
Privacy Attacks in Decentralized Learning Systems that Exchange
Chunked Models

Robust Decentralized Learning

Halil Betmezoğlu
Supervisors: Bart Cox, Jérémie Decouchant

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to the EEMCS Faculty of Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Halil Betmezoğlu
Final project course: CSE3000 Research Project
Thesis committee: Bart Cox, Jérémie Decouchant, Anna Lukina

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Privacy Attacks in Decentralized Learning Systems
that Exchange Chunked Models

Halil Betmezoğlu, Bart Cox, Jérémie Decouchant
Delft University of Technology

Abstract—Decentralized Learning (DL) is a key tool for training
machine learning models on sensitive, distributed data. However,
peer-to-peer model exchange in DL systems exposes participants
to privacy attacks. Existing defenses often degrade model utility,
introduce communication overhead, or are not applicable to a
DL system. Model chunking (splitting a model into parts before
sharing them individually) has been proposed as an alternative,
but its standalone privacy implications have not been investigated.
This work implements and evaluates three distinct model chunking
methods (static, cyclic, and random) against two privacy attacks:
membership inference and linkability. Our work introduces a
Hungarian matching-based enhancement to the linkability attack,
and relaxes prior assumptions by evaluating attack success under
limited access to neighbor datasets. Our results show that chunking
increases vulnerability to membership inference. However, static
and random chunking are effective against linkability attacks
under specific conditions, particularly when full epochs are used
during training.

I. INTRODUCTION

In recent years, there has been a rapid shift in how machine
learning models are trained. Traditionally, the data used for
machine learning training is gathered in one location where
the model can be trained. However, as the applications of
machine learning expanded, these models had to be trained on
sensitive data that could not be relocated to a central location.
Examples of such cases include medical records of patients in
healthcare, financial data of customers in banking, and personal
information on smartphones.

Confronted with these challenges, approaches where data is
processed in its original location were developed, with federated
learning (FL) [1–3] and decentralized learning (DL) [4, 5]. The
main difference between these two methods is that in FL, there
is a central server which coordinates model training between
participants, whereas in DL, there is no central authority, and
participants communicate in a peer-to-peer manner.

These approaches achieve privacy of the data during model
training through local training. However, model parameters in
DL and the global model in FL are still shared between the
participants, which creates vulnerabilities regarding privacy [6–
8]. In this regard, FL and DL systems remain vulnerable to
membership and attribute inference, gradient inversion and
reconstruction, and linkability attacks [9, 10]. These attacks
aim to infer information about the system, which they achieve
by exploiting the shared model parameters and target model
behavior. In DL, these risks are amplified because there is no
central aggregator to obfuscate individual contributions: each
participant directly shares their own model updates with peers.

In order to overcome the challenges of privacy in DL,
frameworks where noise is introduced into the system [11–13]
or only part of the model update is shared [14, 15] have been
developed. However, these frameworks have been shown to
weaken the performance of the trained model [16]. In this
regard, a framework called Shatter was introduced, which does
not rely on noise [17]. Instead, it introduces a concept called
model chunking, where model parameters are divided into
smaller groups, which are then shared between the neighbors
of each peer in each round of communication. Additionally,
Shatter applies virtualization to the shared parameters via
virtual nodes to obfuscate model origins. Shatter claims to
improve privacy; however, as Biswas et al. [17] point out,
"the privacy benefits of model chunking diminish without
virtualization". The authors study the combined privacy benefits
of virtualization and model chunking; however, a systematic
investigation of model chunking in isolation is lacking, leaving
its privacy implications unexplored.

This work investigates model chunking as a standalone
privacy-preserving mechanism in DL, focusing on its resilience
to membership inference and linkability attacks. Our contribu-
tions are as follows:

• We improve the linkability attack with Hungarian matching
and relax its assumptions with partial neighbor dataset
access.

• We quantify the privacy impact of model chunking
in decentralized learning and evaluate its effectiveness
against membership inference and linkability attacks.

• We compare the privacy implications of static, cyclic,
and random chunking methods under varying training
conditions.

The remainder of this paper is organized as follows.
Section II and Section III provide background and related
work. Section IV defines the threat model. Sections V, VI
and VII cover our methodology, experimental setup, and results.
Section VIII discusses our findings, followed by a conclusion
in Section IX and ethical considerations in Section X.

II. BACKGROUND

In this section, we describe the primary privacy risks in
decentralized learning which we investigate in this paper. Then,
we describe Shatter [17], a framework that aims to address these
privacy challenges by implementing a decentralized learning
system that exchanges chunked models.

1



A. Privacy Risks

Despite avoiding explicit data sharing between nodes, de-
centralized learning (DL) is vulnerable to privacy attacks [16].
As an honest-but-curious malicious attacker in the network, it
is still possible to devise attacks to gain information about the
data that belongs to other nodes. We investigate two attacks
in our paper, membership inference and linkability, which we
briefly describe here. Implementation details are provided in
Section V.

Membership Inference. In a membership inference attack
(MIA), the adversary determines whether a specific data point
was used in training by exploiting the tendency of models to
respond with higher confidence to previously seen data [18–20].
The attacker queries the target model with suspected training
data points and compares responses to infer membership. Hu
et al. demonstrate that black-box attacks remain performant
threats despite the lack of internal model access [21]. Shokri et
al. present a shadow-model-based attack, which we implement
and discuss further in Section V-B [18].

Linkability. In a linkability attack (LA), the adversarial node
attempts to associate the model parameters that it receives with
the training sets of its neighbors [10, 17, 22]. In order to achieve
this, it compares the loss of each parameter update it receives
on each training set of its neighboring nodes. The training set
with the lowest loss, and hence its node, is then associated with
that parameter update. In case the received model parameters
are incomplete (for instance, in model chunking) the parameters
are completed with those from the local model.

B. Shatter

Confronted with the privacy risks discussed, Shatter was
created as a privacy-preserving protocol for decentralized
learning [17]. Rather than sharing full models, Shatter splits
each model into disjoint chunks, which are shared via virtual
nodes to neighbors.

In spite of its privacy-enhancing features, Shatter makes
some assumptions in its design and the attacks performed
against it. In terms of design, Shatter uses static chunking,
which means that each real node chunks its model parameters
from the same indices in all rounds. Other approaches are
to rotate which chunks are shared in each round, called
cyclic chunking, or to randomly distribute chunks, referred to
as random chunking. Shatter also assumes non-collaborative
malicious nodes, whereas collaboration could increase attack
severity. Furthermore, the virtualization process creates commu-
nication overhead during parameter sharing, which is eliminated
by using simple model chunking. Therefore, it is essential
that the the privacy of model chunking is assessed without
virtualization.

A comparison between Shatter and other related work is
presented in Section III-C.

III. RELATED WORK

In this section, we survey existing research on privacy in
collaborative machine learning, evaluate the effectiveness of
attacks, and discuss current defenses for privacy.

A. Attacks in Collaborative Machine Learning

We review privacy attacks, other than membership inference
and linkability, in collaborative machine learning, specifically
for federated learning (FL) and decentralized learning (DL).

Gradient Inversion. In gradient inversion, the attacker keeps
track of parameter updates, and tries to directly reconstruct the
data that would result in such an update to the parameters [24].
In DL, this type of attack is most dangerous in the first rounds
of training, since any gradient update is directly influenced by
the raw data owned by the victim node.

Gradient Reconstruction. DL widely uses Decentralized
Gradient Descent (D-GD) or some variation of D-GD. El Mrini
et al. describe a reconstruction attack to infer gradients from
shared model parameters [25]. This information can further
be used with gradient inversion to infer private data of other
nodes, even those further than neighbors.

Since model chunking exchanges parameters rather than
gradients, an inversion attack would have to be preceded by
a reconstruction attack. In our work, we focus on exchanged
parameters and exclude these attacks from our evaluation.

Attribute Inference. Attribute inference is another type of
attack on machine learning models [26]. This attack enables
adversaries to infer missing or sensitive attributes from partially
known records through strategic queries to the trained model,
performing particularly well against overfitted models.

This attack is particularly relevant for tabular data, where a
sensitive attribute can be predicted. In this work we will be
using image data; therefore, we choose not to investigate this
attack as it is not relevant to image-based datasets.

B. Effectiveness of Attacks

Pasquini et al. examine the insecurities of DL [16]. They
argue that it is less secure than FL because any node can act as
an adversary. Membership inference is stronger in DL because
attackers know more about nearby nodes than the whole FL
system. Gradient inversion is equally effective as in FL and
improves as the adversary connects to more neighbors.

Ji et al. theoretically and experimentally compare privacy in
DL against FL [27]. They find that DL is safer than FL only
when secure aggregation is used, and agree with Pasquini et
al. [16] that denser networks leak more information.

Hallaji et al. survey the security of various FL and DL
methods, against passive and active attacks [9]. Reaffirming
Pasquini et al. [16], they conclude that decentralized learning
offers a greater attack surface, primarily because peer-to-peer
secure aggregation in DL is harder to achieve than in FL.

C. Defenses

Strengthening the privacy of decentralized learning models
has been investigated and multiple methods have been proposed.
These approaches fall into three main categories: noise-
based approaches, sparsification, and secure aggregation. We
summarize our analysis of these defenses in Table I.

Noise-based approaches. Leader-Follower Elastic Averag-
ing SGD (LEASGD) aims to provide differential privacy by
applying gradient clipping and Gaussian noise in gradients

2



Defense Fully Decentralized Full Utility Efficient Communication Full Sharing

LEASGD [11] ✗ ✗ ✓ ✓

Zip-DL [12] ✓ ✗ ✓ ✓

Muffliato [13] ✓ ✗ ✓ ✓

Selective SGD [15] ✗ ✗ ✓ ✗

TopK SGD [14] ✗ ✗ ✓ ✗

Secure Aggregation [23] ✗ ✓ ✗ ✓

Shatter [17] ✓ ✓ ✗ ✓

Model Chunking [10, 17] ✓ ✓ ✓ ✓

TABLE I: A summary of current defenses in DL and their capabilities. The well-rounded nature of model chunking highlights
the need to evaluate its security performance against privacy attacks.

during training [11]. Zip-DL introduces noise to shared param-
eters of each node, such that they sum to zero within local
neighborhoods, preserving convergence while improving pri-
vacy [12]. Muffliato applies noise directly to local data, making
it increasingly indistinguishable through gossip averaging [13].

The main drawback of these approaches is that the intro-
duction of noise into the system negatively impacts the utility
of the trained model [16]. This is evaluated by comparing
against Decentralized Parallel Stochastic Gradient Descent
(D-PSGD) [4]. D-PSGD does not take into account security
considerations; therefore, it is the baseline for the performance
of the defenses.

Sparsification. Another approach to improve privacy in
decentralized learning is to share a subset of parameter updates
with neighboring nodes, keeping the rest always private, thereby
limiting the information revealed about local data. This is called
sparsification. Shokri and Shmatikov propose Selective SGD,
where updates are chosen either randomly or based on gradient
magnitude, with the latter preserving convergence better [15].
TopK SGD follows a similar idea by sharing only the top K
largest gradients from local updates [14].

Sparsification is inherently similar to model chunking. In
both, only certain sections of the local computation is shared
with each neighbor. While sparsification is generally researched
in the context of improving communication efficiency with
privacy as an incidental benefit, model chunking has a direct
focus on improving privacy.

Secure Aggregation. Secure aggregation is a cryptographic
protocol that enables a central server to compute the sum
of model updates from users, without learning any individual
user’s contribution [23]. It is highly applicable in an FL scenario
in order to preserve privacy of users. However, while effective
at hiding individual updates, secure aggregation is computation-
and communication-heavy, and is difficult to deploy in fully
decentralized settings without a trusted coordinator.

IV. THREAT MODEL

In this section, we describe our threat model by explaining
the adversary’s capability and behavior.

Capability. Attacks against machine learning models are
broadly categorized into white- and black-box attacks [21]. In
white-box attacks, the adversary has complete information
about the training data, target model architecture, learned
parameters and hyper-parameters. In contrast, black-box attacks
provide much less information: the adversary can only query the
model and observe its outputs. A third category, called gray-box
attacks, lies in between these two categories [28]. It allows the
adversary to have access to only the target model’s architecture,
hyper-parameters, and training data distribution. We use a
gray-box model for membership inference attacks (with only
knowledge of the target model architecture and training data
distribution), and the white-box model for linkability attacks
(with only access to the training data of neighbors).

Behavior. There are two adversarial behaviors: active and
passive. Active attacks involve behaving outside the learning
protocol, including data poisoning and backdoor attacks.
Passive attacks involve honest-but-curious behavior, where
the adversary obeys the protocol but infers information about
others through observations. Our attacks are executed passively,
as an honest-but-curious adversary.

V. METHODOLOGY

In this section, we present how we use and extend
DecentralizePy for our research. Then, we explain the
implementations of the two different privacy attacks that we
execute against DecentralizePy with model chunking.

A. DecentralizePy and Model Chunking

DecentralizePy is the foundation on which our work
is built [29]. It is a framework that allows for the creation
of a network of nodes that collaboratively train their own
machine learning models. The network consists of n nodes,
which are directly connected to each other in an r-regular
graph, where each node has exactly r neighbors. Other static
or dynamic topologies can also be created, which effectively
simulate epidemic learning [30].

It has been proposed that model parameters are separated
into disjoint subsets, named chunks, and that each chunk is

3



shared with a neighbor [10, 17]. Since model chunking is
not a part of the original DecentralizePy framework, we
provide our own implementation. This splits model parameters
into k chunks, with the number of chunks equal to the
number of neighbors r of each node. We implement three
different chunking methods: static, cyclic, and random. In
static chunking, the same chunk is sent to a specific neighbor
in all training rounds. In cyclic chunking, the chunk that is
sent to each node is rotated over the training rounds. Finally,
random chunking selects which chunk to send randomly. We
also implement no chunking (which shares all model parameters
with all neighbors) as a baseline.

In each training round, received parameters from a chunk
are then aggregated with the node’s own local parameters by
averaging; otherwise the local parameters are left unchanged.

B. Privacy Attacks

We implement two privacy attacks, membership inference
and linkability, which we explain here. Table II presents a
summary of the properties of each attack.

Membership
Inference Linkability

Dataset Access Disjoint subset Neighbor datasets
Model Access Model architecture None
Timing After training1 During training
Target Node(s) Any node Neighbors

TABLE II: A summary of our attacks.

Membership Inference Attack. The goal of a membership
inference attack (MIA) is to successfully predict whether a
given data point was used as part of the training dataset of a
model [19]. In this attack, the adversary has data records that
could belong to the training dataset of the model. In our threat
model, as described in Section IV, the attacker has access to a
distribution of the dataset (as a disjoint subset) and the model
as a gray-box, where only its architecture is known. In order to
accomplish this attack, we employ the use of shadow models
as proposed by Shokri et al. [18]. The target models will train
with the chunking methods described in Section V-A, and the
attack will be executed on these nodes.

The structure of this attack can be viewed in four steps:
shadow data collection, shadow model training, attack data
generation, and attack model training, as explained below. An
overview of the attack process is illustrated in Figure 1.

1) Shadow data collection. Our shadow models train on
separate shadow datasets, which are created by sampling
the original dataset. Both a training and a test set are
created for each shadow model. To guarantee that the
data is only accessible to the attacker and no other nodes,
the sampling is done on a distinct subset of the whole
dataset.

1Refers to model parameters being used to update the local model in that
round. Can be executed after every training round.

Class 1 
Attack
Model

Training Set 1 Test Set 1Shadow Model 1

Non-MembersMembers

predict()

train()

Training Set 2 Test Set 2Shadow Model 2

Training Set k Test Set kShadow Model k

predict()

Class 1 
M & NoM

Class 2 
M & NoM

Class t 
M & NoM

Class 2 
Attack
Model

Class t 
Attack
Model

Attack Model

train()

train()

train()

Step 2

Step 3

train() train()

Step 4

Fig. 1: Overview of our Membership Inference Attack. Steps
after shadow data collection are shown. Datasets are represented
by colored blocks, and models are represented by white blocks.

2) Shadow model training. For our membership inference,
it is necessary to replicate the behavior of the target
model. We achieve this by training a number of shadow
models, each with shadow data that was gathered into
training sets as described above.

3) Attack dataset generation. Each shadow model is run
on its training and test sets to produce vectors of
probabilities, grouped as members and non-members.
These vectors are augmented with confidence, prediction
correctness, loss, and entropy, inspired by other member-
ship inference attacks [21] to improve performance. The
resulting samples are then organized by true class label.

4) Attack model training. Each attack dataset is used to
train an attack model for a single output class of the target
model. Our final attack model consists of the collection
of all class-specific attack models. When presented with
a predicted data point and its true label, it can predict
whether it was in the training set of the target model.

A more efficient attack strategy that relaxes the assumption
of having access to the underlying distribution of the data has
been proposed by Salem et al. [20]. Despite the efficiency and
assumption improvements of this approach, its performance is
worse in most cases, especially with image datasets. Therefore,
we choose not to use this adversary model and its accompanying
attack.

4



Linkability Attack. The linkability attack (LA) aims to
discover the origin node of a received chunk [17]. Similar
attacks were also devised for federated learning, where the
server links the layers of the model with participants [10, 22].
The main assumption of this attack is that the adversary has
access to the training sets of its neighbors, and can make use
of them to execute its attack. In our experiments, we adopt
this assumption but also consider a relaxed version of this
assumption where the adversary is granted access to only 10%
of the training set fo each neighbor, chosen randomly.

The structure of the linkability attack can be viewed in three
steps: parameter patching, loss evaluation, and neighbor-chunk
matching, explained below. Figure 2 gives a summary of this
process.

1) Parameter patching. Each neighbor sends the attacker a
single chunk from its calculated model parameters. The
attacker then patches its own model parameters with the
received chunk from that neighbor.

2) Loss evaluation. As the attacker has access to the
training set of its neighbors, it evaluates its patched
model parameters in the training sets of all its neighbors.
This evaluation results in loss values, which the attacker
records with that chunk for use at the end of that round.

3) Neighbor-chunk matching. The attacker repeats the
above steps for all received chunks, then assigns each
to the lowest loss value. This is done in two ways: (i)
matching each chunk to the training set with the lowest
loss [10, 17], or (ii) using the Hungarian algorithm [31],
a combinatorial optimization algorithm that is used to
compute an optimal one-to-one assignment between the
elements of two sets by minimizing the total matching
cost. We use these to match each loss value to a chunk,
and thus each neighbor to a chunk.

VI. EXPERIMENTAL SETUP

In this section, we present the goals and the setup of our
experiments. Section VI-A describes the objectives the exper-
iments we conduct, and Section VI-B details the conditions
under which our experiments were conducted.

A. Objectives

We design our experiments to evaluate the effectiveness of
model chunking as a standalone defense against membership
inference and linkability attacks. Our objectives are as follows:

1) For both attacks, we evaluate the privacy impact of chunk-
ing, using a comparison between four different chunking
methods (static, cyclic, random, and no chunking).

2) For both attacks, we study the effect of full-epoch training
on different chunking methods in terms of preserving
privacy.

3) For the linkability attack, we evaluate the effectiveness
of the Hungarian algorithm for chunk-neighbor matching
compared to minimum-loss matching.

4) For the linkability attack, we assess the impact of the
relaxed assumption of 10% access to neighbor datasets
compared to 100% access.

Dataset k

Dataset 2

Dataset 1

Step 2

Neighbor
chunks

Step 1

1

2

k

1

2

k

Step 3

Local
model

Patched
models

Loss
evaluation

Chunk-neighbor
matching

Fig. 2: Overview of our Linkability Attack. The attacker node
has k local chunks, but we omit visualizing them for simplicity.

B. Conditions

In our experiments, we use the MNIST and CIFAR-10
datasets. MNIST is an image dataset of 70,000 handwritten
digits of size 28× 28, and CIFAR-10 is a dataset of 60,000
color images of size 32×32. Both datasets consist of 10 classes,
with 7,000 images per class in MNIST and 6,000 per class in
CIFAR-10.

The experiments are run using configurations in
DecentralizePy. For both attacks, we use a LeNet
model in the system, a batch size of 8, IID data partitioning,
and a random seed of 90.

Our linkability attack is executed on a 16-node, 8-regular
graph, where each node is allocated 1% of the dataset and
is trained for 10 rounds on every iteration. Each node in the
network executes the linkability attack, and we measure the
mean attack accuracy.

Our membership attacks use 0.5% of the dataset per node on
a 16-node, 3-regular graph. Each node uses 10 shadow models
with a shadow dataset of 2000 images allocated to them. Three
nodes in the network that are not neighbors execute the attack,
and we measure the mean attack success as before. In this
attack, we use different rounds of training per iteration on each
dataset. On MNIST data, every iteration does 10 rounds of
training, whereas on CIFAR-10 data, 50 rounds per iteration
is preferred. This is because training on CIFAR-10 typically
requires more iterations to reach accuracies comparable to
MNIST due to the more varied and complex images of the
former [32]. For the same reason, we use 50 epochs to train
the shadow models on CIFAR-10 data, but 25 epochs for the
MNIST data.

We provide a discussion on the implications of using a LeNet
model and IID data in Section VIII.

VII. EVALUATION

In this section, we present and evaluate our results, in the
aim of answering our objectives as described in VI-A. This
is done separately for membership inference and linkability
attacks.

A. Membership Inference Attack

In the membership inference experiments, our evaluation
metrics are attack precision, recall, F1-Score, and area under the
ROC curve (AUC). Precision indicates the ratio of true members

5



TABLE III: Membership Inference Attack results (%). Lower values indicate better attack resilience. FE denotes full epochs.
Highest values per metric are underlined; lowest are boldfaced. Each value includes the standard error of the mean.

Dataset Chunking Precision Recall F1-Score AUC Test Acc. Val. Acc.

MNIST
(FE)

None 51.37± 0.24 94.00± 1.02 66.43± 0.32 53.1± 0.79 97.48± 0.58 96.87± 0.09

Static 55.24± 0.06 98.44± 0.87 70.77± 0.21 60.31± 0.27 93.88± 0.17 93.87± 0.29

Cyclic 51.10± 0.20 92.67± 1.35 66.11± 0.30 52.53± 1.41 97.34± 0.07 96.70± 0.10

Random 55.08± 0.22 98.89± 0.40 70.75± 0.12 58.2± 0.98 93.87± 0.19 93.97± 0.35

MNIST
(Non-FE)

None 47.66± 1.07 41.78± 2.84 44.40± 1.54 47.29± 0.32 96.99± 0.10 96.33± 0.15

Static 50.27± 0.48 50.56± 1.72 50.39± 0.95 50.73± 0.55 93.83± 0.22 93.27± 0.55

Cyclic 47.17± 0.69 46.89± 0.29 47.02± 0.41 47.74± 0.43 96.60± 0.28 95.93± 0.52

Random 50.91± 0.89 51.22± 5.50 50.83± 0.03 51.19± 0.74 93.80± 0.20 93.23± 0.41

CIFAR-10
(FE)

None 82.86± 0.45 90.40± 3.82 86.40± 1.98 89.70± 1.40 52.59± 0.09 52.90± 0.30

Static 93.22± 1.16 85.73± 6.25 89.01± 2.88 95.54± 0.72 37.91± 0.64 37.40± 0.85

Cyclic 82.34± 1.38 86.67± 6.81 84.28± 3.85 89.11± 2.84 51.62± 0.31 52.57± 0.34

Random 94.19± 0.52 82.8± 7.17 87.76± 3.83 94.81± 0.90 38.28± 0.76 37.33± 0.67

CIFAR-10
(Non-FE)

None 72.37± 3.19 17.47± 0.27 28.11± 0.11 67.56± 1.77 54.77± 0.07 55.50± 0.32

Static 74.88± 9.13 5.07± 0.96 9.48± 1.75 70.24± 0.38 37.80± 1.41 37.20± 1.56

Cyclic 75.00± 2.67 21.07± 3.27 32.74± 4.17 68.45± 4.01 52.23± 0.31 53.03± 0.50

Random 67.02± 9.18 6.13± 1.62 11.21± 2.86 70.33± 0.02 37.93± 1.41 38.67± 1.61

among all data points predicted as members, while recall
reflects the proportion of actual members that were correctly
identified. The threshold to flag a data point as a member
is a predicted membership probability of 0.5. F1-Score (the
harmonic mean of precision and recall) is a balance between
these two metrics. Finally, AUC captures attack success across
all possible thresholds. We also report test and validation
accuracies for effective comparison of attack success and model
performance.

Table III shows the results of our experiments after 200
training rounds. Insights into how the attack success evolves
over the training rounds can be found in Appendix A.

No chunking. The performance of the attack when chunking
is not used depends on both the dataset that was used and
whether full epochs (FE) were used. When FEs were not
used, especially with the MNIST data, chunking proved to
be relatively more secure. When FEs were used, no chunking
proved again to be one of the more secure options.

Cyclic chunking. It can clearly be seen that cyclic chunking
was the most resilient to attacks on almost all metrics when
FEs were used. On the contrary, it was one of the worst
performers when it came to defending against attacks for the
non-FE CIFAR-10 data, and moderately defensive for the non-
FE MINST data.

Random chunking. Random chunking was also usually
poor for attack resilience. It usually scored close to the higher
end for attack accuracies, especially apparent in the non-FE
MNIST run. In cases where it shows satisfactory precision,
such as non-FE CIFAR-10, this score is counterbalanced by

the lack of adequate recall performance of the attack.
Static chunking. Static chunking did not show good

performance with FE datasets. Its performance was also poor
for the non-FE MNIST dataset, placing itself slightly closer to
the scores of the poorer-performing chunking methods. Despite
this, it performed relatively well on the non-FE CIFAR-10
dataset, where the attack scored the lowest recall.

It is worth noting that test and attack accuracies of no
chunking and cyclic chunking have a strong contrast with the
performance of static and random chunking. In other words,
whenever the former ones prove to be more resilient to an
attack, the latter ones do not, and vice versa.

B. Linkability Attack

Our linkability attacks are run on a 16-node, 8-regular graph.
We define attack accuracy as the percentage of chunks that were
correctly associated with training datasets of the neighbors.
All nodes act as attackers in each experiment, and the attack
accuracy is calculated as the mean of all accuracies, as can be
seen in Figure 3.

Matching method. Firstly, we evaluate the overall perfor-
mance of minimum-loss matching compared to Hungarian
matching. In all experiments and across all variables, Figure 3
clearly demonstrates that Hungarian matching outperforms
minimum-loss matching consistently.

Full epochs. Our experiments also demonstrate the perfor-
mance of the attack against the usage of full epochs (FE)
during training. We see in Figure 3 that the attack success is
better when FE are used, especially when matching with the

6



0 50 100 150 2000

25

50

75

100

Ac
cu

ra
cy

 [%
]

MNIST FE (100%)

0 50 100 150 200

MNIST Non-FE (100%)

0 50 100 150 200

CIFAR10 FE (100%)

0 50 100 150 200

CIFAR10 Non-FE (100%)

0 50 100 150 200
Training rounds

0

25

50

75

100

Ac
cu

ra
cy

 [%
]

MNIST FE (10%)

0 50 100 150 200
Training rounds

MNIST Non-FE (10%)

0 50 100 150 200
Training rounds

CIFAR10 FE (10%)

0 50 100 150 200
Training rounds

CIFAR10 Non-FE (10%)

min-loss (static)
Hungarian (static)

min-loss (cyclic)
Hungarian (cyclic)

min-loss (random)
Hungarian (random)

min-loss (no-chunking)
Hungarian (no-chunking)

Fig. 3: Comparison of chunking methods during our Linkability Attack. The top row is with access to 100% of data in all
neighbor datasets, and the bottom row with 10%. Results are a rolling average with a window size of 10. Results without a
rolling average and a table of the rolling averages after 200 iterations can be found in Appendix B.

Hungarian algorithm: for example, the attack performs almost
always at 100% accuracy against no chunking, and always
above 50% when there is 100% access to neighbor datasets.

Chunking methods. We observe that attack accuracy is
almost always higher when chunking is not used. The only
exception to this is the MNIST non-FE case, where it is highly
outperformed by static chunking. This case is also special
because it is the only case where the performance of static
and random chunking differ significantly: attack accuracy is
around 50% with static chunking, and slightly above 25% with
random chunking (using Hungarian matching). In all other
cases, we observe that static and random chunking perform
almost identically.

However, this identical performance of the attack against
static and random chunking is always worse than the attack
success against cyclic chunking. There is the exception of the
MNIST non-FE case again, where cyclic chunking performs
similarly to random and no chunking. We also note that in
many cases, cyclic and no chunking perform similarly.

Dataset access. The top row in Figure 3 shows the results
for 100% access to the dataset of each neighbor, and the
bottom row for 10% access. It is clear that the attack success
drops significantly, especially in the non-FE cases. In the FE
experiments with CIFAR-10, the attack performs almost as
good as it did with 100% of the data, whereas with MNIST
there is a noticeable drop in attack accuracy for all chunking
methods: even with no chunking whose attack accuracy drops
after training round 150.

VIII. DISCUSSION

In this section, we put our results into context, exploring
the reasons behind them. We also discuss the limitations of
our research when it comes to our attack implementations and
datasets.

A. Interpretation of Results

There are different implications of our results when it comes
to membership inference attacks (MIA) and linkability attacks
(LA). We discuss these below.

Chunking as a defense in MIA. Our results indicate that
any chunking method performs overall worse than non-chunked
model exchange when it comes to membership inference. The
reason for this is because when chunking is used, only part
of the local model is updated: hence the model leaks more
information about its internal state. Conversely, the local model
is heavily influenced by neighbors when chunking is not used,
diluting membership inference signals. Therefore, chunking
alone is not a viable defense against MIA.

Chunking as a defense in LA. On the contrary, chunking
improves resilience against linkability attacks, especially with
static and random chunking. This is for a similar reason as
mentioned above: the less information shared about the model,
the harder it is to link that result to its origin. As such, chunking
could be a way to improve privacy against linkability, especially
when full epochs (FE) are used.

Training without FE as mitigation. Our results clearly
demonstrate that using FE during training significantly increases
the vulnerability of the system to attacks, in both membership
inference and linkability, and in all methods of chunking. This
is because when full epochs are used, each chunk contains
much more information about the model. This directly improves
attack performance in linkability. In membership inference, the
higher information content of the chunks is overshadowed by
the model remembering more of its own data with FE, resulting
in greater attack success.

Therefore, avoiding FE can be a mitigation against both
attacks. In Table III, we already see that both FE and non-
FE cases reach similar accuracies in each respective dataset.

7



Nonetheless, in order not to compromise model performance,
precautions such as training for more iterations or increasing
the rounds of learning on each iteration can be taken.

Identical performance of some chunking methods. We
observe that static and random chunking display almost
identical results, in both attacks. The same is also true for
cyclic chunking and no chunking. In order to explain this, we
have to take into account the information that is embedded in
a chunk, and which chunks get shared in each training round.
For example, cyclic chunking shares all of its chunks with
a given neighbor over a number of rounds. This is a similar
behavior to no chunking, since this shares all of its chunks
with a given neighbor over a single round.

When it comes to static chunking, each neighbor sends the
same chunk to the same neighbor: however, different neighbors
might send different chunks, which means that the attacker
still has a good view of the whole system. This is similar to
random chunking in the sense that any neighbor can send any
chunk, instead of any neighbor sending one chunk. Overall,
the information that the adversary can infer about the system
emerges to be similar in both cases.

This behavior also affects the model accuracy, where we see
in Table III that no chunking and cyclic chunking achieved
higher model accuracies.

Impact of data homogeneity on LA under static chunking.
Figure 3 shows that the attack performs best under static chunk-
ing with non-FE MNIST data, particularly with 10% neighbor
dataset access. Since MNIST data is highly homogeneous, any
given chunk produces very similar loss values across neighbors.
Static chunking compares the same chunk from each neighbor,
amplifying the subtle loss differences. Random and cyclic
chunking shuffle the chunks, and full model exchange dilutes
these signals because of the homogeneity of MNIST, reducing
attack accuracy.

B. Limitations

There are certain limitations of the datasets that were used
in the experiments. Specifically for the membership inference
attack, the more classes of the data, the better the performance
of the attacker [18]. This is because a higher number of classes
produces more signals about the internal state of the model,
hence the attacker has more grounds to make a decision on
membership. The datasets used for our experiments, MNIST
and CIFAR-10, only have 10 classes, but a more comprehensive
evaluation would involve datasets with more classes.

Furthermore, our overall results indicate that membership
inference attacks on the MNIST dataset performed particularly
poorly. Similarly, the linkability attack also performed worse
on this dataset. The reason for this is the lack of randomness
of each class in MNIST. The images are black and white,
and have little texture. Therefore, it becomes much harder
to distinguish whether a given data point is a member of
the model, regardless of the chunking method used [18]. A
more realistic classification task would likely involve more
randomness in its data, hence would be more vulnerable to
membership inference.

Our model accuracies when training with the CIFAR-10
dataset were limited to slightly above 50% at best. In order to
overcome this, the experiments could be run with more data
per node and for more training rounds.

When it comes to the design of our attacks, our membership
inference attack uses a disjoint subset of the whole dataset
for training its shadow models. A more realistic scenario
would be for the attacker to derive the data through model- or
statistic-based synthesis [18]. Furthermore, we use IID data in
experiments. Non-IID data will contribute positively to attack
performance [22, 33], and would be a more realistic scenario
in decentralized learning.

We conducted all our experiments based on the LeNet model,
which lacks depth when it comes to classification tasks when
compared with other CNNs. Since it was designed specifically
for handwritten digit recognition, its use is acceptable for
MNIST data. However, a more complex model could have
been a more realistic and appropriate choice for CIFAR-10.
Nonetheless, using the same model for both datasets enabled
us to do cross-dataset comparisons.

IX. CONCLUSION

This research investigated the effectiveness of model chunk-
ing as a standalone privacy-preserving mechanism in decentral-
ized learning systems. While prior frameworks such as Shatter
combine chunking with virtualization, we isolate chunking to
evaluate its privacy guarantees independently and under various
conditions.

Our results demonstrate that model chunking offers limited
protection against some privacy attacks, and only under certain
circumstances. Static and random chunking, in particular, were
shown to significantly reduce the success of linkability attacks
when full epochs were used. However, full epochs diminish
the privacy of the system, and we advise against its use from a
privacy perspective. When it comes to membership inference,
chunking is not a reliable solution because its partial model
sharing nature leads to local models exposing more information
about themselves. In conclusion, we find that chunking alone
does not eliminate privacy risks.

For linkability attacks, we demonstrate that the Hungarian
matching algorithm is more effective than minimum-loss
matching for a linkability attack. We also show that the relaxed
assumption of access to only a portion of the neighbor datasets
(10%) still results in successful linkability in certain contexts.

Future work may explore this domain in two main directions.
Firstly, our work can be expanded to include experiments
with other datasets (particularly those with a larger number
of classes), non-IID data, different target models, and larger
networks. These conditions would assist in reflecting real-world
scenarios. Furthermore, the evaluation of our attacks and others
would benefit from an analysis of the information density and
similarities between chunks. Secondly, privacy attacks dis-
cussed in Section III can be explored, since attribute inference,
gradient inversion and reconstruction remain unexplored in
decentralized learning systems that exchange chunked models.

8



X. RESPONSIBLE RESEARCH

We conducted this research in accordance with the principles
outlined in the Netherlands Code of Conduct for Research
Integrity [34]. Below, we reflect on the ethical aspects of our
work, the measures taken to ensure integrity, reproducibility,
and the use of LLMs and AI tools.

Ethical considerations. Our experiments focus on evaluating
privacy vulnerabilities in decentralized learning systems. These
experiments rely completely on MNIST and CIFAR-10 datasets,
which are publicly available and standard for this domain.
Therefore, they do not raise ethical concerns of consent for
collection or usage. Due to the necessity for high computation
power, external resources were used to run experiments. This
does not present ethical concerns with publicly available
datasets, but is a concern if experiments are run on sensitive
datasets. Furthermore, we acknowledge that the domain of this
work is privacy attacks, which raises concerns of exploitation
and misuse. However, an analysis of vulnerabilities in DL
systems is necessary to understand the limitations of current
defenses, and to develop more robust privacy-preserving
approaches.

Reproducibility. Our implementation builds on the open-
source DecentralizePy framework, which we extend with
model chunking and privacy attacks. Our implementations,
including the additions on top of this framework, evaluation
tools, and configuration files for the experiments are made
available in a public repository in order to make our results
reproducible. Furthermore, the procedures for aggregating our
results and generating figures are documented in this repository,
to support the reproduction of and further work on our results.

Integrity. Throughout this research, we were cautious about
presenting results transparently and avoiding overstating the
results of our experiments. We clearly state the limitations
of our work in Section VIII. When interpreting results, we
made efforts to explain unexpected patterns rather than omitting
them.

Use of LLMs and AI tools. We made limited and
transparent use of LLMs and AI tools during the research
process. Specifically, we used these tools to understand the
structure and operation of the DecentralizePy and Shatter
frameworks, assist in the integration of privacy attacks to
DecentralizePy, and assist in writing code to plot the
graphs of our experimental results. All consultations to these
tools were reviewed by the authors, and corrected where
necessary.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y. Arcas. “Communication-Efficient Learning of Deep
Networks from Decentralized Data”. In: Proceedings of the
20th International Conference on Artificial Intelligence and
Statistics. Vol. 54. Proceedings of Machine Learning Research.
PMLR, 20–22 Apr 2017, pp. 1273–1282.

[2] B. Cox, L. Y. Chen, and J. Decouchant. “Aergia: leveraging
heterogeneity in federated learning systems”. In: Proceedings
of the 23rd ACM/IFIP International Middleware Conference.
2022, pp. 107–120.

[3] Y. Zuo, B. Cox, L. Y. Chen, and J. Decouchant. “Spyker: Asyn-
chronous Multi-Server Federated Learning for Geo-Distributed
Clients”. In: Proceedings of the 25th International Middleware
Conference. 2024, pp. 367–378.

[4] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and
J. Liu. Can Decentralized Algorithms Outperform Centralized
Algorithms? A Case Study for Decentralized Parallel Stochastic
Gradient Descent. 2017. arXiv: 1705.09056 [math.OC].

[5] I. Hegedundefineds, G. Danner, and M. Jelasity. “Gossip
Learning as a Decentralized Alternative to Federated Learning”.
In: Distributed Applications and Interoperable Systems: 19th
IFIP WG 6.1 International Conference, DAIS 2019, Held
as Part of the 14th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2019, Kongens
Lyngby, Denmark, June 17–21, 2019, Proceedings. Kongens
Lyngby, Denmark: Springer-Verlag, 2019, pp. 74–90.

[6] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A.
Dehghantanha, and G. Srivastava. “A survey on security and
privacy of federated learning”. In: Future Generation Computer
Systems 115 (2021), pp. 619–640.

[7] J. Xu, C. Hong, J. Huang, L. Y. Chen, and J. Decouchant.
“AGIC: Approximate gradient inversion attack on federated
learning”. In: 2022 41st International Symposium on Reliable
Distributed Systems (SRDS). IEEE. 2022, pp. 12–22.

[8] R. Wang, X. Wang, H. Chen, J. Decouchant, S. Picek, N.
Laoutaris, and K. Liang. “MUDGUARD: Taming Malicious
Majorities in Federated Learning using Privacy-Preserving
Byzantine-Robust Clustering”. In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems 8.3 (2024),
pp. 1–41.

[9] E. Hallaji, R. Razavi-Far, M. Saif, B. Wang, and Q. Yang.
“Decentralized Federated Learning: A Survey on Security and
Privacy”. In: IEEE Transactions on Big Data 10.2 (Apr. 2024),
pp. 194–213.

[10] T. Lebrun, A. Boutet, J. Aalmoes, and A. Baud. “MixNN:
protection of federated learning against inference attacks by
mixing neural network layers”. In: Proceedings of the 23rd
ACM/IFIP International Middleware Conference. Middleware
’22. ACM, Nov. 2022, pp. 135–147.

[11] H.-P. Cheng, P. Yu, H. Hu, S. Zawad, F. Yan, S. Li, H. Li,
and Y. Chen. “Towards Decentralized Deep Learning with
Differential Privacy”. In: Cloud Computing – CLOUD 2019.
Cham: Springer International Publishing, 2019, pp. 130–145.

[12] S. Biswas, D. Frey, R. Gaudel, A.-M. Kermarrec, D.
Lerévérend, R. Pires, R. Sharma, and F. Taïani. Low-Cost
Privacy-Preserving Decentralized Learning. 2025. arXiv: 2403.
11795 [cs.LG].

[13] E. Cyffers, M. Even, A. Bellet, and L. Massoulié. Muffliato:
Peer-to-Peer Privacy Amplification for Decentralized Optimiza-
tion and Averaging. 2024. arXiv: 2206.05091 [cs.CR].

[14] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstanti-
nov, and C. Renggli. The Convergence of Sparsified Gradient
Methods. 2018. arXiv: 1809.10505 [cs.LG].

[15] R. Shokri and V. Shmatikov. “Privacy-Preserving Deep Learn-
ing”. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. CCS ’15. Denver,
Colorado, USA: Association for Computing Machinery, 2015,
pp. 1310–1321.

[16] D. Pasquini, M. Raynal, and C. Troncoso. On the (In)security
of Peer-to-Peer Decentralized Machine Learning. 2023. arXiv:
2205.08443 [cs.CR].

[17] S. Biswas, M. Even, A.-M. Kermarrec, L. Massoulié, R. Pires,
R. Sharma, and M. de Vos. “Noiseless Privacy-Preserving De-
centralized Learning”. In: Proceedings on Privacy Enhancing
Technologies 2025.1 (Jan. 2025), pp. 824–844.

9

https://arxiv.org/abs/1705.09056
https://arxiv.org/abs/2403.11795
https://arxiv.org/abs/2403.11795
https://arxiv.org/abs/2206.05091
https://arxiv.org/abs/1809.10505
https://arxiv.org/abs/2205.08443


[18] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership
Inference Attacks against Machine Learning Models. 2017.
arXiv: 1610.05820 [cs.CR].

[19] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer.
Membership Inference Attacks From First Principles. 2022.
arXiv: 2112.03570 [cs.CR].

[20] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M.
Backes. ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models.
2018. arXiv: 1806.01246 [cs.CR].

[21] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang.
“Membership inference attacks on machine learning: A survey”.
In: ACM Computing Surveys (CSUR) 54.11s (2022), pp. 1–37.

[22] H. Hu, X. Zhang, Z. Salcic, L. Sun, K.-K. R. Choo, and
G. Dobbie. “Source Inference Attacks: Beyond Membership
Inference Attacks in Federated Learning”. In: IEEE Trans-
actions on Dependable and Secure Computing 21.4 (2024),
pp. 3012–3029.

[23] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth.
“Practical Secure Aggregation for Privacy-Preserving Machine
Learning”. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’17.
Dallas, Texas, USA: Association for Computing Machinery,
2017, pp. 1175–1191.

[24] L. Zhu, Z. Liu, and S. Han. Deep Leakage from Gradients.
2019. arXiv: 1906.08935 [cs.LG].

[25] A. E. Mrini, E. Cyffers, and A. Bellet. Privacy Attacks in
Decentralized Learning. 2024. arXiv: 2402.10001 [cs.LG].

[26] B. Z. H. Zhao, A. Agrawal, C. Coburn, H. J. Asghar, R. Bhaskar,
M. A. Kaafar, D. Webb, and P. Dickinson. On the (In)Feasibility
of Attribute Inference Attacks on Machine Learning Models.
2021. arXiv: 2103.07101 [cs.LG].

[27] C. Ji, S. Maag, R. Heusdens, and Q. Li. Re-Evaluating Privacy
in Centralized and Decentralized Learning: An Information-
Theoretical and Empirical Study. 2024. arXiv: 2409.14261
[cs.CR].

[28] B. Hui, Y. Yang, H. Yuan, P. Burlina, N. Z. Gong, and Y. Cao.
“Practical Blind Membership Inference Attack via Differential
Comparisons”. In: Proceedings 2021 Network and Distributed
System Security Symposium. NDSS 2021. Internet Society,
2021.

[29] A. Dhasade, A.-M. Kermarrec, R. Pires, R. Sharma, and
M. Vujasinovic. “Decentralized Learning Made Easy with
DecentralizePy”. In: Proceedings of the 3rd Workshop on
Machine Learning and Systems. EuroMLSys ’23. Rome, Italy:
Association for Computing Machinery, 2023, pp. 34–41.

[30] M. de Vos, S. Farhadkhani, R. Guerraoui, A.-M. Kermarrec,
R. Pires, and R. Sharma. Epidemic Learning: Boosting De-
centralized Learning with Randomized Communication. 2023.
arXiv: 2310.01972 [cs.LG].

[31] H. W. Kuhn. “The Hungarian method for
the assignment problem”. In: Naval Research
Logistics Quarterly 2.1-2 (1955). _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800020109,
pp. 83–97.

[32] A. Gautam, Y. Lohumi, and D. Gangodkar. “Achieving Near-
Perfect Accuracy in CIFAR-10 Classification”. In: 2024 Second
International Conference on Advances in Information Technol-
ogy (ICAIT). Vol. 1. 2024, pp. 1–6.

[33] L. Bai, H. Hu, Q. Ye, H. Li, L. Wang, and J. Xu. “Membership
Inference Attacks and Defenses in Federated Learning: A
Survey”. In: ACM Comput. Surv. 57.4 (Dec. 2024).

[34] Netherlands Code Committee. Netherlands Code of Conduct for
Research Integrity. Published by the Association of Universities
in the Netherlands (VSNU). 2018.

APPENDIX A
MEMBERSHIP INFERENCE OVER TRAINING ROUNDS

This section presents the attack and model metrics for the
membership inference attack over all training rounds. The
attack is executed every 10 iterations. Results can be seen in
Figure 4.

Overall, membership inference improves over training rounds.
In the case of cyclic chunking on CIFAR-10 data, inference
accuracies display fluctuating behavior. This is due to the nature
of cyclic chunking: some chunks do not affect the local model
as much as others, resulting in higher inference accuracies, and
vice versa.

APPENDIX B
LINKABILITY ATTACK RESULTS

A table of the results at the end of 200 iterations can be
found in Tables IV and V. Furthermore, Figure 5 shows the
results without a rolling average.

10

https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/2112.03570
https://arxiv.org/abs/1806.01246
https://arxiv.org/abs/1906.08935
https://arxiv.org/abs/2402.10001
https://arxiv.org/abs/2103.07101
https://arxiv.org/abs/2409.14261
https://arxiv.org/abs/2409.14261
https://arxiv.org/abs/2310.01972


0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Cyclic Chunking

Full Epochs: False

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Cyclic Chunking
Full Epochs: True

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
No Chunking

Full Epochs: False

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
No Chunking

Full Epochs: True

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Random Chunking
Full Epochs: False

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Random Chunking
Full Epochs: True

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Static Chunking

Full Epochs: False

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Static Chunking
Full Epochs: True

Training Rounds

M
et

ric
 V

al
ue

Precision Recall F1-Score AUC Test Acc. Val. Acc.

(a) MNIST

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Cyclic Chunking

Full Epochs: False

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Cyclic Chunking
Full Epochs: True

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
No Chunking

Full Epochs: False

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
No Chunking

Full Epochs: True

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Random Chunking
Full Epochs: False

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Random Chunking
Full Epochs: True

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Static Chunking

Full Epochs: False

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0
Static Chunking
Full Epochs: True

Training Rounds

M
et

ric
 V

al
ue

Precision Recall F1-Score AUC Test Acc. Val. Acc.

(b) CIFAR-10

Fig. 4: Membership inference over training rounds.

11



0 50 100 150 2000

25

50

75

100

Ac
cu

ra
cy

 [%
]

MNIST FE (100%)

0 50 100 150 200

MNIST Non-FE (100%)

0 50 100 150 200

CIFAR10 FE (100%)

0 50 100 150 200

CIFAR10 Non-FE (100%)

0 50 100 150 200
Training rounds

0

25

50

75

100

Ac
cu

ra
cy

 [%
]

MNIST FE (10%)

0 50 100 150 200
Training rounds

MNIST Non-FE (10%)

0 50 100 150 200
Training rounds

CIFAR10 FE (10%)

0 50 100 150 200
Training rounds

CIFAR10 Non-FE (10%)

min-loss (static)
Hungarian (static)

min-loss (cyclic)
Hungarian (cyclic)

min-loss (random)
Hungarian (random)

min-loss (no-chunking)
Hungarian (no-chunking)

Fig. 5: Comparison of chunking methods during our Linkability Attack. The top row is with access to 100% of data in all
neighbor datasets, and the bottom row is access to 10% of the data in each neighbor dataset, chosen randomly. Results for each
chunking method are averages of 16 nodes.

TABLE IV: Linkability Attack accuracy (%) on MNIST across access levels, epoch settings, and chunking methods.

Access Epochs Matching Static Cyclic Random No Chunking

100% FE Min-Loss 22.66 66.09 21.88 100.00
Hungarian 82.81 97.97 83.44 100.00

100% Non-FE Min-Loss 40.00 21.88 25.00 25.16
Hungarian 57.81 55.70 33.28 51.48

10% FE Min-Loss 16.41 20.94 16.41 34.06
Hungarian 31.41 76.33 34.38 85.94

10% Non-FE Min-Loss 32.97 13.75 16.25 12.03
Hungarian 48.20 22.27 26.25 20.39

TABLE V: Linkability Attack accuracy (%) on CIFAR-10 across access levels, epoch settings, and chunking methods.

Access Epochs Matching Static Cyclic Random No Chunking

100% FE Min-Loss 42.97 66.80 43.59 100.00
Hungarian 59.14 100.00 57.81 100.00

100% Non-FE Min-Loss 41.41 34.38 39.61 78.36
Hungarian 57.11 100.00 55.94 100.00

10% FE Min-Loss 34.92 61.56 35.47 100.00
Hungarian 48.91 98.36 48.44 100.00

10% Non-FE Min-Loss 31.80 22.11 33.28 22.89
Hungarian 46.56 66.41 48.52 51.09

12


