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ABSTRACT
Skateboarding involves a human controlling a four wheeled vehicle that is steered by tilting the standing surface. The riding

mechanics of skateboarding have been well reported [2, 3]. The sport also includes aerial maneuvers such as jumping of stairs,
flying off ramps and flipping and rotating the skateboard. The most basic aerial trick is called the ollie. The athlete jumps up while
pushing down on the back end of the skateboard’s tail, causing a rotation about the back axle. The upward acceleration due to the
rotation together with the tail-ground impact cause the skateboard to go airborne. Midair the athlete drags the skateboard up through
frictional contact and levels it out to land the trick. The most concrete performance measure of the ollie is height according to the
Olympic judging criteria [4]. To reach maximum height the dynamics such as impact, dynamic response, and torque production are
dependent on shape, inertia and mass, which gives reason to assume an optimal shape exists. This leads to the research question:
What are the optimal geometric and inertial parameters of a skateboard for an Olympic athlete to reach maximal ollie height. The
skateboard geometry is optimized through multiphase direct collocation with the objective of maximal ollie height. A parameterized
model is created with scaling mass and inertia properties such that the geometry of the skateboard. Modelling the dynamics of the
ollie including impact and friction are done with a point mass human controller that is kineticly and kinematicly mapped to a counter
movement jump. A simplistic contact implicit impact scheme is made for a higher order optimization. The ollie height is improved
by changing the mass and inertia properties of the skateboard. Multiple optimal board shapes are generated for example a skateboard
with a smaller wheelbase can reach higher ollie height compared to an industry standard skateboard.

MATHMATICAL CONVENTIONS
x: Vector, any of the following conventions also apply to vectors and will be the bold variant
ẋ: First derivative of variable x
ẍ: Second derivative of variable x
n̂x: x-axis unit vector of frame N
xs: Variable x related to skateboard
xh: Variable x related to human
rx/y: Vector from y to x
|x|: Magnitude of vector x
x(p): Variables x during phase p
x(t): Variable at collocation point t
x(p)(t0): Variable x at initial collocation point of phase p
x(p)(tF): Variable x at final collocation point of phase p
ui: Control variable number i
J : Objective function
Jx(q): Jacobian of x with respect to q
σi: Parameter variable number i
αi: Dynamical constraint number i
γi: Constraint number i
βi: Endpoint constraint number i

IV



1 INTRODUCTION

1 INTRODUCTION
In 1978 Alan ‘Ollie’ Gelfand invented the ‘no-hand aerial’ in a
bowl. Later Rodney Mullen was known for inventing the ollie
from flat ground. The ollie, is a skateboard trick that intends
to bring the skater with skateboard up. Because the skateboard
is not tethered to the skater in any way, a precise sequence of
movements is needed to keep the skater and skateboard together
[5]. The maneuver can be described in six distinct phases which
are shown in figure 1.

Throughout the history of skateboarding, multiple differ-
ent skateboards have been developed for different pursuits. The
first shape innovation was the the kicktail [6], invented by Larry
Stevenson in 1969. This particular shape enables the user to
generate torque around the back wheels, to lift up the nose. This
new shape was essential in performing an ollie to create upward
acceleration of the board seen in the ‘pop’ phase in fig. 1 C.

By 1977, skateboarding branched into four distinct pur-
suits: downhill, slalom, freestyle, and bowl riding. For max-
imum performance in downhill riding the longboard was in-
vented. A longboard is generally longer than 0.9 [m] for max-
imum stability [7]. But this extended length does not help
with the execution of an ollie, longboards are generally hard
to ollie. In slalom, skateboards required speed and maneu-
verability, favoring shorter boards. In bowl riding, wider 0.25
[m] boards with high concavity were preferred for maximum
foothold whilst riding vertical. Meanwhile, freestyle boards,
designed for doing tricks on flat ground involved a kick-tail
to quickly turn and twist. From these 4 distinct board shapes,
new shapes evolved through a process of preference, resulting
in functional and non-functional shapes [7]. For example, non-
functional developments were fish or coffins shaped decks with
neon graphics and countless copyright infringements. Func-
tional improvements resulted in the the ‘Popsicle Stick’ skate-
board. It evolved with the purpose of freestyle, with the ol-
lie being the most basic trick. The ‘new’ symmetrical shape
also added the ability to use the nose for tricks. The popsicle
stick skateboard is still the most widely used skateboard. All
Olympic performers use a variation on this shape.

The evolution resulted in skateboards being non-standard.
Every brand uses their own measures for these dimensions [8].
Typical dimensions of a professional skateboard are shown in
the table 1. The dimensions of the skateboard are usually pre-
sented to the buyer with non specific descriptions such as mel-
low, steep, and wide. Deck dimensions are measured differently
per brand1. This makes it difficult for skaters to find the deck of
their preference.

Skaters know and feel when a specific skateboard performs
to their liking. Though, they don’t know what dimensions sup-
port their performance. The skateboard might have evolved
to an optimum throughout the years, but from an academical
and mechanical point of view, skateboard design has not been
proven optimal for specific tricks.

Some researches have tackled this problem by analyzing
the skateboard in a planar riding model [3, 9–18]. Which has
given insight in the dimensions and stability of rolling and turn-
ing. Researchers found that the stability of the skater with

1http://skateboardingismylifetimesport.blogspot.
com/2013/05/deck-length-measuring-by-company.html

Source: [5]

Fig. 1: (A)‘Preparation’: athlete lowers their centre of mass(COM) prepares
muscles for upward acceleration.
(B) ‘Pre-pop’: skateboard rotates about it’s wheels due to force of back foot.
(C) ‘Pop’: tail of the skateboard hits the ground. Skater takes advantage of the
collision between the skateboard and ground to bring the skateboard up.
(D) ‘Upward motion’: the skater and skateboard are both airborne.
(E) ‘Downward motion’: the legs are extended to ensure a firm landing.
(F) ‘Landing’: the skater absorbs the impact.

skateboard is dependent on the location, and input of the ath-
lete, wheelbase, torsional spring stiffness of roll and forward
speed [9, 11, 14]. These dimensional analyses don’t apply to
ollies. Others researched the ollie by investigating the contact
forces [19, 20] and biomechanics [5, 19, 21–28]. Two papers
investigated the optimization of the ollie without changing the
geometry [19,20]. But research does not provide how the skate-
boards’ dimensions influence the ollie. The skateboard com-
munity would benefit from knowing how the dimensions of the
skateboard influence the performance of the ollie. Now that
skateboarding joined the Olympics, knowing how to improve
performance is more important then ever. The most concrete
(i.e. criteria with physical measurement) Olympic judging crite-
ria that applies to the ollie is height [4]. I have parameterized the
geometry and inertia characteristics of a skateboard modeled as
a single rigid body with parameters: tail length, tail angle, deck
length, truck height, and wheel radius. This is an appropriate
parameterization for a skateboard designer because the width
of the skateboard is usually chosen by preference. Also, the
ollie is a movement that involves rotation in one plane, visible
in fig. 4, which means only the inertia characteristics for this
rotation are necessary.

Variable Dimension range

Kick tail angle 10-25 [deg]

Wheelbase 0.30-0.50 [m]

Wheel diameter 48-60 [mm]

Truck height 48-56 [mm]

Tail/nose length 0.10-0.20[m]

Overall length 0.74-0.85[m]

Deck width 0.19-0.22 [m]

Table 1: Typical dimensions of a skateboard

Source: [8]

1



2 METHOD

This leads to the following research question:

What are the optimal geometric and inertial param-
eters of a skateboard for an Olympic athlete to reach
maximal ollie height?

This paper aims to provide information to skaters on how
the dimensions of the skateboard influence the ollie.

2 METHOD
The chosen method to answer the research question is to find
the optimal dimensions through optimization. Optimization in
sports is helpful for finding optima in control and parameters
[29]. The steps that need to be taken to solve the optimization
problem are:

1. Understanding the Mechanics of the ollie through literature
and a video analysis

2. Optimal control problem and parameter optimization
3. Implementing the mechanics into the optimization
4. Solve the optimization problem for the dimensions of the

skateboard for maximum ollie height.

Before I start with the analysis, I will explain all terminol-
ogy of the parts of the skateboard. All parts are described with
figure 2. The tail is the inclined part with a rounded top. The
nose is the mirrored part on the other side of the skateboard.
The tail inclination is with respect to the deck. The kink be-
tween the deck and the tail or nose is called the pocket. The
deck in skateboard terminology is referred to the tail, nose and
the part in between. Though, in this paper the deck refers ex-
clusively to the indicated part in figure 2. Two trucks connect
the wheels to the axles with ball bearings. The top of the skate-
board is covered with a sandpaper-like sticker called grip-tape
(black part). Concave is the radius of the deck. All pictures in
this paper will refer to the front as the right hand side of the
skateboard and the back as the left hand side. A riding direc-
tion is assumed to be positive right. This convention is chosen
because left and right are ambiguous in skateboard terminology
as the front foot can be either the right or left leg depending on
the stance (goofy, regular respectively).

2.1 Mechanics of the ollie
To understand the mechanics of the ollie, I analyzed a video to
find motion cues during the ollie. The video was shot with a
Redlake N3 high speed camera at 1000 fps and played back at
60 fps, the time of the events is calculated by taking the time in
the video-editor and multiplying it by 1000/60. In a video editor

Fig. 2: Skateboard terminology

the exact times are noted and a screenshot is taken whenever a
distinct motion cue was observed. These motion cues (t1 − t11)
are given in figure 4.

From the video it is clear that both feet can be in contact or
not in contact with the board. The collision of the tail with the
ground is only applied to the skateboard. The athlete is barely in
contact with the skateboard and has already jumped when im-
pact occurs. This is not interpreted in the findings of Fredericks
et al. [5]. It is stated that the ground reaction force is typically
described by a high magnitude peak due to the back foot push-
ing to the tail and slamming the tail into the ground (see figure
3 green arrow). Though, after the large peak there is a tiny
peak (blue arrow). This peak corresponds to the skateboard hit-
ting the ground. The centre of mass (COM) of the human is
already moving upwards and only the skateboard collides with
the ground, not the skater. This same tiny peak is found when
performing a kick-flip, a similar movement to the ollie but with
a rotation about the x-axis(see figure 2 for convention) [30].

This is confirmed in a paper by Nakashima [23] stating that
both feet should separate from the deck before the tail of the
deck hits the ground. He also stated that the rotational veloc-
ity is mostly responsible for the skateboards’ upward motion.
When creating enough momentum about the rear axle, the rota-
tional speed will provide an upward acceleration.

The frictional forces seen in figure 3 (red arrows) also sug-
gest that the small peak is due to the impact of the skateboard.
The ollie during the ground reaction force of figure 3 was per-
formed with a horizontal velocity resulting in a frictional con-
tact of the tail scraping on the ground. When the tail hits the
ground, friction should increase on the force plate. The only
moment that friction increases is when a hard downward push
creates an increase in rolling resistance (red arrow 1), and when
the tail hits the ground (red arrow 2). The force is already below
200 [N] at that time instance, meaning that the human is either
already airborne or about to be airborne.

Friction is not only seen during the impact, but also be-
tween the feet and the griptape. Due to the normal force per-
pendicular to the board together with a friction force tangential
to the surface, the resultant force will take the form of a similar
nature as shown in figure 4, t5. If no friction would be present
during this contact the resultant force would point more down
as shown in t4, resulting in a lower ollie. The higher the coef-
ficient of friction between the foot and the deck, the more up
the resultant force will be. And lastly it can be concluded that
the bio mechanical obstruction of the feet cause the skateboard

(a) Vertical ground reaction force (b) Horizontal ground reaction force

Fig. 3: Take-off ground reaction forces of the ollie. The green
arrow is the highest peak, the blue arrow is the skateboard hit-
ting the ground, the red arrows are friction peaks due to a hard
push and tail impact respectively [5]
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t1=0.013 t2=0.129 t3=0.181 t4=0.187 t5=0.303 t6=0.431 t7=0.543

t8=0.6761 t9=0.722 t10=0.904 t11=1.097

Fig. 4: Green arrow: resultant force without friction, red arrows: force components whith friction, blue arrow: resultant force with
friction. Blue-, green- and red line are trajectory of back wheel, middle and front wheel respectively

t1 The skater is pushing firmly from his back leg and is starting to have less force on the front foot which results in the wheel just leaving the ground.
t2 The front foot starts sliding relative to the board for the first time.
t3 Tail collides with the ground, the front foot is still sliding and the back foot is barely in contact with the skateboard.
t4 Back foot is no longer in contact with the skateboard, the back wheels are not in contact with the ground anymore.
t5 The front foot reached the nose of the skateboard.
t6 Back foot contacts the board again.
t7 Board is leveled out by the front foot.
t8 Highest point is reached. Knees are fully tucked in. Feet are firmly placed on the deck.
t9 Front foot loses contact.

t10 Board is horizontal, both feet are in contact.
t11 The back wheels touch the ground and legs are almost fully streched out.

1 https://www.wired.com/2014/10/skateboard-physics-empzeal
2 https://www.youtube.com/watch?v=339k4XEvbxY

to not go further up. The knees are fully tucked in at the high-
est point, the skateboard can’t go higher through this physical
bound.

A real skateboard bends and flexes during the ollie, but I
decide to assume an rigid body model of the skateboard be-
cause of the increased complexity. Also, bending is a source
of energy dissipation in addition to the energy loss due to lo-
cal deformation [31]. This suggests that an infinitely stiff board
would dissipate the least energy, which would result in the high-
est ollies. On the other hand flexure of the board could serve as
an energy storage for the human that could not have been used
otherwise. For example in snowboarding, the flexure is used to
gain upward momentum. In this paper flexure is not taken into
account and could be an interesting topic for future researchers.

2.2 Introduction to the Optimal Control
Problem

To optimize the ollie and the geometry of the skateboard, the
observations from the previous section should be modeled nu-
merically with physics and mathematics. Before the physical
ollie phenomena are discussed, the chosen optimization scheme
is introduced.

2.2.1 Optimal Control
There are three types of optimizations to solve an optimal con-
trol problem (OCP) [32]:

Dynamic programming - This type of optimization dis-
cretizes the whole solution space and finds the global opti-
mum. A perfect method for a low dimensional system. But
when scaling to a high dimensional system the computation
time will increase exponentially.
Indirect methods - Transcribe the problem and find where
the slope of the objective is zero. Often numerically unsta-
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ble and difficult to implement and initialize.
Direct methods - Transcribe the problem then find the
minimum of the objective function. Can transcribe well
to high dimensional systems, but is prone to finding a local
optima because it searches a single trajectory through state
and control space rather than a global method like dynamic
programming.

I chose the direct method, because direct methods are generally
best for problems where dynamics and control must be com-
puted to a similar accuracy, and the structure of the control tra-
jectory is not known a priori [33]. Also, the ollie is highly non-
linear and complex movement with high dimensionality . With
this method it is possible to increase the dimensionality without
increasing the difficulty to solve the optimization.

2.2.2 Transcription and Mesh
Transcription is converting a continuous problem into a non-
linear programming problem (NLP). There are shooting meth-
ods and simultaneous methods. A shooting method uses a sim-
ulation to enforce the system dynamics, while the simultaneous
method enforces the dynamics at given points along the tra-
jectory. The chosen method is a simultaneous method called
orthogonal collocation. The software that is used is called Py-
Collo, which is direct orthogonal collocation transcription tool
for Python [34]. The dynamics and constraints are enforced
over a discretization. The discretization exists of N colloca-
tion points. The collocation points are either mesh points or
polynomial points, but all collocation points are enforced to the
constraints and dynamics. After transcription the problem is
passed to the solver IPOPT (Interior Point OPTimizer). When
the found IPOPT solution does not meet the error-tolerance
set in PyCollo, the discretization is refined and a new itera-
tion is solved in IPOPT. Mesh points, polynomial points, mesh
sections and mesh refinement are explained in figure 5. The
polynomials are of the Legendre-Gauss-Lobatto (LGL) nature.
More information on the mesh can be found in appendix A. The
integration scheme is an implicit Runge-Kutta Kth method [34].
This high order method will have a high accuracy with the dis-
advantage that all states and constraints need to be differen-
tiable.

2.2.3 Hybrid problem
The ollie problem is a hybrid problem, meaning that there
will be discontinuities in the states. For example during im-
pact the velocity states change sign instantly causing discon-
tinuities. Discontinuities are per definition not differentiable,
this means that in a higher order optimization the discontinu-
ity need to be solved differently. The chosen method is to im-
plement a multi-phase optimization. Multi-phase optimization
concerns a sequence of continuous-state phases separated by
discrete jumps in the states. Multi-phase optimization requires
pre-modeled phases which leaves no opportunity for unsought
solutions. Though, they are easier to compute and tend to be
more accurate [33]. Since the impact is prescribed in the ollie,
solving the impact velocities discretely will provide an accurate
solution.

Fig. 5: Mesh sections are indicated with the dotted vertical
lines. The first line shows an optimization solution (red line)
that has an error from the true solution (black line). With the in-
crease of polynomial points the mesh is refined and the solution
is better after a new iteration into IPOPT. If polynomial points
exceed the limit of 10 points per mesh section, the mesh sec-
tion will be made smaller. Highly nonlinear sections will refine
more giving an efficient computation

Source: [33]

Fig. 6: Parameterized skateboard. Blue variables are located
in the xy-plane. All blue variables except for hd and dcom are
optimized during the ollie optimization. Green variables are
chosen by preference. Red lines split the skateboard into 11
basic shaped segments for inertia calculation (see figure 7)

2.3 Parameter optimization
In section 2.2.1 it was made clear that with the chosen method
increasing the dimensionality of the problem is feasible. The
skateboards’ parameters can be optimized as decision variables
which increases the state space, but with direct methods this
should not be a problem. It is similar to setting an initial value
of a state free for optimization but now it will be a parameter
defining the skateboards geometry. To optimize the geometry
of the skateboard I made a parameterized model of the skate-
board that scales it’s mass and inertia values when changing the
geometry, such that the dynamical response is scaled as well. I
used the SymPy symbolic toolbox to create the parameterized
models [35].

2.3.1 Parameterized model
The most widely accepted skateboard is the Popsicle stick
skateboard (see section 1). A simplification of the Popsicle stick
skateboard is minimally described in ten variables. A symmet-
rical shape is assumed, whereas in reality nose and tail length
and inclination often vary. The simplified skateboard is made
up of straight lines only and concavity is not taken into ac-
count. An infinitely stiff skateboard is assumed as stated in sec-
tion 2.1. Eight variables are located in the xy-plane shown in
blue in fig.6. Wheelbase (lwb), deck length (ld), length tail and
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Fig. 7: Clarification on the 11 segment model. Now you can see
that there are 13 shapes, but the wheels are taken as one wider
cylinder in 2D, which results in 11 segments

nose (lt ), tail and nose inclination relative to the deck (φ), truck
height (htr), wheel radius (rw), and COM distance from deck
dcom. These will be the optimization variables because they af-
fect the 2D kinematics of the ollie directly, except for dcom. As
dcom is a function of the other parameters. All other parameters
are set at the industry standard or a measured value (see table
2). Deck thickness (hd) is dependent on the amount of layers
of veneer that is used during production. All zx-plane related
variables are shown in green in fig.6. Truck width (dtr), and
wheel width (dw), deck width (dd). They are usually chosen
by the skater through preference and won’t be part of the opti-
mization. Truck and deck width are assumed to be equal. This
leads to the variables that will be optimized for improving the
geometry of the skateboard during an ollie:

[lwb, ld , lt , φ, htr, rw] (1)

2.3.2 Mass distribution
The mass and it’s distribution influence the dynamic response
of the skateboard [36]. A mass model is made to be able to
scale the mass and it’s distribution when the optimized param-
eters are changed. The skateboards’ COM is calculated as a
composite of 11 basic constant density shapes shown in figure
7. The shapes consist of semi-cylinders, cuboids, cylinders and
triangular prisms. To calculate the mass of each part, the vol-
ume of each segment is calculated and multiplied by it’s density
except for the trucks. For the trucks, density is calculated from
a measured truck weight divided by the volume of the truck es-
timated as an triangular prism. The typical weight influencing
properties are seen in table 2. See appendix A for mass, inertia,
and geometry calculations.

2.3.3 Inertia
To know the dynamic rotational response of the skateboard, the
inertia about the skateboards’ COM is needed. When the opti-
mized parameters change the inertia should scale accordingly.
A simplified inertia is calculated from the basic shapes found in
figure 6. Inertia’s about the COM of each segment can be found
in table 3. The total inertia about the COM of the skateboard is
calculated with the parallel axis theorem:

Itotal =
11

∑
i=1

Ii +mi |⃗ri/com|2 (2)

Table 2: Industry standards and measured values from a Po-
larSkate Co. deck with Independent trucks

Description Variable Value

Wheel density (PU) ρpu 1130 [ kg
m3 ]

2

Hard maple density ρmaple 705 [ kg
m3 ]

3

Thickness veneer dveneer 0.0016 [m] 4

Specific mass PVA glue sglues 0.105 [ kg
m2 ]

3 5

Density steel ρsteel 7700 [ kg
m3 ]

Radius axle raxle 0.004 [m]∗

Width deck dD 0.21 [m]∗

Number of ply’s nply 7

Mass bearing mbearing 0.012 [kg]∗

Mass truck mtruck 0.366 [kg]∗

1 https://www.lorkindustrias.com/2 https://www.wood-database.com/hard-maple/3 https://www.timberaid.com/4 http://www.franklinadhesivesandpolymers.com∗ Measured with caliper (+-0.1mm) or with scale (+-1gram)

Table 3: Formulas of volume and inertia of each basic shape to
calculate skateboards inertia. l = length, d = width, r = radius
L = length of isosceles, β = top angle of isosceles

Shape Volume Inertia

Cuboid l ·d ·h m
12 (l

2
x + l2

y )

Triangular prism 1
2 l ·d ·h 1

2 mL2
(
1− 2

3 sin2
β
)

[37]

Cylinder πh(R2 − r2) Ix, Iy =
m
12 (3r2+ l2)

Iz =
r2

2m

Semi-cylinder 1
2 πh(R2 − r2) ( 1

4 −
16

9π2 )mr2)

A series of measurements is performed to validate the inertia
model. For more detailed information on the inertia model and
inertia measurement see Appendix A

2.4 Multi-phase Direct Collocation
Provided the framework to perform a parameter optimization
that scales mass and inertial values accordingly, the ollie op-
timal control problem should be set up next. Section 2.4 will
show the method of modeling the ollie phenomena as well as
the implementation within the optimization.

5



2 METHOD MULTI-PHASE DIRECT COLLOCATION

2.4.1 General formulation
The multi-phase OCP with phases p ∈ [1,2,3] involves deter-
mining the states q(p), control u(p), phase initial times t(p)

0 , final

times t(p)
F , global parameter variables σ, while maximizing the

objective function:

maximize J (3)

Subject to the dynamical constraints:

q̈(p) = α
(p) (4)

with path constraints,

γ
(p) : γmin < ... < γmax (5)

and with endpoint constraints:

β : βmin < ... < βmax (6)

The ollie OCP will be explained in the order of equations (2-5).
Starting with the choice of phases and objective (J ). Then de-
scribing the dynamic constraints α, consisting of the equations
of motion (EOM) for the different phases for the human and
the skateboard. Followed by the constraints γ, where the kinet-
ics and kinematics of the human, and friction are implemented.
Then endpoint constraints β, which contain modeling of impact
and the bounding of time. The initial and final state and control
values are found in Appendix A and are set to a wide margin.
If the margin is not set widely, it will be discussed during these
paragraphs. All together, this gives all information necessary to
solve the ollie OCP. Section 2.6 gives a summary of the imple-
mentations before starting the results section.

In section 2.3 are the geometrical variables described that
will be optimized. The wheelbase lwb, deck length ld , tail length
lt , tail inclination φ, truck height tr, and wheel radius rw are set
as global parameter variables:

σ1 = lwb, σ2 = ld , σ3 = lt ,
σ4 = φ, σ5 = htr, σ6 = rw

(7)

2.4.2 Phases and Objective
The phases of the ollie shown in figure 1 in section 1 are [5]

(A) Preparation
(B) Pre-pop
(C) Pop
(D) Upward motion
(E) Downward motion
(F) Landing

For the purpose of the optimization this has been simplified to
three phases:

1. Preparation phase (A,B)
2. Upward motion (C,D)
3. Downward motion (E,F)

I chose to take A and B as one phase, because the dynamics
will not change during these phases. Then the same goes for
phase C and D, except that compared to phase 1, the dynam-
ics have changed. The skateboard is now airborne, meaning
that there is no ground reaction force any more. Furthermore
between phases 1 and 2 discontinuities will occur in the ve-
locity states due to impact. By choosing the phase switch at
that specific time instance, the discontinuities can be handled
during the switch of the phases, creating a continuous domain
over both phases. More on this later in section 2.4.5. The end
of the second phase is chosen such that the objective function
can be described properly. Namely, the objective function of
the multi-phase optimization needs to be a function of initial or
final state variables [34]. The objective is to ollie as high as
possible, thus by choosing the end of phase 2 to be the high-
est point of the skateboard, the objective can be expressed in
terms of final state variables of phase 2. Because a parameter
optimization will occur simultaneously with finding the opti-
mal trajectory, the parameters should not be able to influence
the objective. For example, if the objective would be to reach
maximum height with the tip of the tail, then the parameter op-
timization will find maximum tail length, tail inclination, truck
height, and wheel radius. Because all these variables influence
the height of the tip of the tail. To make sure the objective func-
tion is independent of the parameter variables, the skateboard is
constrained to be level at the highest point and the objective is
the middle of a fictional tangent touching lowest point of both
wheels. This result in the objective function:

J = y(2)s (tF)+dcom −htr − rw (8)

Where y(2)s (tF) is the final state COM location of the skate-
board, dcom the skateboards’ COM to the deck, htr the truck
height, and rw is the wheel radius.

2.4.3 System Dynamics
The system exists of a point mass (the humans’ COM) inter-
acting with a rigid body (skateboard). The interaction between
the mass point and the body are simulated with equal and oppo-
site forces acting between the massless feet of the human and
the COM of the human. The feet locations can move along
the top of the skateboard. In figure 8 is visible that the forces
Fp1,Fp2,Ff 1, and Ff 2 are equal and opposite between the feet
and the COM. Fp1,Ff 2 are expressed in the body fixed frame
B. Fp2,Ff 2 are expressed in the body fixed frame A. The per-
pendicular forces Fp1, and Fp2 are positively bound to make
sure the feet can never pull perpendicularly on the skateboard.
I derived the EOMs using SymPy mechanics and the symbolic
toolbox [35].

2.4.3.a Human Equations of Motion

I modeled the human as a point mass. The point mass is the
COM of a human. The simplification ignores many body seg-
ments. Which means this model is not representable in terms
of metabolic leg power. Only the mechanical power output
can be estimated with this model [38]. This is confirmed by
Morin in [39]. With this approximation, inertia of the humans’
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Fig. 8: Free body diagrams of human and skateboard for phase
1. Blue letters are state variables, Red arrows are forces, the
dark blue dot indicates the back foot and the forces that are ex-
erted by the foot. Same goes for the front foot, indicated with
a cyan dot. When the foot slides, s is changed and friction will
be present. The force exerted by the feet are always perpendic-
ular to the board and can never be negative. Green arrows are
frames, N frame is the inertial frame, A and B are body fixed.
The forces are equal and opposite acting between the feet and
the human centre of mass (top). Skateboard has 3 degrees of
freedom, the human has two.

body and segments is neglected. This is reasonable because dur-
ing the ollie, the human rotates minimally on top of the skate-
board (see figure 4). The human interacts with the skateboard
with forces perpendicular to the skateboard Fp1,2 and frictional
forces tangent to the deck surface (Ff 1,2). These forces are equal
and opposite forces between the skateboard and the human as
shown in 8. The location of these force points are dependent on
the location of the feet. The back and front feet are indicated
with a blue and cyan dot and are defined on the skateboard with
variables s1 and s2 respectively. The kinetics and kinematics of
the human will be discussed in the constraint section. The hu-
man has two degrees of freedom; xh, and yh. Since the forces on
the skateboard are equal and opposite to the human, the EOM
are formed from equation 18 without rotational component and
equation 9 with a different mass matrix Mh = [mh,mh]

T : The
EOMs of the human are found with the Newton Euler equa-
tions:

ms · ẍs = ∑Fx
ms · ÿs = ∑Fy
Is · θ̈s = ∑Mc

(9)

The forces are expressed in the body fixed frames A, and B.
This results in the force of the back foot, force of the front foot
and combined the total force acting on the human:

Fbf = Fp1 · b̂y +Ff 1 · b̂x
Fff = Fp2 · ây +Ff 2 · âx

Fh = Fbf +Fff

(10)

Combining equation 9 and 10 expressed in the inertial frame N
gives the EOM for the human for all three phases:

[
mh 0
0 mh

]
·
[

ẍh
ÿh

]
=

[
Fh · n̂x
Fh · n̂y

]
(11)

Which lead to the first two dynamic constraints for all three
phases:

α
(1,2,3)
1 =

Fh · n̂x

mh

α
(1,2,3)
2 =

Fh · n̂y

mh

(12)

2.4.3.b Skateboard Equations of Motion - phase 1

The EOM of the skateboard are derived with the TMT method
[40]. As stated in section 2.4.2, the dynamics of phase 1 and
2 are different. The dynamics of phase 2 and 3 are the same.
During phase 1 the EOM are derived with a sliding joint at the
back wheel. This is done to eliminate the ground reaction forces
from the EOM. The COM coordinates are

x = [xs,ys,θs]
T (13)

The skateboard when considering the back wheel as a joint
can be described by two generalized coordinates xw (x-location
back wheels), and θs (angle w.r.t. ground) as shown in figure

Fig. 9: Free body diagram phase 1. The back wheel is now
modeled as sliding joint which reduces the degrees of freedom
to 2. This is really similar to the cart-pole problem. The equa-
tions are correct as long as the normal force at the wheel is not
negative.
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9. This is done to eliminate the ground reaction forces. The
generalized coordinates are:

q = [xw,θs]
T (14)

And the CoM coordinates expressed in the generalized coordi-
nates are:

x =

 lwb cos(θs)
2 + xw +(dcom −htr)sin(θs)

lwb sin(θs)
2 + rw +(htr −dcom)cos(θs)

θs

 (15)

Differentiating x once and taking the Jacobian with respect to
the velocities gives transformation matrix T:

Jẋ(q) = T =

1 − lwb sin(θs)
2 +(dcom −htr)cos(θs)

0 lwb cos(θs)
2 +(dcom −htr)sin(θs)

0 1

 (16)

Convective terms gk are found by taking the Jacobian of ẋ with
respect to q and multiplying it by q̇ (e.g. Jẋ(q) · q̇):

gk =


θ̇2

s

(
− lwb cos(θs)

2 − (dcom −htr)sin(θs)
)

θ̇2
s

(
− lwb sin(θs)

2 +(dcom −htr)cos(θs)
)

0

 (17)

Two sets of bound vectors are equivalent when they equal resul-
tants and equal moments about any point [36]. This means that
all the forces acting on the skateboard can be described by resul-
tant forces on and moments to the COM. The moments caused
by the back and front foot about the COM are Mcb f ,Mc f f re-
spectively. Thus the CoM-applied forces and torques Fa are:

Fa =

 −Fp1 sin(φ−θs)+Fp2 sin(θs)−Fw1 cos(φ−θs)−Fw2 cos(θs)
−Fp1 cos(φ−θs)−Fp2 cos(θs)+Fw1 sin(φ−θs)−Fw2 sin(θs)−gms

Mcb f +Mc f f


Mcb f =−Fp1(−dcom sin(φ)− ld cos(φ)

2 − lt + s1)+Fw1(dcom cos(φ)− ld sin(φ)
2 )

Mc f f =−Fp2

(
− ld

2 + s2(t)
)
+Fw2dcom

(18)
The skateboards’ mass matrix Ms = diag(ms,ms, Is) together

with the transformed CoM applied coordinates form the EOM
of phase 1:

TT MsT ·
[

ẍw
θ̈s

]
= TT (Fa −Ms ·gk) (19)

Rewriting the EoM gives two dynamical constraints valid for
phase 1:

α
(1)
3,4 =

(
TT MsT ·TT )−1

(Fa −Ms ·gk) (20)

2.4.3.c Flight Equations of Motion - phases 2 and 3

The EOM for phases 2 and 3 for the skateboard are without
ground contact. The EOMs are derived similarly as the ground
EOM, but now there generalized coordinates are the COM co-
ordinates, since the body has 3 degrees of freedom. Thus q = x,
which results in: Jẋ (q) = diag(1,1,1), and gk = [0,0,0]T . The
COM applied forces Fa are the same as the ground EOM and
don’t need to be transformed. This gives the EOM of phases 2
and 3:

Ms ·

 ẍs
ÿs
θ̈s

= Fa (21)

Which are in the same form as the Newton Euler equations (eq.
9). This leads to the last two dynamic constraints valid for phase
2, and 3:

α
(2,3)
5,6 = (Ms)

−1Fa (22)

2.4.4 Constraints
Now that the dynamics are presented, we can move on to the
constraints section. In this section the human kinetics and kine-
matics will be explained together with the friction model.

2.4.4.a Human

The human is simplified as a point mass which reduces com-
plexity for the optimization but sacrifices the reality. To make
sure the human as a point mass still gives the output of a more
complex model, the kinetics and kinematics will be constrained.

Kinematics
The kinematics of the human controller are bound by the mus-
culoskeletal restrictions of the human body. The musculoskele-
tal restricions are difficult to comprise in a point mass model.
The first restriction is that the feet can only be within a cer-
tain distance of the human COM. This is not simply the leg
length, because the COM location of the human will change
when the legs are moved. The maximum and minimum feet lo-
cation with respect to the COM of the human are found with

(a) 45.5” world record ollie. 1 (b) Yeadon model in same
configuration

Fig. 10: Reconstruction of world record ollie
https://theberrics.com/world-record-ollie-footage1
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Yeadon, a package for Python to configure a humanoid to a po-
sition and find distances between points [41]. The model is set
to a 1.80[m] tall human and is matched to a picture of the world
record ollie of Jake Hayes. The reconstruction is seen in fig.10.
The largest possible distance measured with the same model but
now configured to an upright position. This leads to the first two
constraint:

γ
(2,3)
1 : 0.466 < yh − rcomH/bf · n̂y < 1.13

γ
(2,3)
2 : 0.466 < yh − rcomH/ff · n̂y < 1.13

(23)

These constraints describe that the vertical (n̂y) distance be-
tween the feet and the COM can never be outside of the given
bounds. The constraint will become very complex if it would
be the magnitude of the vector between the feet and the COM
thus a vertical approximation is chosen. This constraint will not
exceed musculoskeletal limits if the feet do not separate an an
extreme distance (split). To make sure this behaviour does not
happen, another constraint is implemented that the feet should
never be separated more from each other than within a reason-
able operating distance.

γ
(1,2,3)
3 : 0.1 < |rbf/ff|< 1 (24)

The skater should not leave the board in horizontal direction
either. This gives the next constraint:

γ
(1,2,3)
4 : −0.3 < xh − rcomS/comH · n̂x < 0.3 (25)

To make sure the feet never leave the skateboard, s1 and s2
are positively bound from the end of the tail and the left pocket
of the deck respectively (see fig 8. To make sure the feet do
not leave the skateboard on the other end of the parts, two con-
straints are added:

γ
(1,2,3)
5 : 0 < s1 − lt < ∞

γ
(1,2,3)
6 : 0 < s2 − ld < ∞

(26)

The feet can still be in a no contact scenario as seen in section
2.1. This is simulated by when zero force is exerted.

Kinetics
The kinetics of the human are bound to the characteristics of
the countermovement jump (CMJ) during the first phase of the
ollie. The CMJ motion is chosen because, 76.3% of the vari-
ance in the performance of the ollie maneuver can be explained
by the CMJ (CMJ) [25]. The CMJ is reported to have good re-
liability and is a strong assessment of lower-body mechanical
power [42]. During a vertical jump, joint torques, knee exten-
sor force, hip abduction forces all map to one output variable:
the ground reaction force. The only sensible way to capture
the kinetics of a human jumper for a point mass model is the
ground reaction force, because only more complex approxima-
tion can capture contributions of individual segments. Thus,

Fig. 11: Phases during CMJ. During unloading, the human low-
ers their COM quickly. During the eccentric phase, the gained
downward velocity during the unloading phase is braked until
the lowest point is reached which is at the amortization. Dur-
ing the concentric phase the legs are stretched out and upward
speed is gained until the take-off. At take-off the vertical speed
is maximal.

Source: [42]

the ground reaction force of the CMJ is used to realize a real-
istic COM human jumper model. In figure 11 a typical ground
reaction force for a CMJ is shown. By constraining the vertical
rate of force development (RFD) (dF/dt, slope in figure 11),
the maximum force Fmax, maximum displacement ∆s, and max-
imum mechanical power P, the total mechanical output of the
legs is constrained for a simple point mass model. By constrain-
ing the RFD, the shortening or lengthening cycle is simulated.
The maximum force will make sure the force does not exceed
the maximum capabilities. By constraining the power, given
a constrained force, the maximum velocity is also constrained
due to P = Fvrel . Due to a constrained maximum distance(∆s)
the force can work over, the work done is also constrained due
to W = Fds, given a constrained force. The data for the RFD,
Fmax, ∆s, P is taken from a Division-I male, soccer players with
a mean height of 179.5[cm], weight of 75.5[kg], and age of
19.65 years [42]. ∆s and P are calculated in the paper with a
point mass approximation which is important to map to the op-
timization properly. The data was measured for two legs simul-
taneously, which is unfortunate for the optimization since the
two legs can work separately and which might lead to different
kinetic data. Though, the constraints are set on the sum of the
forces and the forces separately due to the possibility of out of
phase pushing and pulling which could result in a combined sat-
isfaction of the constraint but individual legs could exceed the
physical limitations. The maximum distance is constraint im-
plemented similar to equation 23 with the same upper bound:

γ
(2,3)
7 : 1.13−∆s < yh − rcomH/bf · n̂y < 1.13

γ
(2,3)
8 : 1.13−∆s < yh − rcomH/ff · n̂y < 1.13

(27)

The maximum force constraints are set at the sum of all vertical
forces Fh · n̂y, and to the vertical components of the back and
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2 METHOD MULTI-PHASE DIRECT COLLOCATION

front feet (Fbf · n̂y,Fff · n̂y)

γ
(1,2,3)
9 : −32.61mh < Fh · n̂y < 32.61mh

γ
(1,2,3)
10 : −32.61mh < Fbf · n̂y < 32.61mh

γ
(1,2,3)
11 : −32.61mh < Fff · n̂y < 32.61mh

(28)

The unloading RFD (−41.8mh) and eccentric RFD (196.41mh)
are implemented in the constraints:

γ
(1)
12 : −41.8mh < ˙Fh · n̂y < 196.41mh (29)

The power is found per leg by calculating the dot product be-
tween relative velocity between the foot and the human COM
and the resultant force acting on the foot.

Pb f = ṙcomH/b f ·Fbf
Pf f = ṙcomH/ f f ·Fbf (30)

Just like the maximum force constraints, the legs can work out
of phase (one leg negative work, one leg positive). To avoid
that the limits are exceeded the power needs to be bound ab-
solutely. Absolute values are not feasible in higher order opti-
mization problems like this one [33]. Though a trick like these
constraints can create an absolute bound in the constraint space,
resulting in the following constraints:

γ
(1)
13 : −54.62mh < Pb f +Pf f < 54.62mh

γ
(1)
14 : −54.62mh < Pb f −Pf f < 54.62mh

γ
(1)
15 : −54.62mh < Pf f −Pb f < 54.62mh

(31)

The horizontal (n̂x) direction forces are now unconstrained. The
data in from the CMJ paper does not include any horizontal
forces. Since the body of the human does not rotate during the
jump, the horizontal forces are approximated with maximum
abduction force. The maximum abduction force is obtained by
pushing sideways against a scale whilst standing up-straight.
This maximum force bound is not very accurate, but the power
of abduction force is captured in the power calculation in equa-
tion 30. This leads to a reliable abduction force approximation.
With the constraints:

γ
(1,2,3)
16 : −200 < Fff · n̂x < 200

γ
(1,2,3)
17 : −200 < Fff · n̂x < 200

(32)

Only the maximum force constraints γ11−13 and γ18−19 apply
to all phases. The CMJ constraints are only applied to the first
phase, since phase 1 concerns the CMJ movement.

2.4.4.b Friction

According to section 2.1 the feet are sliding along the griptape
to level the skateboard out and drag the skateboard up during
the preparation phase 1, and upward motion phase 2. The used
method implements static and dynamic friction and is a sim-
plification to the frictional contact implicit optimization called

Fig. 12: Relaxed impact formulation. Contact mode is changed
at each mesh point, the contact force λ is selected by solver at
each collocation point. Source: [1]

the relaxed formulation by Patel et al. [1]. This method is able
to have unplanned discontinuous frictional contact with direct
collocation without a hybrid method. Usually this would be
considered impossible since direct collocation enforces the dy-
namics and constraints over a continuous domain, where dis-
continuities in the system dynamics usually lead to infeasibil-
ity [32]. The downside is that with this method it is difficult
to converge to a feasible solution without a proper initial guess
and the computation time is rather high [1, 20]. I have found a
way to simplify this method, which represents a contact implicit
frictional contact that solves optimally under 2 minutes without
initial guess. To explain the simplifications and for the sake of
clarity, I will first explain the impact method of Patel et al., but
I won’t use this in my optimization.

The relaxed formulation is shown in figure 12. It imple-
ments a contact constraint that will look one time-step ahead to
be able to initiate a contact force before impact. Let Cc(q) be
the relative distance between the two bodies that impact, and
let the normal force Fn be a control variable. The following
constraints will ensure that only when the next time step is in
contact (Cc(q(t +1)) the normal force Fn > 0 when there is no
contact at the next time step, Fn must be zero:

Fn Cc(q(t +1) = 0, Cc(q)≥ 0, Fn ≥ 0 (33)

This result of this formulation is shown graphically in figure 15.
When constraining an optimization problem likewise, the solver
will find the normal forces needed to comply to the non pene-
tration constraint Cc(q) ≥ 0. This method has been used in the
optimization of an ollie. Though the initial guess needed to be
similar to the solution to find feasible solutions. The model with
a full body human operator took 43 minutes to solve [20]. To
simplify the model I excluded this impact formulation, because
I assume that the feet are always located on the skateboard, but
can be out of contact by exerting zero force. In this case, where
the human is not modeled with multiple segments but as a point
mass, it is possible to exclude equation 33. By setting the nor-
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2 METHOD MULTI-PHASE DIRECT COLLOCATION

Fig. 13: Friction model as a composition of different effects
including a) Stribeck effect, b) viscous dissipation, c) coulomb
effect, d) combined model

mal forces of the feet Fp1,Fp2 as control variables. The foot
location is also regulated by a control variables. The accelera-
tion is controlled instead of the foot location itself to still have
smooth realistic foot trajectories. Resulting in the control vari-
ables:

u(1,2,3) = [Fp1,Fp2, s̈1, s̈2] (34)

Now that the difficult to solve contact formulation by Pa-
tel in equation 33 is replaced by a simplified formulation, I will
continue with the friction model that is used in this optimiza-
tion. Friction is present during the ollie when sliding the foot
along grip-tape, when rolling, and when the tail hits the ground
if the tail has a relative velocity tangential to the impact surface.
Friction is a highly non-linear and discontinuous phenomenon.
In general the dominant friction components that have been
modeled include static friction (A force that opposes the input
force at zero velocity), Coulomb friction (constant motion op-
posing force at non-zero velocity), viscous friction (when fluid
exists between the contact surfaces), and the Stribeck effect (a
speed dependent friction) [43].

Just like the normal force, friction can also only exist dur-
ing contact. The friction is solved with a set of constraints.
The first step to implement this friction is to create slack vari-
ables that divide the friction forces as described in the system
dynamics Ff 1,Ff 2 into a positive and negative components. For
simplicity reasons I will only derive the friction of the back foot
along the skateboard. The front foot friction is obtained by ex-
actly the same process. By replacing 1 to 2 in the following
equations, the front foot friction is also realized

Ff 1 = F+
f 1 −F−

f 1 (35)

As described in section 2.4.3, the forces perpendicular to the
skateboard are positive definite such that the force can never
pull on the skateboard. Now the created slack variables also
need to be positive definite:

Fp1 ≥ 0, F+
f 1 ≥ 0, F−

f 1 ≥ 0 (36)

Static and dynamic friction is bound by the friction cone shown
in figure 14. The magnitude of dynamic friction is Fp1 µ with
a direction opposed to the relative sliding velocity (see figure
14. The static friction is bound by the whole surface of the
friction cone and is only possible when the feet are not sliding.
To realize this, another slack variable ψ is introduced which
represents the magnitude of the relative velocity ṡ1 between the
foot and the skateboard.

γ
(1,2,3)
18 : ψ1 + ṡ1 ≥ 0

γ
(1,2,3)
19 : ψ1 − ṡ1 ≥ 0

(37)

Now static friction can be implemented with a set of constraints:

γ
(1,2,3)
20 : µFp1 −F+

f 1 −F−
f 1 ≥ 0

γ
(1,2,3)
21 : (µFp1 −F+

f 1 −F−
f 1) ψ1 = 0

(38)

The first constraint assures that the positive component or the
negative component of the friction is always smaller than µFp1.
The second constraint makes sure that when the foot slides
(ψ1 ̸= 0), the sum of the positive and negative friction compo-
nents equal µFp1. It is important that when sliding in positive di-
rection, the negative friction component F−

f 1 should equal µFp1

and F+
f 1 = 0 and vice versa. This is realized with the following

constraints:

γ
(1,2,3)
22 : F+

f 1(ψ1 + ṡ1) = 0

γ
(1,2,3)
23 : F−

f 1(ψ1 − ṡ1) = 0
(39)

This type of constraint (A ·B = 0) has three possible solutions
A = 0, B = 0, or A,B = 0. By filling in a numerical example,
the desired behaviour is shown. For example looking at the first
constraint, when ṡ1 = −1, then ψ1 + ṡ = 0 and F+

f 1 can be a
positive number. Then looking at the second constraint, when
ṡ = −1, then ψ− ṡ = 2 and F−

f 1 = 0. Combining this with the
second equation in equation 38 gives: (µFp1 −F+

f 1 −0) ·0 = 0,
which results in F+

f 1 = µFp1. This is exactly what it should be
given a negative relative sliding velocity. The friction for the
front foot will be another six constraints: γ

(1,2,3)
24−30

2.4.5 Endpoint constraints
To fully describe the ollie optimization problem, all phases need
to be glued together. In the multi-phase optimization scheme
all initial and final time variables are treated as separate vari-
ables. By constraining the corresponding variables between the
phases, the variables can be treated as one variable over all three
phases.

2.4.5.a Impact

Just before the skateboard is airborne, the tail hits the ground.
During this collision the ground exerts a linear impulse normal
to the ground. The method by Vallery and Schwab [40] is based
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2 METHOD MULTI-PHASE DIRECT COLLOCATION

Fig. 14: fc is the reaction force exerted by the ground on the
box, which is composed of a normal force fn equal and opposite
to mg and friction fw equal and opposite to fext . The box is
stationary if fext < fn µ. Static friction is bound by − fn µ <
fw < fn µ. But when fext > fn µ, the box will start to slide
with velocity v and fw = fn µ. Dynamic friction is described
by fw =−sign(v) fn µ. The top of the cone is unbound, because
when a vertical external load would be applied, the normal force
would change in magnitude.

Source:https://scaron.info/robot-locomotion/

on the Newton impact law. The Newton impact law rewritten in
terms of the optimization states is:

q̇(2)
rel (t0) =−e q̇(1)

rel (tF) (40)

Where q̇(2)rel (t0), and q̇(1)rel (tF) are the relative speeds just after im-
pact at the first collocation point of phase 2, and just before im-
pact at the last collocation point of phase 1 respectively. e, the
empirical constant related to the amount of dissipated energy
during impact, is called the coefficient of restitution (COR).
When e = 1 we have mechanical energy preservation, and for
e = 0 all impact energy is lost into dissipation. Now lets write
this equation in matrix form. Let Cc(q) be the relative distance
normal to the contact surface. By taking the Jacobian with re-
spect to the generalized coordinates and multiplying it with the
generalized velocities we find the relative generalized velocity:

d
dt

(Cc(q)) = Jq(Cc(q)) q̇ = Cc,i q̇ (41)

Combine equations 40, and 41 to get:

Cc,i q̇(2)(t0) =−e Cc,i q̇(1)(tF) (42)

Now by introducing a Langrange multiplier ρc which is used
to solve the reaction impulse calculated with Cc,i ρc the linear
impulse and momentum equation is:

Ms q̇(2)(t0)+Cc,i ρc = Ms q̇(1)(tF) (43)

Where Ms is the mass matrix of the system. Now writing equa-
tion 43 with equation 41 as an added constraint the velocities

Fig. 15: Three impact models used in optimization [1].

after impact are solved. This gives the first four endpoint con-
straints that define the impact of the tail:

β1,2,3,4 :
[

Ms Cc,i
Cc,i

T 0

] [
q̇(2)(t0)

ρc

]
=

[
Ms q̇(1)(tF)

−e Cc,i
T q̇(1)(tF)

]
(44)

Because the states in phase 1 are expressed in different vari-
ables than phase 2 as shown in section 2.4.3, variables q̇(1)(tF)
needs to be rewritten to the CoM coordinates xs,ys, and θs. Also
the initial values of variables x(2)s (t0),y

(2)
s (t0) are dependant on

the final time variables x(1)w (tF),θ
(1)
s (tF) and are set as an end-

point constraint

β5 : x(2)s (t0) =
lwb cos(θs)

2
+ x(1)w (tF )− (−dcom +htr)sin

(
θ
(1)
s (tF )

)
β6 :y(2)s (t0) =

lwb sin(θs)

2
+ rw +(−dcom +htr)cos

(
θ
(1)
s (tF )

) (45)

This method is a discontinuous method where velocity
states will have jumps as seen in figure 15, second graph. This
is opposed to continuous methods that will continuously change
the velocity state over time (figure 15 first graph). For exam-
ple Ackerman and van den Bogert [29] modeled the ground as
a spring damper system that exerts a force when the contact
point penetrates the contact surface with a gait optimization.
When spring damper constants are implemented correctly, the
energy should be dissipated during contact. The advantages of
this model is that in an optimization the states are all continu-
ous. This makes it possible to have unplanned impact (contact
implicit optimization). In other words, you are not prescribing
when and how impact occurs. The disadvantage of this model is
that it is rather unaccountable for the actual force output. When
solving such a problem imagine that an object is about to en-
counter impact and penetration depth equals 0, the states have a
velocity state v towards to the contact surface. The penetration
depth of the next time step with a simple forward Euler integra-
tion will be vδt. This means that the magnitude of the time step
will influence the penetration depth, which in terms influences
the force output. The used discontinuous method will be inde-
pendent of time step size and the ground does not have to be
modeled complexly to get a desired force output. Furthermore,
the behaviour of the impact will be constant over different iter-
ations with different solutions, and will be more precise since a
higher order optimization method can be used.
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2.4.5.b Time

The result of the optimization should be continuous in time over
all three phases. This is obtained by endpoint constraints:

β7 : t(1)F = t(2)0

β8 : t(2)F = t(3)0

(46)

The time variables are set as optimization variables, mean-
ing that the optimization should know when to switch phase.
This is done by the impact angle of the skateboard. This is a
function of the parameter values:

θimpact =−atan

(
htr + lt sin(φ)+ rw

− ld
2 − lt cos(φ)+ lwb

2

)
(47)

The end of phase 1 should equal this angle. This is obtained
with endpoint constraints:

β7 : θ
1
s (tF) = θimpact (48)

To make sure the human starts the ollie from a standing
position, the vertical forces at the beginning of phase 1 are equal
to the bodyweight:

β8 : Fh · n̂y = mhg (49)

The definition of landing the ollie has been set to the back
wheel touching the ground at a minimum of 0 [rad] (level) and a
maximum of 1

6 π[rad] (rotated counter clockwise sligthly). The
optimization stops when the backwheel touches the ground.

β9 :
−lwb

2
sin(θs(t

(2)
F ))−rw+ys(t

(2)
F )+(dcom−dtr)cos(θs(t

(2)
F ))

(50)
Variables θs,s1,s2, ṡ1, ṡ2,xh,yh, ẋh, ẏh have equal endpoints be-
tween phase 1 and 2 (b9−18). All state variables have equal end-
points between phase 2 and 3 (b18−32). Initial and final endpoint
constraints are set to a wide range and are found in Appendix
B, 4.

2.5 Settings
The NLP tolerance is set to 1e−8, and the mesh tolerance is set
to 1e−3. The amount of mesh sections for the first two phases
are set to 30, phase 3 is set to 10 mesh sections. The landing
phase is not as important as the preparation and upward motion
phase as those define the final height and thus the objective.

2.6 Summary
To summarize all the findings, the general formula for the multi-
phase ollie OCP is implemented in one overview. The objective
function for the ollie OCP is

maximize (y(2)s (tF)+dcom −htr − rw) (51)

Subject to the dynamical constraints in phase 1:

α1 =
Fh·n̂x

mh

α2 =
Fh·n̂y

mh

α
(1)
3,4 =

(
TT MsT ·TT

)−1
(Fa −Ms ·gk)

(52)

And for phase 2 and 3:

α1 =
Fh·n̂x

mh

α2 =
Fh·n̂y

mh
α5,6 = (Ms)

−1Fa

(53)

With path constraints during phase 1:

γ3−6,
γ9−30,

(54)

And during phase 2 and 3:

γ1−11
γ16−30

(55)

With endpoint constraints β1−9. In the first phase the state vari-
ables q(1), control variables u(1)c , slack control variables u(1)s are:

q(1) = [xw, ths,xh,yh, ẋw, ṫhs, ẋh, ẏh]

u(1)
c = [ f p1, f p2,dds1,dds2]

u(1)
s = [F+

f 1,F
−
f 1,ψ1,F+

f 2,F
−
f 2,ψ2]

(56)

During the second and third phase the state variables q(2,3), con-
trol variables u(2,3)c , slack control variables u(2,3)s are:

q(2,3) = [xs,ys,θs,xh,yh, ẋs, ẏs, θ̇s, ẋh, ẏh]

u(2,3)
c = [Fp1,Fp2, s̈1, s̈2]

u(2,3)
s = [F+

f 1,F
−
f 1,ψ1,F+

f 2,F
−
f 2,ψ2]

(57)

With the global parameters variables σ as any combination of
the optimized geometric parameters:

σi ∈ [lwb, ld , lt ,φ,htr,rw] (58)

The results will show several optimizations with different
combinations of parameter optimizations to search the solution
space for optimal shapes. The first set of optimizations will
be without optimized parameter variables to show proper func-
tioning of the model. The second set of optimizations will be
single variable optimizations where only one variable from the
optimized parameter variables is chosen to be optimized. The
third set of optimization will be variations to multiple optimized
parameter variables. The results will show the optimal trajec-
tories and geometries of these optimizations together with de-
tailed trajectories over time a video posted on youtube created
by the model.
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3 RESULTS

Fig. 16: Optimal control benchmarks for ollie without parameter optimization - Schematic skateboard set-ups used to find the
optimal ollie. The table shows important benchmarks. Jump height is calculated by minimum vertical position minus take-off
vertical position of the person. The impact loss is calculated with kinetic energy of the skateboard after impact minus kinetic energy
of the skateboard prior to impact. Other variables are direct output from optimization.

3 RESULTS
Figures 17, and 18 show 9 skateboard shapes that have im-
proved ollie height compared to the industrial standard Popsicle
stick skateboard geometry (Base in figure 16) when optimized
for optimal ollie height. The best performing skateboard shape
(number 2 in figure 18 improved ollie height by 11.1 %. All
optimizations are with a null seed initial guess and solved with
an optimal IPOPT exit status with the desired NLP tolerance
and mesh tolerance found in 2.5. All optimizations were solved
within 3 minutes. Four skateboards did not show improvement
in ollie height, which are indicated with a red dot. These are
per definition local maxima, because the base optimization is
a higher solution, which is in the solution space of these opti-
mizations.

3.1 Optimal Trajectories and
Geometries

3.1.1 No parameter optimization
The no parameter optimization was done test the real life sce-
nario that a long board and a penny board are more difficult to
ollie. The longboards’ dimension are set to an arbitrary OEM
longboard.6 The penny boards’ dimensions are set to an arbi-
trary penny board. A penny board is usually made from plastic.7

The coefficient of friction for the plastic penny is set to 0.2 [44].
For a comparison if the shape of a penny could actually ollie
higher a version with griptape is also shown. The three boards
are optimized to verify the optimization. Longboard complies
with the real life scenario and the optimization shows a 31%
decrease in ollie height compared to the base . The penny board
with a plastic top (lower coefficient of friction) is able to ollie
14.2% lower than the base.

The base skateboard is able to ollie 31% higher than the
long board. The longboards’ maximum angular velocity is

6https://hlcskateboardfactory.com/shape:MB701
7https://skateboardelite.com/what-is-penny-board/

40.0% lower compared to the base skateboard. This is prob-
ably due to the fact that the inertia and mass of the long board
are higher which will make it harder for the human with lim-
ited power to rotate it and get it up. The jump height of the
human on the long board is 66.5% lower compared to the base,
meaning that a lot of power is going into the long board in-
stead of jumping up. Resulting in the human mainly to tuck in
without jumping). The impact loss is lower for the long board.
This could be correlated to the fact that it reaches lower speeds.
The contrary is seen with the plastic penny board. It reaches
higher speeds and loses more energy during impact. The penny
boards are 5.7% lighter than the base board but have a lower
inertia mainly due to the smaller size of the penny board. With
a plastic penny board, the human is not able to ollie higher than
with the base skateboard. The human jumps 50.0% and ollies
0.124 [m] lower with the plastic penny board. With grip-tape
the penny board is able to ollie higher than the base skateboard.
In real life the penny board and long board are harder to ollie.
The same is shown in the optimization for the long board. This
suggests that the kinetics of the optimization are similar to real-
ity. The penny with griptape is able to ollie higher than the base
skateboard, which could have multiple causes. One of them is
that a real penny board is made of plastic which deforms more
than wood. Which could cause more dissipation of energy and
a more difficult control to ollie. The other cause could be that
the optimization is lacking kinematic constraints for the human.
In real life it is harder to maintain balance when your feet are
in a narrow stance. During the balancing narrow stance, in real
life it could be more difficult to exert maximal leg power.

3.1.2 Single parameter optimization
All single parameter optimizations are visible in figure 17.
Compared to the base skateboard, all single parameter opti-
mization skateboards were able to ollie higher except for the tail
length optimization. The difference in ollie height between the
base and the single parameter optimizations is minimal (0.05-
0.023 [m]) which suggests that the base skateboard is very close
to it’s optimum when only one variable can be changed. All
single parameter skateboards except for the wheelbase and tail
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3 RESULTS
OPTIMAL TRAJECTORIES AND

GEOMETRIES

Fig. 17: Geometry solutions and benchmarks for single parameter optimization. The best performing optimization is 2, where the
wheelbase is optimized.

Fig. 18: Schematics of multiple parameters optimizations. Table shows important benchmarks.

length optimizations show similar human jump height. Which
indicates that with these configurations the human is able to ex-
ert similar power over time. With a smaller wheelbase the hu-
man was able to jump higher. The main differences are found
in the weight and inertia reduction which could be the main
‘drive’ of the single parameter optimization. Geometrically the
optimizer isn’t able to find a large ollie improvement as seen
between the base and long board. Still, the optimizer can find a
higher optimum by decreasing weight and inertia with all single
parameter optimizations except for the tail length and tail incli-
nation optimizations. Which indicates that inertia and weight
reduction is a positive influence for ollie height. Dynamically
this makes sense because with lower mass and inertia values it
easier to lift and rotate the skateboard. The wheel radius, truck
height, and tail inclination are hitting the bounds of 0.0125[m],
0.045[m], and 0[deg] respectively, which may indicate a local
maxima. Also the tail length optimization did not find a higher
maxima than the base optimization which makes it a local max-
imum per definition, because the base skateboard is a possible
solution for this optimization.

3.1.3 Multiple parameter optimization
All multiple parameter optimizations are visible in figure 18.
When multiple parameters are optimized the ollie height is im-
proved by 0.074-0.106 [m] compared to the base skateboard.
The first column, ’All’ in figure 18 shows the set-up when all

parameters are optimized. As seen with the single parameter
optimization the tail length is causing strange optima. Once
again it is shown that when not optimizing the tail length, the ol-
lie height is higher. This proves that the optimization of all vari-
ables is a local optimum, since the optimum found with the ‘no
lt ’ (figure 18) skateboard is a possible solution to the optimiza-
tion. Same goes for the full deck optimization. The full deck
optimization does not optimize wheel radius and truck height.
The ollie height for this optimization is 0.021 [m] lower than
the same optimization with fixed tail length. This proves that
the full deck optimization is a local maxima which is caused by
the optimization of the tail length. The cause of hitting a local
optimum because of the tail length needs further investigation.
When the tail length increases the impact loss increases as well.
This is logical when thinking of the tail speed v = ω× r, which
means, the larger the distance between the tip of the tail and
COM of the skateboard, the larger the local speed at the tail.
The larger the speed at the tail, the more momentum is lost dur-
ing impact, which is the reason for the higher impact losses.
The impact loss is dependant on the mass and speed, the higher
the mass or the speed, the higher the impact loss will be. For
example in the ‘no lt ’ (figure 18) optimization the angular ve-
locity before impact is more than twice as high compared to the
base optimization. But the mass is also 0,878[kg] less. Thus,
the large angular velocity causes the impact loss to be higher,
but the mass reduction reduces it, only causing a slight gain in
impact loss.
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3 RESULTS DETAILED TRAJECTORIES

Fig. 19: Optimization of base skateboard. Corresponds to results in figure 16.1. Graph (1) shows the trajectory of the skateboard,
(2) are the positions, (3) are the speeds, (4) are the forces. The blue dotted lines are the phase switches. First the human lowers
their COM (pink,2) by decreasing vertical force (purple, 4), at minimal human COM height there is maximal force and zero speed
(pink,3). Maximal force is almost fully caused by the extension force of the back foot (blue,4). Speed is increased until impact and
it reaches maximum speed (pink,3 at impact). Just before impact the skateboard rotates its angle (green,2) from 0 to impact angle.
Mid air the speeds are constant except ones effected by gravity (orange,pink,3). The moments forces are exerted the velocities
change (t=0.5, t=0.63). The human reaches its highest point before the skateboard. At the highest point force is exerted to ‘catch’
the skateboard. Landing is achieved by stretching and landing on the back wheel

The most promising optimizations are analyzed further by
looking into the states and control over time and compared to
the base optimization. The single parameter optimizations show
little improvement. The best performing single parameter op-
timization is the wheelbase optimization with an increase of
2.6%. The best performing multiple parameter optimization
are ‘no lt ’ (figure 18) (12.0% increase in ollie height) and deck
without tail length (10.7% increase in ollie height). All other
detailed figures of the optimizations are found in Appendix A.

3.2 Detailed trajectories
The results of the optimizations are presented stacked vertically
with a shared x-axis which represent time in figures 19, 20,
21, and 22. The top plots in these figures are the trajectories
shown with snapshots at certain time increments. The human
centre of mass corresponds with the time of the snapshot. The

phase switches are indicated with the blue dotted lines. The
positions of the back and front feet are indicated with the dark
blue and light blue dot respectively. The second and third plots
in these figures are the positions and the velocities respectively.
The bottom plots show the forces exerted by the human act-
ing on the skateboard. All states and forces are expressed in
the N-frame convention visible in the left corner of the trajec-
tory. The angle and angular velocity are expressed on a second
vertical axis at the right of the figures because the units are dif-
ferent from the rest of the states. The forces are presented with
the extension force and abduction force. The extension forces
correspond to N-frame y direction and abduction forces act in
N-frame x-direction as explained in section ref. The blue line
corresponds to N-frame y-direction leg force acting between
the center of mass (red dot in trajectory figure) and the back
foot (blue dot in trajectory figure), while the orange line cor-
responds to the N-frame y-direction leg force acting between
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3 RESULTS DETAILED TRAJECTORIES

the center of mass and the front leg (cyan dot in trajectory fig-
ure). The abduction forces are the forces acting between the
feet and the COM in N-frame x-direction. For example, be-
fore impact, both legs are pushing vertically down on the board,
after impact the front foot is pushing sideways in positive x-
direction. The sum of the N-frame y-axis forces is presented as
the purple line. To see all trajectories that will be presented in
the following paragraphs with forces as a video, visit: https:
//www.youtube.com/watch?v=jw5DmNnvD7c. In the
video static friction and dynamic friction are shown to be per-
forming properly.

3.2.1 Base skateboard optimization
The first figure concerns the optimal control problem without
parameter optimization shown in figure 19. The trajectory is
very similar to the trajectory seen in figure 4. Though you have
to take into account that this ollie is a standing ollie without an
initial horizontal velocity, whereas figure 4 shows a riding ol-
lie. The skateboard relative to the human first moves forward,
and just before the impact it rapidly moves backward followed
by the tail hitting the ground. The backwards movement hap-
pens such that the human can effectively pull the skateboard up
and forward with friction and perpendicular force which results
in the skateboard being straight under the human at the high-
est point. The backwards velocity is clearly visible in fig. 16
speeds, where the blue line before impact is at the largest neg-
ative velocity. After impact the velocity will gradually become
positive and ending at an almost 0 x position of the skateboard
(blue line in positions at second dotted line). If there would not
have been a backwards movement, the skateboard would have
been pushed out of reach of the human’s feet when the board
is leveling out. The skateboard is leveled out by a positive ab-
duction force of the front foot (red line forces at t = 0.47−0.55
and t = 0.62− 0.65). These forces result in a decrease in an-
gular rotation (green line speeds, same time span), and a level
skateboard at the highest point (green line positions at highest
point = 0). You can see that the back foot is almost fully lo-
cated at the pocket of the skateboard. This is the point with
the lowest velocity of the tail, the tip of the tail has the high-
est velocity due to v = ω× r. When the board is rotating the
power that can maximally be exerted by the human legs is lim-
ited by the force and the relative velocity: Pleg = vrelF . This
means that if the intention is to jump up as high as possible, the
relative speed should be as low as possible, which is why the
foot should be in the pocket. When the foot would be on the
tip, more distance is lost which could have resulted in a higher
jump. The impact changes the momentum of the skateboard. In
the speeds graph it is visible that the angular velocity at impact
vastly reduces (green line, 1082 to 286 [deg/s]), whilst vertical
velocity is gained (orange line, 3 to 5 m/s). The human starts
with their knees slightly bent, and having full body weight on
the skateboard. In the first phase the human lowers their COM
in order to prepare the legs to jump. This is called the un-
loading phase (from t = 0− 0.2). After the unloading phase
the force increases. Here the human is braking the downward
velocity gained during the unloading phase up until the high-
est peak of the sum of the vertical forces (purple line). This
is called eccentric braking. Then the human vertical velocity
(pink line speeds) is at 0 and the human has reached its lowest

point. From t = 0.35 until impact the human is gaining up-
ward speed (pink line speeds) and reducing the force. The force
needs to reduce to comply to the power bound (Pleg = vrelF).
This phase is called the concentric phase. Then the human has
lost contact from the skateboard just after impact. Followed by
an upward motion gradually decreasing due to gravity, reaching
it’s highest point just before the skateboard reaches it’s highest
point. The slopes and maximum of the vertical forces (pur-
ple line) are bound by the eccentric RFD(negative) and con-
centric RFD(positive) and the maximum force permitted. The
optimizer is at the bounds and wants to maximize force and
power output. The forces are not fully smooth due to the fact
that the bounds are on both legs, thus simultaneous counteract-
ing of forces between the front and back leg is permitted in the
optimization. Having more kinetic data on single legs could
improve this. Also the polynomial to estimate the solution used
by the software is not plotted correctly here, so the line should
be smoother when using the polynomials used per mesh section
provided by the software. Due to practical implications this has
not been done. The third reason why the control can be less?
smooth is due to the friction constraints. These constraints are
difficult to solve and are demanding for the optimizer, which
sometimes results in non-smooth forces. The landing is slightly
on the back wheels and the human is almost fully stretched out
when landing.
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Fig. 20: Optimization of wheelbase. Corresponds to results in figure 17.2. 0.09[m] smaller wheelbase compared to base, 0.023[m]
higher ollie. Three striking differences, the first is that the jumping force is now equally dependant on the back and front extension
force (blue,orange,4), the second is that there is only one force peak between impact and highest point. The third striking part is
that the skateboard rotates before landing (t=0.8).

3.2.2 Wheelbase optimization
The next optimization concerns the single parameter optimiza-
tion shown in figure 20. The wheel base of the skateboard will
be optimized along with optimal control. The performance of
this skateboard has been discussed in figure 17. This skateboard
was able to ollie 0.023[m] higher than the base optimization.
Most of the phenomena seen in the base optimization are also
visible for this optimization. The human lowers their weight,
pushes the skateboard forward then pulls it backward. Angular
velocity is lost during impact (-1193 [deg/s] and vertical speed
is gained (green and orange lines speeds). After impact ab-
duction force with the front leg is used to pull the skateboard
up and level it out. The first difference is visible in the force
plot. The sum of the vertical forces (purple line) does not stag-
ger when unloading. A straight line up, down, and then up is
achieved. Secondly, a higher angular velocity is achieved com-
pared to the base. The back foot is once again in the pocket of
the board, but now the front foot is at equal distance from the
wheel having perfect balance. At this position both legs can ex-
ert equal force without rotating the board during eccentric brak-

ing (t = 0.15− 0.3). Then suddenly shortly before the impact,
the front foot (orange line forces) pulls up and the back foot
pushes down to create a maximal momentum about the back
axis creating a steep sudden increase in angular velocity. The
decreased wheelbase causes the impact angle to be lower and
the angular velocity near zero just after impact (green lines po-
sitions and speeds). This leaves a period of rest such that the
skateboard can gain height. While the front foot is in a slid-
ing motion, the foot starts pushing down on the board at t=0.53.
This is almost enough to level the board out at the highest point.
But the negative angular rotation caused by this push is caught
with the back foot at the highest point making sure the board
is leveled. The reason why this board can ollie higher is be-
cause it needs less control during the upward motion to level the
board out and is able to reach higher angular velocities due to
reduced inertia. By decreasing the wheelbase, the inertia of the
skateboard is decreased. With a decreased inertia, the dynamic
response is faster resulting in higher angular velocity with the
same amount of torque produced. Also less force is needed
to level the skateboard during the upward motion because the
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Fig. 21: Optimization ‘no lt ’. Corresponds to results in figure 18.2.

same amount of force input will result in a larger angular de-
flection compared to the base skateboard.

3.2.3 Multiple parameter optimizations
3.2.3.a All except tail

In this optimization all variables but the tail are optimized
shown in 21. Compared to the base skateboard, this skateboard
is able to ollie higher (0.106 [m]). Though a lot of similarities
can be found between the two. The horizontal velocity is neg-
ative prior to impact, than after impact the board is dragged
upward and forward. This skateboard is significantly easier
to rotate due to the lower inertia and mass (Is = 0.02[kgm2]
compared to 0.122[kgm2] for the base skateboard and ms =
1.459[kg] compared to 2.377[kg] for the base skateboard). Due
to these lowered variables, with the same amount of force over
time the angular velocity that is obtained is twice as high. (green
line speeds). It is worth noting that the human jumps highest
with this skateboard setup. With this setup the skateboarder is
able to jump almost solely from its back foot (blue line forces)
due to the fact that the foot is located almost exactly above the
back wheel such that there is no or little momentum created
about the back axis.

3.2.3.b Wheelbase, tail inclination, and deck length

In this optimization the truck height and wheel radius are not
optimized as shown in figure 18. The trajectory, positions and
speeds of this skateboard are very similar to the prior optimiza-
tion. The mass and inertia have increased due to the higher
weight of the wheels compared to the previous optimization.
The wheelbase and tail length came out to be the same length
as the .
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Fig. 22: Optimization ‘deck no lt ’. Corresponds to results in figure 18.4. The human first goes up and down before wanting to jump
(pink,2). The time before impact is (long 1.46 [s]). The rotational speed at impact is 2178 [deg/s]. Between t=1.5 and t=1.8 there is
almost zero force exerted, a small peak at t=1.7 is sufficient to level skateboard at highest point. At highest point the skateboard is
behind the human.

4 DISCUSSION
The skateboard trajectories are all very similar to an actual ol-
lie. Without any motion cues, the optimizer is able to replicate
the ollie motion, with almost all phenomena seen in 4. The op-
timizer shows that the human first jumps, then slams the skate-
board to the ground, slides the front foot over the deck to drag it
up and level it out and catches the skateboard with the back foot
at the highest point. This is very close to reality. The human
replicates the counter movement jump with a very similar force
graph if figures 21 and 3 are compared. Also the impact energy
is similar to the impulse found in figure 3. The impulse from the
GRF is roughly 5 [J], which is of the same order of magnitude
as the found impact losses in figures 16, 17, and 18. A single
mass point with two free floating feet controlled by forces and
feet location with kinematic constraints are able to simulate the
motion and output of a human jumper. Nine out of eleven opti-
mal skateboard geometries found higher ollies compared to the

popsicle stick skateboard. None of these solutions is proven a
global optimum, but the improvement to the base skateboard
is something that performs better. Skateboard builders should
try to implement found geometries and test empirically if they
will improve ollie height. These geometries could be a tool to
alter existing skateboards and let athletes jump higher. The ki-
netic and kinematic constraints are of a specific person. The
geometries might be dependent on the human capabilities. Em-
pirical testing is necessary to prove that this finding is true in a
real life ollie. I successfully solved the ollie optimization prob-
lem with a geometry optimization. Compared to others Shield
et al. [20] who solved an optimization problem for the ollie,
my optimization was faster (3 min vs. 43 min), included an
geometry optimization, and had a more difficult objective func-
tion. The Shield optimization was was set at a fixed ollie height
and needed motion tracking to solve optimally. My optimiza-
tion had a null seed initial guess, with an objective function that
maximized ollie height. Such objective functions are generally
hard to solve, for example in [45] first tracking data needs to be
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implemented to solve a more difficult objective. Step by step
less data can be used to solve for an more difficult objective. In
the case of this paper, the solution is found without any tracking
data and a difficult objective function.

4.1 Findings
Lower inertia and skateboard mass is beneficial for ol-
lie height. In all parameter optimizations that improved ol-
lie height compared to the base, a reduction in mass and in-
ertia is found. This is logical when looking at the Newton-
Euler equations Force = Mass×Acceleration and Moment =
inertia× angularacceleration The lower the mass, the higher
the acceleration the easier the skateboard can go up. With lower
inertia the skateboard rotates more easily which minimizes the
amount of force needed with the leveling out of the skateboard
during upward motion. If that amount of force is lower, the
skateboard is pushed down less, which results in a higher ollie.
Popsicle stick skateboard is close to optimum and slight
changes due to preference will not influence the ollie height
too much. As seen with the single parameter optimizations the
increase in ollie height was minimal (0.05-0.023 [m]). Only
when multiple parameters are changed the ollie height increased
significantly (0.074-0.106 [m]), but the shapes are completely
different from a popsicle stick skateboard. If skateboarding
will keep the popsicle stick skateboard as standard due to the
fact that other tricks need to be performed other than the ollie,
not much can be changed to the skateboard to optimize it. If
the skateboard will change completely, the ollie height could be
improved. The wheelbase effects the ollie height the most of
all single parameter optimizations, which could be a promising
outcome since it does not influence the board shape which is
crucial for other tricks.
Extremely fast optimal solution is found and easy conver-
gence. The ollie optimization by Shield et al. [20] was with-
out a parameter optimization of the skateboard. This optimiza-
tion took about 43 minutes to solve, and accurate initial guesses
were needed for feasible results. The full code presented by me
took under 3 minutes to solve. This includes derivation of the
Equations of Motion and all constraints, the time to transcribe
the problem and to solve in IPOPT. This was all done without
initial guesses and solved optimally.
Optimal back foot position is influenced by the leg charac-
teristics of the performer. In all optimizations the back foot
is sitting in the pocket of the skateboard. For example imagine
a simple lever system with a fixed force magnitude perpendic-
ular to the lever with distance x from the rotation point. The
higher x, the more torque can be generated, but the greater the
distance (s) the force will travel. In other words P = Fδs = Fv.
With a fixed power there has to be a trade of between force and
velocity. In this case velocity of the back foot is minimized by
setting the back foot in the pocket. According to a jumping the-
ory by Morin an Samozino [39], jumping output is bound by a
force velocity curve, where maximum force can be exerted at
zero speed and maximum velocity at zero force. Athletes have
different force velocity profiles where one prefers high force
output over high velocity and vice versa. The controller pre-
ferred the force profile by minimizing the back foot velocity.
This finding leads to the conclusion that athletes with different
leg profiles should place their feet differently during the ollie.

Fig. 23: Theory on human leg output during jumping. When
increasing the load, the maximal force and velocity stay on
the line. The dotted line shows a more force oriented hu-
man, whereas the other shows a more velocity preferred human
jumper. Both have the same maximal power output

Where a force-profile should set the back foot in the pocket and
a velocity-profile on the tip of the skateboard. See figure 23 for
force and velocity oriented human leg output.
Highly adoptable model. The presented model can be adjusted
to the kinetic and kinematic bounds with little effort. The possi-
bility to optimize a skateboard for a specific athlete is not hard
to implement but the kinetic data should be present. Also pref-
erence bounds such as width are easily implemented.
Inertia and mass model inertia and mass model for a skate-
board is presented that can estimate the dynamic board be-
haviour in 2D. The model should be verified with multiple
skateboard geometries.
Well represented kinetics. All results show high similarities
between the force profiles of the counter movement jump seen
in figure 11. The sum of the human kinetics are well bound
and show constant results. Even though it is a highly simplified
model, the output of the forces is very similar to the output of a
CMJ. The point mass model is insightful for the dynamics and
is able to show valid results.

A fundamentally different simplified contact implicit opti-
mization is made. The relaxed formulation by Patel et al. [1]
has been simplified by restating the contact definition. Static
and dynamic friction is achieved with the ability to have con-
tact implicit events.

4.2 Limitations and Future research
Tail length optimization leads to local maxima. As seen
in the results the tail length optimizations showed lower ollie
height compared to the same optimizations with restricted tail
length. This is per definition a local maximum because the solu-
tion space of the optimization with tail length optimized should
contain the restricted tail length optimization solution. In real
life a longer tail length would cause a higher energy dissipa-
tion due to more bending during impact [31]. A plausible cause
for these local maxima is that impact loss is of too little effect.
When a human jumps, the order of magnitude of the amount of
energy necessary to go up is in the order of 103. The dissipation
of energy during impact is in the order of 10−1. This means
that the impact loss could be of so little effect to increasing ol-
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lie height that the solution space has become very flat. You can
see that the model does capture the increase impact loss. When
the tail length is optimized and the large tail length solution is
found, there is an increase of 227% compared to the base opti-
mization. Maybe if the impact loss would be penalized more,
optimal tail lengths will be found.
Lack of complexity in the kinematic constraints of the hu-
man controller. Due to the simplification of a human as a mass
point with two feet, kinematic constraints are highly simplified.
In real life a penny board is difficult to ollie due to the fact that
the operating area is really small. The feet would have to oper-
ate precise and powerful movements while balancing on a small
surface. While the controller can easily do this, it does not rep-
resent reality completely. Also inertia of the human is neglected
due to the simplification.
Front wheel normal force. In future research it is advised to
implement a normal force acting on the front wheel during the
preparation phase. The front foot had to counteract the rotation
created by the back foot. In real life the front foot could have
been on any location without causing a counter clockwise rota-
tion due to the compensation of the normal force. Difficulties
will be to find a phase switch cue for the optimizer. It might be
possible to set a fixed time for the first phase to solve this.
Possible that current solutions are not global optima, more
optimal board shapes can be found. The presented solution
space is very large due to many possibilities in variables. In fu-
ture research, many more geometries can be found which could
help the skateboard community to understand the dynamics of
the ollie.
Extra constraints should be implemented to the legs individ-
ually. Now single leg behaviour can sometimes exceed human
limitations. Due to a lack of data on single leg jump for one
specific athlete together with the CMJ information the single
leg behaviour is not yet fully bound by human limitations.

5 CONCLUSION
A model is made to optimize the skateboard for ollie height with
a human controller. Optimal board shapes have been found that
show higher ollie performance than the current Popsicle stick
skateboard. The research question

What are the optimal geometric and inertial parame-
ters of a skateboard for an Olympic athlete to reach
maximal ollie height?

has not been answered fully but a closer approximation is given
towards the optimal shape for maximal ollie height and more in-
sight is gained in the dynamics of the ollie. Though, the process
of creating a model to optimize the skateboard ollie has been an
exploration of the endless variables in the movements of both
athlete and board. One conclusion is the fact that the created
model turned out to be surprisingly close to the real world. The
model is a user friendly and quick tool to find optimal board
shapes dependent on the kinetics of a human performer. The
kinetics can easily be implemented by any researcher or any
skateboarder that is in the possession of a force plate. Making
this model a very agile and useful tool for skaters, skateboard

manufacturers and future researchers. Although the research
question is not fully answered, the outcome of all the differ-
ent optimizations gives a lot of insight in the dynamics of the
ollie. This insight could be an inspiration to other researchers,
skateboarders and board builders to expand and develop the aca-
demic comprehension of the dynamics of skateboarding.
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pichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore,
J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E.,
Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson,
F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, ,
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APPENDIX A
Mesh example

By default each phase is subdivided into 10 mesh sections. Each mesh sections has 4 collocation points where the last of
mesh section n overlaps with the first collocation point of mesh section n+1 and so on. Thus each non beginning section has two
overlapping points, this is the definition of the LGL method. This means by default each phase uses 31 collocation points. Mesh
refinement is done when the mesh error did not reach the mesh tolerance. If the mesh section did not meet the tolerance, estimated
k extra collocation points are added to the mesh section. This means that the polynomial in the mesh section increased to the order
4+k. This process will go on until the mesh tolerance is met or k is estimated at a number that will exceed a 10th order polynomial.
In this case the mesh section will be split up in new smaller sections. The sections will be split into parts that will match the
expectation to 4 collocation points. For example, when the estimation of a ’correct’ integration is estimated at 13 collocation points,
the section will be split into four equally sized sections. When the estimation is to need 17 collocation points, 5 sections will be
created. This method should be numerically efficient, since only the sections that show high nonlinearity and need a finer mesh will
be integrated more thoroughly. If the tolerance is already met with a lower order integration, there will be no refinement [34,46,47].

MASS, CENTRE OF MASS AND INERTIA MODEL

INERTIA MEASUREMENT
To verify the inertial values obtained in the parameterized model of the skateboard, the inertia of two arbitrary skateboards are

measured.

Theory
The skateboards inertia is measured by approximating the board as a compound pendulum. The inertia in a compound pendulum

is directly related to the period of the swing of the pendulum. The torque produced by gravity is:

αIo =−Lmgθ

Using that the angular acceleration (α) can also be written as d2θ

dt2 , we can re-write the angular acceleration as follows:

d2θ

dt2 =−
(

mgL
Io

)
θ

This is a second order differential equation, for which we can use the standard solution for d2θ

dt2 =−bθ, which gives θ(t)= cos(ωt+φ)

with ω2 = b. This results in an expression for the angular speed (ω) :

ω =

√
mgL

Io

Now that we can see the correlation between the period and the inertia of the compound pendulum, we can find the inertia about the
COM of the skateboard by applying the parallel axis theorem:

Ic = Io +mL2 (59)

Method
The skateboard was hung by ropes as seen in figure 27. With a Silicon Sensing CRS43 gyroscope the rotational speed was

measured. The skateboard was swung for 15 seconds released from 5, 10 or 15 degrees. The measured data was fit to a damped
oscillation with a non linear least square method from SciPy. From the measured period the inertia values have been calculated

25



Fig. 24: Fit of skateboard as compound pendulum

Fig. 25: Inertia results

giving the following fitted data shown in figure 24. The inertia results are given in figure 25 When it was clear that the inertia
increased with an increase in starting angle, a power expansion is applied that accounts for small angle errors given by:

ωexact =≈ T0
(
1+ 1

16 θ2 + 11
3072 θ4 + 173

737280 θ6

+ 22931
1321205760 θ8 + . . .

)
.

(60)

Which is used until the with precision O6 results in the inertia data presented in figure 26
The calculated inertia value for skateboard with m = 2.44 with the parameterized model is: 0.1219 [kg m2]. The results show

0.09196 - 0.10046 [kg m2]. The skateboards’ inertia calculated with the parameterized model with m = 2.358 is 0.1151 [kg m2],
while the results show 0.08355 - 0.09039 [kg m2]. Both skateboards the model slightly overestimates the inertia. The reduction
in real life between the skateboards is 0.909%, 0.890%, 0.900% between the different take off angles and different boards. In the
parameterized model reduces inertia by 0.94 %. This is of similar magnitude but needs more data to make it more exact. As a
scaling approximation the parameter model is good enough.
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Fig. 26: Inertia result with power expansion

Fig. 27: Test setup for inertia testing

.
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MASS, CENTRE OF MASS AND INERTIA MODEL
def Mass_model(width_deck, mass_bearing, mass_truck, height_truck,

height_truck0, width_wheel, n_ply, length_flat, length_tail,
radius_wheel, rho_pu, rho_maple, rho_steel, m_glue,
diameter_axle, d_veneer):

mass_wheel = rho_pu * sm.pi * width_wheel * \
((2*radius_wheel)**2-diameter_axle**2) / 4 # V=pi*h*(Dˆ2-dˆ2)/4

mass_axle = sm.pi * (diameter_axle/2)**2 * width_deck * \
rho_steel # weight of axle, volume * steel * density

# _ _ ___________ _ _
# / | | | | | | | | \
# | 1 | |2| | 3 | |4| | 5 | 6=t1 7=w1 8=t2 9=w2
# \ _| |_| |___________| |_| |_ /

# 1\ /5
# 2\_______3________/4
# 6 \/ \/ 7
# 8 O 9 10 O 11

# Area of wooden components
A1 = (1/2) * (1/4) * sm.pi * width_deck**2 # 1/4 pi dˆ2
A2 = (length_tail - (width_deck/2)) * width_deck # l * b
A3 = length_flat * width_deck # l * b
A4 = A2
A5 = A1

thickness = n_ply*d_veneer
dV = thickness*rho_maple+(m_glue/2*(n_ply-2))

m1 = A1 * dV
m2 = A2 * dV
m3 = A3 * dV
m4 = m2
m5 = m1
m6 = (mass_truck - mass_axle) * height_truck/height_truck0
m7 = m6
m8 = mass_axle
m9 = 2*mass_wheel
m10 = m8
m11 = m9

mass = [m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11]
return mass

def COM(mass, com_points, reference_point):
# Function gets vector position from reference_point
# Then assigns COM location to point COM
# Returns position vector of COM points relative to COM
r_m = []
for i, x in enumerate(com_points):

r_m.append(x.pos_from(reference_point)*mass[i])
COM_skateboard = me.Point(’COM_skateboard’)
COM_skateboard.set_pos(reference_point, (sum(r_m)/sum(mass)))
return COM_skateboard

28



def Inertia_model(mass, com_points, com, majordim, shape):
# Major dim:
# - (semi)cylinder; diameter
# - cuboid: [l,h]
# - Triangle: [Base, Height]

I_com = []
I_steiner = []

for i in range(len(mass)):
if shape[i] == ’semicircle’:

I_com.append(((1/4)-(16/(9*sm.pi**2)))*mass[i]*(majordim[i]/2)**2)

if shape[i] == ’cuboid’:
I_com.append((mass[i]/12) * (majordim[i]

[0]**2 + majordim[i][1]**2))

if shape[i] == ’triangle’:
s = sm.sqrt((majordim[i][0]/2)**2+majordim[i][1]**2)
beta = 2*sm.asin((majordim[i][0]/2)/s)
I_com.append((mass[i]/2)*s**2*(1-(2/3)*sm.sin(beta)))

if shape[i] == ’cylinder’:
I_com.append((1/2)*mass[i]*(majordim[i]/2)**2)

#Trigsimp was sometimes necesarry due to a theta still being in there
I_steiner.append(sm.trigsimp(mass[i]*d2s(sm.sqrt(com_points[i].\
pos_from(com).dot(A.x)**2+com_points[i].pos_from(com).dot(A.y)**2)**2)))

I_tot = sum(I_com)+sum(I_steiner)
return I_tot, I_com, I_steiner
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APPENDIX B: FIGURES AND TABLES

Table 4: Numerical bounds to state variables in the order of initial - absolute - final bounds. Final bound of p(n) equals initial
bound of p(n+1). vbound = [−50,50]

ID Variable p(1)0 p(1)bounds p(1)F = p2
0 p(2)bounds p(2)F = p(3)0 p(3)bounds p(3)F

1 xw [-1, 0] [-2,1] [-2,1] - - - -

2 xs - - [-1,1] [-1,1] [-1, 1] [-1,1] [-1,1]

3 ys - - [0, 2] [0,5] [0, 5] [0,5] [0,1]

4 θs 0 [0,π/2] [0, π/2 ] [-π/2 ,π/4] 0 [−π/2, π/4] [0, π/6]

5 s1 [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]

6 s2 [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]

7 xh 0 [-1,1] [-1,1] [-1,1] [-1,1] [-1,1] [-1,1]

8 yh [0,2] [0,5] [0,5] [0,5] [0,5] [0,5] [0,5]

9 ẋw - vbound vbound - - -

10 ẋs 0 vbound vbound vbound vbound vbound vbound

11 ẏs 0 vbound vbound vbound 0 vbound vbound

12 θ̇s 0 vbound vbound vbound vbound vbound vbound

13 ṡ1 0 vbound vbound vbound vbound vbound vbound

14 ṡ2 0 vbound vbound vbound vbound vbound vbound

15 ẋh 0 vbound vbound vbound vbound vbound vbound

16 ẏh 0 vbound vbound vbound vbound vbound vbound

RESULTS OF OPTIMAL BOARD SHAPES
Detailed trajectories, states and control of all optimizations shown in figures 16, 17, and 18
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(a) Long board

(b) All parameters no trucks

Fig. 28: Longboard and ‘all except trucks’ optimization results
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(a) Plastic

(b) Griptape

Fig. 29: Penny boards optimization results

32



(a) Wheel radius

(b) Truck height

Fig. 30: Wheel radius and truck height optimization results
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(a) Deck length

(b) Tail length

Fig. 31: Deck length and tail length optimization results
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(a) Tail inclination

(b) All parameters

Fig. 32: Tail inclination and all parameters optimization results
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