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Abstract

The increasing number of Renewable Sources (RES) in the European electric grid has resulted in the
necessity for producers to adjust their position with respect to the change in weather forecasting.
Therefore, the European Power Exchange (EPEX SPOT) has seen an expansion of the Intraday Mar-
ket (ID) where market participants can trade up until a few minutes before delivery. However, literature
in Electricity Price Forecasting (EPF) primarily concerns the Day-ahead market (DA).

The goal of this thesis is to develop a model to predict the prices of hourly contracts in the ID market
using stochastic processes. This would facilitate the obtainment of a probability density function (pdf)
for the prices of the contracts at any time during the day. This thesis focuses on the German Energy
market which is the most liquid among the European countries.

I then propose 4 different Levy processes for the forecasting of the process: a simple Brownian Motion,
a Jump Diffusion Process, a Normal Inverse Gaussian (NIG), and a Generalised Hyperbolic model
(GH). The Normal Inverse Gaussian model is selected according to the Akaike Information Criterion
and the Bayesian Information Criterion.

In order to integrate other variables into the model, | then conducted a fundamental analysis. I find a
low correlation between the volume traded during the ID phase and the change in Wind, solar, and con-
sumption forecasting. Moreover, the volatility of the contract shows a low correlation with the changes
in forecasting and the traded volume.

Ad(ditionally, | conduct an augmented Dickey-Fueller test and a Mann-Kendall test on the price of the
contracts to verify the presence of either mean reversion or drift. Results show that the latter cannot
be refused for most days.

Finally, alongside the NIG model (noise model) | propose one model including a drift component (noise-
drift model) and a second model adding both a drift and a volatility component (noise-drift-volatility
model). The three models are compared in the accuracy of forecasting the tail probabilities of the 1D,
and ID; indexes. It is found that the noise model and the noise-drift model cast a better prediction than
the noise-drift-volatility model. This suggests that the volatility during the first part of a day of trading is

a poor predictor of volatility in the hours close to delivery.
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Introduction

Energy Market in Europe has been liberalised since the 1990s, allowing multiple independent buyers
and sellers in the energy market. The transfer of electric energy happens on a grid connecting pro-
ducers and consumers, and it is designed to work at 50 Hz in Europe. To maintain this frequency, the
production of electric energy must always equal the consumption. The balance is achieved through
the interplay of the Balance Responsible Parties (BRPs) and the Transmission System Operator (TSO).
BRPs represent producers and consumers whose role is to maintain a balanced position: producers
need to sell the energy that will be produced, and consumers need to buy energy to compensate for the
consumption. Instead, the TSO is the authority responsible for balancing the grid and, consequently,
the preservation of the frequency. It achieves so by, for example, creating incentives for the BRPs to
maintain a balanced position or providing for reserves in case of imbalances.

The exchange of contracts can take place during three phases, the future market, in which over-the-
counter (OTC) contracts are exchanged; the Day-ahead (DA) market, which closes the day before
delivery and the Intraday Market (ID) opens right after the closure of the DA market and closes a few
minutes before the moment of delivery.

To prevent Global warming and climate change, government and political institutions have invested
in and incentivised the production of electrical energy through renewable sources (RES), particularly
wind and solar power. The forecasting of energy production depends on weather forecasting; wind
turbine production depends on wind speed, and solar power depends on the sun’s intensity. However,
these factors cannot be controlled by humans and can change during the day, causing an amount of
energy production different from the expected one. This difference then needs to be bought or sold
by the producer before the moment of delivery, and for this reason, the share of energy trading in the
short-term market, i.e. ID, has become more relevant.

As in every other market, operating under fewer uncertainties allows for better resource management
and achieving this goal; accurate forecasting is paramount. Forecasting deals with many components
in the energy market: wind and solar power, consumption, and prices [11]. Electricity Price Forecast-
ing (EPF) is a discipline at the intersection of Electrical Engineering, Finance, Statistics and Applied
Probability that deals with the forecasting of energy prices. Despite the increasing importance of the
ID market, the literature covering EPF in the ID market is scarce, and more than 90% of this literature
refers to the DA market [12], [26]. [15] and [17] investigated the fundamentals behind the price of 15-
minute contracts in the ID market of Germany, finding the phenomena causing the change in prices,
such as the change in Solar and Wind power forecasting, the change in the price of nearby contracts
or the mean reverting effect, i.e. the trend of the price of the contract to return to its average. Other
attempts to study the price formation in the ID market can be found in [22] and [10]. In [19], the authors
use probabilistic methods to predict the price of hourly contracts in the last three hours of the German
ID market, [25] use deep learning techniques to predict the price of the contracts.

This paper aims to expand the literature on Energy Price Forecasting in the Intraday market utilising
Stochastic Processes. Stochastic processes are mathematical objects emerging from Probability and
are used to model a random behaviour in time. In other words, a stochastic process represents a
variable whose value in the future is described by a set of trajectories. The values that the trajectories
assume at a future time ¢ are distributed according to a Probability Distribution, which depends on a
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set of parameters defined at present time s. Parameters are calibrated to capture different behaviours
and phenomena. For example, a Brownian Motion W. starting at s = 0 with initial value W, = 0 is
a Stochastic process normally distributed at time t. The parameters of a Brownian Motion determine
the mean ut and the variance (o2t) for every given time. Brownian Motion is used for describing the
log-return of Stocks in the Black and Scholes models, and higher volatility (¢) means that the price
of a Stock change very quickly. Another kind of process is the Ornstein-Uhlenbeck process, and it is
used to model the mean reversion effect of a process, that is, its tendency to move back to its average.
The parameters of this process are the speed of mean reversion and the average of the process. The
choice of parameters, then, reflects a possible scenario, and different sets of parameters can reflect
different sets of hypotheses on the future behaviour of the process, returning for each one a probability
distribution. This comes useful, for example, when a trader needs to include her personal beliefs in the
market. If she expects the price of a Stock to rise, she will choose a positive p for the Brownian Motion.
Also, the stochastic process can include different phenomena like the aforementioned mean reversion,
which can be found in the power market [17], [6].

The goal is to create a naive model that would predict the changes in prices only through the historical
values of the contracts. This first model can then be expanded by adding the fundamentals governing
the change in the price of a contract which can be found, for example, in [17] or [10]. The subject
of study of this dissertation is the price of the 60-minute contracts exchanged in Germany, which rep-
resents the most traded and, therefore, liquid contract in Europe. The high liquidity means a larger
amount of available data allowing a better analysis.

The dissertation will proceed as follows, in section 2, an introduction to stochastic processes is given;
in area 3, there is an explanation of the EPEX Spot Market and the ID market, which is followed by the
mathematical formulation of the problem. Finally, in section 5, the formulation and testing of the model
are made.



Lévy Processes

The goal of this section is to give the mathematical background that is used in the following sections.
The arrival point is the presentation of Lévy processes to the extent that is relevant for this thesis; an
interested reader may find more information in [1], [3], or [24]. Lévy processes are a particular case of
stochastic processes, so the latter is introduced.

2.1. Stochastic Processes and Martingales

Definition 2.1.1 A stochastic process is a collection of random variables, indexed by some set T, de-
fined on a common probability space (2, F,P), assuming values on a measurable space S with some
o-algebra . Usually S is R or R™ and X is the Borel o-algebra, B(R").

Usually, the set T is either a subset of R™, and then the stochastic processes are called time-continuous,
or N, and then time-discrete. We now define the concept of filtration for a probability space.

Definition 2.1.2 Let (2, F,IP) be a probability space, let F. denote a sub-c-algebra of F and T a set
of indexes. Then (F;):cr is called a filtration if F; C F,, Vt < s,t,s € T. (Q, F,P, (F):er) is called a
filtered probability space. If for all t holds that F, = N.~oFi+, then the filtration is right-continuous.

Definition 2.1.3 Given a filtered probability space (2, F,P, (F;):c1), the stochastic process (X;)icr is
called adapted to the filtration (F;)icr if X, is F-measurable ¥t € T.

In other words, a process is adapted if at any time it can be measured with the information available at
that moment. For example, a stochastic process representing the price of a stock is adapted because
the values it can assume at that time reflect only the information available up to that time.

Definition 2.1.4 A Stochastic ProcessY : T x) — S taking values in a Banach Space S is a martingale
with respect to a filtration F. and probability measure P if

 F. is a filtration of the underlying probability space (2, F,P)
* Y is adapted to the filtration F., i.e., for each t in the index set T, the random variable Y, is an F,
measurable function.
- foreacht, Y, lies in L'(Q, F,P)
o Y, = Ep(Y3|Fs) forall s < t
This means that the expected value of a Martingale in the future, given all the information available at

the present time, is its current value. A Stochastic Process can be either continuous or discontinuous
in the same way as a function.

Definition 2.1.5 A function f : [0,T] — R is called continuous at a point ¢t € [0, T if its right limit and
left limit, that is

JE) = lm f(s), flt=)= lm_f(s), (2.1)

s—t,s>t s—t,s<t
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exist and coincide. Otherwise, it is called discontinuous. A function is called right continuous at t if
f(t) = f(t+) and left continuous if f(t) = f(t—). A function is called a cadlag ("continue a droite,
limite a gauche”, meaning right continuous with left limit) function in t if the left limit exists and it is right
continuous.

A discontinuity in the path will be called a jump, and the stochastic processes will be cadlag processes.
This is a fact induced by the nature of prices: a jump can be only known only after it has happened and
its value cannot be anticipated. See for example figure 2.1.

1

Q0 &¥—o0-—-—-—7-—70/—o2—"

1 ——

0

Figure 2.1: Examples of cadlag functions.

Now, | will illustrate the most known and used example of a continuous stochastic process, the
Brownian motion.

Definition 2.1.6 A Brownian Process {W,,t € R*} is a Stochastic Process defined as follows:

Woe=0

W has independent increments, i.e., Wy — W, 1l W, Vu < s<t
W has Gaussian increments, i.e., W; — W, ~ N(0,t — s)

W has continuous paths in time.

(2.2)

From this definition it directly follows that W, ~ N (0,¢) .
I now introduce a large class of stochastic processes that can allow

Definition 2.1.7 Lévy process A cadlag stochastic process (X,);>o on (2, F,P) with values in R?
such that X, = 0 is called a Lévy process if it possesses the following properties:

1. Independent increments: for every increasing sequence of times t, ..., t,, the random variables
Xioy X, — X1y, Xt,,, Xy, _, @re independent.

2. Stationary increments: the law of X, ., — X; does not depend on t

3. Stochastic continuity Ve > 0, limj, o P(| X4, — X¢| > €) = 0.

The third condition is imposed in order to exclude those processes where jumps happen at fixed mo-
ments in time.

The first property implies that if a Lévy process is sampled at regular intervals 0, A, 2A, ...,nA, then
Xa, Xoa-A, -, Xpa—(n—1)a are independent, and from property 2 it follows that they are distributed
as Xa. By choosing nA = t then X, can be represented as the sum of n i.i.d. random variables
following the distribution of X, . A distribution having this property is said to be infinitely divisible.

Definition 2.1.8 A probability distribution F is said to be infinitely divisible if, for any integer n > 2,
there exists n i.i.d. random variables Y1, ..., Y, such that Y, + ... +Y,, has distribution F.

An example of an infinite divisible distribution is the Normal distribution where a random variable X ~
N (u,0?) can be seen as the sum of n i.i.d. random variables each distributed as N'(£, %2). Note that,
in general, Y; and Y; + ... +Y,, do not belong to the same class of distributions; if it is the case then the
class of distribution is called closed under convolution.

From these considerations, it follows that
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Proposition 2.1.1 Let (X,),>¢ be a Lévy process. Then for every t, X, has an infinitely divisible distri-
bution. Conversely, if F' is an infinitely divisible distribution then there exists a Lévy process X, such
that the distribution of X is given by F.

The direct implications have been shown above, while the proof of the converse can be found in [24].
It can be shown that the characteristic function of a Lévy process in R is then given by

bx,(z) = E[e?*Xt] = E[e”*X1]t = ¥(3) | 2 e R. (2.3)
where
1 oo
U(z) = —5722 4 1Az —|—/ (e =1 —izal, <1 )v(dz) (2.4)

Equation 2.3 is called the Lévy-Khinchin representation and the triplet (A, ~, v) is called the character-
istic triplet; a Lévy process is uniquely defined by a positive definite matrix A, a vector v and a positive
measure v.

The real value A determines the drift component of the process, the real value ~ is the variance of the
Brownian Motion, and v is called Lévy measure and determines the jump process of the Lévy process.
The process corresponding to the triplet (A,0,0) for some A € R is the only deterministic process and
it corresponds to a line in the real plane. Indeed, the characteristic exponent reads

bx,(z) = 4 (2.5)
and therefore, the process X; has the form
X, = At. (2.6)

Brownian Motion is the Lévy process corresponding to the triplet (0, ~, 0) for some v € R. ~ determines
the variance of the Brownian Motion and equation 2.3 reads

x,(2) = V) = e7277 (2.7)

which is the characteristic function of a normal distribution with variance ~¢t. In 2.2 examples of paths of
Brownian Motion for different values of ~ are presented. For each value of +, 1000 paths are simulated
and the empirical variance for the values of the paths at time ¢t = 1 is presented. It can be seen that
for higher values of the v parameter, the paths assume with higher probability values far away from the
average which is 0.
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Figure 2.2: Each figure represents the result of the simulations of 10* Brownian Motion paths between t = 0 and T = 1 for
different values of . Higher values correspond to a higher probability for the process to assume values far away from the
average. In figure 2.2d the empirical distributions are compared.

The triplet (A, ~,0) corresponds to a Brownian Motion with drift, meaning that at time t the process
follows a Normal distribution with average At and variance ~¢. In figure 2.3 simulations for this kind of
process for (A = 1,7 = 1,0) are presented.

|
Theoretical Distribution
for p=5atT=1

Figure 2.3: Simulations of Lévy process with the triplet (5,1,0). On the right the empirical distribution of the simulated
processes at time t=1.

The Lévy measure describes the jump behaviour of the Lévy process through a positive measure
on the real numbers. For a real set, S is defined as the expected number of jumps whose size is in S
in a unit of time. To define this formally let us first define for the process (X;),>o the measure

MX(th) = ZAXS]IAXseB (28)

s<t

where AX, = X, — X,-. This means that iz counts the number of jumps up to time t whose size is
in B, if B = {1}, then ;% (1,¢) counts the jumps of size 1 up to time t, if B = [1,2] it counts the jumps
whose size is a real number between 1 and 2, and so on. The sets B are subsets of R that exclude 0
that corresponds to exclude continuities in the path. Then, the Lévy measure is defined by

v(B) =E [p¥(B,1)] (2.9)
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which counts the expected number of jumps whose size is in B in one unit of time. The Lévy measure
satisfies

v(0)=0 /R(l A 2?)v(dr) < oo (2.10)

where the integrand is the minimum between 1 and z2. This means that the measure has no mass
at the origin (considering a jump of size 0 would not be sensible), while the integral says that only a
finite number of big jumps can occur. This constraint is relevant because it implies that, if v(R) = oo, it
means that infinitely many jumps occur but these need to have a small size. A Lévy Process such that
v(R) = oo (< o0) is called of infinite (finite) activity. Let us start by defining a simple stochastic jump
process, the Compound Poisson process, which is defined as

Nt
Xe=> J (2.11)
k=1

where N, is a Poisson random process, i.e. a stochastic process whose distribution at time t follows a
Poisson random variable of intensity A¢ where ) is usually called the jump intensity of the process. Vi,
then, determines the number of jumps that occurred before time t according to the following probability

(rt)*
k!

P(N; = k) =e ™
The Ji are i.i.d. random variables that determine the size of each jump. We want to find
v(dx) = E[ux(dx, 1)]. (2.12)

To do so, we make use of the characteristic function of the Compound Poisson process and of the
following theorem

Theorem 2.1.1 (X,):>0 is a compound Poisson process if and only if it is a Lévy process and its sample
paths are piece-wise constant functions.

The proof of this theorem can be found, for example, in chapter 3 of [7]. This theorem states that
Compound Poisson processes are equivalent to piece-wise constant Lévy processes. Therefore, in
order to find the Lévy measure, it is sufficient to find the characteristic function of the process in the
form of equation 2.3. So, if the jump-size distribution J has associated measure f(dx), the characteristic
function reads

B[] = [eizzﬁlo Jk} ~E []E [e” Tilo J’“\NtH =E [E [(G”J)}Nt} =

i e NE (DD _ racsfe )]y _ (2.13)

n!
n=0

_ eAt Je (€27 =1) f(dz) = ¢t fR(eizm_l)Af(dz).

Combining equation 2.13 and Theorem 2.1.1, the Lévy measure is thus given by v(dx) = Af(dx).
Roughly, the expected number of jumps of a certain size in a unit of time is given by the jump intensity
multiplied by the probability density of the jump size. In figure 2.4 an example of the Poisson Compound
process is presented, where jumps are distributed as a Standard Normal Distribution.
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00 02 04 06 08 10

t

Figure 2.4: Simulation of Compound Poisson process with A = 20 and J ~ A/ (0, 1)

A Lévy triplet of the form (a,~, \f) for some real-valued a, v, and A, and a probability density f
is called a jump-diffusion process. It is the result of the combination of Brownian Motion, a drift and
a Compound Poisson process. In figure 2.5 an example of a jump-diffusion process with no drift is
shown.
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Figure 2.5: Simulation of jump-diffusion process with A =0,y =1, A = 7,and J ~ N(0, 1)

Infinite activity processes are processes that, in any given interval, present an infinite number of
jumps. In the following subsections, | discuss two examples of infinite activity Jump processes, the
Normal Inverse Gaussian process and the Generalised hyperbolic jump process. Figure 2.6 presents
a simulation of an infinite activity process. The reader should be aware that a graphic representation
of an infinite activity process is not possible: at every time scale the process should present an infinite
number of jumps, but this is of course computationally not feasible.
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(a) Scatter plot of the cumulative sum of the increments at every
interval.

(b) Interpolation of the cumulative sum of the increments of the
infinite activity process.

Figure 2.6: Discrete representation of a Normal Inverse Gaussian Infinite activity process on the left and the interpolation of

the jumps on the right.
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2.1.1. Generalised Hyperbolic Model

The generalised hyperbolic model is a Jump process that at time ¢ = 1 follows a Generalised Hyperbolic
distribution. This distribution was first introduced in [2] and it has been widely used in different fields
since it allows the presence of semi-heavy tails and it has been used, for example, to model returns in
Finance. See for example [8] or [9] for applications and [23] for a complete dissertation on the argument.
The distribution is defined as the normal variance-mean mixture where the mixing distribution is the
generalized inverse Gaussian distribution. That is, if

Y =a+ 8V +0VVX (2.14)

with X and V independent random variables, V following a Generalised Inverse Gaussian distribution
and X a normal distribution, then Y follows a Generalised Hyperbolic distribution. This distribution is
defined by 5 parameters and has a probability density function given by

5P s Erorz (/T F @)
@ = Arken ¢ 775
T\ (67) (mﬁy)

(A, «a, B, i, 6) are real-valued parameters, v = y/a? — 52, and K, is the Modified Bessel function of the
second kind with index v. The first two moments are given by
dBKA+1(07)
YK (67)
252 K2 )
Var(X) = 0Ks1(07) | B ;5 <K>\+2(5’Y) N A_QH( ’7)>
YEA(67) gl Kx(67) K3(07)
5 is the asymmetry parameter and determines the skewness of the distribution; a left-skewed distri-

bution gives more weight to negative values, while a right-skewed distribution gives more weight to
positive values. If 8 = 0 the distribution is symmetric as it can be seen in figure 2.7.

E[X]=p+
(2.15)

0.35

025

0.20

fix}

0.15

0.10

0.00 { =————7

-10.0 =75 -50 -25 00 25 5.0 75 100
x

Figure 2.7: Probability distribution function for the generalised hyperbolic distribution for different values of 3. The other
parameters are setto (A =0.5,a =1pu =0, = 1)

« is a positive parameter such that 0 < |3| < « and it determines the heaviness of the tail, more
specifically the smaller the parameter, the heavier the tail. See figure 2.8.

05

04

03

fix)
log(f{x)}
|
=
o

02

— a=01
a=05
-175 a=1

01

— a=2

0o

-100 -75 -50 -25 oo 25 50 75 100 -100 -75 -50 -25 00 25 50 15 100
x x

(a) Probability density function for different values of «. The (b) Logarithm of the probability density function for different
smaller the value, the higher the probability in the tails. values of «

Figure 2.8: In figure 2.8a the pdf for different values of « is shown, in figure 2.8b the log probability.
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A determines the shape of the distribution, a higher X yields a lower peak, figure 2.9a and lighter
tails, figure 2.9b, but it allocates more density to medium values, figures 2.9c and 2.9d.
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(a) Probability density function for different values of A values of .
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(c) Zoom-in of the probability density function between © = —3 (d) Zoom-in of the probability density function between =z = 1
and z = —1 for different values of A and z = 3 for different values of A

Figure 2.9: Probability density function 2.9a, the log-plot 2.9b, and the magnification of the intervals [—3, —1], 2.9¢, and [1, 3],
2.9d for different values of the parameters \. The other parameters are setto (¢ =1,8=0,p=0,§ = 1).

¢ and p are respectively the scale and location parameters; roughly, the location parameter deter-
mines around which value the distribution is centred, while the scale parameter how values are spread.
Note that for 5 = 0 the expected value is given by E[X] = y; if the distribution is symmetric the expected
value is equal to the location parameter. Moreover, Var(X) depends both on & and §2.
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Figure 2.10: Figure 2.10a shows different probability distribution functions for different values of n while 2.10b the pdf for
different values of §. The other parameters are setto (A = 0.5, = 1,8 = 0).

This distribution is infinitely divisible, see for example [2], and therefore, from theorem 2.1.1, there is
a Lévy process that at a given time has a Generalised Hyperbolic distribution. A Generalised Hyperbolic
model X, is a Lévy process that at time ¢ = 1 follows a Generalised Hyperbolic distribution and it is
defined by the Lévy triplet (E[X;],0,v%H), where

B [ oo e—2V/2y+a?|a|
“H(dr) = / (T K (alz])dy + e~y 50 | da. (2.16)
0 Al

5/20) + Y2, (5V2)

Ja|
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The Lévy process is given by

X; = tE[X1] + /t / x(u — v (dxds) (2.17)
0o Jr

The Generalised Hyperbolic distribution, however, is not close under convolution, meaning that the sum
of independent random variables distributed as a Generalised Hyperbolic distribution is not, in general,
a Generalised Hyperbolic distribution. This means that if the Lévy process at time ¢ = 1 follows a GH
distribution, then at other time scales a closed form for the distribution is not available in closed form.

2.1.2. Normal Inverse Gaussian Model

The Normal Inverse Gaussian distribution arises by fixing A = —% in the Generalised Hyperbolic distri-
bution. This class of distributions still presents semi-heavy tails and the meaning of the parameters is
the same as the Generalised Hyperbolic Distribution. The Normal Inverse Gaussian Process at time
t = 1 follows a Normal Inverse Gaussian distribution, it presents infinite activity, and the Levy measure
is given by

N9 (da) = eﬁxél(l'Kl(oszdx (2.18)
7|z

The related Levy process is then given by

Ly =1tE[L41] + /t / z(p* — N9 (dx, ds) (2.19)
o JR
where

and is the expected value of the Normal Inverse Gaussian distribution. The Levy triplet of the Normal
Inverse Gaussian distribution is (E[L,],0,V29) This process can be used to model returns that are
distant from a Normal. In figure 2.11, different simulations for different values of the parameters are
available. « influences the tail heaviness of the distribution; that is, the smaller the value of «, the size
of jumps becomes more extreme. 3 is the asymmetry parameter, positive (negative) values imply that
the distribution assigns more (less) density to values greater than the average, 1 and § are, respectively,
the location parameter and the scale parameter and are connected respectively to the mean and the
variance of the distribution. It can be seen that positive values of 5 and i cause a drift to the Levy
process and higher values of 4 and smaller values of « imply larger probabilities for values far away
from the mean. In financial terms, a positive parameter 3 represents the belief that positive returns will
be more frequent than negative returns, a smaller « that extreme returns might happen with greater
probability, and higher values of § imply that values around the average return are less probable. Values
of g or u different from 0 cause a drift in the price of the contract, i.e. that the expected value of the
contract at a future time ¢ will have an average given by

E[Xt}=Xo+E[Lt]=Xo+t1E[L1]:Xo+t<u+M). (2.21)

Where the last equality comes from the fact that at time ¢ = 1, the infinite activity A’ZG process follows
a N'Zg distribution with parameters (o, 3, u, §).
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(a) These NIG processes were obtained with the set of parameters
(a=1,8=0,u=0,6=0.5)

120
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(c) These NIG processes were obtained with the set of parameters
(¢ =1,8=0,u=0.1,6 = 0.5). Asin 2.11b, a positive
corresponds to a non-zero expected value, and thus the processes

(b) These NIG processes were obtained with the set of parameters
(¢ =1,8=0.1,u4 = 0,5 = 0.5). To a positive {3 it corresponds a
non-zero expected value; thus, the processes show a trend in the
direction of the expected value.
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(d) These NIG processes were obtained with the set of parameters
(a=1,8=0,un=0,6 =4). Jumps with greater sizes happen
more often, and at each time, the process presents more extreme

show a trend in the direction of the average. values.

150

100

(e) These NIG processes were obtained with the set of parameters
(¢ =10.1,=0,u=0,6 = 0.5). Asmaller o corresponds to
heavier tails meaning that more extreme values happen more often,
leading to more extreme values in the paths.

Figure 2.11: Simulations of infinite activity NIG Levy processes between in the interval [0, 1] for different parameters.

2.2. Stochastic Calculus

We now define the stochastic integral with respect to Brownian Motion between time ¢ and time T" as
follows

Definition 2.2.1 Let (W;).c[0.17 be a Brownian Motion, let m, be a sequence of partitions where the
mesh, i.e., SUP;cq1,...n} |t; — t;—1]| goes to 0 and such that t, =t and t,, =T, let S; be a cadlag, locally
bounded, square-integrable process adapted to the filtration generated by (W,).cjo.r), Then the Ito
integral is defined as

T
/ St th = |im
0

n—00

Z Sty (Wi, =Wy, ) (2.22)

ti—1,ti€mTn

Note that this integral evaluates the function on the left side of the interval (¢;_1) and is defined for
cadlag processes. An example of these processes is the It6 diffusion process. As a stochastic integral,
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it reads

T T
XT =+ / (o th + / 127 dt (223)
0 0

and in this case, we have that

T T
Xr|Xo ~ N(/ e dt + X, / UQ(t)dt) (2.24)
0 0

Another relevant notation for stochastic differential equations is the so-called differential form, which is
not mathematically founded but is widely used because it allows easier manipulations. The differential
notation for an It6 diffusion process would read:

{dXt = Utth + ,LLtdt (225)

Xo=2z x2z€R

where z is the initial condition of the process.



Problem Formulation

‘ This research aims to find a stochastic process that would represent the probability distribution of the
changes in prices of an hour contract in the Intraday Market (in Germany. To do so, first, an introduction
to the functioning of the German energy market is given, and then, the formulation of the stochastic
differential equation modelling the problem is presented.

3.1. Energy Market Context

Energy markets are used to trade energy in the form of contracts which represent an obligation to re-
ceive (to supply) energy during a period of time. Here, | only focus on 15, 30 or 60-minute contracts.
In this section, | will describe the functioning of the German Energy Market.

The energy market can be subdivided into two phases, the long-term and the short-term market. The
short-term market is composed of the Day-Ahead (DA) and Intraday (ID) markets; the former opens 45
days beofore and closes at 12:00 of the day before delivery. Prices in this phase are determined by
a blind-side auction. The blind-side auction collects offers and bids until its expiration when these are
aggregated into curves. The price and the volume at the intersection are called market clearing price
and market clearing volume. Bids that are higher and offers that are lower than the market clearing
price are cleared at the market clearing price, also called the Day-Ahead price. In Germany, only hourly
contracts are exchanged during this phase.

The ID market opens at 15:00 of the day before delivery and closes 5 minutes before delivery. In this
phase, contracts are continuously traded. Bids and offers are collected in an order book and matched
according to a price and temporal order, meaning that if there are multiple bids (offers) matching an of-
fer (bid), the first bid (offer) in temporal order is the one that is executed. In Germany, during this phase,
it is possible to trade 15, 30 and 60-minute contracts. For 15-minute contracts, a blind-sided auction
closes at 15:00 of the day before delivery, but it is out of the scope of this thesis; see for example [20]
for more information. Table 3.1 shows the total traded volumes for Day-Ahead and Intraday markets.

14
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2019 2020

Total Volume Germany (GWh) 280,191.2 | 279848.3
Day-Ahead Volume Germany (GWh) | 226,409.8 | 216,221.3

Intraday Volume Germany (GWh) 53,7814 | 63,627.0

Total Volume EPEX Spot (Gwh) 593,432.8 | 614,839.3

Day-Ahead Volume EPEX Spot (GWh) | 501,568.8 | 503,650.8

Intraday Volume EPEX Spot (GWh) 91,864.0 | 111,188.5

Table 3.1: Volumes of energy traded in the EPEX Spot Energy Market. The first three rows show the value for the fraction of
energy traded in the German market and the last three the amount of energy traded across all the European countries. The
total traded volume in the spot market has decreased from 2019 to 2020 due to a decline in the volume traded in Day-Ahead.
Across all markets, the total power increased seeing a larger growth in the Intraday Market.

The Transmission System Operator (TSO) is the authority responsible for maintaining the frequency
at the same level in every settlement period. A day is subdivided into settlement periods, and for each
settlement period, the TSO ensures that the total amount of production is equal to the electricity con-
sumption.

The current regulation provides that producers and consumers, designated as Balance Responsible
Parties (BRPs), take part in maintaining the grid in balance through the self-balancing of their posi-
tions. For each settlement period, they must submit a nomination which consists of the forecasting
of produced or consumed energy and the energy contracts held in their portfolio. The law enforces
the balancing of the nomination, meaning that the total amount of consumed and sold energy must be
equal to the total amount of energy bought and produced by the BRP.

An example of BRP is a power supplier in the form of a Wind Park that needs to forecast its energy pro-
duction and find buyers. Similarly, a household energy provider has to forecast its users’ consumption
and find an adequate supply.

Between the closure of the DA market and the moment of delivery, the position of a BRP may be
subjected to unexpected changes that can be traded in the ID market: shortages can be bought, and
surpluses can be sold. For example, if a coal power plant faces unexpected outages and cannot provide
the traded energy then the corresponding position needs to be balanced by buying energy during the
ID market. Conversely, a wind park would need to sell excess energy if the wind speed at the moment
of delivery was higher than the forecast one on the day before. To push the market participants into
trading their imbalances in the ID market, the TSO imposes the imbalance price on eventual disparities
in the position.

A BRPs imbalance position is the difference between the nominated position after the closure of the
ID market and the actual net exchange of electric energy with the grid in real-time and can be short
(negative net balance), long (positive net balance) or balanced. The sum of all imbalance positions
determines the System Imbalance (SI) [4] and to keep the system balanced, the TSO can activate
the Restoration Reserves and a price is determined. The imbalance price, i.e. the price that parties
with a long position receive and those with a short position pay, is increased if the Sl is negative and
decreased if positive. This works as an incentive for the parties to trade their positions during the ID
market. A value of reference for this penalty is the "imbalance price spread”, which is the difference
between the imbalance price and the index ID3, the volume weighted average of the last three hours
of trading in the Intraday Market [4], [16].

3.2. Mathematical Formulation

Now that the functioning of the intraday energy market has been explained, the mathematical formu-
lation is presented. | model the price of a contract X; at a given time ¢ depending on the value of the
contract at time ¢ = 0 and the realisation of the Lévy process L. Lévy processes allow choosing amidst



3.2. Mathematical Formulation 16

a rich family of distributions that can represent different tail behaviours and incorporate the presence
of jumps. The model is then formulated as

X, = Xo + L.

which implies that the return X, — X, is distributed as L;. The goal of the research then boils down to
finding the Lévy triplet (A, v, v) that most accurately represents the distribution of the returns. To do so,
it is possible to first choose if including a drift A, of Brownian Motion component ~ and to which family
of distributions the Lévy measure belongs. This procedure simplifies the model selection because it
allows excluding beforehand those triplets that would not capture some of the characteristics of the
price of the contract. For example, a process with sparse large jumps can exclude a Lévy measure
that implies infinite activity or Brownian motion. After this choice, it is necessary to find the set of pa-
rameters that better fits the historical returns for that triplet.

After having determined different possible triplets and a set of parameters for each of them using his-
torical data, it is relevant to test the models to compare their performances. For example, by assessing
the accuracy in predicting the distribution of the price increments in the test set according to different
criteria. In the next section, the statistical methods to achieve this goal are introduced.



Statistics

In this section, | will explain the statistical tools that will apply to the study of the data of the Intraday
Market. First, since it is used to estimate the parameters of each Lévy triplet, an explanation of the
maximum likelihood estimation is given. Lévy processes can differ in the number of parameters de-
scribing the Lévy triplet, and thus, to quantify and compare the performance in describing the data,
it is necessary to introduce quantitative measures. With this regard, the Akaike Information Criterion
and the Bayesian Information Criterion will be used, and their details are explained in the second sub-
section. Moreover, the data analysis needs quantitative measures to accept or refuse the hypothesis.
Specifically, data representing the prices of a contract will be in the form of a time series. So some of
the relative statistical tests are introduced in the third subsection.

4.1. Maximum Likelihood and Fisher Information Matrix

Given a set of observations = = (X, ..., X,,) where the random variables have joint probability distribu-
tion fy(x) for some set of parameters 6, the likelihood function is the function

L(6;x) = fo(x) (4.1)

that maps a real value to each set of parameters 6 in the parameter space ©. For example, if (x4, ...z,,)
are the realization of n Bernoulli random variables X ~ Be(p) the set of parameters is § = p and
© = [0, 1]. If the variables are independent and identically distributed and follow a certain density fy(z),
then the likelihood can be written as

n

L(0;z) =[] fo(x:). (4.2)

i=1

In this context, the log(L(0; z)), called the log-likelihood, is often taken into consideration because it
allows reducing the products to a sum of logarithms which often leads to more straightforward cal-
culations, see Example 4.1.1. The maximum likelihood estimator 6 is defined as the estimator such
that

) = L(0; 4.
0 r;weaé( (0; ) (4.3)

Since the logarithm is a continuous and increasing function, the 6 is also a maximizer for the log-
likelihood.

Example 4.1.1 Given a sample X, = z1,..X,, = x, where X; ~ N(u,0%) 0 = (u,0?) and © =
R x (0, +00), the likelihood is given by

n )2

L(0;2) = L(p, 0% ) HfX Tiy Uy O H s (4.4)

27702
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and the log-likelihood by

n n n 2
1(0:2) = Iog(E fx (@i 0)) = ;Iogm (::6)) = — log(2m) — nlog(c 2:2 i (45)
The maximum likelihood estimator is found as the couple of parameters (ji, &) such that
ol(0; ) B
“on }#:ﬂ = (4.6)
ol(0; x)
L= 47
60- ‘0:(7 0 ( )
Which leads to
=1y (4.8)
/L - n P 'rla -
and
n L 2
&= W (4.9)

However, the maximum-likelihood parameters are not available in closed form for other distributions,
and other techniques are necessary. For example, the Normal Inverse Gaussian presents the following
log-likelihood

I(a, B, 1, 0; ) = nlog(e) + nlog(d) + nd/a? — 52+ZB 1) + 1og(K1(an/32 + (z; — p)2)

~nlog(r) — 3 109(5” + (r; — 1))
(4.10)

The modified Bessel Function of the second order leads to first derivatives with respect to «, 3, 6 whose
zeros are not representable in closed form. Some techniques are available to work around this problem.
In [13], for example, an EM-type algorithm is implemented.

4.1.1. Fisher Information
For a distribution D with parameters 6 in some parameter space O, the Fisher Information Matrix ()
is defined as the matrix having as elements

0 0

(1) = | Gg-1(X:6) 5-1(X56) (4.11)

l is the log-likelihood, and the covariance is taken under the probability measure induced by the dis-
tribution D for a given set of parameters 0. Note that the Fisher Information Matrix does not rely on
any particular observations but considers the full support of the distribution. It can be shown that if the
following conditions are satisfied,

1. w exists almost everywhere, i.e. it fails to exist on a set of measure 0 w.r.t. the Lebesgue
measure.

2. The support of f(X;#) does not depend on 6.
3. The integral of f(X;6) can be derived under the sign of the integral sign with respect to 6.

then,

(1(0));; = —E L%ia&ojl()(;e)} . (4.12)
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Given a set of independent observations (z1, ..., z,) assumed to be drawn from the same population,
the observed information matrix is defined as

Ol(x1,y -y Ty 0)

(4.13)

For a set of parameters 6 and an MLE 4, if certain regularity conditions are satisfied, and the Fisher
Information Matrix is non-singular, then

V(0 — ) 2 N'(0,I71(6)). (4.14)

where 2 indicates the convergence in distribution. This property is called the asymptotic normality of
the MLE and states that the estimator will converge in distribution to the true parameter. This property
is used to derive confidence intervals for the estimated parameters based on the Fisher Information
Matrix and the number of samples. The Observed Information Matrix for the Normal Inverse Gaussian
matrix is given by

2 2 2
Fazl(@) agaﬂl(x) azapl@) 8286l(m)

o oZal@)  Zall@)  5la) i) @15

a2 a2 a2 a2
agaul(x) 333#5(35) adTLzl(x) %l(m)

82661(x) agaal(x) %l@) %l(x)

where 0 = (a,3,11,d) and I(z) is given by equation (4.10). We define v = a+/é? + (z — p)2. and
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therefore

(4.18)
o2 1 6% — (x — p)?
557/ = G (a wP
1 PK,(v) (ow\? | (0% 0K (v) OK1(v)\* (o)’
AR << 902 <35> * (852> v > Kilw) = ( v ) ((95)
(4.19)
o? _afon
Baaﬁl(x) (a2 _ 52)% (4.20)
82 B n 1 aQKl(’U) ov ov
oz ) = 2 B (( o (an) (52) @21)
920 K1 (v) 0K (v ov Ov .
(8a8u) B ) ( > <5a 5M>>
92 n a 1 32K1 v Qv
Ml(x):; a2—62+K1”2<< v (aa ) (4.22)
v\ 0K, (v) 0K (v 2 v v -
* (aaaa) v ) ( ) <6a@5)>
ag;,f(x) . (4.23)
0? . -np
6585l () —— (4.24)
o2 & —25(z—p) 1 0?K1(v) [ Ov dv
o5’ ) _; = K ( o (a" 65) : (4.25)
92p oK, (’U) 0K 81} 8’1) -
* (ama) B )Kl(v) - ( 8u 9 )
Where
o 1
%Kl( v) = —Ko(v) — ;Kl(v) (4.26)
and
;;2 K(v) = (vzvj 2 gy () + o) (4.27)
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4.1.2. Akaike Information Criterion and Bayesian Information Criterion
The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are defined as

AIC =2k — 2log (L(6)) (4.28)
BIC :=klogn — 2log (L(9)) (4.29)

where k is the number of the parameters of the distribution, »n is the number of observations, 6 =
(61, ...0) is the set of parameters, and L is the likelihood.

Both these criteria consider the goodness of fit of a model, represented by the negative log-likelihood
and the number of parameters it uses. These criteria estimate the relative quality of different statistical
models by creating a trade-off between accuracy and complexity.

4.2. Time series

The prices of the contracts are available as a time series, i.e. a collection of points in time; therefore,
in this section, some statistical tools that will be later used are introduced.

4.2.1. Mann-Kendall test
The Mann-Kendall test, [14] and [18], is used to determine the presence of a trend in a time series. It
makes use of the Mann-Kendall test, defined as

n—1 n
S = Z Z sign(x; — x;) (4.30)
i=1 j=it1
where
sign(zj —x;) =0 ifz; = (4.31)
-1 if T <x;

S is thus the summation of the sign of the difference between a current value x; and all the future
increments ;. If this statistic is 0, then the probability of a trend in the time series is low; conversely,
if it is larger (smaller), then O the probability that a positive (negative) trend is present is higher. The
variance of the Kendall-Mann statistic is defined as

Var(S) = i(n(n —1)(2n+5) —

8 ar(qr — 1)(2qx +5)). (4.32)

-
-
3

The statistics

51 if S >0

v/ Var(S)
z=10 ifS =0 (4.33)
\/5;71(8) if S<0

is approximately Normally Distributed with mean 0 and variance 1. The null-hypotheses is given by
Hy : No trend is present. (4.34)

and it is not refused at significance level « if | Z| < Zy-g, where Z, is the a-th quantile of the Standard
Normal Distribution.

4.2.2. Dickey-Fueller Test
The Dickey-Fueller test determines if an autoregressive model AR(1) contains mean-reversion or not.
The model is given by the following equation

Yt = PYt—1 + Ut (4.35)



4.72. Time series 22

with u, representing white noise and p a coefficient.
Ays =y —ye—1 = (p— Dye + ur = 0yr + uz (4.36)
The hypotheses of the test are
Hy:{6=0} vs. H;:{d#0}. (4.37)

If & = 0 then the increment Ay, is not influenced by the current value of the process and indicates that
mean-reversion can be excluded. This test is also available for the models

Ay = ag + Syt + u (4.38)
and
Ayt = ag + a1t + oy + uy. (439)

ap in equations (4.38) and (4.39) represents a constant while a1t in equation (4.39) a time-dependent
trend in the time series. Also in these cases, § = 0 means that there is no correlation between the
value of the process and the value of the following increment.



Data Analysis and Model Selection

This section aims to find a Lévy process to model the returns of the hourly contracts in the German
EPEX Spot Market. As illustrated in Section 3, the first objective is to find possible Lévy triplets. This
is achieved by analysing the data and choosing those processes that are a better fit for the behaviour
of the returns of the prices, e.g. a jump-diffusion model or an Infinite activity process. Then, for each
Lévy triplet, find the set of parameters that produce a better fit of the data. Finally, select one or more
of these models based on the Akaike Information Criteria (AIC) and the Bayesian Information Criteria
(BIC).

The first step consisted of analysing the data concerning the trades of energy contracts in the EPEX
SPOT market to find possible priors for the Lévy triplet. l.e., a real value 0 representing the drift, a
positive value o representing the standard deviation structure of the Brownian Motion, and a Lévy
measure v, which accounts for the jump activity of the process. The data description is available in the
appendix '. The analysis focused on the 'BUY’ sides of the trades for the hourly contracts. Contracts
have then been subdivided by their delivery hour ( 1 through 24), and for each trade, the execution
time, the price and the volume were available.

The execution times, i.e. the timestamp when a trade happens, allow for determining how trades are
distributed during a trading day. These are relevant because they are a determinant factor in the jump
properties and the presence of Brownian motion in the model; if trades happened at a considerable
distance in time, then a jump process with very low activity, that is, a low expected number of jumps in
a unit of time, would be more suited. On the other hand, very close trades would correspond to a high
activity process or a Brownian Motion because they can capture the close-in-time changes in price.
Moreover, clustered in-time trades would mean that a noise effect significantly influences the observed
price change; see for examples [5]. The results of this analysis can be seen in figure 5.1. The distances
smaller than 10 seconds account for about 83% of all the distances, and those smaller than 1 second
are responsible for more than 80% alone. Furthermore, distances smaller than 1 millisecond account
for more than 90% of time distances up to 100 milliseconds.

Tappendix
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Distribution of times in seconds Distribution of times in milliseconds

Figure 5.1: Time distance distributions in two different scales; on the left, the distribution of the trades whose distance is up to
10 seconds, on the right up to 10 milliseconds.

This distribution of time distances suggests most trades happen in clusters very close in time. Figure
5.2 shows the average traded volume during a year for each minute. It can be seen that during a trading
day, the traded volume increases and it is the most in the last hours. These two facts combined show
that trades are irregularly distributed during a trading day with many clusters happening in the last hours
and fewer in the first hours.
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Figure 5.2: Average volume traded in each minute for the year 2020 for different contracts. Figure 5.2a for hour 1, figure 5.2b
for hour 8, figure 5.2c for hour 12, figure 5.2d for hour 18.

However, to find a triplet and a distribution for the Lévy Process at one-time scale A, returns of the
form X;. A — X; = La are necessary. In other words, returns need to be equally distanced in time. To
achieve this, data are aggregated into trading periods, and for each trading period, the volume-weighted
average price is found through the following formula

n
. ",
AvgPrice = )~ —7——.
=0 2i=0 Y

If there were no trades during one trading period, then the price is equal to the previous trading period.
| aggregated data in trading periods of 1, 5, 15, 30, and 60 minutes; the average price was found for

(5.1)
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each. Then, the increments between each trading period are collected, and the empirical distributions
are found. The distribution shows heavier tails, i.e. more mass far away from the median of the distri-
bution, and a higher peak, i.e. more probability mass around the mode of the distribution than a normal
distribution. The empirical kurtosis, an indicator of tail heaviness, yields values far larger than 0, the
kurtosis of the normal distribution. Therefore, the underlying distribution can be searched among the
heavy and semi-heavy tail distributions. Figure (5.4) presents the QQ-plot for the prices regarding hour
12. It shows that the Normal Inverse Gaussian distribution and Generalised Hyperbolic are a good fit
for the tail behaviour of the data, suggesting that the actual underlying distribution presents semi-heavy
tails. Indeed, the fitted Normal Distribution, figure (5.4c), and the Student’s t-distribution, (5.4d), show
a worse fitting of the empirical data and therefore light and heavy tails can be excluded. The other con-
tracts show similar behaviour. The parameters obtained by maximum likelihood estimation (MLE) for
the student’s t-distribution yield an infinite kurtosis, which may be compatible with some of the highest
kurtosis values. Concerning the remaining distributions fitted through MLE, there is not a clear choice
in terms of kurtosis. In some cases, the Generalised Hyperbolic provides a better fit, while in others,
the Normal Inverse Gaussian is a more suited solution. For extremely high values, neither can replicate
the empirical findings. Results are available in table 5.1. In figure 5.3, the observed distribution for the
noon contracts and the fitted distributions are available.

Hour 5 minutes 15 minutes 30 minutes 60 minutes
1 [265.83 68.4 128.44] [40.63 40.06 79.49] [22.85 30.12 54.56] [9.812.93236]
2 [110.81 62.52 112.68] [64.54 51.85 77.24] [34.22 39.71 53.21] [19.28 23.45 30.26]
3 [296.08 73.64 115.31] [44.93 48.22 74.48] [35.1237.62 59.2] [20.47 17.9529.8 ]
4 [120.44 57.01 109.73] [65.6 45.85 76.64] [37.21 37.22 57.51] [17.87 19.37 30.91]
5 [267.53 72.51 152.76] [99.54 57.14 102.89] [70.34 46.99 75.61] [49.64 26.77 43.12]
6 [1126.54 70.77 214.23] [722.3 62.9 148.98] [882.66 50.8 113.37] [229.82 32.3257.5]
7 [2446.06 70.61 243.67] [1665.58 2.81 200.12]  [655.55 70.42 139.41] [173.4944.49745]
8 [897.55 61.4 180.68] [464.2 49.59 143.29]  [264.54 51.72 122.99] [149.26 32.6 73.25]
9 [171.9 44.18 128.38] [199.39 39.22 114.93] [ 84.89 33.58 100.79] [35.39 22.19 61.34]
10 [107.63 56.06 113.8 ] [64.7 45.17 105.58] [89.28 39.17 96.06] [253.32 33.51 63.13]
1 [89.28 46.25 94.43] [63.49 39.72 91.73] [42.36 35.88 86.1] [39.72 30.86 63.31]
12 [184.01 64.63 105.8 ] [68.11 46.34 97.47] [46.92 41.18 90.07] [25.42 30.59 67.2]
13 [113.32 58.35 101.52] [76.29 52.53 92.55] [57.76 50.17 86.93] [39.78 32.33 67.17]
14 [124.8 63.09 110.65] [65.7 55.79 97.35] [43.54 46.83 88.5] [31.79 34.24 68.31]
15 [146.11 63.53 125.22] [87.66 60.75 116.14] [63.44 5.0599.4 ] [48.99 32.93 72.04]
16 [227.09 59.16 149.45] [135.36 66.2 127.38] [55.35 52. 116.09] [38.63 35.06 91.2]
17 [154.6 78.67 204.89] [119.26 74.55 192.55] [77.74 69.34 165.8 ] [ 55.93 44.56 120.04]
18 [6227.95 111.43 303.78]  [699.47 111.71 312.16]  [356.69 82.71 263.36]  [209.75 57.71 177.39]
19 [1002.46 87.43 225. ] [460.4 76.65 203.31]  [150.75 58.26 177.91] [40.45 41.03 116.12]
20 [258.46 66.31 189.79] [106.58 62.18 167.89] [58.79 50.29 135.41] [46.23 37.56 100.65]
21 [729.72 63.16 167.42] [425.63 53.71 152.99] [275.2547.4 141. ] [131.69 34.78 92.56]
22 [542.13 66.65 142.68] [628.98 70.55 127.51]  [177.09 68.98 115.52] [93.85 50.4 86.13]
23 [732.93 23.8 165.82] [302.71 69.84 122.43] [108.28 4.1 99.33] [46.42 28.55 60.54]
24 [161.68 56.68 162.31] [61.45 56.87 100.52] [35.11 35.18 62.96] [13.8 20.53 31.52]

Table 5.1: Each entry shows kurtosis values for the empirical distribution (left), the fitted Generalised Hyperbolic Distribution
(centre) and the Fitted Normal Inverse Gaussian (right) for each delivery hour (row) and trading intervals (column). Empirical
Kurtosis is way greater than 0 suggesting that the underlying distribution is not Normal.
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Figure 5.4: The QQ-plots of the Normal Inverse Gaussian distribution (5.4a), the Generalised Hyperbolic distribution (5.4b),
the Normal distribution (5.4c), and the Student’s t-distribution (5.4d) vs the 15-minute increments of the hour 12 contract are

presented.
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Figure 5.3: An example of fitting the distributions of the increments in the average weighted price between 15-minute trading

5.1. Model Selection

As stated in chapter 4 of [7], a model choice can be made between the jump-diffusion process, a
combination of Brownian Motion and finite activity jumps, and infinite activity processes, which instead
do not contain Brownian Motion. The goal is two-fold, find a process that would at the same time
replicate the high frequency of the trades and that be able to replicate the heavy tails of the distribution
of the average-weighted price increments for 1, 5, 15, 30 or 60 minutes. A jump-diffusion model would
be easy to simulate. Still, finding parameters, such as jump size distribution and jump intensity, that
would be a good fit for the distribution might be challenging. On the other hand, an infinite activity jump
model would easily replicate the chosen distribution.

The considered models are, therefore:

periods.
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» Model 1: Diffusion Process

* Model 2: Jump-Diffusion Process with jumps sized as a normal distribution
» Model 3: Infinite activity process with NIG distribution.

* Model 4: Infinite activity process with GH distribution.

5.1.1. Diffusion Model
The diffusion model corresponds to the Lévy process

Lt = ")/t + O'Wt.

This model could not replicate the excess kurtosis of the price increments distribution. However, for
its simplicity, evaluating its performance in modelling returns is sensible. The model is calibrated by
taking the standard deviation of the increments and their average that would maximise the likelihood of
the Normal Distribution. Table (5.2) shows the score for the AIC, while table (5.3) for the BIC. Notably,
this value is infinite for most contracts and short time intervals. This is because some price increments
fall in the extreme of the distribution, and numerically the likelihood value is O; hence the negative of
its logarithm is +oco. However, the price changes are less heavily tailed for larger time increments, and
therefore the likelihood is never 0. In picture 5.5, the realisation of the price behaviour for hour-12
contract for different days is compared with five simulations of the diffusion process whose parameters
are inferred from the 1-minute interval. The prices of the contracts are set to start from 0, and then the
cumulative sum of the increments is shown for the different contracts. It can be noted that, as discussed,
this model cannot replicate the large increments in the prices both for the whole-day simulation, picture
(5.5b) and the simulation in the last 180-minutes, (5.5¢).
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(a) 1-minute volume-weighted average of the price of the hour 12 (b) Simulations of the diffusion process in the scale of grey vs the
contract from June 29" 2020 to July 3" 2020/ realisation of five contracts

&0
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Minutes to delivery

(c) Cumulative increments of the contract in the last 3 hours of trading
vs the simulation of five diffusion processes.

Figure 5.5: Cumulative increments of the hour 12 contract volume-weighted prices between 29t" 2020 to July 37¢ 2020 vs the
simulation of diffusion process in a whole day 5.5b and the last three hours of trading 5.5c.
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Table 5.2: AIC scores for the Diffusion model for the different hours and intervals

1 5 15 30 60
1 inf inf inf 46106.92 21363.3
2 inf inf 85892.75 45795.66 21400.3
3 inf inf 92801.78 49781.8 241491
4 inf inf  102321.89 54138.92 26457.8
5 inf inf 108761.2 56369.1  28235.85
6 inf inf inf 70139.98  33499.46
7 2499632.96  510525.08  151446.77 75798.85  36447.52
8 inf inf inf inf inf
9 inf inf inf inf inf
10 inf inf inf inf inf
1 inf inf inf inf  45512.26
12 inf inf 173882.1 inf inf
13 inf inf  179711.28 98058.41  51323.68
14 inf inf  185925.62 99539.36  52373.03
15 inf inf  199252.88  108537.01  56061.83
16 inf inf inf  114114.14  60503.68
17 inf inf  228906.57 125543.44  64493.66
18 inf inf inf inf inf
19 inf inf inf inf inf
20 inf inf inf inf inf
21 inf inf inf inf  73732.81
22 inf inf inf inf inf
23 inf inf inf inf inf
24 inf inf inf  138395.05  70545.27
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Table 5.3: BIC scores of the diffusion model.

1 5 15 30 60
1 inf inf inf 58512.92 27199.3
2 inf inf  114280.75 59623.66 27948.3
3 inf inf  124187.78 65107.8 314451
4 inf inf  136627.89 70924.92 34483.8
5 inf inf 145987.2 74615.1  36991.85
6 inf inf inf 89845.98  42985.46

7 3155898.96  641191.08  194512.77 96964.85  46663.52

8 inf inf inf inf inf
9 inf inf inf inf inf
10 inf inf inf inf inf
1 inf inf inf inf  58648.26
12 inf inf 231548.1 inf inf
13 inf inf  240297.28  127984.41 65919.68
14 inf inf  249431.62  130925.36  67699.03
15 inf inf  265678.88  141383.01 72117.83
16 inf inf inf  148420.14  77289.68
17 inf inf  301172.57 161309.44  82009.66
18 inf inf inf inf inf
19 inf inf inf inf inf
20 inf inf inf inf inf
21 inf inf inf inf  94168.81
22 inf inf inf inf inf
23 inf inf inf inf inf
24 inf inf inf  184381.05  93171.27

5.1.2. Jump Diffusion Model
The Jump diffusion model is a Lévy process of the form

Ny
Ly=~t+oW,+ > J; (5.2)
i=1
To estimate the process parameters, | proceed as follows. The diffusion term is constrained to a stan-
dard normal distribution with a mean of 0 and a variance of 1. Thus, by increasing the number of free
parameters by 1, namely the jump intensity, it was possible to improve the simple diffusion model in
terms of score in the AIC (table (5.4)) and the BIC (table 5.5)). The Jump size is a normal distribution
whose parameters are the maximum likelihood estimators for the variance and the mean. To find the
jump intensity, the expected number of jumps in a unit of time, the domain for lambda is restricted to
the set of integers between 1 and 10 and the value that maximises the likelihood is chosen. The den-
sity function is approximated through the COS method; see [21] chapter 6 for an extended discussion
on the topic. In a few words, it approximates the density function by transforming the characteristic
function, known in closed form for jump-diffusion processes. However, the price distribution could not
capture the tail behaviour of the price increments for most cases yielding, therefore, infinite values for
the AIC and BIC score. The number of times this happens is larger than the diffusion model (109 vs
80 ) due to the COS method’s slow convergence for the approximation of the values in the tail of the
distribution making its use limited by this factor.
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Figure 5.6: Simulations of the Jump-Diffusion process for different windows of time.

Table 5.4: AIC scores for the jump-diffusion model.

1 5 15 30 60
1 inf inf inf inf 18224 .4
2 inf inf inf  37391.14  19387.43
3 inf inf inf  40540.33 21166.9
4 inf inf inf inf  22780.08
5 inf inf inf  46572.89  24828.03
6 inf inf inf inf  27762.82

7 inf inf  110992.63 60478.4  32040.52

8 inf inf inf inf inf
9 inf inf inf inf inf
10 inf inf inf inf inf
1 inf inf inf inf  38121.61
12 inf inf inf inf inf
13  inf inf inf inf inf
14 inf inf  142032.94 inf inf
15 inf inf inf inf inf
16 inf inf inf inf inf
17 inf  inf inf inf inf
18 inf inf inf inf inf
19 inf inf inf inf inf
20 inf inf inf inf inf
21 inf inf inf inf inf
22 inf inf inf inf inf
23 inf inf inf inf inf

24 inf inf inf inf inf
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Table 5.5: BIC scores for the jump-diffusion model.

1 5 15 30 60
1 inf inf inf inf 26978.4
2 inf inf inf  58133.14  29209.43
3 inf inf inf  63529.33 32110.9
4 inf inf inf inf  34819.08
5 inf inf inf  73941.89  37962.03
6 inf inf inf inf  41991.82

7 inf inf  175591.63 92227.4  47364.52

8 inf inf inf inf inf
9 inf inf inf inf inf
10 inf inf inf inf inf
1 inf inf inf inf  57825.61
12 inf inf inf inf inf
13  inf inf inf inf inf
14 inf inf 237291.94 inf inf
15 inf inf inf inf inf
16 inf inf inf inf inf
17 inf inf inf inf inf
18 inf inf inf inf inf
19 inf inf inf inf inf
20 inf inf inf inf inf
21 inf inf inf inf inf
22 inf inf inf inf inf
23 inf inf inf inf inf
24 inf inf inf inf inf

5.1.3. Normal Inverse Gaussian Model
This model describes the distribution of the change in price as

Ly =tE[L4] + /Ot/Rx(/LL — N9 (da, ds) (5.3)

where vV1& is the Lévy measure described by equation (2.18). The parameters of the increments were
inferred through maximum likelihood estimation implemented in the package scipy.stats.norminvgauss.fit.
This model uses four free parameters and allows for heavier tails than the two aforementioned. In-
deed, the log-likelihood for this model is never infinite, and it achieves the highest number of selections
for both the AIC and the BIC. Moreover, this model is closed under convolution, meaning that the
sum of two independent random variables distributed as a A'ZG distribution with the same « and 3,
and possibly different 1 and ¢, then the resulting distribution is still N’ZG distributed with parameters
(a, B, 1 + p2,01 + d2). Therefore defining the distribution for a time scale automatically defines the
distribution at every time scale: a 5 minute increment can be seen as the sum of 5 independent and
identically distributed increments of 1 minute. Table 5.6 shows the AIC scores, and table 5.7 the BIC
scores. Figure (5.7) shows the simulations of five paths generated by the model and the realisation of
5 contracts, and it can be seen that this model captures the large increment behaviour of the prices.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norminvgauss.html
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Figure 5.7: Simulations of the Normal Inverse Gaussian process for different windows of time.

Table 5.6: AIC scores for the Normal Inverse Gaussian model.

1 5 15 30 60

1 23143219 132941.44 59825.85  33909.54  17987.87
2 204076.14  134621.36 62719.38  36255.84  19404.33
3 190474.48 141264.8 67059.72  39033.56  21013.41
4 178564.96  146527.47 70960.69  41465.01  22451.16
5 188134.75  155414.26 76061.7  44564.17  24622.02
6 209303.23  167248.66 83329. 49614.51  27314.33
7 272955.91 188989.39 93469.71  55429.35  30989.24
8 322288.95 204175.36  102095.72  60655.93  33819.22
9 361302.56  216623.29  108007.53  64678.22  35986.21
10 338022.84  212524.84  107515.59 64852.8  36573.42
1 318362.29  212752.43  107596.67 65447.82  37288.98
12 310223.07 216981.02  110107.63  67683.79  38603.37
13 336025.22  225984.99  114035.09 69573.36  40053.26
14 328315.37 232085.7  117633.22  71939.28 41515.24
15 329680.7  238853.37  121109.92  73845.41 42636.6
16 313326.98  239439.43  123761.25 76298.51  44382.97
17 294053.01 241016.6 127097.6  78866.23  46293.58
18 297593.78  251708.74  133990.02 83515.58  49084.84
19 322478.07 261014.47  138735.45 87535.53  51602.48
20 377346.07 276336. 144953.95 90720.02  53652.96
21 1608423.47  272922.53  145313.89  90677.72  54047.74
22 222558.41  253525.39  140863.59 89285.89  53530.45
23 190651.62  252257.74  142679.67 91014.87  54657.05

24 139521.88  240414.61 135523.13 85734.3 51357.7
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Table 5.7: BIC scores for the Normal Inverse Gaussian process.

1 5 15 30 60

1 1018364.19  289153.44  110917.85 58721.54  29659.87
2 1076212.14  307877.36  119495.38 63911.84  32500.33
3 1152606.48 332516.8  129831.72 69685.56  35605.41
4 1228296.96  355299.47  139572.69 75037.01  38503.16
5 1325466.75  381706.26 150513.7 81056.17  42134.02
6 1434235.23  411060.66 163621. 89026.51  46286.33
7 1585487.91  450321.39  179601.71 97761.35  51421.24
8 1722420.95  483027.36  194067.72  105907.93  55711.22
9 1849034.56 51299529  205819.53  112850.22  59338.21
10 1913354.84  526416.84  211167.59 1159448  61385.42
" 1981294.29  544164.43  217088.67  119459.82  63560.98
12 2060755.07 565913.02  225439.63 12461579  66335.37
13 2174157.22  592436.99  235207.09 12942536  69245.26
14 2254047.37 616057.7 24464522  134711.28  72167.24
15 2343012.7  640345.37  253961.92  139537.41 74748.6
16 2414258.98 658451.43  262453.25  144910.51  77954.97
17  2482585.01 677548.6 271629.6  150398.23  81325.58
18 257372578 705760.74  284362.02  157967.58  85576.84
19  2686210.07  732586.47 294947.45  164907.53  89554.48
20  2828678.07 765428.  307005.95 171012.02  93064.96
21 414735547 77953453  313205.89  173889.72  94919.74
22 2849090.41  777657.39 31459559  175417.89  95862.45
23 2904783.52  793909.74  322251.67  180066.87  98449.05

24 2941253.88  799586.61  320935.13 177706.3 96609.7

5.1.4. Generalised Hyperbolic Model
This model describes the distribution of the changes in price as

Ly = tR[L{] + /Ot/Rx(uL — v (dx, ds) (5.4)

where v“H is the Lévy measure described by equation (2.16. The parameters of the increments were in-
ferred through maximum likelihood estimation implemented in the package scipy.stats.genhyperbolic.fit.
This model uses five parameters and to find the maximum likelihood estimation of X it is necessary to
calculate a large amount of Bessel functions which is computationally expensive [23]. This class of
distributions is closed under affine transformations meaning that if

Y=aX+b acR" beER, (5.5)

and X follows a Generalised Hyperbolic distribution, then also Y belongs to this class of distributions.
Also, in this case, the AIC scores (table (5.8)) and BIC scores (table (5.9)) are not infinite, and table
(5.10) shows that this model is to be preferred to the Normal Inverse Gaussian model in some scenar-
ios. In figure 5.8, simulations of the process are shown in comparison with some of the realisation of
the hour 12 contract. Even in this case, the model captures the tails of the short-time behaviour of the
price increments. However, in this case, the full-day simulation yields increments far away from the


https://scipy.github.io/devdocs/tutorial/stats/continuous_genhyperbolic.html
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Figure 5.8: Simulations of the Generalised Hyperbolic process for different windows of time.

Table 5.8: AIC scores for the Generalised Hyperbolic model

1 5 15 30 60

1 195702.7  131260.49 59707.81  33942.28  18042.49
2 179417.68  133263.98 62810.19  36381.16  19533.57
3 161886.32 138985.7 66811.01  39023.57  21046.36
4 148612.86  145309.11 70700.47 4144591  22486.31
5 165918.21 154190.31 79985.86  44614.77  24717.82
6 187203.28  166222.76 83238.76  49700.43  27397.69
7 259563.39 188865.6 94321.41  56001.17  31330.11
8 298424.69  202947.63 101859.7  60700.61  36036.13
9 337903.74  216210.24  107916.94  64705.91  36052.01
10  325618.42  213230.28 107238.89  64881.46 36655.7
1 307977.97  213004.19  107583.52  65621.05 37453.83
12 305768.75  218485.55 110118.81  67960.07  41556.94
13 332748.08  227475.04 114162.4  69660.76 43810.3
14 308057.72  233218.61 117552.52  72018.69 41609.1
15 302846.33  239248.72 120833.4  73849.25  42686.06
16 295944.31 241150.07  123298.28  76290.96  44461.42
17 273919.73  247325.88  127148.24  79084.91  52430.32
18  274192.62  253657.07 134318.99 83816.16  49255.35
19 331767.85 264770.27 140508.19  88549.02  52262.26
20 362882.84 278173.66  146186.45 91187.2  54003.47
21 348669.92 278675.07  147908.65 91862.6  54625.83
22 235405.4  260685.07  143610.67 90507.29  54165.22
23 19454273 260619.09  144888.01 91890.79 55063.5

24 128444.01  250378.94  139893.36  87753.05  52097.38




5.1. Model Selection

35

Table 5.9: BIC scores of the Generalised Hyperbolic distribution

1 5 15 30 60
1 1179367.7  326525.49  123572.81 64957.28 32632.49
2 1269587.68  349833.98  133780.19 70951.16 35903.57
3 1364551.32 378050.7  145276.01 77338.57 39286.36
4 1460777.86  406274.11 156465.47 83410.91 42551.31
5 1587583.21  437055.31 173050.86 90229.77 46607.82
6 1718368.28  470987.76  183603.76 98965.43 51112.69
7 1900228.39 515530.6  201986.41 108916.17 56870.11
8 2048589.69  551512.63 216824.7  117265.61 63401.13
9 2197568.74  586675.24  230181.94  124920.91 65242.01
10 2294783.42 605595.28  236803.89  128746.46 67670.7
1" 2386642.97  627269.19 24444852  133136.05 70293.83
12 2493933.75 654650.55  254283.81 139125.07 76221.94
13 2630413.08  685540.04 265627.4  144475.76 80300.3
14 271522272  713183.61 276317.52  150483.69 799241
15 2819511.33  741113.72 286898.4  155964.25 82826.06
16 2922109.31  764915.07 296663.28  162055.96 86426.42
17 3009584.73  792990.88 307813.24  168499.91 96220.32
18  3119357.62  821222.07 322283.99 176881.16 94870.35
19  3286432.85 854235.27 335773.19  185264.02 99702.26
20 3427047.84  889538.66  348751.45 191552.2  103268.47
21 3522334.92  911940.07  357773.65 195877.6  105715.83
22 3518570.4  915850.07 360775.67 198172.29  107080.22
23  3587207.73 937684.09  369353.01  203205.79 109803.5
24 3630609.01 949343.94 371658.36  202718.05  108662.38
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NIG GH Diffusion  Jump Diffusion

Selection by AIC 75 44 0 1

Selection by BIC 91 1 19 9

Table 5.10: Number of times a model is selected according to the AIC and the BIC. A model is selected if its score in the
criterion is the lowest for a particular choice of trading intervals and hours.

Table 5.10 summarises the times a model is selected according to the AIC and the BIC. In both

cases, the Normal Inverse Gaussian Model represents the best model confirming once again the tail-
heaviness behaviour of the process governing the energy contract price. Moreover, its closure under
convolution allows for a forecast of a price distribution for every time scale.
The predictions of this model, however, are based exclusively on the past behaviour of the contracts
and do not consider any daily peculiarity. To overcome this, in the next section, the relationship between
the volatility of a contract and the change in weather forecasting is presented. Moreover, the presence
of mean-reversion or trend-following in the price of a contract is analysed.



Fundamental Analysis

Before applying the N1G model to the prediction of the index 1D, and IDs, it is sensible to analyse
possible relationships between the change in the forecast of Energy Production and Consumption and
the behaviour of the market. In this way, the model can be adapted to the daily behaviours of the
contract and possibly yield better forecasting. Namely, in the first subsection, a relationship between
the volatility of the contract and the changes in the forecasting is looked for, while in the second one,
the presence of either mean-reversion or trend following is analysed.

6.1. Energy Production Forecasting and Market Behaviour

The ID market depends on the imbalances arising after the closure of the Day-Ahead market. Imbal-
ances can depend on different factors, and here | present the analysis regarding the forecasting of
solar and wind production and the forecasting of consumption. Table 6.1 presents a summary of the
available data description. Wind forecasting and Solar forecasting are given as the total amount of en-
ergy produced by these sources for 15-minute intervals in the whole country; consumption forecasting
is the forecasting of the total consumed energy in one hour of time.

Data Interval Update Country
Solar Day-Ahead 15 minutes | Last update day before | Germany
Wind Day-Ahead 15 minutes | Last update day before | Germany

Consumption Day-Ahead | 60 minutes | Last update day before | Germany

Solar Intraday 15 minutes 15 minutes Germany
Wind Intraday 15 minutes 15 minutes Germany
Consumption Intraday 60 minute 60 minute Germany

Table 6.1: Description of the data of the available forecast, the column interval shows the granularity of the data (15 minutes
means that the forecast is available for a period of 15 minutes), update how often the forecast is updated.

As discussed in the previous sections, in the ID market phase, Balance Responsible Parties (BRPs)
try to sell their surplus or compensate for shortages. The position of a BRP that produces Electric
Energy through Renewable Sources (RES) is submitted after the closure of the DA market, but the
production of energy depends on the weather forecasting for the coming day. However, as it can be
seenin figure (6.1), this can change significantly, and so, the producer needs to buy power for shortages
and sell the excesses. In the same way, a supplier for households has to forecast the consumption of

37



6.1. Energy Production Forecasting and Market Behaviour 38

its customers. This leads to the fact that most of the energy, for all hours, is traded in the last three
hours of trading. Picture 6.2 shows this fact for all the hours of 2020.
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Figure 6.1: Forecast differentials between Day-Ahead and three hours before delivery for Solar (6.1a), Wind ((6.1b)) and
Consumption (6.1c).
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Figure 6.2: Shares of energy traded for different sub-intervals of a trading day.

This suggests that there might be an association between the amount of volume traded, the market
behaviour, and the differential in forecasting. In particular, | focus on the volatility of the contract and
the total traded volume. | started by aggregating the quarter-hourly intervals for Wind (W Fj,,) and Solar
forecasting (SFp,) for both Intraday and Day-ahead in hour intervals using the following formula

4
WE,=> Wk (6.1)
qg=1
Thus, now Solar and Wind forecasting concern periods that are 1 hour long. The first possible relation-
ship | examined was the one between the total forecast volume of Solar and Wind production in the DA
market (PF = SFP4 + WEP4), and the total traded volume in the last three hours of the ID market
for each hour. In figure 6.3 the results are shown for hour 1, hour 8, hour 12, and hour 18.
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Figure 6.3: Each figure shows the forecast energy production as the sum of Wind and Solar (x-axis) and the total volume
traded in the last three hours (y-axis) for an hour of the day for the year 2020. hour 1 is shown in figure 6.3a, hour 8 in figure
6.3b, hour 12 in figure 6.3c, and hour 18 in figure 6.3d.

For each hour, the correlation coefficient between the two variables is close to 0, and the R? is as
high as 0.21 for hour 1 but 0 for hours 12 and 18. It can be concluded that the total forecast volume is
not an explanatory variable for the total traded volume. By adding the DA forecast consumption CFhDA
to the forecast production, yielding CFP4 + SFPA + W FPA. The results can be seen in figure (6.4).
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Figure 6.4: Each figure shows the forecast traded energy as the sum of the wind, solar, and consumption forecasting (x-axis)
and the total volume traded in the last three hours (y-axis) for an hour of the day for the year 2020. hour 1 is shown in figure
6.4d, hour 8 in figure 6.4d, hour 12 in figure 6.4d, and hour 18 in figure 6.4d.

Also in this case the linear relationship appears weak, suggesting that the volume traded in the last
three hours of trading does not depend on the forecast of the day before. So, a possible explanatory
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variable could be the differential between the forecasting available during the day ahead and those
available during the ID market. To examine this, | find the total imbalance (7'7) calculated as

TI, = |(WFIP — WEPA) + (SFIP — SEPA) — (CFIP — CFP4)| (6.2)

The considered forecast for the ID market is the forecast available three hours before the start of the
delivery. If the value is not available, then the value used as a reference for the ID forecast is the
forecast available at the moment closest to the three hours before delivery. For example, if the delivery
starts at noon, then the forecast is the one at 9:00 if it is available. Otherwise, if there is a forecast
available at 9:01 and one at 8:46, then the former is chosen. When close to delivery, the forecast is
accurate, so this should not influence the final result. The total imbalance is then compared to the Total
traded volume in the last three hours. Results are available in figure 6.5.
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Figure 6.5: Each figure shows the total imbalance between DA and ID (x-axis) and the total volume traded in the last three
hours (y-axis) for an hour of the day for the year 2020. hour 1 is shown in figure 6.5a, hour 8 in figure 6.5b, hour 12 in figure
6.5c, and hour 18 in figure 6.5d.

Again, data suggest a low correlation between the two compared quantities, and therefore a linear
relationship between the total traded volume and the forecast or the total imbalance can be excluded.
Finally, in figure (6.6) and figure (6.7), | show the relationship between the standard deviation of the
increments of the prices in the last three hours and, respectively, the volume traded in the last three
hours and the total imbalance. This relationship is analysed in order to find a possible bound between
the volatility of the contract in the last three hours of trading and the fundamentals. the close to 0 slopes
and R? make us refuse the linear relationship between the two quantities in all the cases.
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Figure 6.6: Each figure shows the total traded volume in the last three hours (x-axis) and the standard deviation of the
1-minute increment of the prices (y-axis) for an hour of the day for the year 2020. hour 1 is shown in figure 6.6a, hour 8 in figure
6.6b, hour 12 in figure 6.6c, and hour 18 in figure 6.6d.
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Figure 6.7: Each figure shows the total imbalance (x-axis) and the standard deviation for the price of a contract (y-axis) for an
hour of the day for the year 2020. hour 1 is shown in figure 6.7a, hour 8 in figure 6.7b, hour 12 in figure 6.7c, and hour 18 in
figure 6.7d.

6.2. Mean Reversion and Trend Following

To improve the model’s forecasting power, the presence of a trend or mean-reversion can be looked
for in the price of a contract. These behaviours can be easily integrated into the model by adding a drift
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component 4 to the Stochastic Differential Equation, i.e.

t t
Xy =Xo+ / wu(s, Xs)ds + / dLy. (6.3)
0 0

Mean Reversion describes the property of a stochastic process to oscillate around a value correspond-
ing to its average. At the same time, the presence of a trend implies that the expected value of the
future price of the contract will be higher (lower) if the trend is positive (negative).

Mean Reversion
Mean reversion mathematically translates to a stochastic drift term of the form

p(t, Xe) = k(0 — X;_).

where 6 is the long-term mean of the process and « is the speed of mean reversion. These two param-
eters define, respectively, which value the process oscillates around and at which speed the process
returns to its average. The meaning of this formulation is that if the process assumes values smaller
than its average, then the drift term is positive, implying that the process will more likely return to its
mean rather than depart from it. Conversely, if the values the stochastic process assumes are higher,
the drift term is negative. Figure 6.8 shows an example of the process

{dXt = k(0 — X,_)dt + ~vdW, (6.4)
X0=0

for different parameters 1, figure 6.8a, and k, figure 6.8b .
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¢ (b) Simulations of the process described by the SDE 6.4 for
different values of the speed k. ;» = 0 for each of the processes.
(a) Simulations of the process described by the SDE 6.4 for Note that the lower the speed of mean reversion, the more the
different values of the mean . k = 4 for each of the processes. process diverts from the average.

Figure 6.8: Simulations of the SDE 6.4 for different values of the mean (6.8a) and speed (6.8b).

In the case of this thesis, the problem consists of verifying if the process governing the price is of
the form
{dXt = (0 — X;_)dt + dL, ©5)

Xo=D DeR

where L; is the Levy process governing the jump activity of the process. To conduct this analysis for
every contract and each day, | proceeded as follows. | took the volume-weighted average price for
each contract for one minute. The last recorded price is used if no trade happens during an interval.
Then, | performed the Augmented Dickey-Fuller test for each contract. This test considers a time series
and, as the null hypothesis, the independence of an increment from the last value assumed by the time
series. Table (6.2) shows that the hypothesis for which increments are independent of previous values
cannot be refused in most cases, meaning that the price behaviour cannot be explained through mean-
reversion.
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Confidence Interval 1-minute Interval 5-minute Interval 15-minute Interval

0.1 2431 (27.68%) 1570 (17.87%) 1901 (21.64%)
0.05 1996 (22.72%) 1158 (13.18%) 1362 (15.51%)
0.01 1221 (13.90%) 597 (6.80%) 726 (8.27%)

Table 6.2: Results of the augmented Dickey-Fueller test for different confidence intervals (row) and trading intervals
6.2.1. Trend Following
The trend following behaviour corresponds to a drift component of the form
wt, X)) =60 6€eR (6.6)

resulting in the following process

dX; = 0dt + dL, 6.7)
Xo=D DeR
The expected value of the process at time t is then given by
t
E[X ()] = D + 6t + E { / st] (6.8)
0

To test the hypothesis of the presence of the drift, | performed the Mann-Kendall test for all hours in
the year 2020 and different lengths of trading intervals. Table (6.3) shows the results for the 15-minute
interval. The 'No Trend’ column represents the total number of contracts for which the null hypothesis
is accepted at that confidence interval. Conversely, 'Increasing’ and 'Decreasing’ is the totality of the
contracts for which the alternative hypothesis is accepted. 'Total Trend'’ is the sum of contracts showing
an increasing or decreasing trend. These results indicate that it is sensible to consider a daily trend
in the data and integrate the model selected in the previous section with a drift component of the form
shown in equation (6.6).

Confidence Interval No Trend Increasing  Decreasing Total Trend
0.1 1736 3792 3256 7048 (80.24%)
0.05 2054 3616 3114 6730 (76.62%)
0.01 2683 3299 2802 6101 (69.46%)

Table 6.3: Results of the Mann-Kendall test for various confidence intervals and 15-minute intervals. Most of the contracts
indicate the presence of a trend

6.3. Drift Model

After concluding that the trend-following hypothesis cannot be refused in most of the cases for the year
2020, in this section, | proceed to integrate the finding into the Normal Inverse Gaussian model by
adding a drift component. Formally, the model will be of the form

t
0

where 6 is the drift, o, the volatility and the noise parameter dL; with distribution the Normal Inverse
Gaussian distribution. Two different assumptions are made regarding the noise: the first considers a
model where d L, is assumed to be centralised with mean 0 and variance 1 (Model Noise-Drift-Variance);
the other, where only the mean is constrained and set equal to 0 (Model Noise-Drift).

To infer the parameter of the Noise-Drift-Variance model, | proceed as follows. As discussed in the
previous section, | discretize every trading day into trading intervals which leads to a process of the
form
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where At is the length of the trading interval, X is the volume-weighted average price of the trades that

happened in the ¢ — th interval, and AL ~ 1 ~ NZIG(a, B, p,d) is the noise of the price. The last registered

volume-weighted average price is used if no trade happens during a given interval. To find an estimator
of o the fact that

is used. Since the AL; are assumed to possess mean 0 and variance 1, then

zn: X1 — 0At)? =

f;X X;_1 — OAL)? :LZ (AX; —m)?

0? = o*Var(AL;) = Var(cAL;)

3\*—‘

(6.12)

where n+1 is the number of trading intervals in a trading day for a particular contract. The first equality
comes from the AL; are iid, and in the last passage, | defined m = 6At. Then | proceeded by finding
the value m that would minimise the variance, and thus, | want to find where

8% S (AX; —m)?

= 6.13
. 0 (6.13)
is achieved. Simple calculations lead to
1 & X, — X,

n=— AX)) = —— 14
= L AK) = = (6.14)

This is a point of minimum for the variance because

*+ AX; —

Z i m)” =1>0 VmeR (6.15)

Om?

and thus, the empirical variance is a convex function in m. The estimate of the variance is thus

o1 .
6% = - > (AX; =), (6.16)

i=1

To estimate the noise parameters, | make use of the fact that the Normal Inverse Gaussian Distribution
is closed under affine transformations (this applies to the Generalised Hyperbolic Distribution as a whole
class). Specifically, the available data regards the increment

So, if AL; ~ N'TG(a, B, i, ), then Y; ~ N'IG(a, B, i, §) with

a=2 528 Gcuotm F=os (6.18)
ag ag

The procedure is then the following, for each day, the increments X;,; — X; are aggregated, and the
values of 7 and & are found. Hence, the normalised increments are found as AL; = 2X=1 Finally,
the increments of the whole training set are aggregated into a vector of observations, and for these,
the parameters (o, 53, i, 9) are looked for.

Since the noise is assumed to have 0 mean and variance equal to 1, parameters . and § are constrained
as follows

2
E[AL;)] = u+ B _ 0 Var(AL;) = 6% =1 (6.19)
v Y

which imply

p=-2 5= (6.20)
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To estimate the parameter of AL, the scipy.stats.norminvgauss.fit routine is applied to the observa-
tions. This method finds the initial estimates of the parameters via the method of moments and then,
since there is no closed form for the maximum likelihood estimators of the NIG distribution, applies
an optimisation method with objective function the negative log-likelihood. Finally, the inference of the
parameters (&, 3, ji,0) is done daily by finding the daily values for (17, §), and applying equation (6.18).
To infer the parameters of the Noise-Drift model, the same procedure is followed but with o = 1 and only
1 constrained. In the next section, comparisons between the three models are applied to predicting
the ID; and ID3 indexes.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norminvgauss.html

Results

In the previous sections, | analysed the Germany Intraday Data to find a model to capture the price
behaviour for different trading intervals. The Normal Inverse Gaussian distribution was selected most
according to the Akaike and Bayesian Information Criteria. This suggests that the semi-heavy tails
explain the tail behaviour of the price of a contract.

The model, however, models the change in price on a noise component which is exclusively determined
by historical data, i.e. the maximum likelihood estimators of the distribution of the 2020 data. Hence, in
the previous section, | looked at the historical data on possible relationships between the fundamentals
(Renewable Energy and Consumption Forecasting), but no significant correlation was found. Data,
however, suggest the presence of a drift in the price behaviour according to the Mann-Kendall test and
the founding was integrated into the model. Thus, we now have three different solutions for modelling
the price of a contract at time t (X;): the Noise model. i.e.,

t
Xt:X0+/ dLs,, (7.1)
0

the Noise-Drift model where

ot

X, = Xo+ 0t + / dLs, (7.2)
0

and the Noise-Drift-Variance model with
t
X, :X0+9t+a/ dLy. (7.3)
0

where ¢ and o are the drift and the variance and dL is a Lévy process that follows a Normal Inverse
Gaussian distribution when ¢ = 1. Each of these models forecasts the price of a contract at a future time
t as a Normal Inverse Gaussian distribution with distinct parameters. Thus, it is relevant to compare
them to find which forecasting is more reliable. Specifically, the models are tested on predicting the
ID, and ID3, the volume-weighted average of the prices of the transactions in the last hour and the last
three hours before delivery, respectively. The goal is to give a trader a quantification of the probability
of incurring losses of a certain extent; if they have a short position on a particular contract, upward
movements in the price of the contract will damage them, causing a loss and, conversely, a long position
would be damaged by the downward of the price. To determine which model better predicts these
losses, | compare the model estimation of extreme events with the number of times extreme events
happen. Hence, for each day, | compare the number of times the change in price falls beyond or above
a certain threshold, and | compare the percentage of this event with the threshold. For example, the
threshold at 90% is how often events with a probability greater than 0.9 occur. If the model is accurate,
then about 10% of the events should fall in this range; if the number of events is higher, then the model
underestimates the quantiles of the actual distribution. Otherwise, it overestimates them. If the model
is accurate, a trader can evaluate their position one or three hours before delivery and account for
different scenarios.
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For example, Table (7.1) shows that the probability that increments estimated to happen in the 0.01%
of the cases (> 99.99%) occur about in the 1% of the cases for model Noise calibrated on the 1-
minute interval, 6% of the instances for model Noise-Drift, and 30.83% for model Noise-Drift-Variance.
Specifically, the increment of the ID; with respect to the known price one hour before the delivery and
the increment of the ID3 with respect to the known price three hours before being considered, and
then the probability is estimated for each of the models and confronted with the actual realisation. The
following tables show the number of times that the realisation of the ID; and ID3 index exceeds the
forecast according to the different models calibrated on different trading intervals.

Tables (7.1) and (7.2) show that the model Noise model calibrated on 1-minute contract overestimates
the tail probabilities in the left tail of the distributions but underestimates the right-tail. For the 5-minute
increments model, Noise still presents this behaviour, but the accuracy of the right tail predictions has
greatly increased for all thresholds (tables (7.3) and (7.4)). The calibration on 15-minute increments
shown in tables (7.5) and (7.6) yields a good fit for the ID-3 predictions’ estimating every percentile close
to its empirical realisations. Also, the ID-1 tail predictions perform well for the more extreme percentile
(0.01, 0.1, 99.9 and 99.99) but tend to underestimate the others. For example, the increments below
the estimated 10 — th percentile account for the 35% of the realisations. This behaviour can also be
seen for the models calibrated on the 30 and 60-minute intervals, but in both cases, the predictions of
the ID-1 percentiles worsen (7.7) and (7.9). The ID-3 predictions for the 30-minute model in the Table
(7.8) perform similarly to those of the 15-minute model, while the performance of the 60-minute model
is worse for every percentile (7.10).

The model Noise-Drift improves the performance in predicting the percentile when compared with the
model calibrated on the 60-minute interval both for ID-1 and ID-3 and with the left percentiles of the 1-
minute increments where the Noise Model overestimates their values. It performs similarly to the model
Noise when trained on 30-minute intervals. However, it underperforms in the rest of the situations,
showing no improvement. The Model Noise-Drift-Variance underestimates the tail probabilities in every
scenario by a large margin. These results suggest that the drift and the volatility in the first hours of
trading are poor estimators of the price behaviour in the last hours.

In conclusion, the Noise and Noise-Drift models perform well when calibrated at 15-minute and 30-
minute intervals in predicting ID-3. Concerning ID-1, the best results are obtained by the Noise model
trained on the 5-minute intervals. Table (7.11) presents the parameters for the Noise-model calibrated
on the 15-minute intervals and the 95% confidence intervals. The intervals are obtained by applying the
convergence in distribution of the Maximum Likelihood Estimator to a Normal distribution with variance
the inverse of the observed information matrix. l.e., for every parameter ¢ € {«, 3, ,0} and ¢; the
MLE for the i — th parameter, the value

O £/ T7H(@)ii (7.4)

is reported. c is the confidence interval in the standard normal distribution, and J~*(y);; is the i — th
diagonal element of the inverse of the observed information matrix in equation 4.15.

>90% >95% >99% >99.9% >99.99%
Model Noise 1018 (11.62%) 720 (8.22%) 445 (5.08%) 227 (2.59%) 126 (1.44%)
Model Noise-Drift 2917 (33.30%) 2260 (25.80%) 1404 (16.03%) 819 (9.35%) 532 (6.07%)

Model Noise-Drift-Variance ~ 2956 (33.74%) 2921 (33.34%) 2839 (32.41%) 2763 (31.54%) 2701 (30.83%)

<10% <5% <1% <0.1% <0.01%
Model Noise 118 (1.35%) 38 (0.43%) 2(0.02%) 0 (0.00%) 0 (0.00%)
Model Noise-Drift 1011 (11.54%) 748 (8.54%) 415 (4.74%) 210 (2.40%) 134 (1.53%)

Model Noise-Drift-Variance ~ 5499 (62.77%) 5452 (62.24%) 5371 (61.31%) 5274 (60.21%) 5176 (59.09%)

Table 7.1: Empirical realisation of the tail probabilities for ID; calibrated on 1-minute intervals
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>90%

>95%

>99%

>99.9%

>99.99%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

3488 (39.82%)
4206 (48.01%)

4517 (51.56%)

2977 (33.98%)
2673 (30.51%)

4479 (51.13%)

1762 (20.11%)
1042 (11.89%)

4394 (50.16%)

815 (9.30%)
408 (4.66%)

4318 (49.29%)

487 (5.56%)
231 (2.64%)

4249 (48.50%)

<10%

<5%

<1%

<0.1%

<0.01%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

6 (0.07%)
286 (3.26%)

3890 (44.41%)

1(0.01%)
189 (2.16%)

3841 (43.85%)

0 (0.00%)
100 (1.14%)

3719 (42.45%)

0 (0.00%)
49 (0.56%)

3596 (41.05%)

0 (0.00%)
31(0.35%)

3516 (40.14%)

Table 7.2: Empirical realisation of the tail probabilities for ID3 calibrated on 1-minute intervals

>90%

>95%

>99%

>99.9%

>99.99%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

1613 (18.41%)
2541 (29.01%)

2881 (32.89%)

934 (10.66%)
2001 (22.84%)

2851 (32.55%)

298 (3.40%)
1205 (13.76%)

2758 (31.48%)

77 (0.88%)
588 (6.71%)

2667 (30.45%)

40 (0.46%)
347 (3.96%)

2609 (29.78%)

<10%

<5%

<1%

<0.1%

<0.01%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

750 (8.56%)
1315 (15.01%)

5520 (63.01%)

236 (2.69%)
749 (8.55%)

5461 (62.34%)

9 (0.10%)
240 (2.74%)

5324 (60.78%)

0 (0.00%)
73 (0.83%)

5143 (58.71%)

0 (0.00%)
36 (0.41%)

4988 (56.94%)

Table 7.3: Empirical realisation of the tail probabilities for ID; calibrated on 5-minute intervals

>90%

>95%

>99%

>99.9%

>99.99%

Model Noise

Model Noise-Drift

Model Noise-Drift-Variance

752 (8.58%)
1861 (21.24%)

3095 (35.33%)

500 (5.71%)
1186 (13.54%)

3027 (34.55%)

284 (3.24%)
541 (6.18%)

2908 (33.20%)

117 (1.34%)
246 (2.81%)

2773 (31.66%)

55 (0.63%)
131 (1.50%)

2678 (30.57%)

<10% <5% <1% <0.1% <0.01%
Model Noise 43 (0.49%) 8 (0.09%) 1 (0.01%) 0 (0.00%) 0 (0.00%)
Model Noise-Drift 312 (3.56%) 164 (1.87%) 49 (0.56%) 19 (0.22%) 9 (0.10%)

Model Noise-Drift-Variance

5028 (57.40%)

4910 (56.05%)

4706 (53.72%)

4488 (51.23%)

4259 (48.62%)

Table 7.4: Empirical realisation of the tail probabilities for ID3 calibrated on 5-minute intervals
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>90%

>95%

>99%

>99.9%

>99.99%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

2259 (25.79%)
2403 (27.43%)

3348 (38.22%)

1577 (18.00%)
1871 (21.36%)

3208 (36.62%)

588 (6.71%)
978 (11.16%)

2926 (33.40%)

177 (2.02%)
401 (4.58%)

2578 (29.43%)

69 (0.79%)
212 (2.42%)

2277 (25.99%)

<10%

<5%

<1%

<0.1%

<0.01%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

2580 (29.45%)
2903 (33.14%)

4353 (49.69%)

1658 (18.93%)
2232 (25.48%)

4160 (47.49%)

535 (6.11%)
1068 (12.19%)

3730 (42.58%)

54 (0.62%)
395 (4.51%)

3299 (37.66%)

9 (0.10%)
161 (1.84%)

2858 (32.63%)

Table 7.5: Empirical realisation of the tail probabilities for ID; calibrated on 15-minute intervals

>90%

>95%

>99%

>99.9%

>99.99%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

855 (9.76%)
1039 (11.86%)

2731 (31.18%)

506 (5.78%)
708 (8.08%)

2492 (28.45%)

185 (2.11%)
346 (3.95%)

2088 (23.84%)

73 (0.83%)
127 (1.45%)

1751 (19.99%)

35 (0.40%)
68 (0.78%)

1497 (17.09%)

<10%

<5%

<1%

<0.1%

<0.01%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

896 (10.23%)
1712 (19.54%)

4101 (46.82%)

486 (5.55%)
1134 (12.95%)

3756 (42.88%)

91 (1.04%)
503 (5.74%)

3131 (35.74%)

10 (0.11%)
157 (1.79%)

2457 (28.05%)

1 (0.01%)
62 (0.71%)

1983 (22.64%)

Table 7.6: Empirical realisation of the tail probabilities for ID3 calibrated on 15-minute intervals

>90%

>95%

>99%

>99.9%

>99.99%

Model Noise

Model Noise-Drift

Model Noise-Drift-Variance

2666 (30.43%)
2511 (28.66%)

3292 (37.58%)

1983 (22.64%)
1864 (21.28%)

3083 (35.19%)

760 (8.68%)
779 (8.89%)

2698 (30.80%)

203 (2.32%)
249 (2.84%)

2255 (25.74%)

72 (0.82%)
95 (1.08%)

1903 (21.72%)

<10%

<5%

<1%

<0.1%

<0.01%

Model Noise

Model Noise-Drift

Model Noise-Drift-Variance

3092 (35.30%)
2994 (34.18%)

4157 (47.45%)

2229 (25.45%)
2226 (25.41%)

3931 (44.87%)

734 (8.38%)
825 (9.42%)

3441 (39.28%)

91 (1.04%)
193 (2.20%)

2818 (32.17%)

21(0.24%)
72 (0.82%)

2297 (26.22%)

Table 7.7: Empirical realisation of the tail probabilities for ID; calibrated on 30-minute intervals
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>90%

>95%

>99%

>99.9%

>99.99%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

1167 (13.32%)
1031 (11.77%)

2556 (29.18%)

688 (7.85%)
661 (7.55%)

2315 (26.43%)

234 (2.67%)
243 (2.77%)

1883 (21.50%)

72 (0.82%)
77 (0.88%)

1477 (16.86%)

28 (0.32%)
29 (0.33%)

1176 (13.42%)

<10%

<5%

<1%

<0.1%

<0.01%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

1242 (14.18%)
1650 (18.84%)

3780 (43.15%)

713 (8.14%)
992 (11.32%)

3356 (38.31%)

153 (1.75%)
325 (3.71%)

2625 (29.97%)

14 (0.16%)
64 (0.73%)

1917 (21.88%)

3(0.03%)
25 (0.29%)

1490 (17.01%)

Table 7.8: Empirical realisation of the tail probabilities for ID3 calibrated on 30-minute intervals

>90%

>95%

>99%

>99.9%

>99.99%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

2985 (34.08%)
2753 (31.43%)

3054 (34.86%)

2422 (27.65%)
2033 (23.21%)

2794 (31.89%)

1091 (12.45%)
715 (8.16%)

2298 (26.23%)

294 (3.36%)
155 (1.77%)

1757 (20.06%)

98 (1.12%)
55 (0.63%)

1337 (15.26%)

<10%

<5%

<1%

<0.1%

<0.01%

Model Noise
Model Noise-Drift

Model Noise-Drift-Variance

3569 (40.74%)
3194 (36.46%)

3859 (44.05%)

2820 (32.19%)
2355 (26.88%)

3558 (40.62%)

1077 (12.29%)
707 (8.07%)

2887 (32.96%)

179 (2.04%)
107 (1.22%)

2156 (24.61%)

27 (0.31%)
34 (0.39%)

1551 (17.71%)

Table 7.9: Empirical realisation of the tail probabilities for ID; calibrated on 60-minute intervals

>90%

>95%

>99%

>99.9%

>99.99%

Model Noise

Model Noise-Drift

Model Noise-Drift-Variance

1571 (17.93%)
1160 (13.24%)

2295 (26.20%)

1001 (11.43%)
691 (7.89%)

1991 (22.73%)

345 (3.94%)
189 (2.16%)

1490 (17.01%)

97 (1.11%)
49 (0.56%)

1055 (12.04%)

39 (0.45%)
15 (0.17%)

776 (8.86%)

<10% <5% <1% <0.1% <0.01%
Model Noise 1752 (20.00%) 1067 (12.18%) 270 (3.08%) 28 (0.32%) 4 (0.05%)
Model Noise-Drift 1680 (19.18%) 921 (10.51%) 212 (2.42%) 26 (0.30%) 6 (0.07%)

Model Noise-Drift-Variance

3134 (35.78%)

2676 (30.55%)

1979 (22.59%)

1310 (14.95%)

867 (9.90%)

Table 7.10: Empirical realisation of the tail probabilities for ID3 calibrated on 60-minute intervals



Hour

B

m

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

7.005e-02 + 1.709e-09
7.465e-02 + 1.742e-09
8.557e-02 + 2.555e-09
8.587e-02 + 2.074e-09
7.732e-02 + 1.124e-09
7.274e-02 + 7.349e-10
3.509e-02 + 0.000e+00
5.670e-02 + 3.726e-10
5.245e-02 £ 2.118e-10
6.064e-02 + 3.422e-10
5.252e-02 + 1.829e-10
6.097e-02 + 4.275e-10
6.197e-02 + 6.035e-10
5.518e-02 £ 1.475e-11
6.150e-02 + 3.353e-10
5.801e-02 + 2.292e-10
7.476e-02 + 5.909e-10
6.550e-02 + 3.059e-10
4.504e-02 + 7.425e-16
4.058e-02 + 4.426e-11
4.108e-02 + 0.000e+00
5.955e-02 + 5.923e-14
9.261e-02 + 2.313e-09

1.199e-01 + 0.000e+00

-9.039e-03 + 1.930e-05
-2.354e-03 + 2.073e-05
-9.978e-03 + 2.218e-05
-9.949e-03 + 2.160e-05
-7.924e-03 + 1.897e-05
-4.572e-03 + 1.751e-05
-2.393e-03 + 7.125e-06
-5.233e-03 + 1.061e-05
-2.405e-03 + 9.291e-06
-3.648e-03 + 1.126e-05
-1.294e-03 + 9.871e-06
-2.367e-04 = 1.101e-05
-5.170e-05 + 1.031e-05
-3.777e-03 + 8.927e-06
-3.745e-03 + 9.587e-06
-8.497e-05 + 9.306e-06
-3.881e-03 + 1.192e-05
-5.625e-03 + 1.045e-05

1.536e-05 + 7.170e-06
-3.574e-03 + 5.791e-06

1.642e-03 + 6.185e-06
-7.611e-04 + 1.027e-05
-2.950e-03 + 1.653e-05

-8.172e-03 + 2.100e-05

2.868e-02 + 2.735e-04
5.521e-03 £ 2.348e-04
8.880e-03 + 2.046e-04
1.218e-02 + 1.740e-04
4.716e-03 + 1.554e-04
6.146e-03 + 1.458e-04
-2.959e-03 + 1.314e-04
4.932e-03 + 1.226e-04
9.620e-03 £ 1.223e-04
1.161e-02 + 1.141e-04
1.047e-02 £ 1.117e-04
5.854e-03 £ 1.081e-04
1.134e-02 + 1.133e-04
5.040e-03 £ 1.068e-04
5.666e-03 + 1.038e-04
5.426e-03 £ 9.614e-05
7.243e-03 £ 9.454e-05
6.321e-03 + 9.138e-05
6.219e-03 £ 9.104e-05
7.561e-03 + 8.381e-05
2.483e-04 £ 8.631e-05
6.616e-03 + 1.085e-04
5.995e-03 £ 1.072e-04

2.088e-02 + 9.672e-05

8.373e-01 + 3.302e-04
7.841e-01 £ 2.579e-04
7.609e-01 + 2.266e-04
7.125e-01 £ 1.797e-04
6.698e-01 + 1.440e-04
6.355e-01 + 1.176e-04
6.626e-01 = 1.179e-04
6.883e-01 + 1.238e-04
7.070e-01 £ 1.250e-04
6.706e-01 + 1.131e-04
6.566e-01 + 1.078e-04
6.614e-01 + 1.048e-04
7.115e-01 + 1.191e-04
6.950e-01 + 1.096e-04
6.996e-01 + 1.066e-04
6.579e-01 + 9.118e-05
6.536e-01 + 8.697e-05
6.203e-01 £ 7.513e-05
5.951e-01 £ 6.592e-05
6.265e-01 + 7.120e-05
5.999e-01 £ 6.440e-05
5.480e-01 + 5.276e-05
5.508e-01 £ 5.261e-05

5.654e-01 £ 5.553e-05

Table 7.11: Parameters of the Noise model with the 95% confidence interval calibrated on the 15-minute intervals.



Conclusion

This thesis is part of the Electricity Price Forecasting (EPF) literature, which aims to forecast the price
of Electric Energy in both the short and long-term markets. Specifically, it seeks to produce a model
for predicting probability distributions of the price of hourly contracts in the ID Germany market. Lévy
processes are a rich family of stochastic processes that can, for example, reproduce high values of the
excessive kurtosis in the data, include jumps, and represent skewed distributions.

In particular, the contract price has been modelled through a diffusion process, a jump-diffusion
process, a Normal Inverse Gaussian Process, and a Generalised Hyperbolic Distribution. A selection
was made based on the Akaike Information Criteria (AIC) and the Bayesian Information Criteria (BIC).

The diffusion process models the price as a Normal distribution, but this does not capture the tail
distribution of the price increments resulting approximation of the probabilities at 0 for some of them.
The jump-diffusion process comprises a diffusion term and a jump component, with the former following
a standard normal distribution and the latter a Poisson process with jumps sized as a Normal distribu-
tion whose mean and variance are inferred from historical data. Adding one parameter to the model
increased the performance in some scenarios. Nevertheless, it was impossible to reproduce the tail
behaviour, so the log-likelihood would also result in infinite values in this scenario.

The Normal Inverse Gaussian Model is a 4-parameter model with infinite activity; this model at time
t = 1 follows a Normal Inverse Gaussian distribution which presents semi-heavy tails and thus can
capture the tail behaviour of the prices. Finally, the generalised Hyperbolic model is a general case of
the Normal Inverse Gaussian model and, at time ¢t = 1 follows a Generalised Hyperbolic distribution.

The Normal Inverse Gaussian model was selected by both the AIC and the BIC for most of the
contracts and therefore was chosen as the Lévy process representing the process modelling the price.
Moreover, this class of distributions is closed under convolution, and by knowing the distribution at one
timescale, the distribution at every timescale is known.

However, the parameters of these models were based exclusively on the Historic data from 2020.
Possible relationships between the price volatility and the change in weather forecasting were looked
for to model the daily behaviour of the prices. Still, no correlation between these two quantities is
present. After that, | conducted the Kendall-Mann test and the Augmented Dickey-Fueller test on the
price of the contracts to verify if either a trend-following or a mean-reversion behaviour was present in
the data, which resulted in accepting the presence of a trend on most of the days.

This fact was then integrated into the model to increase its Forecast Power by adding a drift com-
ponent to the price. Consequently, two additional models were proposed, using the Normal Inverse
Gaussian model as noise components. Finally, these models were compared on their forecasting ac-
curacy of the ID; and ID3; indexes’ quantiles, where the Normal Inverse Gaussian model trained on
15-minute increments was the better performer. This suggested that the volatility and drift in the first
hours of the day are poor predictors of price behaviour in the last hours. From a trader’s perspective,
this model explains the probability that their position can incur losses of a certain extent in the following
15-minute interval and adequately adjust their strategy.
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