Maintenance scheduling SN
optimization based on 7 [ "
prognostics and limited spare#l” 4
parts i

M. Carrillo Galera

Delft University of Technology



\aintenance scheduling optimization ased on
orognostics and limited spare parts

by

M. Carrillo Galera

to obtain the degree of Master of Science Aerospace Engineering
at the Delft University of Technology,
to be defended publicly on Wednesday July 22, 2020 at 09:30 AM.

Student number: 4893034
Project duration: September 15, 2019 — July 22, 2020

Thesis committee: Dr. M.A. Mitici, TU Delft, supervisor
Ir. S. Stokkers KLM Royal Dutch Airlines, supervisor
Dr. M. Snellen TU Delft, chair of committee
Ir. P.C. Roling TU Delft, external committee member
Ir. 1. de Pater TU Delft, supervisor

This thesis is confidential and cannot be made public until July 22, 2030.

o]
TUDelft



Preface

This report represents my graduation research for the master Aerospace Engineering in Air Traffic and Opera-
tions at Delft University of Technology. | have had the opportunity to carry out this project at KLM Engineering
& Maintenance. This experience would not have been possible without the help of my supervisor S. Stokkers
and the whole Predictive Maintenance team. Thank you for being so welcoming from the very beginning and
for continuously challenge me to improve my research. | really enjoyed working with you and | learned a lot of
valuable things for my future career.

Moreover, | would not have been able to do this without the advice and guidance from my supervisors from
TU Delft, M. Mitici and . de Pater. Your insightful questions and comments, as well as the extensive meetings,
have been crucial for the final outcome of this research.

This thesis is also the final milestone of these two years in the Netherlands. Thank you to my mum for giving
me this opportunity and to the rest of my family and my friends for the support. | had a wonderful time and | am
very proud of the result.

M. Carrillo Galera
Delft, July 2020



Contents

List of Figures iv
List of Tables \'
1 Introduction
1.1 Motivation. . . . . . . . e 1
1.2 Research Scope . . . . . . . . . . e 1
1.3 Research Objective and Questions . . . . . . . . . . . . . .. . ... .. . 2
1.4 ReportStructure . . . . . . . L e 2
Master of Science Thesis Paper 4
Literature Study (previously graded under AE4020) 29
2 Airline Maintenance Scheduling 30
2.1 Evolution of Airline Maintenance Scheduling . . . . . . . ... .. ... ... . . oL 30
2.2 Airline Maintenance types . . . . . . . L 30
2.3 Aircraftcomponents . . . . . ... e 31
3 Prognostics 32
3.1 Prognostics and Health Management (PHM) . . . . . . . . . . .. . ... .. ... . ....... 32
3.2 Prognostic algorithms . . . . . . . . . L 32
3.3 Prognostics benefits from a Predictive Maintenance perspective . . . . . . . . .. .. ... .. 34
4 Maintenance Scheduling Modeling 36
4.1 PrognostiCs . . . . . . . L e e e 36
411 RULPrognostics . . . . . . . . . o e 36
4.1.2 State transition probability . . . . . . ... o 37
4.1.3 Classification prognostics . . . . . . . . . . 37
4.2 Resources availability in maintenance scheduling . . . . . . . .. ... oo, 38
421 Sparepartsavailability . . . . .. .. ... 38
4.2.2 Maintenance slots availability . . . . .. ... ... o 39
4.3 Component Criticality. . . . . . . . . . . . e 39
4.4 Objective functions for maintenance scheduling . . . . . . . . ... . ... ... L. 40
4.5 Solution Approaches . . . . . . . . . L 42
4,51 Markov Decision Process (MDP) . . . . . . . . . . . . . . . ... 42
4.5.2 Large Neighborhood Search (LNS) . . . . . . . . . . . ... .. .. .. ... .. ..... 42
453 Genetic Algorithm (GA) . . . . . . . . 43
4.6 Summary of the most important literature. . . . . . . . . .. ... o o 43
5 Current state-of-the-art in KLM E&M 46
6 Research Gap & Research Relevance 47
6.1 Academic Perspective . . . . . . . . . L 47
6.2 KLME&M Perspective . . . . . . . . . . e 48
Bibliography 49
Further elaboration on thesis work 53
A Verification and Validation 54
A1 Verification . . . . . . . e 54
A2 Validation . . . . . . . e 54
B Sensitivity Analysis (additional work) 56
B.1 Impact of prognostic sensitivity . . . . . . ... 56
B.2 Impactof TAT. . . . . . . e 57
B.3 Impact of TAT as a function of the component health state . . . . . . ... ... ... ... ... 57



Contents iii

C Operational implementation 58
C.1 Model implementation for the CU component. . . . . . . . . .. .. ... ... ... ....... 58
C.2 Recommendations for current practices. . . . . . . . . . .. ... L o 58

C.21 Sparepartsstock. . . . . . . . . 58
C.2.2 Prognostic Horizon . . . . . . . . . . 58
C.2.3 Prognostic sensitivity. . . . . . . . L 59
C.24 Turn-Around Time . . . . . . . . . . e 59

D Conclusions and future work 60

D.1 Benefitsof PAM. . . . . . . . . e 60
D.1.1 Relevance from the warehouse perspective . . . . . . . . .. .. ... ... ... 60
D.1.2 Relevance from the repair shop perspective . . . . . . . ... ... ... ... ...... 61
D.1.3 Relevance from airframe operations perspective. . . . . . . . .. .. ... ... ... .. 61

D.2 Suggestions for furtherresearch. . . . . . . .. . ... 61

D.3 Finalremarks. . . . . . . . . e 61



3.1
3.2
3.3

41
4.2
43
44
4.5
4.6
4.7

5.1

B.1
B.2
B.3
B.4
B.5
B.6

DA

List of Figures

Main steps of PHM. Adopted from [34] . . . . . . . . . . . . . . . ... 32
Hybrid approaches possibilities. Adoptedfrom [8] . . . . . . . . . . .. .. ... ... ... .... 33
Maintenance strategies versus cost. Basedon [34] . . . . . . ... ... ... ... L. 34
Confusion matrix for binary classification prognostics. Adopted from[36] . . . . . .. ... .. .. 37
Prognostics Horizon definition. Basedon [31] . . . . . . . . . . . . ... ... L. 37
Optimum operating point for Predictive Maintenance as a function of PH. Adopted from [36] . . . 38
Supply chain of repairable components. Basedon [53] . . . . . . . . . ... ... ... 39
Average-life costs. Adopted from [68] . . . . . . . . . .. L 41
Repair costs as a function of PH. Adopted from [67] . . . . .. ... ... ... ... ....... 41
Risks costs. Adapted from [68] . . . . . . . . . . . ... 41
Sensor data flow in Prognos of data transmitted after flight. Adopted from [67]. . . . . . . .. .. 46
Impact of s on the costs associated with S2, analyzing a period of 365days. . . ... ... ... 56
Impact of s on the performance of S2, analyzing a period of 365days. . . . .. ... ... .... 56
Impact of TAT on the costs associated with S2, analyzing a period of 365days. . . . . . ... .. 57
Impact of TAT on the performance of S2, analyzing a period of 365days. . . . ... ... .. .. 57
Impact of TAT, on the costs associated with S2, analyzing a period of 365days. . . ... .. .. 57
Impact of TAT, on the performance of S2, analyzing a period of 365days. . . . . . ... ... .. 57
Relation (simplified) between repair shop, warehouse, and airframe operations departments. . . 60



2.1
3.1

41
4.2
43
4.4

A1

List of Tables

Letter checks intervals for Boeing 787-9 defined by KLM E&M. Based in[18]. . . . . ... .. .. 31
Summary of advantages and disadvantages in prognostics algorithms. . . . . . .. ... ... .. 33
Prognostics Metrics in [67] and [64]. Basedon[36] . . . . . . . . . .. ... ... ......... 38
EASA MMEL rectification intervals. Adopted from [1] . . . . . . . . .. .. ... ... ... .... 39
Summary of most important literature (part1) . . . . . . . . ... .. Lo 44
Summary of most important literature (part2) . . . . . ... . ... ... ... . 45
Validationresults . . . . . . . . . L 55



Nomenclature

List of Abbreviations
ACARS Aircraft Communication Addressing and Reporting System

AFI Air France Industries

AHM Airplane Health Management
ALNS Adaptive Large Neighborhood Search
AOG Aircraft On Ground

APU Auxiliary Power Unit

ATA Air Transport Association

ATS Air Traffic Services

CAA Civil Aviation Authority

CBM Condition-Based Maintenance
CDF Cumulative Density Function

Ccu Cooling Unit

CWLU Crew Wireless LAN Unit

DMC Direct Maintenance Costs

E&M Engineering and Maintenance
EASA European Aviation Safety Agency
FAA Federal Aviation Administration
FDE Flight Deck Effect

FMS Flight Management System

GA Genetic Algorithm

HPP Homogeneous Poisson Process
HUMS Health and Usage Monitoring System
IMC Indirect Maintenance Costs

KLM Royal Dutch Airlines

KPI Key Performance Indicator

KS Kolmogorov-Smirnov

LNS Large Neighborhood Search
LRM Line Replaceable Module

MCC Maintenance Control Centre
MDP Markov Decision Process

MEL Minimum Equipment List

\Y



Nomenclature

vii

MLE Maximum Likelihood Estimation
MMEL Master Minimum Equipment List

MPD Maintenance Planning Document
MRB Maintenance Review Board

MRO Maintenance, Repair and Overhaul
MSG-3 Maintenance Steering Group Part 3
MSG Maintenance Steering Group

MTTR Mean Time To Repair

NFF Not Fault Found

NPV Negative Predictive Value

OAM Original Aircraft Manufacturer

oLS Ordinary Least-Squares

PDF Probability Density Function

PdM Predictive Maintenance

PHM Prognostics and Health Management
PH Prognostic Horizon

PPV Positive Predictive Value

QAR Quick Access Recorder

RUL Remaining Useful Life

SLA Service Level Agreement

TAT Turn-Around Time

TO Technish Onderhoud

TTF Time To Failure

TTR Time To Repair

TWLU Terminal Wireless LAN Unit

List of Symbols

r< Degradation indicator alert threshold
r/ Degradation indicator failure threshold
e () Degradation indicator at time t of component c; ,,
c4 Flight schedule disruption cost due to aircraft failure
cM Cost of major component repair

cm Cost of component repair

cm Cost of minor component repair

cY Cost of using a generic slot

ctd Leasing daily cost per component

ctf Leasing fixed cost per component
CMEL Cost of MEL violation per aircraft per day



Nomenclature viii

cre Non-critical failure cost factor
Gy Cost of using slot t};

Cin Component n of aircraft i
Dt;{j Duration of slot ¢;!; (hours)

Fru(t — tgi'n) CDF of the RUL of component c; ,, after a predictive alert has been triggered

H(cin, t) Health state of component c;,, atime t

I Number of aircraft in the fleet

k Minimum number of operable components for aircraft dispatch
M(ti; Maximum capacity of slot ¢;;

N Number of components per aircraft

Ngpares(t) Number of available spare parts at time ¢

Pif () Failure probability of aircraft i at time t

Pcin ® Probability that component ; ,, has failed at time ¢

PH Prognostic Horizon (days)

R Required time to perform a component replacement (hours)
RIMEL MEL Replacement Interval

s Prognostic sensitivity

t?l.’n Time at which a predictive alert is triggered in component c; ,,
tr Starting time of slot j of aircraft i of type u

tst Stock-out time

to Current time

t{'” Time of n-th component failure in aircraft i

tMEL MEL deadline of aircraft i

TAT Turn-Around Time (days)

TAT, Turn-Around Time when the component is in alerted state (days)

T AT Turn-Around Time when the component is in failed state (days)



Introduction

1.1. Motivation

The competition in the airline industry has tremendously increased throughout the last decades. According
to the IATA Vision 2050 Report [5], over 1300 airlines were created in the past 40 years, mainly due to the
more extensive liberalization of market access. Most of these new entrants were low-cost carriers, which has
intensified even more the aim of airlines to find ways to stay competitive. Efforts have mainly focused on ticket
pricing, network optimization, and new financial practices, such as aircraft leasing. Besides, the latest aircraft
models are using more efficient engines and materials to reduce fuel consumption. However, these practices
are predicted to result only in small enhancements in cost reduction [37].

According to the IATA 2016 Maintenance Cost Report [21], the Maintenance, Repair, and Overhaul (MRO)
worldwide costs in 2016 were 67.6B$, representing around 9.5% of airlines’ operating costs. Moreover, new
generations of aircraft are increasingly being equipped with sensors that provide data about the components’
health state. The high costs incurred in MRO activities and the development of techniques for data processing
and health monitoring are generating a great interest in the development of maintenance schedules that incor-
porate component diagnosis and prognostics information. In this way, the traditional corrective and preventive
maintenance policies are being replaced by the novel predictive maintenance (PdM).

PdM is enabled by prognostics. As a whole, the aim of prognostics is to predict the components’ failure
times. Therefore, it can enable a more effective maintenance planning by reducing unscheduled maintenance
events. In addition, it can also allow to predict and effectively distribute the demand for spare parts, and to
reduce the repair costs due to lower component degradation levels.

Maintenance scheduling with prognostics inputs has been already addressed in multiple studies. However,
the majority of them fail to properly describe the component degradation behavior due to the lack of actual
aircraft sensor data in their models. Besides, the great majority of existing literature takes assumptions that
hugely differ from a real airline operation, such as infinite maintenance capacity, or infinite availability of spare
parts.

1.2. Research Scope

This research proposes a framework to optimize maintenance schedules of a fleet of aircraft based on prog-
nostic information. The considered prognostics are the predictions of the PdM tool developed by the Predictive
Maintenance team in KLM Engineering & Maintenance (E&M), Prognos. It is therefore out of the scope of this
research to develop a prognostic model for aircraft components.

The considered component and aircraft is the Cooling Unit (CU) of the Boeing 787. Each aircraft is equipped
with 4 CUs. The CU was selected for the case study as the predictive algorithms integrated into Prognos have
proven to be successful in predicting failures with promising accuracy and precision values. Indeed, the B-787
aircraft is the first ’'more electric aircraft’ from Boeing, which makes it a perfect candidate to perform prognostics
due to the huge quantity of sensor data collected during flights. Moreover, this aircraft model is of great interest
from a cost savings perspective as it is operated in long haul routes with high demand, meaning that a decrease
in technical delays can be very significant.

This research deals with repairable components. Repair by replacement is the only policy considered in this
study, meaning that the faulty components are replaced with available spare parts and the faulty components
are sent to the repair shop to be fixed. The joint MRO service Air France Industries (AFI) and KLM E&M has
multiple warehouses and repair shops distributed all over the world, providing spare parts for over 200 airlines.
However, for the sake of simplicity, it is considered that there is a unique logistic warehouse and repair shop
located in Amsterdam-Schiphol.
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Finally, maintenance actions can be only performed in a set of opportunities given by the maintenance
slots. Historic aircraft maintenance slots data are considered as an input for the maintenance optimization
model, meaning that it is out of the scope to optimize the maintenance opportunities themselves.

1.3. Research Objective and Questions

The objective of this research is to generate optimal maintenance schedules that take into account prognostics
about the condition of aircraft components as well as the availability of slots and spare parts by developing
a maintenance scheduling optimization model for aircraft components. It is also crucial to assure that the
developed algorithm is operational for KLM E&M.

It is necessary to achieve some sub-goals to reach the main research objective:
+ Determine how to incorporate component prognostics as an input in the maintenance scheduling model.

» Translate aircraft maintenance slots into maintenance opportunities that can be used as input for the
scheduling model.

+ Definition of available spare parts and translation into a scheduling input.
» Development of an optimization model for maintenance scheduling.

+ Perform a case study in KLM E&M to validate and verify the optimization model as well as to assure it is
operational.

Based on the research goal, the main research question can be formulated as follows:

How to optimize maintenance schedules of a fleet of single-aircraft type integrating component prognostics
and the availability of maintenance slots and spare parts, in order to reduce the airline operating costs?

The main research question can be split into sub-questions composed as follows:
1. How to model the prognostics information about aircraft components?
2. What kind of uncertainties do the prognostics have?
3. How can prognostics be modeled as input for maintenance scheduling?
4. How can resources availability be incorporated in maintenance scheduling?

(a) How can maintenance slots availability be modeled?
(b) How can spare parts availability be modeled?

5. How can the optimization model be generated?

(a) How to define the objective function such that the operating costs are minimized (costs of repair,
cost of stock-out, cost of MEL violation, cost of flight schedule disruption, etc.)?

(b) How to solve the optimization problem?
6. How can the optimization model be verified and validated by a case study in KLM E&M?

7. What conclusions, such as potential advantages and influencing factors, can be drawn from the model
output?

1.4. Report Structure

The structure of this report is as follows. Part | presents the scientific paper, in which the research questions pre-
sented above are answered. Part Il elaborates in the literature study carried out in preparation for the research.
Chapter 2 briefly elaborates on the evolution of maintenance in the airline industry to understand how this study
fits on it. Chapter 3 presents an introduction to prognostics together with a review of its main algorithms and
potential benefits. Chapter 4 elaborates on the existing literature in maintenance scheduling from a modeling
perspective. It includes how prognostics and availability of resources have been modeled, component criticality
issues that should be considered, the objective functions used, and the main solution approaches. Chapter
5 presents the current practices in KLM E&M in terms of what kind of prognostics are currently available and
how they are used in maintenance scheduling. Chapter 6 summarizes the research gaps that were previously
identified and presents the novelty and relevance of this study from both an academic perspective, and from
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KLM E&M perspective. Finally, Part 11l further elaborates in the thesis work. Appendix A presents the Valida-
tion and Verification. Appendix B provides an extension of the sensitivity analysis introduced at Il. Appendix C
provides some guidelines on how the proposed model should be implemented in KLM E&M and it proposes
additional suggestions for improvement of the current practices within the company. Finally, Appendix D elab-
orates on the benefits of incorporating prognostics in maintenance scheduling from the perspective of different
departments within KLM E&M and it provides some suggestions for future work.
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Abstract

This paper proposes a model for maintenance scheduling of a fleet of aircraft based on component Remaining-
Useful-Life prognostics and a limited stock of available spares. A discrete-time, rolling horizon approach is
proposed, resulting in a sequence of scheduling time windows. For each time window, the goal is to find
an optimal maintenance schedule, while taking into account component prognostics and available spares.
Moreover, the scheduling model considers three stages in decreasing order of maintenance priority, from
critical aircraft leading to grounded condition, to predictive alerts, to non-critical failures. An Adaptive
Large Neighborhood Search algorithm is used to solve this aircraft maintenance problem. The framework is
illustrated in a case study regarding the Cooling Unit (CU) in a fleet of aircraft. The results show that a cost-
efficient maintenance schedule for a large fleet of aircraft is generated with an outstanding computational
performance. Moreover, we show that in the long-run the aircraft operating costs are significantly reduced,
even when considering limited spares.

Keywords: aircraft maintenance scheduling, prognostics, adaptive large neighborhood search, spare parts

1. Introduction

The competition in the airline industry has rapidly increased during the last decades, especially with the
entrance in the market of low-cost carriers. The high costs incurred in Maintenance, Repair and Overhaul
(MRO) activities are generating a great interest in the improvement of maintenance operations as a way to
stay competitive in the market.

In recent years, the new generations of aircraft are increasingly being equipped with sensors that monitor
the component’s health condition. At the same time, new techniques for data storage and processing are
being developed to effectively analyze and make use of this data. This stimulates the shift towards data-
driven, predictive aircraft maintenance.

Data-driven, predictive aircraft maintenance is enabled by prognostics. Prognostics aims to predict the
components’ failure time. Therefore, prognostics can enhance maintenance planning by reducing unexpected
failures, as well as enable a more effective use of spare components [1, 2, 3]. It can also reduce the component
repair costs due to lower degradation levels [4]. However, there is a lack of knowledge of how to incorporate
a prognostic model based on aircraft sensor data in the creation of maintenance schedules, considering also
the availability of the required resources to perform maintenance.

This study address this research gap by providing a novel approach to generate optimal maintenance
schedules for aircraft components that takes into account prognostic information and the availability of
repairable spare parts and maintenance slots. Maintenance scheduling problems of such multi-component
systems are known to be NP-complete, especially those considering operation limitations, such as spare parts
availability [5, 6]. We propose a discrete-time, rolling horizon approach, resulting in a sequence of multiple
time windows. For each time window, we define a maintenance scheduling model divided into three stages
in decreasing order of maintenance priority. An exact solution method for this problem should consider all
possible combinations of assignments of aircraft to slots and component replacements, which would take
too much computational time. Thus, we propose a heuristic solution approach named as Adaptive Large
Neighborhood Search, meaning that an optimal solution is not guaranteed. The framework is illustrated in
a case study regarding the Cooling Unit (CU) in a fleet comprising 13 wide-body aircraft.

The remainder of the paper is structured as follows. A brief literature review is given in the next section.
Section 3 elucidates the maintenance scheduling problem. Section 4 provides the mathematical formulation
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of the optimization model. Section 5 elaborates on the solution methodology. We illustrate our maintenance
scheduling model for a fleet of I = 13 aircraft in Section 6. Section 7 presents a long-run model performance
analysis using Monte Carlo simulation. Finally, section 8 provides the conclusions and recommendations for
future work.

2. Literature review

Over the past years, several studies that consider prognostics in maintenance planning optimization have
been published. Prognostics has been modeled in different ways. State transition probability prognostics
defines the probability of transition from ”healthy” to ”degraded” or ”failed” state based on the estimated
component degradation [7, 8]. Classification or binary prognostics evaluates whether a component is going to
fail in the upcoming days with a given sensitivity and precision [9]. Remaining Useful Life (RUL) prognostics
estimates the expected failure time of the components. The RUL prediction uncertainty has been included in
the optimization framework with three different approaches. The first one is to include the risk of failure in
the objective function [10, 8]. The second one is to optimize the maintenance decision under an acceptable
risk by restricting the maximum system failure probability [11, 12, 13]. The third method is to build a
safety interval around the RUL estimation. In [14], the RUL is diminished by a safety factor to account for
the time needed to trigger maintenance and for the prognostic uncertainties. In [15], the 95% Confidence
Interval of the RUL prediction is used to define the maintenance execution window for each component.

However, the great majority of the studies dealing with prognostics in maintenance optimization lack a
deep operational context by assuming immediate repairs or infinite inventory stock. The number of studies
dealing with repairable components is even more scarce. In [16], a framework to optimize the maintenance
times of repairable components with RUL prognostics is proposed. First, an initial schedule with the
predicted RUL is built. Next, a second optimization is performed to prevent the stock-out of spares by
avoiding that the overlaps in the expected repair times exceed the stock level.

Regarding the objective functions, most of the literature has focused on reducing operational costs [17,
18, 7, 10, 7, 14, 9, 19, 20], maximizing revenue [4], and maximizing aircraft availability [16]. A few studies
have also adopted a two-fold objective, such as minimum cost and maximum availability [12, 11, 21].

In terms of solution approaches, the main trend is to use meta-heuristic algorithms to solve multi-
aircraft maintenance optimization problems. A Genetic Algorithm (GA) is proposed in [22] to optimize the
maintenance schedules of the key Line Replaceable Module (LRM) based on the RUL distribution. The
authors in [12] also use GA to optimize the maintenance times of aircraft structures based on real-time crack
growth data. In recent years, Large Neighborhood Search (LNS) has become a popular method for solving
scheduling problems [23]. In [16], a LNS algorithm is proposed with a neighborhood definition through
swapping the execution times of two different maintenance tasks or shifting all maintenance tasks to every
available maintenance time. The authors in [24] introduced an improved LNS algorithm named as Adaptive
Large Neighborhood Search (ALNS) for the pickup and delivery problem. Differently to traditional LNS
which defines a unique sub-heuristic, ALNS is composed of several competing sub-heuristics that are used
with a frequency based on their historic performance. Consequently, ALNS has improved robustness as it
can adapt to different solution characteristics.

3. Problem description

Taking into account Remaining-Useful-Life prognostics of aircraft components, information about slots
available to perform maintenance and limited spares, we are interested in finding an optimal assignment of
aircraft to maintenance slots, and in particular, which components of these aircraft should be replaced in
these slots (see Figure 1).
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Figure 1: Maintenance of repairable components with RUL prognostics and spares - Problem description.

3.1. Multi-component aircraft system description

We consider a homogeneous fleet of I aircraft. Each aircraft has N identical, repairable components.
Each component is assumed to fail independently of the other components. Upon failure, a component is
replaced with a brand-new one, while the failed component is sent for repair. The Minimum Equipment List
(MEL) [25] requires that at least k components out of N, k < N, are functional so that the aircraft can be
operated. As soon as (N — k -+ 1) components fail, the aircraft can no longer be operated. Following MEL, a
replacement interval, RIMEL is specified, i.e., as soon as (N — k) component failures occur, the aircraft can
still be dispatched for a maximum of RI™FL time interval. If none of the (N — k) components are repaired
within this RIMFL period, then the aircraft is considered inoperable.

Let tif ™ denote the time when the n'" component failure occurs in aircraft i, i < I, n < N. Then, the
MEL deadline of aircraft i is defined as:

fMEL _ min(tf’(N_k) + RIMEL tf,(N—kH)) (1)
If no maintenance action is taken before the MEL deadline, the aircraft is assumed to be in Aircraft-On-
Ground (AOG) condition. The cost of MEL violation per day per aircraft is denoted as CMEL,

3.2. Component’s Remaining-Useful-Life (RUL) prognostics

Let c;,, denote the nth component of aircraft + < I, n < N. We assume that each component ¢; ,, is
equipped with sensors that measure the component’s degradation level. Let I, , (t) denote the degradation
level at time ¢ of component ¢; ,,. Based on the degradation level, a component is said to be: i) healthy,
ii) alerted (when an alert has been triggered, notifying that a failure is expected in the near future), or iii)
failed. Formally, we define the health state of component ¢; ,, at time t, denoted by H(c;n,t), as:

0,if the condition of component ¢; ,, is healthy at time t,
H(cin,t) = < 1,if the condition of component ¢; ,, is alerted at time t, (2)

2,if the condition of component ¢; ,, is failed at time t.

Initially, the component is in a healthy state H(c; n,t) = 0 for ¢ = 0. The component remains healthy
until an alert is triggered, i.e., H(c;,,t) =0 for 0 <t < t2  where
te,, =inf{t: T, (t) =T}, (3)
with I'® an alert threshold. As soon as I'* is exceeded, an alert it triggered to notify that a failure is most
likely to occur within a prognostic horizon of PH days.
Given that an alert is triggered, H(c;,,t) = 1 for t > tZ . Also, as soon as the alert is triggered, we
assume that the evolution of the degradation of component ¢; ,, at time ¢ > ¢g. ~ follows:

FCi,n (t) = 98”, )\,9 > 0 (4)



We assume that the component fails at some random time due to the fact that it reaches a degradation
level I'f. Formally,

0, if ff(cim7 t) =0,
Fci,n (t) = Ffa if H(Ci,nv t) =2, (5)
OexpAt, if H(cip,t) =1,

where I'/ denotes the maximum degradation level for failure. A component is assumed to fail when its
degradation indicator reaches I'/, but it can also fail before that time.
Then the cdf of RUL for component c; ,,, given that a predictive alert has been triggered for a prognostic
horizon of PH days, is:
FRUL(t_tgiyn) = P(RUL < (t_tgi,n))’t > tgi,n’ (6)

Figure 2 shows an example of the cdf of the RUL after a predictive alert has been triggered for PH =l
days.

— ;_I_H

08 HI
m‘_‘oE 0.6 ‘ H
e |

2

LE 04 [

0.2 Hﬁ

0 -~ ’_/ 1 L
0 5 10 15 20

RUL (days)

Figure 2: Example of a cdf for RUL, given an alert has been triggered, PH = [ | days.

From eq. (2) and (6), the probability that a component ¢; ,, has already failed by time ¢ is defined as:

0, V't such that H(c;p,t) =0,
P (t)={ Fron(t—ts ), Vtsuch that H(cipn,t) =1, (7)
1, V't such that H(c;p,t) = 2.

Since there are N components per aircraft and at least k need to be operational for dispatch, let Pif (t)
denote the failure probability of aircraft ¢ by time ¢, i.e., the probability that at least (N —k+1) components
of aircraft ¢ have failed at time ¢. For example, for N =4 and k = 2, Pif (t) is defined as:

4 4 4
pPly=> -pP, ) I] PL.&)+][PL .0 (8)

m=1 n=1

n#£m

Let C? denote the cost of a sudden aircraft failure which leads to a flight schedule disruption.

Degradation-related repair costs

The component repair costs are assumed to be linearly proportional to the degradation level T, ().
Defining CM > 0 as the cost of a major component repair and C™ > 0 as the cost of a minor repair, the
cost of repairing component ¢; ,, at time ¢ is defined as:

_ CM —_cm

C"(Te,,, (1) =

... (t) +C™ (9)

For a fully degraded component, I, , (t) = I'f, the repair cost is equal to the cost of major repair.
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3.8. Maintenance slots

A maintenance slot is considered to be a time interval during which maintenance can be performed.
We consider two types of slots: aircraft-specific slots, and generic maintenance slots. Aircraft-specific slots
are slots that are assigned exclusively to a specific aircraft, whereas a generic slot can be assigned to any
aircraft.

Maintenance slots are defined by their starting time. Let ¢, denote the starting time of slot j of type u
for aircraft ¢, where u € {s,g}. Here, u = s denotes a spec1ﬁc slot, while u = g denotes a generic slot. Let
Dyu - denote the duration of slot ¢}’ ;. Let R denote the required time to perform a component replacement.
We assume that the maintenance is performed in series, one aircraft after another. Then, the maximum
capacity of slot ¢}’ is defined as:

M@y =" = (10)
i,j) = Dyu
N L%Jv if u= g.

In aircraft-specific slots, only one aircraft can be scheduled for maintenance at a time, and only the
aircraft to which the slot has been assigned to. Also, we assume that when several components of the same
aircraft are scheduled for replacement, the replacements are grouped and performed in parallel. In this way,
the aircraft is assigned a single maintenance slot.

Finally, it is also assumed that generic slots have a higher usage price compared to specific slots. The
cost of using slot ¢, is defined as:

oty = 4% T ()
7 CcI, ifu=g,

where CY denotes the cost of using a generic slot.

3.4. Limited spares for repairable components

We consider repairable aircraft components. A repairable is defined as a component that, after removal,
undergoes a repair process such that it can be used again, instead of being discarded [26, 27]. Figure 3
illustrates our limited spares for repairable components model. When a component fails, it is removed from
the aircraft while a spare, as-good-as-new component, from the warehouse is installed instead. We consider
a limited amount of spare components. If no spare component is available in the warehouse to be installed,
then a component is leased from an external supplier. The faulty component is sent for repair to a repair
shop. Once repaired, the component is sent back to the warehouse, its state is as good-as-new, and it
remains available for re-use.

Leased or )

|1 Leased gg S
coemponents
EXTERNAL SUPPLIER | “™P*™® | \wapeHoUSE P FLEET AIRCRAFT

Repaired Faulty
components ;‘\. components

REPAIR SHOP

Figure 3: Illustration of the limited spare components model for a fleet of aircraft.

Let TAT denote the time it takes for a faulty component to be removed from the aircraft, repaired to
an as-good-as-new state, and be sent to the warchouse. Let Ngpares(t) denote the number of available spare
components at the warehouse at time t.

If the demand for replacements exceeds the number of available spares, then we say that there are
component stock-outs. A stock-out occurs when a component is replaced at time ¢, while there are no spare
components in the warehouse at time ¢, i.e. Ngpgres(t) = 0. Equivalently, this occurs when the number of
overlapping TATSs exceeds the initial number of available spares in the warehouse.
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Figure 4: Stock-out illustration, having an initial stock of 2 spares. As components replacements are executed, the stock of
available spares changes over time.

Figure 4 illustrates the concept of stock-out. The orange arrows show the T'AT of the replaced compo-
nents in the maintenance slots (grey boxes). Here, we assume that the initial stock of available spares is 2,
i.e., Nopares(t) =2, t € [to,to + PH]. Given that two components are replaced for aircraft 1, the warehouse
becomes empty, Nopares(t) = 0, ¢t € [t1,t2]. Thus, the component of aircraft 2 is in stock-out. The time of
stock-out (blue arrow) is defined as the time interval when the number of overlapping T AT's exceeds the
initial number of available spares.

When a stock-out occurs, we assume that an additional component is immediately leased at a fixed cost
CLT plus a daily cost CL? per day of lease. Any component that becomes available at the warchouse can
be used to terminate a leasing, i.e., we do not keep track of the specific components that are leased.

4. Rolling-horizon maintenance scheduling - model formulation

We propose a discrete-time, rolling horizon approach where a sequence of time windows with a duration
of PH days is considered. For every time window, we consider as input the set of maintenance slots available,
the RUL prognostic for each component at the beginning of the time window, and the availability of spares.
We are interested in optimizing the assignment of aircraft to maintenance slots as well as determining which
components should be replaced in these slots. Figure 5 shows an example of a sequence of two time windows
with PH= Il days, to the starting time of the time window, and tq + PH the end time.

Ly to + PH
1 2 3 Time (days)

INPUT
Component prognostics
Maintenance slots
Spare parts available

OUTPUT

Assign aircraft to slot?
Replace component?

a) Time window [3,-]

to + PH
. R 5 A Time (days)
| | | 1 | | | | >
I L L
—
INPUT OUTPUT
Component prognostics Assign aircraft to slot?

Maintenance slots Replace component?
Spare parts available

b) Time window [4,-]

Figure 5: Illustration of the rolling horizon approach, PH = . days.

We first introduce the following notation.



Let A = {i, ¢ € {1,2,...,I}} denote the set of aircraft with available maintenance slots in the time
window [to, to + PH]. Let t; = {t}';, j € {1,2,...,Ji}, u € {s,g},i € A} denote the set of starting times of
the maintenance slots in the time window [to, to + PH], i € A, with J; the last slot index of aircraft ¢ within
the time window. Let ¢; = {¢;n, n € {1,2,...,N},i € A} denote the set of components of aircraft i.

Decision Variables

We consider the following decision variables:

V.. 1, if aircraft ¢ is scheduled for maintenance at slot ',
! 0, otherwise.

X _ )1, if component n of aircraft i is scheduled for replacement at slot ;' ;
b 0, otherwise.

Auziliary Variables

We define the following auxiliary variables.
First,

Z i,n,t}f jto

a={0,1,...,TAT

)L i X =1
} 10, otherwise,

which represent the time period when the component is under repair, from the moment the component is
removed from the aircraft until the end of the TAT, i.e., during [tﬁj, i+ TAT).
Second,

) = { Tiea Dences Zime = Nopares®), i Tica Ty Dime > Nopares (1)
0, otherwise,

which represents the amount of components in stock-out at time t. Since a component is leased when there
is a stock-out, s(t) also represents the number of leased components at time ¢.
Third,

s(t) —s(t—1), ifs(t)>s(t—1)
0, otherwise,

new® (t) = {

which represents the number of newly leased components at time ¢.

Maintenance priority-driven scheduling stages

For each time window, we consider 3 scheduling stages, in the following decreasing order of the mainte-
nance priority. First, we consider critical aircraft for maintenance scheduling. Then, we consider non-critical
aircraft that have alerted components. Lastly, we consider non-critical aircraft that have failed components.

Definition 1. We say that an aircraft i € A is critical at time to if it has more than (N — k) either failed
or alerted components, or it has (N — k) failed components. Formally, an aircraft i is said to be critical if:

> lhentns0 = (N=k+1) | V| Y luge =2 =N —k) (12)

Ci,n€C; Cin€C;i

Let C' denote the set of aircraft that meet the aircraft criticality condition (12), C C A, as follow:
C={iieA|(Toco o= (N =k+ D)V (., co L=z = (N =K)) |



i) 1st stage: Scheduling critical aircraft for maintenance

The first stage aims to schedule critical aircraft for maintenance.
Objective function

We consider the following objective function for the first stage.
minimum cost per aircraft:

miny_ Y [Yig - € PIE)] + ¥y - CMEE - (8 —tMFE ] 4 [ - 0 e)]

€A tﬁj €t;

o CJVI —_cm (13)
| T Ko [0 = [ || - 2L )
minimum cost of fleet:
min Z [s(t) - C’Ld] + [new® (t) - C’Lf] (14)

te [to ,to +PH+TAT]

The first objective in (13) aims to minimize the costs of individual aircraft. The first term represents the
costs related to flight schedule disruption due to aircraft failure. The second term represents the cost of a
MEL violation if an aircraft is scheduled in a maintenance slot after its MEL deadline. The third term is the
cost of using a maintenance slot. Finally, the last term is the repair cost savings (see negative sign) obtained
by using prognostics. The repair cost savings are defined as the difference between a major repair cost and
a component repair costs (CM — C™), where C" is given by (9). The repair cost savings are applicable if
and only if the component is not failed by ¢} ;, with a probability of (1 — P! L (#5)). This means that the
later an alerted component is replaced, the closer the repair cost will be to the cost of a major repair due
to a higher degradation indicator. In this case, the saved costs will be lower. Besides, the probability that
the component has not failed decreases for later replacement times.

The second objective in (14) aims to use available spare components such that the total number of
leased components is minimized. The first term represents the leasing costs per day. By summing s(t) over
the time interval t € [to,to + PH + T AT], we obtain the total leasing time. The second term represents
the initial fixed costs when spare components are newly leased. Summing new®!(t) over the time interval
t € [to,to + PH + T AT], we obtain the total number of leased spare components.

Before we discuss the constraints, we introduce the auxiliary parameter b; ,, +, to specify when a compo-
nent ¢; ,, is considered for replacement at the time window [tg,to + PH| as follows:

1: if H i t >0
bin,to = 1 (cin:to) (15)
0: if H(cin,to) =0.
Constraints
Xi,j,n < bi,n,tu v Cin € C, tl@,j €ty, 1€ A (16)
M- Y;J' - Z Xi,j,n > 0 A tZ] < ti, 1€ A (17)
Cin€C;
Y vi;=1 ¥ iecC as)
ty Ety
Y Yi,=0 ¥V ig¢C 19)
ty et
Z Xi,j,n > )/i,j : Z bi,n,to — (N — k) v tﬁj cet;, 1€l (20)
Ci,n€C;i cin€ci
Z Xijm > Yij- Z Lit(esmto)=2 — (N —k —1) vV otliet, i€C (21)
Cin€C; Ci,n€c;



Constraint (16) ensures that healthy components are not scheduled for replacement. Constraint (17)
ensures that if at least one component is scheduled for replacement in a slot, then the aircraft is scheduled
for maintenance in that slot. Here, M is a large, positive constant. Constraint (18) ensures that critical
aircraft are always scheduled in a maintenance slot. Constraint (19) ensures that non-critical aircraft are not
scheduled for maintenance within stage 1. Constraints (20) and (21) schedule for replacement at least the
minimum number of components to solve aircraft criticality. When a component is replaced, it is assumed
that its health state becomes healthy. Constraints (20) and (21) intend to solve the first and second terms
of Definition 1, respectively.

i) Second Stage: Scheduling alerted components for non-critical aircraft

Once the critical aircraft have been scheduled for maintenance in stage 1, the second stage aims to
schedule as many components with predictive alerts as possible for non-critical aircraft. In this way, it is
expected that some repair costs are saved due to the lower component degradation levels. In this stage,
there is a unique objective function with some differences relative to the first objective function of the first
stage (13). In this stage, leasing components for non-critical aircraft is not allowed.

Objective function

M m
maz» Y| Y Xijn- {CM - {chrci‘n(t;{j) +cm” (=Pl ()] - [Yay ()]
€A tﬁ_jEti Ci,n€c;
(22)

The objective function in (22) aims to maximize the operational cost savings of individual aircraft. The
two terms have been explained in the first optimization stage, (13) . The first term of (22) is the repair cost
savings due to prognostics, while the second term is the cost of using a maintenance slot. The missing two
terms compared to objective function (13) are left out since the aircraft failure probability is negligible and
since there are no MEL violations in non-critical aircraft.

Constraints

In addition to constraints (16) and (17), we consider the following three constraints.

v, <1 YV oicA (23)

t?,j €ty

Z new® (t) = 0 (24)
t€[t0,t0+PH+TAT]
S Vi, <M Vot et, icA (25)
i€A
Constraint (23) ensures that an aircraft is scheduled for maintenance at most once in a time window.
Constraint (24) ensures that no spare components are leased. Constraint (25) ensures that the number of
aircraft scheduled in a slot is less than the maximum slot capacity. This constraint is not included in the
first stage since infinite capacity is assumed for all critical aircraft.

it1) Third Stage: Scheduling failed components for non-critical aircraft

The third stage aims to schedule aircraft with less than (N — k) failures as long as there are enough spare
components. Scheduling failed components of non-critical aircraft may lead to high repair costs as well as
repair shop overload. On the other hand, this stage aims for a high aircraft availability.

Objective function

mazy Y| D O Xiga| = [Yig - O] (26)

1EALY €ty | Cin€Ci

The objective function in (26) aims to maximize the number of replaced failed components. Here, C™¢
denotes a non-critical failure cost with C"™¢ > (9, such that aircraft can be scheduled in both generic and
aircraft-specific slots.

Constraints

We consider constraints (16), (17), (23), (24), and (25) as in the case of the 2nd stage scheduling.
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5. Maintenance scheduling approach: Adaptive Large Neighborhood Search

Considering the complexity of our problem, we suggest a heuristic solution approach. We propose an
Adaptive Large Neighborhood Search (ALNS) algorithm to solve the maintenance scheduling problem with
prognostics and the availability of spare components. We solve each of the three maintenance scheduling
stages (see Section 4) using an ALNS algorithm (see Figure 6). We first provide a generic description of the
ALNS algorithm. Next, the heuristics of each of the three scheduling stages are explained.

I

Time window
[to.to + PH]

— AlLNSstage 1 ALNS stage 2 ALNSstage3 ~——* tp=1tp+1

Figure 6: A rolling-horizon maintenance scheduling approach.

5.1. ALNS - generic description

The ALNS algorithm has two phases: 1) a constructive heuristic, which provides an initial feasible
solution, and 2) an improvement heuristic, which iteratively improves this initial solution by means of an
adaptive destroy and repair approach.

1 Function ALNS: (s € §)
2 Spest = min(f(s))

3 Tabu list=§

4 while stop-criterion is not met:

5 foreach s e §:

6 S'= Neighborhood (s)

7 if $"is found:

8 for each s’ € §":

9 if f(8") < f(Spase):

10 Spest =S’

11 if accept (s'):

12 S - s
13 Tabu list <+—— &
14 end

15 remove current § from §

16 end

17 end

18 return Sy, and f(Sp,.¢)

Figure 7: ALNS pseudo-code.

Figure 7 shows the pseudo-code of the proposed ALNS algorithm. First, an initial set of feasible solutions
S is assumed. We consider a solution to be a set of assignments of aircraft to maintenance slots and
components to be replaced in these slots. Next, the global optimum s, is initialized in line 2 by evaluating
all initial feasible solutions s € S by the objective function f(-). A Tabu list is initialized in line 3 with
S, i.e., the solution space to be explored. In lines 5-6, for each current solution s, a neighborhood search
function selects a sub-heuristic depending on the state of s with the aim to obtain a set of neighbor solutions
S’. This Neighborhood search function is different for each of the three stages. This is further explained in
Section 5.1. If S’ is found, then each neighbor solution s’ € S’ is evaluated. In lines 9-10, if s’ is better than
Spbest, then spess is updated. Also, if an acceptance criterion is met (line 11), s’ is stored in S such that this
solution is further explored in a future iteration. Besides, s’ is stored in the Tabu list (line 13). Finally, the
current solution, s, is deleted from S so that it is not explored in future iterations (line 15).
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Acceptance criterion
We consider the following acceptance criterion: all solutions which are not in the Tabu List (non-evaluated
solutions) are accepted.

Stopping criterion
We stop the search when: i) the solution space to be explored, S, is empty as no new solutions are found,
or ii) when a limit of maximum 100 iterations is reached.

Neighborhood search function (see line 6 of the ALNS pseudo-code in Figure 7)

In contrast to [24] where the focus is on the historical performance of the destroy and repair methods,
in this paper, a sub-heuristic is selected according to the current solution state to find a set of neighbor
solutions. Three solution states are considered: i) solutions with aircraft with MEL violations (in stage
1), ii) solutions with component stock-outs (in stage 1), and iii) solutions with the possibility to improve
the repair cost savings (in stages 1 and 2) or to maximize the number of replacements (in stage 3). These
sub-heuristics are explained in Sections 5.2, 5.3, and 5.4, respectively.

Current
solution, s

- -~ NC with MEL T Y Possible MEL Y Sub-heuristic: MEL Neighbor solution is
S~ vielation violation violation removal > found, s’
S~ removal?
—
-~ N
N ]
2

. Y s
Possible stock- Sub-heuristic: Stock-out
R Neighbor solutions

\j/—b out removal? removal are found, '
N

—

Possible to Y Sub-heuristic: Repair Neighbor solution is
improve repair > cost savings — found, s’ | e
cost savings ? improvement

N I—D S'is not found S'is found -«

Figure 8: Neighborhood search function - stage 1 (see line 6 of ALNS pseudo-code, Figure 7)

Current Current
solution, s solution, s
. Possible to Y Sub-heuristic: Repair Neighbor solutions Possible to Y Sub-heuristic: Neighbor solutions
improve repair — cost savings — are found, s’ increase the —® Replacement i are found, s’
cost savings ? improvement ! replacements? maximization !

N N l
S'is not found S'is found S'is not found 5'is found

¢ Figure 10: Neighborhood search function - stage 3 (see line 6

Figure 9: Neighborhood search function - stage 2 (see line 6 o -
of ALNS pseudo-code, Figure 7)

ALNS pseudo-code, Figure 7)

Figure 8 shows the neighborhood search function of the 1st stage. This function first checks if there are
aircraft with MEL violations in the current solution s and whether these can be removed. If this is the case,
a sub-heuristic “MEL violation removal” is applied to search for a neighbor solution, s’. If there are no MEL
violations, or they cannot be removed, then the function checks whether there are stock-outs in the current
solution s and if any can be removed. If yes, a sub-heuristic “Stock-out removal” is used to find neighbor
solutions s’. If no stock-outs are found, or they cannot be removed, then it is checked whether the repair
cost savings can be improved in the current solution. If that is the case, then a sub-heuristic “Repair cost
savings improvement” is applied to find the neighbor solution. If not, then the algorithm could not find any
neighbor solution.
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Figure 9 shows the neighborhood search function for the 2nd stage. It is checked whether the repair
costs savings can be improved in the current solution. If that is the case, a sub-heuristic ”Repair cost
savings improvement” is applied to find the neighbor solutions. If not, then the algorithm could not find
any neighbor solution.

Lastly, Figure 10 shows the neighborhood search function in the 3rd stage. It is checked whether the
number of component replacements can be increased in the current solution. If that is the case, a sub-
heuristic ”Replacement maximization” is applied to find the neighbor solutions. If not, then the algorithm
could not find any neighbor solution.

5.2. ALNS for the 1st scheduling stage: critical aircraft

1st stage scheduling - Constructive heuristic

The constructive heuristic finds an initial feasible solution as follows: each critical aircraft is scheduled
for maintenance in the earliest available slot. Once this slot is identified, it schedules for replacement a
number of components given by the lower bound in constraints (20) and (21).

The design of this heuristic is motivated by the fact that it is expected that the earlier an aircraft is
scheduled, the lower the chance of aircraft failure and the higher the repair cost savings per component (
see first and fourth terms in (13)) are. Also, from (20) and (21), a minimum amount of components needs
to be scheduled for replacement to solve aircraft criticality.

Ay A
H,=1H;; =2 Hi, =1,Hy, = 2|
Ay Hyp =3 Ay Hpp =3 —
—_—
Az: Hz; =3 Az Hzp =3 —
Ay Ay
Hyp =2,H;; =1 Hep=2H1=1 | /4
to + PH to + PH
to to
(a) Input (b) Output

Figure 11: Example of constructive heuristic (1st stage), where H; , = ZCi Lcci LH(ci n to)=2

Figures 11a and 11b show an example of the constructive heuristic, with N = 4, k = 2. The grey boxes
represent the available maintenance slots of 4 aircraft in a time window [tg, to + PH]. The orange and red
arrows represent the T'AT' of the scheduled alerted and failed components, respectively. Here, aircraft Ay
has 2 alerted components and 1 failure, meaning that A; is critical (see (12)). Also, only one component
needs to be replaced to solve aircraft criticality (see constraint (20)). Since alerted components have lower
repair costs compared to failed components, an alerted component is scheduled for A;. Similarly, aircraft
As has 3 failed components, i.e. A, is critical (see (12)). Here, two failed components need to be replaced to
solve aircraft criticality (see constraint (21)). Finally, A5 has 3 alerted components, while A4 has 2 failures
and 1 alert. Thus, one alert and one failure are scheduled for A3 and A4, respectively. Again, all aircraft
are scheduled at their first available slot.

1st stage scheduling - Improvement heuristic

The output of the constructive heuristic is the input of the improvement heuristic. The improvement
heuristic tries to iteratively improve the current solution through a Neighborhood search function (see line
6, Figure 7), which selects a sub-heuristic based on the current solution state. Three sub-heuristics are
proposed: MEL violation removal, stock-out removal, and repair cost savings improvement.

a) MEL violation removal sub-heuristic

This sub-heuristic aims to remove MEL violations. Here, an aircraft has a MEL violation if it is scheduled
for maintenance in slots after a MEL deadline, i.e., t}'; > th EL Thus, all aircraft that have a MEL violation
are removed from the current maintenance slot and are scheduled in an earlier slot, if possible.

As an example, in Figure 12a, the blue dotted lines represent the MEL deadlines of 4 aircraft. Except
for Ag, all aircraft are scheduled after their MEL deadline. A; and A4 have an available earlier slot than
the one at which they are scheduled, while Ay does not have any earlier slots. Thus, only A; and Ay are
removed from their current slot and re-scheduled in an earlier slot.
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(a) Input (b) Output

Figure 12: Example of MEL violation removal sub-heuristic (1st stage)

b) Stock-out removal sub-heuristic

This sub-heuristic aims to reduce the number of leased /stock-out spare components. Let the stock-out
times ** be defined as: t** =min{t: 37,4 3., c.. Zint > Nopares(t)}. All aircraft which are scheduled in
slot t;‘) j and meet the condition 5 — TAT < t;fj < t%* are removed from the current slot and re-scheduled
in the next available slot.

Nspares(t) =2, t € [to, to + PH] ‘ ‘ Nspares(t) =2 t € [to, to + PH]
1 1 1 1 1 1 | 1 1 1
Al 1 1 1 : : : I : Al 1 1
1 1 1 1 1 1 : 1 : :
1 1 1 1 1 1 I 1 1 1
S Lo mlo : |
1 ] 1 1 1 1 | t——- 1
1 1 1 1 1 1 ] 1 1 1
A | 0 b — i 43 : '
1 1 1 1 lq_l_.‘ 1 1 ——y
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
S b P As ! —_—
1 1 1 1 _ 1 1 . 1 . :
1 VZ =3 1 Zr=0 1 1 ' 1 Z;=0 1 1
rot ! ! ! ! ' ! TAT 1 TAT 1
b b S ! N :
| h
to Ze =1 Z, =2 Zy=2 Z=3 Z;=1 to + PH t o e ty + PH
(a) Input (b) Output (1)
1 1 1 1
Ay 1 1 Ay 1 1
A—— 1 —— 1
1 I 1 ]
ol : w| ok :
1 P e— I———— ]
A | . A ! 1
1 1 1 1
: ! —— : ! ——
1 I 1 |
A 1 [ p | 1
4 1 1
1 T ¢ | ; g
1 ]
TAT 1 TAT 1 TAT : TAT :
-— «— - -
1 1
t £=F £ tg + PH t 12 [ to + PH
(c) Output (2) (d) Output (3)

Figure 13: Example of stock-out removal sub-heuristic (1st stage), where Zy = >=, 4 Zci e iyt

In Figure 13a, we assume that the initial stock of available spares is 2, i.e., Ngpgres(t) = 2, t € [to, to+PH].
There are two stock-out times at the beginning of the slots where As and Ay are scheduled for maintenance.
For the first stock-out time, A; and Ay are scheduled in slots meeting the condition ¢t — TAT < i < t5t.

Thus, A; and As are scheduled to their next slots (Figures 13b and 13c, respectively). For the second
stock-out time, A3 and A4 are scheduled in slots meeting the condition t%t — TAT < ti; < tt. However, As
does not have a later available slot. Thus, only A4 is scheduled at its next slot (Figure 13d).

¢) Repair cost savings improvement sub-heuristic

This sub-heuristic aims to improve the current solution by scheduling the alerted component with the
highest repair cost savings such that no stock-out is generated. First, the slots where scheduling one
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more component does not lead to stock-out, are identified; i.e. t;fj such that Zz’eA Zc,-,,nec,- Zi,n,t;ﬁjJra <
Nopares (t;‘ j +a)Va € [0,1,..,TAT]. Next, the component degradation indicator at these slots is evaluated for
the alerted components which are not already scheduled. Finally, the component with the lowest degradation
indicator is scheduled for replacement.

Figure 14a shows an example where the number of spare components decreases from 3 to 2 in the
considered time window. The slots at which A3 and A, are scheduled would not lead to stock-out if
an additional component is scheduled, since ., Zcmec,: Zi’n,tzﬁa =1 and Nspares(t?’j +a)=2,ac
[0,1,.. TAT]. As hasone alerted component that has not been scheduled, while A4 has two. The degradation
indicator of these components at the considered slots is evaluated in Figure 14b. Since component c4 3 has
the lowest degradation indicator, this component is scheduled for replacement.

PH PH
Mopere 0 72 i [T.PH] _ Sl = i [T'PH]
H i
[—p

Aj:Hy, =3 AjH =3 | 3

g  ————— ' |

1 |

Ay | i A : 3

2 Vo Zee=1 00 oz —1 2? i !

Hyy = LHyy =2 | @ [0.T4T] i e omam) Hyp = LHy, =2 : %

‘ P i |

Ay | i Az H ;
Hyp=2,Hy; =1 e Hyp =2.Hzp =1 —

‘ : . . T () =02 : i

|

Ag:Hyy =3 ApHar =3 > (1) =022 |

‘ i [ . ;
1 u )=
f to + PH , Te,qlt4) = 0.1 to + PH

(a) Input (b) Output

Figure 14: Example of repair cost savings improvement sub-heuristic (1st stage), where H; , = and

Zy = ZieA Zci’neci Zin,t

ci m€ci 1H(Ci,mt0):z

Updating step
Once a solution for the 1st stage is obtained, the number of available spare components is updated, the

slot capacity is decremented for every new aircraft scheduled for maintenance, and the health state of the
components is updated.

5.8. ALNS for the 2nd scheduling stage: mon-critical aircraft, scheduling alerted components

2nd stage scheduling - Constructive heuristics

Similarly to the 1st stage, the constructive heuristic in the 2nd stage aims to generate an initial feasible
solution. First, the slots that have available spare components for at least ¢ = T AT days are identified,
ie., Nspmes(t;"j + @)ago,1,...,ra7) > 1; and that have capacity to schedule at least another aircraft, i.e.,
M (t;‘ j) > 1. Then non-critical aircraft with alerted components are scheduled, one by one, in the earliest
available slot meeting the previous conditions. Only one component per aircraft is scheduled. If an aircraft
has more alerted components, then the component with the lowest degradation indicator (and highest repair
cost savings) is scheduled.
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Figure 15: Example constructive heuristic (2nd stage), where Hi o =32, .. 1H(c; pn t0)=2

Figure 15a shows an example where the number of available spare components decreases from 3 to 2.
Thus, all slots have an available spare component for at least ¢t = T AT days. Also, all slots have the
capacity to schedule another aircraft, except for the first slot of aircraft As. Figure 15b highlights with a
darker border the earliest slots meeting the previous two conditions. Since A; and A; have only 1 alerted
component, then two initial feasible solutions are generated by scheduling each of them (see Figures 15b
and 15¢). Az has two alerted components, but component c¢s 5 is scheduled as it has the lowest degradation
indicator (see Figure 15d).

2nd stage scheduling - Improvement heuristics

Here we consider a Repair cost savings improvement -stage 2 sub-heuristic, which is slightly different
from the sub-heuristic in stage 1. In the 2nd stage, there are no MEL violations or component stock-outs
since we now consider non-critical aircraft only.

a) Repair cost savings improvement sub-heuristic - stage 2

This sub-heuristic schedules the component with the lowest degradation indicator (or highest repair cost
savings), provided that no stock-outs are generated and that there is enough slot capacity. First, the aircraft
with any unscheduled alerted components are identified. Then, i) the aircraft has been already scheduled
for maintenance or ii) it has not been scheduled yet. For the first case, the degradation indicator needs to be
evaluated in the already scheduled slot provided that the no stock-out condition is met. For the second case,
the degradation indicator needs to be evaluated in the earliest available slot that fulfills the no stock-out
and slot capacity conditions. From both cases, the component with the lowest degradation indicator is
scheduled.
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Figure 16: Example of repair cost savings improvement sub-heuristic (2nd stage), where H; , = ZCi e VH (s noto)=2 and
Zy = ZieA ZciYHECi Zin,t

Figure 16a shows an example where all slots fulfill the no stock-outs and available capacity conditions,
except for the first slot of As. The earliest slots meeting these conditions are highlighted. A; and A, have
one alerted component, while A3 has 2, but one has been already scheduled. The degradation indicator of
these alerted components is evaluated at the highlighted slots (see Figure 16b). Component ¢z ; is scheduled
for replacement since it has the lowest degradation indicator. Thus, aircraft As is scheduled in slot £3 5.

Update step
Once a solution for the 2nd stage is found, the number of available spare parts, the slot capacity, and
the component health state are updated.

5.4. ALNS for the third optimization stage: mon-critical aircraft, scheduling failed components
3rd stage scheduling - Constructive heuristics

The algorithm to find the initial feasible solution is quite similar to the one designed in the second
optimization stage. First, it is necessary to identify slots meeting the availability of spare parts condition,
i.e., Nspares(ti'; + a)ae[o 1,...7AT] = 1, and slot capacity condition, i.e., M(t{';) > 1. Once these slots are
found the next step is to schedule one by one non-critical aircraft with falled components in all slots meeting
the previously stated conditions. Only one component per aircraft is scheduled for replacement.

PH PH
Nepares() = 0. L€ [toto +—7] Nopares(£) = 0. t€ [to,t0 + ]

Al:Hl,Z =1 A1:H1,z =1 :
—
Ay =1 Ayl =1 — —
to to + PH to to + PH
(a) Input (b) Output (1)
Ay, =1 — Aty =1 =
‘H,, = Ayl =1  m— —
AyiHaz =1  m—  m— | 2522
t to + PH ty to + PH
(c) Output (2) (d) Output (3)

Figure 17: Example constructive heuristic (3rd stage), where H; , = ZCZ, neei V(e moto)=2

In Figure 17a, Ngpares(t) changes from 0 to 2 in the considered time window. Hence, only the slots
located in the area where Nypqres(t) = 2 meet the availability of spare parts condition (see highlighted slots
in Figure 17b). Aircraft A; is scheduled in the first initial feasible solution in Figure 17b. The second and
the third initial feasible solutions are shown in Figures 17c and 17d by scheduling As at each of its two
highlighted slots.
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3rd stage scheduling - Improvement heuristics

We consider the following sub-heuristic for the 3rd stage scheduling.

a) Replacement maximization sub-heuristic

This sub-heuristic schedules the maximum amount of components provided no stock-outs are generated.
First, the slots where scheduling another component would not lead to stock-out, i.e., >, zcim&i Zi,n,tg_j—i-a <
Nspares(ti; +a) V a € [0,1,..,TAT], and that have capacity for at least one more aircraft, i.e., M(t};) >1,
are identified. Then, each non-critical aircraft with failed components is scheduled in every identified slot.

PH PH
Nipares(£) =1,  t€[to,to + T] Nopares(£) =1,  t€ [to,tog + 7]

ApH, =1 ApH, =1 :
— —
ApHyp =1 ‘ Apityp=1 j |
3 | D
Az:iHzp =1 A H;, =1 ‘  —|
Zeu=1 | Ly =0 |
a € [0,TAT] | @ € [0, TAT]
to } ty + PH to 1 to + PH
(a) Input (b) Output (1)
ApHy, =1 ApHy =1
Al | —
AyiHyp =1 ‘ — — ApHyp =1 ' i | i |
| — i
AyHoy =1 % = Asls; =1 =
fo : to + PH ty 1 ty, + PH
(c) Output (2) (d) Output (3)

Figure 18: Example of replacement maximization sub-heuristic (3rd stage), where H; o = 37, c.. LH(c; 1 t0)=2 and Z¢ =

ZieA Zci,neq Zim,t

Figure 18a shows an example where all slots meet the no stock-out and available capacity conditions,
except for the first slot of Ay which does not meet the no stock-out condition. The slots meeting these
conditions are highlighted. Here, Ay is scheduled at its first and second highlighted slots (see Figures 18b
and 18c) and Ajs at its only available slot (Figure 18d).

Update step
Once a solution is found, the number of available spare parts, the slot capacity, and the component
health state are updated.

6. Maintenance scheduling - numerical results

We illustrated our maintenance scheduling model for a fleet of I = 13 wide-body aircraft. Each of
the aircraft is equipped with N = 4 identical cooling units. The failure of & = 2 or more CUs in an
aircraft leads to the aircraft being inoperable, i.e, Aircraft-on-Ground (AOG), which, in turn, leads to
delays and costs. We also assume Ngpqres = 3. We consider a prediction horizon of PH = — days,
i.e., we evaluate the probability of CU failure for the next Il days. Also, the MEL replacement interval
is assumed to be RIMFL = — days, and the TAT = — days. Finally, we assume the following costs:
CMEL _ *,Cd: *,OM — 7’Cm — 7,09 — 7,0Lf —_ 7,0Ld: 7,Cnc: _.

We illustrate the maintenance schedule model in Section 4 by considering a period of 61 days (see Figure
19). Here, aircraft 1,2,...,13 has 2,1,1,...,5 specific slots available, respectively. There are 10 generic
slots (G).

For the component RUL prognostics model, we consider the following parameters. For all 13 - 4 compo-
nents, we initialize the health index at some time t"*** as follows. First, we consider that each component
¢in is installed as brand new at some time in the past it _ Ajn, Ajn >> 61. Next, we sample a ran-
dom time to failure (TTF), TTF,,  ~ Weibull(a,b). Thus, the random failure time of component ¢;,,

Cin
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is it — A, , + TTFc; ,,. In our numerical example, we assume TTFc¢;,, ~ Weibull | HIIIEEE. following
an analysis of historical CU failures. Here, [l is the scale parameter and [l is the shape parameter of
the Weibull distribution. We next generate an alert for component ¢; , PH days before its random failure
time ¢ — A, ,, + TTFc;,, with probability s = [ll, where s is the probability that a component failure
is highlighted in advance by means of an alert, i.e., s is seen as the prognostic sensitivity. Finally, given a
predictive alert is generated for component c¢; ,, a RUL prognostic is determined in the form of RUL CDF
based on historical data.

Figure 19 shows the maintenance scheduling results, taking into account the maintenance slots, spares,
and component RUL prognostics. For simplicity, here ¢ = 1. Aircraft i = 4 is scheduled at a generic
slot to replace component 1 and at a specific slot for component 3. Aircraft i = 5 uses a generic slot for
component 2, while aircraft i = 7,9,12 use a specific slot each for components 3,1, 2, respectively. Aircraft
1,2,3,6,8,10,11,13 are not scheduled for maintenance. These results are obtained in 13sec using an Intel
Core i7 8-th Gen of 3.5 GHz computer processor.

Scheduled

Ci;n  component DSpeciﬁcs\ot - Scheduled E Generic slot - Scheduled

Specific slot Generic slot

index

Figure 19: Multi-component maintenance schedules for a fleet of 13 aircraft and a period of 61 days.

Tables 1 shows the details regarding the aircraft scheduled for maintenance: aircraft ¢ € {4,5,7,9,12}
are scheduled for maintenance at slots beginning at times 27, 37,54,48, 3, 52, respectively. Aircraft ¢ = 9
has component cg ; scheduled for replacement, for which an alert was triggered already. Aircraft ¢ = 4 has
components c4 3 and cs,; scheduled for replacement, which are also in an alerted state. Finally, aircraft
¢t = 17,1 =5 and 7« = 12 have components c7 3, c52 and, ci2,2, respectively, scheduled for replacement and
their state is failed.

to | i |t | u | H(cig,to) | Xiga | Hlcig to) | Xige | H(cis,to) | Xiga | H(cig,to) | Xija
2 9 3 S 1 1 0 0 0 0 0 0
24 | 4 27 g 0 0 0 0 1 1 0 0
35| 4 37 S 1 1 0 0 0 0 0 0
40 | 7 48 S 0 0 0 0 2 1 2 0
44 | 5 54 g 0 0 2 1 0 0 2 0
48 | 12 52 S 0 0 2 1 0 0 2 0

Table 1: Multi-component maintenance schedule - detailed results.

Table 2 shows the costs related to the aircraft that have been scheduled for maintenance at each time
window. In the time window [2,12], an alerted component is replaced in aircraft ¢ = 9, resulting in repair
cost savings of [IIIIIIIl. Tn time windows [24, 34] and [35, 45] two alerted components of aircraft i = 4 are
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replaced, resulting in repair cost savings of | I, >nd I, rcspectively. In the time window
[40, 50], aircraft ¢ = 7 is scheduled, but it does not have any cost savings since the replaced component is
in failed state. In time windows [44,54] and [48, 58] aircraft ¢ = 5 and ¢ = 12 are scheduled with a leasing
and MEL costs of I and I, and I 2nd B, respectively. In addition, there are no flight
schedule disruption costs (1st term of eq. (13)) in all time windows considered.

fto, to + PH] MEL costs Slot usage costs | Repair cost savings Leasing costs
’ 2nd term eq. (13) | 3rd term eq. (13) | 4th term eq. (13) | 2nd & 1st term eq. (14)
[2,12] 0 0 ] 0
(24, 34] 0 [ ] | 0
35,45 0 0 [ ] 0
40, 50 0 0 0 0
44,54 [ ] [ ] 0 ]
48, 58 0 0 0 |
Table 2: Costs per time window [to, to + PH], with CLf = — the fixed costs to lease a component.

7. Long-run analysis of maintenance scheduling strategies using Monte Carlo simulation

We now consider a period of A = 365 days for a fleet of I = 13 aircraft. We analyze three different
strategies for maintenance: S1) only critical aircraft are scheduled for maintenance (stage 1, Section 4), S2)
critical aircraft are scheduled and alerted components in non-critical aircraft are considered for scheduling
(stages 1-2, Section 4), and S3) critical aircraft scheduled, and alerted and failed components in non-critical
aircraft are considered for scheduling (stages 1-2-3, Section 4). We are interested in which strategy performs
best in the long-run.

We conduct a Monte Carlo simulation to evaluated the expected performance associated with the three
scheduling strategies. For each simulation run, we initialize the TTF of each component as discussed in
Section 6. We consider the following performance indicators:

a) Total expected costs due to MEL violations (MEL costs) for 365 days (see 2nd term of eq. (13)).

b) Total expected costs due to component leasing (Leasing costs) for 365 days (see 3rd and 4th terms of
eq. (14)).

c) Total expected repair cost savings for 365 days (see 4th term of eq. (13)).

d) Total expected component repair costs (Repair costs) for 365 days, defined as:

> Y > Xijm-CM-RS,

t€[0,365] i€ A cinEc;

where RS is the total expected repair cost savings for a period of 365 days, as defined in c).
e) Total expected number of component replacements, defined as:

D D > Kigw

t€[0,365] i€A cin€c;
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Figure 20: Total expected costs in a period of 365 days Figure 21: Expected performance in a period of 365 days

The results show that S2 is the best performing strategy, i.e., to use only the 1st and 2nd optimization
stages. Comparing S2 to S1, even though the number of replacements is higher in S2, the repair costs
are lower. This is because in S2, the components with predictive alerts are scheduled before the aircraft
becomes critical. Thus, the repair cost savings are higher. Also, the MEL costs are reduced in S2 by
preventing unexpected failures of some components that would lead to MEL violations.

S3 has the worst performance in terms of costs. Compared to S2, the number of replacements is consid-
erably higher, which leads to an increase in leasing costs. The repair cost savings are lower because some
components without repair cost savings are replaced, using spare parts that cannot be used anymore in more
profitable replacements. Thus, the repair costs are considerably higher. However, S3 has the lowest of MEL
violation costs since all the unexpected component failures leading to a MEL violation are prevented.

The results are obtained in a computational time of 42sec for S1, 60sec for S2 and 78sec for S3, using an
Intel Core i7 8-th Gen of 3.5GHz.

7.1. Sensitivity Analysis - Maintenance of critical aircraft and alerted components (S2)

In the previous section, it is shown that S2 is the best performing maintenance strategy. In this section,
we further analyze the impact of available spare parts, the size of the scheduling time window PH, and the
size of the fleet on the S2 strategy.

The tmpact of spare parts
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Figure 22: Impact of the number of spare components on the Figure 23: Impact of the number of spare components on the
costs associated with S2, analyzing a period of 365 days. performance of S2, analyzing a period of 365 days.
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Figures 22 and 23 show that the number of replacements increases as the number of spare components
increases. As more resources become available, the number of possible component replacements increases.
However, 5 spares is a switching point, i.e., no additional replacements occur even though when the number
of spare parts increases beyond 5. The repair cost savings and the total costs follow a similar behavior as
the number of replacements, relative to an increasing number of spares.

Another impact of having a larger number of spare parts is that the leasing costs decrease. Furthermore,
some failures leading to MEL violations are avoided by performing more replacements, which results in lower
MEL costs.

The impact of PH
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Figure 24: Impact of PH on the costs associated with S2;,  Figure 25: Impact of PH on the performance of S2, analyzing
analyzing a period of 365 days. a period of 365 days.

Figures 24 and 25 show that higher prognostic horizons generate greater repair cost savings. The repair
costs are assumed to be a linear function of the component degradation level. Moreover, the degradation
level is an exponential function of time, meaning that replacing the components at slightly earlier times can
have a substantial effect on the repair cost savings. Besides, the probability that the components have not
already failed at the replacement time is higher at earlier times, improving also the repair cost savings.

Higher prognostic horizons provide an enhanced inventory planning flexibility in two aspects. First, the
spare components leasing costs are reduced (see Figure 24). Second, the number of replacements can be
slightly increased. This occurs at prognostic horizons greater than 30 days (see Figure 25). This is because
the size of the time window is greater than T'AT. Thus, the same component can for example be used at
a replacement occurring at the beginning and at the end of the considered time window. In addition, a
slightly higher number of replacements can avoid a few failures leading to MEL violations. Thus, the MEL
costs have a small step change at a prognostic horizon PH = 30 days.

The impact of the fleet size

We now consider the impact of a large aircraft fleet size on the costs and performance of the S2 main-
tenance strategy. Specifically, we consider a fleet size of 10, 20, 30, 40 and 50 aircraft and a proportionally
adjusted number of spare components of 2, 4, 6, 7 and 8, respectively.
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Fleet size 10 | 20 | 30 | 40 | 50
Algorithm running time (min) | 0.7 | 1.3 | 3.6 | 4.6 | 6.2

Table 3: Algorithm running times for different fleet sizes (min)

Figure 27 shows that the number of replacements and the repair cost savings are an increasing linear
function of the fleet size. The repair costs also increase with the fleet size (see Figure 26), even though the
repair cost savings are higher, due to a greater amount of component replacements. The MEL violation and
the spare part leasing costs seem to remain stable for all fleet size values.

The maintenance scheduling algorithm running times are given in Table 3. The results show that our
proposed approach requires a very low computational time, being able to schedule for maintenance a fleet
of 50 aircraft for a period of 365 days in 6.2 min.

8. Conclusion

A model to optimize the maintenance schedules of a fleet of single-type aircraft based on component prog-
nostics and the availability of spare parts and maintenance slots has been proposed. First, a discrete-time,
rolling horizon approach has been defined, where a sequence of time windows of duration PH is considered.
For every time window, the prognostics for each component, the availability of spare parts, and the set of
maintenance slots available are considered as input. Then, a discrete-time scheduling optimization model
has been proposed to find the optimal assignment of aircraft to maintenance slots as well as determining
which components should be replaced in these slots. For each time window, three optimization stages are
considered in the following decreasing order of maintenance priority: critical aircraft, non-critical aircraft
with predictive alerts, and non-critical aircraft with failures. An ALNS algorithm has been proposed to
solve each of the three stages. As an illustration, we have considered the CU component of a fleet of 13
aircraft. The results in a period of 61 days show that the methodology can find the optimal assignment of
aircraft to slots as well as which components are replaced in these slots in only 13 seconds.

Next, we have considered a period of 365 days to analyze the long-run model performance. Three
different strategies have been defined: S1) schedule only critical aircraft (1st stage), S2) schedule critical
aircraft and consider non-critical aircraft with predictive alerts (1-2 stages), and S3) schedule critical aircraft
and consider non-critical aircraft with predictive alerts and failed components (1-2-3 stages). The results
show that S2 has the greatest performance in terms of cost reduction. Particularly, S2 is able to substantially
lessen the repair costs compared to S1 and S3.

Finally, we have conducted a sensitivity analysis to analyze the impact of the number of spare parts,
PH, and the fleet size. The results show that a higher number of spare parts can increase the number of
component replacements and decrease the total costs, but there is a switching point after which no additional

22



improvements are achieved. Also, greater prognostic horizons can rise the repair cost savings, while providing
an improved inventory planning flexibility by reducing the spare part leasing costs and slightly increasing
the component replacements. However, long prognostic horizons can lead to the waste of some component
useful life, so a trade-off should be considered. Finally, we have considered a larger fleet size and we have
shown that the proposed algorithm is able to successfully solve the maintenance scheduling problem of a
fleet of 50 aircraft in 365 days in only 6.2 minutes.

As future work, the model could be extended to consider multiple components, instead of a single
component type. The same procedure should be followed for other k-out-of-N components to analyze what
is the most optimal strategy to follow within S1, S2 and S3. For example, a high k£ would result in more
frequent critical aircraft, so maybe S1 would be the best strategy.

Moreover, we suggest considering additional cost factors, such as labor cost, or wasted component useful
life costs. Considering labor costs can lead to grouping more component replacements in a single maintenance
slot, also using spare parts that could be used in a more profitable replacement. The cost of wasted useful
life would reduce the benefit of using a high PH to reduce the repair cost savings.
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Airline Maintenance Scheduling

The integration of component prognostics in airline maintenance operations is part of the ongoing development
of a new maintenance strategy in the airspace industry. To comprehend how this project fits in this process,
it is essential to briefly review the evolution and the current practices of maintenance scheduling in the airline
industry. This chapter presents a brief overview of the evolution of scheduling in airline maintenance in section
2.1, the current practices and maintenance types in 2.2, and it ends with the classification of aircraft components
in section 2.3.

2.1. Evolution of Airline Maintenance Scheduling

Aircraft maintenance has tremendously evolved since the first stages of aviation. In the early era of aircraft,
maintenance was only carried out when it was needed, meaning that no action was taken until a failure had
occurred. This strategy is called corrective maintenance. Although airplanes were rather simple by this time,
this practice became more expensive with the increasing complexity of aircraft that emerged in the upcoming
years. Therefore, a more advanced approach for maintenance was needed.

The introduction of the Boeing 747 in 1968 supposed the start of the first generation of jumbo jets in addition
to the start of a novel method to address maintenance programs. The Boeing Company together with the
Federal Aviation Administration (FAA) introduced the so-called Maintenance Steering Group (MSG) concept
[35]. This approach was so successful in the B747 that it was generalized for other types of aircraft by the Air
Transport Association (ATA). The MSG process evolved along time to the current MSG-3 Revision 2, which was
firstly introduced in 1980 with the MSG-3 process. MSG-3 is said to be a top-down and task-oriented approach.
By top-down, it is meant that the consequences of failure and how it affects the system operation are analyzed,
whereas task-oriented means that the MSG-3 logic allows to select appropriate tasks to prevent system failure
and maintain its reliability.

The result of the MSG-3 logic leads to an initial maintenance schedule to be used by the operator. It is
published in a document called Maintenance Review Board (MRB) created by the Original Aircraft Manufacturer
(OAM), which is addressed as the Maintenance Planning Document (MPD) by Boeing and Airbus [56]. The
MPD contains the maintenance tasks and intervals that must be performed in the aircraft in addition to some
additional tasks suggested by the OAM.

2.2. Airline Maintenance types

Based on the MPD, each operator has the responsibility to develop its maintenance program that contains a
summary of all maintenance tasks and their due dates. The maintenance activities contained in the mainte-
nance program are known as Scheduled Maintenance. Nevertheless, it exists the possibility that unforeseen
events requiring maintenance actions occur, which is known as Unscheduled Maintenance.

Scheduled maintenance

Scheduled maintenance can be further divided into Line Maintenance and Base Maintenance. Line mainte-
nance is performed on the tarmac (at or near gate/terminal) on in-service aircraft. The performed tasks cor-
respond to the lightest maintenance: transit checks and daily checks. Base maintenance is carried out in a
hangar in an out-of-service aircraft and it includes any major aircraft modification or heavy maintenance. As
the aircraft needs to be released from service, base maintenance is ideally uniquely carried out routinely at pre-
defined intervals according to the airline maintenance program. Aircraft maintenance intervals are fixed due to
strict regulations and rigorous safety standards. These hangar checks are usually named as letter checks: A-,
B-, or C-checks, ordered from the lightest and more frequent to the heaviest and less frequent maintenance.
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Letter checks intervals for the Boeing 787-9 in KLM E&M are shown in Table 2.1.

Interval Specification | A-Check | B-Check | C-Check
Flight Hours | - I
Flight Cycles [ | - B

Calendar Time I |
Number of Blocks [ | [ | [ |

Table 2.1: Letter checks intervals for Boeing 787-9 defined by KLM E&M. Based in [18].

To ease planning, operators usually cluster maintenance tasks in blocks, which can be then assigned to letter
checks. It should be noted that not every maintenance task has the same frequency. As it can be seen in Table
2.1, A-checks in B787-9 are composed of Il meaning that maintenance tasks will not be the same in ev-
ery block.

Furthermore, maintenance tasks that are less time extensive compared to the letter checks are performed in
line maintenance instead.

The grouping and assignment of maintenance tasks are carried out by the airline planning and scheduling
department. Based on the flight schedules and the interval times defined by the maintenance program, this
department schedules all maintenance checks such that all maintenance tasks are performed at the right time
and the schedule does not exceed available resources and hangar capacity. In addition, it should be noted
that maintenance scheduling is a highly dynamic process and the resulting maintenance schedule is constantly
subject to changes.

Unscheduled Maintenance

Unscheduled maintenance raises from unusual or unforeseen conditions that are not related to the normal
aircraft operation. A wide range of situations can occur during flight, such as bird strikes, hard landing, lightning
strikes, turbulent air, etc. Depending on the component criticality, failure may produce a grounded aircraft until
the fault is corrected. Some aircraft components are allowed to fail due to their redundancy as long as the
crew is aware of the malfunction and a serviceability check is performed. However, the maintenance action
can be deferred at most to the end of the interval specified in the Minimum Equipment List (MEL). This will be
explained more into detailed in section 4.3.

2.3. Aircraft components

When a component receives maintenance, it is normally replaced by a spare part and the faulty component is
either discarded or fixed. Aircraft components can be divided into three categories [6]:

* Rotables: these components can be tracked by a serial number that is assigned either by the airline or
the OAM. Financially, they are the most expensive components and they are treated as assets by the
airline. According to the life-cycle characteristics, rotables are considered to be infinitely repairable. This
means that they will be included in the airline inventory until fleet retirement. Examples of rotables: aircraft
engines, airspeed indicator, Flight Management System (FMS), etc.

* Repairables: they are untraceable as they do not have a serial number. Financially, they are also treated
as assets by the airline, but their purchase price is less compared to rotables. From a life-cycle perspec-
tive, they can be reconditioned for a limited amount of times over a period which is lower than the fleet
life. Examples of repairables: structural panels, Auxiliary Power Unit (APU) starter, fire detector, etc.

» Expendables: these components are untraceable too. From a financial perspective, they are normally
considered as assets until they are installed in the aircraft. Their purchase cost is lower than repairables.
These items are subject to only one use as the repair cost is usually higher than the cost of acquiring a
new component. Examples of expendables: lamps, filters, fasteners, seals, etc.



Prognostics

Before reviewing the literature in maintenance scheduling with prognostics, it is important to have some insight
into prognostics and its potential uses. This chapter elaborates on the definition of prognostics and its main
algorithms and it concludes with a summary of the main benefits that prognostics can have for the airline
industry.

3.1. Prognostics and Health Management (PHM)

Prognostics and Health Management (PHM) is a new engineering approach for systems health assessment. It
is based on real-time operational information and the prediction of the system’s future state based on sensor
data [34]. It is generating high interest in maintenance scheduling and planning research due to its promising
potential to replace traditional maintenance strategies, like corrective and preventive maintenance, with more
advanced maintenance strategies, such as Condition-Based Maintenance (CBM) and Predictive Maintenance
(PdM).

Data . Health
Sy Prognosti
acquisition TG SICS management
Collect condition What is the fault What is the Optimal
monitoring data & and how severe remaining useful management on
extract features isit? life? maintenance and
logistics

Figure 3.1: Main steps of PHM. Adopted from [34]

Figure 3.1 shows the main steps in PHM. The first step is data acquisition. It consists of collecting and
processing sensor data to detect patterns and features. The next step is diagnosis, in which the fault for
any anomaly is found and it is identified how severe it is compared to a failure threshold. The third step is
prognostics, in which time to failure predictions are estimated. The last step is health management and it
intends to optimize maintenance based on diagnosis and prognostics information.

3.2. Prognostic algorithms
Prognostics algorithms can be categorized as experience-based, data-driven and physics-based.

Experience-based prognostics

Experience-based prognostics is not usually considered in the existing literature. However, some publications
[23, 65] include it as another category.

Experience-based prognostics makes use of experience feedback data collected during a substantial time
(such as failures times, repair times, etc.) to tune the parameters of an assumed reliability model (like exponen-
tial, Poisson, Weibull, etc.) [65]. The most widely used model is the Weibull distribution as it can successfully
represent several phases of the component’s life [57].

This approach is easy and cheap to implement. However, experience-based methods are not suitable if
there is not a significant amount of feedback data (like in new systems). Also, the resulting prognostics infor-
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mation is less accurate than the results obtained by physics-based and data-driven methods [65]. Therefore,
this approach is not recommendable for systems were prognostics information is crucial.

Physics-based prognostics

This approach assumes that a physical model that describes the system’s degradation is available. Then,
the model is combined with sensor data to estimate the physical model parameters. Due to noise data and
uncertainty in the operating conditions, most of the algorithms tune the model parameters using probability
distributions [34]. The obtained model can be then used to make predictions about the component’s behavior.

The main advantage of physics-based algorithms is that their results are usually intuitive as they are based
on physical phenomena, which makes it easier for verification and validation. Besides, the model can also be
easily adapted for small changes in the system. Nevertheless, this approach requires a high understanding of
the system since the model needs to capture its physical behavior. If any major phenomenon is forgotten or
misunderstood, it can fail to make accurate failure predictions.

Data-driven prognostics

It consists of estimating the future trend of the component degradation based on past and currently collected
data. Consequently, data-driven approaches require extensive data collection to account for all possible modes
of failure as a function of the current state.

This method does not require any physical knowledge; therefore, its results do not need to be compliant with
any physical behavior. However, this also has risks as it involves accepting a result that may not be intuitive due
to the ignorance of the physics behind the problem. According to literature, [4, 8, 34, 73] data-driven algorithms
can be classified into two groups: machine learning approaches and statistical approaches.

Machine learning approaches make use of a training dataset for the learning process and a test dataset
for model verification. In literature [4, 8, 73], the most used Machine learning algorithms are Artificial Neural
Networks, Support Vector Machine, Bayesian methods, and Markov models.

Statistical approaches estimate the degradation and the Remaining Useful Life (RUL) of a component using
monitoring data and a probabilistic model. The data is firstly fitted into the model and then, the tuned model
can be utilized to determine the future degradation trend.

Prognostics

Algorithm Advantages Disadvantages

- A large amount of data is needed,
not suitable for new systems

- Less accurate than physics-based
and data-driven approaches

- Requires high understanding

Experience-based | - Easy and cheap implementation

- Intuitive output of the system
Physics-based - Easy adaptation to system - Inaccurate predictions if any
small changes major phenomenon is forgotten or
misunderstood
- Accurate .
Data-driven - Does not require physical A large amount of data is needed,

not suitable for new systems.

system understanding

Table 3.1: Summary of advantages and disadvantages in prognostics algorithms.

Hybrid prognostics

It also exits the possibility that different prognostics algorithms can be combined at the same time. These are
called hybrid prognostics and they aim to include the advantages of the different prognostics approaches while
minimizing their limitations. All the different combination possibilities that can be found in the literature are
summarized in Figure 3.2.

Experience-based

Experience-based Experience-based Data-driven Data-driven +
" } 1 ! Data-driven
Data-driven Physies-based Data-driven Physics-based +

Physics-based

Figure 3.2: Hybrid approaches possibilities. Adopted from [8]
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3.3. Prognostics benefits from a Predictive Maintenance perspective

As it was mentioned in the first section, PHM is gathering great interest in maintenance operations research
due to its promising potential to replace traditional maintenance strategies (like corrective and preventive main-
tenance) with more advanced maintenance strategies, such as CBM and PdM. PdM is a strategy that forms
part of CBM, and it aims to predict failures before their occurrence, meaning that prognostics is indeed the
key input for PdM. When comparing PdM with corrective and preventive maintenance, the advantage of PdM
lies in the more extended use of the component useful life while avoiding unexpected failures and their related
downtime costs [34]. In this way, PAM can combine the advantages of corrective and preventive maintenance
while minimizing costs, as observed in Figure 3.3.

Corrective Predictive Preventive
maintenance maintenance maintenance
il—— Repair cost
—— Prevention cost
— Total cost

\“ﬁ?'/

Cost

/ \

Number of failures

Figure 3.3: Maintenance strategies versus cost. Based on [34]

PHM solutions have already been implemented in several industrial fields giving optimistic results. In the
United Kingdom, the Civil Aviation Authority (CAA) developed a Health and Usage Monitoring System (HUMS)
that measured the health and performance of helicopters [41]. As a result, the helicopters’ accident rates were
reduced by more than one half. To illustrate the economic impact of PHM, another study sponsored by the
National Science Foundation was carried out in five companies where a PHM solution had been implemented
in their products. Total savings of around 855M $ [38] were reported due to failure avoidance and productivity
and efficiency enhancement, among others.

In the airline industry, new aircraft generations are increasingly being equipped with sensors to monitor the
health state of their systems and components. Moreover, these new generations (such as the B787, A350,
and Embraer E2) are being “e-enabled” by incorporating systems that allow the automatic communication with
ground-based stations of operators and Air Traffic Service (ATS) providers. Examples of these systems include
the Aircraft Communication Addressing and Reporting System (ACARS), Broadband Satelite Communications,
Terminal Wireless Local Area Network Unit (TWLU), Crew Wireless Local Area Network Units (CWLU), etc. [50].
The combination of these two factors offers the possibility of accessing to an enormous amount of valuable data,
which is indeed the main enabler of the current state and future development of predictive maintenance in the
airline industry.

The potential benefits of the use of prognostics in the airline industry have been already studied. Overall,
it can be said that prognostics can improve airline operating costs ', more specifically it reduces maintenance
and irregular operations costs.

Firstly, prognostics allows for a more effective component maintenance planning by reducing the number
of unscheduled events and their related costs [28, 37, 48]. In Europe, 5.8% of the flights are delayed due
to technical issues and consequential delays in subsequent flights [29], which is commonly named as the
“snowball effect”. The associated yearly costs are estimated to be as much as 2.8B € in the European airline
industry. Reducing the percentage of technical induced disruptions can save costs up to 334M € per year while
reducing the delays from 2 to 4 minutes would represent a yearly cost reduction of up to 396M € [29].

Besides, prognostics enables to decrease the costs of repair activities by replacing components at a lower
degradation level and avoiding major repairs [22, 67]. Diagnosis and prognosis also allow for easier fault
troubleshooting [28, 36], which together with less major maintenance activities, can reduce maintenance times
[48]. Consequently, aircraft availability is increased, which could even lead to more extensive aircraft utilization.
According to the Clean Sky 2 Technical Program [29], the benefit of prognostics in aircraft utilization would
produce a profit increase of up to 200M € per year in European carriers.

1 According to IATA [7], an airline operating costs include Planning, Crew, Maintenance, Airport Services, and Irregular Operations costs
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Lastly, applying prognostics in MRO activities also yields economic benefits. Prognostics in supply chains
enables the prediction of spare parts demands which helps to avoid stock-out costs [25, 32]. L. Li et al. [39]
and N. H. Kim et al. [34] found that supply chains with prognostic information were more efficient in planning as
they could react more proactively considering demand forecasts provided by prognostics. Similarly, E. Topan
et al. [66] found out that the use of imperfect advance demand information in inventory supply decisions could
yield substantial savings. Also, J.P. Sprong [64], carried out a single-component case study in KLM E&M
and estimated that supply chain costs could be reduced by 20% with a proactive supply chain that made use
of prognostics. Furthermore, G. Nicchiotti et al. [48] and J.P. Sprong [64] found out that it was easier for
supply chain departments to reach the desired service level due to the reduction of repair times with the use
of prognostics. According to Little’s Law [44], a reduction in repair times could also imply a reduction in the
inventory levels. This can be explained as follows; the necessary inventory to fulfill the demand of spare parts
can be estimated with Little’s Law [44].

L=1-W (3.1)

Where L is the necessary inventory, 4 is the component removal rate and W is the average Turn-Around
Time (TAT) or time to repair. Based on this expression, it can be deduced that provided the component removal
rate is not increased as much as the decrease in TAT, a reduction in repair times (or TAT times) also implies a
reduction in the inventory levels.

However, it should be noted that the potential benefits that the use of prognostics can have are dependent
on a great variety of factors. According to M. Roemer et al. [55], prognostics accuracy, or degree of closeness
to the true remaining useful life value, is the most important factor in determining the benefits of prognostics. N.
Hozel et al. [27] identified additional elements affecting the potential benefits, such as operational constraints
and the influence of a component in the system’s reliability and safety. For this reason, the advantages of the
implementation of prognostics are not the same for all systems; they are subject to the system itself and its
operational constraints and specifications.



Maintenance Scheduling Modeling

This chapter elaborates in the state-of-the-art of academic research in the field of component maintenance
scheduling with prognostics and resources availability. It includes how prognostics and availability of resources
were modeled, component criticality issues that were considered, and the objective functions and main solution
approaches for optimization.

4.1. Prognostics

Prognostics has been already addressed in academic research about maintenance operations. However, as
the integration of sensors in components for health monitoring is an expensive technique and access to data
has strict barriers, some studies propose degradation models that do not make use of sensor data. In these
studies, maintenance is triggered when the degradation level reaches a given predefined threshold. The most
common degradation models are Wiener [12, 22, 46] and Gamma process [60]. Moreover, other studies utilize
historical failures to find the best fit of a predefined reliability model that describes the failure probability at
different times. The most common reliability model is the Weibull distribution [9, 16, 54] as it can be used for all
phases of the component’s life [57]. Also, W. Wang [70] assumed a Homogeneous Poisson Process (HPP) to
model the failure probabilities of components as it was proven that when the number of identical components
was large, the failure times were approximately exponential, and they could be therefore described with an
HPP.

The problem that arises when sensor data is not used is that the prognostics may fail to describe the com-
ponent’s actual behavior in its operating conditions. Consequently, these models would not be suitable to be
used in a real industrial application.

Focusing on the modeling of prognostics in literature, three different possibilities can be found: RUL prog-
nostics, component state transition probability, and classification prognostics.

4.1.1. RUL prognostics

In most of the studies that make use of prognostics in maintenance scheduling, the used prognostics is the com-
ponent’s RUL given as a probability distribution. In these models, the expected value of the RUL is used as the
main input for the scheduling task. Nevertheless, there are three main trends to take prognostics inaccuracies
into account.

The first one is to include a constraint in the model that restricts the maximum allowable risk of system failure
[20, 40, 42, 43, 74]. More specifically, Q. Feng et al. [20] considered a fleet of 10 aircraft containing each 4 Line
Replaceable Module (LRM) components. For each component in every aircraft, there was information about
its health status in the form of component failure probabilities. The aircraft was considered to fail when any of
the LRM failed, and it was decided that the failure probability should not be more than 1078,

4
a:1—ﬂ[1—pi,-]<1o—8 vV oiel 4.1)
j=1

The second one is to include the risk of failure in the objective function [13, 54, 68]. L. Ramos Rodrigues et
al. [54] developed a maintenance scheduling model for aircraft bleed air systems that included the probability
of aircraft failure times the costs that aircraft unavailability would imply, named as cost of aircraft on ground.
It is worth mentioning that the used PHM algorithm to find the failure probability distribution was based on the
study carried out by Gomes et al. [24]. It consisted of finding the least square regression of the component’s
degradation indexes 30 days before failure. Then, failure times were Monte Carlo simulated (assuming that
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the time of failure is when the degradation index was equal to 100%) and fitted into a Weibull distribution to find
the failure probability distribution.

The last possibility to account for prognostics inaccuracies was presented by J.1. Aizpurua et al. [3]. In their
study, the deterministic RUL estimation was diminished with a safety factor to account for the time needed to
trigger maintenance and for prognostics uncertainties. It was determined that a conservative value was desired
to avoid component failure. Therefore, the worst-case scenario was assumed by estimating the safety factor
as the sum of the confidence interval and the maximum time to trigger maintenance. A comparable approach
was followed by Y. Wang et al. [71]. They used the mean (1) and the standard deviation (o) of the component’s
RUL prediction to find the maintenance execution window for each component. The interval was chosen to be
the 95% Confidence Interval, [u — 20, u + 20].

4.1.2. State transition probability

Other studies do not have an estimation of the RUL but use as prognostics input the transition probabilities
from a “healthy” or “degraded” state to a “failed” state according to the component current degradation level
[9, 47, 68]. In this literature, a Markov Decision Process (MDP) is used to find the optimum action at each state.
As the transition probabilities are dependent on time and the previously chosen actions, MDP is a dynamic
optimization technique that uses a rolling horizon to find the optimal actions for each state. M. Baars [9] and K.
Verbert et al. [68], considered as available actions either “To maintain” or “Not maintain” a component, while
K. Nguyen et al. [47] and X. Yao et al. [75] included two more actions; “Order spares” or “Not order’. MDP will
be explained more into detail in Section 4.5.

4.1.3. Classification prognostics

Finally, there is also the possibility that prognostics have a classification (or binary) format. A. Engelke [19]
developed a Monte Carlo Tree Search optimization model that used as input whether a component would fail
in 10 days. Prognostics uncertainties were considered by using the Negative Predictive Value (NPV) and the
Positive Predictive Value (PPV) of the prognostics tool as punishments factors in the Monte-Carlo Tree Search.
In this way, component schedules that had a low PPV (lower than 50%) and a high NPV (higher than 50%)
were punished. The confusion matrix and the definitions of NPV and PPV are as follows:

Prediction outcome
True outcome Positive (Fault) Negative (No faulr)
Positive (Fault) True positive (TP) False negative (FN)
Negative (No fault) False positive (FP) True negative (TN)

Figure 4.1: Confusion matrix for binary classification prognostics. Adopted from [36]
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I. Van den Hof [67] and J. Sprong [64] carried out academic studies in KLM E&M with an alike prognostic
input to the one considered by A. Engelke [19]. The prognostics used were predictive maintenance alerts in
aircraft components. When a component was alerted it meant that the component would fail in a predefined
Prognostic Horizon (PH) with a given probability equal to the prognostic tool accuracy. The PH is defined as the
time from the failure prediction until the time of expected failure (see Figure 4.2). The prognostic tool also had a
given sensitivity and precision. Sensitivity is defined as the percentage of total failures that the prognostic tool
can successfully detect, meaning that the rest of the failures will occur without previous detection. Precision
is the probability that a predictive alert truly results in a fault found event (true positive). The expressions for
accuracy, sensitivity, and precision are presented in Table 4.1

3 Prognostic Horizon (PH) i

® ®
Time of fault prediction Time of predicted failure
(Prognostics Event) (Fault Event)

Figure 4.2: Prognostics Horizon definition. Based on [31]
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Metric Accuracy Description
Accuracy | Acc. = TP+TN Correct predictions
y "7 TP+TN+FP+FN to all predictions
Sensitivity Sens. = TP Correct hits
or recall "7 TP+FN to real positive cases
. TP Correct hits
Precision Prec. = s o
TP+FP to positive predictions

Table 4.1: Prognostics Metrics in [67] and [64]. Based on [36]

The prognostics metrics are a function of the PH. K. Verbert et al. [68] and A. Kahlert [36] already stated
that the prognostics accuracy increases for lower PH, or what it is the same, for closer times to failure. If early
replacements are performed, the risk of Not Fault Found (NFF) events increases (due to lower precision) as
the degradation level cannot be properly confirmed [36]. However, late predictions also lead to a high risk of
unscheduled failure, therefore a trade-off between prognostics accuracy and timeliness must be made [68].

Reserve wear-out

: ‘ : . el > Time
Early inspection Operating point for Risk of unscheduled
(NFF) predictive maintenance maintenance

Figure 4.3: Optimum operating point for Predictive Maintenance as a function of PH. Adopted from [36]

I. Van den Hof [67] defined 4 different maintenance scheduling policies for k-out-of-N components (e.g. re-
placement when there is one damaged component, repair when at least 2 out of 4 components are damaged,
etc.) and analyzed the effect of various PHs and prognostics sensitivities in the policies’ output with discrete
simulation techniques. However, the study did not develop an optimization model for components mainte-
nance scheduling but instead defined 4 different policies to explore the potential benefits of using prognostics
in maintenance scheduling.

4.2. Resources availability in maintenance scheduling
This section presents the existing research in maintenance scheduling that considers spare parts and mainte-
nance slots availability.

4.2.1. Spare parts availability

Infinite availability of spare parts is a usual assumption in most of the studies dealing with maintenance schedul-
ing, even though it is an essential factor to be considered in airline maintenance planning. W. Olivares et al.
[69] modeled expendables spare parts availability as a cost factor in the objective function. When no spare
parts were available for replacement, the next flight would be canceled, so cancellation costs were added to
the objective function. C. A. Irawan et al. [30] also considered expendable spare parts availability in different
time slots through a binary variable (1: if spare parts were available, 0: otherwise). Only time slots with avail-
able spare parts were considered as a feasible solution for the optimization problem. Furthermore, J. Cai et
al. [12], W. Wang et al. [70], and Q. Liu et al. [45] solved the spare parts availability problem by coupling the
optimization of maintenance intervals and spare parts inventory.

However, none of these studies considered repairable spare parts. In this case, components which are
removed from the aircraft are transported to a repair shop where they are fixed. A new component is placed
in the aircraft provided there are available spare parts in the warehouse or logistics pool. Otherwise, the
replacement will not be performed until a component is fixed in the repair shop, or until it is purchased or
leased from an external contractor.
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Figure 4.4: Supply chain of repairable components. Based on [53]

L. Ramos Rodrigues et al. [53] considered repairable spare parts in a maintenance scheduling model with
prognostics input. An initial maintenance schedule was obtained according to the predicted RUL and a second
optimization was performed to avoid stockout of spares. The overlaps in the expected repair times (or expected
amount of components in the repair shop) were counted, and it was assured that this number never exceeded
the spare part level by shifting maintenance actions to earlier times. Note that the time from component removal,
until it comes back to the available inventory, should account for removal, shipping, and repair times. However,
L. Ramos Rodrigues [53] and |. Van den Hof [67] considered that the time off-wing was only given by the repair
TAT, which is usually contracted through a Service Level Agreement (SLA).

4.2.2. Maintenance slots availability

The great majority of studies aiming to optimize maintenance scheduling with prognostics assume that main-
tenance capacity is unlimited and that replacements can be therefore performed at any time. Only a few works
of literature consider maintenance slot availability as input. Slots have been included in two different ways in
literature: as hangar available slots [19, 22], or as maintenance opportunities between missions [15, 74].

In the maintenance scheduling process of a real airline, considering only hangar available slots is not
enough; aircraft-specific maintenance opportunities need to be considered as well. The operating schedule
of an aircraft provides the times when the aircraft will be on the ground and, therefore when maintenance can
be scheduled. The problem is that tail numbers are assigned to a schedule only a few days before the operation,
consequently it is almost impossible to determine the exactly available maintenance opportunities beforehand.
Most airlines have different rotation schemes where aircraft are planned. They operate with this expected op-
erating schedule and use the rotation scheme as a baseline to reassign tail numbers if an unexpected event
occurs. To deal with this problem, M. Baars [9] used all the different rotation schemes as input to find a heuristic
solution for the problem. Another approach would be to find the general maintenance schedule that accounts
for all possible operating schedules in the rotation scheme. Nevertheless, this approach was too complex and
it was left out of the scope of the project.

4.3. Component Criticality

Critical components are usually redundant in aircraft so that a single component failure does not result in a
nonoperational aircraft. They are usually labeled as k-out-of-N components, which means that the aircraft is
operational if from the N total number of components, at least k have not failed. When the number of failures is
equal to (N — k), the system may be still be operated during a time interval defined by the Minimum Equipment
List (MEL). This document is created by the operator based on the Master Minimum Equipment List (MMEL)
approved by the CAA (European Aviation Safety Agency (EASA) in Europe), by considering the operator’s
particular aircraft equipment and operational conditions [1]. The MMEL distinguishes four different component
categories according to their rectification intervals.

Category Rectification Interval
A Instant
Within 3 calendar days,

B excluding the day of discovery
c Within 10 calendar days,

excluding the day of discovery
D Within 120 calendar days,

excluding the day of discovery

Table 4.2: EASA MMEL rectification intervals. Adopted from [1]
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In literature, there is some research about the maintenance optimization of k-out-of-N systems that consider
repairable spare parts [61-63]. A single system is considered in all of them, meaning that fleet-level optimization
is not part of the scope, which is not the case for this study. Besides, prognostics is not considered either.
Nevertheless, there are three main aspects which are very relevant for this research.

The first one is when to initiate maintenance. The system is still operational when N — k failures have
occurred. Nonetheless, it is also possible to initiate maintenance when m < N — k components have failed to
prevent system downtime if one additional failure occurs. K. Smidt-Destombes et al. [61], proposed a model
that initiated maintenance when m = N — k components had failed due to the high maintenance set-up costs.
However, A. van Harten et al. [62] and M. van der Heijden et al. [63] stated that the minimum number of failures
to initiate maintenance also depends on the time needed to trigger maintenance. If this time was equal to 0,
then maintenance was triggered when the system was inoperable, m = N — k + 1. However, when the time to
trigger maintenance was greater than 0, it was compared to the expected time of system failure to decide on
the right failure level to initiate maintenance, m < N — k + 1.

The second relevant aspect that is worth mentioning is how many components should be replaced in a
maintenance slot. At the time of maintenance, all failed components could be replaced, just the right amount to
recover the system operation, or an amount in between these two values. K. Smidt-Destombes et al. [61] and
M. van der Heijden et al. [63] considered that all failures should be replaced at the time of maintenance. If the
number of spares was not enough, then maintenance had to be delayed until enough spares were available.
Nevertheless, A. van Harten et al. [62] estimated that only the right amount of failures to recover system
operation had to be repaired.

The last relevant factor is the priority replacement rules for degraded and failed components. K. Smidt-
Destombes et al. [61] and M. van der Heijden et al. [63] considered only failed and healthy components, but A.
van Harten et al. [62] also included components in a degraded state. In maintenance slots when both degraded
and failed components could be found, priority was given to degraded components rather than already failed
components as the required repair times were smaller. Moreover, when the number of degraded components
was not sufficient to recover the system’s operation, some failed components were repaired as well.

4.4. Objective functions for maintenance scheduling

Regarding single-component or multi-component scheduling, some studies have only focused on finding the
optimal replacement intervals of single components with prognostics information [9, 12, 45, 54, 60, 70]. Never-
theless, to develop a reliable maintenance schedule, it is necessary to optimize maintenance from a fleet-level
that incorporates all other aircraft and components in the fleet. In this way, it is ensured that resources stock-
outs are avoided.

In existing literature, the most common objective is to find the optimum maintenance time [9, 19, 46, 60, 69,
74], time and action [54, 68], or even time and spare part orders [12, 45, 70, 75], that reduces maintenance
costs (e.g. [3, 9, 13, 19, 31, 36, 46, 47, 49, 54, 60, 69], etc.) or maximizes the revenue [22]. It is also possible
that instead of minimum costs or maximum revenue, the objective function is to maximize aircraft availability
[53], minimize the unused maintenance capacity [40] or even a twofold objective, such as minimum cost and
maximum availability [42, 43, 45], or minimum cost and repair frequency [74].

Focusing on the maintenance costs factors, two categories can be defined: indirect and direct maintenance
costs [33]. Direct Maintenance Costs (DMC) are related to the costs of labor and material which are expended in
the component replacement. Indirect Maintenance Costs (IMC) refer to all other costs that cannot be assigned
to a maintenance activity, such as facilities, tools, administration, the keeping of records, etc. As this research
focuses on comparing the costs of component maintenance in different maintenance slots, IDM will not be
further discussed.

In existing literature with a minimum cost or maximum revenue objective function, the most common DMC
factors can be divided into six different categories.

The first one is the life-average costs [19, 68, 71], also called preventive removal costs by W. Vianna et
al. [69], or utilization costs by M. Baars [9]. This category refers to the costs related to the unused RUL of
the component. Therefore, maintenance repairs that are close in time will have a higher life-average cost (see
Figure 4.5). This cost factor also helps to reduce the repair frequency, which can also have a detrimental effect
on the repair shop labor workload. K. Verbert et al. [68] defined it as:
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Figure 4.5: Average-life costs. Adopted from [68]

Where C,, is the total cost of performing maintenance and t,,,; is the time when the previous maintenance
action was carried out.

The second one is the repair costs. They represent the actual costs to bring a component to a reliable and
safe condition. In this research, perfect repairs are considered, meaning that component condition after the
repair is “as-good-as-new”. In some studies, it is considered that the repair costs per replacement are fixed
[20, 53]; however, some others assume that the repair costs are a function of the component degradation level
[22, 42, 67, 69]. In this way, longer maintenance intervals have higher repair costs as the component damage
level is greater. |. van den Hof [67], defined major and minor repair costs depending on which moment after
the Prognostics Event (predictive alert) the component replacement was carried out.
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Figure 4.6: Repair costs as a function of PH. Adopted from [67]

H. Ghamlouc et al. [22], accounted for the increase in repair costs for higher degradation levels by consid-
ering two scenarios: component failure occurring after the considered maintenance time, and the component
failure happening before maintenance. The expected maintenance repair cost was estimated by adding the
expected costs of both scenarios times their probabilities.

E[Crepair(tk)] = P(Tfail > tk) ' Cpreventive (tk) + P(Tfail < tk) * Ceorrective (tk) (43)

Where t; is the time of the considered maintenance slot, Cpeventive (ti) iS the expected preventive repair
cost at maintenance slot t;, and C.,rective (tx) IS the expected repair cost at maintenance slot ¢, due to early
failure.

The third type of DMC is costs related to risk [9, 22, 68]. They refer to the increase of the component failure
probability for later maintenance times. It is generally defined as the probability that the component failure
occurs before the considered maintenance slot multiplied by the additional costs related to the component
failure.
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Figure 4.7: Risks costs. Adapted from [68]

The fourth category is the stock-out costs, which are defined as the costs incurred due to lack of resources
available, such as spare parts or maintenance technicians [15, 53]. They are generally modeled as stock-out
costs per unit time multiplied by the expected time until the resources are available again.

IE[Cstockm.tt] = Lstockout * IIE:[tstockout] (44)

The fifth type is the failure costs [9], which represent the costs derived from the operation under failure
conditions. Some non-safety critical components do not cause an AOG event when a failure occurs provided
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they are replaced within the interval specified in the MEL. In the time interval ranging from the component
failure to the end of the MEL interval, the aircraft can be still operated, but at higher operation costs. These
costs can comprise a wide range of sources, such as extra fuel costs, or costs due to additional degradation in
other dependent components. W. Olivares et al. [69] estimated the additional operational costs within the MEL
interval as follows:

CuerL = Cop : (trepair — tevent)- (4.5)

Where C,,, is the additional operational cost per time, t,¢pq;r is the time of repair and tyy; is the time of MEL
interval start.

The last cost category is the spare parts leasing costs. Spare parts insourcing is normally a rare technique
due to its high costs however, it is an option that should be considered in a maintenance scheduling model
with spare parts availability input. I. van den Hof [67], allowed only spare parts leasing when there were no
spare parts available and the MEL deadline was violated. The leasing costs were estimated to be 10% of the
component purchase price.

4.5. Solution Approaches

Different approaches have been followed to solve aircraft maintenance optimization problems with component
diagnosis and prognostics inputs. A summary of the most used frameworks that can be found in this section.

4.5.1. Markov Decision Process (MDP)

The first main solution approach is the Markov Decision Process (MDP). MDP is a powerful tool for solving
sequential optimization problems in multiple random decision epochs [14]. This algorithm is very quick and
elegant if the process can be properly described by a set of well-defined states. Under each state, there is a
set of different actions that can be chosen, and the decision influences the transition probability from one state
to another. For higher complexity processes with difficult state definition, this approach becomes inefficient. For
this reason, the found studies that utilize MDP are applied at a single component-level optimization [9, 68, 75]
with reduced and well-defined state and action spaces.

M. Baars [9] defined the state space only as three possible component conditions: nominal operation,
anomaly detected or failed component. Nevertheless, K. Verbert et al. [68] also included information regarding
the cost associated with the maintenance strategies and whether previous maintenance had been planned.
The possible actions in both studies were either "To Repair” or "Not Repair” a component. X. Yao et al. [75]
combined the optimization of inventory stock and maintenance schedules. Therefore, the state space also
included information about the inventory level and the number of periods for which a component had been in
the same state. In this case, the possible actions were either "To Repair” or "Not Repair” a component and
either "To order” or "Not order” a spare part.

In terms of solution methods, X. Yao et al. [75] and M. Baars [9] used the value iteration algorithm to solve
the MDP. This approach is efficient for problems with a finite number of states and actions per state as it can
easily converge to the optimal solution. However, dynamic optimization or reinforced learning methods are
more suitable for problems with a higher complexity. K. Verbert et al. [68], used dynamic optimization as the
reward and the state transition functions were known. However, it was suggested that if the reward function or
the transition probabilities were unknown, reinforcement learning was desired to cope with the uncertainty.

4.5.2. Large Neighborhood Search (LNS)

The second solution framework that will be analyzed is Large Neighborhood Search (LNS). LNS is a meta-
heuristic algorithm that was firstly introduced in the context of Vehicle Routing [59], but in recent years it has
become a popular method for solving transportation and scheduling problems [52]. The general idea behind
LNS is to build an initial feasible solution and then gradually improve it by "destroying” and “repairing” different
parts of the current solution. The set of the found solutions is named as the neighborhood of the current
incumbent solution. Therefore, the LNS algorithm can be divided in two stages: the initial solution stage, and
the improvement solution stage.

In the first stage, an initial feasible solution is found. This solution needs to fulfill all the constraints, but it
does not need to be particularly good regarding the objective function value. The improvement stage is defined
by three steps. The first one is the destruct process, in which a part of the incumbent solution is fixed while the
rest is released. The second step is the repairing process, in which the new values for the variables that were
released in the previous step are found. The last step is the acceptance rule, in which it is determined if the
found neighborhood solution is accepted or rejected. To avoid getting trapped in local optimal, some authors
recommend to avoid accepting only improving solutions. For example, [51, 52] accepted all improving solutions
and used a simulated annealing approach to define the probability that a worse solution was accepted.

The three steps in the improvement solution stage are repeated until the stopping criteria is met. It can be
defined in multiple ways, such that a maximum number of iterations [51] or time [11], or maximum number of
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iterations without solution improvement [17].

A critical step in LNS is the neighborhood definition. The larger the neighborhood is, the longer it takes to
find the local optimum in each iteration, but the greater the quality of the local solutions and the accuracy of
the final optimal solution are [2]. For this reason, in combinatorial problems with a high number of different
possibilities, the neighborhood is usually delimited. More specifically, L. Ramos Rodrigues et al. [54] proposed
a neighborhood definition by means of one of the following functions: swapping the maintenance execution
times of two different tasks, or shifting all possible maintenance tasks to every available maintenance time.

Traditional LNS usually defines a unique "destroy” and “repair” strategy to be used in all the iterations.
However, this approach may lack robustness as it may not be able to adapt to different solution characteristics.
For example, some "destroy and repair” methods can have a good performance in the first iterations of the
search, while they can have a very poor one at later iterations. For this reason, S. Ropke et al. [51] proposed
a heuristic named as Adaptive Large Neighborhood Search (ALNS) for the pick up and delivery problem with
time windows. This heuristic is composed of a number of competing sub-heuristics ("destroy and repair” meth-
ods) which were used with a frequency based on their historic performance. In this way, ALNS has certain
intelligence as the best performing sub-heuristics are selected more often. After each iteration, the "destroy
and repair” methods were given a score depending on the quality of the found solution. For example, different
scores were granted to new best global, non-improving but non-visited, or already visited solutions. In order to
select the "destroy and repair” method, S. Ropke et al. [51] and A. Hottenrott [26] proposed a roulette-wheel
selection principle.

4.5.3. Genetic Algorithm (GA)

The third and last solution approach that will be analyzed is the Genetic Algorithm (GA). It is another optimization
strategy that has also been widely used to solve complex non-linear and NP-complete combinatorial problems,
resulting in acceptable solutions [58]. GA is a meta-heuristic algorithm based on Darwin’s evolution theory. It
starts with an initial population of solutions and each member is evaluated by means of an objective function.
In each iteration, a random population is selected with a bias on the best solutions and genetic operations
(crossover and mutation) are applied. The stopping rule in GA can be set as a maximum number of iterations
without cost improvement, maximum computation time or maximum iteration number.

Do et al. [15], optimized maintenance grouping of tasks with repairman availability input using a GA. The

initial tentative planning was generated by optimizing component-level maintenance. Then, the first population
of solutions was created by generating random groups of maintenance activities. For each solution that violated
the repairmen’s capacity constraint, the solution was adjusted to recover feasibility by either shifting mainte-
nance activities or hiring more repairmen. This research also proposed a “linear ranking selection” algorithm,
based on J. Baker [10], to select pairs of parent solutions for the Crossover phase such that fitter solutions had
a higher chance to be chosen as a parent.
It should be noted the Crossover operation differs for every problem, but the most usual are the single-point
crossover and two-point crossover [15, 20, 72]. Also, Mutation operation is usually added to GA to prevent the
algorithm to fall into a local extreme. Nevertheless, the mutation probability is normally set to a very low value
such that the GA does not convert into a random search.

4.6. Summary of the most important literature

An overview of the existing literature in maintenance scheduling with prognostics that can be used as a starting
point in this research is summarized in the next table.
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Table 4.4: Summary of most important literature (part 2)




Current state-of-the-art in KLM E&M

After reviewing the existing search from an academic perspective, this section focuses on the current state of
prognostics and its use in maintenance scheduling in KLM E&M.

The Predictive Maintenance team of KLM E&M aims to develop tools that allow to benefit from the opportu-
nities that Big-Data offers. One of its main projects is the development of a predictive maintenance tool called
Prognos. The objective of Prognos is to predict upcoming failures before Flight Deck Effects (FDE) or in-service
failures. Note that a FDE is a trigger from the aircraft health monitoring systems (Airplane Health Management
(AHM) for Boeing aircraft and Airman for Airbus) upon malfunction detection. The development of predictive
algorithms is based on Machine Learning and Deep Learning techniques that use data from historical AHM
messages and component removals combined with the information provided by sensors installed in the aircraft
components. Sensor data can be transmitted during flight through ACARS, or after each flight through wifi
Gatelink. After each flight, the Predictive Maintenance team receives the Quick Access Recorder (QAR) file,
which contains a large number of aircraft flight parameters recorded several times a second. During flight,
Snapshots of sensor data are sent, but the Predictive Maintenance team has started to move to continuous
data. The data from both sources is then decoded and analyzed to be used to improve the predictive models.
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Figure 5.1: Sensor data flow in Prognos of data transmitted after flight. Adopted from [67].

For each monitored flight, the relative time compared to the whole flight length that different component
operating parameters (like average temperature, RPM, etc.) are above a given value is recorded. Then, a
degradation indicator is computed by averaging this quantity over several past flights. If for a given flight this
degradation indicator exceeds a defined threshold, then a predictive alert is created.

The threshold value is defined and optimized per component by the Predictive Maintenance team and other
stakeholders so that the predictive alert is triggered Il days before the predicted failure time with a 100%
precision (No NFF events). When a predictive alert is triggered, it is sent to the Maintenance Control Centre
(MCC), which is composed of experts responsible for planning short-term maintenance. Upon alert reception,
the MCC experts value the degradation indicator trend of the alerted component, and if they agree that the
component is showing an abnormal behavior leading to failure, then the component is decided to be scheduled
for replacement. The next step is to verify that the 4Ms' are available (material, method, machine, and men).
If that is the case, then a spare part will be ordered, and the component will be scheduled for maintenance in
an available slot. Otherwise, the component will fail after some time and corrective maintenance policy will be
applied.

Prognostic tools must have a high confidence level in terms of precision to be accepted by maintainers [48].
The I PH was desired by MCC to add flexibility in short-term planning, but a higher PH may also provide
an acceptable level of precision while allowing for reduced repair costs and increased flexibility in spare part
planning.

"Term used in KLM E&M and other carriers to define the necessary conditions to perform a maintenance activity. It stands for Material,
Method, Machine, and Men
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Research Gap & Research Relevance

This chapter elaborates on the novelty and relevance of this research from an academic perspective and for
KLM E&M. To do so, the research gaps that were defined in the previous chapters are clearly identified. The
next step is to state and explain the main contribution that this study offers to fill these gaps.

6.1. Academic Perspective

Maintenance scheduling with prognostics has been widely studied, especially within the aviation industry (e.g.
[19, 20, 40, 42, 47, 53, 54, 67], etc.). However, some studies included prognostics that were derived from a
presumed or simulated degradation or reliability model [9, 12, 16, 22, 46, 54, 60, 70]. The lack of sensor data
in prognostics is not reliable as the actual component degradation may not be properly captured and therefore,
it would not be suitable for a real industrial application. Furthermore, there is little insight into how to include
prognostics uncertainties in the form of sensitivity, accuracy, and precision in a maintenance optimization model.
I. van de Hof [67], studies with a simulation the effect of different PHs and prognostic sensitivities in the output of
four different maintenance policies. However, the research did not develop an optimization model that considers
prognostics uncertainties in the scheduling task.

Regarding resources availability, there is a clear research gap, as it can be observed in Table 4.3 and Table
4.4. A common assumption is infinite maintenance capacity or infinite availability of spare parts [13, 20, 40,
42, 43, 54, 60, 68]. However, commercial airlines’ inventories are usually scarce due to the high spare parts
purchase and holding costs. In addition, aircraft maintenance can only be performed in specific slots which are
determined based on the aircraft operating schedule and available hangars. For this reason, studies that do not
consider the availability of resources fail to reflect an actual airline operation. Therefore, their models are not
suitable to be implemented in the industry due to the risk of resource stock-outs and AOG events. Moreover,
this research deals with repairable spare parts. There is a limited amount of studies that consider repairable
spare parts availability together with prognostics in maintenance scheduling optimization [53, 67]. On top of
that, none of them also considered the availability of maintenance slots as an input.

Component redundancy is also part of this research. As it was previously stated, redundant components are
usually labeled as k-out-of-N components, which means that the aircraft is operational provided at least k out of
the N components have not failed. Existing literature that also considers repairable spare parts [61-63] provides
relevant insights in deciding the minimum amount of failures to initiate maintenance, the number of components
to be replaced in a maintenance slot, and the priority replacement rules for degraded and failed components in
k-out-of-N systems. Nonetheless, these studies do not include prognostics and fleet-level optimization.

To sum up, there is not a research in literature that develops a model for maintenance scheduling optimiza-
tion for k-out-of-N systems that includes prognostics and the availability of maintenance slots and spare parts
that could be implemented in a commercial airline. From this perspective, the main contributions of this study
are:

» Developing an optimization model for maintenance scheduling of k-out-of-N systems that takes as input
prognostics from aircraft components, repairable spare parts stock level, and maintenance slots. Valida-
tion and verification with a case study in a commercial airline will be carried out to assure that the model
is suitable to be used in real operations.

» By considering prognostics uncertainties, this study provides valuable insights into how to incorporate
prognostics uncertainties in maintenance scheduling optimization models.

+ Providing additional knowledge in the potential benefits and drawbacks that the use of prognostics can
have for a commercial airline.
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6.2. KLM E&M Perspective

KLM E&M is carrying out a lot of investigation in predictive maintenance applications that allow for more efficient
maintenance. With the Prognos application developed by the Predictive Maintenance team of KLM E&M, some
unscheduled maintenance events and related technical delays are already being avoided, but there is little
insight in the whole range of capabilities that Prognos may have in maintenance scheduling. For example,
using Prognos in maintenance scheduling optimization can allow a more efficient inventory planning if the
demand for spare parts is properly distributed. Furthermore, there is a lack of knowledge of how prognostics
uncertainties should be taken into account in developing maintenance schedules.

In this framework, this research intends to:

+ Provide a tool for optimum aircraft maintenance scheduling that takes into account Prognos’ predictions
and resources availability information (spare parts and maintenance slots).

+ Provide insights into how Prognos inaccuracies should be taken into account in the optimization model.

+ Explore the potential benefits for KLM E&M that a more extensive use of Prognos can have in maintenance
planning.

» Provide an additional feature that could be implemented in Prognos, so that KLM and other potential
future customers can enjoy these additional benefits.
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Verification and Validation

The verification and validation process is needed to check the correctness of the developed model. The veri-
fication intends to check that the model is an accurate representation of the designed conceptual model. The
validation determines whether the model appropriately represents reality.

A.1. Verification

The verification of the developed model has two parts. The first one is a step-by-step testing and debugging
process while the second is a whole model test.

In the step-by-step process, the model was tested with a reduced fleet number and an increased frequency
of component failures. Whenever the output did not match the expected outcome of the designed model, the
implemented code was carefully reviewed and debugged. Furthermore, the model was checked by a data-
scientist specialized in Python, which is the programming language used.

In the whole model test, the model output was analyzed to study its consistency. For that purpose, two tests
were performed and a hypothesis was tested in each of them. The model was considered to be verified if both
hypotheses were proven to be true. The first test was to decrease the prognostic sensitivity. A lower number
of component failures are previously detected by the prognostic tool for lower sensitivity values. Therefore, the
expected outcome was that the model schedules less alerted components, leading to a reduction in repair cost
savings. The second test was to decrease the available number of spare parts. As fewer spares are available,
the expected model outcome was to have a reduced number of component replacements.

A.2. Validation

Even though Prognos’ alerts are already being used in KLM for maintenance scheduling, this practice only
relies on experts’ opinions. There is not a tool that optimizes component maintenance schedules that considers
Prognos’ predictions and availability of spare parts and maintenance slots information. Therefore, this makes
the developed model very difficult to validate. However, if the model is slightly adjusted, it can simulate the
prior situation at KLM before the beginning of the use of Prognos. In this way, there are two Key Performance
Indicators (KPI) that can be successfully validated: the number of replacements and the number of spare parts
leasings in a year.

Before Prognos was used, KLM had a corrective maintenance strategy. In k-out-of-N components, no
maintenance action was carried out until the aircraft had at least Il failed components. Once the aircraft
was scheduled in a maintenance slot, then x components could be replaced, ranging from | ENNRNRNRE.
This number depended in the amount of available spare parts at the maintenance slot time, meaning that as
many components as possible would be replaced if there were enough spares:

To simulate this corrective maintenance strategy, the model is adapted as follows. The prognostic sensitivity
is set to 0 and only the first stage of the optimization model (S1) is used. Besides, the first objective function is
changed such that more components are replaced if there are enough available spare parts.

The first objective function of the first optimization stage is modified for validation purposes as follows:

minz Z ~|v;- Z Xijm - C% +[Yi,,--CMEL-(t;fj—tMELi)+]+[n,j-csl"f(t;fj)] (A1)

i€l t}fjeti Cinec;
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A new cost factor €Y% is added, being €9 < ¢4 < CMEL, CLf | In this way, more components are scheduled

for replacement in critical aircraft if spare part leasing is not required.
To validate the number of leasings KPI, the spare level before the use of Prognos is used as input.
As Ngpares,, N€eds to be an integer, a Monte Carlo simulation is performed with the rounded upper and

lower values. The following validation results are obtained in a period of 365 days.

N Number of component | Number of component | Number of spare Number of spare
Sparesval replacements KLM replacements output | part leasing KLM | part leasing output

[Nsparesyq ) - -3.636% 0 1.1

[Nspares,q; - -1.727 % 0 0.1

Table A.1: Validation results

Table A.1 shows that the number of replacements in a year differs by 3.6% and 7.7% for a spare level of
[Nsparesyq ] @Nd [Ngpares,,, 1, respectively. Regarding the number of leasings, a spare level of [Ny 4yes,,, | gives
an outcome that is closer to reality. However, it should be noticed that in a real operation KLM has a spare
aircraft that can be used to cover the flight schedule when there is any disruption, such as a stock-out event.
This would explain why this KPlI model outcome is slightly higher compared to the real value. Overall, the
results are quite close to reality, so it can be said that the model is successfully validated.




Sensitivity Analysis (additional work)

This section continues to elaborate on the sensitivity analysis introduced in Part |. Here, we study the impact
in the long-run performance of the prognostic sensitivity, the TAT, and the TAT as a function of the component
health state.

B.1. Impact of prognostic sensitivity
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Figure B.1: Impact of s on the costs associated with S2, Figure B.2: Impact of s on the performance of S2, analyzing a
analyzing a period of 365 days. period of 365 days.

As the prognostic sensitivity increases, more component failures are previously highlighted with predictive
alerts. Therefore, the number of component replacements increases with sensitivity (see Figure B.2). Also,
because more alerted components are replaced, the repair cost savings are greater for higher sensitivity values.
There is a point at which the improvement in repair cost savings does not compensate for the increase in repair
costs due to more replacements. This occurs at a sensitivity value of 0,8 (see Figure B.1).

Finally, an enhanced failure prediction due to higher prognostic sensitivity has a favorable effect on the MEL
costs by avoiding some unexpected component failures leading to MEL violations, reaching even a value of 0
costs when s = 1.
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B.2. Impact of TAT
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The results show that the effect of TAT is very similar to the number of spare parts, but they are opposite.
Reducing the TAT is comparable to increasing the number of spare parts. Therefore, the impact of lower TATs
is the increase in the number of replacements, and consequently, the repair cost savings.

The MEL costs are improved for lower TATs because by increasing the number of replacements, some
component failures leading to MEL violations are avoided.

As a last remark, lower TATs also reduce the spare part leasing costs.

The fact that the impact of lower TATs is similar to an increase in spare levels can be considered as a
major benefit. It would avoid multiple component purchases, which sometimes are not even possible due to
the scarcity issues of some aircraft components.

B.3. Impact of TAT as a function of the component health state

One of the benefits of using prognostics is that the TATs can be reduced. Lower degradation levels require
shorter repair times [48]. Besides, diagnosis and prognosis also allow for easier fault troubleshooting [28, 36].
In this section, we assume that the TAT is a deterministic value that depends on the component health state.

TATf, if H(Ci,n' to) =2
TAT,, if H(cin to) = 1

The value of TAT; remains the same as TAT in the previous sections.

TAT ={ (B.1)
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Figure B.5: Impact of TAT, on the costs associated with S2, Figure B.6: Impact of TAT, on the performance of S2,
analyzing a period of 365 days. analyzing a period of 365 days.

The results are quite similar to the previous section. They show that the number of replacements slightly
increases for lower TAT,. Due to the increment in replacements, the repair cost savings raise as well.
There is also a reduction in the MEL violation costs and leasing costs for lower values of TAT,,.



Operational implementation

This chapter provides some guidelines on how the proposed model should be implemented in KLM E&M and
it proposes additional suggestions for improvement of the current and future practices within the company.

C.1. Model implementation for the CU component

Based on the long-run model results, the best strategy to follow to minimize the MEL violation, spare part
leasing, and repair costs seems to be Strategy 2 (S2). This policy includes the first and second optimization
stages: critical aircraft and non-critical aircraft with predictive alerts. Critical aircraft in the CU component
include aircraft with 3 or more either failed or alerted components, and aircraft with 2 failed components. The
group of non-critical aircraft with predictive alerts are defined by aircraft with 1 or 2 alerted components.

In terms of spare parts and maintenance slots, an actual estimation of the inventory stock level from Com-
ponent Services could be included in the model to accurately estimate the number of available spare parts at
every time. In addition, updated information on the available maintenance slots from MCC could be included
as an input too.

In this way, a new feature could be implemented in Prognos by including the proposed model and the previ-
ously indicated inputs. The new functionality would be able to make recommendations to MCC and other user
customers regarding the most optimal maintenance schedule based on component prognostics, the current
inventory levels, and the available maintenance slots.

C.2. Recommendations for current practices

Based on the sensitivity analysis results, some recommendations for the improvement of the current practices
can be made. However, these suggestions are subject to the veracity of the taken assumptions.

C.2.1. Spare parts stock

In terms of spare parts stock, the current scenario seems to be quite close to the optimal. KLM provides MRO
services to other airlines, meaning that the spare parts are not only going to be used by KLM, but also by the
rest of the customer airlines. For this reason, Ng,,.; Was estimated using the proportion of the number of
components ready to be installed in the warehouse at which the supply chain is aiming, times the ratio of 787s
from KLM and from the rest of airline customers in the pool. Therefore, to increase Npqres by 1, the supply
chain department should aim to have [l additional spare parts ready to be installed in the warehouse, which
could be achieved by either purchasing them or increasing the repair rate. The total costs would be reduced by
6.78% per year, which would not compensate for the high cost of either purchasing [ll components or increasing
the man-hours to raise the repair rate. In addition, the B787 components have scarcity issues, so purchasing
so many components might not be feasible either. Moreover, it should be noted that the estimation of Ny 4,5 is
an assumption and the complexity of the supply chain system is higher than the one assumed for this research.
Multiple inventory locations, component shipping times, demand from other airlines, and stochasticity of repair
times should be included in the model for a more accurate conclusion.

C.2.2. Prognostic Horizon
In terms of the prognostic horizon, a PH higher helps to enhance the inventory planning flexibility, particularly

if % = 1. This flexibility is shown by slightly increasing the number of replacements and reducing the spare

part leasing costs. Moreover, the greatest benefit appears to be the increase the repair cost savings due to
lower component degradation levels. For example, a PH of 35 days would increase the repair cost savings by
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97.89%. However, such a high PH value would also increase the wasted component useful life. Therefore, a
PH of Il days seems to be the best option. However, this claim is subject to the veracity of the assumption
about the linear relation between the component repair costs and the degradation level. The current available
historical data is not enough to build a reliable function between the repair costs and the degradation level.
Therefore, this assumption should be reviewed in the future when more failure cases data becomes available.

C.2.3. Prognostic sensitivity

Focusing on the prognostic sensitivity, higher sensitivity values increase the number of replacements as well as
the repair cost savings. However, there is a point at which the improvement in the repair cost savings does not
compensate for the increase in repair costs due to the additional replacements. Therefore, the optimum value
in terms of minimum total costs seems to be around s = 0.8. However, it should be noted that a sensitivity of
s = 1 would also eliminate the MEL costs. A solution to benefit from both aspects could be to set a threshold in
the minimum repair cost savings to perform a component replacement. Fewer component replacements would
be performed with s = 1, decreasing in this way the repair costs, while the MEL costs would remain the same.

C.2.4. Turn-Around Time

Finally, a reduction in the TAT can have the same effect as higher inventory stocks. The effect of the TATs
belonging to replacements initiated by predictive alerts (Section B.3) has of course a lower impact compared
to the effect of changing all the TAT's (Section B.2). Nevertheless, it is more feasible from an operational per-
spective that the TAT of replacements initiated by predictive alerts can be reduced due to less troubleshooting
times. If TAT, is reduced to [l days (Il reduction compared to TATy), the effect seems to be quite sim-
ilar to increasing Ng,qres by 1. This increased planning flexibility can be considered as a major benefit due to
the previously mentioned scarcity issues of the B787 components. In addition, this would allow to reduce the
serviceable stock level or maybe even borrow some of it to third party airlines for additional income.

As a last remark, it should be noted that these optimal parameters are found by changing a single parameter
and assuming that the rest of them remain unchanged. This can be not true for some cases, such that the
prognostic horizon and the prognostic sensitivity, which may be dependent on each other.



Conclusions and future work

This last chapter elaborates on the benefits of predictive maintenance that could be observed in this research
and potential additional advantages from different perspectives within KLM. Finally, it provides some sugges-
tions for further research.

D.1. Benefits of PdM

A comparison with the traditional corrective maintenance policy was not carried out as it was overlapping with
previously carried researches within the company. However, the potential benefits of PAM could be already
observed. The relevance of incorporating and extending the developed model within KLM can be analyzed
from the perspective of the warehouse, the repair shop, and airframe operations departments.
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Figure D.1: Relation (simplified) between repair shop, warehouse, and airframe operations departments.

D.1.1. Relevance from the warehouse perspective

In this research, it has been proved that from a warehouse perspective, integrating Prognos inputs in mainte-
nance decision making helps to enhance the inventory planning flexibility by decreasing the component stock-
out events.

The use of prognostics can allow a reduction in the TAT due to lower repair and troubleshooting times.
This was not included in the scope of this research, however, it has been proved that lower TAT have a similar
impact as having a greater inventory stock. This can be considered as a major benefit, especially for those
components with scarcity issues, such as those for the B787. In addition, this would allow to reduce the
serviceable stock-levels or maybe even borrow them to third party airlines for additional income.

Moreover, it may be also beneficial to include Prognos predictive alerts to the warehouse department such
that it becomes more “proactive”. A shift from a "reactive” to a "proactive” warehouse could suppose a more
efficient use of the serviceable stock levels. Reducing the number of unscheduled component removals allows
to schedule the component deliveries to avoid peak removals. In this way, the on-hand serviceable stock could
be sent to other airline customers which would also help to reach the desired service levels. Similarly, KLM
E&M could also borrow some of the serviceable stock to third party airlines for additional income.

Besides, a more "proactive” warehouse could gain time flexibility in two different aspects. The first one is
that components could be shipped from another location if there are no spares available at the scheduled time
of replacement. This would increase the number of component replacements and help to further reduce the
stock-out events. The second aspect is related to the agreed shipping times for unscheduled and scheduled
removals. For some operators, KLM E&M has [IIIIll to deliver a MEL C component, whereas it has | IR
for a scheduled request. If the number of unscheduled removals is converted into scheduled using Prognos,
KLM would be buying itself more time to deliver the components on time, thereby increasing its service level
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and customer satisfaction. At the same time, the number of urgent shipments would be reduced, also leading
to a delivery cost reduction.

D.1.2. Relevance from the repair shop perspective

It has been proved that integrating Prognos alerts in maintenance scheduling improves the component repair
cost savings. Particularly, avoiding compressor failure in the CU component dramatically reduces the repair
costs.

Moreover, lower degradation levels can also reduce the component repair times. The troubleshooting times
may be improved too as more context and specific information would be available, i.e., the predictive alert would
be triggered in a specific component, thereby reducing the time needed for diagnosis. A reduction in the repair
and troubleshooting times would enable a decrease in the TAT, which has major benefits from a supply chain
perspective as it was previously mentioned in the former subsection.

Furthermore, it would be beneficial that Prognos alerts are incorporated in the repair shop together with an
indication of the work scope of the component. This would allow a better resources and workload planning.

An additional potential advantage from the repair shop perspective is to use Prognos alerts for OEMs war-
ranty claims. OEMs will not accept warranty claims for premature removals, but in the future, Prognos may
be used as an additional proof of component degradation. However, this requires that Prognos models are
validated with OEMs.

D.1.3. Relevance from airframe operations perspective
It has been proved that integrating Prognos inputs in maintenance decision making helps to lessen the MEL
violation costs, which would turn into a reduction of hard costs, i.e. costs due to flight cancellations and delays,
as well as into an increase in the aircraft availability.

Apart from the hard costs, soft costs would be also reduced. Avoiding flight cancellations and delays en-
hances customer satisfaction, which also helps to increase the chances that these customers choose the same
airline in the future.

D.2. Suggestions for further research

In terms of the proposed model, it is suggested as future work that the model is extended to consider multiple
components, instead of a single component type. The same procedure should be followed for other k-out-of-N
components to analyze what is the most optimal strategy to follow within S1, S2, and S3.

Additional cost factors could be also considered, such as “"not fault found” (NFF), "labor cost”, or "wasted
component useful life” costs. NFF events can lead to less efficient maintenance planning as some healthy
components would be replaced, using a spare part that could be used for another more profitable replacement.
Considering labor costs can lead to group more component replacements in a single maintenance slot. The
cost of wasted useful life would reduce the benefit of using a high PH to reduce the repair cost savings.

Furthermore, multiple warehouse and repair shop locations as well as the demand from other airlines should
be further researched by including a more complex inventory system. As a last suggestion, the model should
include in the future real-time RUL and TAT estimations. However, that technology is not available yet.

In terms of the future scope of Prognos, it is recommended that KLM adopts a predictive maintenance policy
for as many components as possible, especially those having high repair cost savings potential and leading to
frequent MEL disruptions. It should be also assured that the ratio PH/MTTF is small such that the impact in the
wasted component useful life is not very significant. Furthermore, it should be guaranteed that the developed
prognostic models are as accurate as possible. The only way to successfully push towards a change into
predictive maintenance is by building a reliable tool with a low number of NFF events.

D.3. Final remarks

After carrying out this research, the final conclusion is that traditional corrective and preventive maintenance
policies should be replaced by predictive maintenance as long as safety is not compromised. New generations
of aircraft are being equipped with sensors that monitor the components’ health state. This, together with the
development of data science, is allowing the change from a "reactive” to a more "proactive” aircraft maintenance.
KLM should keep on pushing towards this change by investing in more advanced aircraft monitoring systems
and developing predictive models for more components. The Covid-19 situation has hugely affected the airline
industry in every aspect, which may affect the funding related to predictive maintenance. However, this situation
should be regarded as an opportunity to think about new prognostic models and ideas to implement. Predictive
maintenance is expected to have a major impact on the future of aircraft maintenance and KLM should enable
its development to keep its competitive advantage in the airline market when the situation comes back to
normality.
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