 load_store 1
Reg op 21 Reg op 0

1 Level= 0
startline= 858 startline= 835

endline= 857
latch

endline= 835
latch

work

Figure B.1: Control flow graph for function work in Kmeans

99

60

10

15

20

30

40

Test Applications

C.1 Code Testl

#include <stdio .h>
#include<pthread.h>
#include<malloc.h>

int A[100],B[100],C[100];
struct queue {

int key;

struct queue x*xnext;

b
struct queue xhead, *tail;
struct str {

int field1l;

int field2;

H
void calleel (int xp) {

int d = 12;
*p = d;

void x task3(void *b) {

struct str *t =(struct str *) b;

C[0] = t—>fieldl;

}

void * taskl(void xc)
{
int 1,];
int *p = (intx*) c;
calleel(p);
for (i; i<100 ; i++)
A1) = B[i]:

61

45

50

95

60

65

70

(0]

80

85

90

95

void x task2(void *a)

{

}

int i,j;

int xp = (intx*) a;

for (j; j<100 ; j++)
*p = #p + C[i];

calleel(p);

void x task4(void *b)

{

}

struct str st =(struct str x*) b;

t—>fieldl =

A[O];

void * taskb5 (void xpar)

{

}

struct queue xnew = (struct queue *) malloc(sizeof(struct queue));

assert (new);

struct queue *temp=head;
while (temp—>next!=tail)

temp=temp—>next;

temp—>next= new;

new—>key= x ((int x*) par);

new—>next= tail;

void x task6 (void *par)

{

struct queue *temp=head;

while (temp—>key!= x ((int %) par))
temp=temp—>next;

if (temp!=tail)
temp—>key=0;

int main()

{

int *p,*p2,a=2,c=>5;

struct str rec,

rec.fieldl= 4;

*prec;

62

100

105

110

13

18

23

28

33

rec.field2= 5;

struct queue xq ;

g= (struct queue *) malloc(sizeof(struct

head=tail=q;

prec = &rec;

pthread_t threads[4];
p=&a;

p2=&c;

pthread_create(&threads[0], NULL,
pthread_create(&threads[1], NULL,
pthread_create(&threads[2], NULL,
pthread_create(&threads[3], NULL,
pthread_create(&threads[4], NULL,

([5]

pthread_create(&threads , NULL,

}
C.2 Code Test2

#include <stdio.h>
#include<pthread .h>
#include "ctm.h"

int A[100],B[100],C[100];

void taskl(int *c)

{
int 1,];
int *p = c;
for (i=0; i<100 ; i+4++)
A[i] = #p;
for (j=0; j<100 ; j++)
B[j] = *p;
for (j=0; j<100 ; j++)
Cli] = =p;
}
void task2(int *a)
{ int i,j;
int *p = a;
for (j=0; j<100 ; j++)
*p = *p + 1 +C[j]+A[j];
}
int main()
{

int *p, a=2;

63

taskl,
task2,
task3,
task4,
taskb,
task6 ,

queue)) ;

38

43

p=&a;

START_TXN("O" , "1" "512");
taskl(p);
END_TXN("O","l");

START_TXN("1","1" "1024");
task2(p);
END_TXN("l","l");

return 0;

64

Bibliography

[1] Gece plugin.

2] QUAD: a memory access pattern analyser, ARC’10, Berlin, Heidelberg, 2010.
Springer-Verlag.

[3] R.Simoni A. Agarwal, J.L.. Henessy and M. A. Horowitz. An evaluation of directory
schemes for cache coherence. In Proceedings of the 15th International Symposium
on Computer Architecture, 1988.

[4] S.V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.
Computer, 29(12):66 —76, dec 1996.

[5] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986.

6] F. E. Allen and J. Cocke. A program data flow analysis procedure. Commun.
ACM, 19(3):137—, March 1976.

[7] John P. Banning. An efficient way to find the side effects of procedure calls and the
aliases of variables. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, POPL ’79, pages 29-41, New York, NY,
USA, 1979. ACM.

[8] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings
of the 20th international conference on Distributed Computing, DISC’06, pages
194-208, Berlin, Heidelberg, 2006. Springer-Verlag.

9] K.-F. Faxen, K. Popov, L. Albertsson, and S. Janson. Embla - data dependence
profiling for parallel programming. In Complez, Intelligent and Software Intensive
Systems, 2008. CISIS 2008. International Conference on, pages 780 —785, march
2008.

[10] W.W.L. Fung, I. Singh, A. Brownsword, and T. Aamodt. Kilo tm: Hardware
transactional memory for gpu architectures. Micro, IEEE, 32(3):7 —16, may-june
2012.

[11] J. R. Goodman. Using cache memory to reduce processor-memory traffic. In Pro-
ceedings of the 10th Annual International Symposium on Computer Architecture,
1983.

[12] L. Hammond, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis, B. Hertzberg,
M.K. Prabhu, Honggo Wijaya, C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In Computer Architecture, 2004. Proceedings.
31st Annual International Symposium on, pages 102 — 113, june 2004.

65

[13] Tim Harris and Keir Fraser. Language support for lightweight transactions. SIG-
PLAN Not., 38(11):388-402, October 2003.

[14] Timothy L Harris. A pragmatic implementation of non-blocking linked-lists. In
Lecture Notes in Computer Science, pages 300-314. Springer-Verlag, 2001.

[15] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3 edition,
2003.

[16] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural sup-
port for lock-free data structures. In Proceedings of the 20th annual international
symposium on computer architecture, ISCA ’93, pages 289-300, New York, NY,
USA, 1993. ACM.

[17] Intel. Intel C++ STM Compiler Prototype Edition 3.0. Intel, 2008.

[18] S. S. Kumar. Tmfab: A transactional memory fabric for chip multiprocessors.
Master’s thesis, 2010.

[19] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. SIGPLAN Not.,
40(6):190-200, June 2005.

[20] S. Mannarswamy and R. Govindarajan. Handling conflicts with compiler’s help in
software transactional memory systems. In Parallel Processing (ICPP), 2010 39th
International Conference on, pages 482 —491, sept. 2010.

[21] Austen McDonald, Brian D. Carlstrom, JaeWoong Chung, Chi Cao Minh, Hassan
Chafi, Christos Kozyrakis, and Kunle Olukotun. Transactional memory: The
hardware-software interface. IEEE Micro, 27(1):67-76, January 2007.

[22] Jason Merrill. Generic and gimple: A new tree representation for entire functions.
In Proc. of the GCC Developers Summit, Ottawa, Canada, May 2003.

[23] Anastasios Michos. A novel concurrent validation scheme for hardware transac-
tional memory. Master’s thesis, 2012.

[24] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and K. Olukotun. Stamp: Stan-
ford transactional applications for multi-processing. In Workload Characterization,
2008. IISWC 2008. IEEE International Symposium on, pages 35 —46, sept. 2008.

[25] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89-100, June 2007.

[26] Paul M. Petersen and David A. Padua. Static and dynamic evaluation of data
dependence analysis techniques. IEEE Trans. Parallel Distrib. Syst., 7(11):1121—
1132, November 1996.

66

[27] K. Psarris and K. Kyriakopoulos. An experimental evaluation of data depen-
dence analysis techniques. Parallel and Distributed Systems, IEEE Transactions
on, 15(3):196 — 213, march 2004.

[28] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, PODC
'95, pages 204-213, New York, NY, USA, 1995. ACM.

[29] Richard Stallman. Generic. In GCC Internals.
http://gce.gnu.org/onlinedocs/gecint/ GENERIC. html.

[30] Richard Stallman. Gimple. In GCC Internals.
http://gce.gnu.org/onlinedocs/gecint/GIMPLE. html.

67

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Contribution
	Thesis Organisation

	Background
	Multicore System
	Transactional Memory
	TMFab and TMFv2

	Related Work
	Algorithm Analysis
	Data dependency in parallel programming
	Static program analysis
	Flow in/sensitive analysis
	Context in/sensitive analysis

	Compilation
	GNU Compiler Collection
	GENERIC Trees
	GIMPLE
	Plugin

	Summary

	The CiT Overview
	Overview
	Data Dependency in Transactions
	Approach
	Intra-procedural analysis
	Killed definition
	Dependency among variables
	Conditional definition

	Inter-procedural analysis
	Detection of data dependency
	Feedback
	Dependency within Loop
	Dependency inside a branch
	Load and Store

	Warnings
	Abnormal termination
	Memory management functions
	Recursive

	CiT Tool- Architecture
	CiT plugin placement
	CiT Architecture
	Initial analysis
	Intra-procedural analysis
	Variable information extraction
	Building Dataflow
	Building Call graph

	Inter-procedural analysis
	Address detection in Transactions
	Implemented algorithm

	Control Flow
	Extraction of information for feedback
	Loop Information
	Load-Store instructions

	Results
	Experimental Evaluation
	Custom Application
	Realistic Applications

	Application in TMFv2 with existing scheduler

	Conclusion
	Summary
	Future Work

	Porting
	Stack Conflicts
	Solution
	Linker Script
	GCC - Plugin (Proposal)

	Data Structures
	Test Applications
	Code Test1
	Code Test2

