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ABSTRACT

Remote sensing, as a powerful tool for monitoring atmospheric phenomena, has been playing an in-

creasingly important role in inverse modeling. Remote sensing instruments measure quantities that often

combine several state variables as one. This creates very strong correlations between the state variables that

share the same observation variable. This may cause numerical problems resulting in a low convergence rate

or inaccurate estimates in gradient-based variational assimilation if improper error statistics are used. In this

paper, two criteria or scoring rules are proposed to quantify the numerical robustness of assimilating a specific

set of remote sensing observations and to quantify the reliability of the estimates of the parameters. The

criteria are derived by analyzing how the correlations are created via shared observation data and how they

may influence the process of variational data assimilation. Experimental tests are conducted and show a good

level of agreement with theory. The results illustrate the capability of the criteria to indicate the reliability of

the assimilation process. Both criteria can be used with observing system simulation experiments (OSSEs)

and in combination with other verification scores.

1. Introduction

During the past three decades, the assimilation of at-

mospheric observations as an aid in improving forecasts

of air quality and in constructing reanalyses of past

weather and climate change has gained growing interest

(Talagrand and Courtier 1987; Elbern and Schmidt 2001;

Elbern et al. 2007; Fu et al. 2015). The available obser-

vations consist of amixture of in situ, visual, and remotely

sensed observations of temperature, wind velocity, pres-

sure, humidity, and clouds (McMurry 2000; Clemitshaw

2004; Lahoz et al. 2010). Remote sensing makes it pos-

sible to collect data from dangerous or inaccessible areas,

and meteorological satellites provide an indispensable

supplement to the conventional meteorological observing

system. Due to their ability of acquiring data in tradition-

ally data-poor regions of the oceans, the stratosphere, and

the Southern Hemisphere, as well as the high horizontal

resolution, satellite observations have played an increas-

ingly important role in atmospheric studies (Bocquet et al.

2015; Fu et al. 2017). Numerous experiments have been

conducted in order tomake good use of the satellite data in

operational numerical weather forecasting or to improve

the analysis andunderstanding of atmospheric phenomena

and dynamics.

The assimilation of satellite data and other remote

sensing data using variational approaches has been

successfully applied to various atmospheric problems,

such as efforts to improve initial model states and esti-

mates of the emissions of natural or anthropogenic

pollutants. For instance, Chai et al. (2009) and Lamsal

et al. (2011) estimated regional or global nitrogen oxidesCorresponding author e-mail: Sha Lu, s.lu-1@tudelft.nl
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(NOx) emission inventories with satellite nitrous oxide

(NO2) column observations. Besides the estimation of a

single emission species, Huneeus et al. (2012) demon-

strated the simultaneous estimate of global emissions of

multiple gaseous and aerosol species including dust, sea

salt, black carbon (BC), organic carbon (OC), and sulfur

dioxide (SO2) by assimilating daily MODIS total and fine-

mode aerosol optical depth (AOD).Kawabata et al. (2014)

used the nonhydrostatic 4D-Var assimilation system to

assimilate the Doppler wind lidar (DWL) data to forecast

the heavy rainfall event of 5 July 2010 in Japan.

The remote sensing instruments including satellite,

lidar, and radar acquire information without physical

contact with the object (the state) by detecting the

electromagnetic radiation, solar radiation, or microwave

radiation. The retrieval algorithm of the detections, such

as satellite-retrieved AOD data (Prata and Prata 2012)

and lidar backscatter coefficients (Wang et al. 2014),

usually requires the combination or integration ofmultiple

state variables and subsequently sensor-induced correla-

tions (SICs) are introduced between the states that share

the same combined observation data. These SICs may

have a negative impact on the performance of the pa-

rameter estimation method when erroneous or improper

specification of error statistics or of the prior information is

used. Alternative 4D-Var approaches that lead to better-

conditioned estimation problems should be used to rem-

edy this. For example, Lu et al. (2016a) demonstrated that

using the 4D-Var method with a standard form of the cost

function to estimate the vertical profile of the volcanic ash

emission rate from the satellite ash column data could

result in undesired estimates. The standard cost function

for parameter estimation computes the sumof the squared

deviations of the analysis values from the observations

weighted by the accuracy of the observations, plus the sum

of the squared deviations of the estimated parameters and

the background parameters weighted by the accuracy of

the background information [as in Meirink et al. (2008),

their Eq. (2)]. The above problem was solved by a using

trajectory-based 4D-Var (Trj4DVar) approach with a re-

formulated cost function.

Observing system simulation experiments (OSSEs)

are an important tool for evaluating the potential impact

of proposed observing systems, as well as for evaluating

trade-offs in the observing system design, as well as in

developing and assessing improved methodologies

for assimilating new observations (Atlas 1997). These

OSSEs are used in combination with scoring rules and

verification skills, which usually measure the deviations

between forecasts and the observation values, hits,

misses, and false alarms (Mittermaier and Roberts 2010;

Gilleland et al. 2009; Ebert 2008; Gilleland et al. 2010).

In addition, there are many tools for observability or

identifiability analysis that can be used to diagnose

whether the parameters can be identified from a given

set of observations (Paulino and de Bragança Pereira

1994; Rothenberg 1971; Jacquez and Greif 1985).

However, these methods focus more on the usefulness

of the observations and are incapable of determining

the numerical robustness of the estimation procedure. The

condition number of the Hessian is able to indicate the

numerical performance of the gradient-based variational

assimilation approach (Haben et al. 2011a,b). However,

the computation of this condition number is computa-

tionally very expensive, especially when the number of

state variables is large.

In this paper, two criteria are proposed to quantify the

numerical effects of the SICs on the assimilation pro-

cess. The criteria are simple and practical to implement

for a rough evaluation of the numerical performance of

assimilating a certain type of observations for a given

application. They were inspired by the previous work of

Lu et al. (2016a), and were originally developed to

evaluate the performance of two 4D-Var approaches

with different specifications of error statistics in assimi-

lating satellite column data to estimate a vertically dis-

tributed emission. It is found that the two criteria can be

also used for other applications using remote sensing

data or other integrated data.

2. The evaluation methodology

a. Preliminary knowledge about variational data
assimilation

Consider a discrete dynamic model given by

x
k
5M

k
(x

k21
,a), (1)

where the subscriptk represents the time step tk. Themodel

state vector and its corresponding dynamics operator are

xk 2 R
n and Mk, respectively; a 2 R

p is the static param-

eter vector including the model parameters, inputs, and

initial conditions, which need to be estimated in this case.

The background or the first guess of the parametersab

are assumed to differ from the true parameters at by

stochastic perturbations:

ab 5at 1 eb , (2)

where eb;N (0, B).

Observations yo at time tk are defined by

yok 5H
k
(xtk)1 eo , (3)

where Hk is the observation operator that projects the

state space into observation space and eo ; N (0, Rk) is

the observation uncertainty.
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The 4D-Var approach minimizes the cost function J

that measures the weighted sum of the squares of dis-

tances Jb to the background parameters a and Jo to the

observations yo obtained over a time interval [t0, tNt]:

J(a)5
1

2
(a2ab)TB21(a2ab)

1
1

2
�
Nt

k50

(y
k
2 yok)

TR21
k (y

k
2 yok) , (4)

where yk 5Hk(xk) represents the simulated observations.

In this paper we focus on the impact of observations on

the update. Therefore, the development of the evaluation

criteria requires only the observation term Jo.

The minimization usually requires the gradient of the

cost function Jo with respect to the parameters:

go 5=Jo(a)T 5 �
Nt

k50

ST
kH

T
kR

21
k (y

k
2 yok) , (5)

where Hk and HT
k are the tangent linear model and its

adjoint, respectively, corresponding to observation op-

erator Hk.

In addition,

S
k
5

›x
k

›a
5

›M
k

›x
k21

›x
k21

›a
1

›M
k

›a
(6)

is the sensitivity of the states with respect to the pa-

rameters, and ST
k is its transpose.

b. Sensor-induced correlations and their impact

Remote sensing observations, along with some other

types of observations, measure quantities whose com-

putation involves multiple state variables or parameters.

SICs are created between those variables that share a

common type of observation data, and may have a

negative numerical effect on the assimilation process or

lead to ill-conditioned numerical problems. The impact

of observations on the assimilation and the mechanism

of a gradient-based algorithm is illustrated by Fig. 1.

The difference Da between the true parameters at

and the background (first guess) parameters ab will re-

sult in a difference Dxk between the true state fields xtk

and the background state fields xbk. The perturbations

Dxk are determined based on the model sensitivity

behavior:

Dx
k
5S

k
Da , (7)

where Sk is given by Eq. (6).

However, a or even xk usually cannot be observed

directly by remote sensing instruments for computing

Da or Dxk. To estimate Da, we will make use of the

difference Dyk between the true observations yok and the

simulated observations yk. First, the observed difference

between states Dx̂k is computed by distributing Dyk to

the states according to the observational error statistics

and the adjoint operational operator HT
k by

Dx̂
k
5HT

kR
21
k Dy

k
5HT

kR
21
k H

k
S
k
Da5So

kDa , (8)

where So
k 5HT

kR
21
k HkSk is termed the observed sensi-

tivity representing the sensitivity of states through

observations with respect to the parameters. The pa-

rameters will then be updated according to model

dynamics Sk and the observed perturbation of states

Dx̂k as

Dâ
k
5ST

kDx̂k . (9)

This mechanism can be interpreted by rewriting the

gradient in Eq. (5):

go 5 �
Nt

k50

ST
kH

T
kR

21
k (y

k
2 yok)

5 �
Nt

k50

ST
k (H

T
kR

21
k Dy

k
)5 �

Nt

k50

ST
kDx̂k . (10)

If the actual perturbation of states Dxk is used for the

update of the parameters D~a5ST
kDxk, this update (D~a)

is not affected by SICs. The formulation of the corre-

sponding gradient gc is given as follows:

gc 5 �
Nt

k50

ST
kDxk . (11)

We can view gc as the gradient of a cost function when

using a ‘‘complete observation operator’’ Hc, which

observes the complete states:

Hc(x
k
)5 x

k
. (12)

In a physical sense only, gc reflects the model sensitivity

behavior. The impact of SICs is implied by how much

the observed model sensitivity differs from the physical

model sensitivity, where the former is reflected by go and

the latter is reflected by gc.

FIG. 1. Process of gradient-based approaches.
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c. Evaluation criteria

Two criteria are now presented to test how much the

SICs will influence the assimilation process in a negative

way, which can also be considered as an indication of the

usefulness of the data on a given DA system.

1) CRITERION 1 (FIM CRITERION)

The distance between the normalized Hessian or the

normalized Fisher information matrix (FIM) generated

with complete observation and remote sensing observation:���� Ic

kIck2
Io

kIok
����5 kIc 2 Iok , (13)

where the norm k.k is the Frobenius norm with kAkF 5
(�m

i51�
n

j51jai,jj2)
1/2

or the L2,1 norm with kAk2,1 5
�n

j51(�
m

i51jai,jj2)
1/2

for amatrixA 2 R
m3n, Ic 5�Nt

k50S
T
kSk

and Io 5�Nt

k50S
T
kH

T
kR

21
k HkSk for a linear model, while

Ic 5 ›2Jc/›a2 and Io 5 ›2Jo/›a2 for a nonlinear model or

other specifications of error statistics (formulation of

cost function) with Jc and Jo are the cost functions

formed by complete observation and remote sensing

observation, respectively.

The DA process influenced only by the physical dy-

namics or the model sensitivity behavior is reflected by Ic,

while Io reflects the performance of DA as a result of

combining the observation operator and model dynamics.

This criterion provides global information on to what de-

gree the SICs change the sensitivity behavior that is used

for updating the parameters (gradient) over the iterations.

The FIM criterion is practical for those cases where the

FIM (Hessian) or its approximation is easy to compute.

2) CRITERION 2 (GRADIENT CRITERION)

The distance between the normalized model gradient

and the normalized observed gradient:���� gc

kgck2
go

kgok
����5 kg c 2 gok (14)

or

1

M
�
M

i51

���� gci
kgci k

2
goi

kgoi k
����5 1

M
�
M

i51

kgc
i 2 go

ik, (15)

where the norm k.k is the Euclidean norm with kak5
(�n

i51jaij2)
1/2

for a vector a 2 R
n. The model gradient is

gc and go is the observed gradient, as defined in Eqs. (11)

and (5) for a standard cost function, respectively. Or

go 5 (=Jo)T and gc 5 (=Jc)T with Jo and Jc are defined

as in FIM Criterion for other formulations of the cost

function.

Criterion (14) provides local and detailed information

that measures the impact of SICs on the quality of gra-

dient as well as on the convergence performance. A

large value of this criterion indicates that a poor gradient

is obtained using the observations. We can perturb one

parameter or one state variable and compute the crite-

rion value, which indicates whether the observation is

capable of estimating the perturbed parameter. In gen-

eral, perturbations can also be performed on a set of

closely related parameters or states. Criterion (15) cal-

culates in this case the mean of the differences between

the two normalized gradients generated by a number of

random perturbations of parameters or states, and this

provides global information about whether the gradi-

ents can well represent the model’s sensitivity behavior.

Criteria (14) and (15) can be applied to cases where the

adjoint model is available but the Hessian is difficult

to obtain.

The values of the two criteria range from 0 to 2. A

small value (say less than 0.1) implies a good obser-

vation operator, which almost preserves the charac-

teristics of the model dynamics. The two criteria will

give large values that serve as a warning when SICs are

created by using remote sensing data or other in-

tegrated data and will lead to ill-conditioned assimi-

lation processes. Theoretically, a bad situation occurs

when the gradient is unable to distinguish the per-

turbed parameters and gives an equal update on each

parameter; in such a case, the result leads to a gradient

criterion value of
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12

ffiffiffi
n

p
/n)

p
2 (0:76, 1:41) with

n 2 [2, 1‘). An even worse scenario occurs when

larger updates are given on the unperturbed parame-

ters than on the perturbed ones, which results in even

larger criterion values. Tests suggest that FIM crite-

rion values larger than 0.9 or gradient criterion values

larger than 1.0 indicate a very ineffective assimilation

process for the gradient-based method. Values less

than 0.6 turned out to be acceptable for our case of

volcanic ash.

Criteria (13) and (15) both provide a global as-

sessment of the numerical robustness of the assimi-

lation process and of the reliability of the forecast

after assimilation. The values of both criteria change

with observation operators (observation position and

observation type). Criterion (13) is invariant to the

perturbed variables and more robust than criterion

(15). Criteria (14) and (15) can potentially be used as a

diagnostic tool to detect which parameters are corre-

lated via observations but not physically and how this

will affect the assimilation outcomes. This approach

provides a means for better analyzing the sensitivity

behavior and developing a more effective alternative

method for the use of certain types of observations.
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Note that the background term Jb of the cost function

plays an important role in the performance of the 4D-

Var approach in order to distinguish different variable in

the analysis increments and as a regularization term.

However, in the derivation of the criteria we ignore the

background term. That is because first this study focuses

on exploring the impact of remote sensing observations

and other integrated observations on the DA process.

Second, gradient criteria (14) and (15) are calculated

from the gradient of cost function (4) at a5ab, so the

background term has no effect on the gradient. The

impact of using a different background can still be tested

using the criteria, since the information from the back-

ground is implicitly included in the observation term Jo

by the use of model-simulated observation yk. As well,

the impact of different perturbed parameters is implic-

itly included in yok of J
o.

d. Example: Trajectory-based 4D-Var approach

In this section, trajectory-based 4D-Var (Trj4DVar)will

be briefly introduced and the procedure for determining

its corresponding criteria will be described; this approach

will be used in the case study in the next section.

Trj4DVar seeks an optimal linear combination of

trajectories generated with different emissions to fit the

observation data coupled with a priori information, by

minimizing a reformulated 4D-Var cost function.

We assume that the vector of parameters a is in a

parameter space spanned by the perturbed parameter

sets Dai (i5 1, . . . , p) and can be represented in the

following form:

a5ab 1 �
p

i51

biDai , (16)

where bi is the weight of Dai in the sum. If p is large, the

parameter space can be approximated by a smaller

space spanned by a smaller number of perturbed pa-

rameters. Therefore, the determination of a corre-

sponds to estimating b5 [b1, . . . , bp].

The simulated observations yk in cost function (4) can

be approximated by

y
k
5H

k
[M

k
(x

k21
,a)]5H

k

"
M

k

 
x
k21

,ab 1 �
p

i51

biDai

!#

’H
k
[M

k
(x

k21
,ab)]1 �

p

i51

biHT
kM

T
k (xk21

,Dai)

’ ybk 1 �
p

i51

bifH
k
[M

k
(x

k21
,ab 1Dai)]2 ybkg

5 ybk 1 �
p

i51

biDyik ,

(17)

where ybk 5Hk[Mk(xk21, a
b)] are reference trajectories

computed using background parameters and Dyik 5
Hk[Mk(xk21, a

b1Dai)]2 ybk ’HT
kM

T
k(xk21, Da

i) are tra-

jectories associated with perturbation of parameters Da
in the neighborhood of ab.

Therefore, the coefficients b can be computed by

minimizing a reformulation of the cost function (4)

given by

J
trj
(b)5

1

2
�
Nt

k51

 
�
p

i51

biDyik 1 ybk 2 yok

!T

[R
k
]21
 
�
p

i51

biDyik 1 ybk 2 yok

!

1
1

2

 
�
p

i51

biDai

!T

[B
k
]21
 
�
p

i51

biDai

!

5 Jotrj 1 Jbtrj . (18)

The gradient go of Jo in cost function (18) with respect

to b is computed by

gotrj 5 �
Nt

k51

DYT
kR

21
k (DY

k
b1 ybk 2 yok) , (19)

where DYk 5 [Dy1k, . . . , Dy
p
k ]. The Hessian can be simi-

larly obtained as

Iotrj 5 �
Nt

k51

DYT
kR

21
k DY

k
. (20)

Note that Eq. (20) corresponds to an approximate, but

not an exact, Hessian whenever Hk+Mk is nonlinear.

The counterparts of the gradient and Hessian for Jc can

be obtained by substituting the complete observation

operator (12) for Hk in the computation of trajectories.

Note that the formulation of Trj4DVar is similar to

model-order reduced 4D-Var (MOR-4D-Var) methods

(Robert et al. 2005), or the family of four-dimensional

(4D) ensemble–variational data assimilation (4DEnVar)

methods (Lorenc et al. 2015). The objective of the

MOR-4D-Var approach is to seeka low-rankapproximation
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of the model to reduce the computational effort of

4D-Var, and that of 4DEnVar is to obtain a low-rank

and flow-dependent representation of the background

error statistics. Therefore, the sampling of the snap-

shots in MOR-4D-Var or ensembles in 4DEnVar is

usually randomly distributed. However, the objective

of Trj4DVar is to solve the ill-conditioned problem

caused by the lack of information or the improper use

of the SICs in this case. The generation of the trajec-

tories in Trj4DVar requires the knowledge of the

characteristics of the model sensitivity.

3. Case study

We illustrate uses of both criteria for the evaluation

on the effectiveness of the assimilation process and for

the design of the assimilation system. The criteria are

tested using a case where SICs typically influence the

assimilation process negatively when using a 4D-Var

approach with a standard type of cost function. It was

explicitly pointed out by Lu et al. (2016a) that using

satellite ash columndata can result in inaccurate estimates

of volcanic ash emissions. Therefore, twin experiments

are conducted based on a volcanic ash estimation

problem.

a. Experimental setup

Twin experiments are carried out to estimate the emis-

sion rates of volcanic ash by assimilating synthetic obser-

vations. A 3D aerosol transport model of the Iceland area

(Fig. 2a) is used to simulate the Eyjafjallajökull volcanic
activity during 14–19 April 2010, with a temporal resolu-

tion of 15min and a spatial resolution of 0.258 3 0.258. For
simplicity, the transportmodel includes only advection and

diffusion processes for which the adjoint model is avail-

able. Wind fields are obtained from 3-hourly meteoro-

logical data from theEuropeanCentre forMedium-Range

Weather Forecasts (ECMWF), which is interpolated to

hourly resolution. Figure 2b is an illustration of a volcanic

ash cloud simulated by the model.

The emission information from the first few days of

the explosive eruption is taken fromWebley et al. (2012)

and is shown in Table 1. The eruption is described in

terms of parameters such as the total emission rate and

the plume height, which are assumed to be constant

during an emission episode of several hours. The ‘‘true’’

FIG. 2. (a) Simulation and assimilation domain of Iceland. (b) Columns of the volcanic ash cloud at 1900 UTC

14 Apr 2010.

TABLE 1. Input parameters for the 14–19 Apr 2010 period of activity at Eyjafjallajökull, taken from Webley et al. (2012).

Start time End time Height (km MSL) Eruption rate (kg s21)

0900 UTC 14 Apr 1900 UTC 14 Apr 9 5.71 3 105

1900 UTC 14 Apr 0400 UTC 15 Apr 5.5 3.87 3 104

0400 UTC 15 Apr 1900 UTC 16 Apr 6 6.44 3 104

1900 UTC 16 Apr 0600 UTC 18 Apr 8.25 3.65 3 105

0600 UTC 18 Apr 2300 UTC 18 Apr 5 2.17 3 104

2300 UTC 18 Apr 0000 UTC 19 Apr 4 4.93 3 103
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emission rates in the vertical layers are generated using a

Poisson distribution according to the emission infor-

mation shown in Table 1. The ‘‘background’’/first-guess

emission is calculated with an underestimated total

emission rate of the true emission and a correspondingly

lower plume height.

The synthetic observations are generated hourly by

running the model with the true emissions. The com-

plete observations are 3D state fields. The satellite-like

observations are ash columns generated by weighted

summations of ash loads along columns (kgm22) given

as

yi 5 �
Nz

l51

xi,l 3Dhi,l, (21)

where yi is the observation variable at the ith pixel, xi,l is

the ash density at the ith pixel and the lth vertical layer,

andDhi,l is the height of the grid cell where xi,l is located.

Note that sedimentation is important for modeling

volcanic ash in real life (Fu et al. 2016). However, cur-

rently there is no adjoint for the sedimentation process

in the model [Long Term Ozone Simulation–European

Ozone Simulation (LOTOS-EUROS)] used in this pa-

per. In addition, the omission of sedimentation will not

significantly change the performance of the assimilation

approach on this model. This is because the influences of

this process are most impactful on the amount of the ash

concentrations, but not on the flow pattern that strongly

affects the numerical performance of the assimilation

process.

b. Twin experiments using standard 4D-Var

Twin experiments are conducted with both complete

observations and column-integrated observations. The

results are shown in Figs. 3a and 3b, respectively. In

Fig. 3a it can be seen that the ‘‘estimated’’ result per-

fectly matches the truth, which implies that the model is

physically well conditioned and emission rates can be

well estimated according to the model dynamics. How-

ever, in Fig. 3b, with 1-hourly assimilation of column-

integrated observations, the estimated emission rates

(denoted by est_1h) are increased by the same amount

in all layers without recognizing the vertical profile in

the truth. The injection layer, with the maximum of the

emission rate, cannot be correctly determined. Similar

results are obtained with longer assimilation windows (3

and 6h). This shows that it is very ineffective to estimate

volcanic ash emission rates using satellite data, and that

this finding is not caused by the model but by the type of

observations used.

Now we investigate the problem using the gradient cri-

teria. First, perturbations on a single state variable are

carried out, and the model gradient and observed gradient

are computedwith complete observations and column-wise

observations, respectively. The gradients are sensitivities of

the perturbed state with respect to the parameters (emis-

sion rates). Four single-state-perturbation experiments

are performed. The first two states are located at hori-

zontal positions shown bymeas1 andmeas2 in Fig. 2a and

marked by red asterisks, in the sixth layer above the

summit, denoted as x1,6 and x2,6, respectively. The other

two are located at the same pixels as the first two, but now

FIG. 3. Estimation results of emission rates with (a) complete observations and (b) synthetic satellite observations.

TABLE 2. Gradient criterion values computed from four single-state

perturbation experiments.

Case 1 h 3 h 6 h

x1,6 1.1342 1.1618 1.2267

x1,7 1.2203 1.1873 1.2671

x2,6 1.0257 1.0096 1.1822

x2,7 1.1132 1.0536 1.2442
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in the seventh layer above the summit, denoted by x1,7
and x2,7 accordingly. The horizontal locations of the

perturbed states are chosen such that they are downwind

and close to the summit and thus carry more information

about the parameters than those located upwind or far-

ther away. The vertical layers are chosen to be the in-

jection layers of the truth and the ‘‘background’’ where

the injection height is located, since states at those two

layers play important roles in this parameter estimation

process. The gradient criterion results given in Table 2

show the values are all larger than 1. This implies that the

observed sensitivity behavior is not able to represent the

model dynamics.

Then, perturbations of a single parameter are carried

out, and the model gradient and the observed gradient are

computed. The perturbedparameters are selected to be the

inputs at the sixth and seventh layers—the injection layers

in the background and truth, respectively. The gradient

criterion results in Table 3 all show large values around 1.

This implies that SICs have considerable influence on the

numerical process for the update of the parameters, and

the perturbed parameters cannot be determined accurately

using this kind of error statistics. This is also reflected by the

estimation results in Fig. 3b, where the injection layer

cannot be identified by assimilating the ash columns using a

standard 4D-Var approach.

To diagnose how the SICs affect the sensitivity be-

havior, the normalized model gradients and observed

gradients of the parameter perturbation experiments are

shown in Fig. 4. We can see that as a result of the model

dynamics, an input variable is sensitive to its own per-

turbation and slightly sensitive to the inputs in the near

layers. SICs are introduced by using column-integrated

data, making a single input variable almost equally sen-

sitive to all inputs and even slightly more sensitive to the

variable in other layers.

c. Twin experiments using trajectory-based 4D-Var

Based on the sensitivity analysis in section 3b,

Trj4DVar (see section 2d) should be applied to perturb

the emission rate in each layer one by one and then to

compute the corresponding trajectories to obtain a

better estimate using the ash column data. In this ex-

periment, we will demonstrate how the two criteria are

used for the configuration of the assimilation system

and for a sensitivity analysis to better understand the

estimation results.

The FIM criterion and the gradient criterion in

Eq. (15) are applied for the selection between Trj4DVar

and standard 4D-Var (Std4DVar), as well as the selec-

tion of a proper assimilation window. The criteria values

are shown in Fig. 5, where std represents Std4DVar, trj

represents Trj4DVar, FIM represents the FIM criterion,

and grd represents the gradient criterion. It can be seen

that both approaches result in criteria values that decrease

with larger assimilation windows. Using Std4DVar, this

decease becomes smaller. This indicates that enlarging the

assimilation window will introduce fewer improvements

in the estimates. This result is consistent with the ex-

perimental results in section 3b. On the other hand, the

criteria values obtained using Trj4DVar are clearly

smaller and they decrease faster than those obtained

using Std4DVar. Based on the diagnosis of the criteria

TABLE 3. Gradient criterion values computed from two single-

input-perturbation experiments.

Case 1 h 3 h 6 h

Fifth input 1.1012 0.9850 0.9510

Seventh input 1.1768 1.0904 1.0331

FIG. 4. Normalized gradients generated by perturbations in a single input parameter at the (a) sixth and (b) seventh

layers above the summit, with a 1-h assimilation window using Std4DVar.
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results, we can see that Trj4DVar is a better choice for

this application.

Assimilation windows larger than 3h lead to criteria

values that are acceptable (,0.6) for our casementioned

in section 2c. The 6-h assimilation window produces the

smallest values and thus is the best option. Therefore,

the assimilation is conducted using a 6-h window to test

the performance of Trj4DVar. Figure 6 shows a com-

parison between the estimation results using Std4DVar

and those using Trj4DVar. Both approaches are carried

out using the same prior information and synthetic ob-

servations. The vertical profile of the estimate is signif-

icantly improved using Trj4DVar. The injection layer is

correctly determined in the seventh layer. However, the

emission rates in the seventh through ninth layers are

almost the same. Parameter-perturbation experiments

are conducted to illustrate the reason behind this. The

normalized gradients of individually perturbing the

sixth- and seventh-layer inputs are illustrated in Fig. 7.

We can observe that the seventh- through ninth-layer

inputs are equally correlated. It is because meteorolog-

ical patterns in the seventh through ninth layers above

the summit are similar and changes occurring in any of

the three layers are not distinguishable.

Note that this study aims at evaluating the numerical

aspects or the robustness of applying the given obser-

vation operator to a specific configuration (including a

statistic choice for the method) of an assimilation sys-

tem, not the observability of a specific dataset (real

data). Actually, the two criteria can be used as an in-

dication for the quality of the performance when using

FIG. 5. Criteria values of Std4DVar vs Trj4DVar. FIG. 6. Comparison of estimation results with a 6-h assimilation

window using Std4DVar vs using Trj4DVar.

FIG. 7. Normalized gradients generated by perturbations in a single input parameter at the (a) fifth and (b) seventh

layers, with a 6-h-assimilation window using Trj4DVar.
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real data. This can be confirmed by the field data ex-

periment in Lu et al. (2016b), which shows that a 6-h

assimilation window leads to the optimal and robust

assimilation results.

4. Conclusions and discussion

In this study two criteria were presented to evaluate the

numerical performance of gradient-based parameter es-

timation algorithms for a given type of remote sensing

observations. The first criterion (FIM) was constructed to

provide global information on how numerically robust an

assimilation process is and how accurate the assimilation

results will be. The second criterion can provide local and

detailed information about sensitivity behavior. This can

be used to diagnose what went wrong when poor esti-

mates were obtained. Twin experiments were carried out

to validate the criteria and to illustrate how the criteria

can be applied in practice for multiple purposes.

These two criteria indicate the estimation quality and

the forecast quality after assimilation. They can be used

for the design and configuration of an assimilation system

that will benefit the most from a given dataset. Configu-

rations include the selection of data when a huge amount

of data is obtained, the selection of the assimilation al-

gorithm, and the configuration of the assimilation system

such as the length of the assimilation window. Further-

more, the criteria are also recommended as a diagnostic

tool for sensitivity analyses, which provides the possibility

of seeking alternative methods when the use of the tra-

ditional methods is problematic as a result of improper

statistical choices for making use of the SICs.

It should be noted that the two criteria are necessary

but not sufficient conditions for quantifying the nu-

merical robustness of the procedure for assimilating

the remote sensing data. The benefits are that they are

simple to implement and the results can be easy to

understand when they are used as diagnostic tools.

They can be used in OSSEs (twin experiments) where

‘‘complete observations’’ exist. Twin experiments per-

formed in this paper could be regarded as OSSEs. For

real data, the two criteria can be used in combinationwith

other verification scores for forecasts. For instance, the

criteria can be performed first to test the potential impact

of assimilating a new type of observation on a certain

application; then, verification scores can be used to

quantify the quality of forecasts after assimilating real

data, and, finally, the criteria can be used as a diagnostic

tool for sensitivity analysis if poor results are found when

assimilating real data.
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