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abstract

Mechanical metamaterial plates (metaplates) can exhibit unique bending properties compared to reg-
ular plates. Where regular plates can only have anticlastic (saddle-shaped) or monoclastic (cylinder-
shaped) bending-induced double curvature, metaplates can also have synclastic (dome-shaped) bending-
induced double curvature. This behaviour can be controlled by altering the geometry of the unit-cell and
has been linked to the unit-cell’s Poisson’s ratio. However, some metaplates exist that do not display
the type of bending-induced double curvature that is expected based on their Poisson’s ratio. Recent
studies have shown how Cosserat or Micropolar theory can be used to more accurately describe the
bending-induced double curvature of metaplates.

In this thesis metaplates are compared using different modelling approaches. The metaplates of inter-
est are the star-shaped unit-cell and the anti-tri-chiral unit-cell. As a starting point, the metaplates are
homogenised as a Cauchy continuum and through the use of additional load cases a homogenised
Cosserat continuum is created. The homogenised Cosserat continuum model is compared to both the
bending behaviour of the actual metaplate and the homogenised Cauchy continuum model using Finite
Element Analysis. While the developed Cosserat model displays the correct type of bending-induced
double curvature, the presence of deformation defects indicate that the Cosserat model requires further
refinement. Additional analysis was done in COMSOL Multiphysics to explore the influence of unit-cell
parameters and boundary conditions on the bending-induced double curvature of metaplates.
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Summary

Mechanical metamaterial plates (metaplates) can exhibit unique bending properties compared to reg-
ular plates. Where regular plates can only have anticlastic (saddle-shaped) or monoclastic (cylinder-
shaped) bending-induced double curvature, metaplates can also have synclastic (dome-shaped) bending-
induced double curvature. This behaviour can be controlled by altering the geometry of the unit-cell and
has been linked to the unit-cell’s Poisson’s ratio. However, some metaplates exist that do not display
the type of bending-induced double curvature that is expected based on their Poisson’s ratio. Recent
studies have shown how Cosserat or Micropolar elasticity can be used to more accurately describe the
bending-induced double curvature of metaplates. Using Cosserat elasticity, this inconsistency between
in-plane and bending behaviour can be resolved as Poisson’s ratio can be split up into two ratios, one
regarding in-plane displacement and one regarding out-of-plane bending. However, no commercially
available Finite Element Anlysis(FEA) programs exist that include Cosserat Elasticity. FEA programs
like COMSOL multiphysics, which is used for this research, use classical or Cauchy elasticity.

In this thesis the bending-induced double curvature of metaplates is researched by comparing differ-
ent modelling approaches. Two metaplate unit-cells were selected for this analysis, namely the star-
shaped unit-cell and the anti-tri-chiral unit-cell. As a starting point, the metaplates were homogenised
as a Cauchy continuum using six load cases. From this a homogenised Cauchy continuum model of
the metaplate was made, that could be analysed with FEA. Through the use of two additional load
cases the metaplate was homogenised as a Cosserat continuum for bending. The two additional load
cases applied were cylindrical bending tests. However, the extra information from the additional load
cases could not be inserted into a Cauchy continuum model. To analyse the homogenised Cosserat
continuum model of the metaplate, the weak form in COMSOL Multiphysics was used. This made it
possible to perform FEA on the homogenised Cosserat continuum model of the metaplate. Also the
actual metaplate was analysed with FEA.

The bending-induced double curvatures of these three modelling approaches were compared for meta-
plates of both unit-cells. The type of bending-induced double curvature of the homogenised Cauchy
continuum model did not match with that of the actual metaplates. The homogenised Cosserat con-
tinuum model did have the same type of bending-induced double curvature as the actual metaplates.
However, the presence of deformation defects and a lack of smoothness indicate that the Cosserat
model requires further refinement.

For the star-shaped unit-cell, the influence of unit-cell geometry on the bending-induced double cur-
vature was analysed through the cylindrical bending test. The results showed similarities to existing
literature regarding the star-shapedmetaplate, and additionally variation of the wall thickness was incor-
porated. Additionally a long metaplate was analysed through FEA to visualise the influence of boundary
conditions on the bending-induced double curvature. An unexpected drop in bending-induced double
curvature was found for longer metaplates.

Using Cosserat elasticity to model metaplates and mechanical metamaterials in general, is a promising
yet complicated method. This research shows a specific application of how Cosserat elasticity could be
used in FEA. More research into applying Cosserat elasticity in FEA, could create a more complete and
user friendly FEA program that can take Cosserat elasticity into account. This could lower the threshold
of research using Cosserat elasticity. This would not only be useful for mechanical metamaterials, but
also for a wide range of other materials or structures with significant microstructure.
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1
Introduction

Throughout history it can be observed that the amount of available materials for design has constantly
been increasing. This allows for more design possibilities and could be critical in sectors like the high-
tech industry, to improve machines further. Currently there are thousands of possible engineering
materials, spanning a wide range of material properties. However, these engineering materials still
have limitations. For instance, if we look at a material property like Poisson’s ratio (ν = −ϵ22/ϵ11), i.e.
the ratio of transversal strain to axial strain, it can be observed that engineering materials almost always
have Poisson’s ratios between 0 and 0.5. This absence of negative Poisson’s ratio materials has led to
the research of auxetic structures and more specifically, mechanical metamaterials. Mechanical meta-
materials are compliant structures that obtain their generalised material properties from their geometry
instead of the material they are made from. Mechanical metamaterials can be designed to have a neg-
ative Poisson’s ratio. Controlling Poisson’s ratio has a lot of practical applications. A famous example
from daily life is cork[1], which has a Poisson’s ratio of roughly zero and therefore can be pushed into
the neck of a wine bottle without getting wider due to the deformation from compression.

Mechanical metamaterials Can be observed at two scales. At themicro scale there is the unit-cell, made
out of a material like metal or polymer. The Poisson’s ratio of the material does not change. However
at the macro scale, the Poisson’s ratio of the mechanical metamaterial depends on the geometry of the
unit-cell. Here the poisson’s ratio is a generalised material property of the mechanical metamaterial.
The generalised material properties of mechanical metamaterials can be obtained through homogeni-
sation. Homogenisation is a method that be used to model a heterogeneous material as an equivalent
homogeneous material. A small section of the mechanical metamaterial that is representative for the
entire mechanical metamaterial, i.e. a Representative Volume Element (RVE), can be used to deter-
mine these generalised material properties. The generalised material properties obtained from the
RVE can then be extrapolated to the entire material. Different types of homogenisation techniques
exist, ranging from analytical models to experimental approaches. For this research it was decided to
apply load cases on a RVE through FEA. This enables a single method that can be applied to a wide
range of different unit-cells. Once the generalised material properties of a mechanical metamaterial
are obtained, then these can be applied to a block of material in a FEA program. Now only a block of
material has to analysed instead of a collection of hundreds of unit-cells.

Poisson’s ratio also influences the bending behaviour of a material, specifically the bending-induced
double curvature[2]. Materials with a positive Poisson’s ratio display anticlastic bending-induced dou-
ble curvature. Poisson’s ratio can be described for bending as the ratio of transversal curvature to
axial curvature i.e. BPR = −k21/k12. Where an initial curvature is applied to k12 and k21 is the dou-
ble curvature induced by curvature k12.. This behaviour is of particular interest when regarding plates
as the out-of-plane bending stiffness is relatively low and plate theory could be applied. Mechanical
metamaterial plates (metaplates) can be designed to display anticlastic, monoclastic or synclastic cur-
vature[2][3][4][5][6][7]. Controlling bending-induced double curvature could be applied to get complex
spatial geometries from initially flat structures[2]. In the research field of energy harvesting, connect-
ing the piezo-electric elements to a metaplate that bends synclastically can improve the performance
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of the energy harvester. More strain is applied to the piezo-electric element for the same amount of
axial curvature, compared to the situation where the piezo-electric element was connected to a regular
plate[8][9][10].

Soest presented how varying Poisson’s ratio in metaplates could be used to obtain complexly curved
metaplates[11]. In this research it was assumed that metaplates could be represented as (Cauchy)
Love-Kirchhoff plates. However, other research indicates that Poisson’s ratio does not determine
the bending-induced double curvature of metaplates[5][12][13]. Recent literature has shown that the
bending-induced double curvature of metaplates depends on more than just Poisson’s ratio[7][14][15].
During bending, the beams or flexures comprising the unit-cell of the metaplate experience both bend-
ing and torsion. The interaction between bending and torsion depends on the geometry of the unit-cell,
which means that representing a metaplate as a Cauchy continiuum has shortcomings and will not
always lead to accurate results[15].

Extensions to the Cauchy continuum are couple stress theory and the Cosserat or Micropolar contin-
uum. Both Cosserat and Micropolar can be used to describe a continuum that has three additional
degrees of freedom in the form of microrotations, compared to the three translational degrees of free-
dom of a Cauchy continuum. For this research it was chosen to use the term Cosserat. Through the
use of Cosserat theory, Poisson’s ratio can be split up into the in-plane Poisson’s ratio (IPR) and the
Bending Poisson Ratio (BPR)[15][14]. The BPR can be used to design metaplates with complex dou-
ble curvature, even for a constant IPR[14]. Based on findings from literature, for (auxetic) honeycomb
metaplates the IPR is often close to the desired bending-induced double curvature[2][3][4]. This could
be due to the fact that the BPR of these unit-cells quickly converge to the IPR[14]. However, it is still
useful to also check the BPR, to make sure the assumption IPR = BPR is valid. For other unit-cells
the BPR should be considered instead of the IPR to determine the desired bending-induced double
curvature.

Through the use of Cosserat theory, the possible convergence of BPR to IPR could be analysed for
different unit-cells. This could be valuable for the application of metaplates in engineering purposes, as
around the region of convergence the metaplate could be modelled like a Cauchy plate, which would
significantly reduce the complexity of the model and conventional homogenisation techniques would be
applicable. It is hypothesised by Eskandari et al. that for all metaplates the BPRwill eventually converge
to the IPR as the relative thickness, which can be seen as a size dependency, becomes greater[14].
However, from the research of Eskandari et al. this could only be concluded for the (auxetic) honeycomb
unit-cells[14].

Cosserat theory is not only applicable to metaplates, but has a wide variety of applications for material-
s/structures containing a significant microstructure[16][17]. Rezaei et al. presented how Cosserat the-
ory can be used to more accurately model perforated plates and bone, for dentistry applications[18][19].
Masiani et al. presented how Cosserat theory can be applied to the modelling of brick walls[20]. For all
these applications a more standardised modelling method would be beneficial. As of the time of writing,
a homogenisation application in COMSOL exists that is able to homogenise a heterogeneous medium
as a Cauchy continuum, but not as a Cosserat continuum. As of the time of writing, there are no com-
mercial Finite Element Analysis) FEA programs available that include Cosserat theory. This was also
stated by Rezaei et al. in 2024[18]. In COMSOL Multiphysics the weak form can be used to model a
Cosserat continuum. Jeong et al. modelled torsion in a Cosserat rod[21], which Rezaei et al. did as
well[18]. Additionally, Rezaei et al. made a two Dimensional Cosserat model for concentrated loads
and shear loads[18][19]. Using the weak form in COMSOL Multiphysics to model bending-induced
double curvature for a Cosserat continuum has not been found in literature.

In this thesis amethod is presented to create a Cosserat continuummodel for the bending of metaplates,
using the weak form in COMSOL Multiphysics. While, research has been done to apply Cosserat
elasticity to the weak form in COMSOL Multiphysics, this has only been done to model torsion in a
cylinder[21][18] and deformation in a 2D plate[18][19]. Modelling bending-induced double curvature is
a novel application of using the weak form in COMSOL Multiphysics. This method will be applied to
two metaplates, namely one with a star-shaped unit-cell and one with an anti-tri-chiral unit-cell. As a
starting point, the metaplates are homogenised as a Cauchy continuum and through the use of addi-
tional load cases a homogenised Cosserat continuum is created. Validation is performed by analysing
different mesh sizes and different RVE’s. The homogenised Cosserat continuum model is compared
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to both the bending behaviour of the actual metaplate and the homogenised Cauchy continuum model
through FEA. While the developed Cosserat model displays the correct type of bending-induced dou-
ble curvature, the presence of deformation defects indicate that the Cosserat model requires further
refinement. Additionally, the influence of unit-cell geometry on the BPR is analysed, which could pro-
vide novel insights into the required modelling approach. Also possibilities for experimental testing are
explored through a FEA of the bending-induced double curvature for an increasingly long metaplate.



2
Methodology

The methodology is divided into four major sections. First, the unit-cells of interest for this research are
introduced and Representative Volume Elements (RVE’s) for these unit-cells are chosen. Second, the
metaplate is modelled as a Cauchy continuum through homogenisation and a Cauchy continuummodel
is setup. Third, the metaplate is modelled as a Cosserat continuum and a Cosserat continuummodel is
set up. Fourth, validation of the parts of the methodology is performed and additional validation models
are setup. From the methodology three metaplate models are made, a detailed metaplate consisting
out of tesselated unit-cells, a homogenised Cauchy continuum model and a homogenised Cosserat
continuum model. These models can be compared to evaluate how the modelling method influences
the observed bending-induced double curvature.

2.1. Unit-cells and RVE
A representative Volume Element (RVE) is a small section of the structure, that is representative for
the entire structure. This is similar to how unit-cells can be tesselated to create the metamaterial. The
unit-cell is an often used as the RVE. However, if there are planes of symmetry in the unit-cell it is
possible to reduce the RVE to a section of the unit-cell, where that section can create the entire unit-
cell via mirroring operations. This has been done for honeycombs[22][23]. Reducing the size of the
RVE is desirable as the analysis will require less computation power. However, there is a risk that if
the RVE is too small, that information about the global behaviour is lost. For this research two different
RVE’s were selected for each unit-cell, to evaluate if the size of the RVE influences the behaviour. If
the behaviour of the smaller RVE does not significantly differ from the larger RVE, it can be validated
that the smaller RVE is an effective choice of RVE.

The first unit-cell of interest is the star-shaped unit-cell, which can be seen in Figure 2.1. This unit-cell
is present in two recent studies that investigated the BPR of this unit-cell[15][14]. In this research it
was shown that the star-shaped unit-cell can have a positive IPR, while having a negative BPR. The
star-shaped unit-cell has a tetragonal crystal class and belongs to the 4/mmm symmetry group[14].
Four mirror planes are present in the unit-cell. The first RVE was chosen as the unit-cell itself, while
for the alternative RVE a section of three by three unit-cells was chosen. The alternative RVE can be
seen in Figure 2.1. For the star-shaped unit-cell the relevant geometry and material parameters are
given in Table 2.1a.

The second unit-cell of interest is the anti-tri-chiral unit-cell, which can be seen in Figure 2.2. In a study
about multiple chiral and anti-chiral metaplates, the anticlastic bending-induced double curvature of this
unit-cell was unexpected as it has a negative IPR[5]. The anti-tri-chiral unit-cell is a hexagonal unit-cell
like the honeycomb unit-cell, meaning that every unit-cell connects to six other unit-cells. However, the
anti-tri-chiral unit-cell has a trigonal crystal class and belongs to the 3m symmetry group. Three mirror
planes are present in the unit-cell, where every symmetry element is a small tri-chiral structure. The
anti-tri-chiral unit-cell can be converted into a orthorhombic unit-cell by adding or removing a section of
the unit-cell. These two variants were chosen as the two RVE’s, which can be seen in Figure 2.2. For
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2.2. Cauchy model 5

the anti-tri-chiral unit-cell the relevant geometry and material parameters are given in Table 2.1b.

Figure 2.1: star-shaped unit-cell and alternative RVE

(a) Unit-cell (b) RVE (c) Alternative RVE

Figure 2.2: Anti-tri-chiral unit-cell and RVE’s

Length flexure l = 6mm
Height flexure h = 4mm
Width flexure w = 0.5mm
Angle between flexures θangle = 77◦

Young’s modulus Enylon = 2GPa
Material Poisson’s ratio νnylon = 0.4

(a) Relevant parameters of star-shaped unit-cell

Length flexure l = 10mm
Height flexure h = 5mm
Cylinder diameter h = 5mm
Width flexure w = 0.5mm
Angle between flexures θangle = 120◦

Young’s modulus Enylon = 2GPa
Material Poisson’s ratio νnylon = 0.4

(b) Relevant parameters of anti-tri-chiral unit-cell

Table 2.1: Unit-cell parameters

2.2. Cauchy model
2.2.1. Cauchy continuum
In an isotropic Cauchy continuum only two elastic constants are required to model the behaviour of
the continuum. This means that the elasticity tensor can be constructed from these two parameters,
for instance the Young’s modulus and Poisson’s ratio. Other parameters are also possible, namely:
[Bulk modulus and shear modulus], [the lamé parameters] and [pressure wave speed and shear wave
speed]. These parameters can be expressed as function of the other parameters. For instance, the
shear modulus can be written as a function of the Young’s modulus and Poisson’s ratio:

G =
E

2(1 + ν)
(2.1)
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If the continuum is anisotropic, then additional parameters are required to model the behaviour, as one
material parameter can have different values depending on the direction along which it is measured.
If the material is transversely isotropic i.e. isotropic in-plane, then an additional Young’s modulus,
Poisson’s ratio and an independent shear modulus are required, as the shear modulus perpendicular
to the plane of isotropy can no longer be calculated using Equation 2.1. So five material parameters
are required in this case[24]. If the continuum is orthotropic i.e. different in three orthogonal directions,
then nine material parameters are required. Here we need three Young’s moduli, three Poisson’s ratios
and three shear moduli[24]. In the book “Theory of Plates and Shells” by Mittelstedt[24] a general
introduction is given into material symmetries, which can be looked at for further information. For the
purpose of this research a few relevant material symmetries and simplifications for plate theory are
presented starting from the fully anisotropic case.

For a fully anisotropic Cauchy continuum, there are 21 elastic constants that have to be determined.
For a fully anisotropic material Hooke’s law states:


σ11

σ22

σ33

σ23

σ13

σ12

 =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12

 (2.2)

The Cij components in the stiffness matrix still relate to the previously mentioned material properties.
Terms C11, C22 and C33 contain Young’s moduli, C44, C55 and C66 are shear moduli and the off-diagonal
terms are coupling terms between these. For instance, the terms C12, C13 and C23 couple the principal
strains via Poisson’s ratio. If the the material is orthotropic, Equation 2.2 reduces to Equation 2.3. For
achiral and anti-chiral unit-cells, no couplings between principal stains and shear stresses are expected.


σ11

σ22

σ33

σ23

σ13

σ12

 =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12

 (2.3)

Because plates are of interest, where the height is a lot smaller than the length and width, not all terms
are of interest. Two well established plate theories are Love-Kirchhoff and Reissner-Mindlin. Based on
which of these plate theories are used, simplifications can be made that reduce the size of the stiffness
matrix. Assumptions of Love-Kirchhoff plate theory are that the top and bottom plane remain equally
far apart, the stress σ33 should be negligable[25][24]. Also the shear strain components ϵ23 and ϵ13 are
not part of the constituitive equations[25][24].

σ11

σ22

σ12

 =

C11 C12 C16

C12 C22 C26

C16 C36 C66

 ϵ11
ϵ22
2ϵ12

 (2.4)

Again, if the unit-cell of interest is achiral or anti-chiral, then no couplings between prinicipal strains and
shear tresses are expected, which results in:

σ11

σ22

σ12

 =

C11 C12 0
C12 C22 0
0 0 C66

 ϵ11
ϵ22
2ϵ12

 (2.5)

This can be further simplified based on the symmetries in the unit-cell. The anti-tri-chiral unit-cell is
expected to look like Equation 2.5. The star shaped unit-cell has four-fold rotational symmetry, which
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can be seen in Figure 2.1. Due to this additional symmetry, the axial responses are identical for both
in-plane directions, so C22 = C11.

In a Cauchy continuum, the bending and torsion response can be determined using the elastic con-
stants from Hooke’s law and the thickness. This means that measuring the bending or torsion response
is not required to characterise a Cauchy continuum. For an isotropic plate the bending behaviour is as
presented by Timoshenko and Woinowsky-Krieger[25]:

Mx

My

Mxy

 =

 D νD 0
νD D 0
0 0 D(1− ν)

 kx
ky
kxy

 (2.6)

where kx and ky represent curvatures, kxy represents twist andMxy represents torsion. D is the flexural
rigidity and ν is Poisson’s ratio. For Reissner-Mindlin plates, out of plane shear forces also have to be
considered[25].

2.2.2. Cauchy homogenisation
To obtain the elastic constant of the elasticity tensor, load cases can be used. A load case is a specific
loading condition that can be applied to obtain information about the material or structure. For instance,
a load case to obtain the axial elastic constant C11 is to apply a principal strain in the x-direction and
evaluating the resulting stress in the x-direction. These load cases can be applied to the RVE.

To determine the elasticity tensors, COMSOL Multiphysics was used. Specifically, the cell-periodicity
feature, in which a Respective Volume Element (RVE) can be analysed to obtain the elasticity tensor.
In COMSOL Multiphysics, periodic boundary conditions are handled through so called source and
destination planes, where these planes are fixed in alignment. For an orthotropic RVE in 3D, six load
cases are applied, namely three in tension and three in pure shear. These load cases are visualised
in Figure 2.3. The source and destination planes have to be manually applied, but from this COMSOL
returns the homogenised elasticity tensor. With the cell-periodicity feature it is not possible to use a
reduced RVE based on symmetry, as both the source and destination plane have to applied to the RVE.
To validate the accuracy of the homogenisation procedure, mesh convergence was tested by using two
different mesh sizes. Also as mentioned previously, two different RVE sizes were used.

(a) principal strain x (b) principal strain y (c) principal strain z

(d) pure shear strain
yz

(e) pure shear strain
xz

(f) pure shear strain
xy

Figure 2.3: six load cases

To evaluate the bending-induced double curvature of the homogenised Cauchy continuum model, the
homogenised Cauchy elasticity tensor was inserted as the material into a rectangular block in COMSOL
Multiphysics. The rectangular block contains the homogenised Cauchy properties of the metaplate.
Pure bending along two opposing sides was applied. Due to symmetry of the loading condition, only a
quarter of the rectangular block had to be modelled. In Figure 2.4 it can be seen howmirroring the block
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outlined in red can form the entire rectangular block. In Figure 2.5 the modelled part of the rectangular
block can be seen. At boundaries one and three symmetry planes are applied. A fixed constraint is
applied to edge two and the moment is applied at boundary four.

Figure 2.4: Pure bending applied to rectangular
block, red section is modelled Figure 2.5: modelled part of the rectangular block,

with relevant boundary planes and edges
numbered

2.3. Cosserat model
2.3.1. Cosserat continuum
An extension to the previously mentioned Cauchy continuum is the Cosserat or Micropolar continuum.
In an isotropic Cosserat continuum six elastic constants are required, namely: λ, µ, κ, γ, β and α. The
term couple-stress theory is also closely related, with the difference being that couple-stress theory
has four elastic constants, namely: λ, µ, γ and β[17]. Here it can be seen that Cosserat theory can
be reduced to couple-stress theory and even to Cauchy theory, where only λ and µ remain[17]. In a
Cosserat continuum couple stresses are introduced in addition to the stresses present in a Cauchy
continuum. The stresses in a Cauchy continuum and the stresses and couple stresses present in a
Cosserat continuum can be seen in Figure 2.6 and Figure 2.7 respectively.

Figure 2.6: Stresses in Cauchy continuum Figure 2.7: stresses and couple stress in
Cosserat continuum

As mentioned previously, a Cauchy continuum has three translational degrees of freedom, which can
be denoted as the vector u. A Cosserat continuum has three additional microrotational degrees of
freedom, which can be denoted as the vector a. To visualise how these degrees of freedom are used
Figure 2.8 was made. In the top of Figure 2.8 u and a can be found. The contents of Figure 2.8 will
be further explained in this section. In a Cauchy Continuum the strain is the gradient of u. Due to the
microrotations the strain in a Cosserat continuum becomes

ϵij =
∂uj

∂xi
− eijkak (2.7)
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where eijk is the permutation tensor. The permutation tensor turns the microrotations into a skew
symmetric tensor, which means that for the principal strains there is no microrotation component.

In a Cosserat continuum there is also couple strain, which depends on the microrotations. The couple
strain is

κij =
∂aj
∂xi

(2.8)

where axial couple strains represent torsion and off-diagonal couple strains represent bending. The
constitutive equations for a Cosserat continuum are

σij = Cijklϵkl +Bijklκkl

mij = Bklijϵkl +Dijklκkl

(2.9)

where σij is the asymmetric stress tensor, mij is the couple stress tensor. C, B and D are elasticity
tensors, where B couples strain to couple stress and couple strain to stress. For the scope of this
research only centrosymmetric unit-cells are of interest, so B is assumed to be zero[14]. This means
that the stress only depends on the strain and the couple stress only depends on the couple strain. In
Figure 2.8, the relation between (couple) stress and (couple) strain are displayed, linked by the corre-
sponding elasticity tensor. The couplings due to B are displayed as striped blue lines. The constitutive
equations from Equation 2.9 can be alternatively written as:



σ11

σ22

σ33

σ23

σ13

σ12

σ32

σ31

σ21


=



C11 C12 C13 C14 C15 C16 C17 C18 C19

C22 C23 C24 C25 C26 C27 C28 C29

C33 C34 C35 C36 C37 C38 C39

C44 C45 C46 C47 C48 C49

C55 C56 C57 C58 C59

C66 C67 C68 C69

sym C77 C78 C79

C88 C89

C99





ϵ11
ϵ22
ϵ33
ϵ23
ϵ13
ϵ12
ϵ32
ϵ31
ϵ21


(2.10)



m11

m22

m33

m23

m13

m12

m32

m31

m21


=



D11 D12 D13 D14 D15 D16 D17 D18 D19

D22 D23 D24 D25 D26 D27 D28 D29

D33 D34 D35 D36 D37 D38 D39

D44 D45 D46 D47 D48 D49

D55 D56 D57 D58 D59

D66 D67 D68 D69

sym D77 D78 D79

D88 D89

D99





κ11

κ22

κ33

κ23

κ13

κ12

κ32

κ31

κ21


(2.11)

where there are nine stresses and nine strains, as the stress and strain tensor are no longer symmetric,
which was the case for a Cauchy continuum. For this research the interest lies in achiral and anti-chiral
unit-cells. It is assumed there are no axial-shear couplings. Also it is also assumed that there are no
torsion-bending couplings.The constitutive equations then become:
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

σ11

σ22

σ33

σ23

σ13

σ12

σ32

σ31

σ21


=



C11 C12 C13 0 0 0 0 0 0
C22 C23 0 0 0 0 0 0

C33 0 0 0 0 0 0
C44 0 0 C47 0 0

C55 0 0 C58 0
C66 0 0 C69

sym C77 0 0
C88 0

C99





ϵ11
ϵ22
ϵ33
ϵ23
ϵ13
ϵ12
ϵ32
ϵ31
ϵ21


(2.12)



m11

m22

m33

m23

m13

m12

m32

m31

m21


=



D11 D12 D13 0 0 0 0 0 0
D22 D23 0 0 0 0 0 0

D33 0 0 0 0 0 0
D44 0 0 D47 0 0

D55 0 0 D58 0
D66 0 0 D69

sym D77 0 0
D88 0

D99





κ11

κ22

κ33

κ23

κ13

κ12

κ32

κ31

κ21


(2.13)

For the application of Cosserat theory on plates, the constitutive equations can be further simplified.
The constitutive equations for Love-Kirchhoff plates become:


σ11

σ22

σ12

σ21

 =


C11 C12 0 0

C22 0 0
C66 C69

sym C99



ϵ11
ϵ22
ϵ12
ϵ21

 (2.14)


m11

m22

m12

m21

 =


D11 D12 0 0

D22 0 0
D66 D69

sym D99



κ11

κ22

κ12

κ21

 (2.15)

where the relevant stresses are identical to a Cosserat continuum in 2D, as presented by Cui et al.[26].
For the couple stresses, torsional couple stresses and out-of-plane bending couple stresses are of
interest[15]. The in-plane bending couple stresses, which are a part of the constitutive equations in 2d
can be disregarded for Love-Kirchoff plate theory[14]. Due to time constraints, the Cosserat continuum
model has not been converted to be applicable on thin plates.

In the research by Jeong et al. macrorotations were computed from u, which can also be turned
into a skew symmetric tensor using the permutation tensor[21]. This allows for the decoupling of the
shear stress into a Cauchy symmetric shear stress and a Cosserat shear stress, which is similar to the
decoupling described by Cui et al.[26][27]. In the research by Jeong et al. this decoupling was done
through using the couple modulus µc. This made it possible to utilise a seperate Cauchy stess tensor
and have an addition for the Cosserat part. The resulting formula for the asymmetric stress tensor
becomes[21]:

σCosserat = σCauchy + 2µc(ejikwk − ejikak) (2.16)

where the permutation tensors are transposed compared to Equation 2.7. As the couple modulus
becomes increasingly small, the stress tensor reduces to the Cauchy stress tensor. For this research
the couple modulus of the unit-cells of interest were not determined, so Equation 2.9 was used instead.
However, in future research where the couple modulus is known, this could be a promising approach.
In Figure 2.8 the potential usage of macrorotations to determine the off-diagonal strain components is
indicated by a striped line.
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Figure 2.8: visualisation of how the global variables (translations and microrotations) are related to the derived variables

2.3.2. Additional load cases
In addition to the axial and shear load cases used for Cauchy, additional shear, torsion and bending
load cases are required to completely characterise a Cosserat continuum. Also more load cases could
be required if additional couplings due to chirality are present. This would require extensive testing
and validation. For the scope of this research the interest lies in the bending-induced double curvature,
which relates to the bending-bending coupling. Therefore it was decided to focus on two additional
load cases to observe the out-of-plane bending in both principal directions. From Equation 2.13 these
are:

m12 = D66κ12 +D69κ21

m21 = D69κ12 +D99κ21

(2.17)

where D99 is equal to D99 in the case of the star-shaped unit-cell due to its symmetry. This is not the
case for the anti-tri-chiral unit-cell.

A commonly used principle for the bending of plates is cylindrical bending, which can be seen in Fig-
ure 2.9. This is a case of pure bending where two opposing moments bend the plate and two perpen-
dicular moments are used to obtain zero double curvature i.e. cylindrical bending. This method can
be found in books about plate theory[25] and was also proposed by Gauthier et al. as a method to
obtain Cosserat elastic constants[28]. The cylindrical bending test was selected as the method of the
additional load cases. The same RVE that the Cauchy load cases were applied to can be used for
these additional load cases.

To obtain the BPR from this test, two opposing bending moments Mx were applied and the reaction
moments My that kept the plate cylindrical were evaluated. Gauthier et al.[28] proposed the following
formula for this:
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Figure 2.9: Pure bending loading conditions to achieve cylindrical bending[28][25]

My =
Dνm − βh

D + γh
Mx (2.18)

where it can be seen that when the Cosserat elastic constants β and γ become zero, the formula
reduces to Cauchy. The BPR can then be defined as:

Dνm − βh

D + γh
= BPR (2.19)

and this also implies that the BPR should converge to the IPR when the Cosserat constants approach
zero. This relation shows how the BPR dependends on two Cosserat parameters, where as h ap-
proaches zero γ dominates the behaviour and β drops out[28]. So for thin plates γ seems to be the
Cosserat constant that should mostly influence the bending-induced double curvature. This seems in-
teresting for further research into the Cosserat elastic constants, but for this research the BPR is used
as a whole. This turns Equation 2.18 and Equation 2.19 into Equation 2.20.

BPR =
My

Mx
(2.20)

For the cylindrical bending test, due to the zero double curvature, Equation 2.17 reduces to one un-
known term per equation. Using the applied curvature, the resulting moments due to this curvature
and the RVE dimensions, D66 and D99 can be calculated. Using the reaction moment that is required
to keep the cylindrical shape, the applied curvature and the RVE dimensions, D69 can be calculated.

These bending load cases were performed in COMSOL Multiphysics for the Star-shaped unit-cell and
the anti-tri-chiral unit-cell. Rigid connectors were used to either prescribe a rotation, or to constrain a
rotation. The reaction moments on these rigid connectors could then be evaluated. For the alternative
RVE of the star-shaped unit-cell and the RVE of the anti-tri-chiral unit-cell, periodic boundary conditions
were used to maintain allignment. Due to the symmetry of the star-shaped unit-cell, the bending load
cases are identical and therefore only one load case was performed. For the anti-tri-chiral unit-cell this
was not the case and therefore both load cases were performed. This does allow for extra validation
as D69 can be computed from both load cases and compared. The bending test was performed for
two different mesh sizes. For the star-shaped unit-cell the bending test was performed for two different
RVE’s. Due to time constraints this was not done for the anti-tri-chiral unit-cell. The BPR of the star-
shaped unit-cell was determined using Equation 2.20. For the anti-tri-chiral unit-cell the BPR was
calculated using BPR = D69/D66 to account for the orthorhombic size of the RVE.

To get more insight into the influence of the unit-cell geometry on the BPR, the cylindrical bending
test was analysed for different parameters using parametric sweeps in COMSOL Multiphysics. Three
relations were of interest regarding the flexures that the unit-cell consists of, namely h/l, h/w and w/l.
Here h is the height flexure, l is the flexure length and w is the flexure width (see Figure 2.1). The ratio
h/l relates the in-plane size of the unit-cell with the out-of plane size. Eskandari et al. showed how
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this relation is influential for the BPR[14]. The ratio h/w desribes the cross-section of the flexure. This
ratio describes if the flexure is shaped like a flexure or more like a beam. This relation is of interest as
it could provide insight into the situation where the flexure can be approximated as an actual flexure or
as a beam. The ratio w/l desribes the relative wall thickness. From this ratio it could be determined
if thin-walled approximations are valid. For the anti-tri-chiral unit-cell another parameter, namely the
diameter of the cylinder d is relevant. The ratio d/l is of particular interest, because it determines if
the IPR is positive or negative, which was also observed by Alderson et al.[5]. For increasingly smaller
values of d/l, the anti-tri-chiral unit-cell becomes more similar to a traditional honeycomb unit-cell. Here
the rotation of the cylinders becomes less significant for the behaviour of the unit-cell. However it is
still largely unknown how this influences the BPR. Alderson et al. presented one geometry for the anti-
tri-chiral unit-cell, where the observed bending-induced double curvature was anticlastic[5]. By varying
over d/l it can be analysed wether regions of negative BPR can be found.

2.3.3. Weak form
The weak form is a powerful tool in COMSOL Multiphysics. The weak form was used to add the addi-
tional degrees of freedom, in the form of microrotations to create a Cosserat continuum model, specifi-
cally for out-of-plane bending. Just like the homogenised Cauchy continuummodel, a rectangular block
is used to model the homogenised Cosserat continuum model and only a quarter of the rectangular
block has to be modelled. The rectangular block has the same geometry but for the homogenised
Cosserat continuum model, the extra bending load cases can be taken into account. To solve the weak
form, the linear and angular momentum balances had to be satisfied, with the constitutive equations i.e.
the asymmetric stress tensor (σ written as s in COMSOL Multiphysics) and the couple stress tensor m.

Based on the constitutive equations from Equation 2.9 and the work of Jeong et al.[21] and Rezaei et
al.[18], a weak form model in COMSOLMultiphysics was constructed. Jeong et al.[18] used a Solid Me-
chanics physics node, which uses a Cauchy continuum, and added one weak form to insert the angular
momentum balance. Rezaei et al.[18] used two weak forms, one for the linear momentum balance and
one for the angular momentum balance. For this research, two weak forms were used. Both the linear
momentum balance and the angular momentum balance have three dependent variables namely: u1,
u2 and u3 and a1, a2 and a3 respectively. The weak form equations for the linear momentum balance
and angular momentum balance respectively are as defined by Rezaei et al.[18]:

−
∫
D

σijVuj,i +

∫
B

σijVujni +

∫
D

PjVuj = 0

−
∫
D

mijVaj,i
+

∫
B

mijVaj
ni −

∫
D

eijkσikVaj
+

∫
D

QjVaj
= 0

(2.21)

where the test function is denoted as V , D is the computational domain and B is the surface boundary
around the domain. Body forces P and body couples Q are assumed to be zero as no force or couple
is applied at the domain level. The linear momentum balance contains the test functions regarding the
translations to determine the translations u1, u2 and u3. The translations influence the stresses through
strains, which can be seen in Figure 2.8. The angular momentum balance contains the test functions
regarding the microrotations to determine the microrotations a1, a2 and a3. Themicrorotations influence
the couple stress through curvature, but also the shear stress which can be seen in Figure 2.8.

Applying the linear momentum balance from Equation 2.21, the weak expressions are given in Equa-
tion 2.22. Here it can be seen that every line corresponds to one of the dependent variables u1, u2 and
u3. Setting up the boundary conditions in the weak form is different than for other physics nodes. For
the linear momentum balance three Dirichlet boundary conditions were used. One to prescribe zero
displacement on the edge number two in Figure 2.5 and the other two to act as symmetry boundary con-
ditions. Here only the movement out-of-plane is fixed, which were applied to boundary planes two and
three in Figure 2.5. The boundary conditions are not a part of the weak expressions of Equation 2.22.
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− (s11 ∗ test(u1X) + s12 ∗ test(u1Y ) + s13 ∗ test(u1Z))

− (s21 ∗ test(u2X) + s22 ∗ test(u2Y ) + s23 ∗ test(u2Z))

− (s31 ∗ test(u3X) + s32 ∗ test(u3Y ) + s33 ∗ test(u3Z))

(2.22)

In the weak form of the angular momentum balance, the weak expressions are given in Equation 2.23.
Here it can be seen that every line corresponds to one of the dependent variables a1, a2 and a3. For the
angular momententum balance three Dirichlet boundary conditions were used as wel. One to prescribe
zero microrotations on edge number two in Figure 2.5 and the other two to act as symmetry boundary
conditions. Here both microrotations in-plane are fixed, which were applied to boundary planes two and
three in Figure 2.5. Also through a weak contribution an external moment was applied on boundary
plane four.

−m11 ∗ test(a1X)−m12 ∗ test(a1Y )−m13 ∗ test(a1Z)− (s23− s32) ∗ test(a1)
−m21 ∗ test(a2X)−m22 ∗ test(a2Y )−m23 ∗ test(a2Z)− (s31− s13) ∗ test(a2)
−m31 ∗ test(a3X)−m32 ∗ test(a3Y )−m33 ∗ test(a3Z)− (s12− s21) ∗ test(a3)

(2.23)

2.4. Validation
In this section, the results from the Cauchy homogenisation and the bending tests are presented. The
validity of these results are analysed by calculating the Mean Average Percentage Error (MAPE), for
both the different mesh sizes and the different RVE sizes. The MAPE can be used to determine how
changing the mesh size or RVE size changes the resulting elasticity tensor. If the MAPE is low, it can be
assumed that the respective results have converged. Also the functionality of the Cosserat continuum
weak form model is evaluated.

Three comparisons were formulated to apply the MAPE to. The effect of mesh refinement can be
determined for both RVE’s by comparing the elasticity tensors at different mesh sizes. Also the effect
of the RVE can be determined by comparing the elasticity tensors of the two different RVE’s, which
was done for the fine mesh. The formula for MAPE is:

MAPE =
100%

n

n∑
i=1

∣∣∣∣ai − pi
ai

∣∣∣∣ (2.24)

where, ai represents the more accurate result i.e. smaller mesh size or larger RVE. pi represents the
less accurate result. n is the number of elastic constants that are taken into account. For the com-
parison of the Cauchy homogenisation, the in-plane elastic constants C11, C22, C12 and C66 (indicated
with blue color) of each respective elasticity tensor were used. For the comparison of the cylindrical
bending test, D11, D22, D12, and D21 were used. Identical numbers due to symmetry of the tensor
were excluded.

2.4.1. Cauchy Homogensiation star-shaped unit-cell
The Cauchy elasticity tensor of the star-shaped unit-cell (in Voigt notation) was determined for average
axial strains of 0.1 and average shear strains of 0.05. The results using the first RVE with normal mesh
size, first RVE with fine mesh size, alternative RVE with normal mesh size and alternative RVE with fine
mesh size are respectively given in Equation 2.25, Equation 2.26, Equation 2.27 and Equation 2.28.
It can be seen that C12 and C21 ,the two off-diagonal numbers marked with blue, are positive. This
indicates a positive Poisson’s ratio in-plane. The elasticity tensor displays couplings not expected for
an orthotropic material, defined in Equation 2.3. The expected elastic constants for an orthotropic
material are marked with blue and yellow. However, most unexpected couplings are at least a factor
ten smaller than the expected couplings and are assumed to be insignificant. A significant out-of-plane
axial to shear coupling is present. Axial out-of-plane deformation is assumed to be insignificant in the
case of bending and for plate theory it can be assumed that σ33 is zero i.e. no change in thickness of
the plate occurs. The unexpected couplings might be an effect of the thin-walled nature of the unit-cell.
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In Table 2.2, the resulting MAPE values can be seen. Mesh refinement of the alternative RVE has
a greater MAPE value than mesh refinement for the first RVE. This difference seems to indicate that
the first RVE is better converged than the alternative RVE. This could be due to the larger size of the
alternative RVE, where small inaccuracies of the mesh are present at more locations compared to
the first RVE. The MAPE for the RVE size is relatively low compared to the other MAPE values. So
changing from the first RVE to the alternative RVE at a fine mesh, has less influence on the results
that canging from a normal mesh to a fine mesh for a fixed RVE. This seems to indicate that both
RVE’s represent the same overall behaviour. This demonstrates how the size of the RVE should be
independent from the homogenisation results.

MAPE mesh refinement first RVE 0.82%
MAPE mesh refinement alternative RVE 2.05%
MAPE RVE size 0.72%

Table 2.2: Star-shaped unit-cell MAPE results

In Figure 2.10 and Figure 2.11 the load cases applied to the two choices of RVE are visualised. Due
to the symmetry of the star-shaped unit-cell, the principal strain in the x and y direction show the same
behaviour. This is also the case for the out-of plane shear strain for yz and xz. For principal strain
in the x and y direction, the shape of the star changes, while for shear strain in the xy direction, the
star-shape remains unchanged and the surrounding flexures bend. The behaviour of the two RVE’s
seems identical, further confirming that the choice RVE is valid.


σ11

σ22

σ33

σ23

σ13

σ12

 =



91198 32897 50885 1190.7 638.26 3377.6

32897 91149 50870 631.18 1208.0 3379.0

50885 50870 1.6986E7 2.0074E5 2.0076E5 2705.9

1190.7 631.18 2.0074E5 1.5697E6 −93.872 2.9886

638.26 1208.0 2.0076E5 −93.872 1.5697E6 −1.5567

3377.6 3379.0 2705.9 2.9886 −1.5567 7198.1




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12

 (2.25)


σ11

σ22

σ33

σ23

σ13

σ12

 =



90648 32578 50507 1201.1 653.5 3346.5

32578 90480 50440 660.38 1195.9 3337.4

50507 50440 1.6988E7 2.0078E5 2.0079E5 2674.8

1201.1 660.38 2.0079E5 1.5682E6 5.4377 −2.1778

653.50 1195.9 2.0079E5 5.4377 1.5685E6 −3.8182

3346.5 3337.4 2674.8 −2.1778 −3.8182 7131.4




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12

 (2.26)


σ11

σ22

σ33

σ23

σ13

σ12

 =



92720 34113 51887 1184.4 636.59 3452.0

34113 92769 51906 623.54 1225.2 3454.5

51887 51906 1.6985E7 2.0070E5 2.0072E5 2764.5

1184.4 623.54 2.0070E5 1.5701E6 −24.915 10.331

636.59 1225.2 2.0072E5 −24.915 1.5700E6 −0.0056690

3452.0 3454.5 2764.5 10.331 −0.0056690 7211.6




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12

 (2.27)


σ11

σ22

σ33

σ23

σ13

σ12

 =



91105 33047 50872 1207.0 650.17 3361.3

33047 91119 50875 656.36 1198.4 3364.7

50872 50875 1.6984E7 2.0071E5 2.0078E5 2692.6

1207.0 656.36 2.0071E5 1.5687E6 5.3606 2.1589

650.17 1198.4 2.0078E5 5.3606 1.5687E6 1.8443

3361.3 3364.7 2692.6 2.1589 1.8443 7112.8




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12

 (2.28)
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(a) principal strain x (b) principal strain y (c) principal strain z

(d) shear strain xy (e) shear strain yz (f) shear strain xz

Figure 2.10: six load cases applied to the star-shaped unit-cell (fine mesh)
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(a) principal strain x (b) principal strain y (c) principal strain z

(d) shear strain xy (e) shear strain yz (f) shear strain xz

Figure 2.11: six load cases applied to the alternative RVE of the star-shaped unit-cell (fine mesh)

2.4.2. Cauchy homogenisation anti-Tri-Chiral unit-cell
The Cauchy elasticity tensor of the anti-tri-chiral unit-cell (in Voigt notation) was determined for average
axial strains of 0.1 and average shear strains of 0.05. The results of the first RVE with normal mesh size,
first RVE with fine mesh size, the alternative RVE with normal mesh size, and alternative RVE with fine
mesh size are respectively given in Equation 2.29, Equation 2.30, Equation 2.31 and Equation 2.32. It
can be seen that the off-diagonal components marked in blue at C12 and C21 are negative, indicating a
negative Poisson’s ratio. Similarly to the star-shaped unit-cell, unexpected couplings are present with
the largest being the out-of-plane axial to shear coupling. Another unexpected coupling that is present
is the coupling between in-plane axial to shear. This coupling might be attributed to the anti-chiral
nature of the unit-cell, as chiral unit-cells display a significant axial to shear coupling.

in Table 2.3, the resulting MAPE values can be seen. Both mesh refinements have a similar MAPE
value. The difference in size between the different RVE’s is smaller than that of the star-shaped unit-
cells, which could explain the difference. The MAPE values of the mesh refinement are higher than
that of the star-shaped unit-cell, which indicate that the star-shaped unit-cell is better converged that
the anti-tri-chiral unit-cell. This is likely the result of the small cylinders present in the anti-tri-chiral
unit-cell, as circular shapes require a finer mesh to accurately represent than rectangular shapes. The
MAPE of the RVE size is low, indicating that both RVE’s represent the same overall behaviour. This
demonstrates that not only the size, but also the shape of the RVE should be independent from the
homogenisation results.

MAPE mesh refinement first RVE 2.84%
MAPE mesh refinement alternative RVE 2.76%
MAPE RVE size 0.24%

Table 2.3: Star-shaped unit-cell MAPE results Cauchy homogenisation

In Figure 2.12 and Figure 2.13 the load cases applied to the RVE are visualised. The response of the
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different RVE’s for an identical load case can be compared. It can be seen that the amount of stress
and location of the stress is similar. For Figure 2.12 (c) and Figure 2.13 (c) the colours are different,
but this can be attributed to the automatic scaling of the colour gradient. From the colour table it can
be seen that the different colours both represent roughly the same value. For principal strain in the x
and y directions, it can be seen that the applied tension rotates the cylinders. This movement pushes
the other flexures around the cylinder outwards, creating the auxetic behaviour. The behaviour of the
two RVE’s seems identical, further confirming that the choice of RVE is valid.


σ11

σ22

σ33

σ23

σ13

σ12

 =



5981.0 -3309.4 1470.3 109.70 −4.6075 527.82

-3309.4 7078.2 1481.3 −4.4499 112.78 −514.42

1470.3 1481.3 3.1233E6 36920 36922 8.6166

109.70 −4.4499 36920 2.5659E5 −7.4526 1.1408

−4.6075 112.78 36922 −7.4526 2.5657E5 0.97944

527.82 −514.42 8.6616 1.1408 0.97944 4699.7




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
ϵ12

 (2.29)


σ11

σ22

σ33

σ23

σ13

σ12

 =



5863.8 -3190.1 1459.8 105.97 −0.59642 509.87

-3190.1 6886.8 1456.4 −0.83498 108.39 −486.26

1459.8 1456.4 3.1233E6 36919 36920 11.994

105.97 −0.83498 36919 2.5589E5 −24.436 −0.053944

−0.59642 108.39 36920 −24.436 2.5596E5 0.20203

509.87 −486.26 11.994 −0.053944 0.20203 4570.3




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12


(2.30)


σ11

σ22

σ33

σ23

σ13

σ12

 =



5992.1 -3308.8 1475.5 11.23 −2.5292 535.08

-3308.8 7065.5 1477.5 −5.6467 114.46 −509.13

1475.5 1477.5 3.1233E6 36919 36926 13.944

111.23 −5.6467 36919 2.5658E5 10.771 1.8492

−2.5292 114.46 36926 10.771 2.5662E5 3.3356

535.08 −509.13 13.944 1.8492 3.3356 4712.7




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12

 (2.31)


σ11

σ22

σ33

σ23

σ13

σ12

 =



5876.1 -3202.7 1461.3 107.53 −3.1667 514.23

-3202.7 6897.2 1455.4 −3.9490 107.66 −493.58

1461.3 1455.4 3.1233E6 36917 36917 10.640

107.53 −3.9490 36917 2.5594E5 3.6376 −0.041435

−3.1667 107.66 36917 3.6376 2.5594E5 −0.71605

514.3 −493.58 10.640 −0.041435 −0.71605 4560.8




ϵ11
ϵ22
ϵ33
2ϵ23
2ϵ13
2ϵ12


(2.32)
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(a) principal strain x (b) principal strain y (c) principal strain z

(d) shear strain xy (e) shear strain yz (f) shear strain xz

Figure 2.12: six load cases applied to the first RVE of the anti-tri-chiral unit-cell with finer mesh
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(a) principal strain x (b) principal strain y (c) principal strain z

(d) shear strain xy (e) shear strain yz (f) shear strain xz

Figure 2.13: six load cases applied to an alternative RVE of the anti-tri-chiral unit-cell with finer mesh

2.4.3. Cylindrical Bending test star-shaped unit-cell
In Figure 2.14 the cylindrical bending of the star-shaped unit-cell can be seen. For the star-shaped unit-
cell, the out-of-plane bending section of the D-matrix was determined for a curvature of 6.35rad/m. The
results of the first RVE with fine mesh size, the first RVE with finer mesh size, the alternative RVE with
fine mesh size, and alternative RVE with finer mesh size are presented in Equation 2.33, Equation 2.34,
Equation 2.35 and Equation 2.36 respectively. The off-diagonal components are negative indicating a
negative BPR. As stated in the methodology, due to the symmetry of the star-shaped unit-cell µ12 = µ21.

In Table 2.4, the resulting MAPE values can be seen. The MAPE values are low, especially the MAPE
of the RVE size, indicating that that both RVE’s represent the same behaviour. The size of the RVE
does not seem to influence the resulting bending section of the D-matrix. In Figure 2.14, the cylindrical
bending test applied to both RVE sizes are visualised.

MAPE first RVE mesh refinement 1.16%
MAPE alternative RVE mesh refinement 0.51%
MAPE RVE size 0.07%

Table 2.4: Star-shaped unit-cell MAPE results cylindrical bending

(
µ12

µ21

)
=

[
7.21475 −1.97063
−1.97063 7.21475

](
κ12

κ21

)
(2.33)

(
µ12

µ21

)
=

[
7.1175 −1.95188

−1.95188 7.1175

](
κ12

κ21

)
(2.34)

(
µ12

µ21

)
=

[
7.19113 −1.97974
−1.97974 7.19113

](
κ12

κ21

)
(2.35)
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(
µ12

µ21

)
=

[
7.1183 −1.95436

−1.95436 7.1183

](
κ12

κ21

)
(2.36)

(a) bending first RVE (b) bending alternative RVE

Figure 2.14: Cylindrical bending test star-shaped unit-cell

2.4.4. Cylindrical bending test anti-tri-chiral unit-cell
In Figure 2.15, the cylindrical bending of the anti-tri-chiral unit-cell can be seen. For the anti-tri-chiral
unit-cell, the out-of-plane bending section of the D-matrix was determined for a curvature of 13.3rad/m.
Due to the orthorhombic symmetry of the anti-tri-chiral unit-cell, the bending test was done in two
directions, which can be seen in Figure 2.15. The results of the first RVE with fine mesh size and the
first RVE with finer mesh size are presented in Equation 2.37 and Equation 2.38 respectively. Due to
time constraints, the cylindrical bending test could not be repeated for the alternative RVE.

In Table 2.5, the resulting MAPE values can be seen. Mesh refinement of the first RVE has a small
MAPE value, indicating that convergence of the mesh can be assumed. The mesh refinement for the
cylindrical bending tests was done from a fine mesh size to a finer mesh size, compared to the normal
mesh size to fine mesh size of the homogenisation. So it seems that the fine mesh size is small enough
to accurately model the cylindrical features of the anti-tri-chiral unit-cell.

The MAPE values for the off-diagonal components are quite high for both mesh sizes. The off-diagonal
components were assumed to be symmetric based on Cui et al.[27], Eskandari et al.[14] and Yao
et al.[15]. However, based on the obtained values this cannot be validated. It might be possible that
additional couplings like bending to torsion are present for the anti-tri-chiral RVE. The symmetry group of
the orthorhombic RVE of the anti-tri-chiral unit-cell was not found. However, the possible coupling of the
3m symmetry group of the anti-tri-chiral unit-cell itself were described by Cui et al.[27]. These include
possible axial to bending, shear to bending, rotation to bending and torsion to bending couplings[27].
The presence of additional couplings would make Equation 2.17 invalid, as additional coupling terms
would have to be added. The cylindrical bending test itself should remain a valid load case, where
one out-of-plane couple strain is applied and the resulting couple stresses can be observed. However,
it should be carefully evaluated that no unexpected strains or couple strains are present during the
cylindrical bending test, as this would add additional variables to the equation.

MAPE first RVE mesh refinement 0.60%
MAPE first RVE off-diagonal components fine mesh 37.41%
MAPE first RVE off-diagonal components finer mesh 39.51%

Table 2.5: anti-tri-chiral unit-cell MAPE results cylindrical bending

(
µ12

µ21

)
=

[
26.0664 12.1377
8.8329 52.5390

](
κ12

κ21

)
(2.37)
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(
µ12

µ21

)
=

[
25.9538 12.1437
8.7046 52.3510

](
κ12

κ21

)
(2.38)

(a) bending over x-axis (b) bending over y-axis

Figure 2.15: Cylindrical bending test anti-tri-chiral unit-cell in both directions

2.4.5. Cosserat model
The Cosserat model should be able to display different types of bending-induced double curvature in-
dependently from its IPR. To validate the performance of the Cosserat model, the model was tested in
tension and bending for different values of IPR and BPR. The results of this can be found in Figure 2.16
and Figure 2.17. Identical symmetry conditions as depicted in Figure 2.4 were used. The IPR deter-
mines the deformation perpendicular to the applied tension, which can be seen in Figure 2.16. At an
IPR value of zero, there is no displacement perpendicular to the applied tension. It can be observed
that varying the BPR does not influence the results. Also it can be observed that the displacements,
indicated by the colour gradient, seem gradual and smooth.

The BPR determines the double curvature, which can be seen in Figure 2.17. This can be most easily
seen by observing the angle of the color gradient, which moves from the heighest value (red) to the
lowest point (dark blue). While varying the IPR does not significantly change the double curvature, it
does affect the smoothness of the model. The IPR should not influence the bending behaviour at all,
so this is an indication that something is not working correctly. Additionally, applying a moment using a
weak contribution did not work as expected. In the weak contribution a moment was multiplied by a test
function of the microrotation in the direction of bending. This is similar to how Rezaei et al.[18] used
body couples on the domain level, but applied at the boundary level instead. However, the resulting
weak contribution seems not to depend on the unit of the applied moment and instead just seems to
use the numerical value to scale the microrotations at the boundary of the weak contribution. The result
is not the same as the application of a rotation to a boundary, as applying a rotation suppresses double
curvature at that boundary, which the applied weak contribution did not. The weak contribution does
apply an initial curvature and the BPR does determine the induced double curvature, so the overall
behaviour does seem similar to that of a moment.
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(a) IPR 0.3 BPR 0.3 (b) IPR 0 BPR 0.3 (c) IPR -0.3 BPR 0.3

(d) IPR 0.3 BPR 0 (e) IPR 0 BPR 0 (f) IPR -0.3 BPR 0

(g) IPR 0.3 BPR -0.3 (h) IPR 0 BPR -0.3 (i) IPR -0.3 BPR -0.3

Figure 2.16: Weak form model loaded in pure tension for varied IPR and BPR, the color indicates the displacement
perpendicular to the applied tension
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(a) IPR 0.3 BPR 0.3 (b) IPR 0 BPR 0.3 (c) IPR -0.3 BPR 0.3

(d) IPR 0.3 BPR 0 (e) IPR 0 BPR 0 (f) IPR -0.3 BPR 0

(g) IPR 0.3 BPR -0.3 (h) IPR 0 BPR -0.3 (i) IPR -0.3 BPR -0.3

Figure 2.17: Weak form model loaded in pure bending for varied IPR and BPR, the color indicates the displacement in the
out-of-plane direction u3

2.4.6. Validation models
For comparison purposes, detailed metaplates consisting of tesselated unit-cells were modelled in
Solidworks and analysed with COMSOL Multiphysics. This was done for both the star-shaped unit-
cell and the anti-tri-chiral unit-cell. The same general setup of applying bending on a quarter of the
unit-cell, asshown in Figure 2.4 was used. Symmetry boundary conditions were applied with one fixed
constraint to keep the model properly constrained. The bending moment was applied through multiple
seperate moment boundary loads applied at the endpoints of the unit-cell flexures, as not to supress
double curvature. The bending-induced double curvature of the detailed metaplates were determined
by applying 2 rigid connectors along both symmetry planes. Through the use of the curl operator in the
bending-induced double curvature of these metaplate models was be evaluated in terms of BPR.

In Solidworks, a long metaplate consisting of star-shaped unit-cells was made to observe the devel-
opment of BPR for an increasingly long metaplate. This long metaplate was analysed in COMSOL
Multiphysics. Mirroring was used so only half of the metaplate had to be modelled. The non mirrored
end has a rigid bar onto which an out-of-plane moment is applied. This rigid bar supresses the dou-
ble curvature. The theory behind this is that the influence of the rigid bar on double curvature, should
becomes less influential at greater distances from the rigid bar. The star-shaped unit-cell was chosen
for this with the same dimensions used for the homogenisation, mentioned in Figure 2.1. The total
length of the metaplate varies from two to 16 unit-cells, where one to eight unit-cells are modelled. The
metaplate is kept at a constant width of five unit-cells. A constant moment is applied along a rigid con-
nector. An identical test was performed for another star-shaped unit-cell with an alternative geometry
of l = 4mm, h = 3mm, w = 0.5mm.

The bending test of the long metaplate can be used to see if the BPR converges to the BPR determined
through the cylindrical bending test. Here it is important to recognise the differences between these
two methods, namely the fact that the bending test has a rigid bar at the ends where the moments are
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applied. This means that the double curvature at the endpoints is zero and that the double curvature
around the middle of the long metaplate is at its maximum. This is different from the cylindrical bending
load case where the double curvature is equal throughout the metaplate.

2.4.7. Verdict validation
For the Cauchy homogenisation of both types of unit-cell, the type of in-plane Poisson’s ratios were
as expected. It can be confirmed that the RVE size does not have a significant impact on the ho-
mogenisation results. In further research the first i.e. smaller RVE could be used, as the resulting
elasticity tensor loses no significant information compared to the alternative RVE. Also, further mesh
refinement could be done for the anti-tri-chiral unit-cell to account for the cylindrical geometry. For the
results, the Cauchy elasticity tensor of the alternative RVE with the fine mesh size was used for both
the star-shaped unit-cell as the anti-tri-chiral unit-cell. The unexpected elastic constants in the Cauchy
elasticity tensor will not be taken into account for the Cosserat elasticity tensor, as these couplings
were not added to the Cosserat continuum model. For the homogenised Cauchy continuum model the
unexpected elastic constants were taken into account.

For the cylindrical bending test of both types of unit-cell, the signs of the BPR ratios were as expected.
For the star-shaped unit-cell it can be confirmed that both mesh size and RVE size do not have a sig-
nificant effect on the resulting bending section of the D-matrix. For further research the first i.e. smaller
RVE can be used. The bending section of the D-matrix of the anti-chiral unit-cell is not symmetric, while
symmetry was expected based on literature. This indicates that the resulting bending section of the
D-matrix might not be accurate. Further research is required to determine the couplings present for
the anti-tri-chiral unit-cell RVE, to improve the application of the cylindrical bending test. For the star-
shaped unit-cell, the bending part of the D-matrix of the altenative RVE with the finer mesh size was
used for the Cosserat elasticity tensor. For the anti-tri-chiral unit-cell, the bending part of the D-matrix
of the first RVE with the finer mesh size was used for the Cosserat elasticity tensor.

The Cosserat model is able to display different types of double curvature independently from the IPR.
However, further refinement of the model is required to remove the deformation defects, i.e. increase
the smoothnes, and to apply the moment more properly. It could be possible that the deformation
defects are caused by the flawed application of the moment.
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Results

The complete Cosserat elasticity tensors used for the star-shaped unit-cell are presented in Equa-
tion 3.1 and Equation 3.2. The complete Cosserat elasticity tensors used for the anti-tri-chiral unit-cell
are presented in Equation 3.3 and Equation 3.4. For Equation 3.4 it can be seen that the the Cosserat
elasticity tensor is not symmetric.



σ11

σ22

σ33

σ23

σ13

σ12

σ32

σ31

σ21


=



91105 33047 50872 0 0 0 0 0 0
91119 50875 0 0 0 0 0 0

1.6984E7 0 0 0 0 0 0
1.5687E6 0 0 0 0 0

1.5687E6 0 0 0 0
7112.8 0 0 0

sym 1.5687E6 0 0
1.5687E6 0

7112.8


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
(3.1)


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=



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
7.1175 0 0 −1.95188

sym 0 0 0
0 0

7.1175
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κ11

κ22

κ33

κ23

κ13

κ12

κ32

κ31

κ21


(3.2)



σ11

σ22

σ33

σ23

σ13

σ12

σ32

σ31

σ21


=



91105 33047 50872 0 0 0 0 0 0
91119 50875 0 0 0 0 0 0

1.6984E7 0 0 0 0 0 0
1.5687E6 0 0 0 0 0

1.5687E6 0 0 0 0
7112.8 0 0 0

sym 1.5687E6 0 0
1.5687E6 0

7112.8





ϵ11
ϵ22
ϵ33
ϵ23
ϵ13
ϵ12
ϵ32
ϵ31
ϵ21


(3.3)
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

m11

m22

m33

m23

m13

m12

m32

m31

m21


=



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 25.9538 0 0 12.1437
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 8.7046 0 0 52.3510





κ11

κ22

κ33

κ23

κ13

κ12

κ32

κ31

κ21


(3.4)

3.1. Comparison metaplates
The FEA results of the actual metaplate, i.e. detailed metaplate, can be compared to the FEA results of
the homogenised Cauchy and Cosserat continuum metaplates. For the star-shaped unit-cell, this can
be seen in Figure 3.1. For the anti-tri-chiral unit-cell this can be seen in Figure 3.2. Additionally, a top
view of the Cosserat continuummetaplates is presented in Figure 3.3. Similarly to Figure 2.17, it can be
seen that deformation defects are present in the homogenised Cosserat continuum model for both the
star-shaped unit-cell metaplate and the anti-tri-chiral unit-cell metaplate. Due to the symmetry of the
anti-tri-chiral unit-cell, mirroring the metaplate in two directions is technically incorrect. Therefore, half
the metaplate was modelled for the detailed metaplate. Due to time constraints, it was not possible to
create a new models for the homogenised Cauchy and Cosserat metaplates, where half the plate was
modelled. This oversight reduces the value of the comparison of the anti-tri-chiral unit-cell significantly.
However, the type of bending-induced curvature can still be evaluated.

No BPR values were determined for the homogenised Cosserat metaplates, as the deformation defects
would have likely influenced the result. Application of an identical moment for the detailed metaplate
and the Cauchy metaplate resulted in different curvatures for both types of unit-cells. The bending
stiffness of the homogenised Cauchy metaplate is determined through the flexural rigidity, which does
not accurately describe the bending stiffness for metaplates. This was also concluded by Chen[12][13].
To determine the bending-induced double curvature, moments were applied that achieved a similar
amount of principal curvature for both the detailed metaplate, the homogenised Cauchy continuum
metaplate and the homogenised Cosserat continuum metaplate. Due to the pure bending loading
condition applied, the resulting bending-induced double curvature should be independent of the amount
of principal curvature applied in the linear elastic region. More principal curvature should translate to
more double curvature, as BPR = −k21/k12.

The bending-induced double curvatures of these metaplate models were determined in terms of BPR.
From the cylindrical bending test, the BPR values were determined as well. This is presented in Ta-
ble 3.1.

Detailed metaplate BPR = −0.254
Homogenised Cauchy BPR = 0.313
continuum metaplate
Cylindrical bending test BPR = −0.275

(a) star-shaped unit-cell

Detailed metaplate half BPR = 0.837
Homogenised Cauchy BPR = −0.468
continuum metaplate
Cylindrical bending test BPR = 0.335

(b) anti-tri-chiral unit-cell

Table 3.1: BPR determined through different methods
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(a) star-shaped unit-cell, detailed metaplate
(b) star-shaped unit-cell, Cauchy

continuum metaplate
(c) star-shaped unit-cell, Cosserat

continuum metaplate

Figure 3.1: Comparison between the detailed, Cauchy continuum and Cosserat continuum metaplate for the star-shaped
unit-cell

(a) Anti-tri-chiral unit-cell, half the
metaplate is modelled

(b) Anti-tri-chiral unit-cell, Cauchy
continuum metaplate

(c) Anti-tri-chiral unit-cell, Cosserat
continuum metaplate

Figure 3.2: Comparison between the detailed, Cauchy continuum and Cosserat continuum metaplate for the anti-tri-chiral
unit-cell

(a) Top view star-shaped unit-cell (b) Top view anti-tri-chiral unit-cell

Figure 3.3: Top views of the Cosserat continuum models

3.2. Influence of geometry on IPR and BPR
In Figure 3.4, the relation between the BPR and the ratios h/l and h/w can be seen for the star-shaped
unit-cell, as determined from the cylindrical bending test. For the parametric sweepw was kept constant
at 0.5mm. This means that every colored line represents a specific height, and that moving along a
line from left to right makes the unit-cell smaller in-plane as l is reduced. Because the wall thickness
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is kept constant, moving along a line from left to right also makes the unit-cell less thin-walled. It is
important to note that moving straight down from line to line changes both the height h and the length
l of the unit-cell to keep the relative height constant. w/l can be calculated at each point from h/l and
h/w, but no convenient visualisation method was found for this ratio. In Figure 3.6 the extremes of
w/l are visualised, where the most thin-walled unit-cell is located at left end of the bottom line, and the
most thick walled unit-cell is located at the right end of the top line and the line below that. The top line
is broken off at h/l = 1.5 as beyond that point the star-shaped unit-cell is no longer recognisable as a
star-shaped unit-cell.

In Figure 3.5, the relation between the IPR and the ratios h/l and h/w can be seen for the star-shaped
unit-cell. While the IPR of the star-shaped unit-cell remains positive, there is fluctuation in themagnitude
of the IPR. For the h/w = 2 and h/w = 4 lines a decrease in IPR can be observed, as the unit-cells
become more thick walled and start to look like Figure 3.6 (b).

Figure 3.4: BPR values from cylindrical bending test of the star-shaped unit-cell

Figure 3.5: IPR values from axial strain test of the star-shaped unit-cell

3.3. Bending of a long metaplate
In Figure 3.7 the observed BPR can be seen, for an increasingly long metaplate. The observed BPR for
the alternative geometry of l = 4mm, h = 3mm, w = 0.5mm can be seen in Figure 3.8. A visualisation
of the different metaplate lengths can be seen in Figure 3.9. The double curvature at the symmetry
axis of three different lengths can be observed in Figure 3.10. It can be seen that the stress distribution
inside the metaplate varies at different lengths of metaplate.
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(a) Most thin-walled unit-cell used in Figure 3.4 (b) Most thick-walled unit-cell used in Figure 3.4

Figure 3.6: Visualisation of the extremes with respect to relative wall thickness w/l

Figure 3.7: BPR development for an increasingly long metaplate, with an expected BPR of -0.275 from cylindrical bending test

(a) one unit-cell (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Long metaplate image
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Figure 3.8: BPR development for an increasingly long metaplate (alternative geometry), with an expected BPR of -0.221 from
the cylindrical bending test

(a) Double curvature at two unit-cells length (b) Double curvature at five unit-cells length
(c) Double curvature at eight unit-cells

length

Figure 3.10: Development of double curvature as seen from the symmetry plane



4
Discussion

This study aims to analyse the bending-induced double curvature in metaplates, using multiple mod-
elling approaches in FEA. Modelling the actual detailed metaplates leads to accurate results. However,
the modelling of detailed metaplates is computationally heavy and inefficient, as the metaplates are
constructed out of tessselated i.e. repeating unit-cells. Homogenisation of metaplates can be used
to obtain generalised material properties that describe the overall behaviour of the metaplate using
information from a RVE. Homogenisation of a metaplate as a Cauchy continuum only uses six load
cases to determine these generalised material properties and this can lead to inaccuracies regarding
the bending-induced double curvature of metaplates. By using additional load cases specifically for
out-of-plane bending, and homogenising and modelling the metaplate as a Cosserat continuum, these
inaccuracies could be resolved. The detailed metaplate can be compared to the homogenised Cauchy
continuum metaplate and the homogenised Cosserat continuum metaplate to evaluate if these models
can accurately describe the bending-induced double curvature of the detailed metaplate.

4.1. Comparison metaplates
In Figure 3.5 and Equation 2.25 it was shown that the star-shaped unit-cell has a positive IPR. The
detailed metaplate and the cylindrical bending test have shown that the star-shaped unit-cell has a
negative BPR, as can be seen in Table 3.1. In a Cauchy continuum this is not possible, as Poisson’s
ratio, measured as IPR through load cases, determines both the in-plane response and the out-of-
plane bending response of the homogenised continuum. In Figure 3.1 it can therefore be seen that the
corresponding homogenised Cauchy continuum model bends anticlastically instead of synclastically
like the detailed metaplate. The corresponding Cosserat model is able to have different values for IPR
and BPR, which was shown in Figure 2.16 and Figure 2.17. The homogenised Cosserat continuum
model bends synclastically just like the detailed metaplate. The BPR value of the detailed metaplate is
similar to the BPR obtained from the cylindrical bending test, for the star-shaped unit-cell. This seems
to indicate that the cylindrical bending test could be used as a method to evaluate the bending-induced
double curvature for star-shaped metaplates.

The anti-tri-chiral unit-cell was shown to have a negative IPR through Figure 2.12. Through the de-
tailed metaplate it was shown that the BPR of the anti-tri-chiral unit-cell is positive. the corresponding
homogenised Cauchy continuum model displays synclastic double curvature due to the negative IPR,
while the corresponding homogenised Cosserat continuum model has anticlastic double curvature like
the detailed metaplate. The orthorhombic RVE of the anti-tri-chiral unit-cell has only one symmetry
plane, so modelling the metaplate using two symmetry planes is not correct. This oversight, does high-
light the effect that the type of unit-cell has on the required modelling approach. The BPR of the detailed
metaplate of the anti-tri-chiral unit-cell is 0.837, which is a lot higher than the result of the cylindrical
bending test of the anti-tri-chiral unit-cell. The bending section of the D-matrix is not symmetric indi-
cates that the cylindrical bending tests did not properly work for the anti-tri-chiral unit-cell, to derive the
the bending part of the D-matrix and the BPR. The observed BPR of 0.837 for the detailed metaplate is
similar to the BPR of honeycomb metaplates. This can be explained by the fact that the cylindrical sec-
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tions of the anti-tri-chiral unit-cell are a lot stiffer in bending, than the connecting flexures. This results
in the fact that the bending behaviour of the anti-tri-chiral metaplate reduces to the bending behaviour
of a standard honeycomb metaplate. This effect was also described by Alderson et al.[5].

For both the star-shaped unit-cell and the anti-tri-chiral unit-cell, the homogenised Cauchy continuum
model is smoother than the homogenised Cosserat continuum model, while both models have an iden-
tical mesh size. The deformation defects and lack of smoothness are an indication that something in
the model is not working correctly. From Figure 2.17, it was also observed that the smoothness of the
model was influenced by the IPR, which should not be the case. This lack of smoothness could be a
result of the flawed method of applying a moment. Also it could be a result of the fact that the Cosserat
continuum is not fully characterised. The homogenised Cosserat continuum model of the anti-tri-chiral
unit-cell has more deformation defects than the homogenised Cosserat continuum model of the star-
shaped unit-cell. This is likely because the Cosserat elasticity tensor of the anti-tri-chiral unit-cell is not
symmetric, while the Cosserat elasticity tensor of the star-shaped unit-cell is symmetric. As mentioned
previously, literature states that the Cosserat elasticity tensor should be symmetric[27][14][15]. The ob-
servation that the homogenised Cosserat continuum model with a symmetric elasticity tensor has less
deformation defects, than the homogenised Cosserat continuum model with an asymmetric elasticity
tensor seems to confirm this. The Cosserat continuum model requires further refinement before it can
be actually applied in a more meaningful way. This research could act as stepping stone for further
research to build upon.

4.2. Influence of geometry on IPR and BPR
In Figure 3.4, the influence of h/l and h/w on the BPR, from the cylindrical bending test can be seen.
For this research, it was decided to focus on a range of h/l between 0.5 and 3. Below 0.5 the unit-
cells have a low bending stiffnes compared to higher values of h/l and the applicability to engineering
problems might be limited. For h/l above 3 it becomes difficult to have a low enough height h so
that the the metaplate remains plate shaped, while having a wall thickness that is thick enough to be
produced. The resulting h/l can be compared to Eskandari et al.[14] as the star-shaped unit-cell was
included in this research. In the research of Yao et al.[15] the star-shaped unit-cell was also considered.
However, the ratio h/l is varied between 0.0025 and 0.1, where w/l is kept constant at 0.025 as to keep
the thin-walled assumptions of Euler-Bernoulli beam theory valid[15]. For this research the interest lies
in higher values of h/l, as mentioned earlier. Eskandari et al.[14] varied h/l from approximately 0.7
to 7. In the respective graph from Eskandari et al.[14] the values 0.2 to 2 are used, due to a different
definition of the length elements. Eskandari et al.[14] kept the IPR of the unit-cell constant, with the
star-shaped unit-cell having an IPR of 0.28. The point where the BPR is zero is at roughly h/l = 2.1 in
the graph of Eskandari et al. In Figure 3.5 it can be seen that h/w = 32 has an IPR of roughly 0.28. In
Figure 3.4 it can be seen that h/w = 32 goes through zero at around h/l = 2.1. This seems to match
with the results of Eskandari et al.[14]. However, no information about flexure width is provided in the
research of eskandari et al.[14], so it cannot be evaluated of the exact same relations are used.

From Figure 3.4 and Figure 3.5, it can be observed that different combinations of IPR and BPR are pos-
sible. In previous research the effects of flexure width w were not explored. However, one could argue
that this is an important parameter, as it has a great influence on the reproducibility of the metaplate.
For standard FDM 3D printers the width of one line is 0.5mm. If for a certain size of unit-cell the flexure
width is 0.5mm, then the only way to scale that unit-cell down further is by keeping the width constant
and therefore making the unit-cell less thin-walled. As the unit-cell becomes less thin-walled, the al-
lowable strain decreases. This is because otherwise the yield stress is exceeded. For metaplates and
metamaterials in general miniaturisation is a critical aspect, as this makes it possible for metamaterials
to eventually be used like standard engineering materials. Through the application of load cases of this
research, thin-walled approximations often made in literature were circumvented.

4.3. Cosserat continuum
Cosserat elasticity is an expansive and complex subject. The application of Cosserat theory to meta-
plates has obvious benefits, but fully characterising the Cosserat elasticity tensor is a significant chal-
lenge. For this research the scope was limited to focus specifically on how Cosserat elasticity can be
used regarding the bending-induced double curvature of metaplates. Assumptions were made and
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errors in the method were observed. Careful evaluation of these might help guide further research.

To correctly model the anti-tri-chiral unit-cell as a Cosserat continuum, the possible additional couplings
have to be determined. The resulting couplings would have to be added to the Cosserat elasticity tensor.
If axial to bending, shear to bending or rotation to bending couplings are present for the anti-tri-chiral
unit-cell, then the B-matrix can no longer be assumed to be zero. In Figure 2.8 the influence of the
B-matrix can be seen. The asymmetric stress tensor becomes influenced by couple strains and the
couple stress tensor becomes influenced by the strains.

Due to the scope of this research, the Cosserat continuum model was made specifically for the mod-
elling of bending behaviour. The complete Cosserat elasticity tensor was not characterised. For in-
stance, the torsional response of the metaplate has not been taken into consideration. This means
that if a torque is applied, the Cosserat continuum model will not be able to accurately model this. In-
plane bending has also not been taken into account. Also the Cauchy symmetric shear constants were
assumed to be equal to the asymmetric shear constants. To take these additional responses into ac-
count would require additional load cases in combination with a method to extract the elastic constants
from these load cases. For this research it was decided to focus on specifically out-of-plane bending,
as from these load cases the BPR can be obtained. In addition, this model is made for achiral and
anti-chiral unit-cells. For other symmetry groups and chiral unit-cells additional couplings are present,
which would require even more additional load cases to characterise the Cosserat elasticity tensor. The
full characterisation of a Cosserat continuum is difficult and has only been done for a small number of
materials[17].

In COMSOL Multiphysics plates can be modelled in the 2D environment with the plate physics node.
Originally it was intended to uses the plate physics node in combination with the weak form. Plate theory
is often used in research of metaplates, so its application in this research would align this research
more closely with previous works like that of Soest[11]. The reasoning behind why this has not been
done is related to the application of the weak form and how the plate physics node works. The plate
physics node is based on a Linear Elastic Material node, which assumes a Cauchy continuum. To
convert this into a Cosserat continuum would require an approach similar to Jeong et al.[21], where the
Cauchy stress tensor is turned into an asymmetric stress tensor through a Cosserat couple modulus
µc. However for this research the couple modulus was not determined. A different approach was used
using two weak forms more similar to the method proposed by Rezaei et al.[18]. This approach cannot
be applied to the plate physics node in COMSOL Multiphysics.

In process of determining the Cosserat elasticity tensor, an oversight was made regarding the shear
elastic constants obtained from the Cauchy homogenisation. In a Cauchy continuum the shear strain is
only related to the partial derivative of displacement, while in a Cosserat continuum the shear strain is
also a function of the microrotations. This is depicted in Figure 2.8, where it can be seen that both u and
a have an arrow towards shear strain. It was wrongly assumed that the shear elastic constants obtained
from the Cauchy homogenisation could be used for the homogenised Cosserat elasticity tensor. To
obtain the actual shear elastic constants, load cases for shear should be added where both the strain
due to displacement and strain due to microrotations can be obtained. In research by Rezaei et al.[18] a
FEAmethod was proposed to obtain these shear elastic constants. Also in recent research by Bets[29],
experimental testing of the Cosserat elastic constants in-plane was performed, which included shear
tests.

From these shear tests it might be possible to obtain the couple modulus µc. If the couple modulus is
known, then a weak form model more similar to Jeong et al. could be made[21]. Here only one weak
form physics node has to be added for the microrotations, as the displacements could be handled
through a Linear Elastic Material, which is present for most physics nodes. This includes the Plates
physics node. In the research by Jeong et al.[21] material isotropy is assumed, which cannot be as-
sumed for metaplates. In further research, these shear tests could be used as starting points to obtain
Cosserat elastic constants for shear. From this it might be possible to create a Cosserat continuum that
can be added to a Plate physics node in COMSOL Multiphysics. These steps could make it possible
to make a homogenised Cosserat plate model.
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4.4. Bending of a long metaplate
In Figure 3.7 and Figure 3.8 an interesting pattern can be observed. Initally the observable BPR in-
creases as the metaplate length increases, which is expected as the distance to the rigid boundary
condition increases. This allows for the development of double curvature. However, after five unit-cells
the observed Poisson’s ratio decreases again. The COMSOL Multiphysics model uses symmetry so
the total size of the metaplate in this case would be ten unit-cells by five unit-cells. This behaviour hap-
pens for both unit-cell geometries that were tested. The displayed behaviour might be linked to the total
metaplate proportions, where as the metaplate becomes longer, the relative width to length becomes
smaller. The influence of metaplate width on double curvature has been analysed by Mirzaai et al.[7].
Further research is recommended where both the length and width of the metaplate are varied.

4.5. Further recommendations for future research
The homogenised Cosserat continuum model is able to seperate the IPR and BPR of metaplates un-
like, the homogenised Cauchy continuum model. However the Cosserat continuum requires further
refinement before it can be actually applied in a meaningful way. This research could act as stepping
stone for further research

Experimental validation of the bending-induced curvature of metaplates was not in the scope of this
research. Applying pure bending to a (meta)plate is challenging as it requires applying a moment along
an edge, without restricting the double curvature along this edge. Specifically experimentally validating
the exact double curvature is difficult. Further research can be done, regarding the influence of loading
conditions on the presence of bending-induced double curvature in metaplates. The cylindrical shaped
bending test of an RVE, performed in COMSOL Multiphysics for this research, might be feasible to
experimentally validate. Specifically, if a convenient RVE size like a single star-shaped unit-cell is
chosen. In this case four connection points can be used to apply moments. Here it does not matter
that the application of a bending moment also clamps the unit-cell, as for a single unit-cell this does not
influence the double curvature.

In Figure 3.4 it was presented how the geometry of the unit-cell flexure influenced the BPR obtained
from the cylindrical bending test. Yao et al. stated that the BPR depends on the “competitive interaction
between axial torision and out-of-plane bending”[15]. In future research unit-cells could be designed
to have an increased torsional stiffness compared to the bending stiffness. The bending-induced dou-
ble curvature of the unit-cells could be analysed, to see how the bending-induced double curvature
changes. The torsional stiffness can be increased by for instance adding triangular reinforcements to
the flexures.
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Conclusion

In this research, steps were taken to create and comparemodellingmethods of metaplates for two types
of unit-cell. Principles of a Cauchy continuum regarding symmetry and bending were handled. Also an
introduction of Cosserat elasticity was given. Two metaplates of interest, namely the star-shaped unit-
cell and the anti-tri-chiral unit-cell were selceted as these display an interesting combination of in-plane
Poisson’s ratio and bending-induced double curvature. For both unit-cells, two sizes of Representative
Volume Elements (RVE’s) were chosen to see if this would affect the results.

Using Cell periodicity in COMSOL Multiphysics, homogenised Cauchy elasticity matrices were deter-
mined for both unit-cells, for different mesh and RVE sizes. The Cauchy elasticity tensor included
unexpected couplings. However most of these couplings were insignificant. A significant axial to shear
out-of-plane coupling was found for the star-shaped unit-cell and the anti-tri-chiral-unit-cell. Additionally,
for the anti-tri-chiral unit-cell a significant axial to shear coupling in-plane was found. The resulting elas-
ticity matrices were validated by calculating the Mean Average Percentage Error (MAPE) of the mesh
convergence and the RVE size. The mesh size could be further increased to improve the MAPE value.
It was observed that RVE size had no significant effect on the Cauchy elasticity tensor, conforming that
the smaller RVE’s were actual Representative Volume Elements.

To extend the homogenised Cauchy continuum model to a homogenised Cosserat continuum model,
additional load cases were applied in the form of cylindrical bending tests through COMSOL Multi-
physics. From these cylindrical bending tests the estimated bending-induced double curvature and the
bending part of the D-matrix were determined. Due to the symmetry of the star-shaped unit-cell, the
cylindrical bending test only had to be performed in one direction. The cylindrical bending test of the
star-shaped unit-cell was performed for different RVE and mesh sizes. For the anti-tri-chiral unit-cell,
the cylindrical bending test was performed in two perpendicular directions for different mesh sizes. The
bending parts of the D-matrix were validated by calculating the MAPE of the mesh convergence and the
RVE size. For the star-shaped unit-cell, all MAPE values were low indicating mesh convergence and
that the mesh size had no significant effect on the bending part of the D-matrix. The bending-induced
double curvature value obtained from the cylindrical bending test of the star-shaped unit-cell was sim-
ilar to the bending-induced curvature value of the actual detailed star-shaped unit-cell metaplate. For
the anti-tri-chiral unit-cell the resulting bending part of the D-matrix became asymmetric. This indicates
that additional couplings might be present, or that the RVE was not properly constrained.

A Cosserat continuummodel for bending was created throught the weak form of COMSOLMultiphysics.
It was validated that the Cosserat continuum model could display different types of bending-induced
double curvature, independently from the in-plane Poisson’s ratio. However, a lack of smoothness was
observed in the Cosserat continuum model.

The bending-induced double curvature of the actual detailedmetaplate was compared to the homogenised
Cauchy continuum metaplate and the homogenised Cosserat continuum metaplate. This was done for
both the star-shaped unit-cell and the anti-tri-chiral unit-cell. The homogenised Cauchy and Cosserat
continuum models were not properly setup to account for the symmetry of the anti-tri-chiral unit-cell.
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The homogenised Cosserat continuum model did determine the correct amount of bending-induced
double curvature for both unit-cells, unlike the homogenised Cauchy continuum model. However, sur-
face defects and a lack of smoothness indicate that further refinement of the cosserat continuum model
is required to accurately model the bending-induced double curvature of metaplates.

Using the cylindrical bending test, a parametric sweep was performed in COMSOL Multiphysics for the
star-shaped unit-cell, where the influence of the flexure geometry was related to the estimated bending-
induced double cuvature. This revealed how specific values of bending-induced double curvature can
be obtained using different flexure geometries. Also a parametric sweep was performed in COMSOL
Multiphysics to evaluate the development of bending-induced double curvature for an increasingly long
metaplate with rigid ends. While the bending-induced double curvature initially increased, from a certain
length the bending-induced double curvature started to decrease. Experimentally validating the results
of the long metaplate could be interesting for future research. Additionally other experimental ideas for
future research were proposed.

This Research combined the bending-induced double curvature of metaplates with the continuum me-
chanics of Cauchy and Cosserat elasticity. Cosserat elasticity is a promising tool for metaplates to more
accurately model bending-induced double curvature. However, its application remains challenging.
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A
Additional results

Additional images of the load cases with normal mesh size.

(a) principal strain x (b) principal strain y (c) principal strain z

(d) shear strain xy (e) shear strain yz (f) shear strain xz

Figure A.1: six load cases applied to RVE of the anti-tri-chiral unit-cell with normal mesh
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(a) principal strain x (b) principal strain y (c) principal strain z

(d) shear strain xy (e) shear strain yz (f) shear strain xz

Figure A.2: six load cases applied to alternative RVE of the anti-tri-chiral unit-cell with normal mesh



Bending-induced double
curvature in metaplates;

bridging the gap between model
and experiment

A literature review regarding the bending of
metaplates

by

Pieter Jager

Abstract:

For a long time, it was assumed that the bending-induced double curvature of metamaterial plates
(metaplates) could be tailored by adjusting their Poisson’s ratio, with the assumption that these
structures could be accurately modelled as continuous (Cauchy) plates. However, recent studies

have challenged this view, revealing that such assumptions remain valid only under specific
conditions. In this literature review, state of the art modelling approaches for the bending-induced

double curvature of metaplates are analyzed, as well as how these approaches could be
implemented for future research.

Thesis Committee: Freek Broeren, TU Delft, daily supervisor
Project Duration: June, 2024 - August, 2025
Faculty: Mechanical Engineering, High-Tech, Delft



Contents

Nomenclature ii

1 Introduction 1

2 Literature 3
2.1 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Relevant plate theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Bending-induced double curvature in literature . . . . . . . . . . . . . . . . . . . 9
2.3.2 Bending Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Cosserat theory and Couple-Stress Plate Theory (CSPT) . . . . . . . . . . . . . 13
2.3.4 Homogenisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Discussion 16

4 Conclusion 19

References 20

i



Nomenclature

Here abbreviations and symbols are stated to prevent possible confusion during reading.

Abbreviations
Abbreviation Definition

AAH Augmented Asymptotic Homogenisation
BPR Bending Poisson’s Ratio (or Mindlin’s ratio)
CSPT Couple-Stress Plate Theory
IPR In-plane Poisson’s Ratio
MPR Material Poisson’s Ratio

Symbols
Symbol Definition Unit

ϵ Strain -
ζ Mindlin’s ratio -
θ Angle in unit-cell rad
κ Curvature rad
ν Poisson’s ratio -
σ Stress Pa
ϕ load direction rad
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1
Introduction

Metamaterials are a special type of architected materials that are able to achieve properties not com-
monly found in nature or from standard engineering materials[1]. Metamaterials make use of the ge-
ometry of their unit-cells to attain these unique properties. In this context, the unit-cell is a (compliant)
mechanism that is tesselated to create the metamaterial. Here, tesselation refers to the operation of
repeating a pattern. A tile for example, could be Tesselated to create a tiled floor. Tesselation of a
unit-cell can be done in one, two or three perpendicular directions, which will determine in which dimen-
sions the metamaterial will actually exhibit this unique property. A unit-cell tesselated in 2 perpendicular
directions should behave like a two dimensional metamaterial.

Metamaterials can be divided into wave-based metamaterials and mechanical metamaterials. Wave-
based metamaterials display unique properties related to optics, acoustics and thermics, while mechan-
ical metamaterials display unique properties related to motion, deformation, stresses and mechanical
energy[1]. For the scope of this literature review only mechanical metamaterials are of interest. A
prominent type of mechanical metamaterials are metamaterials with a negative Poisson’s ratio, which
Soest’s literature review[2] stated was the most researched type of mechnanical metamaterial. Nega-
tive Poisson’s ratio metamaterials are prevelant in literature (as can also be seen in several overview
papers[1][3][4]), but there are still a lot of gaps in the knowledge about these metamaterials.

In studies about negative Poisson’s ratio metamaterials, the out-of-plane bending is often not taken into
consideration, as it falls outside the scope of their research. Literature about this aspect is therefore
limited[5] and mostly concentrated around a few negative Poisson’s ratio metamaterial designs like the
auxetic honeycomb pattern. The out-of-plane bending of metamaterials can be analysed by looking at
a plate shaped metamaterial (metaplate), where the length and width are much greater than the height.
Here, the unit-cells of the metamaterial only have to be tesselated along the length and width of the
plate as the height is negligibly small.

This literature review focusses on the double curvature that negative Poisson’s ratio metaplates exhibit
when they are bent out-of-plane. This is of interest, because for continuous materials the Poisson’s
ratio is related to the bending-induced double curvature. If this is also applicable to metaplates, then
complexly curved metaplates could be made by varying the Poisson’s ratio in the metaplate[2]. As this
literature review focusses specifically on negative Poisson’s ratio and zero Poisson’s ratio mechanical
metamaterial plates, these will be referred to as metaplates.

An important goal for metamaterials is their usage in the design process like regular materials. Gen-
eralised properties should define the behaviour and knowledge of the underlying microstructure of the
metamaterial should not be required. If a metamaterial can be modelled as a continuous material that
approximately has the same properties, then the metamaterial could be used in the design process
and finite element analysis (FEA) like any other material. A central question about this is:

Is it possible to model current metaplates as continuous plates? If not in general, are there
conditions for which this could be possible?

1
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Here it is also of interest if a type of plate theory could be applied, as plate theory is often used for contin-
uous materials to simplify the calculations or modelling. Other possible applications for the bending of
metaplates are in areas like shape-fitting, sandwich structure reinforcement and deployable structures.
Here the architected nature of metamaterials is of interest to design complex desired shapes. For this
it is crucial to find out:

What types and amounts of bending-induced double curvature are currently obtainable using
metaplates?

This literature review aims to answer these questions and present possible areas of interest for future
research. The process and the findings of the literature retrieval are described in chapter 2. Based on
the reviewed literature, the research questions and areas for future research are discussed in chapter 3.
Import aspects of the literature review will be summarised in chapter 4.



2
Literature

In the literature section, first the general search strategy is briefly explained in section 2.1. Second,
some background principles central to the state of the art are discussed in section 2.2. Third, the
current state of the art is presented in section 2.3.

2.1. Search Strategy
The starting point of this literature review were two papers written at the TU Delft by Mirzaali et al.[6]
and Soest[2]. Relevant papers referenced by one or both of these papers were analysed to get more
insight into the field. The paper written by Mirzaali et al. was published in 2021, so all papers that
referenced Mirzaali et al. since then could be looked up. This returned 25 papers, from which papers
deemed relevant based on the title and abstract were analysed.

Two of these papers presented novel theories of interest[5][7]. These papers were published in 2023
and 2024 respectively. In one of these recent papers homogenisation was an important aspect of
the methodology[7], so additional research into homogenisation methods was done. In the other re-
cent paper Cosserat theory was an important aspect of the methodology[5], so additional research into
Cosserat (plate) theory was also done. Only four papers were found that referenced one of these two re-
cent papers. One of these four papers presented a design and categorisation method for metamaterial
unit-cells[8] .

In summary, because this literature review is a continuation of previous works, the foundation of this
literature review is similar to the literature used in these previous works, namely Soest[2] and Mirzaali et
al.[6]. In addition to these, two recently published papers were found[5][7], which introduced additional
literature and topics of interest to analyse.

2.2. Background
Here, principles central to metaplates are introduced. First, Poisson’s ratio will be explained in sub-
section 2.2.1, as this is a fundamental concept for everything discussed in this literature review. Next,
metamaterials relevant to the state of the art are introduced in subsection 2.2.2. Lastly, a few aspects
of plate theory are explained.

2.2.1. Poisson's ratio
A fundamental part of this literature study is Poisson’s ratio. Poisson’s ratio describes the relation
between the deformation in the loading direction (ϵ11) and the deformation perpendicular to this (ϵ22),
which can be seen in Equation 2.1 and Figure 2.1[2]. When a beam is compressed in one direction,
it tends to expand in the other direction to preserve its volume. Most materials behave like this and
therefore have a positive Poisson’s ratio (notice the minus sign in Equation 2.1). A beam has a negative
Poisson’s ratio if it shrinks when it is compressed in a perpendicular direction. Materials with a negative
Poisson’s ratio are not usually found in nature, but they can be of great use for various (engineering)
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applications. For instance, cork is used to seal wine bottles due to its Poisson’s ratio of roughly zero[1].

The in-plane behaviour of Poisson’s ratio also influences the bending-induced curvature. When a beam
is subject to pure bending at two sides, part of the beamwill be loaded under compression and the other
part will be loaded under tension (see Figure 2.1).For a beam with a positive Poisson’s ratio this means
that the part loaded under compression will get thicker, and the part loaded under tension will get thin-
ner. This creates a saddle shaped curvature as can be seen in Figure 2.1. For small linear elastic
deformations, Poisson’s ratio can therefore be used as the ratio of curvature in the direction perpen-
dicular to the applied bending(κ22) and the curvature in the direction bending(κ11) (see Equation 2.1).
This means that for a beam or a plate, its Poisson’s ratio could be measured in two ways, which should
both return the same value.

ν12 = −ϵ22
ϵ11

= −κ22

κ11
(2.1)

Figure 2.1: Effect of Poisson’s ratio in-plane (left) and out of plane (right), for both positive Poisson’s ratio (top) and negative
Poisson’s ratio (bottom)[2]

Materials with a positive Poisson’s ratio exhibit anticlastic or saddle shaped curvature, while materials
with a negative Poisson ratio exhibit synclastic or dome shaped curvature. Furthermore, materials
with zero Poisson’s ratio exhibit monoclastic curvature, which all can be seen in Figure 2.2. A more
elaborate explanation of this behaviour can be found in the work of van de Sande[9].

Figure 2.2: Possible types of double curvature, from left to right: monoclastic, synclastic and anticlastic[9]

2.2.2. Metamaterials
Metamaterials are a fusion of mechanism and material where the mechanism of the unit-cell gives the
metamaterial unusual but desirable bulk properties like a negative Poisson’s ratio. With the introduction
of metamaterials, the range of attainable Poisson’s ratios increased drastically. For negative Poisson’s
ratio metamaterials the material properties no longer define the Poisson’s ratio, but the geometry of
the unit-cell does. Here, a unit-cell is a compliant mechanism that can be tesselated in one or multiple
dimensions to create a metamaterial. This means that metamaterials can be designed for specific
desired Poisson’s ratios. To differentiate between the Poisson’s ratio of the material and the resulting
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(a) three dimensional auxetic honeycomb metamaterial[10] (b) two dimensional auxetic honeycomb metaplate[12]

Figure 2.3: Auxetic honeycomb

metamaterial Poisson’s ratio, the Poisson’s ratio of the materials was named the Material Poisson’s
Ratio (MPR) in this literature review.

As previously mentioned, a unit-cell can be tesselated in one to three directions ([10][11] for example).
In Figure 2.3a a metamaterial tesselated in three directions is presented. The negative Poisson’s ratio
of the metamaterial can be observed by compressing the metamaterial in any direction. It can be easily
understood that the manufacturing of such a metamaterial is complex, for which modern 3D printing
methods are required. Also it is prevalent that Finite Element Analysis (FEA) on such a metamaterial
is computationally heavy, if all the individual features in Figure 2.3a are taken into account. If this
metamaterial could be modelled as a continuous beam with a negative Poisson’s ratio, the FEA would
be significantly less computationally heavy.

As previously mentioned, for this literature review the interest lies in so called metamaterial-plates
(metaplates), where the unit-cell is tesselated in 2 directions. To make the metaplate three-dimensional
the 2D geometry is given a thickness by extruding this geometry, as can be seen in Figure 2.3b. This
approach is of interest when the metamaterial is plate shaped, where the size of the tesselated di-
mensions are far greater than the size of the non-tesselated dimension. Metaplates are made to act
like metamaterials in-plane and for bending out-of-plane. While for other out of plane deformations the
metaplate does not act like a metamaterial. For instance the metaplate does not act like a metamaterial
when the metaplate is compressed from the top and bottom, which is the non-tesselated dimension.
This approach can be combined with plate theory, which has often been used for metaplates [6][7].
Plate theory will be discussed in more detail in subsection 2.2.3.

Some interesting unit-cell designs that are relevant when looking at bending-induced curvature are
briefly explained. These unit-cells are depicted in Figure 2.4.

(Re-entrant) Honeycomb
Different types of metaplates can have a negative Poisson’s ratio. The most famous unit-cell type to
achieve this is the re-entrant or auxetic honeycomb (see (b) in Figure 2.4) also sometimes referred
to as the bow-tie, which is a variation on the honeycomb design (see (a) in Figure 2.4). The auxetic
honeycomb is also depicted Figure 2.3, which wasmentioned previously. By enlarging the angle θ of the
beams in the honeycomb unit-cell, the honeycomb’s Poisson’s ratio starts to decrease. The Poisson’s
ratio approaches zero when the angle approaches θ = 90◦ (as it turns into a rectangular unit-cell) and
beyond θ = 90◦ the Poisson’s ratio becomes negative. When the re-entrant honeycomb is compressed
from the top and bottom, the angled beams will fold inwards i.e. towards the center of the unit-cell.
At θ = 90◦ the unit-cell will display buckling, where the direction of buckling will be based on small
manufacturing inconsistencies. Because of this, the θ = 90◦ geometry is not of interest for this literature
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Figure 2.4: Unit-cell designs, (a) honeycomb[13], (b) re-entrant honeycomb[13], (c) Arrow[14], (d) star shape[15], (e)
tetra-chiral[16], (f) anti-tetra-chiral[16]

review. Every (re-entrant) honeycomb unit-cell is connected to six other unit-cells, which makes the
unit-cell hexagonal. The In-plane behaviour of re-entrant honeycomb metaplates is presented by Jiang
et al.[12] and numerous others. Bending-induced curvature of the re-entrant honeycomb has been
analysed and tested numerous times [13][17][18][19][20][6]. These papers conclude that the bending
behaviour of honeycombmetaplates is in line with plate theory (Kirchhoff-Love for [13][17] and Reissner-
Mindlin for [6]), and therefore that by changing the Poisson’s ratio the bending-induced curvature can
be altered. To utilise and visualise this, honeycomb metaplates were designed which bent around
specified shapes by La Magna et al.[13]. Huang et al. presented a re-entrant honeycomb metaplate
with zero Poisson’s ratio[21]. In 2021 Mirzaali et al. published a paper in which rigorous analysis
and testing was performed to evaluate how parameters like the thickness, width, internal angles and
wall thickness influenced the bending behaviour of (re-entrant) honeycomb metaplates[6]. This was
expanded upon by Eskandari et al. in 2024[7]. In section 2.3 the content of these papers are described
in more detail.

Arrow
The auxetic triangle or arrow unit-cell is another type of metaplate that has a negative Poisson’s ratio
(see (c) in Figure 2.4). The arrow unit-cell works in a similar way as the re-entrant honeycomb, only
instead of two sets of angled flexures folding inwards only one set of angled flexure folds inwards. This
alters the angles of the 2 flexures connected to the ends of the angled flexures and these flexures
connect together at the center of the next set of angled flexures. This means that the arrow unit-cell
has less symmetry than the re-entrant honeycomb. The arrow unit-cell is tetragonal, as every unit-cell
connects to four other unit-cells. In-plane behaviour has been presented by Jiang et al.[14]. Research
into bending-induced curvature of auxetic triange metaplates has been done by Sakai et al.[18].

Star shape
The next unit-cell type of interest is the (tetragonal) star-shaped unit-cell, originally presented by Grima
et al.[15]. The star-shaped unit-cell can be seen as a variation on the re-entrant honeycomb unit-cell,
adding symmetry in a way that the unit-cell is identical to its 90 degree rotated version. Because of
this the Poisson’s ratio of the star-shaped metaplate will be identical to the Poisson’s ratio measured
perpendicularly to it. This relation to the re-entrant honeycomb is detailed by Roberjot et al.[8]. An
interesting property of the star-shaped unit-cell is that while it seems auxetic, the Poisson’s ratio can
be both positive and negative based on the internal angle θ. Yao et al. also presented a variation on the
star-shape that is hexagonal[5]. Bending analysis of the star-shaped metaplate has been perfomed by
Yao et al.[5], which will be handled in the state of the art section. Variations of the star-shaped unit-cell
exist and are shown in [5][8]. The variation most of interest is one where every unit-cell is connected
to six other unit-cells instead of four like the unit-cell in Figure 2.4 (d). This variation of the star-shaped
unit-cell is more similar to the (re-entrant) honeycomb as it is also hexagonal.
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Chiral
Another type of metaplate that can have a negative Poisson’s ratio is the chiral metaplate. Chiral
unit-cells utilise their asymmetry to rotate under load, which makes their flexures coil around a central
cylinder, like a wire around a coil. Due to this asymmetry, chiral unit-cells are either left or right rotating
(left or right handed in other words). The main type of chiral unit-cells regarded in this literature is Chiral
unit-cells consisting of a cylinder from which multiple flexures point outwards (see (e) of Figure 2.4). A
chiral metaplate can have a negative Poisson’s ratio, while another chiral metaplate with slightly rotated
unit-cells can have a positive Poisson’s ratio due to internal couplings[7]. Various papers have analysed
and tested the bending-induced curvature of chiral metaplates[22][21] and recently by Eskandari et
al.[7]. The results of this will be discussed in more detail in section 2.3. The cylinder at the center of the
chiral unit-cell could also be replaced with flexures joined at the center, which was done by Attard et
al.[23]. This paper does not present the influence this variation has on the bending-induced curvature.

A variation of a chiral unit-cell is an anti-chiral unit-cell, where every chiral unit-cell is connected with
its mirror image. Like mentioned previously, the unit-cell is the smallest ’section’ that can be tesselated
to create the metaplate. Mirroring is not an operation of tesselation, so a single anti-chiral unit-cell is
comprised of multiple mirrored chiral unit-cells. An example of an anti-chiral unit-cell can be seen in
Figure 2.4 (f), which is based on the chiral unit-cell in Figure 2.4 (e). Here the unit-cell consists of four
chiral unit-cells. Anti-chiral unit-cells are therefor not directional, but consist out of smaller directional
sections. Some testing of bending-induced curvature of anti-chiral metaplates has been done[22][21].

The Poisson’s ratio of chiral metaplates varies based on the the type of chiral unit-cell and the relation
of the length of the flexures relative to the size of the central cylinder (noted as α). Alderson et al.[22]
presented a graph which can be seen in Figure 2.5, where some Poisson’s ratio values of chiral meta-
plates are shown. It is interesting to note that some chiral unit-cells can have a positive or negative
Poisson’s ratio based on α. This clearly shows that chiral unit-cells can have both an auxetic mech-
anism as well as a non-auxetic mechanism. This is logical because the central cylinder that creates
the chiral behaviour can be made negligibly small, so that the chiral unit-cells lose their rotating/chiral
behaviour.

Figure 2.5: Poisson’s ratio as a function of α for different chiral and anti-chiral unit-cells[22], where α is the relation between
flexure and cylinder lengths

Unit-cells that are not chiral, are called achiral[8]. Anti-chiral unit-cells and all other unit-cells discussed
outside the chiral section are classified as achiral.

Categorisation
Different types of categorisation have been performed by Soest, Roberjot et al. and Eskandari et
al. [2][8][7]. Soest used Bravais lattice groups based on crystallography, which made distinction of
seven crystal types[2]. Roberjot et al. made a system based on how the unit-cell is constructed. Here
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the chirality or lack of chirality was a central point of interest[8]. Eskandari et al. also used crystal
types, but based on the symmetry of the unit-cell (Curie groups). This resulted in the distinction of
32 crystal classes[7]. For this literature review, the major interest lies in the bending behaviour of the
metaplates and not in the design categorisation of the unit-cells itself. However, it is possible that unit-
cells categorised in similar groups bend in a similar manner, and therefore these categorisations might
help explain results from literature or novel results made during novel research. In the case of Eskandari
et al., categorisation into crystal types was used to determine how many unknown parameters should
be solved for in his two-dimensional asymptotic homogenisation (2D AAH) method. The relevance of
this and further elaboration will be done in subsection 2.3.4.

It is important to note that unit-cells can be depicted in different ways, meaning different looking unit-
cells could be tesselated to create the same metamaterial. A widely used definition for the unit-cell is
that it represents the smallest geometry that can be tesselated to create the metamaterial or metaplate.
However, following this definition the unit-cell of a honeycomb would be a set of 3 flexures pointing
outward from a center. For this literature review an attempt was made to depict unit-cells in an intuitive
manner based on the depictions in literature and the functioning of the unit-cell. The distinction between
tetragonal and hexagonal unit-cells is useful to keep in mind, which simply refers to how many unit-cells
are connected to every unit-cell (four in the case of tetragonal and six in the case of hexagonal). This is
relevant, because hexagonal unit-cells can be depicted as tetragonal unit-cells. Often this is done for
ease of modelling, as a tetragonal unit-cell can be tesselated in two directions to get a rectangluar plate.
By keeping in mind that the original unit-cell is hexagonal, oversights about the symmetry properties of
the unit-cell can be prevented.

2.2.3. Relevant plate theory
In the analysed literature, multiple aspects of plate and beam theory are used. Plate and beam theory
can be applied both to the behaviour of the metaplate as a whole, and to the behaviour of the flexures
inside the unit-cells of the metaplate. In the design process to turn a rigid body model into a compliant
mechanism, thin flexures are often used to replace rigid joints. Metaplate unit-cells, which are compliant
mechanism themselves are therefore often based on thin-walled structures. For small thicknesses of
flexures, Euler-Bernoulli beam theory could be used, which Yao et al. apply in their paper[5].

When working with plates where the length and width are much greater than the thickness, plate theory
might be desired to simplify calculations. For thin plates Kirchhoff-Love i.e. classical plate theory can
be used. This is a two-dimensional version of Euler-Bernoulli i.e. classical beam theory, where some
effects of thickness in the plate are neglected. In Kirchhoff-Love plate theory shear deformations and
stress in the thickness direction are neglected, also it is assumed that parallel lines before deformation
remain parallel after deformation. As plates become thicker, the shear deformation becomes more
important. So for thick plates Reissner-Mindlin plate theory should be used, which is an extension of
Kirchhoff-Love theory that does not neglect the shear deformation in the plate. For all of the previously
mentioned plate theories, the material is assumed to be a Cauchy continuum i.e. classical continuum.
About this Steinberg and Kvasov state: “The Classical Theory of Elasticity is based on the idealized
model of elastic continuum, where the body forces acting on the surface element are described by the
force vector. This assumption leads to the introduction of the symmetric stress and strain tensors.”[24].

In literature, metaplates are often modelled as plates using plate theory. This started with La Magna
et al.[13] and Evans et al.[17] who modelled (re-entrant) honeycomb lattices as Kirchhoff-Love plates.
More recently Reissner-Mindlin plate theory has also been applied to metaplates by Mirzaali et al.[6]
and Steinberg and Kvasov[24] who actually used a variation of Reissner Mindlin based on a Cosserat
continuum. The Cosserat continuum is further elaborated upon in subsection 2.3.3.

2.3. State of the art
In the previous subsection, Poisson’s ratio, its relation to bending-induced curvature and metamaterials
were discussed. Now the interaction between these concepts, namely the bending-induced double
curvature of metaplates, which is themain focus of this literature review, is presented in subsection 2.3.1
and subsection 2.3.2. Some important concepts from the state of the art will be further explained in
subsection 2.3.3 and subsection 2.3.4.
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2.3.1. Bending-induced double curvature in literature
As mentioned previously, the bending-induced double curvature of (re-entrant) honeycomb metaplates
seems in-line with continuous plates based on the found literature. For three different Poisson’s ratios
the bending-induced double curvature is shown in Figure 2.6. Here, it can be seen that the type of
double curvature depends on the Poisson’s ratio of the metaplate.

However, in other literature results are presented that do not coincide with the previous conclusion
where the double curvature of a metaplate simply depends on the Poisson’s ratio of the metaplate.
Yao et al. stated that the bending-induced double curvature of a metaplate is not defined by Poisson’s
ratio, but rather by the “competitive interaction between axial torision and out-of-plane bending”[5]. This
observation is actually quite logical when looking at the unit-cell geometry up close, because a unit-cell
is more than simply its designed Poisson’s ratio. Inconsistencies were observed when unit-cells other
than the (re-entrant) honeycomb were considered. Alderson et al. analysed various chiral and anti-
chiral metaplates[22]. The anti-tri-chiral metaplate, which can be seen in Figure 2.8, is of special interest
here. Alderson et al.[22] hypothesized the bending-induced curvature of an anti-tri-chiral metaplate to
be synclastic, which is in accordance with continuous plate theory for a negative Poisson’s ratio. When
the bending-induced curvature turned out to be anticlastic, Alderson et al. stated: “Since the cylinder
rotation mechanism is, then, redundant for out of-plane bending, the in-plane Poisson’s ratio of the
system will tend towards that given by Eq. (4) [i.e.νxy = νyx− > +1] and hence the predicted anticlastic
curvature”[22]. This is an example of a metaplate where the Poisson’s ratio does not determine the
bending-induced double curvature, so continuous plate theory can not be applied. More examples
like this can be found like [19][20] where the usage of plate theory also does not accurately describe
the behaviour of metaplates. Mirzaali et al.[6] analysed (re-entrant) honeycomb metaplates using FEA
and found that the thickness of the metaplate influences the bending-induced double curvature, while
changing the thickness does not change the in-plane Poisson’s ratio. The results of this can be seen
in Figure 2.8.

As mentioned previously, metaplates are a special type of architected plates. The methods of modelling
architected plates and metaplates are often similar, as the internal mechanisms overlap greatly. Strictly
speaking, a honeycomb plate is an architected plate and a re-entrant honeycomb plate is an architected
plate and also a metaplate, as this re-entrant honeycomb plate has a negative Poisson’s ratio. If the
bending-induced double curvature of metaplates depends on more than just the Poisson’s ratio, then
architected plates in general might also display different kinds of double curvature. If an architected
plate with a positive Poisson’s ratio displays synclastic bending-induced double curvature, which is
associated with a negative Poisson’s ratio for continuous plates, then it could be argued that this archi-
tected plate could be considered as a metaplate. Therefore, literature about architected plates/cellular
solids was looked into for this literature review[25][26][27][28][29]. Shrimali et al. used homogenisation
for architected plates to compare the bending of these architected plates to the bending of continuous
plates[29]. In the research of Fongsamootr et al.[28] bending experiments were performed on an archi-
tected plates and compared to continuous plates. In both these papers no observations about double
curvature were made. Fongsamootr et al. used a three-point bending test for its experiments, which
could have suppressed the double curvature. This alludes to the general problem of experimentally
evaluating pure bending conditions.

Experimental validation is a complex procedure. Both applying a pure moment on a plate and measur-
ing the displacement of a large number of points in three dimensions are difficult to perform. Therefore,

Figure 2.6: Bending-induced double curvature of honeycomb plates with positive, (near) zero and negative Poisson’s ratio
from left to right[13]
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Figure 2.7: Double curvature of an auxetic anti-tri-chiral metaplate[22], the
observed curvature is anticlastic

Figure 2.8: Relation between height of the
unit-cell and the bending-induced double

curvature[6]

Yao et al. simplified this by only validating if the type of double curvature is correct[5]. This could be
a useful method, but the possible conclusions from the validation are restricted to: anticlastic bending,
roughly cylindrical bending or synclastic bending. To validate the bending behaviour more precisely
would require a setup like Mirzaali et al.[6] or Eskandari et al.[7] used. Caution should be taken, when
comparing different experimental setups found in literature, because the results of testing could be
influenced by the testing method. In the case of metaplates it is important to critically compare the
connection method of the metaplate to the test setup. Mirzaali et al. restricted the bending at two sides
of the plates, this resulted in a reduced amount of double curvature. In the case of Fongsamootr et
al.[28], additionally the bending at the center of the architected plate was also reduced as a line contact
only applies force when in contact. Eskandari et al. did not restrict this, but the bending is achieved
though applying a force not a moment.

2.3.2. Bending Poisson's ratio
From subsection 2.3.1 it can be concluded that modelling a metaplate as a continuous plate is not al-
ways valid, when looking at bending-induced double curvature. Alderson et al.[22] stated that it seemed
like the anti-tri-chiral metaplate had a negative Poisson’s ratio in-plane and a positive Poisson’s ratio
for bending out-of-plane. Eskandari et al.[7] and Yao et al.[5] followed up on this idea by splitting the
Poisson’s ratio into two parameters, the in-plane Poisson’s ratio (IPR) and the bending Poisson’s ra-
tio (BPR). This is in addition to the material Poisson’s ratio (MPR) mentioned previously. Eskandari
et al. named the BPR Mindlin’s ratio. For this literature study BPR was chosen as a more intuitive
name, because it describes the Poisson’s ratio for bending-induced double curvature. This means
that the bending-induced double curvature can be expressed by the BPR, where negative coincides
with synclastic curvature, zero with monoclastic curvature and positive with anticlastic curvature. Dis-
tinguishing these two terms meant that Equation 2.1 can no longer be assumed to be automatically
correct for metaplates. Equation 2.1 can be split up into two separate equations:

IPR = −ϵ11
ϵ22

and BPR = −κ11

κ22
(2.2)

Eskandari et al. and Yao et al. then analysed different types of metaplates for varying parameters.
This revealed how different parameters influenced the IPR and the BPR or both. Yao et al. varied the
angle, relative thickness, and loading direction for two different achiral unit-cell designs[5]. Eskandari
et al. varied the relative thickness for a variety of achiral and chiral unit-cells at constant IPR[7].
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In Figure 2.9 an important graph made by Eskandari et al.[7] is shown. The graph shows how for
a fixed IPR, the BPR can vary greatly depending on the relative thickness. Three types of double
curvature are shown, which correspond to the previously mentioned double curvatures from Figure 2.2.
In Figure 2.9 the difference between synclastic and one-way i.e. monoclastic curvature might seem
small, but they do depict different types of double curvature. The data points were generated through
2D-AAH, a homogenisation method constructed by Eskandari et al.[7]. Here, the relative thickness is
the metaplate thickness divided by a length element of the unit-cell. This length element is somewhat
arbitrarily chosen per unit-cell, but this should not matter for the results. The length element is just one
way of representing the in-plane size of a unit-cell.

The graph shows the BPR for increasingly thick unit-cells, for a fixed unit-cell size in-plane and IPR.
For the (re-entrant) honeycomb unit-cell it can be seen that the BPR converges to the IPR for greater
values of relative thickness. The star-shaped unit-cell and a chiral unit-cell can have both a positive or
negative BPR based on the relative thickness. Eskandari et al. state: “Notably, as the relative thickness
of the plate approaches infinity, Mindlin’s ratio [which is referred to as BPR in this literature review]
tends to Poisson’s ratio, indicating a size depency in CSPT”[7], but in the range presented only the (re-
entrant) honeycomb can be confirmed to converge. Similar behaviour of the (re-entrant) honeycomb
was also observed by Mirzaali et al. in Figure 2.8[6]. This dependency on relative thickness was not
taken into consideration in previous works, because only at small relative thicknesses does the size
dependency become significant. Therefore, older works[13][17] could correctly predict the bending-
induced curvature of (re-entrant) honeycombs without taking this size dependency into account. In
Figure 2.9 it can also be seen that two tetrachiral unit-cells display different IPR and BPR due to how
the unit-cell is rotated compared to the direction of induced bending. About the orientation of the tetra-
chiral unit-cells Eskandari wrote: “Figure 4a [Figure 2.9] presents the variation of Mindlin’s ratio [or BPR]
for each principle orientation versus the relative thickness. It is noteworthy that the principal directions
differ at each relative thickness”[7]. Eskandari states that the BPR is given by Equation 2.3[7].

ζ =
γ − η′b
η′b + γ

(2.3)

Here ζ is the BPR, “ηb and γ are torsional, anticlastic (symmetric) bending, and synclastic (anti-symmetric)
bending moduli, respectively”[7]. Equation 2.3 can be solved by using the results of the 2D-AAH. In
subsection 2.3.4 this is handled in more detail.

Figure 2.9: BPR for increasing relative thickness, for a fixed IPR[7]
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Figure 2.10: BPR and IPR for different relative thicknesses, left varying internal angle, right varying load angle[5]

In Figure 2.10 two graphs about (tetragonal) star shaped metaplates made by Yao et al.[5] are shown.
Here θ represents the angle between the flexures in the unit-cell, while ϕ represents the angle in which
the bending is applied. In both graphs red lines indicate the IPR an black lines indicate the BPR. While
the graphs look different from Figure 2.9, a similar size dependency is visualised by the black lines that
represent relative thicknesses. By looking at a certain angle, θ = 135◦ for instance, it can be seen that
there are four values of BPR possible. These four BPR values all correspond to the same IPR value,
which is the point on the red line at θ = 135◦. The relative thickness is the thickness of the metaplate
divided by the width of the flexures. This could also be expressed as the thickness of the metaplate
divided by a length element (which in this case is the flexure length), because the width and length of the
flexures have a fixed relation b/l = 0.025. So Figure 2.9 and Figure 2.10 present the same relatation,
where different BPR values can be attained for one IPR value. In addition to the size dependency, the
influence of θ (left graph) and ϕ (right graph) on both the IPR and BPR are also given. This reveals the
interesting behaviour that the size dependency is not constant for different angles, even disappearing
for θ = 90◦. For certain angles like θ = 135◦ and ϕ = 45◦ it seems like the IPR and BPR start to tend
towards each other just as was observed in Figure 2.9. However, this expected behaviour can not be
concluded from the paper itself and was not claimed by Yao et al.

Yao et al. derived the formulas for both the IPR and BPR of the (tegragonal) star shaped metaplate,
and presented these in the paper[5]. The bending Poisson ratio of a (tetragonal) star shaped metaplate
is:

νb(0) =
λ− 1

3λ+ 1
sin(2θ) (2.4)

where λ is the torsion to bending stiffness ratio. The first 1000 terms are used, given by:

λ =
6b2

(1 + ν)
(
1

3
− 64b

π5h

∑ 1

n5
tanh(

nπh

2b
)) (2.5)

The direction of the bending-induced curvature can be added to this formula through ϕ. The BPR as a
function of ϕ is:

ν(ϕ) =
(λ− 1)[f2(θ) cos2(2ϕ)− 1]

3λ+ 1− (λ− 1)f2(θ) sin2(2ϕ)
(2.6)

These formulas were constructed by using a Cosserat continuum model, because like mentioned previ-
ously continuous (Cauchy) plate theory will always state that IPR = BPR. The star shaped metaplate
is therefore modelled as a Cosserat plate, where the deformation of the beams is used to express the
IPR and from that the BPR was determined. The Cosserat continuum model has a size dependency,
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which Eskandari[7] also mentioned as important for his 2D-AAH model. Euler-Bernoulli beam theory is
used for the flexures inside the unit-cell, as the flexures are slender[5]. The relation between the length
and width of the flexures (b/l) is fixed to ensure the validity of Euler-Bernoulli beam theory. In section
subsection 2.3.3, Cosserat theory is handled in more detail.

2.3.3. Cosserat theory and Couple-Stress Plate Theory (CSPT)
In a Cauchy continuum or in other words a classical continuum, two material moduli are required to
model the material if the model is isotropic. This is an idealisation that can often be applied to engi-
neering materials as the imperfections present in the material average out and the observed properties
are isotropic. However, if the material is non-isotropic, more than two material moduli are required
to model the material. In areas like this literature review about metamaterials, but also subjects like
sandwich structures, reinforced concrete and more, a size dependency should also be taken into con-
sideration. Small features are present in these structures and based on the size of these features
relative to the size of the structure, the behaviour of the structure might be significantly different. This
size dependency cannot be taken into consideration in a Cauchy continuum model and therefore other
approaches are of interest that are able to take these size dependencies into consideration. If a size
dependency is present in a material, additional material moduli are required to correctly model the
behaviour. Also a model is required that is able to use these additional material moduli, to make an
accurate representation of the material.

The methods used by Yao et al.[5] and Eskandari et al.[7] are different, as Yao et al. use a Cosserat
continuum and Eskandari et al. use Couple-Stress Plate Theory (CSPT). However, in both papers the
same shortcoming of earlier research is identified, being the use of a Cauchy continuum. Both Cosserat
theory and CSPT can be viewed as extensions to a Cauchy continuum model, that are able to take
microstructure into consideration[5][7]. In the context of metaplates this size dependency relates to the
size of the unit-cells relative to the size of the metaplate. In other words, for a fixed plate shape how
many unit-cells the metaplate is comprised of. Here it is important to note that the thickness i.e. height
of the unit-cell is always identical to that of the metaplate, as the tesselation only happens in the length
and width direction. This relation could also be represented by varying the height of a metaplate, for a
fixed surface area. In earlier research, Mirzaali et al.[6] already showed through FEA that increasing
the height of a unit-cell could influence the amount of bending-induced curvature. Both Yao et al.[5] and
Eskandari et al.[7] showed this relation with their methods as well. It is important to note that changing
the height of the metaplate for a fixed surface area could influence the validity of (thin) plate theory.

It is theorised that a Cosserat continuum will converge to a Cauchy continuum when the size of the
microstructure becomes negligibly small[7][24][30]. Steinberg and Ksavov. stated: “As the Cosserat
Elasticity parameters tend to zero the solution of the Cosserat plate was shown to converge to the
Mindlin-Reissner plate. This implies that the Cosserat Plate Theory is a generalization of the classic
Mindlin Reissner Plate Theory”[24]. In research about architected plates Shrimali et al. analysed the
convergence of perforated plates to continuous plates for varying heights and unit-cells sizes. From
the research it was concluded that: “thin perforated plates can be effectively modeled as 2D structures
made of a homogeneous elastic material already when their thicknesses and hole sizes are only 4-to
−5 times smaller than their in-plane dimensions”[29]. This indicates a size dependency that might be
similar to the size dependency mentioned by Steinberg and Ksavov.

A paper about applying a Cosserat continuum to model cylindrical rods in COMSOL was found, includ-
ing a tutorial on how to set this up[30]. This research used six material moduli to represent the isotropic
elastic material behaviour. The obtained stress and strain tensors were both not symmetric and the mi-
crorotation term was part of the strain tensor[30]. The research also explicitly mentions that a Cosserat
continuum was used to take “size effects” into consideration[30]. Research about the computation of
Cosserat continua for two dimensional geometries was also found in literature[31].

2.3.4. Homogenisation
Homogenisation can be used as amethod tomodel a heterogeneousmaterial as an equivalent homoge-
neous material[32]. In the case of metamaterials and other architected materials that have a repeating
pattern, a respective volume element (RVE) is selected and solved for. This homogenised result can
then be extrapolated to the entire material. On the RVE, load cases can be applied to determine the
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Figure 2.11: The 32 crystal classes used by Eskandari et al.[7]

equivalent material moduli, i.e. the required parameters to accurately model the behaviour of the RVE.
The RVE could be chosen as the unit-cell of the metamaterial. By also analysing larger RVE’s it can be
checked if correct boundary conditions are applied, as different sizes of RVE should return the same
equivalent material moduli. If a small error is present in the unit-cell or in one of the load cases, then
this error will be extrapolated to the entire material. Also like mentioned in subsection 2.2.2, unit-cells
can be depicted in multiple ways. Eskandari et al.[7] converts his unit-cells to cuboid RVE’s, which
makes the procedure of applying the load cases more generalised.

Using homogenisation on its own to obtain a continuous plate approximation of metaplate has been
attempted[33]. Here it was observed that a continuum limit is present where homogenisation is accurate
due to a size dependency, which has already been mentioned in subsection 2.3.3 as an important factor
of analysing metamaterials. Therefore Eskandari et al. used homogenisation as a part of their 2D-AAH
that is able to take this size dependency into account[7].

The process that Eskandari et al. used to obtain their models is quite elaborate so in this section a
few aspects of this process are discussed. Because this method could be a promising tool to analyse
metaplates, some further research was done into homogenisation in general[34] [32] [29][35][33]. Es-
kandari et al. presented an augmented asymptotic homogenization method (AAH)[7]. Eskandari et al.
also presented three-, two-, and one-dimensional couple-stress theories that use this AAH[7].

For research regarding metaplates the 2D-AAH is relevant in combination with the couple-stress plate
theory (CSPT). In subsection 2.3.3 it was mentioned that the amount of required equivalent material
moduli depends on the degree of isotropy and the presence of a size dependency. By evaluating
the crystal class of the unit-cell of interest, the required number of equivalent material moduli can be
determined to accurately model the metaplate[7]. An image containing the crystal classes used by
Eskandari et al. can be seen in Figure 2.11.

For instance, a honeycomb unit-cell, which has a hexagonal crystal class can be classified as number
21 in Figure 2.11[7]. Equation 2.3 can be expressed in terms of the general elasticity tensor. Five ma-
terial parameters are required for the honeycomb unit-cell[7]. The formula for the BPR of a honeycomb
unit-cell becomes:
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ζ =
2D44 − 3D11 + 3 B11

C11−C12

2D44 − 3 B11

C11C12

(2.7)

Here B,C,D′s are entries from the homogenised material properties tensor, which was determined by
the 2D-AAH[7]. This formula can then be used to calculate the BPR, which defined as ζ by Eskandari
et al.[7]. By using the framework laid out by Eskandari et al., other unit-cells could also be analysed
in a similar way. The results of the 2D-AAH were visualised by Eskandari et al., which can be seen in
Figure 2.12. Going into more detail about the 2D-AAH process would lengthen this literature review
significantly. Therefore it is presumed that for additional information about this process, the paper of
Eskandari et al.[7] and its supporting material themselves are consulted.

An anti-tri-chiral unit-cell should correspond to the ditrigonal-dipyramidal (6m2). There is a great de-
pendence on the direction of the load so more material moduli are required than the honeycomb. As
the relative cylinder size compared to the flexure length of the anti-tri-chiral unit-cell becomes smaller.
The unit-cell will start to look more like a honeycomb. Therefore the additional required material moduli
should have a dependence on this relation. Eskandari et al.’s research does not include information
about this symmetry type, only calculations for the symmetry types used by Eskandari et al[7] are
presented.

The tetragonal star-shaped unit-cell requires seven material parameters[7]. Yao et al. state that the
tetragonal star-shaped unit-cell is transversely isotropic[5]. The other unit-cells analysed by Eskandari
et al. require nine material parameters[7].

Figure 2.12: Homogenised continuum used by Eskandari et al.[7]
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Discussion

In the introduction two main questions of interest were stated. The first question was:

Is it possible to model current metaplates as continuous plates? If not in general, are there
conditions for which this could be possible?

A criterion that could be used to answer this question for a Cauchy continuum, is how similar the IPR and
BPR are. This means that the IPR would determine the bending-induced curvature. If IPR ≈ BPR,
then the previously mentioned relation for the Poisson’s ratio in Equation 2.1 holds for these metaplates.
Based on the literature this is shown to be the case for a few unit-cell designs, specifically honeycombs
and re-entrant honeycombs [13][17][6][7]. In Figure 2.9 from Eskandari et al.[7] it was shown that for
these designs the BPR quickly converges to the IPR, which explains why earlier papers that did not
differentiate between IPR and BPR were still able to design for specified curvatures in their metaplates.
For the star-shaped unit-cell there are a few specific values of relative thickness and angle where the
BPR also starts to approach the IPR, which can be seen in Figure 2.10[5]. For other unit-cell designs
there seems to be a trend where as the relative thickness increases, the difference between the BPR
and IPR decreases. Theoretically it is assumed that as the relative thickness increases i.e. the unit-
cells become smaller relative to the plate size, that the BPR will converge to the IPR[7][24]. However,
this has not been validated.

Eskandari et al.[7] and Yao et al.[5] have shown that by that by using a size dependent continuum, like
a Cosserat continuum or a continuum based on the 2D-AAH results, it is possible to model metaplates
as continuous plates. However, the amount of unit-cells that have been analysed using these methods
is limited.

Another criterion of importance is the understanding of the underlying mechanisms of the metaplate.
The interaction of bending stiffness and torsional stiffness is captured in the relative thickness, and
therefore it is suspected that this parameter is influential for the BPR. Changing the internal angles of
the unit-cell of a metaplate also influences the BPR, but this also changes the IPR [5]. Another property
that is highly likely to influence the BPR is the length relative to the width of the flexures. No literature
was found that analysed this relation for the bending of metaplates. However similar research was
found about perforated plates [29]. This property is of interest for miniturisation purposes, as the size
of the unit-cell will often be determined by the thinnest detail a machine is able to produce. So when the
minimum thickness is reached, the relative length to width ratio determines how many unit-cells fit in
a metaplate. This relation also influences if thin-walled approximations are valid, becoming less valid
as the relative length to thickness becomes smaller[5]. The IPR is also suspected to be influenced
by varying this relation, as the flexures in the unit-cell will start to look more like thick beams rather
than thin flexures for lower values of relative length to thickness. Another parameter of interest is the
direction in which the bending is applied. This has been done for the star-shaped unit-cell and for some
chiral unit-cells [5] [7]. The star-shaped unit-cell at θ = 77◦ had a positive IPR in all directions of applied
load. However, the BPR switches from negative to positive. At roughly ϕ = 17◦ the BPR becomes zero
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and at ϕ = 45◦ the BPR has the greatest positive value Figure 2.10. Additional knowledge about these
underlying mechanisms could be crucial for constructing an accurate model.

The second question of interest, mentioned in the introduction was:

What types and amounts of double curvature are currently obtainable using metaplates?

The type and amount of double curvature can be expressed by the Bending Poisson’s ratio (BPR) found
in literature[5][7]. Here a positive BPR indicates anticlastic curvature and a negative BPR indicates
synclastic curvature. From literature it can be concluded that while the IPR and BPR are related, it is
possible to obtain synclastic and anticlastic curvature for both positive and negative IPR, by varying
relative thickness, internal angles, load angles and type of unit-cells[5][7]. By using Cosserat theory
or Couple Stress Plate Theory (CSPT) that regard the unit-cell geometry and are size-dependent, it
should be possible to accurately predict the type of double curvature for metaplates.

The recent discovery that the IPR does not define the type of double curvature for metaplates, opens
up a lot of new possibilities. One of these is for the application of shape-fitting. Previously, in research
regarding shape-fitting the focus was on varying the Poisson ratio to achieve complex shapes[2]. With
the new method as presented by [5][7], varying other parameters like thickness, height, internal angles
and unit-cell type could be used as additional tools for shape-fitting.

In addition to the two questions from the introduction, another question of interest is:

Based on literature, what kind of follow-up research would be relevant?

By looking at the obtained results from Yao et al.[5] and Eskandari et al.[7] and expanding these findings
by repeating the process for other potentially interesting unit-cells, the overview of the state of the art
of possible BPR values in metaplates could be expanded.

The amount of research into the bending-induced curvature differs greatly per unit-cell design, so further
research into lesser analysed unit-cells could give the most interesting and novel results. The (re-
entrant) honeycomb unit-cell seems to be well explained by Mirzaali et al.[6] and Eskandari et al.[7]
in combination with earlier papers that already achieved specified double curvatures by varying the
Poisson’s ratio. The IPR and BPR of the star shaped unit-cell have been described by both Yao et
al.[5] and Eskandari et al.[7] Research into the bending of arrow unit-cells was limited, but due to the
similar deformation mechanics to the re-entrant honeycomb and star shape, it is suspected that further
research might not uncover novel insights. Chiral unit-cells were already analysed by Eskandari et
al.[7], but this was limited to hexa-chiral and tetra-chiral unit-cells. Analysis on tri-chiral unit-cells and
anti-chiral unit-cells has been done by Alderson[22], but without the distinction between IPR and BPR
and a size dependent model. Only specified geometries were analysed, without varying parameters.
Therefore, these could be interesting unit-cells to do further research on. The anti-tri-chiral unit-cell is
of particular interest because of its symmetry and range of possible IPR values.

Also, Additional research is required to find out to which extend the BPR approaches the IPR for in-
creasing relative thickness, which Eskandari et al.[7] already alluded to. This could have the practical
application that it could be used as a condition in which the BPR could be ignored, similar to a continuum
limit mentioned by Ariza et al.[33].

To correctly model the behaviour of metaplates (parts of) asymptotic homogenisation in combination
with Cosserat continuum could be used. The goal in mind is to be able to model metaplates as con-
tinuous plates. Multiple types of plate theories could be used depending on the type of plate, but in
literature a Cauchy continuum is often used for these plate theories. Based on Eskandari et al.[7] and
Yao et al.[5] the reason that theoretical and experimental or FEA results for bending-induced double
curvature sometimes do not coincide, is the usage of Cauchy continuum which does not account for
couples that could be present in the material. By taking these couples into consideration a continuum
material/plate could be made that correctly models the behaviour of metaplates. Eskandari et al. pro-
posed a novel couple-stress theory to implement these couples into a Cauchy continuum[7], while Yao
et al. used a Cosserat continuum to achieve the same effect[5].

For a proposed study a Cosserat continuum could be used as to keep the methodology as generic
as possible. Using a Cosserat continuum to model materials with a non-negligible microstructure has
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been widely used in literature. For in-plane metamaterials some literature exists mainly about chiral
metamaterials. For the bending of metaplates, Yao et al.[5] were the only ones that applied this.

To accurately model metaplates as continuous Cosserat plates, information about the metaplate unit-
cell is required. Yao et al.[5] solved this analytically by calculating the required information based on the
geometry consisting of thin-walled beams. To acquire the relevant information homogenisation could
also be (partially) used like Eskandari et al. did. Of interest in particular are so called load cases where
a respective volume element (RVE, unit-cell or small metaplate) is loaded in a few specific ways, and
from this the required information can be obtained that as stated previously is needed to characterise
the continuous Cosserat plate. For this research, considering load cases was seen as the more viable
option to allow for more different types of unit-cells and to not have to consider the validity of thin-walled
approximations of the flexures in the unit-cells.

Homogenisation methods combined with Cosserat plate theory could be applied to create a similar
model to Eskandari et al.[7], with which the behaviour and BPR of metaplates can be evaluated. The
application of Cosserat theory in COMSOL has been found in the literature[30]. This could be expanded
upon by modelling Cosserat plates in COMSOL.

Metaplates could also be analysed with FEA, where parameters of interest could be varied to evaluate
if this influences the double curvature of the metaplate in the predicted way. Regions of intrest could
also be looked for so a geometry can be selected where the metaplate is predicted to switch between
synclastic and anticlastic curvature. Experimentally testing the double curvature of metaplates is quite
complex. Both applying a pure bending moment on the metaplate and accurately measuring the result-
ing curvature are hard to integrate in a experimental setup [5]. Creating an proper test-setup for this
would be a study on its own, so validating precise BPR values experimentally will be outside the scope
of this study. Prototypes could be made as reference models, which could be used to validate if the
type of double curvature seems correct.



4
Conclusion

In this literature review, an overview has been given of the state of the art regarding the bending-induced
double curvature of negative Poisson’s ratio metamaterial-plates. While the in-plane Poisson’s ratio of
these metaplates is well understood, research about their bending-induced double curvature still has
a lot of unexplored areas, in which further research could be done. A widely used method of modelling
metaplates as Cauchy continuous plates was found to only be accurate for specific conditions. Because
of this, the assumption that the in-plane Poisson’s ratio could be utilised to determine the bending-
induced curvature is no longer valid.

Recent studies have made great progress by analysing the bending-induced double curvature of meta-
plates for varying parameters, like Mirzaali et al.[6], Eskandari et al.[7] and Yao et al.[5]. This knowledge
can be expanded upon by doing similar research on different types of unit-cells. This would entail anal-
ysis of the geometry, the usage of homogenisation techniques/FEA (which should be able to include
a size-dependency [7][5]), and using Cosserat (plate) theory to model the metaplates. The results of
this research could introduce novel insights about metaplates, as the discrepancy between the in-plane
Poisson’s ratio and bending-induced double curvature itself became apparent through the research into
different unit-cell designs for metaplates.

Based on observations from literature and assessment based on literature, using Cosserat plate theory
in combination with homogenisation and doing further research about the bending-induced curvature
of specifically anti-chiral metaplates could reveal new insights and expand the existing knowledge re-
garding the bending of metaplates.
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