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abstract

Mechanical metamaterial plates (metaplates) can exhibit unique bending properties compared to reg-
ular plates. Where regular plates can only have anticlastic (saddle-shaped) or monoclastic (cylinder-
shaped) bending-induced double curvature, metaplates can also have synclastic (dome-shaped) bending-
induced double curvature. This behaviour can be controlled by altering the geometry of the unit-cell and
has been linked to the unit-cell’'s Poisson’s ratio. However, some metaplates exist that do not display
the type of bending-induced double curvature that is expected based on their Poisson’s ratio. Recent
studies have shown how Cosserat or Micropolar theory can be used to more accurately describe the
bending-induced double curvature of metaplates.

In this thesis metaplates are compared using different modelling approaches. The metaplates of inter-
est are the star-shaped unit-cell and the anti-tri-chiral unit-cell. As a starting point, the metaplates are
homogenised as a Cauchy continuum and through the use of additional load cases a homogenised
Cosserat continuum is created. The homogenised Cosserat continuum model is compared to both the
bending behaviour of the actual metaplate and the homogenised Cauchy continuum model using Finite
Element Analysis. While the developed Cosserat model displays the correct type of bending-induced
double curvature, the presence of deformation defects indicate that the Cosserat model requires further
refinement. Additional analysis was done in COMSOL Multiphysics to explore the influence of unit-cell
parameters and boundary conditions on the bending-induced double curvature of metaplates.



summary

Mechanical metamaterial plates (metaplates) can exhibit unique bending properties compared to reg-
ular plates. Where regular plates can only have anticlastic (saddle-shaped) or monoclastic (cylinder-
shaped) bending-induced double curvature, metaplates can also have synclastic (dome-shaped) bending-
induced double curvature. This behaviour can be controlled by altering the geometry of the unit-cell and
has been linked to the unit-cell’'s Poisson’s ratio. However, some metaplates exist that do not display
the type of bending-induced double curvature that is expected based on their Poisson’s ratio. Recent
studies have shown how Cosserat or Micropolar elasticity can be used to more accurately describe the
bending-induced double curvature of metaplates. Using Cosserat elasticity, this inconsistency between
in-plane and bending behaviour can be resolved as Poisson’s ratio can be split up into two ratios, one
regarding in-plane displacement and one regarding out-of-plane bending. However, no commercially
available Finite Element Anlysis(FEA) programs exist that include Cosserat Elasticity. FEA programs
like COMSOL multiphysics, which is used for this research, use classical or Cauchy elasticity.

In this thesis the bending-induced double curvature of metaplates is researched by comparing differ-
ent modelling approaches. Two metaplate unit-cells were selected for this analysis, namely the star-
shaped unit-cell and the anti-tri-chiral unit-cell. As a starting point, the metaplates were homogenised
as a Cauchy continuum using six load cases. From this a homogenised Cauchy continuum model of
the metaplate was made, that could be analysed with FEA. Through the use of two additional load
cases the metaplate was homogenised as a Cosserat continuum for bending. The two additional load
cases applied were cylindrical bending tests. However, the extra information from the additional load
cases could not be inserted into a Cauchy continuum model. To analyse the homogenised Cosserat
continuum model of the metaplate, the weak form in COMSOL Multiphysics was used. This made it
possible to perform FEA on the homogenised Cosserat continuum model of the metaplate. Also the
actual metaplate was analysed with FEA.

The bending-induced double curvatures of these three modelling approaches were compared for meta-
plates of both unit-cells. The type of bending-induced double curvature of the homogenised Cauchy
continuum model did not match with that of the actual metaplates. The homogenised Cosserat con-
tinuum model did have the same type of bending-induced double curvature as the actual metaplates.
However, the presence of deformation defects and a lack of smoothness indicate that the Cosserat
model requires further refinement.

For the star-shaped unit-cell, the influence of unit-cell geometry on the bending-induced double cur-
vature was analysed through the cylindrical bending test. The results showed similarities to existing
literature regarding the star-shaped metaplate, and additionally variation of the wall thickness was incor-
porated. Additionally a long metaplate was analysed through FEA to visualise the influence of boundary
conditions on the bending-induced double curvature. An unexpected drop in bending-induced double
curvature was found for longer metaplates.

Using Cosserat elasticity to model metaplates and mechanical metamaterials in general, is a promising
yet complicated method. This research shows a specific application of how Cosserat elasticity could be
used in FEA. More research into applying Cosserat elasticity in FEA, could create a more complete and
user friendly FEA program that can take Cosserat elasticity into account. This could lower the threshold
of research using Cosserat elasticity. This would not only be useful for mechanical metamaterials, but
also for a wide range of other materials or structures with significant microstructure.
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Introduction

Throughout history it can be observed that the amount of available materials for design has constantly
been increasing. This allows for more design possibilities and could be critical in sectors like the high-
tech industry, to improve machines further. Currently there are thousands of possible engineering
materials, spanning a wide range of material properties. However, these engineering materials still
have limitations. For instance, if we look at a material property like Poisson’s ratio (v = —ea3/€11), i.€.
the ratio of transversal strain to axial strain, it can be observed that engineering materials almost always
have Poisson’s ratios between 0 and 0.5. This absence of negative Poisson’s ratio materials has led to
the research of auxetic structures and more specifically, mechanical metamaterials. Mechanical meta-
materials are compliant structures that obtain their generalised material properties from their geometry
instead of the material they are made from. Mechanical metamaterials can be designed to have a neg-
ative Poisson’s ratio. Controlling Poisson’s ratio has a lot of practical applications. A famous example
from daily life is cork[1], which has a Poisson'’s ratio of roughly zero and therefore can be pushed into
the neck of a wine bottle without getting wider due to the deformation from compression.

Mechanical metamaterials Can be observed at two scales. Atthe micro scale there is the unit-cell, made
out of a material like metal or polymer. The Poisson’s ratio of the material does not change. However
at the macro scale, the Poisson’s ratio of the mechanical metamaterial depends on the geometry of the
unit-cell. Here the poisson’s ratio is a generalised material property of the mechanical metamaterial.
The generalised material properties of mechanical metamaterials can be obtained through homogeni-
sation. Homogenisation is a method that be used to model a heterogeneous material as an equivalent
homogeneous material. A small section of the mechanical metamaterial that is representative for the
entire mechanical metamaterial, i.e. a Representative Volume Element (RVE), can be used to deter-
mine these generalised material properties. The generalised material properties obtained from the
RVE can then be extrapolated to the entire material. Different types of homogenisation techniques
exist, ranging from analytical models to experimental approaches. For this research it was decided to
apply load cases on a RVE through FEA. This enables a single method that can be applied to a wide
range of different unit-cells. Once the generalised material properties of a mechanical metamaterial
are obtained, then these can be applied to a block of material in a FEA program. Now only a block of
material has to analysed instead of a collection of hundreds of unit-cells.

Poisson’s ratio also influences the bending behaviour of a material, specifically the bending-induced
double curvature[2]. Materials with a positive Poisson’s ratio display anticlastic bending-induced dou-
ble curvature. Poisson’s ratio can be described for bending as the ratio of transversal curvature to
axial curvature i.e. BPR = —ko1/k12. Where an initial curvature is applied to k2 and k-1 is the dou-
ble curvature induced by curvature k;2.. This behaviour is of particular interest when regarding plates
as the out-of-plane bending stiffness is relatively low and plate theory could be applied. Mechanical
metamaterial plates (metaplates) can be designed to display anticlastic, monoclastic or synclastic cur-
vature[2][3][4][5][6][7]. Controlling bending-induced double curvature could be applied to get complex
spatial geometries from initially flat structures[2]. In the research field of energy harvesting, connect-
ing the piezo-electric elements to a metaplate that bends synclastically can improve the performance



of the energy harvester. More strain is applied to the piezo-electric element for the same amount of
axial curvature, compared to the situation where the piezo-electric element was connected to a regular
plate[8][9][10].

Soest presented how varying Poisson’s ratio in metaplates could be used to obtain complexly curved
metaplates[11]. In this research it was assumed that metaplates could be represented as (Cauchy)
Love-Kirchhoff plates. However, other research indicates that Poisson’s ratio does not determine
the bending-induced double curvature of metaplates[5][12][13]. Recent literature has shown that the
bending-induced double curvature of metaplates depends on more than just Poisson’s ratio[7][14][15].
During bending, the beams or flexures comprising the unit-cell of the metaplate experience both bend-
ing and torsion. The interaction between bending and torsion depends on the geometry of the unit-cell,
which means that representing a metaplate as a Cauchy continiuum has shortcomings and will not
always lead to accurate results[15].

Extensions to the Cauchy continuum are couple stress theory and the Cosserat or Micropolar contin-
uum. Both Cosserat and Micropolar can be used to describe a continuum that has three additional
degrees of freedom in the form of microrotations, compared to the three translational degrees of free-
dom of a Cauchy continuum. For this research it was chosen to use the term Cosserat. Through the
use of Cosserat theory, Poisson’s ratio can be split up into the in-plane Poisson’s ratio (IPR) and the
Bending Poisson Ratio (BPR)[15][14]. The BPR can be used to design metaplates with complex dou-
ble curvature, even for a constant IPR[14]. Based on findings from literature, for (auxetic) honeycomb
metaplates the IPR is often close to the desired bending-induced double curvature[2][3][4]. This could
be due to the fact that the BPR of these unit-cells quickly converge to the IPR[14]. However, it is still
useful to also check the BPR, to make sure the assumption /PR = BPR is valid. For other unit-cells
the BPR should be considered instead of the IPR to determine the desired bending-induced double
curvature.

Through the use of Cosserat theory, the possible convergence of BPR to IPR could be analysed for
different unit-cells. This could be valuable for the application of metaplates in engineering purposes, as
around the region of convergence the metaplate could be modelled like a Cauchy plate, which would
significantly reduce the complexity of the model and conventional homogenisation techniques would be
applicable. Itis hypothesised by Eskandari et al. that for all metaplates the BPR will eventually converge
to the IPR as the relative thickness, which can be seen as a size dependency, becomes greater[14].
However, from the research of Eskandari et al. this could only be concluded for the (auxetic) honeycomb
unit-cells[14].

Cosserat theory is not only applicable to metaplates, but has a wide variety of applications for material-
s/structures containing a significant microstructure[16][17]. Rezaei et al. presented how Cosserat the-
ory can be used to more accurately model perforated plates and bone, for dentistry applications[18][19].
Masiani et al. presented how Cosserat theory can be applied to the modelling of brick walls[20]. For all
these applications a more standardised modelling method would be beneficial. As of the time of writing,
a homogenisation application in COMSOL exists that is able to homogenise a heterogeneous medium
as a Cauchy continuum, but not as a Cosserat continuum. As of the time of writing, there are no com-
mercial Finite Element Analysis) FEA programs available that include Cosserat theory. This was also
stated by Rezaei et al. in 2024[18]. In COMSOL Multiphysics the weak form can be used to model a
Cosserat continuum. Jeong et al. modelled torsion in a Cosserat rod[21], which Rezaei et al. did as
well[18]. Additionally, Rezaei et al. made a two Dimensional Cosserat model for concentrated loads
and shear loads[18][19]. Using the weak form in COMSOL Multiphysics to model bending-induced
double curvature for a Cosserat continuum has not been found in literature.

In this thesis a method is presented to create a Cosserat continuum model for the bending of metaplates,
using the weak form in COMSOL Multiphysics. While, research has been done to apply Cosserat
elasticity to the weak form in COMSOL Multiphysics, this has only been done to model torsion in a
cylinder[21][18] and deformation in a 2D plate[18][19]. Modelling bending-induced double curvature is
a novel application of using the weak form in COMSOL Multiphysics. This method will be applied to
two metaplates, namely one with a star-shaped unit-cell and one with an anti-tri-chiral unit-cell. As a
starting point, the metaplates are homogenised as a Cauchy continuum and through the use of addi-
tional load cases a homogenised Cosserat continuum is created. Validation is performed by analysing
different mesh sizes and different RVE’s. The homogenised Cosserat continuum model is compared



to both the bending behaviour of the actual metaplate and the homogenised Cauchy continuum model
through FEA. While the developed Cosserat model displays the correct type of bending-induced dou-
ble curvature, the presence of deformation defects indicate that the Cosserat model requires further
refinement. Additionally, the influence of unit-cell geometry on the BPR is analysed, which could pro-
vide novel insights into the required modelling approach. Also possibilities for experimental testing are
explored through a FEA of the bending-induced double curvature for an increasingly long metaplate.



Methodology

The methodology is divided into four major sections. First, the unit-cells of interest for this research are
introduced and Representative Volume Elements (RVE’s) for these unit-cells are chosen. Second, the
metaplate is modelled as a Cauchy continuum through homogenisation and a Cauchy continuum model
is setup. Third, the metaplate is modelled as a Cosserat continuum and a Cosserat continuum model is
set up. Fourth, validation of the parts of the methodology is performed and additional validation models
are setup. From the methodology three metaplate models are made, a detailed metaplate consisting
out of tesselated unit-cells, a homogenised Cauchy continuum model and a homogenised Cosserat
continuum model. These models can be compared to evaluate how the modelling method influences
the observed bending-induced double curvature.

2.1. Unit-cells and RVE

A representative Volume Element (RVE) is a small section of the structure, that is representative for
the entire structure. This is similar to how unit-cells can be tesselated to create the metamaterial. The
unit-cell is an often used as the RVE. However, if there are planes of symmetry in the unit-cell it is
possible to reduce the RVE to a section of the unit-cell, where that section can create the entire unit-
cell via mirroring operations. This has been done for honeycombs[22][23]. Reducing the size of the
RVE is desirable as the analysis will require less computation power. However, there is a risk that if
the RVE is too small, that information about the global behaviour is lost. For this research two different
RVE’s were selected for each unit-cell, to evaluate if the size of the RVE influences the behaviour. If
the behaviour of the smaller RVE does not significantly differ from the larger RVE, it can be validated
that the smaller RVE is an effective choice of RVE.

The first unit-cell of interest is the star-shaped unit-cell, which can be seen in Figure 2.1. This unit-cell
is present in two recent studies that investigated the BPR of this unit-cell[15][14]. In this research it
was shown that the star-shaped unit-cell can have a positive IPR, while having a negative BPR. The
star-shaped unit-cell has a tetragonal crystal class and belongs to the 4/mmm symmetry group[14].
Four mirror planes are present in the unit-cell. The first RVE was chosen as the unit-cell itself, while
for the alternative RVE a section of three by three unit-cells was chosen. The alternative RVE can be
seen in Figure 2.1. For the star-shaped unit-cell the relevant geometry and material parameters are
given in Table 2.1a.

The second unit-cell of interest is the anti-tri-chiral unit-cell, which can be seen in Figure 2.2. In a study
about multiple chiral and anti-chiral metaplates, the anticlastic bending-induced double curvature of this
unit-cell was unexpected as it has a negative IPR[5]. The anti-tri-chiral unit-cell is a hexagonal unit-cell
like the honeycomb unit-cell, meaning that every unit-cell connects to six other unit-cells. However, the
anti-tri-chiral unit-cell has a trigonal crystal class and belongs to the 3m symmetry group. Three mirror
planes are present in the unit-cell, where every symmetry element is a small tri-chiral structure. The
anti-tri-chiral unit-cell can be converted into a orthorhombic unit-cell by adding or removing a section of
the unit-cell. These two variants were chosen as the two RVE'’s, which can be seen in Figure 2.2. For
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the anti-tri-chiral unit-cell the relevant geometry and material parameters are given in Table 2.1b.

Figure 2.1: star-shaped unit-cell and alternative RVE

(a) Unit-cell (b) RVE (c) Alternative RVE

Figure 2.2: Anti-tri-chiral unit-cell and RVE'’s

Length flexure l=10mm

Length flexure Il =6mm Height flexure h = 5mm
Height flexure h =4mm Cylinder diameter h = 5mm
Width flexure w = 0.5mm Width flexure w = 0.5mm
Angle between flexures | 04,41 = 77° Angle between flexures | 8,n41c = 120°
Young’s modulus Epyion = 2GPa Young’s modulus Eryion = 2GPa
Material Poisson’s ratio | vyy0n = 0.4 Material Poisson’s ratio | vyyion = 0.4

(a) Relevant parameters of star-shaped unit-cell (b) Relevant parameters of anti-tri-chiral unit-cell

Table 2.1: Unit-cell parameters

2.2. Cauchy model

2.2.1. Cauchy continuum

In an isotropic Cauchy continuum only two elastic constants are required to model the behaviour of
the continuum. This means that the elasticity tensor can be constructed from these two parameters,
for instance the Young’s modulus and Poisson’s ratio. Other parameters are also possible, namely:
[Bulk modulus and shear modulus], [the lamé parameters] and [pressure wave speed and shear wave
speed]. These parameters can be expressed as function of the other parameters. For instance, the
shear modulus can be written as a function of the Young’s modulus and Poisson'’s ratio:

(2.1)
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If the continuum is anisotropic, then additional parameters are required to model the behaviour, as one
material parameter can have different values depending on the direction along which it is measured.
If the material is transversely isotropic i.e. isotropic in-plane, then an additional Young’s modulus,
Poisson’s ratio and an independent shear modulus are required, as the shear modulus perpendicular
to the plane of isotropy can no longer be calculated using Equation 2.1. So five material parameters
are required in this case[24]. If the continuum is orthotropic i.e. different in three orthogonal directions,
then nine material parameters are required. Here we need three Young’s moduli, three Poisson’s ratios
and three shear moduli[24]. In the book “Theory of Plates and Shells” by Mittelstedt[24] a general
introduction is given into material symmetries, which can be looked at for further information. For the
purpose of this research a few relevant material symmetries and simplifications for plate theory are
presented starting from the fully anisotropic case.

For a fully anisotropic Cauchy continuum, there are 21 elastic constants that have to be determined.
For a fully anisotropic material Hooke’s law states:

o11 Cii Cip Ci3 Ciy Ci5 Cye €11

022 Ciz2 O O3 Oy Oz Oy €22

o33 | _ [C13 Ca3 Cs3 Csq Cs5 Csg €33 2.2)
023 Cig Coy C34 Cyy Cys Ciyg 2€23 '
013 Ci5 O (35 Cy5 Cs5 Cse| | 2613

012 Cig O C36 Cs Cs6 Ces 2€12

The C;; components in the stiffness matrix still relate to the previously mentioned material properties.
Terms C41, Cy2 and Cs3 contain Young’'s moduli, Cy4, Cs5 and Cgg are shear moduli and the off-diagonal
terms are coupling terms between these. For instance, the terms C12, C13 and Cs3 couple the principal
strains via Poisson’s ratio. If the the material is orthotropic, Equation 2.2 reduces to Equation 2.3. For
achiral and anti-chiral unit-cells, no couplings between principal stains and shear stresses are expected.

o11 Cii Ci2 Ci3 O 0 0 €11

022 Cia Cy Ca3 0 0 0 €22

o33 | _ [C1z Caz Cs3 0 0 0 €33 2.3)
023 0 0 0 044 0 0 2623 ’
013 0 0 0 0 055 0 2613

g12 0 0 0 0 0 066 2612

Because plates are of interest, where the height is a lot smaller than the length and width, not all terms
are of interest. Two well established plate theories are Love-Kirchhoff and Reissner-Mindlin. Based on
which of these plate theories are used, simplifications can be made that reduce the size of the stiffness
matrix. Assumptions of Love-Kirchhoff plate theory are that the top and bottom plane remain equally
far apart, the stress o33 should be negligable[25][24]. Also the shear strain components e;3 and €;3 are
not part of the constituitive equations[25][24].

011 Cii Ci2 Cis €11
o922 | = [Cia Caa O €22 (2.4)
012 Cis Cs6 Cos| \2€12

Again, if the unit-cell of interest is achiral or anti-chiral, then no couplings between prinicipal strains and
shear tresses are expected, which results in:

o011 Cu Cia O €11
g9292 = 012 CQQ 0 €22 (25)
012 0 0 Css| \2e12

This can be further simplified based on the symmetries in the unit-cell. The anti-tri-chiral unit-cell is
expected to look like Equation 2.5. The star shaped unit-cell has four-fold rotational symmetry, which
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can be seen in Figure 2.1. Due to this additional symmetry, the axial responses are identical for both
in-plane directions, so Cy, = (1.

In a Cauchy continuum, the bending and torsion response can be determined using the elastic con-
stants from Hooke’s law and the thickness. This means that measuring the bending or torsion response
is not required to characterise a Cauchy continuum. For an isotropic plate the bending behaviour is as
presented by Timoshenko and Woinowsky-Krieger[25]:

M, D vD 0 kx
M,|=|vD D 0 ky (2.6)
M,,

0 0 D(1-v) kay
where k, and k, represent curvatures, k, represents twist and M, represents torsion. D is the flexural
rigidity and v is Poisson’s ratio. For Reissner-Mindlin plates, out of plane shear forces also have to be
considered[25].

2.2.2. Cauchy homogenisation

To obtain the elastic constant of the elasticity tensor, load cases can be used. A load case is a specific
loading condition that can be applied to obtain information about the material or structure. For instance,
a load case to obtain the axial elastic constant C4; is to apply a principal strain in the x-direction and
evaluating the resulting stress in the x-direction. These load cases can be applied to the RVE.

To determine the elasticity tensors, COMSOL Multiphysics was used. Specifically, the cell-periodicity
feature, in which a Respective Volume Element (RVE) can be analysed to obtain the elasticity tensor.
In COMSOL Multiphysics, periodic boundary conditions are handled through so called source and
destination planes, where these planes are fixed in alignment. For an orthotropic RVE in 3D, six load
cases are applied, namely three in tension and three in pure shear. These load cases are visualised
in Figure 2.3. The source and destination planes have to be manually applied, but from this COMSOL
returns the homogenised elasticity tensor. With the cell-periodicity feature it is not possible to use a
reduced RVE based on symmetry, as both the source and destination plane have to applied to the RVE.
To validate the accuracy of the homogenisation procedure, mesh convergence was tested by using two
different mesh sizes. Also as mentioned previously, two different RVE sizes were used.

 A—|
(a) principal strain x (b) principal strain y (c) principal strain z
—7 / N
T / / 1 ] f .
/ /1/ / ]
/ / [
/ // | |
— | |
(d) pure shear strain (e) pure shear strain (f) pure shear strain
yz Xz Xy

Figure 2.3: six load cases

To evaluate the bending-induced double curvature of the homogenised Cauchy continuum model, the
homogenised Cauchy elasticity tensor was inserted as the material into a rectangular block in COMSOL
Multiphysics. The rectangular block contains the homogenised Cauchy properties of the metaplate.
Pure bending along two opposing sides was applied. Due to symmetry of the loading condition, only a
quarter of the rectangular block had to be modelled. In Figure 2.4 it can be seen how mirroring the block
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outlined in red can form the entire rectangular block. In Figure 2.5 the modelled part of the rectangular
block can be seen. At boundaries one and three symmetry planes are applied. A fixed constraint is
applied to edge two and the moment is applied at boundary four.

Figure 2.4: Pure bending applied to rectangular _. .
block, red section is modelled Flgurg 2.5: modelled part of the rectangular block,
with relevant boundary planes and edges
numbered

2.3. Cosserat model

2.3.1. Cosserat continuum

An extension to the previously mentioned Cauchy continuum is the Cosserat or Micropolar continuum.
In an isotropic Cosserat continuum six elastic constants are required, namely: A\, u, s, v, § and a. The
term couple-stress theory is also closely related, with the difference being that couple-stress theory
has four elastic constants, namely: )\, u, v and §[17]. Here it can be seen that Cosserat theory can
be reduced to couple-stress theory and even to Cauchy theory, where only A and x remain[17]. In a
Cosserat continuum couple stresses are introduced in addition to the stresses present in a Cauchy
continuum. The stresses in a Cauchy continuum and the stresses and couple stresses present in a
Cosserat continuum can be seen in Figure 2.6 and Figure 2.7 respectively.

a33

S— )

4l
may
L P2

P2 a3

N | [omas
muC| D mi Moy g

a2 /

o2

L o

a1

Figure 2.7: stresses and couple stress in

Figure 2.6: Stresses in Cauchy continuum )
Cosserat continuum

As mentioned previously, a Cauchy continuum has three translational degrees of freedom, which can
be denoted as the vector u. A Cosserat continuum has three additional microrotational degrees of
freedom, which can be denoted as the vector a. To visualise how these degrees of freedom are used
Figure 2.8 was made. In the top of Figure 2.8 « and a can be found. The contents of Figure 2.8 will
be further explained in this section. In a Cauchy Continuum the strain is the gradient of u. Due to the
microrotations the strain in a Cosserat continuum becomes

ou;
€j = 50 = CijkOk 2.7)

(2
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where e¢;;;, is the permutation tensor. The permutation tensor turns the microrotations into a skew
symmetric tensor, which means that for the principal strains there is no microrotation component.

In a Cosserat continuum there is also couple strain, which depends on the microrotations. The couple
strain is

_ Oay

Rij (28)
where axial couple strains represent torsion and off-diagonal couple strains represent bending. The
constitutive equations for a Cosserat continuum are

0ij = Cijriers + Bijrikm 2.9)
Ms; = Bryjert + Dijrikm

where o;; is the asymmetric stress tensor, m;; is the couple stress tensor. C, B and D are elasticity
tensors, where B couples strain to couple stress and couple strain to stress. For the scope of this
research only centrosymmetric unit-cells are of interest, so B is assumed to be zero[14]. This means
that the stress only depends on the strain and the couple stress only depends on the couple strain. In
Figure 2.8, the relation between (couple) stress and (couple) strain are displayed, linked by the corre-
sponding elasticity tensor. The couplings due to B are displayed as striped blue lines. The constitutive
equations from Equation 2.9 can be alternatively written as:

011 Ci1 Ci2 Ci3 Cu Ci5 Cig Cir Cis Cy €11
022 Oy Coz3 Oy Cys Oy Cor Cog (o €22
033 C33 Csq4 Csz5 Csz6 Cz7 Cszg Csgf | €33
023 Cy Cys Cy6 Cyr Cug Cug| | €23
o3| = Css Cse Csr Csg Cso | €13 (2.10)
o12 Ces Cor Cos Coo| | €12
032 sym Crr Crz Cro| | €32
031 Css Cgo| | €31
021 i Coo | \€21
mi1 Dy1 D12 D13 Dy Dis Dig Dir Dis Dig| (k11
Moo Dy D2z Day Das Dag Day Dag Dagl| [ k22
m33 D33 D3y Dss D3z D3y Dsg Dsg| | k33
m23 Dyy Dys Dys Dyr Dig Dag| | ko3
miz | = Dss Dss Ds7 Dsg Dso| | k13 (2.11)
mi2 Des Der Dggs Deg| | K12
m32 sym D77 D7g Drg| | k32
m31 Dgg  Dgg| | K31
ma1 L D99_ K21

where there are nine stresses and nine strains, as the stress and strain tensor are no longer symmetric,
which was the case for a Cauchy continuum. For this research the interest lies in achiral and anti-chiral
unit-cells. It is assumed there are no axial-shear couplings. Also it is also assumed that there are no
torsion-bending couplings.The constitutive equations then become:



2.3. Cosserat model 10

011 _011 012 013 0 0 0 0 0 0 €11
g929 022 023 0 0 0 0 0 0 €92
033 Cs3 0 0 0 0 0 0] /|ess
023 Cu O 0 Car O 0 €23
013 = C55 0 0 C58 0 €13 (212)
012 Cee 0 0 Cso €12
032 sym Cr O 0 €32
031 Css 0 €31
0921 L 099_ €21
mi1 _Dll D12 D13 0 0 0 0 0 0 i K11
maoo D22 D23 0 0 0 0 0 0 K22
mss D33 0 0 0 0 0 0 K33
ma3 Dy 0 0 Dy O 0 K23
mi3 = D55 0 0 D58 0 K13 (213)
mi2 Dgs O 0  Deggy K12
M3 sym D7z 0 0 K32
ms3i Dsgsg 0 K31
ma1 L Dgg | \ ko1

For the application of Cosserat theory on plates, the constitutive equations can be further simplified.
The constitutive equations for Love-Kirchhoff plates become:

o11 Ci1 Cho 0 0 €11
0922 Cyp 0 0 €22

— 214
o12 Coes Cso| | €12 ( )
o921 sym Cog| \€21
miq D1 Dz O 0 K11
Moo Doy 0 0 K22

_ 2.15
Mo D¢ Deg | | K12 ( )
ma1 sym Dgg | \ K21

where the relevant stresses are identical to a Cosserat continuum in 2D, as presented by Cui et al.[26].
For the couple stresses, torsional couple stresses and out-of-plane bending couple stresses are of
interest[15]. The in-plane bending couple stresses, which are a part of the constitutive equations in 2d
can be disregarded for Love-Kirchoff plate theory[14]. Due to time constraints, the Cosserat continuum
model has not been converted to be applicable on thin plates.

In the research by Jeong et al. macrorotations were computed from u, which can also be turned
into a skew symmetric tensor using the permutation tensor[21]. This allows for the decoupling of the
shear stress into a Cauchy symmetric shear stress and a Cosserat shear stress, which is similar to the
decoupling described by Cui et al.[26][27]. In the research by Jeong et al. this decoupling was done
through using the couple modulus p.. This made it possible to utilise a seperate Cauchy stess tensor
and have an addition for the Cosserat part. The resulting formula for the asymmetric stress tensor
becomes[21]:

OCosserat — OCauchy + 2/Lc(ejikwk - ejik'ak) (216)

where the permutation tensors are transposed compared to Equation 2.7. As the couple modulus
becomes increasingly small, the stress tensor reduces to the Cauchy stress tensor. For this research
the couple modulus of the unit-cells of interest were not determined, so Equation 2.9 was used instead.
However, in future research where the couple modulus is known, this could be a promising approach.
In Figure 2.8 the potential usage of macrorotations to determine the off-diagonal strain components is
indicated by a striped line.
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Figure 2.8: visualisation of how the global variables (translations and microrotations) are related to the derived variables

2.3.2. Additional load cases

In addition to the axial and shear load cases used for Cauchy, additional shear, torsion and bending
load cases are required to completely characterise a Cosserat continuum. Also more load cases could
be required if additional couplings due to chirality are present. This would require extensive testing
and validation. For the scope of this research the interest lies in the bending-induced double curvature,
which relates to the bending-bending coupling. Therefore it was decided to focus on two additional
load cases to observe the out-of-plane bending in both principal directions. From Equation 2.13 these
are:

mi2 = Dggi12 + Degkar (2.17)

ma1 = Degri12 + Dggkior

where Dyg is equal to Dy in the case of the star-shaped unit-cell due to its symmetry. This is not the
case for the anti-tri-chiral unit-cell.

A commonly used principle for the bending of plates is cylindrical bending, which can be seen in Fig-
ure 2.9. This is a case of pure bending where two opposing moments bend the plate and two perpen-
dicular moments are used to obtain zero double curvature i.e. cylindrical bending. This method can
be found in books about plate theory[25] and was also proposed by Gauthier et al. as a method to
obtain Cosserat elastic constants[28]. The cylindrical bending test was selected as the method of the
additional load cases. The same RVE that the Cauchy load cases were applied to can be used for
these additional load cases.

To obtain the BPR from this test, two opposing bending moments M, were applied and the reaction
moments M, that kept the plate cylindrical were evaluated. Gauthier et al.[28] proposed the following
formula for this:
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Figure 2.9: Pure bending loading conditions to achieve cylindrical bending[28][25]

Dv,, — Bh

where it can be seen that when the Cosserat elastic constants 5 and v become zero, the formula
reduces to Cauchy. The BPR can then be defined as:

Duyp, _Bh
———— = BP 2.1
D +h r (2.19)

and this also implies that the BPR should converge to the IPR when the Cosserat constants approach
zero. This relation shows how the BPR dependends on two Cosserat parameters, where as h ap-
proaches zero v dominates the behaviour and 5 drops out[28]. So for thin plates v seems to be the
Cosserat constant that should mostly influence the bending-induced double curvature. This seems in-
teresting for further research into the Cosserat elastic constants, but for this research the BPR is used
as a whole. This turns Equation 2.18 and Equation 2.19 into Equation 2.20.

BPR = % (2.20)

For the cylindrical bending test, due to the zero double curvature, Equation 2.17 reduces to one un-
known term per equation. Using the applied curvature, the resulting moments due to this curvature
and the RVE dimensions, D¢ and Dgyg can be calculated. Using the reaction moment that is required
to keep the cylindrical shape, the applied curvature and the RVE dimensions, Dgg can be calculated.

These bending load cases were performed in COMSOL Multiphysics for the Star-shaped unit-cell and
the anti-tri-chiral unit-cell. Rigid connectors were used to either prescribe a rotation, or to constrain a
rotation. The reaction moments on these rigid connectors could then be evaluated. For the alternative
RVE of the star-shaped unit-cell and the RVE of the anti-tri-chiral unit-cell, periodic boundary conditions
were used to maintain allignment. Due to the symmetry of the star-shaped unit-cell, the bending load
cases are identical and therefore only one load case was performed. For the anti-tri-chiral unit-cell this
was not the case and therefore both load cases were performed. This does allow for extra validation
as Dgg can be computed from both load cases and compared. The bending test was performed for
two different mesh sizes. For the star-shaped unit-cell the bending test was performed for two different
RVE’s. Due to time constraints this was not done for the anti-tri-chiral unit-cell. The BPR of the star-
shaped unit-cell was determined using Equation 2.20. For the anti-tri-chiral unit-cell the BPR was
calculated using BPR = Dg9/Dgg to account for the orthorhombic size of the RVE.

To get more insight into the influence of the unit-cell geometry on the BPR, the cylindrical bending
test was analysed for different parameters using parametric sweeps in COMSOL Multiphysics. Three
relations were of interest regarding the flexures that the unit-cell consists of, namely h/l, h/w and w/I.
Here h is the height flexure, [ is the flexure length and w is the flexure width (see Figure 2.1). The ratio
h/l relates the in-plane size of the unit-cell with the out-of plane size. Eskandari et al. showed how
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this relation is influential for the BPR[14]. The ratio h/w desribes the cross-section of the flexure. This
ratio describes if the flexure is shaped like a flexure or more like a beam. This relation is of interest as
it could provide insight into the situation where the flexure can be approximated as an actual flexure or
as a beam. The ratio w/! desribes the relative wall thickness. From this ratio it could be determined
if thin-walled approximations are valid. For the anti-tri-chiral unit-cell another parameter, namely the
diameter of the cylinder d is relevant. The ratio d/I is of particular interest, because it determines if
the IPR is positive or negative, which was also observed by Alderson et al.[5]. For increasingly smaller
values of d/I, the anti-tri-chiral unit-cell becomes more similar to a traditional honeycomb unit-cell. Here
the rotation of the cylinders becomes less significant for the behaviour of the unit-cell. However it is
still largely unknown how this influences the BPR. Alderson et al. presented one geometry for the anti-
tri-chiral unit-cell, where the observed bending-induced double curvature was anticlastic[5]. By varying
over d/l it can be analysed wether regions of negative BPR can be found.

2.3.3. Weak form

The weak form is a powerful tool in COMSOL Multiphysics. The weak form was used to add the addi-
tional degrees of freedom, in the form of microrotations to create a Cosserat continuum model, specifi-
cally for out-of-plane bending. Just like the homogenised Cauchy continuum model, a rectangular block
is used to model the homogenised Cosserat continuum model and only a quarter of the rectangular
block has to be modelled. The rectangular block has the same geometry but for the homogenised
Cosserat continuum model, the extra bending load cases can be taken into account. To solve the weak
form, the linear and angular momentum balances had to be satisfied, with the constitutive equations i.e.
the asymmetric stress tensor (o written as s in COMSOL Multiphysics) and the couple stress tensor m.

Based on the constitutive equations from Equation 2.9 and the work of Jeong et al.[21] and Rezaei et
al.[18], a weak form model in COMSOL Multiphysics was constructed. Jeong et al.[18] used a Solid Me-
chanics physics node, which uses a Cauchy continuum, and added one weak form to insert the angular
momentum balance. Rezaei et al.[18] used two weak forms, one for the linear momentum balance and
one for the angular momentum balance. For this research, two weak forms were used. Both the linear
momentum balance and the angular momentum balance have three dependent variables namely: u;,
ue and uz and a1, as and as respectively. The weak form equations for the linear momentum balance
and angular momentum balance respectively are as defined by Rezaei et al.[18]:

— / O’ijVu“+/ O’ijVujTLi+/ PjVuj =0
JD . B ' D '

—/ nzijVa_7,7i+/ mijVa].ni—/ eijkaikva_j+/ QjVa;, =0
D B D D

where the test function is denoted as V, D is the computational domain and B is the surface boundary
around the domain. Body forces P and body couples @ are assumed to be zero as no force or couple
is applied at the domain level. The linear momentum balance contains the test functions regarding the
translations to determine the translations u1, us and us. The translations influence the stresses through
strains, which can be seen in Figure 2.8. The angular momentum balance contains the test functions
regarding the microrotations to determine the microrotations a1, as and a3. The microrotations influence
the couple stress through curvature, but also the shear stress which can be seen in Figure 2.8.

(2.21)

Applying the linear momentum balance from Equation 2.21, the weak expressions are given in Equa-
tion 2.22. Here it can be seen that every line corresponds to one of the dependent variables u;, u, and
us. Setting up the boundary conditions in the weak form is different than for other physics nodes. For
the linear momentum balance three Dirichlet boundary conditions were used. One to prescribe zero
displacement on the edge number two in Figure 2.5 and the other two to act as symmetry boundary con-
ditions. Here only the movement out-of-plane is fixed, which were applied to boundary planes two and
three in Figure 2.5. The boundary conditions are not a part of the weak expressions of Equation 2.22.
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— (s11 = test(ulX) + s12 x test(ulY') + s13 x test(ulZ))
— (821 x test(u2X) + s22 x test(u2Y') + 23 * test(u22)) (2.22)
— (831 x test(u3X) + 832 x test(u3Y') + 33 * test(u32))

In the weak form of the angular momentum balance, the weak expressions are given in Equation 2.23.
Here it can be seen that every line corresponds to one of the dependent variables a1, a; and as. For the
angular momententum balance three Dirichlet boundary conditions were used as wel. One to prescribe
zero microrotations on edge number two in Figure 2.5 and the other two to act as symmetry boundary
conditions. Here both microrotations in-plane are fixed, which were applied to boundary planes two and
three in Figure 2.5. Also through a weak contribution an external moment was applied on boundary
plane four.

—mll * test(alX) — m12 % test(alY) — m13 x test(alZ) — (23 — $32) x test(al)
—m21 x test(a2X) — m22 * test(a2Y) — m23 x test(a2Z) — (s31 — s13) = test(a2) (2.23)
— m31 * test(a3X) — m32 x test(a3Y) — m33 x test(a3Z) — (s12 — s21) * test(a3)

2.4. Validation

In this section, the results from the Cauchy homogenisation and the bending tests are presented. The
validity of these results are analysed by calculating the Mean Average Percentage Error (MAPE), for
both the different mesh sizes and the different RVE sizes. The MAPE can be used to determine how
changing the mesh size or RVE size changes the resulting elasticity tensor. If the MAPE is low, it can be
assumed that the respective results have converged. Also the functionality of the Cosserat continuum
weak form model is evaluated.

Three comparisons were formulated to apply the MAPE to. The effect of mesh refinement can be
determined for both RVE’s by comparing the elasticity tensors at different mesh sizes. Also the effect
of the RVE can be determined by comparing the elasticity tensors of the two different RVE’s, which
was done for the fine mesh. The formula for MAPE is:

a; — Pi
Q;

(2.24)

100%
MAPE =
—>

=1

where, a; represents the more accurate result i.e. smaller mesh size or larger RVE. p; represents the
less accurate result. n is the number of elastic constants that are taken into account. For the com-
parison of the Cauchy homogenisation, the in-plane elastic constants C11, Ca, C12 and Cgg (indicated
with blue color) of each respective elasticity tensor were used. For the comparison of the cylindrical
bending test, D11, D22, D12, and Doy were used. ldentical numbers due to symmetry of the tensor
were excluded.

2.4.1. Cauchy Homogensiation star-shaped unit-cell

The Cauchy elasticity tensor of the star-shaped unit-cell (in Voigt notation) was determined for average
axial strains of 0.1 and average shear strains of 0.05. The results using the first RVE with normal mesh
size, first RVE with fine mesh size, alternative RVE with normal mesh size and alternative RVE with fine
mesh size are respectively given in Equation 2.25, Equation 2.26, Equation 2.27 and Equation 2.28.
It can be seen that C» and C5; ,the two off-diagonal numbers marked with blue, are positive. This
indicates a positive Poisson’s ratio in-plane. The elasticity tensor displays couplings not expected for
an orthotropic material, defined in Equation 2.3. The expected elastic constants for an orthotropic
material are marked with blue and yellow. However, most unexpected couplings are at least a factor
ten smaller than the expected couplings and are assumed to be insignificant. A significant out-of-plane
axial to shear coupling is present. Axial out-of-plane deformation is assumed to be insignificant in the
case of bending and for plate theory it can be assumed that o33 is zero i.e. no change in thickness of
the plate occurs. The unexpected couplings might be an effect of the thin-walled nature of the unit-cell.
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In Table 2.2, the resulting MAPE values can be seen. Mesh refinement of the alternative RVE has
a greater MAPE value than mesh refinement for the first RVE. This difference seems to indicate that
the first RVE is better converged than the alternative RVE. This could be due to the larger size of the
alternative RVE, where small inaccuracies of the mesh are present at more locations compared to
the first RVE. The MAPE for the RVE size is relatively low compared to the other MAPE values. So
changing from the first RVE to the alternative RVE at a fine mesh, has less influence on the results
that canging from a normal mesh to a fine mesh for a fixed RVE. This seems to indicate that both
RVE'’s represent the same overall behaviour. This demonstrates how the size of the RVE should be
independent from the homogenisation results.

MAPE mesh refinement first RVE 0.82%
MAPE mesh refinement alternative RVE | 2.05%
MAPE RVE size 0.72%

Table 2.2: Star-shaped unit-cell MAPE results

In Figure 2.10 and Figure 2.11 the load cases applied to the two choices of RVE are visualised. Due
to the symmetry of the star-shaped unit-cell, the principal strain in the x and y direction show the same
behaviour. This is also the case for the out-of plane shear strain for yz and xz. For principal strain
in the x and y direction, the shape of the star changes, while for shear strain in the xy direction, the
star-shape remains unchanged and the surrounding flexures bend. The behaviour of the two RVE’s
seems identical, further confirming that the choice RVE is valid.
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(a) principal strain x

(d) shear strain xy

Figure 2.10

(b) principal strain y

(e) shear strain yz

(c) principal strain z

(f) shear strain xz

: six load cases applied to the star-shaped unit-cell (fine mesh)
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(a) principal strain x (b) principal strain y (c) principal strain z

(d) shear strain xy (e) shear strain yz (f) shear strain xz

Figure 2.11: six load cases applied to the alternative RVE of the star-shaped unit-cell (fine mesh)

2.4.2. Cauchy homogenisation anti-Tri-Chiral unit-cell

The Cauchy elasticity tensor of the anti-tri-chiral unit-cell (in Voigt notation) was determined for average
axial strains of 0.1 and average shear strains of 0.05. The results of the first RVE with normal mesh size,
first RVE with fine mesh size, the alternative RVE with normal mesh size, and alternative RVE with fine
mesh size are respectively given in Equation 2.29, Equation 2.30, Equation 2.31 and Equation 2.32. It
can be seen that the off-diagonal components marked in blue at C;5 and C5; are negative, indicating a
negative Poisson’s ratio. Similarly to the star-shaped unit-cell, unexpected couplings are present with
the largest being the out-of-plane axial to shear coupling. Another unexpected coupling that is present
is the coupling between in-plane axial to shear. This coupling might be attributed to the anti-chiral
nature of the unit-cell, as chiral unit-cells display a significant axial to shear coupling.

in Table 2.3, the resulting MAPE values can be seen. Both mesh refinements have a similar MAPE
value. The difference in size between the different RVE’s is smaller than that of the star-shaped unit-
cells, which could explain the difference. The MAPE values of the mesh refinement are higher than
that of the star-shaped unit-cell, which indicate that the star-shaped unit-cell is better converged that
the anti-tri-chiral unit-cell. This is likely the result of the small cylinders present in the anti-tri-chiral
unit-cell, as circular shapes require a finer mesh to accurately represent than rectangular shapes. The
MAPE of the RVE size is low, indicating that both RVE’s represent the same overall behaviour. This
demonstrates that not only the size, but also the shape of the RVE should be independent from the
homogenisation results.

MAPE mesh refinement first RVE 2.84%
MAPE mesh refinement alternative RVE | 2.76%
MAPE RVE size 0.24%

Table 2.3: Star-shaped unit-cell MAPE results Cauchy homogenisation

In Figure 2.12 and Figure 2.13 the load cases applied to the RVE are visualised. The response of the
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different RVE’s for an identical load case can be compared. It can be seen that the amount of stress
and location of the stress is similar. For Figure 2.12 (c) and Figure 2.13 (c) the colours are different,
but this can be attributed to the automatic scaling of the colour gradient. From the colour table it can
be seen that the different colours both represent roughly the same value. For principal strain in the x
and y directions, it can be seen that the applied tension rotates the cylinders. This movement pushes
the other flexures around the cylinder outwards, creating the auxetic behaviour. The behaviour of the
two RVE’s seems identical, further confirming that the choice of RVE is valid.
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(a) principal strain x

(d) shear strain xy

(b) principal strain y

(e) shear strain yz

(c) principal strain z

(f) shear strain xz

Figure 2.12: six load cases applied to the first RVE of the anti-tri-chiral unit-cell with finer mesh
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(a) principal strain x

(d) shear strain xy

(b) principal strain y

(e) shear strain yz

(c) principal strain z

(f) shear strain xz

Figure 2.13: six load cases applied to an alternative RVE of the anti-tri-chiral unit-cell with finer mesh

2.4.3. Cylindrical Bending test star-shaped unit-cell

In Figure 2.14 the cylindrical bending of the star-shaped unit-cell can be seen. For the star-shaped unit-
cell, the out-of-plane bending section of the D-matrix was determined for a curvature of 6.35rad/m. The
results of the first RVE with fine mesh size, the first RVE with finer mesh size, the alternative RVE with
fine mesh size, and alternative RVE with finer mesh size are presented in Equation 2.33, Equation 2.34,
Equation 2.35 and Equation 2.36 respectively. The off-diagonal components are negative indicating a
negative BPR. As stated in the methodology, due to the symmetry of the star-shaped unit-cell j112 = 1.

In Table 2.4, the resulting MAPE values can be seen. The MAPE values are low, especially the MAPE
of the RVE size, indicating that that both RVE’s represent the same behaviour. The size of the RVE
does not seem to influence the resulting bending section of the D-matrix. In Figure 2.14, the cylindrical
bending test applied to both RVE sizes are visualised.

MAPE first RVE mesh refinement

MAPE alternative RVE mesh refinement

MAPE RVE size

1.16%
0.51%
0.07%

Table 2.4: Star-shaped unit-cell MAPE results cylindrical bending
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(a) bending first RVE (b) bending alternative RVE

Figure 2.14: Cylindrical bending test star-shaped unit-cell

2.4.4. Cylindrical bending test anti-tri-chiral unit-cell

In Figure 2.15, the cylindrical bending of the anti-tri-chiral unit-cell can be seen. For the anti-tri-chiral
unit-cell, the out-of-plane bending section of the D-matrix was determined for a curvature of 13.3rad/m.
Due to the orthorhombic symmetry of the anti-tri-chiral unit-cell, the bending test was done in two
directions, which can be seen in Figure 2.15. The results of the first RVE with fine mesh size and the
first RVE with finer mesh size are presented in Equation 2.37 and Equation 2.38 respectively. Due to
time constraints, the cylindrical bending test could not be repeated for the alternative RVE.

In Table 2.5, the resulting MAPE values can be seen. Mesh refinement of the first RVE has a small
MAPE value, indicating that convergence of the mesh can be assumed. The mesh refinement for the
cylindrical bending tests was done from a fine mesh size to a finer mesh size, compared to the normal
mesh size to fine mesh size of the homogenisation. So it seems that the fine mesh size is small enough
to accurately model the cylindrical features of the anti-tri-chiral unit-cell.

The MAPE values for the off-diagonal components are quite high for both mesh sizes. The off-diagonal
components were assumed to be symmetric based on Cui et al.[27], Eskandari et al.[14] and Yao
et al.[15]. However, based on the obtained values this cannot be validated. It might be possible that
additional couplings like bending to torsion are present for the anti-tri-chiral RVE. The symmetry group of
the orthorhombic RVE of the anti-tri-chiral unit-cell was not found. However, the possible coupling of the
3m symmetry group of the anti-tri-chiral unit-cell itself were described by Cui et al.[27]. These include
possible axial to bending, shear to bending, rotation to bending and torsion to bending couplings[27].
The presence of additional couplings would make Equation 2.17 invalid, as additional coupling terms
would have to be added. The cylindrical bending test itself should remain a valid load case, where
one out-of-plane couple strain is applied and the resulting couple stresses can be observed. However,
it should be carefully evaluated that no unexpected strains or couple strains are present during the
cylindrical bending test, as this would add additional variables to the equation.

MAPE first RVE mesh refinement 0.60%
MAPE first RVE off-diagonal components fine mesh | 37.41%
MAPE first RVE off-diagonal components finer mesh | 39.51%

Table 2.5: anti-tri-chiral unit-cell MAPE results cylindrical bending

2 _ [26.0664 12.1377] (k1o
(M21>_[8.8329 52.5390| \ ko1 (2.37)
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(a) bending over x-axis (b) bending over y-axis

Figure 2.15: Cylindrical bending test anti-tri-chiral unit-cell in both directions

2.4.5. Cosserat model

The Cosserat model should be able to display different types of bending-induced double curvature in-
dependently from its IPR. To validate the performance of the Cosserat model, the model was tested in
tension and bending for different values of IPR and BPR. The results of this can be found in Figure 2.16
and Figure 2.17. Identical symmetry conditions as depicted in Figure 2.4 were used. The IPR deter-
mines the deformation perpendicular to the applied tension, which can be seen in Figure 2.16. At an
IPR value of zero, there is no displacement perpendicular to the applied tension. It can be observed
that varying the BPR does not influence the results. Also it can be observed that the displacements,
indicated by the colour gradient, seem gradual and smooth.

The BPR determines the double curvature, which can be seen in Figure 2.17. This can be most easily
seen by observing the angle of the color gradient, which moves from the heighest value (red) to the
lowest point (dark blue). While varying the IPR does not significantly change the double curvature, it
does affect the smoothness of the model. The IPR should not influence the bending behaviour at all,
so this is an indication that something is not working correctly. Additionally, applying a moment using a
weak contribution did not work as expected. In the weak contribution a moment was multiplied by a test
function of the microrotation in the direction of bending. This is similar to how Rezaei et al.[18] used
body couples on the domain level, but applied at the boundary level instead. However, the resulting
weak contribution seems not to depend on the unit of the applied moment and instead just seems to
use the numerical value to scale the microrotations at the boundary of the weak contribution. The result
is not the same as the application of a rotation to a boundary, as applying a rotation suppresses double
curvature at that boundary, which the applied weak contribution did not. The weak contribution does
apply an initial curvature and the BPR does determine the induced double curvature, so the overall
behaviour does seem similar to that of a moment.
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(a) IPR 0.3 BPR 0.3 (b) IPR O BPR 0.3 (¢) IPR-0.3 BPR 0.3

¢

(d) IPR 0.3 BPR 0 (e) IPROBPR O (f) IPR-0.3 BPR 0

\\

(9) IPR 0.3 BPR-0.3 (h) IPR 0 BPR -0.3 (i) IPR -0.3 BPR -0.3

Figure 2.16: Weak form model loaded in pure tension for varied IPR and BPR, the color indicates the displacement
perpendicular to the applied tension
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(a) IPR 0.3 BPR 0.3 (b) IPR O BPR 0.3 (¢) IPR-0.3 BPR 0.3
(d) IPR 0.3 BPR 0 (e) IPROBPR O (f) IPR-0.3 BPR 0
(g) IPR 0.3 BPR -0.3 (h) IPR 0 BPR -0.3 (i) IPR -0.3 BPR -0.3

Figure 2.17: Weak form model loaded in pure bending for varied IPR and BPR, the color indicates the displacement in the
out-of-plane direction ug

2.4.6. Validation models

For comparison purposes, detailed metaplates consisting of tesselated unit-cells were modelled in
Solidworks and analysed with COMSOL Multiphysics. This was done for both the star-shaped unit-
cell and the anti-tri-chiral unit-cell. The same general setup of applying bending on a quarter of the
unit-cell, asshown in Figure 2.4 was used. Symmetry boundary conditions were applied with one fixed
constraint to keep the model properly constrained. The bending moment was applied through multiple
seperate moment boundary loads applied at the endpoints of the unit-cell flexures, as not to supress
double curvature. The bending-induced double curvature of the detailed metaplates were determined
by applying 2 rigid connectors along both symmetry planes. Through the use of the curl operator in the
bending-induced double curvature of these metaplate models was be evaluated in terms of BPR.

In Solidworks, a long metaplate consisting of star-shaped unit-cells was made to observe the devel-
opment of BPR for an increasingly long metaplate. This long metaplate was analysed in COMSOL
Multiphysics. Mirroring was used so only half of the metaplate had to be modelled. The non mirrored
end has a rigid bar onto which an out-of-plane moment is applied. This rigid bar supresses the dou-
ble curvature. The theory behind this is that the influence of the rigid bar on double curvature, should
becomes less influential at greater distances from the rigid bar. The star-shaped unit-cell was chosen
for this with the same dimensions used for the homogenisation, mentioned in Figure 2.1. The total
length of the metaplate varies from two to 16 unit-cells, where one to eight unit-cells are modelled. The
metaplate is kept at a constant width of five unit-cells. A constant moment is applied along a rigid con-
nector. An identical test was performed for another star-shaped unit-cell with an alternative geometry
of | = 4mm, h = 3mm, w = 0.5mm.

The bending test of the long metaplate can be used to see if the BPR converges to the BPR determined
through the cylindrical bending test. Here it is important to recognise the differences between these
two methods, namely the fact that the bending test has a rigid bar at the ends where the moments are
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applied. This means that the double curvature at the endpoints is zero and that the double curvature
around the middle of the long metaplate is at its maximum. This is different from the cylindrical bending
load case where the double curvature is equal throughout the metaplate.

2.4.7. Verdict validation

For the Cauchy homogenisation of both types of unit-cell, the type of in-plane Poisson’s ratios were
as expected. It can be confirmed that the RVE size does not have a significant impact on the ho-
mogenisation results. In further research the first i.e. smaller RVE could be used, as the resulting
elasticity tensor loses no significant information compared to the alternative RVE. Also, further mesh
refinement could be done for the anti-tri-chiral unit-cell to account for the cylindrical geometry. For the
results, the Cauchy elasticity tensor of the alternative RVE with the fine mesh size was used for both
the star-shaped unit-cell as the anti-tri-chiral unit-cell. The unexpected elastic constants in the Cauchy
elasticity tensor will not be taken into account for the Cosserat elasticity tensor, as these couplings
were not added to the Cosserat continuum model. For the homogenised Cauchy continuum model the
unexpected elastic constants were taken into account.

For the cylindrical bending test of both types of unit-cell, the signs of the BPR ratios were as expected.
For the star-shaped unit-cell it can be confirmed that both mesh size and RVE size do not have a sig-
nificant effect on the resulting bending section of the D-matrix. For further research the firsti.e. smaller
RVE can be used. The bending section of the D-matrix of the anti-chiral unit-cell is not symmetric, while
symmetry was expected based on literature. This indicates that the resulting bending section of the
D-matrix might not be accurate. Further research is required to determine the couplings present for
the anti-tri-chiral unit-cell RVE, to improve the application of the cylindrical bending test. For the star-
shaped unit-cell, the bending part of the D-matrix of the altenative RVE with the finer mesh size was
used for the Cosserat elasticity tensor. For the anti-tri-chiral unit-cell, the bending part of the D-matrix
of the first RVE with the finer mesh size was used for the Cosserat elasticity tensor.

The Cosserat model is able to display different types of double curvature independently from the IPR.
However, further refinement of the model is required to remove the deformation defects, i.e. increase
the smoothnes, and to apply the moment more properly. It could be possible that the deformation
defects are caused by the flawed application of the moment.



Results

The complete Cosserat elasticity tensors used for the star-shaped unit-cell are presented in Equa-
tion 3.1 and Equation 3.2. The complete Cosserat elasticity tensors used for the anti-tri-chiral unit-cell
are presented in Equation 3.3 and Equation 3.4. For Equation 3.4 it can be seen that the the Cosserat
elasticity tensor is not symmetric.
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3.1. Comparison metaplates

The FEA results of the actual metaplate, i.e. detailed metaplate, can be compared to the FEA results of
the homogenised Cauchy and Cosserat continuum metaplates. For the star-shaped unit-cell, this can
be seen in Figure 3.1. For the anti-tri-chiral unit-cell this can be seen in Figure 3.2. Additionally, a top
view of the Cosserat continuum metaplates is presented in Figure 3.3. Similarly to Figure 2.17, it can be
seen that deformation defects are present in the homogenised Cosserat continuum model for both the
star-shaped unit-cell metaplate and the anti-tri-chiral unit-cell metaplate. Due to the symmetry of the
anti-tri-chiral unit-cell, mirroring the metaplate in two directions is technically incorrect. Therefore, half
the metaplate was modelled for the detailed metaplate. Due to time constraints, it was not possible to
create a new models for the homogenised Cauchy and Cosserat metaplates, where half the plate was
modelled. This oversight reduces the value of the comparison of the anti-tri-chiral unit-cell significantly.
However, the type of bending-induced curvature can still be evaluated.

No BPR values were determined for the homogenised Cosserat metaplates, as the deformation defects
would have likely influenced the result. Application of an identical moment for the detailed metaplate
and the Cauchy metaplate resulted in different curvatures for both types of unit-cells. The bending
stiffness of the homogenised Cauchy metaplate is determined through the flexural rigidity, which does
not accurately describe the bending stiffness for metaplates. This was also concluded by Chen[12][13].
To determine the bending-induced double curvature, moments were applied that achieved a similar
amount of principal curvature for both the detailed metaplate, the homogenised Cauchy continuum
metaplate and the homogenised Cosserat continuum metaplate. Due to the pure bending loading
condition applied, the resulting bending-induced double curvature should be independent of the amount
of principal curvature applied in the linear elastic region. More principal curvature should translate to
more double curvature, as BPR = —ks; /k12.

The bending-i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>