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Abstract. We introduce proper display calculi for basic monotonic
modal logic, the conditional logic CK and a number of their axiomatic
extensions. These calculi are sound, complete, conservative and enjoy
cut elimination and subformula property. Our proposal applies the multi-
type methodology in the design of display calculi, starting from a seman-
tic analysis based on the translation from monotonic modal logic to nor-
mal bi-modal logic.
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1 Introduction

By non mormal logics we understand in this paper those propositional logics
algebraically captured by varieties of Boolean algebra expansions, i.e. algebras
A = (B, F*, G*) such that B is a Boolean algebra, and F* and G* are finite, pos-
sibly empty families of operations on B in which the requirement is dropped that
each operation in F# be finitely join-preserving or meet-reversing in each coor-
dinate and each operation in G* be finitely meet-preserving or join-reversing in
each coordinate. Very well known examples of non normal logics are monotonic
modal logic [4] and conditional logic [3,29], which have been intensely investi-
gated, since they capture key aspects of agents’ reasoning, such as the epistemic
[34], strategic [31,32], and hypothetical [13,26].

Non normal logics have been extensively investigated both with model-
theoretic tools [23] and with proof-theoretic tools [28,30]. Specific to proof theory,
the main challenge is to endow non normal logics with analytic calculi which
can be modularly expanded with additional rules so as to uniformly capture
wide classes of axiomatic extensions of the basic frameworks, while preserving
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key properties such as cut elimination. In this paper, we propose a method to
achieve this goal. We will illustrate this method for the two specific signatures
of monotonic modal logic and conditional logic.

Our starting point is the very well known observation that, under the inter-
pretation of the modal connective of monotonic modal logic in neighbourhood
frames F = (W,v), the monotonic ‘box’ operation can be understood as the
composition of a normal (i.e. finitely join-preserving) semantic diamond (v) and
a normal (i.e. finitely meet-preserving) semantic box [3]. The binary relations
R, and R5 corresponding to these two normal operators are not defined on one
and the same domain, but span over two domains, namely R, C W x P(W) is
st. wR, X iff X € v(w) and R5 C P(W) x Wis s.t. XRyw iff w € X (cf. [23,
Definition 5.7], see also [14,25]). We refine and expand these observations so as
to: (a) introduce a semantic environment of two-sorted Kripke frames (cf. Defini-
tion 1) and their heterogeneous algebras (cf. Definition 2); (b) outline a network
of discrete dualities and adjunctions among these semantic structures and the
algebras and frames for monotone modal logic and conditional logic (cf. Propo-
sitions 1, 2, 3 and 4); (c) based on these semantic relationships, introduce multi-
type mormal logics into which the original non normal logics can embed via
suitable translations (cf. Sect. 4) following a methodology which was successful
in several other cases [7,9-11,16,17,19,22,27,33]; (d) retrieve well known dual
characterization results for axiomatic extensions of monotone modal logic and
conditional logics as instances of general algorithmic correspondence theory for
normal (multi-type) LE-logics applied to the translated axioms (cf. Sect. B); (e)
extract analytic structural rules from the computations of the first order corre-
spondents of the translated axioms, so that, again by general results on proper
display calculi [20] (which, as discussed in [1], can be applied also to multi-type
logical frameworks) the resulting calculi are sound, complete, conservative and
enjoy cut elimination and subformula property.

2 Preliminaries

Notation. Throughout the paper, the superscript (-)¢ denotes the relative com-
plement of the subset of a given set. When the given set is a singleton {z},
we will write z¢ instead of {«}°. For any binary relation R C S x T, and any
S C Sand TV C T, we let R[S'| .= {t € T | (s,t) € R for some s € S}
and R7YT'] := {s € S| (s,t) € R for some t € T"}. As usual, we write R[s]
and R™![t] instead of R[{s}] and R™1[{t}], respectively. For any ternary relation
RC S xT xUandsubsets S’ CS, T CT, and U’ C U, we also let

~ RO UN={se S| HtIu(R(s,t,u) &t €T &uecl)}
~ R[S U ={teT| IsFu(R(s,t,u) & s€ S & uecU")},
~ RIS T ={ucU]| 3Is3t(R(s,t,u) & s€S &tecT)}

Any binary relation R C S x T gives rise to the modal operators
(R),[R],[R),(R] : P(T) — P(S) st. forany T C T

- (RT' =R 'T={se€S|3H(sRt&teT)};
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~ [RIT = (R7'T'))* ={s € S| Vt(sRt — tcT};
[R) ':( L) ={s € S| Vi(sRt — t ¢ T}
(RIT == RT"*] = {s € S| 3t(sRt & t ¢ T')}.
By construction, these modal operators are normal. In particular, (R) is

completely join-preserving, [R] is completely meet-preserving, [R) is completely
join-reversing and (R] is completely meet-reversing. Hence, their adjoint maps
exist and coincide with [R™Y(R™Y),[R™1),(R71] : P(S) — P(T), respectively.
Any ternary relation R C S x T x U gives rise to the modal operators >pg: P(T) x
PU) — P(S) and Ag : P(T) x P(S) — P(U) and »g: P(S) x P(U) — P(T)
s.t. forany 8" C S, T"CT,and U’ C U,

- T'>rU = ER((’)[T’ U ={se€S| VtVu(R(s,t,u) &t € T' = uecU)};

—~ T'AgrS = 2){T’ SN={uecU| 3t3Is(R(s,t,u) &t €T &seS)}

- S8 wprU :=(R ”[S/ U e ={teT] VsVu(R(s,t, u) &seS =ueclU)}

The stipulations above guarantee that these modal operators are normal.

In particular, > and » i are completely join-reversing in their first coordinate
and completely meet-preserving in their second coordinate, and A g is completely
join-preserving in both coordinates. These three maps are residual to each other,
ie. ' CT >rU' iff T'TARS' CU' it T"C S wr U forany S'C S, T CT,
and U’ C U.

2.1 Basic Monotonic Modal Logic and Conditional Logic

Syntaz. For a countable set of propositional variables Prop, the languages Lv
and L~ of monotonic modal logic and conditional logic over Prop are defined as
follows:

Ly3¢z=pl-o[one|Ve Ls2¢u=p|-¢|oNd|d>0¢.

The connectives T,A,V,— and < are defined as usual. The basic mono-
tone modal logic Ly (resp. basic conditional logic L) is a set of Ly-formulas
(resp. L~-formulas) containing the axioms of classical propositional logic and
closed under modus ponens, uniform substitution and M (resp. RCEA and RCK,,
for all n > 0):

p— . PP

_ R
Vo — Vi (p>x) < (@>x)
©1 NN Pp —

(x> 1) A A (X > @n) = (X > )

M

RCKp,

Algebraic Semantics. A monotone Boolean algebra expansion, abbreviated as m-
algebra (resp. conditional algebra, abbreviated as c-algebra) is a pair A = (B, V4)
(resp. A = (B,>*)) s.t. B is a Boolean algebra and V* is a unary monotone
operation on B (resp. >* is a binary operation on B which is finitely meet-
preserving in its second coordinate). Interpretation of formulas in algebras under
assignments h : Ly — A (resp. h: L5 — A) and validity of formulas in algebras
(in symbols: A = ¢) are defined as usual. By a routine Lindenbaum-Tarski
construction one can show that Ly (resp. Ls ) is sound and complete w.r.t. the
class of m-algebras (resp. c-algebras).
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Canonical Extensions. The canonical extension of an m-algebra (resp. c-algebra)
Ais A% := (B°, VA(S) (resp. A% := (B, >A6)), where B? is the canonical extension
of B [24], and VA’ (resp. >A6) is the o-extension of V* (resp. the m-extension of
>4). By general results of m-extensions of maps (cf. [15]), the canonical extension
of an m-algebra (resp. c-algebra) is a perfect m-algebra (resp. c-algebra), i.e. the
Boolean algebra B on which it is based can be identified with a powerset algebra
P(W) up to isomorphism.

Frames and Models. A neighbourhood frame, abbreviated as n-frame (resp. con-
ditional frame, abbreviated as c-frame) is a pair F = (W,v) (resp. F = (W, f))
s.t. W is a non-empty set and v : W — P(P(W)) is a neighbourhood function
(f:WxP(W)— P(W)is a selection function). In the remainder of the paper,
even if it is not explicitly indicated, we will assume that n-frames are mono-
tone, i.e. s.t. for every w € W, if X € v(w) and X C Y, then Y € v(w). For
any n-frame (resp. c-frame) F, the complez algebra of F is F* := (P(W),VF")
(resp. F* := (P(W), >F")) s.t. for all X, Y € P(W),

VX :={w| X cv(w)} X>F vy .={w]| f(w,X)CY}

The complex algebra of an n-frame (resp. c-frame) is an m-algebra (resp. a c-
algebra). Models are pairs M = (IF, V') such that F is a frame and V : £ — F* is
a homomorphism of the appropriate type. Hence, truth of formulas at states in
models is defined as M, w I+ ¢ iff w € V (), and unravelling this stipulation for
V- and >-formulas, we get:

M,wlF Ve iff V(p) € v(w) M,wlFp >y iff flw, V() CV(W).

Global satisfaction (notation: M I- ¢) and frame validity (notation: F I+ ¢) are
defined in the usual way. Thus, by definition, F I+ ¢ iff F* = ¢, from which the
soundness of Ly (resp. Ls ) w.r.t. the corresponding class of frames immediately
follows from the algebraic soundness. Completeness follows from algebraic com-
pleteness, by observing that (a) the canonical extension of any algebra refuting
¢ will also refute ¢; (b) canonical extensions are perfect algebras; (c) perfect
algebras can be associated with frames as follows: for any A = (P(W), V%)
(resp. A = (P(W),>%)) let A, := (W,vy) (resp. A, := (W, f>)) s.t. for all
weWand X CW,

vo(w):={XCW |weVX} folw, X) =Y CW|weX >V}

If X € vy(w) and X C Y, then the monotonicity of V implies that VX C VY
and hence Y € vy (w), as required. By construction, A | ¢ iff A, I ¢. This
is enough to derive the frame completeness of Ly (resp. Ls ) from its algebraic
completeness.

Proposition 1. If A is a perfect m-algebra (resp. c-algebra) and F is an n-frame
(resp. c-frame), then (F*), 2 F and (A,)* = A.
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Aziomatic Extensions. A monotone modal logic (resp. a conditional logic) is any
extension of Ly (resp. Ly ) with Ly-axioms (resp. L£x-axioms). Below we collect
correspondence results for axioms that have cropped up in the literature [23,
Theorem 5.1], [30].

Theorem 1. For every n-frame (resp. c-frame) F,

N FIFVT iff F = Vw[W € v(w)]

P FIF-vl ff F = Vwl@ € v(w))]

CFIFVpAVg—V(pAq) iff FlEVoVXVY[(X €v(w) &Y ev(w))=XNY €v(w)]
T FI-Vp—p iff Fl= VovX[X € v(w) = w € X]

4 FIFVVp — Vp iff Fl= VoVYX[(X ev(w) &Ve(ze X =Y ev(z))) =Y €rv(w)
4’ FIFVp — VVp iff Fl= VwvX[X ev(w)={y]| X €rv(y)} € v(w)]

5 FlF =V-p — V-V-p iff F = VovX[X ¢ v(w)={y|X €v(y)} e rv(w)]

B Flkp— V=V-p iff FlE VYovXwe X = {y| X e€v(y)l} e v(w)]

D Fl-Vp — -V-p iff F = VuvX([X €v(w)= X°¢rv(w)]
CS Fk(phg)— (p>a)  iff F = VavZ[f(z, 2) C {z}]

CEM Fir (p>a)V(p>-q) iff FE VXVy[|f(y, X)| < 1]

ID FlFp>p iff T = YavZ[f(z, Z) C 2.

3 Semantic Analysis

3.1 Two-Sorted Kripke Frames and Their Discrete Duality
Structures similar to those below are considered implicitly in [23], and explicitly
in [12].

Definition 1. A two-sorted n-frame (resp. c-frame) is a structure K :=
(X,Y,Rs,R3, Ry, Ryc) (resp. K:= (X,Y,R5,Ry,Ty)) such that X and Y are
nonempty sets, R5, Ry CY x X and R,,R,c CX XY and Ty C X xY x X.
Such an n-frame is supported if for every D C X,

v

R, (R5'[D])°] = (R,M(R ' [D)))° (1)
For any two-sorted n-frame (resp. c-frame) K, the complex algebra of K is
K* = (P(X), POY), I, ()%, )" (]
(resp. K¥ = (P(X), P(Y), 21", [, 551)), s.t.
W PEY) = PX) B PX) = P(Y) (#H P = PY)
U R 'U) D (R5'[D°)° D~ R'[D]

T PY) - PX) [BE L PX) = PY)  BETPY) x P(X) — P(X)
U (RU)" D — (R3'[D))° (U, D) = (T\V[U, D])°

ve

The adjoints and residuals of the maps above (cf. Sect. 2) are defined as follows:

(a7 P(X) — P(Y) (©F :P(Y) - P(X) [ P(Y) — P(X)
D v (R, [D°])* U Rs[U) U v (Ry[US])°

(A L p(x) - P(Y) D P) - Px) RETIP(X) x P(X) = P(Y)
D +— R,e[D] U — (Rz[U])® (C, D) = (T [C, D°))°

AT PY) x PX) — P(X)
(U, D) — TP [U, D]
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Complex algebras of two-sorted frames can be recognized as heterogeneous
algebras (cf. [2]) of the following kind:

Definition 2. A heterogeneous m-algebra (resp. c-algebra) is a structure
H:=(A,B, 31, @)%, ()" %) (resp. Hi= (A,B,[3]%,[3)".>5))

such that A and B are Boolean algebras, (v)¥,[v¢] : B — A are finitely join-
preserving and finitely meet-preserving respectively, [3]%, [T (F)E . A — B
are finitely meet-preserving, finitely join-reversing, and finitely join-preserving
respectively, and >T: B x A — A is finitely join-reversing in its first coordinate
and finitely meet-preserving in its second coordinate. Such an H is complete if
A and B are complete Boolean algebras and the operations above enjoy the com-
plete versions of the finite preservation properties indicated above, and is perfect
if it is complete and A and B are perfect. The canonical extension of a heteroge-
neous m-algebra, (resp. c-algebra) H is H® := (A%, B, [3]H" (#)E", ()E | [ve]E")
(resp. H® = (A%, B°, [B]Hé,[%H&,DHé)), where A° and B° are the canonical
extensions of A and B respectively [24], moreover [B]Hs, [%)HJ, [Z/C]Hé, > are
the m-extensions of 3%, [#)H, V)", >H respectively, and <1/>H6, (%)Hé are the
o-extensions of (V)F (F)H respectively.

Definition 3. A heterogeneous m-algebra H := (A, B, [3]%, (Z)H, ()E, [ve]H) is
supported if (V)2[3]%a = [v]%(F) a for every a € A.

It immediately follows from the definitions that

Lemma 1. The complex algebra of a supported two-sorted n-frame is a hetero-
geneous supported m-algebra.

Definition 4. If H = (P(X),P(Y), ], ()2, ()5, [v]) is a perfect hetero-
geneous m-algebra (resp. H = (P(X),P(Y), 2%, ()", M) is a perfect hetero-
geneous c-algebra), its associated two-sorted n-frame (resp. c-frame) is

H+ = (X;KR97R¥7RV7RVC) (resp. H+ = (X7}/7R97R?7Tf))’ s.1.

~ R5 CY x X is defined by yRoz iff y ¢ [3]72°,

- Ry CY x X is defined by xRzy iff y € (Z)"{} (resp. y & [#)"{z}),
- R, C X xY is defined by xR,y iff x € (v)"{y},

~ Rye C X XY is defined by xR,y iff x ¢ [v°]%y°,

- Ty C X xY x X is defined by (z',y,x) € Ty iff o’ ¢ {y} >7 z°.

From the definition above it readily follows that:

Lemma 2. If H is a perfect supported heterogeneous m-algebra, then H, is a
supported two-sorted n-frame.

The theory of canonical extensions (of maps) and the duality between perfect
BAOs and Kripke frames can be readily extended to the present two-sorted case.
The following proposition collects these well known facts, the proofs of which
are analogous to those of the single-sort case, hence are omitted.
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Proposition 2. For every heterogeneous m-algebra (resp. c-algebra) H and
every two-sorted n-frame (resp. c-frame) K,

1. H° is a perfect heterogeneous m-algebra (resp. c-algebra);
2. K% is a perfect heterogeneous m-algebra (resp. c-algebra);
3. (KT), 2K, and if H is perfect, then (H, )" = H.

3.2 Equivalent Representation of m-Algebras and c-Algebras

Every supported heterogeneous m-algebra (resp. c-algebra) can be associated
with an m-algebra (resp. a c-algebra) as follows:

Definition 5. For every supported heterogeneous m-algebra H = (A, B, [3]%,
@ @M ) (resp. c-algebra H = (A,B,[3]%, [#)", 1)), let He =
(A, VEH)  (resp. Hy := (A, >H)), where for every a € A (resp. a,b € A),

Vieqg = (H[3)8a = [ (z)Ha (resp. a > b= ([3]%a A [#)Ha) ST b).

It immediately follows from the stipulations above that Ve is a monotone map
(resp. > is finitely meet-preserving in its second coordinate), and hence H, is
an m-algebra (resp. a c-algebra). Conversely, every complete m-algebra (resp. c-
algebra) can be associated with a supported heterogeneous m-algebra (resp. a
c-algebra) as follows:

Definition 6. For every complete m-algebra C = (A,VC) (resp. complete c-

algebra C = (A, >C)), let C* := (A, P(A), 2], (H)C", )C, [v°]C") (resp. C* :=

(A, P(A), 2], ), ), where for every a € A and B € P(A),
BIa=1{pealb<a} " B:=\/{Vb|beB} [HTa={pehla<b}

W B:= A{Vb|b¢ B}y B> a=A{>albeB} (H a:={beAlagb}
One can readily see that the operations defined above are all normal by construc-
tion, and that they enjoy the complete versions of the preservation properties
indicated in Definition 2. Moreover, (1)¢"[3]% a = VCa = [v°]% ()% a for every
a € A. Hence,

Lemma 3. If C is a complete m-algebra (resp. complete c-algebra), then C® is
a complete supported heterogeneous m-algebra (resp. c-algebra).

The assignments (-)® and (-)e can be extended to functors between the appro-
priate categories of single-type and heterogeneous algebras and their homomor-
phisms. These functors are adjoint to each other and form a section-retraction
pair. Hence:

Proposition 3. If C is a complete m-algebra (resp. c-algebra), then C =2 (C*),.
Moreover, if H is a complete supported heterogeneous m-algebra (resp. c-algebra),
then H 22 C* for some complete m-algebra (resp. c-algebra) C iff H = (H,)®.

The proposition above characterizes up to isomorphism the supported hetero-
geneous m-algebras (resp. c-algebras) which arise from single-type m-algebras
(resp. c-algebras). Thanks to the discrete dualities discussed in Sects. 2.1 and
3.1, we can transfer this algebraic characterization to the side of frames, as
detailed in the next subsection.
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3.3 Representing n-Frames and c-Frames as Two-Sorted Kripke
Frames

Definition 7. For any n-frame (resp. c-frame) F, we let F* := ((F*)*)4, and
for every supported two-sorted n-frame (resp. c-frame) K, we let Ky := ((K*)e)x.

Spelling out the definition above, if F = (W,v) (resp. F = (W, f)) then F* =
(W,P(W),Rs, Ry, Ry, Ryc) (resp. F* = (W, P(W), Ry, R5,Ty)) where:

- R, CW x P(W) is defined as 2R, Z if Y € v(z);

— Rye CW x P(W) is defined as xR, Z iff Z ¢ v(x);

— Rs CP(W) x W is defined as ZRsz iff v € Z;

— Ry CP(W) x W is defined as ZRyz iff z ¢ Z;

- Ty CW x P(W) x W is defined as T¢(z, Z, ') iff 2’ € f(z, Z).

Moreover, if K = (X,Y,Rs,Ry,R,,R,c) (resp. K = (X,Y, R5,R3,TY})),
then K, = (X, v,) (resp. K, = (X, fi)) where:
~v(@) ={DC X |z € R7RS D]} ={D C X |z € (R,[(R;' D))}
- fow, D) =N{C C X |z € T{V[{C}, D]}

Lemma 4. If F = (W,v) is an n-frame, then F* is a supported two-sorted n-
frame.

Proof. By definition, F* is a two-sorted n-frame. Moreover, for any D C W,

(RIA(R D)) = {w | YX(X ¢ v(w) = Fu(X Fu & u € D)}
={w|VX(X ¢v(w)=DZ X)}
={w|VX(DCX = X ev(w))}
={w|3IX(X ev(w) & X C D)} (%)
— RA(R3DY))

To show the identity marked with (x), from top to bottom, take X := D;
conversely, if D C Z then X C Z, and since by assumption X € v(w) and v(w)
is upward closed, we conclude that Z € v(w), as required.

The next proposition is the frame-theoretic counterpart of Proposition 3.

Proposition 4. If F is an n-frame (resp. c-frame), then F = (F*),. Moreover,
if K is a supported two-sorted n-frame (resp. c-frame), then K = F* for some
n-frame (resp. c-frame) F iff K = (K,)*.

4 Embedding Non-Normal Logics into Two-Sorted
Normal Logics

The two-sorted frames and heterogeneous algebras discussed in the previous
section serve as semantic environment for the multi-type languages defined
below.
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Multi-type Languages. For a denumerable set Prop of atomic propositions, the
languages £yrv and Lyrs in types S (sets) and N (neighbourhoods) over Prop
are defined as follows:

v S>A:

plTIL[-A|ANA] (V)|
1| | (Fa N> a«::

pITIL|~A|AAAlaD A
0| ~a|anal[3]A 1]0

[~alanal[3]A][Z)A.

Algebraic Semantics. Interpretation of Lyrv-formulas (resp. £prsformulas)
in heterogeneous m-algebras (resp. c-algebras) under homomorphic assignments
h: Lyry — H (resp. h: Lyrs — H) and validity of formulas in heterogeneous
algebras (H = ©) are defined as usual.

Frames and Models. Lyrv-models (resp. Lasrs-models) are pairs N = (K, V)
st. K = (X,Y, Rs, Ry, R, R,) is a supported two-sorted n-frame (resp. K =
(X,Y,R5, Ry, Ty) is a two-sorted c-frame) and V : Lypr — KT is a hetero-
geneous algebra homomorphism of the appropriate signature. Hence, truth of
formulas at states in models is defined as N,z |+ © iff z € V(O) for every
z € XUY and © € SUN, and unravelling this stipulation for formulas with a
modal operator as main connective, we get:

- Nz Ik () if N,ylF « for some y s.t. 2R, y;

- Nyzlkvla iff Nyl aforall ys.t. zRycy;

- NyylF[3]4 iff Nzl Aforall z s.t. yRsx;

- Nyl (#)A iff Nzl A for some z s.t. yRyx;

- NyylF[#)A if Nzlf Aforall z s.t. yRyx;

-Nyz I+ a 1> A iff forallyandall2a, if Tf(z,y,2') and N,y |-
o then N,z I A.

Global satisfaction (notation: N |- @) is defined relative to the domain of
the appropriate type, and frame validity (notation: K IF ©) is defined as usual.
Thus, by definition, K |- @ iff KT | O, and if H is a perfect heterogeneous
algebra, then H = O iff H, I+ 6.

Sahlquist Theory for Multi-type Normal Logics. This semantic environment sup-
ports a straightforward extension of Sahlqvist theory for multi-type normal log-
ics, which includes the definition of inductive and analytic inductive formulas
and inequalities in Ly;ry and Lyrps (cf. Sect. A), and a corresponding version
of the algorithm ALBA [6] for computing their first-order correspondents and
analytic structural rules.

Translation. Sahlqvist theory and analytic calculi for the non-normal logics Ly
and L. and their analytic extensions can be then obtained ‘via translation’,
i.e. by recursively defining translations 7,72 : Lv — Lyrv and ()7 : L —
Ly as follows:

3

Ti(p) =p T2(p) = p =p
TP AY) = T1(P) AT1(Y) T2(pAY) = T2(d) AT2(P) (PAY) = ¢7 AT
T1(=¢) = ~72(¢) T2(—p) = ~71(¢) (—¢)" = —¢"

1 (V¢) = (1)[3]m(s) (Vo) = v (F)2(d) (0> 4)7

The following proposition is shown by a routine induction.
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Proposition 5. IfF is an n-frame (resp. c-frame) and ¢ &= 1) is an Lv-sequent
(resp. ¢ is an Ls-formula), then F Ik ¢ F o iff F* Ik 71(¢) b ma(v) (resp.
FiFo iff F*IFo7).

With this framework in place, we are in a position to (a) retrieve correspondence
results in the setting of non normal logics, such as those collected in Theorem 1,
as instances of the general Sahlqvist theory for multi-type normal logics, and (b)
recognize whether the translation of a non normal axiom is analytic inductive,
and compute its corresponding analytic structural rules (cf. Sect. B).

Axiom Translation Inductive Analytic

N VT T < pUHT v v
P -Vl T< (v )[9]J_ v v
C VpAVe—V(pAg)  mBlpAW)[3le < [V UZ) (A9 v v
T Vp—p vBlp<p ) v v
4 VVp — Vp ([l [Blp < [v)(F)p v X
4 Vp— VVp W) Blp < [vZ) [V 1(F)p v X
5 —=V-p — V-V-p [N Z) - < [UB) @) [BD]-p v X
B p— V-V-p p < [vKZ)~(v)[3]-p v X
D Vp — =V-p (v)[Blp < ﬁ(W[B} v v
CS (pAg) — (p>4q) (A q) < (([B]p [3)1}) > q) v v
CEM (p > q) V (p > —q) T < (([Blp A [Zp) > @) vV (([B]p A [Z)p) > —q) v v
ID p>p T<(BlpA[F)p) >p v v

5 Proper Display Calculi

In this section we introduce proper multi-type display calculi for Ly and L~ and
their axiomatic extensions generated by the analytic axioms in the table above.

Languages. The language Lpprv of the calculus D.MTV for Ly is defined as
follows:

S{A =plT|ILI-A[ANA]{v)a| [ a .
= AT L SX [ XAX [ X VX[ @0 | [ (& | [EF

o= Bl

Fi=all|0| AT |TAT|TUT|[BX | (F)X|[AX | (29X

The language Lppr~ of the calculus D.MT> for L+ is defined as follows:

S A:=p|T|L|-A|ANA|a> A
Xu=A|T|L| 53X | XAX | XVX|(E|ISX | TAX | [T

nJas= [3]4|[?)A|aﬂa
Fi=al|l|0| RO|TAT|TOL|BIX|[HX| XX

Multi-type Display Calculi. In what follows, we use X,Y, W, Z as structural S-

variables, and I, A, X, IT as structural N-variables.

Propositional Base. The calculi D.MTV and D.MT> share the rules listed
below.

— Identity and Cut:

Ids XFA AFY Cuts I'Fa a}—AcutN

pkp X+Y ' A
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— Pure S-type display rules:

L = = T gal X FY XF 2Y gals
S
1EL TET Y EX Y ESX
XAYFZ XFYVZ
Tess TEeSss
YESXVZ SYAXFZ

— Pure N-type display rules:

IT'NAF XY 'FAUY AT EF A 'k RA
resy —m,———oH—-—— =———————"T€sSN galy galy
AF ATUX RAAT + X ~RART AF A

— Pure-type structural rules (these include standard Weakening (W), Contrac-
tion (C), Commutativity (E) and Associativity (A) in each type which we
omit to save space):

X+Y . XFY XFY
conts —————— T — —
Y FoAX XATFRY XFYVL
I'EA . I'-A ' A
contN; 1 — —
~RAER AT rni+ A I'-AU0

— Pure S-type logical rules:

AABEX XFHA yrB , SAFX XE 5A

-

ANBF X XAYFAAB —AFX XF-A

Monotonic Modal Logic. D.MTYV also includes the rules listed below.

— Multi-type display rules:

(VX X R Errx
(0)14] = (a)vel S (&)3] >
I\ [AX X+ el '+ [3)x
) (ErrXx ) FHX+T
(&)[3] %) S
I [3]X X F[gr

laFXx  I'ka o __abFT X+l
vy —— ~ - ) [v = - [v°]
<l/>04 X <I/>F = <I/>0z [Z/ ]Oé = [Z/C]F X + [Vc]a
FArr  _XEA o AFX reiEa
(HAFT (X DA BIAFBIX I+ |34

Conditional Logic. D.MT> includes left and right logical rules for [3], the
display postulates (€)[3] and the rules listed below.
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— Multi-type display rules:

o XFIsY r'-Xp»Y _ _ Xe@r . .
AD = = > > _ [€>[¥>
FAXFY XFIEY I'F )X

— Logical rules for multi-type connectives and pure G-type logical rules:

I'ra  AFX XFaBA _XFA ijj@iw>
a>AFTEX XFar A BAF X rr#Ha
efprr  Ifa AFp
anBrT IriArang

Axiomatic Extensions. Each rule is labelled with the name of its correspond-
ing axiom.

(HTrT D A [BWED (EYI + X (HYUEYT A(EYA) + O
Tk [velr THTAABX (YT A (DYA F [ve]O
r'F[3]5(&)A rr+[3)1 os r+[3]gA X+ [@A Y+ Z
(D)A = =) T+ =) XAYH(IAABZ
CEM IIF[ZWET HF[FNEO AR [FETD AF[F(EEO YEX r+[3]x
TH(rAABEX)V(OAI)S =Y) ()= X

Properties. The calculi introduced above are proper (cf. [20,35]), and hence
the general theory of proper multi-type display calculi guarantees that they
enjoy cut elimination and subformula property [8], and are sound w.r.t. their
corresponding class of perfect heterogeneous algebras (or equivalently, two-sorted
frames) [20]). In particular, key to the soundness argument for the axiomatic
extensions is the observation that (multi-type) analytic inductive inequalities
are canonical (i.e. preserved under taking canonical extensions of heterogeneous
algebras [6]). Canonicity is also key to the proof of conservativity of the calculi
w.r.t. the original logics (this is a standard argument which is analogous to those
in e.g. [18,21]). Completeness is argued by showing that the translations of each
rule and axiom is derivable in the corresponding calculus, and is sketched below.

N. VT ~ [T P. =VL ~ =()[3]L T. VA— A ~
W[3]AF A
TET 1F1 AL A
B3)TH ()T [3]L - [3]L [3]4 + [3]A
N P——mm T———
T+ [ve](3)T Tr 3Bl (0)plAF A

ID. A>A ~ (PJAAN[F)A) > A



Non Normal Logics: Semantic Analysis and Proof Theory 111

AFA
HAF HA
AF DFA
BlAF Bl R)A A
(©BIAF DA BIAF BIA
BAF BHEBIA  (OBIAF 4

TH((BAARA) S A

CS. (AAB) — (A>B) ~ (AAB)F (3]AN[HA) > B

AF A
[Z)AF [Z)A AF A
A+ [@)[F)A E4 > H[F)A
. 514 F [3][g)[F)A [@[%‘) B+ B
AABFE ([3]A [ )A) >

CEM. (A> B)V(A>-B) ~ (BJAN[HA) > BV (3]AN[FA) > ~B

ZYAF [ZNE)BIA [B)AF FNE)BIA A [F)(E)[3]A [HAF [3)(E)[3]A
TH(3]AA[FNA)S BV ([3]AN[FA) B =B

CEM

C. VAAVB = V(AAB) ~ (W[3]AANW)[3]|BF [v)(Z)(ANAB)
D. VA — =V-A ~ (V)[D]AF = (v)[3]-4

_AFA __BFB AF A
[BJAF [3]4 [3]B + [3]B PIAF[3]4
(e)pl1AF A (€)c1B - B (E)5]AF A
(E)[2]AA(E)2]BF ANB —AF =(é)[3]4
. F)(E)BIAA (§)[3]B) F (F)(AA B) b [5]-A F [3] =(€)[3]A4
(D) [BJAA (9)[3]B F [V () (AN B) (BlAF S(@)[3]-A

The (translations of the) rules M, RCEA and RCK,, are derivable via the log-
ical rules for the corresponding multi-type connectives, adjunction/residuation,
weakening, contraction, the usual definition of < and the fact that if (4 —
B) A (B — A) is derivable, then each conjoint is derivable too.

A Analytic Inductive Inequalities

In the present section, we specialize the definition of analytic inductive inequal-
ities (cf. [20]) to the multi-type languages Ly and Ly~ reported below.

p|T \l\ﬁA\AAA\ﬁV) | )

3 pIT|L|-A|AAA
Lo ~alanal[3]4](2)A N> ]

= al> A
w=1]|0|~alanal[3]4|

\
AlZA.

S35 A
N>«
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An order-type over n € N is an n-tuple € € {1,0}". If € is an order type,
€? is its opposite order type; i.e. €?(i) = 1 iff (i) = O for every 1 < i < n.
The connectives of the language above are grouped together into the families

F = FsUFyUFur and G := Gs U Gy U Gy, defined as follows:

Fo= -} Gs={7)
Fu={~} Gv= ()
Fur = {(0), @)} Gurr = {3, 7], ()

For any f € F (resp. g € G), we let ny € N (resp. ny € N) denote the arity of
f (resp. g), and the order-type €; (resp. €4) on ny (resp. ngy) indicate whether
the ith coordinate of f (resp. g) is positive (e7(i) = 1, €4(i) = 1) or negative
(€7 (i) = 0, €4(1) = 9).

Definition 8 (Signed Generation Tree). The positive (resp. negative) gen-
eration tree of any Ly r-term s is defined by labelling the root node of the gen-
eration tree of s with the sign + (resp. —), and then propagating the labelling on
each remaining node as follows: For any node labelled with £ € F UG of arity
ng, and for any 1 < i < ny, assign the same (resp. the opposite) sign to its ith
child node if €o(i) = 1 (resp. if €4(i) = 0). Nodes in signed generation trees are
positive (resp. negative) if are signed + (resp. —).

For any term s(p1,...pn), any order type € over n, and any 1 < i < n, an e-
critical node in a signed generation tree of s is a leaf node +p; with €(i) = 1
or —p; with €(¢) = 9. An e-critical branch in the tree is a branch ending in an
e-critical node. For any term s(p1,...p,) and any order type e over n, we say
that +s (resp. —s) agrees with €, and write e(+s) (resp. e(—s)), if every leaf
in the signed generation tree of +s (resp. —s) is e-critical. We will also write
+s" < *s (resp. —s’ < *s) to indicate that the subterm s’ inherits the positive
(resp. negative) sign from the signed generation tree *s. Finally, we will write
e(s') < *s (resp. €9(s') < *s) to indicate that the signed subtree s’, with the
sign inherited from *s, agrees with € (resp. with €?).

Definition 9 (Good branch). Nodes in signed generation trees will be called
A-adjoints, syntactically left residual (SLR), syntactically right residual (SRR),
and syntactically right adjoint (SRA), according to the specification given in
Table 1. A branch in a signed generation tree xs, with x € {4+, —}, is called a
good branch if it is the concatenation of two paths Py and Ps, one of which may
possibly be of length 0, such that Py is a path from the leaf consisting (apart from
variable nodes) only of PIA-nodes and Py consists (apart from variable nodes)
only of Skeleton-nodes.




Non Normal Logics: Semantic Analysis and Proof Theory 113

Table 1. Skeleton and PIA nodes.

Skeleton PIA
A-adjoints SRA
+ V U + AN [3B] V] > [B) - ~
- AN - VU & - ~
SLR SRR
+ AN (B -~ + V U
- Uil bl o> B~ - AN

Definition 10 (Analytic inductive inequalities). For any order type € and
any irreflexive and transitive relation <o on pi, ... Dy, the signed generation tree
xs (x € {—,+}) of an Ly term s(p1,...pn) ts analytic (§2, €)-inductive 4f

1. every branch of xs is good (cf. Definition 9);

2. for all 1 <1i <n, every SRR-node occurring in any e-critical branch with leaf
p; 1s of the form ®(s,3) or ®(B,s), where the critical branch goes through (
and
(a) €9(s) < xs (cf. discussion before Definition 9), and
(b) pr <q p;i for every py occurring in s and for every 1 < k < n.

An inequality s <t is analytic (§2, €)-inductive if the signed generation trees
+s and —t are analytic (2, €)-inductive. An inequality s < t is analytic inductive
if is analytic (12, €)-inductive for some 2 and e.

B  Algorithmic Proof of Theorem 1

In what follows, we show that the correspondence results collected in Theorem 1
can be retrieved as instances of a suitable multi-type version of algorithmic
correspondence for normal logics (cf. [5,6]), hinging on the usual order-theoretic
properties of the algebraic interpretations of the logical connectives, while admit-
ting nominal variables of two sorts. For the sake of enabling a swift translation
into the language of m-frames and c-frames, we write nominals directly as sin-
gletons, and, abusing notation, we quantify over the elements defining these
singletons. These computations also serve to prove that each analytic structural
rule is sound on the heterogeneous perfect algebras validating its correspondent
axiom. In the computations relative to each analytic axiom, the line marked with
(%) marks the quasi-inequality that interprets the corresponding analytic rule.
This computation does not prove the equivalence between the axiom and the
rule, since the variables occurring in each starred quasi-inequality are restricted
rather than arbitrary. However, the proof of soundness is completed by observing
that all ALBA rules in the steps above the marked inequalities are (inverse) Ack-
ermann and adjunction rules, and hence are sound also when arbitrary variables
replace (co-)nominal variables.
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N. FIFVT ~ TC[UZHT P. Fl= =VLl ~ T C=([3]L

TCUANT TC-([3lL
iff VXVw[(Z)T C{X}° = {w} C p{X}] iff VX[X C[3]L =T C ~(v)X]

(%) first. app. (%) first. app.
iff VXVw[X =W = {w} C p°{X}°) iff W C—()[3]0
(3T ={wW}9)

iff vw[{w} C [V H{W}°] iff W C—(v){0} BPU={ZCcw|zC0}
iff Yw[{w} C (R, ¢ [W))°] if WC{weW|wR,0}°
iff vw[{w} C R} [W]] iff Vw[0 &€ v(w)].

iff Yw[W € v(w)]

C. Fl=VpAVa—=V(pArg ~ @BIpA()Ble C P UZ(AD
W) 2lp A (v)[Blg C [VZN(P A q)
iff VZ1222Z3Vpq[{Z1} C [Blp & {Z2} C Bla & (F)(p A a) C{Z3}° = (W){Z1} A (W) {22} C [v°{Z3}°]
first approx.
iff VZ1222Z3Vpal(€){Z1} Cp & (€){Z2} Ca & (H(p A q) C{Z3}° = (v){Z1} A (v){Z2} C [v°{Z5}"]
Residuation
i V21V 2V Z5[(3) ((€){Z1} A (€){Z2}) € {Z3}° = W){Z1} A (W{Za} C [°1{Z5}°]  (x) Ackermann
it V21V 29 Z5[((E){Z1} A(€){Z2}) C [€1{Z3)° = wI{Z1} A (){Z2} C (v1{Z3}°] Residuation
iff VZ1VZoVZ3[Ve(zRecZ1 & vRecZo = —zRg Z3) = Vz(zR,Z1 & R, Zo = —xzR,c Z3)]
Standard translation
iff VZ1VZaVZ3[Va(x € Z1 & © € Zo = © € Z3) = Va(Z1 € v(z) & Z3 € v(z) = Z3 € v(x))]
Relations interpretation

iff VZ1VZaVZ3[Z1 N Zoy C Z3 = Va(Z1 € v(z) & Zo € v(z) = Z3 € v(x))]
iff VZ1VZaVx(Z1 € v(z) & Zo € v(x) = Z1 N Z3 € v(x))]. Monotonicity

4. F = Vp—VVp ~» ([3lp C W URI(Z)p
() [3lp € VU I(Z)p

iff VZ1Va'Vp[{Z1} C [3]p & [N(Z) [ve)(F)p C {2'}¢) = (){Z1} C {='}] first approx.
iff VZ1Va'Vp[(€){Z1} C p & WU (F)p C {2'}°) = () {Z1} C {2}°] Residuation
iff VZ1Va'[[vB) [vZ) (€){Z1} C {2'} = (1){Z1} C {2'}] Ackermann

it V21 [(){Z1} C CUH) 1B (€) {21 ]
iff VZ1Va[zRyZ1 = VZ2(zRycZ2 = 3y(ZaRyy & VZ3(yRycZ3 = Jw(Z3Rzw & wRe Z1))))]
Standard translation
iff VZ1Vale € v(2) = VZ3(Zs & v(x) = Fy(y & Z2 & VZ3(Za & v(y) = 3w(w & Z3 & w € Z1)))))]
Relations translation
iff VZ1Valz € v(Z) = VZ2(Z2 € v(z) = y(y & Z2 & VZ3(Z2 € v(y) = Z1 € Z3)))]
Relations translation
iff VZ1Vzlr € v(Z2) = (VZ22(Vy(VZ3(Z1 C Z3 = Z3z € v(y)) = y € Z2) = Z3 € v(x)))]
Contraposition
iff VZVzlz € v(Z2) = (VZ2(Vy(Z1 € v(y)) = y € Z2) = Z2 € v(x)))] Monotonicity
iff VZVzz ev(Z)={y| Z1 €v(y)} €v(z)]. Monotonicity

4. F = VVp— Vp —~ [BIW3Ip C [ IF)p
W)W BIp C W I(Z)p

iff VavZ1Vpl{z} C (1 B1()[Blp & (F)p € {21} = {2} € [v°1{Z1}°] first approx.
iff VavZVpl{z} C (\31(»)[Blp & p C [E1{Z1}° = {2} C v°]{Z1}°] Adjunction
iff Vavzi[{z} C ()[31(B1[E1{Z1}¢ = {2} C v°1{Z1}°] Ackermann

iff VavZ1[(3Z2(xRyZ2 & Vy(Z2Rsy = 3Z3(yRyZ3 & Yw(Z3Rsw = ~wRgZ1))))) = ~xR,cZ1]
Standard translation
iff VaVZ1[((3Z2 € v(z))(Vy € Z2)(3Z3 € v(y))(Vw € Z3)(w € Z1)) = Z1 € v(z)]
Relation translation
iff VovZ1[((322 € v(2))(Vy € Z2)(323 € v(y))(Z3 C Z1)) = Z1 € v(2)]
iff VavVZ1VZ3((Z2 € v(z) & (Vy € 22)(323 € v(y))(Z3 € Z1)) = Z1 € v(w)]
iff VaVZ1VZ3[(Z2 € v(z) & (Vy € Z2)(Z1 € v(y))) = Z1 € v(z)] Monotonicity
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5. F |E ~Vop = V=Vop ~ =[v(F)-p C [vZ)~(v)[D]-p
“IF) ~p C BN H ) B1p
it VY21 [V (F) () [3]-p C {2}° & (H)-p C {Z1}° = —[WC{Z} C {#}¢]  first approx.
i Vo Zy [v°](#) () [5]p C {o}° & —[gH{Z1}° C p = =W Z}° C {a}°] Residuation
i VayZy [1°)(F) () B --[E{Z1}° C {2}° = -2} C {2)] Ackermann
iff VZ1 [ 21} C [VONF) () Bl (21{ Z1}°]
iff VZ1Vz[zR,cZ1 = VZ2(vRycZy = Jy(Z2Ryy & VZ3(yRyZ3 = Jw(Zz3Raw & wR¢ Z1))))]
Standard translation
iff VZ1ValZ1 ¢ v(e) = (VZs ¢ v(2))(3y ¢ Z2)(VZ5 € v(y)) (3w € Z3)(w & Z1)]
Relation translation
iff VZ1ValZy ¢ v(@) = (V22 ¢ v(2)) By ¢ Z2)(VZs € v(9)(Z3 ¢ Z1)]
iff VZ1Vz[Z1 ¢ v(z) = VZ2(((Vy & Z2)(3Z3 € v(y))(Z3 C Z1)) = Z2 € v(2))]
Contraposition
iff VZ1Va[Z1 ¢ v(z) = VZ2((Vy ¢ Z2)(Z1 € v(y)) = Z2 € v(x))] Monotonicity
iff VZ1Va[Z1 ¢ v(z) = {y| Z1 € v(y)}° € v(x))] Monotonicity
B. FlEp—=VaVap ~ pC [VUZ()[3]-p
p C [V )~ (v)[3]-p
iff VaVp[{z} C p= {z} C [v°Z)~(v)[3]-p] first approx.
iff Vz[{z} C [v°(ZF)—(v)[2]-{=z}] Ackermann
ift val[{z} C WoUH) )Mo}
iff Ve[VZi(zR,cY = Jy(YRyx & VZ2(yRyZ2 = Z2R>x)))] Standard translation
iff Ve[VZ1(Z1 €v(z) = 3y(x € Z1 & VZ2(Z2 € v(y) = = € Z3)))] Relations translation
iff Ve[VZ1(Vy(VZ2(x & Zo = Zo ¢ v(y)) =y € Z1) = Z1 € v(x))] Contrapositive
iff Va[VZi(Vy({z}° ¢ v(y1)) =y € Z1) = Z1 € v(x))] Monotonicity
iff Vz[{y|{z}° ¢ v(y)} € v(z))] Monotonicity
iff VavVX([z e X = {y| X® ¢ v(y)} € v(z)] Monotonicity
D. F |z Vp—=V-op ~ (v)[3]p € ~(v)[3]-p
(HBIp € ~()Bl-»
iff vZvZ'[{Z} C[3lp & Z' C [3]-p = (v){Z} C ~(v)Z'] first approx.
iff VZVZ'[(e){Z} Cp & {Z'} C [3]-p = (v){Z} C -~(v){Z'}] Residuation
iff vZvZ'[{Z'} C [3]-(e){Z} = (w){Z} C =~ (v){Z'}] (%) Ackermann
iff VZ[(){Z} C ~()[3]~(€){Z}]
ift VZ[(){Z} C W(5)(€){Z}]
iff VZVz[zR,Z = VY (zR,Y = Jw(YRsw & wRe Z))] Standard Translation
iff VZVz[Z € v(z) = VY (Y € v(z) = Jw(w €Y & w € Z))] Relation translation
iff VZVx[Z € v(z) = VY (Y €ev(z) =Y ¢ Z°)]
iff VZVz[Z € v(z) = VY (Y C Z° =Y ¢ v(x))] Contrapositive
iff VZVaVY|[Z € v(z) = Z° ¢ v(x)] Monotonicity
CS. Fl=(prg) = (p>q) ~ (pAg) C(BlpAI[Z)p)>g
(pAq) C([BlpN[F)p)>q
iff VavZVz'Vpgl{z} CpAq & {Z} C[BlpN[F)p & q C {z'}° = {z} C {Z}>{='}°]
first. approx.
iff VavZVaWp¥gl{z} C p & {2} C g & {2} C [3lp & {2} C [H)p & q C {2’} = {2} C {Z}>{z'}°]
Splitting rule
iff VoV Z¥a/VpVal{z} C p & {2} Cq & {2} C [3p & p C {2} & a C {2/}° = {2} C {Z}p{a'}*]
Residuation
it VavZva'Val{z} C [£){Z2} & {2} C a & {2} C BIBZ} & a C {&}¢ = {2} C {Z}>{a'}°]
Ackermann
it VavzVae'[{z} C ({2} & {Z} C B2} & {a} C {2} = {z} C {Z}>{a"}°] .
*) Ackermann
iff vavz[{z} C [€){2} & {2} € Bl[@){Z} = {=} C {Z}>{=}]
iff VaVZ[-~2RgZ & Vy(ZRsy = ~yRgZ) = Vy(Ty(z, Z,y) = y = z)] Standard translation
iff VaVZ[z € Z & Vyly€ Z = Z €y)=Vyy € f(x,2) = y=x)] Relation interpretation
iff VaVZ[z € Z = Vy(y € f(z,2) = y = z)]
iff VaVZ[z € Z = f(z,Z) C {z}]
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ID.

FEp=p ~ ([Blpn[Z)p)>p

T C(Blpn[Z)p)>p

iff VZ2Z'Va'p[({2} CPlp & {Z'} C[Fp &p C{a'}) = T C ({Z}n{Z'P{a'}°]  first approx.

i VZZ'Va'pl((€){Z} Cp & {Z'} C[Hp &p C{2'}) = T C ({2} n{Z'})>{2'}°]  Adjunction
iff VZVZ'va'[({Z'} C [B)(€){Z} & (€){Z} C {'}) = T C ({Z} n{Z'})>{a"}° Ackermann
it vZvZ' {2’} C [B)(e){Z} = V' [(€){Z} C {a'}° = T C ({2} n{Z'})>{='}°]] Currying
iff VZVZ'[{Z'} C[Z)(e){Z} = T C ({Z}yn{z'})>(e){Z}] (%) Ackermann

iff VaV2ZVZ' Vw(Z'Ryw = ~wRe Z) = Vy(Ts(z, Z,y) & Z = Z' = y € Z)]

Standard Translation

iff VavzV2z'vy[Vw(Z' Ryw = —wRe Z) & (Ty(z, Z,y) & Z = Z' = y € 2)]
iff VavZVZ'VylVw(w ¢ Z' = w ¢ Z) & (y € f(2,2) & Z = Z' = y € Z)]

Relation interpretation

iff VavV2ZVZ'VylZ C Z' & (y € f(2,2) & Z =2' = y € Z)]
iff VaVZVyl(y € f(=, Z) = y € 2)]
iff VavZ[f(z, Z) C Z]

T. FEVp—p ~ W)3BpCp
W)Blp C p

iff VavZy¥plp C {z}° & {Z} C [3]p = (v){Z} C {z}°] first approx.
iff VavZvplp C {z}° & (e){Z} Cp= W){Z} C {z}] Adjunction
iff VaVZ[(e){Z} C{z}° = (w){Z} C {z}°] (%) Ackermann
iff VZ[(v){Z} C (3){Z}] inverse approx.
iff VaVZ[zR,Z = zR5Z] Standard translation
iff VaVZ[Z € v(z) =z € Z]. Relation translation

CEM. F = (p>q)V(p>—g) ~ (([BlpN[Fp)>q) VvV ([BlpN [F)p)>—q)

TC{(Blpn[Z)p)>a) vV ([3]p N [F)p)>—q)

iff VpVgvVXVYVavy({X} C[BlpN(Z)p & {Y} CBlpN[Zp & ¢ C {z}° & {y} Cq
=T C ({X}>{z}°) v {Y}I>—{y}) first approx.
iff VpVgvXVYVaVy({X} CBlp & {X} CNp & {Y} CPRIp&{Y}C[HNp&qaC{r}° & {y} Cq
=T C ({X}>{«}9) v ({Y}>—{y}) () Splitting
iff VpVoVXVYVaVy({X} CBlp & p CIE{X} & {Y} CBlp&p C[E{Y} & qC{z}° & {y} Cq
= T C ({X}>{z}°) v {Y}I>—{y}) Residuation
iff VXVYVaVy({X} Vv A{Y} C BIIDA{X} AA{Y)) & {y} C {=}°
=T C {X}>{z}) VvV {Yi>—{y}) Ackermann
iff VXVYVo({X} Vv {Y} C BRIEAXIA{YY = Yu({y} C {z}° = T C ({X}>{=}) v {Y}>~{y}))
Currying
iff VXVYVe({X}V{Y} CPRIIEAX}IAA{YH = T C {X}>{z}) v ({Y}>-{z}))
iff VXVYVz[(Vy(XRsy or YRs5y) = —~yRgX & ~yRgY)
= Vy(-Tf(y, X,z) or (Vz(Ty(y,Y,2) = z = x)))] Standard translation
iff VXVYVz[(Vy(y € Xor yeY)=>ye X &yeyY)
= Vy(z ¢ f(y,X) or (Vz(z € f(y,Y) = z ==x)))] Relation interpretation
iff VXVYV[(XUY CXNY) = Vy(z ¢ f(y, X) or (Vz(z € f(y,Y) = z = x)))]
iff VXVYVz[X =Y = Vy(z ¢ f(y,X) or (Vz(z€ f(y,Y) = z==1x)))]
iff VXVaVy[(z ¢ f(y, X) or (Vz(z € f(y,X) = z = x)))]
iff VXVavyl(z € f(y, X) = Ff(y,X) = {z})]
iff VXVy[|f(y, X)| < 1]
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