

Delft University of Technology

Liveness Checking of the HotStuff Protocol Family

Decouchant, Jérémie; Kulahcioglu Ozkan, Burcu; Zhou, Yanzhuo

DOI
10.1109/PRDC59308.2023.00029
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE 28th Pacific Rim International Symposium on Dependable Computing
(PRDC)

Citation (APA)
Decouchant, J., Kulahcioglu Ozkan, B., & Zhou, Y. (2023). Liveness Checking of the HotStuff Protocol
Family. In C. Ceballos (Ed.), Proceedings of the 2023 IEEE 28th Pacific Rim International Symposium on
Dependable Computing (PRDC) (pp. 168-179). IEEE. https://doi.org/10.1109/PRDC59308.2023.00029

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/PRDC59308.2023.00029
https://doi.org/10.1109/PRDC59308.2023.00029

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Liveness Checking of the HotStuff Protocol Family

Jérémie Decouchant, Burcu Kulahcioglu Ozkan, Yanzhuo Zhou
Department of Software Technology

Delft University of Technology
Delft, the Netherlands

J.Decouchant@tudelft.nl, B.Ozkan@tudelft.nl, Y.Zhou-21@student.tudelft.nl

Abstract—Byzantine consensus protocols aim at maintaining
safety guarantees under any network synchrony model and at
providing liveness in partially or fully synchronous networks.
However, several Byzantine consensus protocols have been shown
to violate liveness properties under certain scenarios. Existing
testing methods for checking the liveness of consensus protocols
check for time-bounded liveness violations, which generate a
large number of false positives. In this work, for the first time,
we check the liveness of Byzantine consensus protocols using
the temperature and lasso detection methods, which require the
definition of ad-hoc system state abstractions. We focus on the
HotStuff protocol family that has been recently developed for
blockchain consensus. In this family, the HotStuff protocol is
both safe and live under the partial synchrony assumption, while
the 2-Phase Hotstuff and Sync HotStuff protocols are known to
violate liveness in subtle fault scenarios. We implemented our
liveness checking methods on top of the Twins automated unit
test generator to test the HotStuff protocol family. Our results
indicate that our methods successfully detect all known liveness
violations and produce fewer false positives than the traditional
time-bounded liveness checks.

Index Terms—Byzantine consensus, Hotstuff protocols, Live-
ness checking, Lasso detection, Testing

I. INTRODUCTION

Byzantine fault tolerance (BFT) is a paradigm that gives

distributed systems the ability to tolerate a limited proportion

of arbitrary faults (i.e., Byzantine faults) such as equivocation

(i.e., sending conflicting messages to different nodes) and loss

of internal state. In particular, BFT consensus protocols aim

at solving the consensus problem among n nodes that might

include up to f faulty nodes. BFT consensus protocols aim

at ensuring the safety and liveness properties. Safety ensures

that the correct nodes always decide on the same value, while

liveness ensures that the protocol always eventually progresses.

Guaranteeing the liveness of a BFT consensus protocol

is a difficult and error-prone process. For example, 2-phase

HotStuff is a consensus protocol that Yin et al. discuss for

pedagogical purposes and that could initially be considered

live [1]. However, a particular scenario is shown to prevent

the system from making progress, as nodes alternatively vote

on two conflicting blocks. A similar attack called the force-

locking attack [2], breaks both the safety and the liveness

of a preliminary version of the Sync HotStuff protocol by

maliciously delaying messages. These examples of liveness

violations call for effective testing methods that will assist

researchers and developers in detecting and tracing them.

Previous testing works on consensus have mostly focused

on analyzing crash-tolerant protocols. For example, Jepsen

testing tool [3] simulates network partitions for distributed

systems, and it has detected several violations in the consensus

systems [4]–[6]. Twins [7] is one of the few testing systems

that have been specifically designed to test the safety of BFT

consensus protocols under Byzantine scenarios. Twins can

detect safety violations using scenarios that involve only a

few communication rounds. However, most existing testing

systems do not check for liveness violations, which require

the generation of infinite executions.

A common approach to finding liveness violations is to

check for bounded liveness, i.e., checking whether the prop-

erties are satisfied within a bounded amount of time[8], [9].

To do so, the programmer sets some bounds for an event to

happen and reports the executions that exceed the specified

thresholds. In the case of consensus protocols, correct pro-

cesses should accept the same value within a certain delay

or within a given number of execution steps. However, it is

difficult for developers to correctly estimate adequate bound

values, in particular in real-world production-level consensus

applications. Low bound values lead to false negatives while

using very large bound values incurs high running times.

Specific liveness testing methods have been proposed

for distributed systems. Temperature-based detection algo-

rithms [8], [10] maintain a temperature variable that is in-

creased each time the system transitions to a hot state, whose

definition is system-specific. The lasso detection approach [10]

relies on state caching to identify whether a system reaches

the same hot state multiple times and therefore discover

potential liveness violations. Little work has been done to

effectively apply these techniques to test liveness violations in

the blockchain consensus. In this work, we apply temperature

and lasso detection methods to test the liveness of BFT consen-

sus algorithms. We focus on the HotStuff family of protocols

that have been designed for Blockchain consensus, which

are sometimes called streamlined as they rely on a leader to

reach a linear communication complexity and use a lock-step

approach. We believe that our approach can be generalized

to all protocols that rely on views, and in particular to all

partially-synchronous protocols that rely on a leader [11]–[14].

In summary, this work makes the following contributions:

• We define the notion of partial state and hot state for

the HotStuff family of protocols, which are required for

168

2023 IEEE 28th Pacific Rim International Symposium on Dependable Computing (PRDC)

2473-3105/23/$31.00 ©2023 IEEE
DOI 10.1109/PRDC59308.2023.00029

20
23

 IE
EE

 2
8t

h
Pa

ci
fic

 R
im

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
D

ep
en

da
bl

e
C

om
pu

tin
g

(P
R

D
C

) |
 9

79
-8

-3
50

3-
58

76
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

PR
D

C
59

30
8.

20
23

.0
00

29

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

the implementation of the temperature and lasso detection

methods.

• Then, we present a variant of the lasso detection ap-

proach, which, differently from previous works, does not

use a controlled scheduling environment to check for the

existence of lassos.

• We also describe how to extend the Twins framework to

support the temperature and lasso detection methods for

the liveness testing of BFT consensus algorithms.

• We evaluate the performance of our testing methods

on state-of-the-art protocols from the HotStuff protocol

family and compare their accuracy to one of the classical

bounded-liveness checking methods.

This paper is organized as follows. Section II discusses the

related work. Section III provides some necessary background

on protocols from the HotStuff family and on liveness vio-

lations that have been described in the literature. Section IV

overviews the temperature and lasso-detection based liveness

checking methods. Section V provides the definition of hot

states for streamlined protocols and describes our extensions to

the liveness checking methods for these protocols. Section VI

discusses the implementation of our testing methods on Twins,

and Section VII presents our empirical evaluation. Finally,

Section VIII concludes the paper.

II. RELATED WORK

In this section, we discuss previous works on detecting

liveness violations in BFT consensus protocols and testing

BFT consensus systems.

Liveness violations in BFT consensus protocols: Berger

et al. [15] recently demonstrated how optimization of read-

only requests could lead to liveness violation in the seminal

PBFT protocol [16]. The scenario they discuss isolates a

subset of clients forever and disturbs the execution of the

voting and view-change protocols. It is also well-known that

network delays can thwart the progress of partially syn-

chronous algorithms. For example, a faulty leader in PBFT

can withhold its PRE-PREPARE message until a timeout

triggers a view-change, and the scheduler delays the receipt

of VIEW-CHANGE message, leading to the new leader always

having difficulty catching up with the latest progress [17].

The bouncing attack [18] permanently damages the liveness of

Casper FFG [19] under the partially synchronous model. This

attack is caused by malicious processes withholding or delay-

ing a proportion of votes, leading to two conflicting chains

alternately locking the current block. The preliminary version

of Tendermint suffers from a similar violation in [20] when

two different processes alternatively lock their own proposed

value at different heights. Amoussou-Guenou et al. further

exhibit this vulnerability in [21] with a complicated 7-round

scenario. We believe violations in Casper and Tendermint are

variants of attacks in the HotStuff family protocols. In [22], a

liveness attack on FaB is presented [23]. This attack is simple:

a faulty leader equivocates conflicting proposals and assembles

a quorum certificate conflicting with that contained in the

new-view messages. After a view change, the system is stuck

because it can not vouch for the conflicting values. Bravo et

al. [24] formally demonstrate that 2-Phase HotStuff can only

ensure liveness using a timeout mechanism within a view. The

leader should not make a new proposal until receiving the

information from all correct processes. Otherwise, the liveness

breaks as described in [1].

Testing BFT consensus: There is a large body of works that

propose new consensus algorithms, make them robust against

Byzantine faults [25], or model-check the correctness of con-

sensus algorithms [26]–[28]. In this section, we focus on the

most related work on testing BFT consensus implementations.

Several existing methods for testing consensus systems

focus on analyzing crash-fault tolerant protocols and exer-

cise different executions of the systems under asynchrony,

network faults, and crash process faults [29]–[31]. Targeting

BFT systems, BFTSim [32] explores the system’s behavior

under unexpected network conditions and faults using a net-

work simulator. Turret [33] detects performance attacks on

BFT systems by generating Byzantine attack scenarios with

malicious message deliveries, including message dropping,

delay, duplication, and diversion. Several works [34]–[36]

provide testing frameworks that can model and inject network

and Byzantine faults into the executions of BFT protocols.

Netrix [36] provides a domain-specific language and a con-

trolled networking environment that allows programmers to

specify restrictions on the generated executions or implement

their unit tests with network and Byzantine faults.

Twins [7] systematically generates test case scenarios with

Byzantine faults and explores them. It models Byzantine

behaviors using twin copies of the processes, i.e., processes

with the same identities and credentials. It runs the cluster

with twin replicas and network partition, where the twin

replicas exhibit Byzantine behaviors such as equivocation,

double voting, and loss of internal state, which causes them to

forget their voted values. Recent work ByzzFuzz [37] generates

test executions with randomly sampled network and Byzantine

process faults. It models Byzantine faults using small-scope

mutations to the original contents of the protocol messages

and randomly injects a parameterized number of mutations.

The goals of Twins and ByzzFuzz are orthogonal to our work:

they provide test case generation methods rather than methods

for checking liveness. Our liveness checking methods can be

incorporated into any testing framework to check the liveness

of the explored test executions. In this work, we implement

our methods on top of Twins, which already provide supports

for testing the HotStuff protocol [38].

III. THE HOTSTUFF PROTOCOL FAMILY

In this section, we provide an overview of three streamlined

blockchain consensus protocols: HotStuff, 2-Phase HotStuff,

and Sync HotStuff. Whenever relevant we also discuss the

liveness and safety issues that might affect them. These

protocols present different combinations of liveness and safety

properties, which are summarized in Table I, and allow us to

test our liveness checking methods.

169

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Communication phases of the HotStuff protocol.

A. HotStuff

HotStuff [1] is a leader-based BFT replication protocol

whose message complexity is linear with the number of

processes instead of quadratic as in PBFT [16]. To achieve

this goal, HotStuff’s normal case consists in four communica-

tion phases that involve leader-to-replicas or replicas-to-leader

communication, and its view-change procedure is embedded

in its normal case. Classically, HotStuff uses n = 3f + 1
processes to tolerate f faults and guarantees responsiveness

because the leader initiates the next phase when it receives

n − f equal votes and because an unresponsive leader leads

the replicas to initiate a view-change. HotStuff also mentions

using threshold signatures and pipelining its operations to

further improve its performance. Note that for simplicity, we

focus on the non-pipelined version of HotStuff, which is

called Basic HotStuff. The liveness and safety properties of

HotStuff have been proven in partially synchronous networks,

and testing our liveness checking tools on HotStuff allows us

to evaluate possible false positives.

HotStuff processes maintain and extend a chain of blocks

that contain user transactions that are initialized with a Genesis

block. All processes maintain the latest prepared and locked

blocks they know of. In a nutshell, HotStuff proceeds accord-

ing to five phases, which are illustrated in Figure 1. These

phases can be described as follows.

(1) New-view 1/2-phase. All processes send the latest prepared

block they know of to the leader.

(2) Prepare phase. The leader waits for 2f + 1 identical

prepared blocks and sends a propose message to all processes

that contain a block that extends it. All processes are expected

to vote for this new block by sending to the leader their

signature on it. In this phase, a process votes on a block if it

Protocol Safety Liveness

HotStuff [1] Yes Yes

2-Phase HotStuff [1] Yes No

Sync HotStuff [39] (early version) No No

TABLE I: Summary of the safety and liveness guarantees of

the three protocols from the HotStuff family that we consider.

Fig. 2: Example of a liveness violation in 2-phase HotStuff.

extends the latest block it locked (for safety) or if it originates

from a more recent view (for liveness).

(3) Pre-commit phase. The leader gathers 2f + 1 votes and

aggregates them into a quorum certificate, which it sends to

all processes. Upon receiving a quorum certificate, a process

marks the block as being prepared and sends its vote for this

block to the leader.

(4) Commit phase. The leader gathers a quorum certificate on a

prepared block and forwards it to all processes. Upon receiving

a quorum certificate in this phase, all processes mark this block

as being locked and send their vote for it to the leader.

(5) Decide 1/2-phase. The leader assembles a quorum certifi-

cate (i.e., a set of 2f + 1 signatures on a block) on a locked

block and forwards it to all processes. Upon receiving this

quorum certificate all processes execute the block.

B. 2-Phase HotStuff

2-phase HotStuff is a variant of Basic HotStuff that Yin et

al. discuss for pedagogical reasons in the original HotStuff

paper [1]. 2-Phase HotStuff is very similar to HotStuff and

only differs from it by the fact that it combines the Precommit

and Commit phases into a single phase. In 2-Phase HotStuff,

a process can lock on a block once it receives a quorum

certificate in the Prepare phase.

However, this modification prevents 2-phase HotStuff from

making progress in some particular scenarios, even though it

remains safe. In these problematic scenarios, different pro-

cesses lock on conflicting blocks and never get to execute any

or update their locks. More precisely, in each view, a subset

of processes locks on the block that is proposed while others

reject it, and view-changes that are triggered by network asyn-

chrony prevent sufficiently enough processes from adopting

the newest proposed block. Under these circumstances, the

system fails to progress and is stuck in an infinite loop.

Figure 2 illustrates one of these problematic scenarios with

four processes P1, P2, P3, and P4. Process P1 is faulty,

while the other processes are correct. The scenario this Figure

illustrates is the following. Originally, all processes are locked

on the same block B0 (e.g., the genesis block). In the first view,

process P1 is the leader and proposes a new block B1 only

to P3 and P4 in the Prepare phase, and then only sends the

170

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

(a) Steady case with 2 successive blocks B1 and B2. Block B1 is
committed by a process 2Δ after it votes on it.

(b) View change.

Fig. 3: Sync HotStuff’s steady case and view change proce-

dures.

quorum certificate it assembles to P3 in the Commit phase.

The messages that P1 omits to send are shown using dashes.

At the end of the first view, P3 is the only correct process to

lock on B1. In the next view, P2 is the leader. Processes P1

and P4 send block B0 on which they locked to P2, but P3’s

message, which contains block B1, is delayed (shown using

dashes). Consequently, P2 proposes a block B2 that extends

over B0 but is in conflict with B1 in the Prepare phase to all

processes. Eventually, processes P2 and P4 lock on B2 while

P3 rejects it and remains locked on B1. The system is then

deadlocked in future views if P1 remains silent because no

quorum of 2f + 1 processes can be assembled by any leader.

C. Sync HotStuff

Sync HotStuff [39] is a variant of HotStuff for synchronous

networks. Sync HotStuff uses a minimum of n = 2f + 1
processes to tolerate f Byzantine processes. Assuming that

the communication latency is bounded by Δ, Sync HotStuff’s

latency is bounded by 2Δ. Interestingly, Momose and Cruz’s

force-locking attack has shown that an adversary that controls

the faulty processes and the network delays can break both

the safety and the liveness of a preliminary version (eprint

20190312:115828) of Sync HotStuff [2]. In this work, we

discuss and focus on this early version of Sync HotStuff since

it allows us to evaluate whether our liveness checking methods

successfully detect its violations. Figure 3 illustrates the steady

case and the view change procedures of Sync HotStuff.

In the steady case, upon entering a new view, all processes

send their highest locked block to the new leader. After waiting

for an initial 2Δ period where it receives the highest locked

blocks from all correct processes, an honest leader broadcasts a

new block proposal that extends over the highest locked block

along with a quorum certificate for the highest locked block

to all processes. All honest processes subsequently broadcast

their vote on the leader’s proposal during the following round

and initialize a local 2Δ commit timer associated with this

proposal. If a process does not detect a conflicting block when

its commit timer expires, then it commits the block and all its

ancestors and otherwise drops it. While waiting for commit

timers to expire, the leader keeps proposing blocks, and

processes keep voting on blocks, which is shown with blocks

B1 and B2 in Figure 3a. In the steady case, an honest leader,

therefore, keeps proposing and committing blocks every 2Δ.

Whenever it votes on a block, a process resets a local blame

timer to 3Δ. A view change (Figure 3b) is triggered if a

process’s timer expires, if it refuses to vote on a block, or

if detects that the leader broadcasts conflicting blocks, then it

broadcasts a blame message. Upon receiving f + 1 blames, a

process broadcasts them and stops voting in view r, waits for

2Δ, and finally moves to view r + 1.

Momose and Cruz’s force-locking liveness and safety at-

tacks exploit the fact that processes keep processing the

messages they receive during the 2Δ period that follows the

reception of f + 1 blames. During this period of time, some

correct processes might receive a quorum certificate from a

leader. In that case, these processes are then forced to update

their locked blocks, while other honest processes might not

be able to do so. If different honest processes are led to lock

on conflicting blocks, then the system may never be able to

make progress in the future, in particular, if faulty processes

subsequently remain silent since no locked block can ever

collect enough votes.

The safety attack on Sync HotStuff builds on the situation

where honest processes have locked on different blocks. In

subsequent views, the adversary is assumed to be able to

leverage network delays and use the votes of the Byzantine

processes to lead different subsets of correct processes to

commit different blocks.

IV. LIVENESS CHECKING ALGORITHMS

Checking safety properties during the execution of a pro-

tocol is straightforward since we can check whether each

state that the system reaches violates them. Detecting liveness

violations is more difficult than detecting safety properties

since it requires finding an infinite execution that does not

satisfy the system’s properties. Existing testing approaches tar-

get the problem by either finding a sufficiently long execution

or finding a lasso, i.e., an execution that can visit the same

program state infinitely often.

In this section, we introduce two approaches that aim at

identifying liveness violations. The first one is bounded live-

ness checking (also referred to as temperature checking) [8],

[10] and lasso detection with partial state caching [10].

These methods build on the notion of a hot state, which

is a system-wide state in which the system does not satisfy

some of its properties or produce useful results. Intuitively, the

temperature-checking method reports a violation if the system

remains in a hot state for a long time. On the other hand, lasso

171

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

Input: Current state s
Input: Current trace trace
Input: Current temperature temp
Input: Temperature threshold TT
Output: Updated temperature value and trace

1 Procedure checkTemperature(s, trace, temp, TT)
2 if isHot(s) then
3 temp ← temp+ 1
4 if temp = TT then
5 reportViolation(trace)

6 else
7 temp ← 0
8 return temp, trace

Algorithm 1: Temperature checking.

detection methods detect the existence of a cycle of states

(i.e., a lasso) where the system can possibly get stuck forever

following its transitions.

A. Temperature Checking

Temperature checking checks for bounded liveness, which

means that it reports a violation if the execution does not

produce a useful result (i.e., produce a new block in the case

of blockchain consensus) for a specified amount of time. The

method maintains a temperature variable temp, which is equal

to the number of successive hot states the system remained in,

and it reports a violation if the temperature reaches a certain

threshold value TT provided by the programmer.

Algorithm 1 provides the pseudocode of temperature check-

ing. The checkTemperature(s, trace, temp, TT) method is

called whenever the system reaches a state s after executing a

sequence of system events trace. This function increments the

system’s temperature temp if state s is a hot state (line 3) and

resets it to 0 otherwise (line 7). Violations are detected when

the temperature reaches the temperature threshold (line 4), and

therefore directly depend on the value of parameter TT that

is provided by the user. A low threshold value might result

in a high number of false positives, while a high threshold

value leads to longer execution traces that are more difficult

to interpret.

B. Lasso Detection

Liveness checking based on lasso-detection aims at finding

a cycle of states (i.e., a lasso) where the system might get

stuck and repeat its state infinitely often.

Detecting lassos in the executions of distributed systems

is challenging because it is impractical to register the entire

state of complex software systems. However, one can rely on

the partial-state caching method [10]. This method captures

only part of the system state to check whether a partial state

is repeated during an execution. Since the state caching is

only partial, repeating the same partial state does not ensure

repeating the same state in the execution. The existence of

the cycle is then verified by replaying the execution of the

Input: Current state s
Input: Current trace Trace
Output: Updated trace

1 Procedure checkLasso(s, trace)
2 for i ← 0 to len(trace) do
3 if Hash(s) = Hash(trace[i]) then
4 C ← trace[i..len(trace)]
5 if isHot(C) then
6 if checkCycle(s, ..) then
7 reportViolation(trace)

8 return trace

Algorithm 2: Lasso detection.

detected trace using a controlled scheduler that enforces the

execution of certain events and traces.

Algorithm 2 details the partial-state caching algorithm.

Given an execution of a trace trace that has reached a system

state s, it checks whether the current execution may cause a

liveness violation. To do so, it uses a hash function Hash
to hash the partial state information, which ideally maps each

partial state to a different hash value. For each new state s that

is reached during the execution, it then checks if Hash(s) has

been seen earlier (lines 2 and 3). If it is the case, then it means

that a potential cycle in the state transition system has been

identified. The cycle forms a liveness violation if the states in

the traces do not satisfy the system’s properties, i.e., if all the

events e ∈ trace are hot. We overload the method isHot that

initially checks whether a state is hot to also check whether

a trace is made of hot states (line 5). If the algorithm finds a

cycle with a hot trace, it then verifies the existence of a real

cycle (line 6) and, if so, reports a liveness violation. Note that

differently from [10], we do not check for fairness because

we only require to observe the occurrence of a lasso to report

a liveness violation and do not need to check for a fair cycle

or for starvation.

V. LIVENESS CHECKING OF STREAMLINED PROTOCOLS

While the temperature and partial state caching methods

provide a practical solution for checking the liveness of soft-

ware systems, they are not directly applicable to blockchain

consensus systems for several reasons. First, there does not

exist a common notion of a partial state that captures rele-

vant information during the execution of blockchain systems.

Defining partial states is a delicate task. On the one hand, a

partial state that overly abstracts the system information may

fail at capturing essential state information and therefore suffer

from a high rate of false positives. On the other hand, a partial

state that would include too much information would not be

impractical with large software systems. Second, the notion

of hot state has not been defined for streamlined blockchain

systems and is required by the temperature and lasso detection

methods, which we aim to use. Finally, the lasso detection

method requires a controlled scheduler to check whether a

detected potential cycle is replayable. More specifically, it uses

172

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

the scheduler to enforce the system to run the sequence of

events that produced the detected cycle of system states; it

checks if the cycle is replayable and only reports a violation

if it is replayable. This makes the lasso detection method

difficult to apply for systems that do not have a controlled

event scheduler.

In this work, we address these issues by: (i) formulating a

partial-state definition that captures the essential state infor-

mation during the execution of a streamlined BFT consensus

algorithm; (ii) defining hot states, which are states that model

bad states, for streamlined BFT consensus; and (iii) using the

execution state space for checking the existence of lassos (i.e.,

state cycles).

A. Partial State in the HotStuff Protocol Family

Essentially, our partial process state encapsulates essential

information about the state of a process, which is modified

through the various phases of the protocol execution. However,

locked blocks are instrumental in known liveness violations. In

addition, executed blocks allow us to identify situations where

two locked blocks exist in the system, which is a necessary

condition for liveness bugs, but one has been executed, which

indicates progress. We, therefore, define partial process states

as follows.

Definition 1 (Partial process state):
We define the partial state s of a process p as a tu-

ple 〈H(bprepared), H(block), H(bexec)〉 where H(.) is a hash

function, bprepared is the last block that the process prepared,

block is the block that is locked by the process and bexec is

the last block it executed.

As a check, since the liveness of the HotStuff protocols (cf.

Section III) can be violated in the presence of conflicting locks

among the processes of a system, we verified that the protocol

variables we included in partial states allow the detection of

these liveness bugs. In the context of the HotStuff protocol,

the system’s state is defined as the set of states of all processes

within the system. It is worth noting that, for the purpose of

defining hot states, the state of the network channels may not

be necessary to include.

Definition 2 (Partial system state): The partial system state

is a vector 〈stateMap〉, where stateMap : P �→ S maps each

process p to its partial state Sp ∈ S.

Note that for performance reasons, we test whether two

states are equal based on their hashes. The hash of a system

state is computed once and stored along with it.

B. Hot State in the HotStuff Protocol Family

We define hot states for streamlined consensus protocols

based on their locking phase, where a node locks on a block

once it learns that a Byzantine quorum has committed to it.

Definition 3 (Hot state for streamlined protocols): We say

that a streamlined blockchain system is in a hot state if it

satisfies these conditions: (i) the correct processes hold at least

two locks on conflicting blocks; (ii) there is no locked block

on which a quorum certificate could be generated if all correct

processes that have not locked on a block decided to lock on

it; and (iii) a correct process has not executed a block.

Condition (ii) states that the processes are not able to gen-

erate a quorum certificate on one of the existing locked blocks

to reach consensus in this view, i.e., no locked block can

accumulate enough votes from processes that either already

locked on it or could lock on it (because they have not locked

a conflicting block). Condition (iii) guarantees that the system

does not execute a block and responds to the clients.

Given Definition 3, which provides a general definition of

hot states for streamlined blockchain protocols, one can easily

adapt the hot state definition for HotStuff, 2-Phase HotStuff,

and Sync HotStuff given their quorum certificate sizes (i.e.,

2f +1 for HotStuff and 2-Phase HotStuff, and f +1 for Sync

HotStuff).

Monitoring hot states: To check whether the system is

in a hot state, we use a liveness monitor, which keeps track

of the current state of the processes. In particular, we save the

hashes of the prepared (bprepared), locked (block), and the last

executed block (bexec) for each process, and we ignore other

variables.

For the temperature checking method, monitoring whether

the system is in a hot state and maintaining the temperature

variable to track the duration in which the system stays in a

hot state is sufficient to detect potential liveness violations. For

the lasso detection method, we additionally check whether the

system can stay indefinitely in a hot state.

C. Checking for Lassos

Different from the standard approach for lasso detection,

which detects cycles in the test executions and checks the re-

peatability of the cycle by trying to replay it, we use a different

approach in this work. The main difficulty in replaying a cycle

of system states is that it requires a controlled event scheduler,

which can enforce the execution of a particular event to

reach a certain system state in the execution. However, most

distributed systems and testing frameworks do not have a con-

trolled environment. For example, the Twins framework [7],

which we use in this work, runs test execution scenarios

with particular network faults and Byzantine behaviors, but

it cannot control the execution of the protocol at the message

granularity. Therefore, it cannot enforce the execution of a

given schedule of events to check whether some detected cycle

can be replayed. However, it is still possible to observe the

states that the system reaches.

In this work, we check for lassos on the state transition
graph of the system, which increases the likelihood of de-

tecting potential cycles of states reachable in the executions

and also does not require a controlled scheduler. We construct

the state transition diagram using the information we collect

in the test executions we run on the system. During each

test execution, we collect the state reachability information

about the observed (partial) states and build a state transition

graph. Starting from the initial system state, we observe the

173

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

S0 S1 S2

S0 S1 S2G1

update

G2

S2 S1

match

Fig. 4: Updating the state transition graph after running a test

execution.

system states that are reached after running a round of the
protocol. The execution of the protocol gives us a sequence of

system states, where we transition from one state to another

by running a protocol round.

We maintain a single state transition graph G = 〈S, T 〉
where S keeps the set of observed system states and T
corresponds to the transitions between these states. The graph

contains an edge from states s1 to s2 if we observed a

transition from state s1 to s2 during one of the test executions.

The state transition graph summarizes the set of states and

the transitions between them that are encountered in a set of

executions. We update the graph after each test execution with

information about the new states and transitions. We made the

choice of maintaining a single transition graph to increase the

chances of observing a cycle. However, this choice implies that

correctly identifying a cycle does not mean simply reaching a

previously observed state since it does not necessarily create

a cycle in the graph. Therefore, cycles have to be explicitly

searched for in our state transition graph. It is sufficient to

search for cycles after the state transition graph has been

updated by all executions.

Figure 4 illustrates the state transition graph, its mainte-

nance, and the appearance of a cycle in a simple example. In

this example, a state transition graph G1 keeps three system

states S0, S1, and S2, and their state transitions. Assuming

that we run an additional test execution in which we observe

that the system moves from S2 to S1, then we extend the

graph by adding an edge from S2 to S1. The resulting graph

G2 contains a cycle between states S1 and S2, which is a

potential lasso in the execution.

VI. IMPLEMENTATION DETAILS

We now discuss our implementation of the checking meth-

ods and how we modified existing frameworks to test the

liveness of HotStuff, Sync HotStuff, and 2-Phase HotStuff.

A. General Settings

We built our experiments on top of the relab/hotstuff
framework1. This framework provides a useful set of auxiliary

modules, such as digital signatures and encryption algorithms,

and also provides some support for deploying distributed

experiments via SSH.

We generate the test executions using the Twins [7] frame-

work. We extended the Twins framework for our evaluation as

follows. First, we implemented the 2-phase HotStuff and Sync

HotStuff protocols based on the consensus interfaces provided

by the Twins framework. We rely on the implementation of

HotStuff which is provided by Twins. Note that Fast Hot-

Stuff [40] is also implemented in Twins. We do not consider

Fast HotStuff in our experiments because it would be redun-

dant with the use of HotStuff’s: the liveness of both protocols

has been demonstrated. Second, we implemented additional

functions to capture the system state and maintain the state

transition diagram. Our implementation of the state transition

diagram is thread-safe to support the parallel execution of

test scenarios. Third, we extended the testing framework to

generate and execute scenarios that can introduce message

delays in the test executions. We used message-delaying test

cases to test the executions of the Sync HotStuff protocol,

whose correctness depends on the timing of the delivery of

the messages. Finally, we implemented the temperature and

lasso detection methods for checking liveness.

B. Implementation of Sync HotStuff

Among the protocols on which we apply our liveness-

checking methods, Sync HotStuff is the only one that cannot

be directly simulated on top of Twins, since it does not rely

on a lock-step process. More specifically, in the steady state, a

leader in Sync HotStuff keeps proposing blocks every 2Δ until

any equivocation or network delays prevent progress. How-

ever, a Twins scenario requires a new leader to be specified for

each view, while Sync HotStuff’s steady operating mode uses

a leader until a view-chance occurs. Therefore, we simulate

Sync HotStuff on top of the view mechanisms that support the

HotStuff protocols.

C. Extending Test Scenarios with Message Delays.

The force-locking attack on Sync HotStuff is possible

when messages can suffer from network delays (i.e., out-

side of the strictly synchronous network model). However,

Twins does not support test scenarios with message de-

lays and cannot detect these attacks. We extended Twins

to generate test execution scenarios that delay the deliv-

ery of messages. To trigger the force-locking attack, we

inject message delays into the scenario generator. We ran-

domly delay Propose messages with delays that belong in

[0, 1
2Δ, 1Δ, 3

2Δ, 2Δ, 5
2Δ, 3Δ] and delay Vote messages with

delays that belong in [0, 1
2Δ, 1Δ, 3

2Δ, 2Δ]. These values are

chosen so that the delay of a Propose message does not

exceed the value of starting a blame timer (3Δ), otherwise,

1https://github.com/relab/hotstuff

174

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

Protocol Rounds Tmean (s) Tstd (s)

2-Phase HotStuff
10 0.759 0.351

20 2.194 1.398

HotStuff
10 0.838 0.245

20 2.813 0.919

Sync HotStuff
10 3.100 1.062

20 4.156 2.151

TABLE II: Execution time of a unit test scenario in seconds

under various configurations.

the proposal is dropped. The delay of a Vote message does

not exceed the value of the commit timer (2Δ), otherwise,

the votes are too late, equivalent to Blame, and the leader can

never collect a quorum of votes.

VII. PERFORMANCE EVALUATION

We check the liveness of HotStuff, Sync HotStuff, and

2-Phase HotStuff by running a set of test executions and

using the temperature and lasso detection methods to detect

liveness violations in these executions. Then, we compare the

performance of the temperature and lasso detection methods

to a baseline bounded liveness checking method.

A. Test Executions

For the generation of test executions, we used the test

scenarios generated by the Twins framework for the HotStuff

family of protocols. We ran the test executions and checked

their liveness using HP ZBook-Studio-G5 with a 2.6 GHz Intel

Core i7 (12 cores), 16 GiB memory, and a UHD Graphics 630.

Table II provides the time required for Twins to execute

a unit test that involves 10 or 20 blocks with HotStuff and

Sync HotStuff. For each configuration, we randomly selected

and executed 1.000 Twins unit test scenarios and report the

average. All the scenarios are configured with 2 network

partitions, 4 honest processes and 1 Byzantine (twin) process,

and are executed for 10 or 20 rounds (blocks). For HotStuff,

we apply a fixed network delay of 10 ms. For the execution of

Sync HotStuff, we set Δ to 50 ms. The table lists the average

execution times Tmean and the standard deviations Tstd for

each protocol and number of blocks. The times required to

execute a scenario with Sync HotStuff are larger than those of

2-Phase HotStuff and HotStuff since Sync HotStuff requires

the use of longer network delays and malicious delaying by

the adversary. For example, with 20 blocks, Sync HotStuff

requires 4.156 s to execute a scenario, while 2-Phase HotStuff

and HotStuff respectively require 2.194 s (47% less) and

2.813 s (32% less).

B. Time-Bounded Liveness Checking

As a baseline, we checked the bounded liveness of the

consensus algorithm executions using a time bound. This

method takes a time bound parameter from the programmer

and reports a potential liveness violation if the system does

not reach a consensus within the given specified delay.

The effectiveness of the time-bounded liveness checking

method depends on the actual value of the time-bound param-

eter chosen by the programmer. In our evaluation, we selected

three representative bound values per protocol based on its

expected normal case execution time, which we have presented

in Table II. We utilized different values for the time-bound

parameter: i) a small bound value Tsmall = Tmean; ii) an

intermediate bound value Tmid = Tmean+Tstd, which covers

84% of the values of a normal distribution; iii) a large bound

value Tlarge = Tmean+2Tstd, which covers 98% of the values

of a normal distribution.

For a given time-bound parameter value, an execution is

expected to reach consensus before the time-bound and, if

not, will be associated with a potential liveness violation.

Consequently, one can expect that increasing the value of the

time-bound parameter decreases the number of false positive

liveness violations, but it also increases the computational

overhead. Selecting the right time-bound value is, therefore, a

delicate process.

C. False positives

False positive liveness violations can be detected based on

the analysis of the replicas’ local variables, such as their

view number, prepared blocks, and locked blocks. However,

the analysis of the remaining positives requires a thorough

manual evaluation of the execution by developers. Indeed, this

analysis is not straightforward, because network partitions and

message drops might prevent the processes’ view numbers to

not be synchronized. We observe that the identification of false

positives consists in distinguishing whether there are really two

conflicting chains in the system so that it can no longer make

progress.

In our evaluation, we consider an execution to be a false

positive if it does not disallow progress, that is, if the execution

does not keep two conflicting locked blocks in the distributed

processes, or if there are two locked blocks such that one is

extending the other.

D. Checking HotStuff’s Liveness

Table III lists the results of testing the HotStuff protocol

with 10,000 randomly selected Twins test scenarios for 10 and

20 rounds and checking the liveness of the executions using

the temperature and lasso-detection based methods, along with

the baseline time-bound checking. The columns show the

value of the threshold parameter (temperature threshold for the

temperature method and time threshold for the time-bounded

checking method), the total runtime to run the tests (in

seconds), the average number of rounds to report a violation

(or a dash ”-” if there are no violations), and the ratios of safety

and liveness violations detected in the executions. For the

safety property, we checked the agreement of the processes by

comparing their executed blocks. For the liveness property, we

used time-bound and temperature methods to check whether

consensus is reached within a bounded duration of execution

(bounded by temperature and time, respectively) and the lasso

detection method to check whether the system can stay in a

175

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

Rounds Method Threshold Time Trace length
% Safety
violations

% Liveness
violations

% False
positives

10

Temperature 5 17 min 3 s - 0 0 0

Lasso detection - 17 min 16 s - 0 0 0

Small-Timeout 0.8s 14 min 50 s 8 0 98.8 100

Mid-Timeout 1.2s 20 min 23 s 9 0 96.4 100

Large-Timeout 1.6s 31 min 43 s 10 0 94.3 100

20

Temperature 5 52 min 26 s - 0 0 0

Lasso detection - 57 min 3 s - 0 0 0

Small-Timeout 2.8s 48 min 43 s 15 0 95.7 100

Mid-Timeout 3.8s 1 h 5 min 12 s 18 0 94.1 100

Large-Timeout 4.8s 1 h 19 min 34 s 20 0 90.6 100

TABLE III: Liveness and safety violations detected with the temperature checking, lasso detection, and bounded liveness

methods on executions of the HotStuff protocol.

Rounds Method Threshold Time Trace length
% Safety
violations

% Liveness
violations

% False
positives

10

Temperature 5 16 min 25 s 9 0 0.23 0

Lasso detection - 16 min 19 s 8 0 0.42 0

Small-Timeout 0.8s 14 min 21 s 8 0 77.8 98.2

Mid-Timeout 1.2s 19 min 44 s 9 0 74.6 94.5

Large-Timeout 1.6s 30 min 11 s 10 0 58.6 88.6

20

Temperature

5 51 min 13 s 12 0 1.92 0

10 53 min 30 s 17 0 0.74 0

15 54 min 2 s 20 0 0.17 0

Lasso detection - 52 min 26 s 13 0 2.04 0

Small-Timeout 2.2s 38 min 52 s 12 0 78.8 97.6

Mid-Timeout 3.6s 59 min 12 s 16 0 66.4 90.4

Large-Timeout 5.0s 1h 20 min 33 s 20 0 46.5 77.9

TABLE IV: Liveness and safety violations detected with the temperature checking, lasso detection, and bounded liveness

methods on executions of the 2-Phase HotStuff protocol.

cycle of hot system states and therefore does not satisfy its

property.

For the temperature method, we estimated a temperature

threshold equal to 5 rounds, i.e., we report a violation if

the system states in a hot state for 5 rounds. We use the

same temperature threshold for 2-Phase HotStuff and Sync

HotStuff protocols. With this temperature threshold value, the

temperature-based and the lasso detection-based methods did

not report any violations for HotStuff (i.e., 0 in the safety and

liveness violations columns).

On the other hand, the time-bounded liveness checking

baseline reported many potential liveness violations, where the

executions could not reach a consensus in the given amount

of time. The results for time-bounded liveness checking show

that using a small timeout reports a lot of violations. For

example, with 20 rounds and the small timeout value, the time-

bounded liveness checking method reported that 78.8% of

the executions contain liveness violations. However, 97.6% of

those are false positives where consensus has not been reached

within the allocated number of rounds because of network

partitions. In fact, it is very likely that the Twins test generator

produces scenarios that cannot gather a quorum of votes

because of network partitions and lack of leader replacement.

Most of such test scenarios have not even completed their

executions before timing out, and then they are labeled as

violations. Albeit fewer, using a larger timeout bound still

leads to reporting a high number of false positive liveness

violations in which the system does not even enter a hot state.

For example, still with 20 rounds, using the large timeout value

decreases the proportion of executions that contain liveness

violations to 90.6%. Overall, time-bounded checking reports

them as potential liveness violations since these scenarios

cannot reach a consensus due to frequent network partitions.

E. Checking 2-Phase HotStuff’s Liveness

Table IV lists the results we obtained by executing randomly

selected unit test scenarios on 2-Phase HotStuff, which is

known to violate liveness in certain scenarios.

Similar to the results for HotStuff, we observe that time-

bounded liveness checking methods provide a higher amount

of false positives than temperature and lasso-based methods.

To evaluate the effect of the temperature value on the amount

176

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

Rounds Method Threshold Time Trace length
% Safety
violations

% Liveness
violations

% False
positives

10

Temperature 5 6 min 54 s 7 3.1 1.8 2.2

Lasso detection - 6 min 38 s 6 2.6 1.3 2.6

Small-Timeout 3.1s 5 min 49 s 7 0.3 33.6 96.4

Mid-Timeout 4.1s 6 min 41 s 8 2.5 32.4 92.7

Large-Timeout 5.1s 8 min 37 s 10 2.6 20.7 84.8

20

Temperature

5 8 min 36 s 9 1.7 1.9 3.6

10 9 min 4 s 14 1.1 0.5 0

15 9 min 12 s 18 0.7 0.1 0

Lasso detection - 8 min 42 s 8 2.1 1.6 3.4

Small-Timeout 4.2s 7 min 2 s 7 0 34.2 95.3

Mid-Timeout 6.4s 10 min 24 s 15 0.3 24.2 91.2

Large-Timeout 8.6s 14 min 9 s 20 1.6 16.7 81.2

TABLE V: Liveness and safety violations detected with the temperature checking, lasso detection, and bounded liveness

methods on executions of the Sync HotStuff protocol.

of reported false positives, we ran the tests for a varying

number of temperature bounds (5, 10, 15) and checked if

the system execution can reach those temperature bounds in

the execution of 20 rounds. We observed that increasing the

temperature threshold increases the required time to complete

the test executions while it reduces the amount of reported

false positives. For example, replacing the small timeout by the

large timeout with 20 rounds increased the computation time

from 38 min 52 s to 1 h 20 min 33 s, and reduced the proportion

of false positives from 97.6% to 77.9%. Similarly, the time

taken for the time-bounded checking also increases with the

time-bound. For the lasso detection method, the execution time

does not depend on a predefined bound but on the execution

time of the test case together with the time required for cycle

detection.

F. Checking Sync HotStuff’s Liveness
Table V shows the execution results of testing Sync HotStuff

(eprint version 20190312:115828) with Δ = 50ms. Our

findings are mostly identical to the observations we made with

HotStuff (Table III) and 2-Phase HotStuff (Table IV). One

significant difference, however, is the fact that this version of

Sync HotStuff can violate both safety and liveness in certain

test scenarios. For example, we found that the lasso detection

method identified that 2.1% and 1.6% of the executions respec-

tively contained safety and liveness violations with 20 rounds.

Additionally, we have observed slightly more false positive

liveness violations in Sync HotStuff than with HotStuff and

2-Phase HotStuff. We believe that this higher false positive

rate comes from the adaptations we had to make to run Sync

HotStuff on top of Twins.

G. Discussion
The resource consumption of all methods are reasonable.

For example, all experiments used less than 65 MB of memory,

and consumed around 12% of a 2.6 GHz Intel Core i7 CPU.
More importantly, time-bounded liveness checking intro-

duces a significant number of false positives when applied to

streamlined protocols, as compared to temperature-based and

lasso-based techniques. We find that using a small timeout

for liveness checking is not practical, as it fails to detect

actual violations; rather, it detects a considerable number of

false positives. Even when increasing the timeout duration

to a larger value, the rate of false positives remains high,

and the execution time significantly increases. In contrast,

temperature-based and lasso-based techniques utilize the con-

cept of hot states to detect the occurrence of a violation,

making them more precise and reducing the likelihood of false

positives.

VIII. CONCLUSION

We have investigated the existing liveness violations in

streamlined Byzantine consensus protocols, and more specifi-

cally, in the HotStuff protocol family. We found out that exist-

ing time bounded checking methods generate a high number of

false positives. To overcome this limitation, we have adopted

temperature and lasso-detection liveness-checking techniques

to streamlined Byzantine consensus protocols, for the first

time. We focused on the HotStuff protocol family and propose

necessary definitions of system state abstractions (namely

partial and hot states). Our approach can be generalized to

other BFT consensus protocols. Furthermore, we demonstrate

that the implementation of our methods on top of the Twins

testing framework successfully detects the liveness violations

in 2-Phase HotStuff and in an early version of Sync HotStuff.

Both the temperature and the lasso-detection methods are

shown to be practical for the liveness-checking of blockchain

consensus algorithms. Our results indicate that these methods

identify liveness violations with fewer false positives than the

time-bounded liveness checking baseline. However, adequately

selecting the threshold of the temperature-based method is a

delicate task that can lead to false positives or high computa-

tional overhead, while lasso detection might be more memory

intensive for complex systems.

177

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and

I. Abraham, “Hotstuff: BFT consensus with linearity

and responsiveness,” P. Robinson and F. Ellen, Eds.,

pp. 347–356, 2019.

[2] A. Momose, “Force-locking attack on Sync HotStuff,”

IACR Cryptol. ePrint Arch., p. 1484, 2019.

[3] R. Majumdar and F. Niksic, “Why is random testing

effective for partition tolerance bugs?” Proc. ACM Pro-
gram. Lang., vol. 2, no. POPL, 46:1–46:24, 2018.

[4] K. Kingsbury. “Jepsen tests for cassandra 2.0.0.” (),

[Online]. Available: https://aphyr.com/posts/294-call-

me-maybe-cassandra.

[5] K. Kingsbury. “Jepsen tests for etcd 3.4.3.” (), [Online].

Available: https://jepsen.io/analyses/etcd-3.4.3.

[6] K. Kingsbury. “Jepsen tests for tendermint 0.10.2.”

(), [Online]. Available: https : / / jepsen . io / analyses /

tendermint-0-10-2.

[7] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li,

A. Ching, and D. Malkhi, “Twins: BFT systems made

robust,” in 25th International Conference on Principles
of Distributed Systems, OPODIS 2021, December 13-
15, 2021, Strasbourg, France, Q. Bramas, V. Gramoli,

and A. Milani, Eds., ser. LIPIcs, vol. 217, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 7:1–

7:29.

[8] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat,

“Life, death, and the critical transition: Finding liveness

bugs in systems code (awarded best paper),” in 4th
Symposium on Networked Systems Design and Imple-
mentation (NSDI 2007), April 11-13, 2007, Cambridge,
Massachusetts, USA, Proceedings, H. Balakrishnan and

P. Druschel, Eds., USENIX, 2007.

[9] M. Musuvathi and S. Qadeer, “Fair stateless model

checking,” R. Gupta and S. P. Amarasinghe, Eds.,

pp. 362–371, 2008.

[10] R. Mudduluru, P. Deligiannis, A. Desai, A. Lal, and

S. Qadeer, “Lasso detection using partial-state caching,”

D. Stewart and G. Weissenbacher, Eds., pp. 84–91,

2017.

[11] A. N. Bessani, J. Sousa, and E. A. P. Alchieri, “State

machine replication for the masses with BFT-SMART,”

in 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014, Atlanta,
GA, USA, June 23-26, 2014, IEEE Computer Society,

2014, pp. 355–362.

[12] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu,

“DAMYSUS: streamlined BFT consensus leveraging

trusted components,” in EuroSys ’22: Seventeenth Euro-
pean Conference on Computer Systems, Rennes, France,
April 5 - 8, 2022, Y. Bromberg, A. Kermarrec, and

C. Kozyrakis, Eds., ACM, 2022, pp. 1–16.

[13] J. Yu, D. Kozhaya, J. Decouchant, and P. J. E.

Verıssimo, “Repucoin: Your reputation is your power,”

IEEE Trans. Computers, vol. 68, no. 8, pp. 1225–1237,

2019.

[14] D. Kozhaya, J. Decouchant, V. Rahli, and P. E.

Verıssimo, “PISTIS: an event-triggered real-time

byzantine-resilient protocol suite,” IEEE Trans. Parallel
Distributed Syst., vol. 32, no. 9, pp. 2277–2290, 2021.

[15] C. Berger, H. P. Reiser, and A. Bessani, “Making reads

in BFT state machine replication fast, linearizable, and

live,” pp. 1–12, 2021.

[16] M. Castro and B. Liskov, “Practical byzantine fault

tolerance and proactive recovery,” ACM Trans. Comput.
Syst., vol. 20, no. 4, pp. 398–461, 2002.

[17] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song,

“The honey badger of BFT protocols,” E. R. Weippl, S.

Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,

Eds., pp. 31–42, 2016.

[18] R. Nakamura. “Apollo - the concord bft engine’s system

testing framework.” (), [Online]. Available:https : / /

github . com / vmware / concord - bft / tree / master / tests /

apollo.

[19] V. Buterin and V. Griffith, “Casper the friendly finality

gadget,” CoRR, vol. abs/1710.09437, 2017. arXiv:1710.

09437.

[20] C. Cachin and M. Vukolic, “Blockchain consensus

protocols in the wild (keynote talk),” LIPIcs, vol. 91,

A. W. Richa, Ed., 1:1–1:16, 2017.

[21] Y. Amoussou-Guenou, A. D. Pozzo, M. Potop-

Butucaru, and S. Tucci Piergiovanni, “Correctness

of tendermint-core blockchains,” in 22nd Interna-
tional Conference on Principles of Distributed Systems,
OPODIS 2018, December 17-19, 2018, Hong Kong,
China, J. Cao, F. Ellen, L. Rodrigues, and B. Ferreira,

Eds., ser. LIPIcs, vol. 125, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2018, 16:1–16:16.

[22] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla,

and J. Martin, “Revisiting fast practical byzantine fault

tolerance,” CoRR, vol. abs/1712.01367, 2017. arXiv:

1712.01367.

[23] J. Martin and L. Alvisi, “Fast byzantine consensus,”

pp. 402–411, 2005.

[24] M. Bravo, G. V. Chockler, and A. Gotsman, “Making

byzantine consensus live,” Distributed Comput., vol. 35,

no. 6, pp. 503–532, 2022.

[25] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and

M. Marchetti, “Making byzantine fault tolerant systems

tolerate byzantine faults,” in Proceedings of the 6th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2009, April 22-24, 2009, Boston,
MA, USA, J. Rexford and E. G. Sirer, Eds., USENIX

Association, 2009, pp. 153–168.

[26] L. Lamport. “Specifying systems, the TLA+ language

and tools for hardware and software engineers.” (2002),

[Online]. Available: http : / / research . microsoft . com /

users/lamport/tla/book.html.

[27] I. Konnov and J. Widder, “Bymc: Byzantine model

checker,” in Leveraging Applications of Formal Meth-

178

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

ods, Verification and Validation. Distributed Systems -
8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November 5-9, 2018, Proceedings, Part III,
T. Margaria and B. Steffen, Eds., ser. Lecture Notes in

Computer Science, vol. 11246, Springer, 2018, pp. 327–

342.

[28] I. Konnov, M. Lazic, I. Stoilkovska, and J. Widder,

“Survey on parameterized verification with threshold

automata and the byzantine model checker,” Log. Meth-
ods Comput. Sci., vol. 19, no. 1, 2023.

[29] K. Kingsbury., Jepsen, http://jepsen.io/, 2022.

[30] P. Alvaro, J. Rosen, and J. M. Hellerstein, “Lineage-

driven fault injection,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, T. K. Sellis, S. B. Davidson, and Z. G. Ives, Eds.,

ACM, 2015, pp. 331–346.

[31] C. Dragoi, C. Enea, B. K. Ozkan, R. Majumdar, and

F. Niksic, “Testing consensus implementations using

communication closure,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, 210:1–210:29, 2020.

[32] A. Singh, T. Das, P. Maniatis, P. Druschel, and T.

Roscoe, “BFT protocols under fire,” in 5th USENIX
Symposium on Networked Systems Design & Implemen-
tation, NSDI 2008, April 16-18, 2008, San Francisco,
CA, USA, Proceedings, J. Crowcroft and M. Dahlin,

Eds., USENIX Association, 2008, pp. 189–204.

[33] H. Lee, J. Seibert, M. E. Hoque, C. E. Killian, and C.

Nita-Rotaru, “Turret: A platform for automated attack

finding in unmodified distributed system implementa-

tions,” pp. 660–669, 2014.

[34] D. LoK, “Modelling and testing composite byzantine-

fault tolerant consensus protocols,” Capstone Final Re-
port for BSc (Honours) in Mathematical, Computa-
tional, and Statistical Sciences, YaleNusCollege, 2019.

[35] J. Soares, R. Fernandez, M. Silva, T. Freitas, and R.

Martins, “ZERMIA - A fault injector framework for

testing byzantine fault tolerant protocols,” M. Yang, C.

Chen, and Y. Liu, Eds., ser. Lecture Notes in Computer

Science, vol. 13041, Springer, 2021, pp. 38–60.

[36] C. Dragoi, C. Enea, S. Nagendra, and M. Srivas, “A

domain specific language for testing consensus imple-

mentations,” CoRR, vol. abs/2303.05893, 2023. arXiv:

2303.05893.

[37] L. N. Winter, F. Buse, D. de Graaf, K. von Gleissenthall,

and B. K. Ozkan, “Randomized testing of byzantine

fault tolerant algorithms,” Proc. ACM Program. Lang.,

vol. 7, no. OOPSLA1, pp. 757–788, 2023.

[38] GitHub, HotStuff, https : / / github . com / relab / hotstuff,

2022.

[39] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M.

Yin, “Sync HotStuff: Simple and practical synchronous

state machine replication,” 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, pp. 106–118, 2020.

[40] M. M. Jalalzai, J. Niu, and C. Feng, “Fast-

hotstuff: A fast and resilient hotstuff protocol,” CoRR,
vol. abs/2010.11454, 2020. arXiv: 2010.11454.

179

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 09:49:31 UTC from IEEE Xplore. Restrictions apply.

