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Abstract

This thesis proposes a novel algorithm, Wi-Closure, to improve computational efficiency and robustness of
map matching in multi-robot SLAM. Current state-of-the-art techniques connect maps with inter-robot loop
closures, that are usually found through place recognition. Wi-Closure decreases the computational over-
head of these approaches by pruning the search space of potential loop closures, prior to evaluation by a
typical place recognition algorithm. Wi-Closure achieves this by identifying where trajectories are close to
each other through sensing spatial information directly from the wireless communication signal. Then, place
recognition is only performed on scans taken at locations close to each other. Wireless sensing provides in-
formation even when operating in non-line-of-sight or without existing communication infrastructure. The
validity of Wi-Closure is demonstrated in simulation and hardware experiments. Results show that using
Wi-closure greatly reduces computation time, by 54% in simulation and by 77% in hardware, compared with
a multi-robot SLAM baseline. Importantly, this is achieved without sacrificing accuracy. Using Wi-closure
reduces absolute trajectory estimation error by 99% in simulation and 89% in hardware experiments. This
improvement is due in part to Wi-Closure’s ability to avoid catastrophic optimization failure that typically
occurs with classical approaches in challenging repetitive environments.
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1
Introduction

At present, robots are deployed in society as waitresses in a restaurant, to clean the house autonomously,
or to help the police to explore drugs labs. Yet, in practice these robots rarely have elaborate collaborative
capabilities. A major challenge to enable many collaborative tasks is that robots must first agree on what
the environment looks like and where each robot is located. Pre-loading a map of the environment onto the
robots or using global GPS for localization can largely solve these issues, but these information sources are
not always available. Then, the problem becomes significantly more challenging: how do robots agree on a
shared situational awareness, if no groundtruth map or location is available? This question has been a core
motivation for the development of Simultaneous Localization and Mapping for multiple robots (multi-robot
SLAM), but a number of open problems remain before multi-robot SLAM can be widely used in practice.

1.1. Multi-robot SLAM
SLAM enables robots to simultaneously estimate a (local) map or model of the environment and the location
of the robot within this map, using information from on-board sensors such as Inertial Measurement Units
(IMU’s) and cameras [3]. In some cases, other robot states such as velocity are also estimated. The extension
to multiple robots requires that the local maps are somehow related to each other. Current state-of-the-art
methods use inter-robot loop closures [14, 25], which is in general a transformation (rotation and translation)
between poses of two robots.

There are two distinct approaches to finding inter-robot loop closures. First, robots may observe, recog-
nize and localize each other [32]. Unfortunately, this method does not generalize well to different environ-
ments. Observation requires the robots to move to a place where they are in direct line-of-sight of each other,
which is difficult if the robots do not know their relative positions in an environment with obstructions. Once
the robots are in sight, they need to recognize each other. Researchers often use visually recognizable struc-
tures for this such as April-tags [26], but this method may fail if the camera has low quality or in low-light

Figure 1.1: Trajectories of two robots α and β, with two wireless measurements depicted by the dotted lines.
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4 1. Introduction

conditions. When no cameras are used (e.g. only LiDAR), no standard approach for recognition is available
at all. Due to these limitations, this first approach fails to have good performance in many practical applica-
tions.

Fortunately, a second less restrictive approach exists to finding inter-robot loop closures. Robots can ex-
change data on the observed environment and match similar locations through place recognition [9]. Then,
the robots are only required to have traversed the same location, not even necessarily at the same time. This
method is already mature due to its use for single-robot SLAM, where place recognition is used to correct
for drift in the position estimate [9, 24]. Place recognition has two downsides too however, which have been
identified as some of the most significant open problems in the SLAM community [3]. First, exchanging mod-
els of the environment and performing place recognition introduce a large computation and communication
overhead [10]. Secondly, scenes may be accidentally mismatched if they look similar, leading to a failed map
estimate - a problem referred to as "perceptual aliasing" [15].

In single-robot SLAM the robot can alleviate these two problems of computation and mismatching using
odometry data [5]. Figure 1.1 shows how odometry measurements form the backbone of the trajectories
of two robots α and β. The (noisy) odometry backbone shows that the second and last pose of robot α’s
trajectory are in approximately the same area and are thus promising candidates to do place recognition.
However, the figure also shows that this odometry backbone does not connect trajectories of different robots.
It is thus impossible to extend this approach directly to multi-robot SLAM. This gap can potentially be bridged
by using wireless sensing through the communication signal, which provides information to connect the
different trajectories (Figure 1.1). Then, place recognition may be done more efficiently and robustly for
multiple robots too, by first identifying where the trajectories of the robots overlap.

1.2. Wireless sensing
Wireless sensing refers to measuring spatial information from the wireless communication signal. The com-
munication signal is an electro-magnetic wave. Measuring time-of-flight (ToF) of the wave gives an estimate
of the distance between the two communicating robots, and measuring the angle of arrival (AoA) at the re-
ceiving robot gives an estimate of what direction the communication signal is coming from. Wireless sensing
is a surprisingly accessible source of information, since it only requires communicating very lightweight "ping
packets". This is much easier to obtain than establishing a reliable connection to transfer multiple megabytes
of measurement data for elaborate place recognition.

The information obtained from wireless sensing is the relative pose of the robots at that time instant. It is
thus conceptually similar to finding inter-robot loop closures by observing, recognizing and localizing each
other. However, wireless sensing does not have the same practical restrictions. First, it does not require line-
of-sight observations since the communication signal can often pass through obstacles. Second, there is no
need for recognition modules since the communication signal already carries identifying information.

There are certain challenges that need to be overcome when using wireless sensing. The AoA measure-
ment has a relatively large standard deviation of 11◦ in line-of-sight situations and up to 25◦ when the signal
is obstructed [16]. Especially at long distances, this results in a large positional error. Additionally, wireless
sensing is subjected to multipath propagation of the wireless signal. Multipath propagation refers to the phe-
nomenon where the signal bounces off of various objects to arrive at the receiver from different angles. Con-

Figure 1.2: This figure shows the architecture as proposed in this thesis for an efficient and resilient multi-robot SLAM pipeline. Adding
wireless sensing allows us to find trajectory overlap, and only do place recognition and activate the multi-robot SLAM algorithm for these
locations.



1.3. Contribution of this thesis 5

sequently, the AOA measurement may include multiple directions, of which at most one is directly pointing
towards the other robot. Properly addressing these error sources is vital to use wireless sensing in practice.

1.3. Contribution of this thesis
This thesis contributes to more reliable and faster multi-robot SLAM by using wireless sensing to select the
locations on which place recognition should be performed, as shown in Figure 1.2. Doing so, wireless sensing
may remedy the flaws in place recognition, namely real-time computation and resilience against perceptual
aliasing. This approach is fundamentally different from previous works that either used place recognition in
multi-robot SLAM, or used wireless sensing in multi-robot SLAM. This thesis thus fills the gap by combining
these approaches into a hybrid method, that may be able to combine the strengths of both methods to ad-
dress important open problems in multi-robot SLAM.

The thesis is structured as follows. The second chapter covers advances in the multi-robot SLAM and
wireless sensing literature and identifies gaps in more detail. The third chapter contains the conference pa-
per presenting the approach Wi-Closure, designed in this thesis. Then, the fourth chapter provides more
background on the approach and results presented in the paper. Lastly, the fifth chapter discusses the impli-
cations of this thesis, and reflects on limitations of the approach and avenues for future research.





2
Related literature

The architecture of the multi-robot SLAM pipeline developed in this thesis (Figure 1.2) builds upon work
from three different topics: SLAM, multi-robot SLAM and wireless sensing. This chapter highlights relevant
previous work for each topic.

2.1. The SLAM framework
SLAM is a collective term for multiple modular algorithms that can be combined to estimate location and
map from sensory (camera or LiDAR) measurements. The algorithms are usually divided into the SLAM
front-end and back-end. The front-end overlaps with computer vision research to abstract dense informa-
tion from the high-dimensional sensory input. On the other hand, the SLAM back-end is in charge of using
the abstracted information to solve for the robot trajectory and landmark locations.

Regarding the back-end, maximum likelihood estimation (MLE) of the map and location through graph-
SLAM has become the de facto SLAM method, replacing its filtering-based predecessors EKF-SLAM and par-
ticle filter SLAM [28]. Graph-SLAM instead is an optimization-based approach which depicts the SLAM prob-
lem in a factor-graph G = (V ,E) (Figure 2.1). Nodes V contain the states x, consisting of the robot pose history
p and locations of landmarks L. Each edge (i.e. factor) e ∈ E is a probability density function pe (ye |x), denot-
ing the probability of observing measurement ye given state vector x [28]. Graph-SLAM solves for states x by
maximizing the following MLE problem

xMLE = argmax
x∈X

∏
e∈E

pe (ye |x) (2.1)

The recent popularity of graph-SLAM stems from several attractive properties. The graph representa-
tion is intuitive, enabling researchers to gain a better fundamental understanding of the SLAM problem and
develop solutions even in complex (multi-robot) scenarios [28]. For example, researchers have previously
shown that graph-SLAM is asymptotically consistent: an increasing amount of measurements will guaran-
tee that the estimate is eventually unbiased and the estimated mean squared error is equal to the true mean
squared error. This property is not shared by EKF and particle filter SLAM, which have produced inconsistent
estimates in some scenarios as a result of accumulating linearization errors [13]. Other researchers used the

Figure 2.1: Factor graph for robot with pose history p1 to p4 and observed landmarks L1, L2 and L3, which form state-vector x = [p, L].
Each edge represents an observation yi (either odometry data di or pose transform to a detected landmark li ), connecting two states
with the local conditional likelihood pe (ye , x).
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8 2. Related literature

graph structure of graph-SLAM to find duality properties that can certify when the MLE solution to the non-
linear problem is optimal under mild assumptions [27]. Also, the sparse structure of the factor graph provides
options for efficient sparse optimization techniques, resulting in real-time execution of current graph-SLAM
algorithms [28]. Lastly, graph-SLAM is especially amenable to the multi-robot setting: its flexible framework
readily extends to multiple robots and distributed computation [14], and the complexity scales linearly with
the explored area and number of robots rather than quadratically as filtering-based SLAM approaches do
[6, 32].

2.2. Problems in multi-robot SLAM
This thesis aims to improve the process of how trajectories of different robots are related to each other, which
is central to multi-robot SLAM. The following sections revisit a number of important issues in this field. The
first section discusses the importance of taking into account the noise in the local robot trajectory estimates.
The second section characterizes to what extend and in which environments computation and scene mis-
matching remain a bottleneck. Lastly, the final section briefly describes the role of parameter tuning in multi-
robot SLAM.

2.2.1. Rigid trajectories
A popular approach in the multi-robot SLAM literature is to assume trajectories (and thus the maps) to be
rigid, greatly simplifying the problem to finding a single transformation between each pair of robots. These
works directly match maps, e.g. finding sections of gridmaps with similar pixel patterns or similarly shaped
Voronoi cells [18, 22, 23, 31].

However, due to noise in the odometry measurements, the trajectories drift over time and thus this rigid-
ity assumption becomes problematic with increasing noise or trajectory length. The resulting maps can be
significantly distorted such that the representation is far from reality. In the worst-case, robots may be unable
to execute tasks that would have been straightforward with a correct map. For example, a robot could infer
that all paths to the goal position are blocked due to a distorted map, while in reality an accessible route exists.
Inter-robot loop closures are better suited to handle these situations, since they only locally relate different
trajectories and thus do not have this rigidity requirement [25]. This opens the opportunity to flexibly correct
maps: when a false inter-robot loop closure is included, the mistake can be corrected locally by removing the
offending loop closure.

2.2.2. Computation and scene mismatching
Inter-robot loop closures are extracted from sensory data, a task appointed to the front-end of SLAM. These
loop closures are found either by directly observing and recognizing the other robot [11, 17], or by exchanging
camera or LiDAR measurements and finding places that both robots have visited, i.e. place recognition [12,
37]. Place recognition is fundamentally less restrictive than directly observing each other, but in practice it
is subjected to two problems: it is computationally expensive and prone to mismatching of similar-looking
scenes, also known as perceptual aliasing.

To reduce computation, a multitude of multi-robot SLAM implementations, such as DiSCO-SLAM [14],
Kimera-Multi [37] and others [1, 7, 21, 38], first compress images or pointclouds to lower dimensional de-
scriptors [30]. Matching a Bag-of-Words or ScanContext descriptor instead of the raw measurement data
substantially lowers communication and computation overhead [9]. Additionally, efficient data structures
such as look-up trees further decrease the time needed to find matching measurements, with the current
state-of-the-art having a O(log (n)) time complexity to find a match in a database with n measurements [9].
A downside of compressing measurements is that information is lost, which increases the risk of mismatching
scenes.

Scene mismatching results in false inter-robot loop closures, which can lead to catastrophic optimiza-
tion failure of the SLAM result [15]. Therefore, various techniques exist in the SLAM back-end to reject false
loop closures. Mangelson et al. [25] introduce pairwise consistency maximization (PCM). PCM identifies the
largest set of inter-robot loop closures that are all consistent with each other, assuming that false inter-robot
loop closures lead to inconsistent measurements. Alternatively, Yang et al. [42] use a robust cost-function
in the SLAM back-end, such that all outliers receive the same maximum penalty. This approach efficiently
integrates outlier-rejection into the optimization problem. Although both methods reach impressive perfor-
mance against random outliers, their performance deteriorates in repetitive environments.
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(a) Determining distance d by measuring
radio signal strength (RSS), typically using
RSS = P0 − c log(d) with P0 transmitted
power and c a tuning parameter.

(b) Measuring distance using time delay
of a high-bandwidth block signal. Time
delay ∆t is related to distance d through
speed of light c using d = c ∆t .

Figure 2.2: Measuring distance from the communication signal.

Figure 2.3: Measuring AoA from the commu-
nication signal. Phase difference ∆φ between
two antenna’s is measured. By knowing wave-
length λ of the signal and distance L between
the two antenna’s, AoA is computed as Ao A =
cos−1(λ∆φL−1)

In repetitive environments, false inter-robot loop closures found by place recognition are not random.
Large numbers of false loop closures can then be consistent, bypassing detection by PCM or robust cost func-
tions. Perceptual aliasing refers to this problem of falsely selecting false loop closures because two distinct
locations look too similar. To solve this problem, authors in [39] identify when perceptual aliasing occurs,
and keep track of multiple hypotheses that describe the different ways in which the measurements of the
robots can be reasonably matched. Unfortunately, as a consequence robots have to reason about the best
action to take when multiple hypotheses on the environment could be true, which becomes exponentially
more difficult to compute with each added hypothesis [34]. To prevent intractable computation or catas-
trophic failure in repetitive environments, an important and open question is how to reduce the impact of
perceptual aliasing and reliably and efficiently identify the correct hypothesis.

2.2.3. Parameter tuning
Previous research has shown that various multi-robot SLAM pipelines can perform well in a number of tested
environments [14, 21, 38]. However, SLAM algorithms are notorious for the curse of parameter tuning [3].
Parameters can be tuned endlessly, until the multi-robot SLAM algorithm reaches sufficient performance in
the tested situations. Unfortunately, the tuned parameters for place recognition do not necessarily generalize
well to other untested environments, such that performance is very sensitive to the setting of a few parame-
ters. In fact, some works even have differently tuned parameter sets for tests on different datasets [14].

2.3. Leveraging wireless sensing
Only recently, a limited number of works have leveraged wireless sensing in multi-robot SLAM. The idea
of wireless sensing is to exploit the spatial information that the communication signal between robots can
provide, as shown in Figures 2.2 and 2.3. The distance between two communicating robots can be measured
by time-of-flight (ToF) or radio signal strength (RSS) [29, 35], while the receiving robot can estimate what
direction the communication signal is coming from by measuring the angle of arrival (AoA) [16].

Wireless sensing has captured the attention of researchers to improve multi-robot SLAM, by using dis-
tance measurements from ultrawideband (UWB) sensors directly as distance constraints in the graph-SLAM
optimization problem [2, 8]. This method does not rely on finding scenes with similar appearances like scene
recognition, and thus completely solves the problem of perceptual aliasing in repetitive environments. Un-
fortunately, only using range information results in a difficult to solve nonlinear optimization problem that
may be slow to solve. This can be countered by using a multi UWB-tag set-up for each robot [2]. However,
to be effective this requires the robots to be large enough to accommodate sufficient distance between the
multiple tags (0.7m in the set-up in [2]), limiting the application of this approach to environments with suffi-
ciently wide corridors.

Many works on wireless sensing in multi-robot SLAM directly extend the more extensive literature of wire-
less sensing in single-robot SLAM, which requires environments with a pre-existing communication infras-
tructure with so-called access points. When a robot then communicates with these access points, it measures
its distance or direction to them. Since the access points are static, multiple wireless measurements over time
can be used to counter the drift in the trajectory estimate [4, 43]. Various techniques exist for localization
based on wireless sensing, based on AoA, ToF, or RSS measurements or a mix thereof, as illustrated in Figure
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(a) Distance localization scheme. At least three
static anchors measure distance to target.

(b) AoA localization scheme. Noise becomes
more prominent at large distances.

(c) Hybrid localization scheme combining AoA
and distance measurements.

Figure 2.4: Localization schemes based on wireless sensing.

2.4. Interestingly, AoA has not been used yet in the context of multi-robot SLAM. It could provide informa-
tion to speed up the nonlinear optimization problem in [8], possibly enabling a real-time multi-robot SLAM
algorithm, while retaining the resilience against perceptual aliasing that wireless sensing in general provides.
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Wi-Closure: Reliable and Efficient Search of
Inter-robot Loop Closures Using Wireless Sensing

Weiying Wang1, Anne Kemmeren2, Daniel Son1, Javier Alonso-Mora2, Stephanie Gil1

Abstract—In this paper we propose a novel algorithm, Wi-
Closure, to improve computational efficiency and robustness of
loop closure detection in multi-robot SLAM. Our approach
decreases the computational overhead of classical approaches
by pruning the search space of potential loop closures, prior to
evaluation by a typical multi-robot SLAM pipeline. Wi-Closure
achieves this by identifying candidates that are spatially close
to each other by using sensing over the wireless communica-
tion signal between robots, even when they are operating in
non-line-of-sight or in remote areas of the environment from
one another. We demonstrate the validity of our approach in
simulation and hardware experiments. Our results show that
using Wi-closure greatly reduces computation time, by 54% in
simulation and by 77% in hardware compared, with a multi-robot
SLAM baseline. Importantly, this is achieved without sacrificing
accuracy. Using Wi-closure reduces absolute trajectory estimation
error by 99% in simulation and 89.2% in hardware experiments.
This improvement is due in part to Wi-Closure’s ability to
avoid catastrophic optimization failure that typically occurs with
classical approaches in challenging repetitive environments.

I. INTRODUCTION

Loop closure detection has been widely studied as a fun-
damental aspect of Simultaneous Localization and Mapping
(SLAM) [1], [2]. The location estimate of the robot drifts
over time due to the noise in the on-board odometer and loop
closure detection is essential to correct for this drift by recog-
nizing previously visited places. Without such corrections, the
world as perceived by the robot may diverge substantially from
reality. If multiple robots intend to collaborate, they require
a shared situational awareness being consistent with reality,
as obtained by multi-robot SLAM. The key to obtaining this
shared understanding are inter-robot loop closures. Where
regular loop closures constrain the positions of one robot itself,
the inter-robot loop closure defines spatial relations between

1 John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Allston, MA 02134, USA

2 Faculty of Mechanical, Maritime and Materials Engineering, Technical
University of Delft, 2628 CD Delft, The Netherlands

pairs of robots. These inter-robot loop closures enable robots
to merge local sensor data into a shared model of the world
and obtain relative locations.
A common method that robots use to find inter-robot loop
closures is place recognition. However, place recognition re-
mains challenging in practice, especially when the environ-
ment has repetitive elements [3] and when communication
between robots is intermittent. We introduce Wi-Closure to
address two persistent problems in this setting. First, since
robots do not know each other’s location, they may mismatch
similar-looking scenes that they have encountered in different
locations – a problem also referred to as perceptual aliasing
[1]. Second, during the short intervals that communication
between robots is established, feeding a large set of inter-robot
loop closures into the multi-robot SLAM pipeline puts a large
strain on computational resources [4]. Repetitive elements
further increase computation by falsely recognizing more inter-
robot loop closures. Previous work introduced pairwise con-
sistency maximization (PCM) to prevent scene mismatching
by identifying false inter-robot loop closures [5]. However,
recent research demonstrates that if repetitive elements are
present, catastrophic failure of the SLAM algorithm can occur
even if using PCM [6]. A more robust solution to perceptual
aliasing is tracking all possible (mis)matches, resulting in
various hypotheses of what the world looks like [7]. Un-
fortunately, working with multiple hypotheses is costly since
multiple-hypothesis tracking and planning are computationally
complex [8]. This makes these methods less viable for real-
time execution on commonly available robot hardware.

Our approach Wi-Closure is a computationally lightweight
method that robustly finds inter-robot loop closures in per-
ceptually aliased environments. We use spatial information
from WiFi and ultra-wideband (UWB) communication signals
to identify where robots’ trajectories are close. WiFi is an
electromagnetic wave, and thus the receiving robot can lo-

Fig. 1: Wi-Closure efficiently finds locations where robots’ trajectories overlap, as indicated by the yellow area. Only inter-robot loop closures at these
locations need to be processed by the multi-robot SLAM pipeline. This increases robustness against perceptual aliasing and decreases overall computation of
the pipeline.



cally derive the direction or Angle of Arrival (AOA) to the
transmitting robot from the phase information [9]. Similarly,
commercial UWB devices measure time-of-flight to estimate
distance. Importantly, sensing through the communication sig-
nal has wide applicability in this setting since it passes through
obstacles and thus works in non line-of-sight situations [10],
and it doesn’t require the robots to identify each other through
vision-based methods, e.g. using Apriltags [11]. Our method
solely uses spatial information and thus it works together
seamlessly with existing place recognition methods based on
appearance. As depicted in Fig. 1, the Wi-Closure algorithm
is used at the start of the multi-robot SLAM pipeline.

In order to achieve good performance, Wi-Closure must also
address a major challenge to sensing over the communication
signal; namely, it must address multipath propagation of the
wireless signal. Multipath refers to the phenomenon where the
signal bounces off of various objects to arrive at the receiver
from different angles. Consequently, the AOA measurement
may include multiple directions, of which at most one is the
direct-line path to the other robot. We address this issue with
PCM, since only the true direct paths will give consistent
pairs of AOA measurements over time. In our hardware
experiments, after collecting 4 AOA measurements with in
total 3 direct paths and 17 multipaths, we are able to accurately
distinguish all direct paths from the multipaths.

Our numerical and hardware experiment results demonstrate
that our method efficiently prunes the search space of loop
closure candidates by 99% in simulation and 78.7% in hard-
ware experiments, and increases robustness against perceptual
aliasing by rejecting up front inter-robot loop closures between
distinct places and reducing absolute trajectory estimation
error by 99% in simulation and 89.2% in hardware results.
We summarize the contributions of this paper as follows:

1) We introduce a resource efficient approach, Wi-Closure,
to detect inter-robot loop closures in perceptually aliased
environments, based on spatial information from the
communication signal. It can work in tandem with
existing place recognition methods.

2) We address the challenging situation of multipath prop-
agation of the communication signal with PCM.

3) We demonstrate the merits of our approach in terms
of robustness against false inter-robot loop closures
and improved computation time in simulation with the
KITTI dataset and in hardware experiments.

II. RELATED WORK

For decades, the majority of research on loop closure
detection has focused on a single robot [12], [13]. Recently
however, loop closure detection algorithms are being adapted
to fleets of robots, to ensure reliable and efficient retrieval
of shared map and location estimates [5], [14]. We leverage
previous work on sensing over the communication signal to
simultaneously address two open problems: 1) computation to
match large trajectories is high, and 2) place recognition easily
mismatches trajectories in repetitive environments.

Wireless sensing Extensive research has shown that we
can obtain spatial information from wireless signals [9], [15].
Many works use UWB sensors to obtain ranging information
between two robots by measuring the time-of-flight of the
ultra-wideband signal. [16], [17] use the ranging information
amongst robots to improve the joint position estimate even
without being in line of sight of each other. Recently, [10] also
introduced sensing direction from the WiFi communication
signal to the robotics community, requiring only a single
WiFi antenna and movement of the robot. These innovations
avoid the need of bulky equipment and anchors as used
in classical works to estimate position, which come with
additional infrastructure requirements [18].

Range-only SLAM Previously, [19] used UWB sensors in
a multi-robot SLAM setting coined range-only SLAM, where
distance measurements are directly used as inter-robot loop
closures. This avoids the problem of perceptual aliasing, but
it only introduces connections between the maps of the robots
where the robots are communicating. In realistic scenarios
the communication is intermittent, and trajectories can overlap
in places where communication is unavailable and where the
position estimate is uncertain due to odometer drift. Additional
place recognition increases the accuracy of the map by match-
ing these overlapping locations. To our knowledge, we are the
first to speed up place recognition using ranging and direction
information from the communication signal.

Computation in loop closure Researchers sought to reduce
computation of loop closure detection, e.g. with easily ob-
tainable ORB features for vision-based approaches [20], and
efficient look-up trees to match scenes [12]. Unfortunately,
these methods may result in mismatched maps in perceptually
aliased environments [6]. In [21] the authors consider sampling
a subset of most informative inter-robot loop closures to reduce
overall time consumption. However, the authors also note that
the performance guarantee of their sampling method decreases
if a scene can be potentially matched to many others - i.e. when
there is substantial perceptual aliasing.

Perceptual aliasing Although repetitive scenes are per-
vasive in many environments, classical place recognition
approaches find it notoriously difficult to deal with them.
Researchers have focused on simultaneously representing all
possible matches as multiple hypotheses in one framework
[22]. However, to properly use these multiple hypotheses to
determine the best course of action for the robot, we need
computationally expensive methods such as data-association
belief space planning (DA-BSP) [8], [23]. In DA-BSP the
computation time scales exponentially with the hypotheses.
We observe that many methods have a trade-off between
robustness against perceptual aliasing and computation: in-
creased robustness requires large computation, while compu-
tationally efficient methods decrease robustness or perform
worse in repetitive environments. Our approach instead aims to
improve both computation and robustness against perceptually
aliasing. By sensing lightweight information over the commu-
nication signal, we efficiently pinpoint where inter-robot loop
closures connect scenes that are likely in the same location.



III. PROBLEM FORMULATION

Consider a team of robots operating in an unknown en-
vironment, unaware of their relative positions to each other.
All robots obtain odometry measurements to estimate their
trajectories locally. These trajectories are spatially connected
through measurements on relative position and orientation of
the robots, retrieved by sensing over an intermittent commu-
nication signal. Based on the information collected so far, we
aim to determine where their trajectories overlap with each
other, such that these inter-robot loop closure candidates can
be further refined by existing place recognition systems.

We consider a classical graph-SLAM setup of a team of
robots denoted by the set Ω. Let two robots be represented
by α, β ∈ Ω. Each robot estimates its own trajectory T α with
respect to its local frame α. A trajectory is defined by a set of
homogeneous transformations from time t = 0 to τ , as denoted
by T α = {Tα

t : t = 0, . . . , τ}. Here, Tα
t is an element in the

Special Euclidean Lie group Tα
t ∈ SE(d), consisting of a

rotation matrix in the Special Orthogonal Lie group Rα
t ∈

SO(d) and a translation vector xαt ∈ Rd. Throughout this
paper, we adopt the convention of denoting the reference frame
as superscript, and the target frame as subscript for T , R and
x, i.e. xrs denotes the translation of position s with respect
to reference r. We estimate the trajectory T using the graph-
SLAM framework, by maximum-likelihood estimation (MLE)
of likelihood function L given measurement set Z [24].

T̂ = argmax
T

L = argmax
T

∏

k

fk(zk|T ) (1)

Here, factors fk(zk|T ) are conditional probability density
functions that encode the probability of observing an odometry
measurement zk ∈ Z , given the pose information in T .

A. Multi-robot SLAM with wireless measurements

We propose to use information from the communication
signal between robots to relate their trajectories. UWB and
WiFi signals provide measurements on the distance d between
robots, and the direction ϕ of the signal-transmitting robot with
respect to the signal-receiving robot, respectively. Previously,
[25] formulated these AOA and distance measurements as fac-
tors to solve a localization problem. We adopt this formulation,
with factors fuwb(d|T α,β) and faoa(ϕ|T α,β).

fuwb(d|T α,β) = c1 exp

(
−1

σ2
α,β

(d− ∥xpk∥2)2
)

(2)

faoa(ϕ|T α,β) = c2 exp

(
−κα,βuT (ϕ)

xpk
∥xpk∥2

)
(3)

where c1 = 1√
2πσ2

α,β

, c2 = 1
2πI0(κα,β)

and u =

[cosϕ, sinϕ]T . Here, I0(.) is the modified Bessel function of
the first kind of order zero, σ2

α,β the variance of the distance
measurement, and κα,β a concentration parameter computed
as the inverse of the AOA variance, i.e. κα,β > 10 rad2. Then,
these factors are combined into one factor.

fcomm(d, ϕ|T α,β) = faoa(ϕ|T α,β)fuwb(d|T α,β) (4)

Fig. 2: The communication signal can reach the robot through different paths
P = {P1, P2}, resulting in multiple Gaussian modes f i

aoa in the AOA
measurement fmulti.

Importantly, [25] models the AOA measurement as a single
Gaussian. However, this may not realistically represent the
AOA measurement in practice due to multipath propagation
of the signal. Objects in the environment can reflect the com-
munication signal, causing it to arrive at the robot via different
paths as shown in Fig. 2. These paths cause the AOA measure-
ment to have multiple (approximately Gaussian) modes. For
the jth AOA measurement, we parameterize these paths by the
set of binary variables Pj = {P j

1 , P
j
2 , ..., P

j
n}, where P j

i = 1
indicates that path i in the jth AOA measurement is the direct
path. Then, the multimodal AOA measurement fmulti can be
modeled as a marginalization over multiple faoa.

fmulti,j(ϕ|T ) =

|P|∑

i

f i
aoa,j(ϕ|T , P j

i = 1)p(P j
i = 1) (5)

Each AOA measurement has at most one path as the true
direct path. Therefore, an important problem that Wi-Closure
addresses is how to determine the set of direct paths for
multiple AOA measurements, which we denote by realization
R = {P j

i | P j
i = 1, ∀j ∑n

i=1 P
j
i ≤ 1}. Then we can obtain

an estimate of what we will refer to as the shared robot
trajectory T α,β , by adding communication factors f i

comm,j

corresponding to P j
i ∈ R to the MLE in Equation 1.

B. Inter-robot loop closures as a set of nearby poses

With the spatial information contained in T α,β , we are
interested in retrieving the positions where the trajectories of
robot α and robot β are nearby each other. To assess whether
some position xα

p ∈ T α of robot α is nearby some position
xβ
k ∈ T β of robot β, we use the Mahalanobis distance.

dMH(xα
p , xβk) =

√
(xpk)⊤ Σ−1

p,k xp
k (6)

The main objective of Wi-Closure is then to efficiently find
all position-pairs (xαp , xβk) that have a Mahalanobis distance
smaller than some threshold D, as collected in set G and are
thus good loop closure candidates.

G = {(xα
p , xβk) | dMH(xα

p , xβk) < D, R} (7)

Note that a different set G will be found for different guesses
of the direct paths P j

i = 1, i.e. for different realizations R.



Fig. 3: Overview of Wi-Closure.

IV. APPROACH

This section explains the approach taken by Wi-Closure on
three core aspects, of which an overview is shown in Fig. 3.
First, we show how trajectory information and communication
measurements combined can give a reliable estimate of the
shared trajectory. Here, we reject spurious multipaths in the
communication measurements using PCM. Secondly, an algo-
rithm akin the branch-and-bound algorithm quickly finds areas
where the trajectories overlap. Lastly, for each position pair in
the overlapping areas, we determine whether it is a candidate
inter-robot loop closure using the Mahalanobis distance.

A. A shared trajectory estimate while rejecting AOA multipath

Wi-Closure uses as input the robot trajectories T α and
T β and communication factors fuwb and fmulti. Due to
the multipath propagation problem, the AOA measurement
determining factor fmulti can be multimodal, while only one
mode possibly gives useful information on the direct path.
In this section we therefore show how PCM finds a set of
direct paths, denoted by realization R. Communication factors
fcomm are then constructed using the paths in R to connect
the robot trajectories while avoiding AOA multipaths.

The PCM method first determines for each pair of mea-
surements whether they are consistent with each other [5].

Fig. 4: From robot α’s perspective, at time t = 2 the trajectory of robot β
could be either at T β

1 or T β
2 due to the multipath in the AOA measurement

(black arrows). By additionally using the AOA measurement at time t = 4,
PCM determines that the paths corresponding to ϕ1 and ϕ3 are direct paths,
since they can form a loop (green arrow). Therefore, T β

2 is robot β’s real
trajectory.

As shown in Fig. 4, two communication measurements are
consistent with each other if we can traverse them and the
odometry backbone of the robot trajectories in a loop. Let T i

j

and T k
l be two transformations defined by some communica-

tion factor fcomm,1 and fcomm,2 respectively, and define the
trajectory sections T j

k = (Tα
j )

−1(Tα
k ) and T l

i = (T β
l )

−1(T β
i ).

Then, if the loop is closed the following equality should hold.

Tloop = T i
j T j

k T k
l T l

i = I (8)

To account for noise in the transformation estimates, we iden-
tify consistent loops using the Mahalanobis distance dPCM .
For this we use Lie algebra to express the transformation as
a 6D vector ξloop ∈ se(3) with ξloop = log(Tloop).

dPCM =
√

ξ⊤loopΣ
−1
loopξloop (9)

where Σloop is the covariance matrix corresponding to ξloop.
Then, the largest set of communication measurements that are
all consistent with each other, gives us a set with likely only
measurements of direct paths. Hence we have found realization
R with which we can estimate how the trajectories T α and
T β are positioned with respect to each other.

B. Efficiently finding trajectory overlap

We quickly find clusters where trajectories overlap using a
method similar to the classical branch-and-bound algorithm.
As shown in Fig.5, our approach first bounds the area’s
traversed by robots α and β, and selects the poses within this
overlap. These poses are divided into smaller clusters, and
the process is repeated for each cluster. The initial bounds on
the area are found by selecting the minimum and maximum
position coordinate along each dimension. However, we need
to account for possible distance between true loop closures
and uncertainty in the poses. We add dbuffer to the bounds,
which is computed such that we retain all position pairs that
are later included as inter-robot loop closures when computing
the Mahalanobis distance.

dbuffer = DσUB +Rsensor (10)

where D is the threshold of the Mahalanobis distance used
in Equation 7, σUB is an upper bound to the worst-case
uncertainty that we can expect in any direction for any position
pair, and Rsensor is the range of the sensor that will determine
at what distance we can expect to find loop closures.

First, consider the maximum uncertainty σmax
kp for the

translation xkp between a single position pair, computed as the
square root of the largest eigenvalue of Σkp. We then aim to
distributively find σUB that is an upper bound to σmax

kp for
any two poses xα

p ∈ T α and xβk ∈ T β .

σ2
UB ≥ max

k,p
(σmax

kp )2 = max
k,p

λmax(Σkp), p, k ∈ t (11)

where λmax is the largest eigenvalue of Σkp. Secondly, xpk is
rewritten as a pose composition of poses in the local frames.

xp
k = ⊖xαp ⊕ xαβ ⊕ xβ

k (12)



Fig. 5: Finding area’s where trajectories overlap by iterative refinement of overlapping bounding boxes.

This allows us to determine an upper bound on λmax(Σkp).

λmax(Σkp) ≈ λmax(Σαp + JT
αβΣαβJαβ + JT

βkΣβkJβk)

≤ λmax(Σαp) + λmax(J
T
αβΣαβJαβ)

+ λmax(J
T
βkΣβkJβk) = λUB

kp

where J is the Jacobian of x. Then, worst-case uncertainty
σUB is distributively computed as the maximum of all vari-
ances λUB

kp between any position pair xαp ∈ T α and xβk ∈ T β .

σ2
UB = max

k,p
(λUB

kp ) ≥ max
k,p

(λmax(Σkp)) = σ2
max

Note that Σαβ is computed using the communication factor
fcomm and can be taken out of the maximization. We need to
take the maximum of largest eigenvalues only of covariance
matrices Σαp and Σβk, which are both computed distributively
from the MLE trajectory estimates T α and T β . The graph-
SLAM formulation using factors f(z|x) enables us to retrieve
these covariance matrices with a Gaussian approximation.

Σ =

(
−Ez

[
∂2 log f(z|x)

∂x2

∣∣∣∣x
])−1

(13)

C. Identifying inter-robot loop closures

A position pair (xαp , xk
β) identified by the clustering in the

previous section is included into set G as a candidate inter-
robot loop closure if the Mahalanobis distance is smaller
than D (Equation 7). This requires an estimate of the rel-
ative distance and corresponding uncertainty between these
two poses, which we extract from our MLE to the shared
trajectory estimate. When solving for this MLE, we could
include all communication factors corresponding to P j

i ∈ R
simultaneously into our optimization problem. However, when
connecting trajectories T α and T β through multiple com-
munication factors this is a nonlinear optimization, which
also alters the solution to the local trajectory estimates T α

and T β . Meanwhile, a single communication measurement
has a straightforward solution, since this constraint only re-
positions the trajectories with respect to each other and does
not alter the local solutions to T α and T β . For each position
pair (xα

p , xβk) we choose one communication measurement
connecting the trajectories at positions xαc1 and xβ

c2. Then, pose
and uncertainty information is propagated from xα

p to xβk .

T p
k = T p

c1T
c1
c2 T

c2
p (14)

Σpk = Σpc1 + J⊤
c1c2Σc1c2Jc1c2 + J⊤

c2kΣc2kJc2k (15)

where Jij is the Jacobian of T i
j .

For each position pair, our algorithm uses the communi-
cation link that results in minimum route length from xα

p to
xβk over the odometry backbone and communication link. The
subsequently retrieved values for T p

k and Σpk (using equation
13 and 15) are used to compute the Mahalanobis distance
dMH(xαp , xβk), which determines whether the position pair
should be included in set G.

V. EXPERIMENTS

In this section, We evaluate Wi-Closure through simula-
tion and hardware experiments. Our results show that Wi-
Closure can efficiently and robustly detect loop closures,
while processing large trajectories in batches and in repetitive
environments. Our approach also successfully handles the
multipath phenomenon of the wireless signal in practice.

A. Simulation experiments

Simulations are performed on the KITTI 08 dataset modified
by [26], where a trajectory is split into sections to emulate
the multiple robot case with trajectory overlap. Since this
dataset does not contain measurements from the wireless
signal, we simulate these based on the groundtruth (GPS)
trajectory. We use a standard deviation of 0.5 m2 for distance
and 10 deg for AOA, based on previous work characterizing
these measurements [10]. All comparisons are performed on
a desktop computer running an Intel i9 5.2GHz processor in
Ubuntu Linux 18.04. We assess the efficacy of Wi-Closure by
comparing the performance of the multi-robot DiSCo-SLAM
pipeline with and without using Wi-Closure. The performance
is assessed based on average trajectory error (ATE) and the
number of correctly and falsely included inter-robot loop
closures. To determine which loop closures are true and false,
we use a GPS-based groundtruth trajectory to find positions
that are at a maximum distance of 35 m, such that the LiDAR
scans with a range of 30 m overlap for > 20%.

Fig. 6: The 25m × 23m testing field for hardware experiments with highly
repetitive features including identical pillars.



Originally, [26] tuned the parameters of the DiSCO-SLAM
algorithm such that it has good performance against mis-
matching on the modified KITTI 08 dataset. However, as we
show in our hardware experiments, parameters do not always
generalize to other environments. We therefore consider a
worse set of parameters in this comparison. Then, we show
that while the original DiSCO-SLAM pipeline fails with this
parameter set, using the same set of parameters and adding
Wi-Closure can still recover good performance.

Table I shows that including Wi-Closure in the multi-robot
SLAM pipeline results in a lower ATE. Fig. 7 shows that the
baseline approach includes too many false loop closures result-
ing in catastrophic failure. Also, without Wi-Closure, DiSCO-
SLAM processes all 1,099,101 position pairs as possible loop
closures, of which 5544 are true loop closures. Meanwhile,
Wi-Closure substantially reduces this search space to 7,049
inter-robot loop closures, of which 3,631 are true positive loop
closures. This comes at a cost of missing 1,913 potential loop
closures. As a result, the whole pipeline takes 896 seconds
for the baseline algorithm, whereas adding Wi-Closure reduces
it to 464 seconds. of which 53 seconds caused by added
computation of the Wi-Closure module.

B. Hardware experiments

We evaluate our approach on a dataset collected in an
unfinished shell space as shown in Fig. 6 with repetitive
features. We deploy two customized Locobot PX100, which
are installed with a Velodyne VLP-16 LiDAR, a MicroStrain
3DM-GX5-AHRS IMU, DWM1001 UWB, 5dBi Antenna and
Intel NUC 10. We process the AOA measurements using
the WiFi sensing Toolbox from our earlier work [10]. To
accompany the scale of the test field, we limit the range of
the LiDAR to 10 meters. For the purpose of computing the
ground truth error, we set up 5 UWB nodes in the space to
localize the robot in real-time.

Fig. 7: Simulation results in KITTI 08 dataset. Left: optimized trajectory from
Disco-SLAM without Wi-Closure. Right: optimized trajectory from Disco-
SLAM using Wi-Closure.

Baseline Wi-Closure
ATE (m) 66.1 1.3
Correctly rejected false LC (%) N/A 99
Missed true LC (%) 0 1
Total Computation Time (s) 896 411
Total Wi-Closure time (s) N/A 53

TABLE I: Loop Closure (LC) performance comparison between Wi-Closure
and DiSCO-SLAM in the KITTI Dataset.

Two robots are set up at different locations without knowing
each other’s frames. They traverse the space collecting LiDAR
scans and IMU data. Every 10 meters one robot collects AOA
and ranging measurements to the other robot. Trajectories have
two rendezvous points for loop closure opportunities. Again,
we compare computation time and ATE with and without Wi-
Closure, and we assess if loop closures are filtered correctly.

We directly apply original DiSCO-SLAM parameters from
[26], and show that the original method fails in our environ-
ment while adding Wi-Closure recovers performance.
As shown in Table II, our approach successfully reduces
computation time of the whole SLAM pipeline by 4.3 times
and reduces the trajectory error by 89.2%. Fig. 8 shows
the optimized trajectories. Because of the repetitiveness of
the pillars, the original algorithm fails in the challenging
environment. Similar to the simulation results, applying our
approach substantially reduces the search space from 1,848
loop closures to only 119 of which 115 are true inter-robot
loop closures. Consequently, our method increases speed and
prevents failure of the algorithm.
Also, our approach successfully handles the multipath phe-
nomenon in our hardware experiment. Each of four AOA
measurements contains five multipath. Wi-Closure is able to
distinguish all three direct path from the 17 multipath, leading
to consistent optimization results as shown in Fig. 8.

VI. CONCLUSION

In this paper we propose an efficient and robust loop closure
finding method Wi-Closure, utilizing light-weight information
from the wireless signal between robots. We properly handle
the multipath phenomenon, and are able to exclude the major-
ity of false loop closures. This drastically reduces processing
time of the muli-robot SLAM pipeline and increases the
robustness of the results.

Fig. 8: Hardware experiment results. Left: optimized trajectory from Disco-
SLAM without using Wi-Closure. Right: optimized trajectory from Disco-
SLAM using Wi-Closure.

Baseline Wi-Closure
ATE (m) 17.6 1.9
Correctly rejected false LC (%) N/A 78.7
Missed true LC (%) 0 15
Total Computation Time (s) 155 36
Total Wi-Closure time (s) N/A 0.5 seconds

TABLE II: Loop Closure (LC) performance comparison between Wi-Closure
and DiSCO-SLAM in hardware experiments.
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4
Supporting information

This chapter provides supporting information on the submitted conference paper "Wi-Closure: Reliable and
Efficient Search of Inter-robot Loop Closures Using Wireless Sensing". It first elaborates on the used methods
and the code implementation, and then delves into practical details about how the results were obtained.

4.1. Methods
4.1.1. Mahalanobis distance with sensor range
Wi-Closure uses the Mahalanobis distance to determine whether two robot positions are an inter-robot loop
closure. Consider the situation in Figure 4.1, where the blue robot has estimated the location of the yellow
robot with a 2D Gaussian approximation N (∆p,Σ), with Σ= diag(σ2

x , σ2
y ). The yellow ellipse denotes the un-

certainty ellipse, with principal axes having a length of σx and σy . Then, the Mahalanobis distance expresses
the distance between the two robots in the number of standard deviations.

dM H =
√
∆pTΣ−1∆p = ||∆p||

σ′ (4.1)

This metric effectively rejects two positions as inter-robot loop closure when the positions are with certainty
a large distance apart (i.e. dM H is larger than some threshold).

However, the metric is less effective if considering that robot sensors (e.g. camera or LiDAR) have certain
ranges within which they observe the environment, denoted by r1 and r2 respectively. Two positions could
lead to inter-robot loop closure whenever the sensor ranges overlap, thus ||∆p|| < r1 + r2. Unfortunately, the
current formulation of the Mahalanobis distance could reject these cases if σ′ << ||∆p||, since then the Ma-
halanobis distance is large. This problem arises whenever the estimated distance ||∆p|| is small enough for
the sensor ranges to overlap, but the uncertainty σ′ along the same direction is even smaller.

Figure 4.1: Mahalanobis distance dM H =
√
∆pT Σ−1∆p should be adjusted when considering sensor ranges r1 and r2.
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The proposed solution used in Wi-Closure is to adjust Mahalanobis distance such that d∗
M H = 0 if ||∆p|| <

r1 + r2, which is when the sensor ranges overlap. In the other cases, the Mahalanobis distance is computed
over the residual distance after subtraction of the sensor ranges.

d∗
M H =

{√
qTΣ−1q if qT u > 0

0 otherwise
(4.2)

q =(||∆p||− (r1 + r2)
)

u, u = ∆p

||∆p|| (4.3)

4.1.2. Buffer distance in branch-and-bound algorithm
Due to space limitations in section IV-B in the conference paper, a more elaborate derivation of the distance
dbu f f er is provided here. The developed branch-and-bound algorithm rejects two positions indexed at i and
j , if their spacing is larger than dbu f f er . The aim is that in these cases, they also exceed the threshold for the
adjusted Mahalanobis distance from section 4.1.1, i.e.

||∆pi j || > dbu f f er =⇒ d∗
M H (∆pi j ) > D (4.4)

with D the user parameter determining at what distance the two positions are considered an inter-robot loop
closure. Hence, if position pairs are rejected based on the left condition within the branch-and-bound al-
gorithm, they would also be discarded based on the right condition in the later step when computing the
Mahalanobis distance. The benefit of using the branch-and-bound approach is a more favorable complexity.
For n positions in the trajectories, the branch-and-bound algorithm has a complexity of O(r

p
n), with r << n

the number of iterations before the algorithm converges. Meanwhile, computing all pairwise Mahalanobis
distances would result in a complexity of O(n2). The Mahalanobis distance will only be computed for po-
sitions included by the branch-and-bound algorithm, since this step will discard additional pairs that were
missed by the branch-and-bound algorithm. The rest of this section focuses on how dbu f f er is chosen such
that is has the outlined property.

The buffer distance should be larger than the sensor ranges r1 and r2. It should also be larger than the
worst-case expected Mahalanobis distance. Therefore, dbu f f er has the following shape, with variable σU B an
upper bound on the standard deviation.

dbu f f er = (r1 + r2)+D ·σU B (4.5)

Upper bound σU B is subject to certain conditions. Plugging in ||∆pi j || > dbu f f er into Equation 4.2 gives the
condition on σU B in terms of the following inequality.

q = (||∆p||− (r1 + r2)
)

u > D σU B u (4.6)

d∗
M H (∆pi j ) =

√
qTΣ−1

i j q (4.7)

> D σU B

√
uTΣ−1

i j u (4.8)

= DσU B√
ρ(Σi j )

(4.9)

with ρ(·) the spectral radius. The last equality is a result of the min-max theorem applied to Hermitian ma-
trices, which include covariance matrices [36]. Then, the condition in Equation 4.4 is fulfilled when choosing
σU B as follows.

σU B >
√
ρ(Σi j ) ∀i , j =⇒ d∗

M H > D (4.10)

To allow robots α and β to distributively compute ρ(Σi j ), the covariance matrix is divided into parts using
noise propagation [5].

Σi j ≈Σiα+ J T
αβΣαβ Jαβ+ J T

β jΣβ j Jβ j (4.11)

Lastly, using Weyl’s inequality an upper bound to the spectral radius can be computed distributively. This
finally gives us an expression for σU B that fulfills all requirements.

max
i , j

ρ(Σi j ) ≈ max
i , j

ρ(Σiα+ J T
αβΣαβ Jαβ+ J T

β jΣβ j Jβ j ) (4.12)

≤ max
i

ρ(Σiα)+ρ(J T
αβΣαβ Jαβ)+max

j
ρ(J T

β jΣβ j Jβ j ) (4.13)

=σ2
U B (4.14)
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4.2. Code implementation
This section describes the code implementation of Wi-Closure into the existing DiSCo-SLAM code package
[14]. The code can be applied in distributed robot networks. It thus does not require a "lead" robot, and
each robot executes the same code packages. The code is written in C++ and uses ROS to streamline various
inter- and intra-robot communication processes. An overview of the various modules and their most notable
interactions is given in Figure 4.2.

4.2.1. High level overview
Each robot uses LIO-SAM as local SLAM engine to find a trajectory and map from IMU, LiDAR and (if avail-
able) GPS measurements [33]. This package also handles loop closure detection to correct for drift in the
local trajectory. Then, if communication is established with another robot, the robots exchange robot tra-
jectories. Simultaneously, the communication signal is used to measure AoA and distance. Wi-Closure then
processes the trajectory data and AoA and distance measurements to find trajectory overlap, as described
by the conference paper in this thesis [40]. Finally, DiSCo-SLAM only processes LiDAR scans filtered by Wi-
Closure [14]. The LiDAR scans are compressed into lightweight ScanContext descriptors and exchanged with
the other robot [20]. A place recognition algorithm then finds inter-robot loop closures. Lastly, a graph-SLAM
algorithm merges local robot trajectories and inter-robot loop closures into a shared situational awareness.

4.2.2. LIO-SAM
LIO-SAM is short for Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping [33]. Its goal was
creating a low-drift and real-time solution to LiDAR based SLAM that is suitable for multi-sensor fusion. It
applies graph-SLAM as explained in Chapter 2.1. Thus, it uses factors to represent the problem of estimat-
ing robot trajectory in a factor graph. By assuming Gaussian noise models in the factor graph, the problem
reduces to solving a nonlinear least-squares problem. Upon insertion of a new measurement, LIO-SAM effi-
ciently solves this problem through incremental smoothing and mapping with the Bayes tree (iSAM2) [19].

LIO-SAM considers four types of factors: IMU pre-integration factors, LiDAR odometry factors, GPS fac-
tors and loop closure factors.

The IMU factor is affected by a drift error due to a slowly varying bias in the IMU measurements. LIO-SAM
estimates the bias in the IMU by assuming that angular velocity and acceleration remain constant inbetween
two consecutive IMU measurements. Hence, the IMU sensor needs to have a sufficiently high time resolu-
tion, taking measurements at least at a rate of 200 Hz.

LiDAR scans require preprocessing prior to computation of the LiDAR odometry factor. LiDAR point-
clouds are measured with a rotating laser mechanism, and combined with motion of the LiDAR this distorts
the scans. To deskew the scans, IMU gives an initial estimate of the motion. Afterwards, the LiDAR odometry
factor is obtained by locally matching the new LiDAR scan with the n most recent scans. Note that not all
recent LiDAR scans are used for matching. A LiDAR scan is used only if the robot has moved more than 1m

Figure 4.2: Overview of code modules and the most notable interactions. Each robot has the same set-up, thus supporting a distributed
network.
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or 10◦ from its previous position, creating a set of "keyframes". This boosts the computation efficiency and
enables real-time execution of the algorithm.

LIO-SAM detects loop closures efficiently by looking for matching scans only within some Euclidean dis-
tance of the new LiDAR scan. Because of little drift in the odometry backbone in LIO-SAM, Euclidean distance
is a naive but effective approach to find loop closures. For larger drift in the odometry, loop closure detection
in LIO-SAM is less effective and may miss matching opportunities since uncertainty should be taken into
account, e.g. using Mahalanobis distance instead of Euclidean distance.

4.2.3. DiSCo SLAM
DiSCo-SLAM is a distributed multi-robot SLAM approach based on 3D LiDAR. This approach contributes
to improved estimation accuracy and communication efficiency compared to existing approaches [14]. It
uses LIO-SAM as SLAM engine for each individual robot, and has an original code implementation to extend
this to multi-robot SLAM. Specifically, the authors introduce two major innovations for multi-robot SLAM
regarding place recognition and distributed SLAM optimization respectively.

DiSCo SLAM improves the efficiency of place recognition by compressing 3D LiDAR scans into ScanCon-
text descriptors. These ScanContext descriptors are then exchanged and matched. In the new approach
presented in this thesis, DiSCo SLAM only processes LiDAR scans if accepted first by Wi-Closure, i.e. if the
LiDAR scans were measured in a location close to another robot’s trajectory (Figure 4.2).

Every two matching ScanContext descriptors may result in an inter-robot loop closure. After some filter-
ing steps, these are included into a factor graph for optimization of the robot trajectory. In multi-robot SLAM,
the factor graph can be divided into sets of intra-robot edges Ek

i ntr a constraining only the trajectory of robot

k, and sets of inter-robot loop closures Emp
i nter that connect trajectories of two different robots m and p. Con-

sider robots α,β ∈Ω, then the graph-SLAM optimization objective to obtain the robot trajectories xα, xβ ∈X
is split into two parts as follows.

XMLE = argmax
X

∏
k∈Ω,i∈Ek

i ntr a

pi (yi |xk )
∏

j∈Eα,β
i nter

p j (y j |xα, xβ) (4.15)

where p(y |x) are probability density functions denoting the probability of observing measurement y given
trajectory x. Generally, these probability density functions assume a Gaussian measurement noise model
with covariance matrix Σ and f (x) a nonlinear function.

p(x|y) = e−
1
2 ||y− f (x)||2Σ (4.16)

with the norm || · ||Σ denoting the Mahalanobis distance. Taking the log on both sides in Equation 4.15 does
not change the optimization result, and simplifies the objective to a nonlinear least-squares problem. DiSCo
SLAM leverages this formulation to solve the multi-robot SLAM problem distributively in a two-step ap-
proach, by alternatingly solving for a local solution of a robot’s own trajectory, and collaboratively solving
for a global inter-robot solution for the transformation between robot frames.

4.3. Simulation and experiment set-up
4.3.1. User parameter settings
To obtain the simulation and hardware results, some user parameters were changed. It is important to have
a sound argument for changing these parameters. After all, many algorithms will work after sufficient pa-
rameter tuning, but it is questionable how well performance will be in different environments or even in the
same environment but from a different angle. In this thesis, parameters from existing software packages were
therefore only changed if there was reason to.

Table 4.1 summarizes the parameters used for place recognition, and gives the settings in the original
DiSCo-SLAM code and in the simulation and hardware experiments done for this thesis. The original pa-
rameter set from DiSCo-SLAM was tuned to give good matching performance on the KITTI 08 dataset [14].
The hardware experiments purposefully used the original parameters of the baseline DiSCo-SLAM algorithm.
Only the max_range parameter was changed to reflect the smaller LiDAR range of 10 m rather than 30 m. No-
tably, in the hardware experiments the baseline DiSCo-SLAM algorithm was not able to find the correct so-
lution despite using the tuned parameter set from the original DiSCo-SLAM paper. This reflects the problem
that tuned parameters do not necessarily generalize well to other environments.
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DiSCo-SLAM parameters Original [14] Simulation Hardware Description

max_range 30 30 10 Range of LiDAR scan.

knn_feature_dim 64 64 64 Number of radial dimensions to keep
when compressing LiDAR scans to
ScanContext descriptors.

num_sector 60 60 60 Number of angular dimensions to keep
when compressing LiDAR scans to
ScanContext descriptors.

num_nearest_matches 50 50 50 Search for this number of ScanContexts
closest to input ScanContext descriptor.

loop_threshold 0.2 1 0.2 Reject matched ScanContext if distance
is larger than this value.

num_match_candidates 1 10 1 Choose this number of ScanContext
descriptors with smallest distance.

icp_threshold 5 5 5 Reject matched pointclouds if residual
error after ICP is larger than this value.

pcm_start_threshold 5 5 5 Start performing PCM if at least this
number of matches were found.

pcm_threshold 100 20 100 Two matches are consistent if
Mahalanobis distance in PCM
algorithm is smaller than this value.

Table 4.1: Parameter settings related to place recognition in the original DiSCo-SLAM code and to the simulation and hardware experi-
ments in this thesis.

The simulations in this thesis used the same KITTI 08 dataset as the DiSCo-SLAM paper, and thus the
baseline algorithm works well in simulation when using the original parameter set. However, the purpose of
the simulations in this thesis was to assess whether adding Wi-Closure could recover good performance, and
hence the baseline DiSCo-SLAM algorithm should fail on the KITTI 08 dataset. Therefore, parameters were
changed to purposefully make the baseline DiSCo-SLAM algorithm fail, but changes were not random. The
original DiSCo-SLAM algorithm matched only 9 inter-robot loop closures, while there are potentially 5544
true inter-robot loop closures within the KITTI 08 dataset. Thus, the rationale for changing parameters was
to relax loop_threshold and num_match_candidates to include more matches, since the current settings
led to many missed matching opportunities. The threshold to pcm_threshold was lowered to see whether a
more strict selection of consistent sets of inter-robot loop closures would recover performance, but this was to
no avail. These minor changes in parameters thus rendered the original DiSCo-SLAM algorithm ineffective,
but adding Wi-Closure could restore performance to similar levels as achieved with the original (well-tuned)
parameter set.

4.3.2. Ground-truth positioning with UWB sensor network
Hardware experiments on Wi-Closure were conducted in a room with a layout as depicted in Figure 4.3. Since
no GPS measurements were available indoors, a network of UWB sensors was set-up to retrieve groundtruth
positions of the robot. Five UWB anchors were distributed throughout the room. A laser measurement
device provided all pairwise distances between the anchors which were collected in adjacency matrix A.
The groundtruth coordinates pi of all anchors could then be precisely determined by minimizing error ϵ2 =
(||p j −pk ||− A j k )2 with a gradient descent algorithm from a good initial guess.

During robot operation, robot location was determined from its range measurements ri to at least three
anchors, using the following linear least-squares solution from Wang et al. [41]. Denote anchor coordinates
as pi = (xi , yi )T , robot coordinates as p = (x, y) and the distance measured between robot and anchor as di .
Then, the equation relating robot and anchor coordinates and distance measurements is

(x −xi )2 + (y − yi )2 = d 2
i (4.17)

One of the anchors is assigned to be reference anchor pr . Then, after subtracting the nonlinear expression of
the reference anchor from all other anchor equations, the resulting expression is linear in robot coordinates
(x, y).
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2(xi −xr )x +2(yi − yr )y = d 2
r −d 2

i −kr +ki (4.18)

with ki = x2
i +y2

i , i = 1, ..., N and N ≥ 2. This is rewritten in matrix form Ap = b for the distance measurements
to all anchors except for the reference anchor, where

A =

 x1 −xr y1 − yr
...

...
xN −xr yN − yr

 b =

 d 2
r −d 2

1 −kr +k1
...

d 2
r −d 2

N −kr +kN

 (4.19)

The least square solution to this linear equation is then given by

p⋆LSQ = (AT A)−1 AT b (4.20)

At each timestep, robot location p⋆LSQ (t ) is computed as the groundtruth position of the robot. To remove
outliers from these position estimates, a median filter with a moving window over time was used. The window
had a width of 10 measurements, corresponding to 0.05 seconds.

Figure 4.3: Overview of UWB set-up in the space where the hardware experiments were conducted.



5
Conclusion

The outcomes of this thesis have provided insight into the applicability of wireless sensing to support multi-
robot SLAM. Simulation studies and hardware experiments on Wi-Closure provided promising initial results.
This chapter reflects on the interpretation and limitations of the results, and ends with possible avenues for
future research.

This thesis demonstrated the benefit of wireless sensing in multi-robot SLAM through the algorithm
termed Wi-Closure. The three modules of Wi-Closure use existing techniques to address the problems in
multi-robot SLAM and wireless sensing in a novel way: (1) the multipath problem in the communication sig-
nal is addressed with PCM [25]; (2) trajectory overlap is efficiently found with a branch-and-bound type of
method; and (3) two positions are only considered to be potential inter-robot loop closures if it cannot be
established with certainty that they are a large distance apart using the Mahalanobis distance. Integration
of Wi-Closure with a state-of-the-art multi-robot SLAM approach, DiSCo-SLAM, improved results compared
to the baseline of using DiSCo-SLAM only. Using Wi-Closure decreased total computation time by 54% in
simulation and 77% in hardware experiments, without sacrificing accuracy. Also, Wi-Closure recovered the
correct trajectories with a reduction in absolute trajectory error of 89% and 99% in hardware and simulation,
respectively. These results can be explained by Wi-Closure’s ability to use the communication signal to largely
reduce the search space for inter-robot loop closures to the overlapping trajectory only, and reject false, po-
tentially detrimental, inter-robot loop closures up-front. The process is faster because the multi-robot SLAM
algorithm processes fewer inter-robot loop closures, and catastrophic optimization failure can be avoided
because harmful outliers have already been excluded by Wi-Closure.

The implications of these findings are that wireless sensing could play a role to partially solve some signif-
icant open problems in multi-robot SLAM. SLAM algorithms generally suffer the curse of parameter tuning,
where good performance requires endless tuning of user parameters which often do not generalize well to
other environments [3]. As illustrated by the simulation study in this thesis, a poor choice of parameters could
lead to inclusion of false inter-robot loop closures and hence catastrophic failure. However, despite using the
same poor set of user parameters as for the baseline method, Wi-Closure was able to recover performance.
Hence, combining wireless sensing and place recognition may make the algorithm perform well on a wider
range of parameter settings. This could make the multi-robot SLAM pipeline less sensitive to manual tuning
of the parameters. Additionally, as the hardware experiments in this thesis show, repetitive environments
are difficult for place recognition even when parameters are optimized [3, 15]. It is thus promising that Wi-
Closure was able to recover performance in those environments, since it brings the field closer to a reliable
multi-robot SLAM pipeline in repetitive environments. Lastly, real-time execution of the multi-robot SLAM
algorithms on robots without specialized hardware is a real concern [3, 9, 10]. In this area Wi-Closure showed
promising results, by at least halving computation time in simulation and hardware experiments.

The generalizability of the results is limited by the few test cases in simulation and hardware so far. One
should be especially cautious when interpreting the results on identifying the direct path from the multipath
in the communication signal, since multipath propagation is a complex phenomenon that may behave unex-
pectedly in different environments. Consequently, further research is needed to establish whether results are

25
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consistent when hardware experiments take place in other environments. In general, thorough characteri-
sation of the dependency of multipath propagation on the environment and movements of the robot would
increase confidence that wireless sensing can be useful in robotics. Some phenomena, such as reflection, are
known to induce multipath, but these do not fully explain the behaviour of multipath measurements in prac-
tice. Therefore, more research is warranted to determine which environmental factors influence the quality
of wireless sensing, such as the number of multipaths and the strength of the direct path signal.

Also, the approach in this thesis relies on multiple measurements from the communication signal over
time to reject multipaths in the AoA measurement. However, in some situations robots communicate with
each other at only a single instance, and thus not enough wireless measurements are available to use PCM to
detect the direct path and reject the multipaths. Future research should investigate whether wireless sensing
could still be beneficial in the setting of only a single wireless measurement and multipath propagation. This
will require a different approach than Wi-Closure.

Currently, Wi-Closure needs synchronous distance and AoA measurements from UWB sensors and WiFi
signals, respectively. However, the rate of these two measurements can be vastly different. UWB sensors can
easily work at a frequency of 200 Hz, but AoA is measured at only up to 2 Hz when a single or dual antenna set-
up is used. AoA sensing is much slower because the robots need to collect multiple phase measurements over
a small trajectory to determine AoA. A different reason that UWB and WiFi measurements are not necessarily
received at the same time is that they can have different ranges. For example, a robot could receive a WiFi
signal to determine AoA, while the UWB signal has been attenuated too much to obtain a usable distance
measurement. Avenues for future research therefore include whether Wi-Closure can be improved to handle
asynchronous distance and orientation measurements.

Wi-Closure assumes that trajectories overlap as soon as two positions are nearby, independent of the
orientation. This is a good assumption when using 360◦ LiDAR measurements, since orientation does not
influence at what distance the LiDAR scans overlap. However, this is different for directional cameras. Views
then only capture the environment in front of the robot. It could thus be interesting to make the approach
more amenable to directional camera views as well, by including the effect of orientation on when camera
views may overlap.

Other researchers could use the approach in this thesis to improve their multi-robot SLAM pipelines if Wi-
Closure were written to a publishable and portable package. This would be a step closer to realizing reliable
and efficient multi-robot SLAM in practice.

Lastly, a main focus in the SLAM field is to make single- and multi-robot SLAM algorithms "real-time".
However, it is inherent to the SLAM problem that there is a breaking point at which all SLAM algorithms
are not real-time anymore. One can quickly infer from the graph-SLAM objective that when covering more
ground with a robot, more factors are included into the problem, thus making it more difficult to solve. Little
effort has been made to characterize breaking points of the algorithms; rather, current research is focused on
proving that their algorithm performs real-time and better than the state-of-the-art on some tested datasets.
But there is little discussion whether these datasets collected with specific (often high-end) hardware reflect
practical problems. Therefore, an open question remains: when are improvements enough such that SLAM
algorithms are ready for use in practice? There has been an exceptional effort to standardize comparisons
for SLAM algorithms for example on the KITTI benchmark datasets and identify which algorithm works best.
As an avenue of future research, perhaps this effort could be extended to include stress-test datasets that are
more challenging than most situations that SLAM should be able to solve in practice. For example, situations
in very large environments with many features, or measurements taken with cheap noisy hardware. This
would help to identify breaking points of each SLAM algorithm. Then, the focus could move from simply
"which SLAM algorithm is best on this dataset" to characterising in which practical applications a SLAM
algorithm can perform well, and in which situations it will break.
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