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Abstract
Accurate prediction of bicycle travel time is crit-
ical for efficient urban mobility and sustainable
transport planning. However, real-world datasets
are noisy, imbalanced and lack rich contextual
features. This limits the effectiveness of current
graph-based neural network models. This research
aims to explore how feature engineering and model
enhancements can improve the performance of a
Graph Convolutional Neural Network (GCNN) in
the context of travel time prediction. Building on
a currently existing DG4b architecture, the input
data is enriched with temporal, spatial and traffic-
related features. Architectural enhancements are
integrated by employing techniques such as graph
data augmentation, and multi-scale graph learning.
Using a dataset from Berlin, the improvements are
evaluated primarily in terms of prediction accuracy
across varying trip lengths, which implicitly reflect
speed variability and route diversity. The goal is
to explore how targeted feature engineering and
graph-based modeling techniques influence the ac-
curacy of bicycle travel time estimation, especially
across different trip durations that reflect real-world
cycling variability. The results show that optimal
feature engineering improved the model up to 6%
and a combination of the model enhancement tech-
niques improved the model up to 2%.

1 Introduction
Urban cycling has gained a lot of popularity over the years
as cities seek to reduce congestion and promote sustainable
transportation. As more people make the switch to cycling
as the preferred mode of transportation, especially for short-
distance trips, accurate bicycle travel time estimation (TTE)
is becoming increasingly critical for route planning, infras-
tructure planning, and traffic management. However, unlike
motorized transport, bicycle traffic presents a different set of
challenges. Cyclists travel at more variable speeds, often de-
viate from prescribed routes, exhibit far more diverse behav-
iors than their motorized counterparts. This complicates pre-
dictive modeling [3]. These factors make traditional travel-
time prediction techniques - many of which were designed
for car traffic - less effective when directly applied to cycling.

Gao et al. [3] proposed DG4b, a dual-graph convolutional
neural network (GCNN) that models both static road net-
works and trip-specific structures to estimate bicycle travel
times. However, this approach still faces limitations as it re-
lies on limited features (e.g., segment length, peak/off-peak
flag) and often struggles to generalize across trip lengths and
temporal patterns [2].

Moreover, the previous work [3] does not systematically
explore the role of feature engineering or model architecture
tuning in improving the GCNN-based bicycle TTE. Given the
known challenges of cyclist behavior variability, data spar-
sity, and road network complexity, there is a need to examine
whether rich spatial and temporal features and architectural
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Figure 1: Traditional Travel Time Estimation Models vs DG4b
Travel Time Estimation Model

additions can help GCNNs capture speed variability and trip
diversity more effectively.

To address these challenges, the following overarching re-
search question is investigated: How do feature engineering
and model enhancements help models learn patterns that
reflect speed variability and trip length differences in bi-
cycle travel time estimation?. This is explored through four
sub-questions:

1. Which trip-specific and spatial features best capture
speed variability and trip length diversity?

2. How do different feature sets impact GCNN model per-
formance across trip length categories?

3. How do architectural enhancements affect prediction ac-
curacy across trips of varying durations, which may re-
flect different patterns of speed variability?

4. How does combining different architectural techniques
influence the model’s performance compared to individ-
ual methods?

Our feature engineering experiments reveal that careful
selection and combination of features significantly impact
the accuracy of bicycle travel time estimation. The results
highlight that augmenting baseline features (such as log-
transformed distance, speed coefficient of variation, and de-
tour ratio) with detailed network-based and temporal fea-
tures consistently improves model performance across short,
medium, and long trips.

The model was enhanced by employing two different
methods: graph data augmentation and multi-scale graph
learning. The experiments show that on its own, both meth-
ods minimally improve the prediction errors. However, when
both methods are combined, the performance of the model
shows significant improvement across all trip-length cate-
gories.

The paper is organized as follows. Section 2 reviews
the relevant literature in graph-based mobility modeling and
travel time estimation and then explores the different methods
we can employ to improve the data as well as the model. Sec-
tion 3 describes the methodology, including feature extraction
and model enhancements. Section 4 outlines the experimen-
tal setup and datasets. Section 5 presents results and analysis
based on trip length categories and feature ablation. Section



6 discusses implications and limitation. Section 7 reflects on
the ethical aspects of the research and the reproducibility of
the methods. Section 8 concludes the paper and proposes di-
rections for future research.

2 Literature Review: Exploring current
solutions in feature engineering and model
enhancements

This section discusses the recent solutions we can use to im-
plement feature engineering and model enhancements. We
first talk about the current solutions in the realm of feature
engineering and how spatial and temporal features play a role
in machine learning performance. We then shift our focus on
two methods that we can use to enhance our model - as per
the scope of this research - for better generalization and rep-
resentation: graph data augmentation and multi-scale graph
learning.

While car travel time estimation has matured significantly
over decades [8] [9], modeling for bicycles is comparatively
nascent. Bicycles introduce unique challenges such as per-
sonalized pacing, route flexibility, and frequent deviations
from traffic norms [12] [15]. These factors contribute to more
stochastic and less structured movement patterns, complicat-
ing the modeling landscape.

Feature Engineering. Feature engineering plays a pivotal
role in enhancing machine learning model performance, es-
pecially in domains like travel time estimation where hetero-
geneous data and dynamic conditions exist. Traditional fea-
ture engineering relies heavily on domain expertise to craft
meaningful transformations [7]. However, with increasingly
complex data types (e.g., spatiotemporal graphs), automated
methods like SAFE [16] and deep feature synthesis [10] have
emerged, allowing scalable construction of feature sets.

In transport research, temporal encodings (e.g., time-of-
day, weekday, seasonal cycles) have been widely used to
capture periodic patterns [19], while network-specific fea-
tures, such as edge density or segment connectivity, have
been shown to enhance graph-based models’ sensitivity to
local topology. Beyond these methods, studies such as Ye
et al. [19] have explored categorical approximations of travel
time distributions through adaptive temporal encoding, which
can help address long-tailed distributions common in cycling
data. Similarly, Han et al. [6] demonstrated that embedding
both semantic and physical path characteristics significantly
improves estimation accuracy.

Recent works emphasize learning adaptive feature interac-
tions rather than manual crafting. Cheng et al. [1] introduced
adaptive factorization networks that dynamically learn fea-
ture interaction orders, while Jin et al. [9] applied spatio-
temporal dual graph networks to jointly learn temporal sig-
nals and graph connectivity for travel time estimation.

Model Enhancements. To improve model generalization
and robustness, graph data augmentation [12] has emerged
as a powerful tool. This includes techniques like edge per-
turbation, node feature masking, and subgraph sampling,
which expand training distributions and improve resilience
against overfitting [20]. Such methods have been applied
successfully in traffic estimation [2], where graph augmen-

tation improves the model’s ability to generalize to rare or
noisy travel patterns. Furthermore, graph contrastive learning
has emerged as a promising self-supervised approach to im-
prove representation robustness under augmentation. Meth-
ods like graph contrastive learning [20] and implicit augmen-
tation schemes [12] have been successfully applied to traf-
fic graphs, suggesting untapped potential in bicycle-specific
GCNN training.

However, most augmentation and contrastive learning
methods stem from homophily-assuming traffic graph con-
texts. They typically don’t account for cyclist-specific com-
plexities—like variability in speed due to terrain or individu-
alized pacing. Standard augmentations (e.g., edge-drop, node
masking) can inadvertently obscure these cues, leading to
loss of critical physical signals. Because of this, instead of
adopting them wholesale, we design bordered augmentation
schemes that preserve speed-length integrity.

Despite the rise of static and dynamic GNN (DGNN) meth-
ods, they fall short in cycling contexts. GNNs often suffer
from over-smoothing — where deep layers cause node repre-
sentations to blur — a critical issue for preserving local speed
variance (e.g., uphill vs flat segments) [4]. Moreover, cycling
graphs are inherently heterophilous: adjacent segments may
have radically different physical attributes. This breaks the
homophily assumption many GNNs rely on [21]. Moreover,
dynamic GNNs are often tuned to snapshot tasks (e.g., traffic
at 5-minute intervals) and bench-marked on standard datasets,
not route length variability seen in cycling. They also strug-
gle with scaling to long graph sequences reflective of multi-
kilometer trips [5]. Because of these physical and method-
ological mismatches, static or off-the-shelf DGNNs are not
directly applied.

Another promising direction is multi-scale graph learning,
which incorporates hierarchical representations across differ-
ent spatial resolutions [13]. By learning both local (segment-
level) and global (network-level) structures, these methods
better capture long-range dependencies and aggregate infor-
mation effectively. For example, Yan et al. [18] proposed
multi-task dual graph neural networks that jointly model in-
tersections and segments for improved travel time predic-
tions, while Jin et al. [9]) extended this to spatiotemporal set-
tings, demonstrating superior performance over single-scale
models.

Despite recent advances, no prior work has systematically
evaluated the combined impact of engineered spatiotemporal
features and architectural augmentations on GCNN perfor-
mance for bicycle travel time estimation. In particular, the
dual reliance on a static road graph and a trip-specific sub-
graph [3] has not been leveraged in conjunction with fea-
ture ablation strategies or augmentation techniques to address
noise, bias, and overfitting in cycling data. In summary, cur-
rent graph approaches for travel estimation—whether feature-
engineering, augmentation, or architectural—all struggle to
preserve physical interpretability, local speed distinctions,
and long-route dynamics appropriate for cycling.



3 Methodology
This study proposes an integrated framework for bicycle
travel time estimation that combines robust feature engineer-
ing with advanced graph-based model enhancements. Our
methodology consists of two primary components:

1. feature engineering,
2. model enhancements through graph data augmentation

and multi-scale graph learning

Background
The GCNN used in Gao et al. [3] will be our baseline. The en-
gineered features will be added to the model and architectural
enhancements will be used to modify it. It is a dual-graph net-
work architecture, where two graph streams are processed in
parallel:

• Static road graph: captures invariant structural proper-
ties of the urban cycling network, including segment
connectivity, availability for bicycles, and traffic light
presence.

• Trip-specific graph: models the directional, dynamic
properties of each individual trip, such as route se-
quence, temporal context (peak/off-peak), and remain-
ing distance.

A static graph is constructed once for the entire road net-
work. The nodes represent road segments and edges rep-
resent adjacency or connectivity. A graph neural network
(GNN) propagates information across multiple hops, learn-
ing embeddings that capture network-wide spatial dependen-
cies, typical traffic patterns and structural bottlenecks. These
embeddings serve as a stable contextual prior for any trip.

For each individual trip, a local subgraph is extracted. This
comprises only the sequence of segments traversed during
that specific trip. The node features incorporate relative po-
sition, remaining distance, and temporal flags. A parallel
GNN processes this subgraph to produce embeddings reflect-
ing real-time, sequential, and ephemeral factors (e.g. sudden
slowdowns).

Both graphs are encoded using graph convolutional lay-
ers with an encode-process-decode pipeline. The outputs are
combined to estimate segment-wise speed likelihoods, which
are then aggregated to compute the total travel time of the
trip.

Feature Engineering
Based on prior findings [7] [16] [1], feature sets combining
statistical, spatial, and temporal elements will be designed.
The engineered features include:

• Distance-based features: log-transformed travel dis-
tance, detour ratio.

• Speed-based features: coefficient of variation of speed,
standard deviation of speed.

• Network-based features: edges per kilometer, represent-
ing route density and complexity.

• Temporal features: time-of-day and month encodings
using sinusoidal and cosine transformations to capture
periodic traffic patterns [12] [18].

Raw Data Feature
Transformations

Engineered
Features

Figure 2: Feature Extraction Pipeline

For every route r let:

Symbol Description
dr Travelled distance of the first segment of route r (in me-

ters)
σsr Population standard deviation of all speeds on route r

s̄r Mean of all speeds on route r

Dr Total travelled distance of all segments on route r

Er Total edge count of all segments on route r

tr Start time of route r, in seconds since midnight
mr Month of start of route r, as an integer from 1 to 12
pr Peak hour flag of the first segment of route r, either 0 or

1

Table 1: Basic Route Features

and let every engineered feature be defined as follows:

Symbol Description
ldr Log-distance of the first segment
csr Coefficient of variation of speed
dtr Detour ratio
str Standard deviation of speeds

ekmr Number of edges per kilometer
todsr Sine of time-of-day
todcr Cosine of time-of-day
mcr Sine of month
msr Cosine of month
phr Peak hour indicator

Table 2: Engineered Route Features

Then every engineered feature is calculated using the fol-
lowing formulae.



ldr = log(dr + 1),

csr =
σsr

s̄r
,

dtr =
Dr

Er
,

str = σsr ,

ekmr =
Er

Dr/1000

todsr = sin

(
2π · tr mod 86400

86400

)
,

todcr = cos

(
2π · tr mod 86400

86400

)
,

msr = sin
(
2π · mr

12

)
,

mcr = cos
(
2π · mr

12

)
,

phr = pr.

The value 86400 is used in the formulae to normalize the
time to a full day. It represents the number of seconds in a
day. The value 1000 is used to convert the travelled distance
from meters to kilometers.

Through systematic feature ablation experiments, we will
evaluate the performance contributions of these combina-
tions, using root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE)
across short, medium, and long trip categories as done in Gao
et al. [3].

Model Enhancements

To improve generalization, we incorporate graph data aug-
mentation techniques [20] [12], including edge perturbation
and node masking which expand the training set and mitigate
overfitting.

• Edge drops: Edges are randomly dropped with a proba-
bility of 10% to mitigate over-smoothing and over-fitting
[15].

• Edge additions: Edges may also be randomly added
with a probability of 1% to diversify the connectivity of
the graph.

• Node masking: This zeros out node feature vectors with
a probability of 10% to improve robustness.

Edge Drops

Edge Additions

Node Masking

Masked
Node

Figure 3: Visualization of edge drops, edge additions and node
masking from left to right

Additionally, we apply multi-scale graph learning [13] [18]
to capture both fine-grained local relationships (e.g., within
neighborhoods or intersections) and global network patterns
(e.g., across the entire city network). This hierarchical ap-
proach allows the model to learn robust representations across
spatial scales, improving resilience to data sparsity and vari-
ability.

For each road segment in a trip, its static (global) embed-
ding is concatenated with its local (trip-specific) embedding.
This fusion yields a multi-scale feature vector that jointly en-
codes infrastructure context and trip dynamics. The fused
vector is mapped via a multilayer perceptron (MLP) to a dis-
crete set of speed bins and normalized with a softmax, pro-
ducing a probability distribution over speeds. The expected
speed under this distribution balances the model’s certainty
about both large-scale patterns (e.g., typical segment speeds)
and small-scale variations (e.g., temporary congestion) [8].
Segment-level expected speeds are converted into travel-time
estimates (distance divided by speed) and then summed to ob-
tain the total trip time. This decomposition allows losses to
be applied at both segment and trip levels.

Through experiments, we will see how each of the two en-
hancement techniques affect the performance of the model.
This will be done in a manner that is similar to the experi-
ments done with feature engineering, that is, using root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) across short, medium, and
long trip categories.

4 Experimental Setup
The experimental setup for feature engineering and model
evaluation was implemented in Python using PyTorch, scikit-
learn, and pandas. We use a crowd-sourced dataset from
Berlin [11], which includes GPS-tracked bicycle trip data and
map-matched road network data, and split the data into five
folds using K-Fold cross-validation.

First, we engineer three main sets of features:

• Baseline features: including raw trip-level attributes like
start time, average speed, edge count, and spatial coor-
dinates.

• Distance and speed features: such as log-transformed
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distance, detour ratio, edges per kilometer, coefficient
of variation of speed, and speed standard deviation.

• Temporal features: sinusoidal and cosine encodings of
time-of-day and month, as well as peak/off-peak hour
indicators.

The feature sets are defined as follows (Refer to Table 2 for
variable definitions):

• F0: Baseline features

• F1: F0+(ld, cs, dt)

• F2: F1+(st, ekm, tods)

• F3: F2+(todc, ms, mc, ph)

• F4: F0+(ld, dt, ekm)

• F5: F4+(cs, st)

• F6: F0+(tods, todc, ms, mc, ph)

For graph data augmentation, we will apply perturbation
techniques to the graph inputs, such as edge deletion, edge
addition, node feature masking, and subgraph sampling, fol-
lowing the approaches of You et al. [20] and Liang et al.
[12]. This will increase the diversity of the training set and
improve model robustness. Augmented graphs will be gen-
erated during batch preparation and fed into the graph-based
neural network architecture during training.

For multi-scale graph learning, the architecture was in-
spired by the dual-graph and multi-resolution strategies pro-
posed by Yan et al. [18] and Jiang & Luo [13]. This is
achieved by modifying the static graph encoder, that pro-
cesses the global road network structure, and the trip-specific
graph encoder, that models local, sequential patterns along
the trip trajectory.

The node-level representation Klocal ∈ Rn×d is combined
with a global embedding:

Kglobal =
1

n

n∑
i=1

Ki

The global mean vector is broadcast and concatenated to
each local node embedding before downstream prediction:

Kmulti = [Klocal | Kglobal] ∈ Rn×2d

This approach mimics hierarchical GNN concepts seen in
Yan et al. [18], where information at the intersection level
(fine-grained) and the road segment level (coarse-grained) is
jointly used. However, instead of building separate node-
and edge-based graphs, we preserve scalability by reusing
the global feature statistics instead of constructing new coarse
graphs.

For each feature set and model enhancement, we run ex-
periments through a structured pipeline:

• Data preparation: combine baseline and engineered fea-
tures, filling missing values, and aligning feature slices
for each experiment.

• Model training: using the graph-based neural network,
a learning rate of 0.001, batch size of 1024, and 10
training epochs. The network architecture ingests both
graph structure (edge index, graph-level features) and
the feature-engineered route-level inputs. For the model
adjustment we will decide whether to include graph data
augmentation, multi-scale graph learning or both.

• Evaluation: we collect Root Mean Squared Error
(RMSE), Mean Average Error (MAE), and Mean Ab-
solute Percentage Error (MAPE) on the validation folds,
both overall and separately for short (less than 8 min-
utes), medium (8–16 minutes), and long (over 16 min-
utes) trips. Evaluation results will be aggregated across
folds, and summary statistics (mean and standard devia-
tion) will be reported.

The pipeline will be implemented for efficiency and repro-
ducibility, using pre-saved pickle objects for graph data struc-
tures, GPU acceleration where available, and modular code
for extending feature sets and evaluation metrics.

The K-Fold cross-validation protocol and using the same
evaluation metrics (RMSE, MAE, MAPE) allows direct com-
parison between the baseline, feature-engineered models, the
graph-augmented models and multi-scale models. It will al-
low us to evaluate which solutions are the most effective and
can be combined for better model performance.

5 Results and Analysis
This section presents empirical findings from the two exper-
iments outlined in 4. The two tables Table 3 and Table 4
summarize the results across three distance-based bins - short
(less than or equal to 8 minutes), medium (8-16 minutes) and
long (over 16 minutes) - as well as overall metrics. We report
the RMSE, MAE and MAPE for each setting.

The baseline results of the model rely mostly on raw route
geometry and minimal temporal cues as shown in both Table
3 and Table 4. Relatively, it yields high errors on short trips
(MAPE = 26.5%). This large error can be attributed to minor
delays (e.g., waiting at one light) represent a large fraction of
a trip less than 8 minutes.

Feature Engineering. The introduction of three features
in F1 initially worsens prediction on short and medium trips.
Only for long trip does the RMSE improve slightly, but MAE
is higher. This indicates that the initial feature additions,



Feature sets Short (< 8min) Medium (8–16 min) Long (> 16min) Total
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

F0 89.81 61.65 26.51 175.14 124.09 17.66 737.67 255.78 15.25 445.45 147.65 19.87
F1 102.62 68.73 28.82 187.16 130.89 18.66 721.47 263.98 16.06 438.94 155.02 21.26
F2 83.10 57.15 24.90 160.30 112.61 16.05 729.77 249.97 14.63 438.90 140.52 18.59
F3 91.75 59.95 25.80 181.33 123.34 17.57 720.93 255.30 15.16 437.66 146.75 19.58
F4 91.92 60.94 26.25 174.23 120.65 17.17 726.38 253.77 15.08 439.38 145.65 19.56
F5 96.27 60.86 25.99 180.73 120.09 17.15 701.85 251.06 14.90 427.12 144.52 19.41
F6 88.11 59.89 24.72 173.92 121.82 17.31 717.28 254.43 15.17 433.84 145.93 19.12

Table 3: Error metrics (RMSE, MAE, MAPE) for each feature set across different trip-length categories. Minimum values in each column
are highlighted in bold red. Refer to Section 4 for feature set definitions.

Model Enhancement Technique Short (< 8min) Medium (8–16 min) Long (> 16min) Total
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

No Enhancement 89.81 61.65 26.51 175.14 124.09 17.66 737.67 255.78 15.25 445.45 147.65 19.87
Graph Data Augmentation 98.76 63.14 25.55 171.51 119.15 17.06 720.69 262.75 15.64 436.36 148.95 19.49
Multi-scale graph learning 99.91 62.44 26.33 184.34 124.26 17.75 719.30 258.93 15.45 437.16 149.07 19.91
Combined 92.15 60.22 24.31 162.37 112.47 16.20 730.04 258.73 15.04 439.86 144.49 18.58

Table 4: Model enhancement results: error metrics (RMSE, MAE, MAPE) across different trip-length categories. Minimum values in each
column are highlighted in bold red.

without normalization or combination may be injecting noise.
Overall MAPE climbed to 21.26%, which suggests that F1’s
extra features do not outweigh the variance they introduce
yet. Hence, these features may not linearly relate to trip time
in shorter routes where rider behavior varies more sharply due
to individual choices or frequent interruptions.

By including measures of speed variation (speed std),
route density (edges per km) and a sinusoidal temporal fea-
ture (tod sin), F2 corrects much of F1’s degradation. For
short and medium trips, MAPE reduces to slightly below
baseline. MAPE for long trips and overall data remains also
shows a slight improvement. These features better represent
the fluctuating pace of cyclists and the stop-and-go nature
of urban environments. The model’s improved performance
here—lower errors across all trip lengths—suggests that in-
corporating variability and structural complexity directly im-
proves realism in time estimation.

Adding more temporal features yields negative effects.
Across all trip lengths RMSE, MAE and MAPE spike up.
The feature set now has 20 features, which could be caus-
ing noise and overfitting. Moreover, this may indicate that
cycling behaviors are not strongly correlated with these char-
acteristics. Real-world cycling times are only weakly influ-
enced by long-term seasonality or time granularity, especially
when such patterns are diluted by individual rider variability
and environmental unpredictability (e.g., wind, traffic).

F4 is a combination of the baseline features plus engi-
neered features that rely on distance. It reduces MAPE on
long trips and short trips but the total MAPE shows minimal
fluctuation as the medium-trip errors barely show improve-
ment. Hence, while F4 helps the longest trips - suggesting
that cold degrees and route degradation metrics matter more
on extended trips - its overall benefit is offset by increased
short-trip RMSE and medium-trip MAE.

F5 is a feature set comprised of F4 (engineered features
that rely on distance) and engineered features that rely on
speed. It shows major improvement in the RMSE of long

trips thereby drastically improving the overall RMSE as well.
F5 shows that carefully adding statistical dispersion can re-
duce errors, especially when combined with distance-related
features.

F4 and F5 highlight how physical attributes like route
length and speed dispersion affect long trips. For longer du-
rations, minor behavioral noise is averaged out, and geomet-
ric factors—such as detours and route density—play a more
deterministic role. F5, in particular, shows a marked reduc-
tion in RMSE for long trips, indicating that combining route
structure with variability in cyclist speed captures the real dy-
namics more accurately.

F6 focuses on the addition of only temporal features to the
existing feature set F0. Interestingly, it reduces error for short
trips—the most time-sensitive to local urban patterns like
rush hour—but yields little improvement for longer ones. The
result is a new minimal MAPE for short trips (24.72%) which
is the lowest MAPE for this trip category. However there
are very minimal improvements across other trip-lengths and
metrics. This reflects that short trips may be more influenced
by time-dependent factors like congestion, while longer trips’
variability depends more on the route and rider endurance.

According to Table 3, F2 emerges as the best all-rounder,
balancing absolute and relative error across all trip lengths.
This is likely because it captures both the variable pace of
cyclists and the influence of route complexity without over-
complicating the model. It has an optimal combination of
distance, speed and temporal features.

Model Enhancements. The implementation of graph data
augmentation, which randomly drops, adds or masks pertur-
bations on the raw graph, slightly improves the model’s ab-
solute errors by 2-3%. However the improvements are only
visible for medium and long trips. The RMSE of short trips
increase from 89.8% to 93.8%. The net effect is a modest
overall reduction in RMSE, showing that this enhancement
technique alone helps reduce large-route errors at the expense
of some noise in short trips.



The improvement in medium and long trips suggests it
helps the model generalize better in the face of infrequent
route choices or network irregularities—realistic scenarios
where cyclists take unfamiliar detours or where GPS errors
occur. However, performance on short trips declines, likely
because the minor disturbances disproportionately affect al-
ready brief durations.

Multi-scale graph learning on its own yields nearly no gain
over the baseline results. The only visible improvement is
in the RMSE for long trips, where understanding both lo-
cal road segments and broader network context (e.g., arterial
vs. residential routes) can help disambiguate routing choices.
In other words, the introduction of hierarchical graph layers
alone does not improve overall predictive accuracy.

When the two methods are combined, the model outper-
forms nearly every other setting. The graph augmentation
improves generalization to unpredictable conditions, while
multi-scale learning contextualizes local behavior within
broader spatial patterns. This synergy confirms that aug-
menting the graph and introducing layers in the graph com-
plement each other, enabling the enhanced model to more
accurately reflect the multiscale, nonlinear nature of urban
cycling—where trip time depends on both immediate obsta-
cles (e.g., a busy intersection) and macro-patterns (e.g., route
topology, typical flow). While RMSE for short trips do in-
crease, it is offset by the massive gains in other metrics and
trip-length categories, especially medium trips. This leads to
the best overall MAPE observed in Table 4.

6 Discussion: Implications and Limitations
Our findings demonstrate clearly that thoughtfully engineered
features - especially those capturing speed variability, route
geometry, and temporal context - significantly enhance bicy-
cle travel time estimation. Specifically, the feature set F2, as
seen in Table 3 yielded the lowest overall error across all trip
lengths. This align with prior studies emphasizing the impor-
tance of feature design, such as Heaton’s empirical results on
feature engineering [7] and Shi et al.’s SAFE framework for
automates feature generation [16].

The enhanced model demonstrates lower prediction errors,
particularly for medium and long trips, indicating improved
capacity to model complex route dynamics. While the re-
sults do not explicitly measure generalization or robustness
(e.g., on out-of-distribution data or under adversarial noise),
the improved performance across different trip lengths sug-
gests the model may better accommodate variation in cycling
patterns.

Architecturally, while graph augmentation and multi-scale
graph learning provided modest gain on their own, their com-
bination produced substantial error reductions, particularly
for medium-length trips. This mirrors broader GNN trends,
where augmentation and hierarchical multi-scale approaches
drive performance improvements [14]. It suggests that aug-
menting both local and global representations is essential for
capturing the heterogeneous dynamics of cyclist behavior.

Regarding computational complexity, the DG4b-based ap-
proach achieves competitive performance with a relatively
small parameter count compared to heavier models, This

echoes the trend in Intelligent Transport Systems toward
lightweight, efficient GNN models that prioritize scalability
and interpretability. The architecture balances accuracy, com-
plexity, and deployment feasibility which is particularly rel-
evant for real-time mobility and bike-sharing application in
smart cities.

While there are many improvements, there are also some
limitations when it comes to the implementation of feature
engineering and model enhancements in the DG4b model.

Returning to Table 3, F3 shows that adding excessive tem-
poral features introduces overfitting, especially in noisy or
sparse contexts. To ensure that the data were kept private and
secure, individual cyclist traits are missing. As a result, the
model does not account for these features in a trip and there
may be some merit to exploring the effect of these features on
the model. Enhancing the model with individual techniques
also seemed to cause higher errors for some metrics, suggest-
ing that those techniques may not be suitable for certain trip-
length categories. Lastly, the model may show performance
drops in regions where the cycling patterns and infrastructure
are different from those of Berlin. Since this study does not
include cross-city generalization or stress testing with noisy
data, the claims of robustness and generalization should be in-
terpreted cautiously. Future work should include such evalu-
ations to validate model performance under more varied con-
ditions.

7 Responsible Research
This section outlines the principles of responsible research
that have guided this study. It focuses on the ethical conduct
and the importance of reproducibility throughout the research
process.

7.1 Ethical Considerations
The dataset used in this research is a German crowd-sourced
dataset collected via a mobile app. Collecting route data from
citizens may be considered sensitive data. Hence, the data
collected was anonymized to preserve the privacy of the citi-
zens.

This was achieved through three mechanisms: Delaying
recording allows users to define a time and a distance thresh-
old after which a recording will start, users were allowed to
crop their ride manually to hide where they started or ar-
rived, and per-record pseudonymization stores demographic
and ride data separately so that rides cannot be connected to
individual users. Furthermore, each ride is pseudonymized
separately [11].

7.2 Reproducibility of Research
This research adheres to the FAIR (Findable, Accessible, In-
teroperable and Reusable) principles [17] to ensure repro-
ducibility and transparency. This paper provides a detailed
explanation of the methodology and experimental setup along
with its results and analysis. All the libraries used to pro-
duce the results are open-source and freely available for pub-
lic use.



8 Conclusions and Future Work
This research demonstrated that feature engineering and ar-
chitectural enhancements significantly improve the perfor-
mance of GCNNs for bicycle travel time estimation. The
DG4b model, augmented with carefully designed features
and multi-scale graph learning, outperformed traditional
baselines across all trip-length categories thereby answering
the primary research question.

We explored the effects of feature engineering across six
different feature sets and saw that a careful combination of
distance, speed variation and time-encoding features yielded
the lowest prediction errors across all categories. Too many
features seemed to cause too much noise and led to overfit-
ting.

Model enhancements work best when combined. Graph
augmentation and multi-scale learning complement each
other, yielding better generalization and robustness, espe-
cially for long and medium-length trips. This confirms that
combining local and global spatial information enables the
model to handle heterogeneous trip dynamics more robustly.

Performance–complexity trade-off remains favorable. The
model achieves state-of-the-art accuracy with lower complex-
ity and faster training times compared to more complex alter-
natives. Despite low parameter counts and minimal tuning,
the model surpassed more complex methods, demonstrating
practical viability.

The experiments in this paper only explored the effect of
feature engineering and model enhancements individually. In
the future, combining the engineered features with the en-
hanced model may yield even better predictions, thereby im-
proving its robustness and ability to generalize.

We could also expand the feature set further by incorporat-
ing weather, elevation, and land-use data. This could improve
predictions particularly for long and uphill routes. Another
set of features worth exploring may be rider profiles. If we
can find a way to use identifiers that preserve privacy, we can
explore how the model can be improved to take into account
the cycling experience of a rider. This could enable more per-
sonalized estimations.

Applying the framework to new cities with minimal re-
training could validate how well the model is able generalize.
Another solution may also be to feed the model with more
than one road network and train it over a set of trips from
different cities to see how well it can generalize.

In summary, this research demonstrates that integrating
domain-informed features or robust, lightweight GNN en-
hancements provides a powerful and efficient solution for
bicycle travel time estimation. By extending these insights
through combination, personalization and richer contexts, fu-
ture research can further advance this mode of mobility.
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