Enhancing Merge Conveyor
Utilization 1n a Line-Sorter Sortation
System by Introducing a New Control
Algorithm

A Case Study at Vanderlande

Revanth Sal Yayavaram

1’!U Delft VANDERLANDE

Enhancing Merge Conveyor

Utilization 1n a Line-Sorter Sortation
System by Introducing a New

Control Algorithm
A Case Study at Vanderlande

by

Revanth Sai Yayavaram

Master Thesis

in partial fulfilment of the requirements for the degree of

Master of Science
in Mechanical Engineering

at the Department of Maritime and Transport Technology of the Faculty of Mechanical,
Maritime and Materials Engineering of Delft University of Technology
To be defended on Wednesday, August 30, 2023, at 13:00 PM

Student Number : 5302307
MSc Track : Multi Machine Engineering
Report Number : 2023.MME.8848

Supervisor: Dr Ir. Yusong Pang

Thesis Committee: Dr Jovana Jovanova, TU Delft Committee Chair, Faculty of 3Me
Dr Alessia Napolano, TU Delft Committee Member, Faculty of 3Me
Ir. Jaap Schouten, Company Supervisor, Vanderlande

Date: August 30, 2023

An electronic version of this thesis is available at https://repository.tudelft.nl/

It may only be reproduced literally and as a whole. For commercial purposes only with written
authorization of Delft University of Technology. Requests for consult are only taken into consideration
under the condition that the applicant denies all legal rights on liabilities concerning the contents of the
advice.

]
TUDelft

https://repository.tudelft.nl/

Preface

This thesis marks the completion of my journey as a master’s student in Mechanical Engineering
(Multi-machine track) at Delft University of Technology. My time in this program has been nothing
short of a roller coaster ride, filled with highs and lows. Initially, the disappointment of not being able
to come to Delft in 2020 due to the COVID-19 pandemic was disheartening. However, by reapplying
for the following year, I was fortunate enough to join TU Delft. Reflecting on these two years, I take
great pride in knowing I have successfully navigated through this roller coaster and emerged stronger.

I would like to express my sincere gratitude to the individuals who have been instrumental in the
completion of this thesis. First and foremost, I am deeply thankful to my supervisor, Dr Yusong Pang.
His invaluable feedback has always challenged me to surpass my limits and deliver my best work.
Each meeting with him was an intense and enlightening experience that helped me gain knowledge
and clarity about my research goals. Thanks to Dr Jovana Jovonava for accepting to be my Chair for
this project.

I extend my appreciation to Jeroen Vennegoor op Nijhuis and Jaap Schouten for selecting me as a
graduate intern at Vanderlande. Our regular meetings were always insightful and enjoyable. 1 am
grateful for their continuous support and guidance, both personally and professionally. 1 am grateful
to the entire OTMA-MBD team for making me feel at home and involving me in engaging lunchtime
discussions.

I'would like to express my heartfelt gratitude to my family and friends. Although it saddens me that my
father cannot witness my graduation, I am certain that he would have been proud. I am forever indebted
to my mother and sister for their unwavering belief in me and their unconditional support. Their
sacrifices have brought me to this point, standing here before you, presenting this thesis. I would also
like to thank Rishika, who has consistently motivated me throughout my master’s phase, and Sriram, a
close companion from India, for his unwavering support. Lastly, I want to express my appreciation to
my close friends and cousins who were always just a phone call away when I needed someone to talk to.

As my time studying in Delft comes to an end, I am grateful for the opportunity to study at this
esteemed university in a beautiful country. I am thankful for the friendships I have made and the
valuable life lessons I have learned. Now, it is time for me to embark on the next phase of my life.
Despite everything, I would like to sincerely thank you for taking the time to read my thesis. I hope
you find it enjoyable and informative, and that it adds to your knowledge in some way.

Revanth Sai Yayavaram
Delft, August 2023

summary

The parcel distribution industry, which encompasses prominent players like UPS, DHL, and FedEx,
handles a substantial volume of parcels, often reaching millions per week. To ensure efficient
operations, these companies heavily rely on automated material handling systems like conveyors
and sorters. Among the critical components of these systems is the merging process, which involves
combining parcels from multiple infeeds onto a main conveyor (also called merge conveyor) for
further sorting. In their pursuit of continuous improvement, industry leaders, including Vanderlande, a
renowned provider of material handling automation solutions, are actively seeking ways to enhance the
throughput and utilization of their sorting systems. This research collaboration specifically addresses
the challenge of low utilization of the merge conveyor in Vanderlande’s line sorter sorting system.

This master’s thesis aims to identify how the parcel merging process and the utilization of the merge
conveyor can be improved by introducing a new control algorithm. To do so, the following research
question is established:

"How can the parcel merging process and utilization of the merge conveyor in a line-sorter
sortation system be improved by introducing a new control algorithm?”

To answer this research question, several sub-questions were explored. The first sub-question focused
on identifying the key factors influencing the parcel merging process and utilization of the merge
conveyor. Through a comprehensive examination of the current industry-level control algorithm and
relevant literature, it was determined that factors such as parcel velocity profiles, announcement timing
of the parcels on the infeed, merge conveyor speed, and parcel dimensions have a significant impact
on both the merging process and system utilization. Achieving higher utilization while maintaining a
balanced load among infeeds requires careful consideration of these factors.

The second sub-question revolved around identifying a suitable control algorithm for improving the
merging process and utilization. A thorough review of the literature was conducted, encompassing
control algorithms used in domains such as baggage handling systems and vehicle merging processes.
Dynamic Programming (DP) emerged as a promising approach to optimize the parcel merging process.
To evaluate the selected control algorithm, a set of key performance indicators (KPIs) were defined.

The third sub-question revolved around the development of the chosen control algorithm using
Discrete Event Simulation (DES) implemented in Python. The model construction process involved
creating a conceptual model that incorporated an imaginary segment preceding the merge conveyor.
This segment, aligned with the merge conveyor axis, allowed parcels to be efficiently filled while
maintaining the safety gaps between them using the control algorithm. The model encompassed three
distinct processes: parcel generation, the DP-based control algorithm for assigning slices to parcels,
and the delivery of parcels from the infeeds to the merge conveyor based on predetermined exit
times. Rigorous verification and validation procedures were performed to ensure the reliability and
accuracy of the model. Furthermore, a sensitivity analysis demonstrated that smaller segment sizes
offer advantages when dealing with fly-through parcels.

111

The fourth sub-question involved comparing the developed control algorithm with Vanderlande’s
current industry-level algorithm. Through a series of scenario tests with consistent parameter settings,
the KPIs obtained from both algorithms were compared to evaluate the new algorithm’s superiority, as
well as any potential disadvantages. Additionally, a comprehensive cost-benefit analysis was conducted
to provide a holistic understanding of the algorithm’s practical implications. This cost-benefit analysis
has helped in answering the final sub-research question.

The collective findings indicate that the utilization of the merge conveyor can be greatly enhanced
by implementing DP as the control algorithm. By efficiently filling the imaginary segment, the
algorithm optimizes the allocation of slices, utilizing available parcels instead of assigning a slice
to each incoming parcel individually. Throughout the thesis, the importance of balancing utilization
and load distribution among the infeeds is consistently highlighted. To achieve load balance, a max
heap algorithm is employed, prioritizing the infeeds according to their maximum filled queue. The
combination of DP and the max heap algorithm demonstrates the potential to achieve higher utilization
with proper load balancing, ultimately leading to the desired outcome of increased utilization pursued
in this research.

The developed algorithm in this thesis aimed to closely emulate real-world conditions, with certain
assumptions playing a crucial role. Recommendations include conducting additional experiments
to evaluate the algorithm’s behaviour under realistic scenarios, considering dynamic variations in
infeed capacity and parcel characteristics. It is also recommended to test the algorithm on different
layouts and loop sorters. Considering potential additional costs and conducting further cost-benefit
analyses is essential. Furthermore, future research can explore sustainability aspects and develop a
control technique adaptable to different speed variations. Finally, it can be said that his thesis serves
as an initial exploration of dynamic programming as a control algorithm to enhance merge conveyor
utilization for a line sorter sorting system in the field of parcel handling.

2023.MME.8848

Preface
Summary
Nomenclature

1 Introduction
1.1 Company Background

1.2 ResearchOverview i

1.2.1 Research Problem

1.3 Research Objectiveand Scope

1.3.1 ResearchQuestions
1.4 Research Approach
1.4.1 Research Methodology
1.5 Structure of thereport
2 Parcel Sorting Systems in Practice
2.1 InfeedZone
2.1.1 Infeed Parameters.
2.2 Important terms related to parcel merging process
23 MergeZoneo i i e e e e

2.4 Sortation Zone

2.5 OverflowZone
2.6 Problem Diagnosis,
2.7 Load Balancing Techniques
2.7.1 First Come First Serve (FCFS) Algorithm
2.7.2 Round Robin (RR) Algorithm
Estimated Merge Algorithm
2.7.4 Early Announcement of Parcels
28 BuddySearch,

2.7.3

2.9 Conclusion

3 Selection of Control Algorithm

3.1 Optimization of parcel merging in a parcel sorting system
3.2 Window re-allocation to reduce the imbalance among infeeds . . .

3.3 Optimization of vehicle merging in Traffic Management System
3.4 Key Performance Indicators

34.1 Throughput,

3.4.2 Utilization
3.4.3
3.5 Conclusion

4 Model Building

4.1 ModellingSteps

LoadImbalance

contents

(=
= [l

i
s

O o0 N N RN N

Contents \Y

4.1.1 Step 1: Model Conceptualization 34

4.1.2 Step 2: Model Implementation 42

4.1.3 Step 3: Model Verification, 44

4.1.4 Step4: Model Validation 44

4.2 Conclusion towards Experimentation 47

5 Model Experimentation 48
5.1 Simulationtime 48
5.2 Comparison with the current algorithm 52
5.2.1 Scenario with no fly-throughparcels 52

5.2.2 Scenario with 10 per cent fly-through parcels 57

5.3 Reflectingonthecomparison 62
54 CostBenefit Analysis 63

55 Conclusion e e e 65

6 Conclusion 66
6.1 Conclusion: Answering the research questions 66

6.2 Discussion and Recommendations 69
References 71
A Research Paper 77
B Simulation Model 90
B.1 Simulation Process L 90
B.1.1 InfeedClass. e 90

B.1.2 Merge Conveyor Class 92

B.2 Model Verification 97
B.3 Model Validation 97
B.3.1 Extreme Conditiontests 97

C Model Experimentation 99
C.1 Scenario: No flythrough, 99
C.1.1 Case 3: No fly-through and 4 infeeds 99

C.1.2 Case 4: No fly-throughand 2 infeeds 100

C.2 Scenario: 10% fly-though 102
C.2.1 Scenario 7: 10 % fly-through and4 infeeds 102

2023.MME.8848

1.1
1.2
1.3
1.4

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
33
34
3.5
3.6
3.7
3.8

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
53
54
5.5
5.6
5.7

List of Figures

Parcel Distribution Center Layout , (Boysenetal. 2017). 3
Parcel Distribution Center Layout; (Pfohl etal. 2020) 3
Research Approach, inspired from Peffers etal. (2014) 5
Research Flow Diagram 7
Parcel Distribution Center Layout II, (Ven2022) 8
Parcel being placed on the infeed by an employee, (Handling 2023) 9
A single infeed and merge system 10
Trajectory Profile, (Bals 2021) 11
Single infeed and merge systemo 11
Scanning and Weighing 13
Line Sorter and Loop Sorter 14
Merge Conveyor with n infeeds before merging 15
Merge Conveyor with n infeeds aftermerging 15
Schematic representation of the PEC location on the infeed, (Bals 2021) 18
Tilt Tray, (Autotech 2023) 22
Merge area Modeling, (Haneyah etal. 2013) 24
Window- reallocation algorithm, (G. Kimetal. 2017) 25
Different merges in trafficsystem 26
Single Lane Merge Zone, (Peietal.2019) 27
Back Tracking of Dynamic Programming (Peietal. 2019) 29
Results of DP based strategy, (Peietal.2019) 29
Different Scenarios of lane merging, (Linetal. 2020) 30
Modelling steps, Inspired from (Sharma 2015) 34
Layoutofthesystem 35
Imaginary Segment and fly-through detection point 37
Fibonacci Series recursion tree oo oo 38
Fibonacci Series recursion treeusing DP L L. 38
Assigning parcelsusing DPo oL 39
Example ofamax heap sorting 41
Generic controller model for a single replicate of discrete event simulation, (Allen 2011) 43
Effect of Segment Size 46
3- minute average of the merge utilization 49
KPIs for 30 minutes simulationruntime 50
one hour simulationtime o 51
3-minute average graphs of KPIs using current control algorithm 54
3-minute average graphs of KPIs using developed algorithm 54
3-minute average graphs of KPIs using current control algorithm 56

3-minute average graphs of KPIs using developed control algorithm 57

List of Figures vil

5.8
5.9
5.10
5.11

B.1
B.2

C.1
C2
C3
C4
C5
C.6

3-minute average graphs of KPIs using current control algorithm 58
3-minute average graphs of KPIs using developed control algorithm 59
3-minute average graphs of KPIs using current control algorithm 60
3-minute average graphs of KPIs using developed control algorithm 61
Slice allocation in the segment 97
Both extreme conditiontests oo o oL 98
3-minute average graphs of KPIs using current control algorithm 99
3-minute average graphs of KPIs using developed control algorithm 100
3-minute average graphs of KPIs using current control algorithm 101
3-minute average graphs of KPIs using developed control algorithm 102
3-minute average graphs of KPIs using current control algorithm 103
3-minute average graphs of KPIs using developed control algorithm 103

2023.MME.8848

2.1

4.1

5.1
5.2
53

54

5.5
5.6

B.1

List of Tables

Estimated Merge calculation, 17
System Parameters 34
No fly-through Happy Flow KPI comparison 53
No fly-through infeed 1 and 6 operating 55
All the six infeeds in operational condition in the presence of a 10% fly-through parcel

OCCUITENCE TATE . .« . v v v v v v it e bt e e e et e e e e e e e e e 58
The first two infeeds in operational condition in the presence of a 10% fly-through parcel

OCCUITENCE TATE . .« . o v v v vt e it et e et e e e e e e e e e e e e e 60
No fly-through allcases e 63
10% fly-through allcases . 63

Parcel entry and exit verification, 97

Nomenclature

Abbreviations
Abbreviation Definition
AGVs Automated Guided Vehicles
AMHS Automated Material Handling System
BHS Baggage Handling System
CAV Connected Autonomous Vehicle
CBA Cost Benefit Analysis
cv Computer Vision
DES Discrete Event Simulation
DHL Dalsey, Hillblom and Lynn
DP Dynamic Programming
FedEx Federal Express Corporation
FCFS First Come First Serve
FIFO First In First Out
HPF Highest Priority First
ILP Integer Linear Programming
KPI Key Performance Index
LQF Longest Queue First
MHS Material Handling System
MILP Mixed Integer Linear Programming
MW Maximum Waiting Time
OTF On-the-Fly
PBA Priority Based Algorithm
PEC Photoelectric Cell
QB-IM Query Based Intersection Management
ROI Return on Investment
RR Round Robin
SC Switching Condition
TMS Traffic Management System
UPS United Parcel Service
VS Via-Stop

Introduction

Online orders and e-commerce have experienced exponential growth, reaching unprecedented levels
in the present world scenario. Today, it is common for individuals to expect their orders or parcels to
be delivered within a couple of days or no more than a week. However, behind the scene, there exists
a vast and complex world of Material Handling Systems (MHS) that operates to make this possible.
MHS can be observed in various aspects of modern economies, such as parcel and postal services,
airports handling baggage, warehouses moving pallet loads, seaports managing shipping containers,
manufacturing systems transporting parts, and many other applications (Haneyah et al. 2013).

By definition, a MHS is a system or a combination of methods, facilities, equipment, and labour
employed to work for the sole objective of moving materials from one source to another (Cross
et al. 1986). MHS can be customized according to the specific needs of the industry or application,
allowing for efficient handling of a wide variety of products, from small parts to heavy loads. An
Automated Material Handling System (AMHS) is a type of material handling system that uses
advanced technologies to automate the movement, storage and retrieval of materials (Agrawal
et al. 2006). Among the various applications of AMHS, parcel sorting systems play a crucial role in the
parcel industry. These systems employ diverse techniques and technologies to sort parcels based on
different criteria, such as destination, size, weight, shape, and other characteristics. Typically, parcel
sorting systems consist of a series of conveyors, sorters, scanners, and other components, which work
together to sort and route parcels to their designated destinations (Pfohl et al. 2020).

The parcel distribution industry, prominently dominated by companies like UPS, DHL, and FedEx,
encounters the formidable task of managing an enormous influx of parcels, varying from a few thousand
to millions every week (Cardenas et al. 2017). In order to handle such volumes, these industries
heavily depend on conveying systems that possess robust load-carrying capacities. Furthermore, the
integration of various sensors and sorting algorithms play a crucial role in augmenting their ability
to handle parcels efficiently. These facilities are responsible for processing thousands of parcels on
a daily basis, requiring optimal utilization of the system for effective operations (Drissi Elbouzidi
et al. 2023). The issue of reduced efficiency in the sorting systems is a widespread concern in various
industries involved in parcel handling. To address this concern, the current thesis is being carried out
in collaboration with Vanderlande, a leading provider of material handling automation and logistics
solutions. This research aims to identify and introduce a new control algorithm that can provide higher
utilization and improved throughput for the industry. By leveraging advanced control algorithms and
system optimization techniques, it is possible to enhance the efficiency of sorting systems and increase

1.1. Company Background 2

the volume of parcels handled more effectively.

1.1. Company Background

Vanderlande is a leading provider of material handling automation and logistics solutions with a global
presence in over 100 countries and a workforce of more than 7,500 employees (Vanderlande.com
2023). The company is known for its cutting-edge airport solutions and market-leading baggage
handling systems, which are currently in use in over 600 airports worldwide. Their automated systems
are designed to improve operational efficiency, reduce costs, and enhance customer service, all while
prioritizing innovation and sustainability through the use of energy-efficient solutions and sustainable
materials.

One of Vanderlande’s key strengths is its customer-centric approach, which includes end-to-end
support throughout the life cycle of its solutions. The company has a proven track record of delivering
successful projects for some of the largest airports and e-commerce companies in the world, thanks in
part to their flexible and customizable sorting systems (Vanderlande 2023a). These systems incorporate
advanced technology such as high-speed conveyors, robotic arms, and computer vision, making them
an excellent choice for those seeking state-of-the-art equipment.

At Vanderlande, transportation and sortation primarily rely on two technologies (Vanderlande 2023b):
Conveyor systems and Automated Guided Vehicles (AGVs). While conveyor systems offer higher
capacity and reliability, even minor disruptions can result in significant downtime. On the other hand,
AGVs have a lower capacity within a fixed infrastructure of the same size as the conveyor systems,
but they offer the advantage of individual breakdowns not affecting the entire system. Higher capacity
requirements for the parcel industries encourage them to utilize conveyor-based sorting systems. As
customer requirements for automation become stricter, systems have become more complex and
highly automated, which has created opportunities for performance improvement to increase customer
satisfaction. Currently, Vanderlande is looking for new possibilities to improve the utilization of its
conveyor-based parcel sorting system. It is believed that the current algorithm used in the control of
the parcel traffic in the sortation system has a scope for further improvement and there are numerous
options that haven’t been researched yet, that could potentially yield handling more capacities. This
provides an opportunity for further research that can help in developing a control algorithm which can
improve the utilization of a merge conveyor in their parcel sorting system.

1.2. Research Overview

There are various potential configurations for a parcel sorting system, each tailored to the specific
needs of the owning company. Several examples of parcel sorting system layouts can be found in the
literature, such as those depicted in Figure 1.1, Figure 1.2, and Figure 2.1. Despite the availability of
different layouts, the fundamental process remains consistent across all of them.

To begin with, parcels are initially placed on the infeed conveyors. These conveyors serve to transport
the parcels along their lengths and merge them onto the main conveyor. The act of parcels from various
infeeds converging into a single lane flow is referred to as merging (Gasperin et al. 2012). Consequently,
the main conveyor is commonly referred to as a merge conveyor. In an autonomous environment, the
timing and sequence of parcel merging are determined through information exchange between the infeed
controllers and the merge controller. A comprehensive explanation of this communication process
will be provided in section 2.3. The merge conveyor moves continuously in time and facilitates the

2023.MME.8848

1.2. Research Overview 3

transportation of parcels from the merge zone to the sortation zone, where the parcels are sorted (Pfohl
et al. 2020) at regular intervals without any interruptions. Further elaboration on the distinct zones will
be presented in detail in chapter 2.

Outbound trailer

Outbound segment 2
m
g, P
0, (\z*‘&
R
\(‘DQ

Camera
Telescope system
con

Outbound segment 1

Figure 1.1: Parcel Distribution Center Layout , (Boysen et al. 2017)

1. Unload truck |
I Y //—/‘.‘
-

2. Singulate bulk of parcels ™.
~— s g
~ 3. Convey parcels [~ ’
—~ -

4. Merge paucels to main conveyor bel |

5. Centre parcels on the conveyor

"] 6.Read parcels destinarion informarion

7. Determine size and weight]

8. Sore parcels to destnation
([.1 1 r |
9. Buffer parcels before loading
- T
; 10. Load truck
L \ I [
0 7]

11. Safery check for air freight
-,

Figure 1.2: Parcel Distribution Center Layout; (Pfohl et al. 2020)

1.2.1. Research Problem

The parcel sorting system comprises multiple infeed lines through which parcels are inducted onto the
merge conveyor. Parcels received from trucks are loaded onto the infeed belt by either operators or
robots, with the number of infeeds, their length, and the spacing between them being variable in the
entire parcel sorting system. To assess whether parcels fall within specified dimensional ranges, the
infeed conveyors are equipped with Photoelectric Cells (PECs) positioned at the beginning. Once a
parcel passes these initial PECs, it proceeds to another PEC. Subsequently, a request for reserving its
designated space on the merge conveyor is initiated through communication between the controllers
responsible for the infeed and merge conveyors. The reservation process entails several steps, which
will be elaborated on in section 2.3. Eventually, parcels are transported along the length of the infeeds
and inducted onto the merge conveyor based on their assigned slice and delivery time.

Once the parcels are merged, they are transported to the sortation zone, where they are either sorted or

2023.MME.8848

1.3. Research Objective and Scope 4

directed for a subsequent trip if they were not sorted. In the latter case, the parcels are again guided
through the merge zone. The current algorithm for reserving space to accommodate incoming parcels
proves ineffective, resulting in an increased occurrence of empty spaces on the merge conveyor and a
higher frequency of infeed reservations at the system’s onset, leading to an imbalanced situation. This
imbalance arises from the merge controller’s reservation of space on a First Come First Serve (FCFS)
basis. While there are techniques available to address this load imbalance, the current reservation
system only achieves an approximate utilization rate of 80%, leaving ample room for improvement.

The problem of decreased utilization in parcel sorting systems is prevalent in many parcel handling
industries and Distribution Centres, where thousands of parcels need to be handled efficiently every
day (Drissi Elbouzidi et al. 2023). The consequences of ineffective parcel space reservations include
lower utilization rates and an increased frequency of reservations, especially for the parcels on the
infeeds located at the beginning of the merge conveyor, leading to load imbalances. This issue calls
for identifying a new control algorithm to optimize the parcel merging process and improve system
efficiency.

1.3. Research Objective and Scope

The potential enhancement of system output through increasing conveyor speed or modifying the
layout is sub-optimal and is usually associated with huge costs. With multiple infeeds, the challenge
is to improve space utilization while balancing the load among infeeds to enhance system throughput.
A new control algorithm is required to address this scientific problem. The current control algorithm
for the provided layout, Figure 4.2, requires improvement to meet the benchmark of having at least
80% utilization. While optimization techniques have demonstrated success in various fields such as
Baggage Handling Systems (BHS) and Traffic Management Systems (TMS) - for instance, in highway
on-ramp vehicle merging - their application in the domain of Parcel Handling remains relatively
unexplored. Despite the potential benefits that these optimization techniques could offer, such as
increased efficiency and throughput, they have not yet been fully explored in this area. Therefore,
there may be opportunities to adapt and apply these techniques to parcel handling systems to improve
performance and enhance the overall logistics process.

This study concentrates on developing a control algorithm to improve the utilization by improving the
parcel merging process alongside considering the load balancing of infeeds for parcel merging in a
line-sorter sortation system. The findings can be useful for similar sorting systems and applications.
Since parcel sorting is impeded the most at the merge zone (Haneyah et al. 2013), this area is a focal
point of this research. Additionally, since the arrival distribution of parcels affects system behaviour,
this research also considers infeeds.

As the direction and relevance of this research is clear, it is furthermore necessary to set the boundaries
in which the research takes place. This thesis focuses on a merge zone with multiple infeeds of a line
sorter sortation system. The study will be conducted for a specific layout provided by the company.
Other layout options are left out of scope for this research. A computer-based simulation model
which allows for the testing of various scenarios and parameters in a controlled virtual environment
will be developed. By using simulation, we can conduct experiments without the need for physical
testing, which can save time and resources. Furthermore, the effect of different parameters can be
easily observed for the selected control algorithm by modifying the inputs to the model. Nonetheless,
the output of the research can be used for similar sorting applications or sorting systems due to their
operational similarities.

2023.MME.8848

1.4. Research Approach 5

1.3.1. Research Questions
Following from the research problem and research objective, the main research question that arises
from this context is:

“How can the parcel merging process and utilization of the merge conveyor in a line-sorter
sortation system be improved by introducing a new control algorithm?”

The following sub-questions can help in answering the main research question:

SQI1- Which factors significantly impact the parcel merging process and the utilization of the merge
conveyor in a sorting system?

SQ2- What existing approaches for similar problems suggest a suitable control algorithm for the
current issue of low utilization?

SQ3- How can the selected control algorithm be developed for the Line-Sorter sortation system?

SQ4- How does the selected control algorithm perform compared to the current algorithm that is being
used in the industry?

SQS5- What are the implications of implementing the developed control algorithm in terms of their
impact on the costs for Vanderlande?

To answer the research questions, the research approach and the methods need to be made clear.

1.4. Research Approach

A well-supported research methodology, as formulated by Peffers et al. (2014), can also be applied to
research control algorithms in existing systems. In their paper, the authors outline a methodology for
information systems, which can be adapted to address problems related to technology and organizations.
This methodology is well-suited for the current research, which focuses on developing and introducing a
new control algorithm to improve the utilization of the main conveyor of a parcel sorting system. This
section illustrates how this methodology supports the research questions. A typical design research
methodology consists of the following steps as represented in section 1.4.

Problem Identification Definition of the Design, Development

R jectives f¢ .
and Motivation Ob]ect|v§s ora and Demonstration
Solution

Evaluation Communication

Figure 1.3: Research Approach, inspired from Peffers et al. (2014)

1. Problem Identification and Motivation: This section pertains to identifying a clearly defined
problem and the justification for its relevance. Upon defining the problem, it has become
apparent that the parcel industry faces a significant challenge concerning the utilization of the
main conveyor of the sorting systems. To cope with the escalating volume of parcels that require
handling each day, there is a need to enhance the sorting systems further. However, system
modifications, such as incorporating new conveyor systems with higher speeds or altering the
system layout, entail undesirable costs for relatively low throughput. Therefore, there is a
potential to improve the control system that manages the local parcel traffic. Since the parcel

2023.MME.8848

1.4. Research Approach 6

merging process is a critical step in achieving higher utilization of the conveying system, the
motivation is to enhance the control algorithm or implement a new one to accomplish higher
utilization. The first research question aims to identify significant factors that potentially affect
the parcel merging process and the main conveyor utilization.

2. Definition of Objectives for the Solution: After identifying and describing the problem, the
objectives for addressing it must be defined. The present problem in this research is the low
utilization of the merge conveyor, which can be resolved by developing an efficient control
algorithm to improve the parcel merging process and increase utilization. Potential algorithms
that have yielded promising results in similar applications must be identified to achieve this. The
second research question aims to pinpoint such algorithms to identify a suitable solution for the
present problem.

3. Design, Development, and Demonstration: This phase involves designing and developing a
simulation model of the sorting system for a given layout. Additionally, the simulation model will
demonstrate the use of a new control algorithm in the parcel merging process of the line-sorter
sortation system. Conducting experiments using this model will determine whether this solution
can enhance utilization and serve as a starting point for proving that implementing it can resolve
the low utilization problem. The outcome of this step will answer the third research question.

4. Evaluation: This phase uses the experiments conducted in the previous step. Utilizing the key
performance indicators (KPIs) such as utilization, throughput, and imbalance, an evaluation
can be performed. These KPIs can help compare the developed algorithm with the current
industry-level algorithm. Furthermore, the costs associated with implementing the current
algorithm will be analyzed. The outcome of this step will answer the fourth and fifth research
questions respectively.

5. Communication: As this research is carried out in partial fulfilment of the requirements for the
degree of Master of Science, the communication step involves disseminating the research findings
with stakeholders and individuals involved in the project and those who will work in similar fields
in the future.

1.4.1. Research Methodology

The Figure 1.4 outlines the research methodology employed to address the sub-questions, culminating
in the answer to the main research question. To answer the first question, the current control system
of the line-sorter sortation system must be thoroughly studied. This is carried out by a combination of
reviewing the literature and examining the current control system at Vanderlande. In a similar fashion,
the investigation for the second research question to identify different control algorithms will be carried
out. This can provide options from which the most suitable control algorithm can be adopted to solve
the current problem.

To answer the third research question, a literature review will be performed to identify the appropriate
simulation method. This method will then be used to simulate the parcel merging process of a line-sorter
sortation system. The model will then be verified and validated. The fourth research question uses
the KPIs (Throughput, Utilization and Imbalance) and performs two scenarios with several sub-cases
to compare the developed control algorithm to the current control algorithm that is being used in the
industry. This can help in evaluating and proving the feasibility of the control algorithm as a solution
to the current problem. Finally, a cost-benefit analysis will be performed to provide the implications of
implementing the developed control algorithm at Vanderlande.

2023.MME.8848

1.5. Structure of the report 7
How can the parcel merging process and the utilization of the merge conveyor in a line-sorter sortation system be
improved by introducing a new control algorithm?

Research Question 1
Which factors significantly impact
the parcel merging process and the
utilization of the main conveyor?
_____________ 1
* Literature Research 1
* Examining the current process |
— Parcel merging process and control algorithms —
Research Question 2 Research Question 3
What existing approaches for similar How can the selected control
problems suggest a suitable control algorithm be developed for the Line-
algorithm for the current issue of low Sorter Sortation system?
utilization?
r---—=-=--—"=-—==-=== 1 r=- - -~--—=-===== 1
y * Literature Rescarch 1 , + Literature Research 1
_____________ 1 Discrete Event Simulation 1
L] le—

Evaluation of Parcel merging process with the new control algorithm

Research Question 4

How does the selected control algorithm
perform compared to the current algorithm
that is being used in the industry?

Research Question 5

What are the implications of
implementing the developed control
algorithm in terms of their impact on the
costs for Vanderlande?

'+ Discrete Event Simulation | .
L Data Analysis 1 !

Conclusion and answer to the main research question

Figure 1.4: Research Flow Diagram

1.5. Structure of the report

The structure of this master thesis is organized as follows: In chapter 2, an examination of the control
system in the parcel industry is conducted, with a specific focus on Vanderlande’s control algorithm.
The objective is to identify the factors influencing the parcel merging process and low utilization,
alongside learning more about the process in which the reservations for the parcels are carried out
by the control algorithm. In chapter 3, a comprehensive review of relevant literature is presented,
narrowing down the focus based on the findings from the previous chapter. Subsequently, chapter 4
expands on the third chapter by detailing the development of a simulation model, corresponding to the
methodology’s design and development phase.

Once the simulation model is constructed and validated, chapter 5 utilizes the model to evaluate and
validate the developed algorithm in comparison to the existing algorithm that is being used currently
in the industry. The intention is to showcase the potential of the developed algorithm as a viable
solution. Finally, chapter 6 serves as the concluding chapter of this thesis, addressing the research
questions, providing recommendations, and suggesting future research possibilities after describing
certain limitations based on the obtained results.

2023.MME.8848

Parcel Sorting Systems in Practice

This chapter provides an overview of the sortation system in a parcel distribution centre. It discusses
the different zones of the system, including the infeed zone, merge zone, and sortation zone. The
chapter also explains important terms related to the parcel merging process and provides details about
the merge zone’s functionality and the communication between the infeed and merge controllers
to handle the parcel merging process. Furthermore, it discusses different techniques to ensure load
balancing and concludes with identifying important parameters that affect the parcel merging process.
An understanding of these operational zones and the utilization of load-balancing techniques are
instrumental in discerning the factors that impact the parcel merging process and the efficiency of the
merge conveyor within a sorting system.

The entire sortation system is composed of several zones, each of which has a unique operation as can
be seen in Figure 2.1. For instance, the infeed zone is responsible for accepting parcels into the system,
whereas the merge zone combines parcels from various infeeds onto a single conveyor. In the sortation
zone, the parcels are separated based on their destination or weight. Finally, the overflow zone collects
any unsorted parcels and returns them to the merge zone (Ven 2022).

Sortation zone Gap control
3

p [T [

! r ' £ - ™
I o - Transportation ™
[= el , V)

’ -'0\ el s Zone ’—
Overflow -
il
speed) /]
reduction Accumulation zone Infeed zone --//
1 P
= | coooo | W}t

LY [| T
. A - e

\\.‘___-_-.| T [Fessssssssas]| I.Iﬂ M W/{\-‘L g© 20T

Indexer Overflow Qverflow [¥
accumulation infeed

Figure 2.1: Parcel Distribution Center Layout II, (Ven 2022)

2.1. Infeed Zone 9

2.1. Infeed Zone

The infeed zone of the system can consist of either a single or multiple infeed lines. These infeeds
can be in-line or at a certain angle to the merge conveyor. Once the assigned inbound truck occupies
the designated dock door, the parcels are loaded onto the infeed conveyor in various ways such as an
operator, an extendable conveyor, or even arobot. It’s important to note that the infeeds are not limited to
the start of the sortation system and can be located in other parts of the system as well. In the former case,
an employee unloads the parcels from the truck and transfers them to the infeed conveyor if sufficient
space is available Figure 2.2. This area is known as the un-loading station from the perspective of the
sorting systems (Chen et al. 2023). For each incoming parcel, there are typically several consecutive
steps that it goes through: parcel tracking, length and orientation measurement, parcel announcement
and allocation request by the infeed controller, and acceleration of the parcel onto the main conveyor.

Figure 2.2: Parcel being placed on the infeed by an employee, (Handling 2023)

2.1.1. Infeed Parameters

In the context of any given layout, it is possible to have single or multiple belts or even roller conveyors
based on the type of material moving on it, for an infeed. An example of a two-belt infeed involves the
utilization of two short belts, capable of accelerating, decelerating, and transporting parcels, or stopping
them at the infeed location. In a case where the infeeds are angled to the merge conveyor, there exists
a junction belt that operates at a constant speed which is higher than the speed of the merge conveyor.
A visual representation, as shown in Figure 2.3, illustrates the angled alignment of the infeed conveyor
with the merge conveyor at an angle denoted as . The infeed velocity is selected in such a way that
the resulting speed in the direction of the merge conveyor’s transport is equivalent to the merge speed.
However, the speed in the perpendicular direction differs, as the merge belt does not possess any speed
in that specific direction. This velocity also ensures smooth induction of parcels from the infeed onto
the merge conveyor, preventing any hindrance or slipping of parcels. Consequently, the velocity can
be calculated using the formula presented in Equation 2.1.

Umerge

Vinfeed = m (m/s) 2.1

2023.MME.8848

2.1. Infeed Zone 10

Fly-through Slice Space

2 L
T
Upstream Downstream
— —

Merge Conveyor

Infeed: 1

Figure 2.3: A single infeed and merge system

Currently, at Vanderlande, there are more than two parcel trajectories based on their kinematic
restrictions. Kinematic restrictions refer to the specific capabilities and limitations of the parcels being
transported. These restrictions can include factors such as maximum acceleration, deceleration, and
velocity that the parcels can handle without experiencing issues like slipping, tipping over, or colliding
with other parcels. The utilization of distinct trajectory profiles allows for the optimization of the
merging operation by considering the capabilities and limitations of each parcel. By tailoring the
movement parameters, such as acceleration and deceleration rates, to match the respective trajectory
profiles, the merging process can be carried out smoothly and efficiently. The trajectory profiles that
are relevant to the current project are given below and can be seen in Figure 2.4.

* On-The-Fly (OTF): The parcel arrives with a constant arrival velocity until it is measured by
the sensors. After the sensors, the parcel accelerates to the maximum velocity that it can achieve,
which is the velocity at which the parcels leave the infeed. The acceleration takes place between
the sensor location and the last possible point where the parcels can still accelerate. The parcels
then exit the infeed. This trajectory is used for parcels that do not need to be stopped or slowed
down. However, by choosing the time of acceleration, the arrival times can be adjusted for the
parcels to merge with the merge conveyor.

* Via-Stop (VS): The parcel arrives with a constant arrival velocity until it is measured by the
sensors. However, instead of accelerating immediately after the sensors, the parcel travels with
a constant arrival velocity to a location where it is decelerated. The parcel is then stopped for a
minimum stop time before it is accelerated to the velocity on which the parcels leave the infeed.
This stop duration can be adjusted to alter the arrival time of the parcel from the infeed on the
merge conveyor. After that, the parcel exits the infeed. This trajectory is used for parcels that
need to be stopped or slowed down before they can be merged.

The T, T3, T3 delivery profiles for each parcel are dependent on the length of the parcel, belt lengths,
merge speed and acceleration capabilities of the belt. This is because the parcel first needs to be fully
measured by the sensors on the infeed before it can start its trajectory. The delivery profiles take into
account the time it takes for the parcel to accelerate and reach the maximum velocity allowed by the
system, as well as the distance it needs to travel on the infeed before it can be inducted onto the merge
conveyor.

2023.MME.8848

2.2. Important terms related to parcel merging process 1

Velocity [m/s]
o

] [R}
£ E|E
05k —&— T, delivery profile E g E
: — T T2 delivery profile 2 2|2
T1 delivery profile % 8 %
- -
0 L L L L & .
0 1 2 3 4 5 6
Time [s]

Figure 2.4: Trajectory Profile, (Bals 2021)

Before delving into the complexities of the merge zone and the process of parcel merging, it is crucial
to bear in mind specific terminology that will be frequently employed in the subsequent sections.

2.2. Important terms related to parcel merging process

The planning and control of the parcel merging process are very complex. Figure 2.5 depicts a situation
with one infeed and fly-through parcels travelling downstream in the system. In an autonomous
environment, the arrival of a parcel is detected by using a sensor called a Photoelectric cell (PEC).
This sensor helps in determining the length and position of the parcel.

Fly-through parcels Slice

A

Upstream ‘ d - Downstream
— —

Merge Conveyor

Space

Infeed: 1

Figure 2.5: Single infeed and merge system

According Haneyah et al. (2013),

* Downstream and Upstream: The direction of the flow of material is referred to as downstream
while the opposite flow direction is called upstream as can be seen in Figure 2.5.

2023.MME.8848

2.3. Merge Zone 12

Fly-through parcels: These refer to parcels that were not sorted in the sortation zone before
and are reintroduced into the system at a later stage for the purpose of sorting. Furthermore,
fly-through parcels can also include parcels originating from various other sections of the system.
Since these parcels arrive on the merge conveyor directly, it is not possible to alter their position
on the conveyor.

Transport length: Parcels commonly exhibit misalignment or lack of parallelism with the axis
of the infeed conveyor, leading to disparities between their original lengths and the measured
lengths. Transport length denotes the dimension of the parcel in the direction of the conveyor’s
flow, as measured by the PEC. Depending on the orientation of the parcel, the transport length can
vary from at least the parcel’s length to a maximum corresponding to the length of its diagonal.
Trailing & Leading gap: These gaps are an addition to the transport length of the parcel,
necessary to avoid parcel overlapping or collisions. Furthermore, it is also necessary for other
processes that happen further downstream in the system such as weighing the parcel or scanning
the parcel barcode.

Space: This is the empty area available in between the slices.

Slice: It is a reserved space on the merge conveyor that is based on the transport length of the
parcel along with the trailing and leading gap.

Maximum Head Position: This is the minimum time and the downstream position at which the
infeed can deliver the parcel to the merge.

2.3. Merge Zone

The merge zone denotes the specific region where the merge operation takes place. Within this zone,
the merge controller carries the responsibility of determining the appropriate timing for each infeed to
release a parcel. As the number of infeeds increases, the algorithm used to control the merge zone can
become more complex. When considering a single infeed and a merge conveyor in the merge zone, as
depicted in Figure 2.5, the location of the parcel (1,1) - corresponding to parcel 1 of infeed 1 - on the
merge conveyor is determined based on available space and time of induction. Typically, this merging
process is controlled by the communication between two separate controllers: an infeed controller and
a merge controller. At Vanderlande, the communication between the controllers is as discussed below:

1.

Once the parcel passes the PEC located at the beginning of every infeed, the infeed controller
announces the arrival of the parcel to the merge controller and requests an allocation of space for
the announced parcel on the merge conveyor. This announcement consists of the possible delivery
times to the merge conveyor which is calculated using the possible speed profiles (subsection 2.1.1),
and the dimension of the parcel.

The merge controller has an algorithm called the search algorithm. Each time an allocation request
is raised by an infeed, the search algorithm is executed. For every execution, the search algorithm
will do the following:

(a) Get the list of available empty spaces on the merge conveyor.
(b) Determine the maximum and minimum head position of the parcel.

(c) Determine the length of the slice that needs to be allocated. This length is completely dependent

on the parcel dimensions.

(d) Place the allocated slice in the downstream space of the merge conveyor. This space must be

sufficient not only to accommodate the parcel but also the leading and trailing gaps associated
with it. The leading and trailing gaps are essential to ensure that parcels do not collide or
overlap during the merge process, which can result in jamming and damage to the parcels.

2023.MME.8848

2.4. Sortation Zone 13

(e) The allocated slice is placed such that the resultant flow is balanced among all the infeeds.

3. Based on the position of the slice, a delivery time is communicated to the infeed controller. This is
also referred to as the confirmed time. The infeed then performs the delivery profile that ensures
that the parcels are delivered at the confirmed time.

The search algorithm used in this case is comparable to a linear search, also known as sequential search
with a complexity of orders of n, leading to increased search time as parcel size increases, as noted by
Gibney 2022. It involves searching each element in an array to locate the target element, which in this
context refers to space.

Upon exiting the infeed and entering the main conveyor, the parcels undergo orientation and centring
through the utilization of a product turner. Subsequently, they proceed to an area where they are
scanned from multiple sides to verify their dimensions and barcode information, while their weight is
measured while on the conveyor Figure 2.6b. Notably, this scanning process typically occurs without
halting the conveyor’s motion. One approach to calculating the volume, as discussed by Yunardi et
al. (2016), involves the implementation of a contour-based object identification technique. In their
study, a Computer Vision (CV) system was designed, incorporating two webcams as illustrated in
Figure 2.6a, to acquire dimensional information of the parcels by analyzing the captured 2D pixels.
These pixel measurements serve as inputs to a multiplication program, enabling the calculation of the
parcel’s volume by multiplying its three dimensions.

ma)
Tonveyor Belt WotcHRoHer Sorter
(a) Hardware schematic and illustration for volume -
calculation, (Yunardi et al. 2016) (b) Weighing and scanning, (Mothership 2015)

Figure 2.6: Scanning and Weighing

2.4. Sortation Zone

This phase entails the actual sorting of parcels. Once the merge controller assigns a slice for the
incoming parcel, the parcel is inducted by the infeed and is transported to the sortation zone. During
this sorting process, various types of sorters can be employed, tailored to meet the specific requirements
of the company. In the domain of sortation systems, these systems are commonly referred to by the
name of the sorters themselves, as these sorters are considered the central component of the entire
sortation system (Landschiitzer et al. 2012). The sorters used in these systems can be broadly classified
into two main types: Line sorters and Loop sorters (McGuire 2009). A line sorter is arranged in a linear
fashion, encompassing a defined starting point (merge) and an endpoint (the sorter). The presence of a
re-circulation loop in a line sorter system is contingent, as it is an optional element that can introduce
complexity to the overall system. An illustration of a line sorter called the Posisorter, manufactured by
Vanderlande, can be seen in Figure 2.7a. This sorter contains shoes, which help in directing the parcel

2023.MME.8848

2.5. Overflow Zone 14

towards the respective outfeeds based on their designated destination.

Conversely, a loop sorter is purposefully designed to adopt a loop configuration. One example of a loop
sorter system is the Vanderlande crossorter (Figure 2.7b). In a loop sorter system like the crossorter,
parcels are merged onto the sorter, and the sorter’s carriages continuously circulate within the loop.
The ability of the parcel to be sorted on a given carriage does not impact the functioning of the loop.
Among the two types of sorters, line sorters are cheaper when compared to loop sorters. However,
loop sorters generally offer a higher capacity for processing and sorting items compared to line
sorters. Loop sorters, due to their continuous loop configuration and optimized design, are capable of
achieving higher throughput rates and handling larger volumes of parcels or items (Vanderlande 2023c).

(a) Posisorter (Line Sorter), (Vanderlande 2023a) (b) Crossorter (Loop Sorter), (Vanderlande 2023d)

Figure 2.7: Line Sorter and Loop Sorter

2.5. Overflow Zone

In the sorting system, any parcels that remain unsorted are gathered in the overflow zone. Within
this zone, these parcels undergo a deceleration process and subsequently enter the merge zone as
fly-through parcels (Ven 2022). The unsorted status of parcels can occur due to several possible
reasons. Firstly, it could be because the outfeed area is already full, and unable to accommodate
additional parcels. Secondly, an unsorted parcel may have an unreadable barcode, which prevents
the system from identifying its destination accurately. Lastly, the parcels are too close to be sorted
individually among many more.

The overflow zone serves as a temporary holding area for unsorted parcels, allowing the system to
manage the flow of parcels efficiently. By slowing down and accumulating these unsorted parcels,
the system maintains order and prevents congestion in the sorting process. Ultimately, in the merge
zone, these parcels are reintegrated into the sorting operation, where further attempts can be made to
properly identify and allocate their destinations.

The merge zone, among the zones mentioned earlier, holds significant importance in this research due
to the interaction of parcels originating from various infeeds and merging onto the main conveyor.
The efficient management of the merge zone during the merging process is crucial as any disruptions
in the parcel flow can have a substantial impact on the overall system throughput. Ensuring smooth
operations and unhindered movement of parcels within the merge zone is vital to maintain optimal
system performance. The next section corresponds to understanding more about the issues in the merge
zone.

2023.MME.8848

2.6. Problem Diagnosis 15

2.6. Problem Diagnosis

The complexity of the parcel merging process intensifies as the number of infeeds increases, as
demonstrated in Figure 2.8 and Figure 2.9. The latter figure illustrates a scenario where parcels
from multiple infeeds are merging onto the merge conveyor. In cases where there is no balancing
mechanism in place, the upstream infeeds tend to deliver a larger number of parcels to the merge
conveyor compared to the downstream infeeds. Consequently, this leads to longer waiting times for
parcels in the downstream infeeds and creates an imbalance in the load distribution among the infeeds.

Existing studies have primarily focused on improving load balance among the infeeds. However,
an issue persists regarding the suboptimal utilization of space on the main conveyor, as depicted in
Figure 2.9 with red arrows. The current algorithm results in inefficient spacing between allocated
parcels, which leaves empty spaces that could have been utilized more effectively. By allocating parcels
slightly closer to each other without neglecting the minimum gap requirements, it becomes possible to
merge the parcels from the downstream infeeds with the preceding ones, thereby reducing empty spaces
and enhancing system efficiency. This optimization approach has the potential to increase the number
of parcels processed within a specified timeframe, resulting in improved overall system performance.

— . . - - —
—_—

Merge Conveyor

[]
% OJ]

Figure 2.8: Merge Conveyor with n infeeds before merging

Infeed: 2

PEC

Mepfe Condyyor

Figure 2.9: Merge Conveyor with # infeeds after merging

2023.MME.8848

2.7. Load Balancing Techniques 16

2.7. Load Balancing Techniques

As mentioned in the section 2.6, there are several techniques which are commonly practised in the
industries to balance the load among different infeeds.

2.7.1. First Come First Serve (FCFS) Algorithm

The FCFS control algorithm is a commonly used algorithm in many industries, which searches for the
first available empty space on the merge conveyor for parcel induction (Bals 2021). If no space is
found in the given time window, the parcel is held for a certain period (Via-Stop profile) and is inducted
once there is an assigned slice for it on the merge conveyor. This algorithm can lead to a high parcel
throughput, but it often results in downstream infeeds being starved, leading to an imbalance.

2.7.2. Round Robin (RR) Algorithm

The Round Robin (RR) algorithm is a control algorithm that is effective in addressing imbalances in
parcel delivery. This algorithm uses a pre-reserving strategy where infeeds are supplied with equal-sized
windows on which they can place parcels (Meens 2017). The merge conveyor is divided into windows
of equal length of the maximum parcel size, which are alternately allocated to the infeeds. An infeed
may only induct parcels on spaces which are pre-allocated for that specific infeed. However, this leads
to a reduction in utilization due to the reservation windows having the size of the largest parcel. In
addition, there is also a possibility to have an empty window if the infeed cannot deliver a parcel for the
assigned window.

2.7.3. Estimated Merge Algorithm

In the parcel merging process, the achievable distribution of each infeed is calculated based on its
input parcel flow. If an infeed cannot deliver enough parcels to occupy its allocated space, there will
be unused space on the merge conveyor. The Estimated Merge algorithm distributes this unused space
to other infeeds proportionally to their achievable distribution.

For illustrative purposes, let us consider a scenario involving four infeeds filling up a merge conveyor,
as shown in Figure 2.9. In a balanced scenario, each infeed can contribute equally to filling the merge
conveyor. For the sake of explanation, let us assume that the available space on the merge conveyor is
limited to 90% (removing 10% for fly-through parcels), thereby restricting each infeed to contribute only
22.5%. Itis worth noting that the infeeds located upstream generally have a more consistent distribution
than those located downstream. To facilitate understanding, suppose that infeed 1 and infeed 2 located
upstream can contribute 30% towards filling the merge conveyor, while the remaining two infeeds can
contribute 25% and 15%, respectively, in the absence of fly-through parcels. In this scenario, the fourth
infeed, which can contribute up to 22.5%, can only achieve a distribution of 15%. As a result, there is
an unused space of 7.5% that can be allocated among the infeeds. A summary of the distribution can
be found in the table below.

2023.MME.8848

2.7. Load Balancing Techniques 17

Table 2.1: Estimated Merge calculation

Available = 90%
Infeed Scaled w.r.t. Achievable Overcapacity Unused Allowed
available space Space Distribution

1 225 30 7.5 25.7

2 22.5 30 7.5 25.7

3 22.5 25 7.5 23.6

4 22.5 15 7.5 15
Total 90 17.5 7.5 90

To calculate the allowed distribution the following formula is employed:

Overcapacity

Allowed Distribution = Scaled Available space + + Unused Space

Total Overcapacity (2.2)
* 7.5 =25.7%

=225
* 17.5

Each parcel received through the infeed is assigned a specific follow-up time, which serves as the
minimum duration that must elapse before the subsequent parcel can be dispatched from the same infeed.
This follow-up time establishes a predefined interval between the delivery of successive parcels from
the infeed to the merge conveyor. By taking into account the average parcel slice, the calculated allowed
distribution is transformed into the corresponding follow-up time, which is subsequently utilized by the
search allocation algorithm of the merge. In essence, the infeeds left with greater allowed distribution
are now capable of delivering a greater number of parcels compared to their typical capacity.

2.7.4. Early Announcement of Parcels

Apart from the search algorithms discussed earlier, there is another option to create an equal reservation
point for the parcels on all the infeeds as suggested by Haneyah et al. (2013). This can be achieved by
relocating the infeed PECs further upstream of an infeed for the downstream infeeds as can be seen in
Figure 2.10. By implementing an equal reservation point, each infeed has the opportunity to reserve
space on the merge conveyor within the same time frame, regardless of their physical placement. This
means that all infeeds can make reservations at equal time intervals on the merge conveyor, even if
they are located at different positions.

To establish this reservation point, it is crucial to know the sizes of parcels arriving at the downstream
infeeds earlier than in the current situation. If the knowledge of parcel sizes from the upstream infeeds
is delayed, there won’t be enough time to properly allocate the parcels onto the merge conveyor. To
achieve an equal reservation point, the positions of the infeed PECs are adjusted relative to the PEC
of the furthest upstream infeed. This ensures that all parcels have the same timeframe available for
reserving space on the merge conveyor. By synchronizing the timing of reservations, each infeed has an
equal opportunity to allocate parcels onto the merge conveyor efficiently. A study by Bals (2021) proved
that this way of early announcement of parcels can help in achieving higher balance and throughput.

2023.MME.8848

2.8. Buddy Search 18

Infeed 10

Infeed 9

Infeed 8

Infeed 7

Figure 2.10: Schematic representation of the PEC location on the infeed, (Bals 2021)

2.8. Buddy Search

The Buddy Search feature in a sorting system serves to minimize unused space between parcels,
thereby enhancing system utilization. This functionality is specifically applicable in Estimated Merge
mode, as detailed in Section subsection 2.7.3, where parcels are assigned desired times based on
permissible distribution. However, when all parcels are allocated according to their desired times, gaps
can emerge, resulting in unutilized areas. To address this concern, the Buddy Search algorithm slightly
deviates from the desired times while adhering to temporal constraints, effectively closing the gaps and
forming contiguous “trains” of parcels on the merge conveyor. This proactive approach significantly
improves system utilization.

In practical implementation, the Buddy Search algorithm is activated once the sorting system attains a
utilization level of 70% and deactivated when utilization drops to 50%, thereby avoiding undesirable
oscillatory behavior around the 70% utilization threshold. Parcel allocation on the merge conveyor
is accomplished by strategically placing them in close proximity to existing parcels or reservations,
rather than relying solely on the first available location. Commencing from the most upstream infeed,
a specific location on the merge conveyor is reserved, and subsequent parcels from various infeeds are
placed directly before or after the preceding “leading” space. Consequently, the formation of extensive
parcel trains devoid of vacant intervals ensues, significantly augmenting throughput. Furthermore,
compared to the conventional First-Come-First-Served (FCFS) algorithm, the Buddy Search algorithm
minimizes unoccupied space between parcels and allows for additional downstream free space on
the merge conveyor, thereby enabling other infeeds to reserve space more efficiently. This leads to
superior load balancing within the system.

2.9. Conclusion

The first chapter of this research study put forth a series of sub-questions aimed at answering the
main research question. This chapter focuses on addressing the first sub-question, which concerns the
primary challenges associated with parcel merging and utilization in a parcel sorting system.

The process of parcel merging is a critical step in the sorting process. The velocity profiles of parcels
play a significant role in ensuring smooth transportation and efficient merging within the system, as

2023.MME.8848

2.9. Conclusion 19

discussed in subsection 2.1.1. It is essential for the parcels to be compatible in terms of size and shape
to ensure smooth transportation and fit within the system. However, variable parcel dimensions can
lead to uneven spacing and pose challenges for slice allocation. The timing of parcel reservations and
announcements is also critical, as the merge controller must only search for available space after the
infeed controller announces a parcel’s arrival. The speed of the merge operation is another factor to
consider, as slower processing can lead to congestion on the infeed conveyors. Nevertheless, increasing
the speed is not always feasible due to the possibility of parcel slip and other kinematic constraints.

There is a trade-off between achieving higher utilization of the merge conveyor and obtaining better
load balancing among the infeeds. While it may be possible to disregard balancing and achieve higher
utilization, such an approach is typically not acceptable. Finally, the merge controller’s search algorithm
relies on a linear search with a complexity of orders of n, leading to increased search time with an
increase in the number of parcels waiting to be merged. It is important to note that although this increase
in search time exists, it is not readily noticeable as it operates on a millisecond scale. These challenges
must be thoroughly considered and addressed to ensure a successful merge operation in a parcel sorting
system.

2023.MME.8848

Selection of Control Algorithm

This chapter provides a comprehensive literature study to find suitable control algorithm for merge
zones in parcel industries or warehouse distribution centres. The chapter begins by highlighting the
significance of optimal control in enhancing sorting system efficiency and discusses the trade-offs
associated with increasing belt speed and layout changes. It further explores the limited existing
literature in this domain and identifies the need for further investigation. The chapter then delves
into the selection and classification of control algorithms, considering factors such as implementation
method, and execution behaviour. section 3.1 focuses on the optimization of parcel merging in
a sorting system, discussing an Integer Linear Programming (ILP) approach and a Priority Based
Algorithm (PBA) for load balancing. section 3.2 investigates window re-allocation techniques to
reduce imbalance among infeeds, referring to merge allocation rules and a reallocation algorithm
proposed by previous researchers. section 3.3 explores the algorithms used in the vehicle merging
process and their potential in improving system performance.

Optimal control of merge zones in parcel industries is a pivotal factor that greatly impacts the overall
efficiency of sorting systems. It should be noted that while increasing the conveyor speed can enhance
throughput, it may also lead to unintended consequences such as slips. Similarly, layout changes offer
opportunities for improvement but often incur additional costs by increasing the system’s footprint.
Although the notion of trading off the benefits gained from layout changes against the associated costs
is subject to debate, it can provide valuable insights into the cost-benefit analysis of such modifications
(Fedtke et al. 2014). In addition, greater flexibility in layout and building design is achieved when
the footprint is smaller. By optimizing the process of parcel merging, it is possible to enhance system
throughput, reduce waiting times, and minimize wasted space. These improvements directly translate
into heightened productivity and cost savings (Bals 2021). However, the existing literature in this
domain is relatively limited, and previous attempts to enhance control algorithms have yet to yield
optimal solutions, highlighting the need for further investigation. Notably, certain studies conducted
by researchers such as Peeters (2015), Meens (2017), and Hoven (2019) have provided valuable
insights into modifying control strategies. Nevertheless, additional strategies suggested in the literature
(Haneyah et al. 2013; G. Kim et al. 2017) have shown potential and, in some cases, outperformed
existing techniques.

The presence of multiple infeeds in the merge zone gives rise to the issue of high imbalance measures.
This problem arises because the upstream infeeds tend to prioritize reserving space for parcels on the
merge, resulting in increased waiting times for downstream infeed belts, as mentioned in section 2.6.

21

Several load balancing techniques were discussed in the section 2.7. To address the problem of improper
load balancing, Ramamritham et al. (1994) classified the scheduling algorithms into four paradigms:

(I.) Static Table-Driven Approach: In order to carry out a series of predictable tasks, these methods
produce static schedules (offline). Task allocation during execution is done using the resulting
schedule, which is frequently displayed as a table.

(II.) Static priority driven preemptive approach: The tasks are prioritised first which means that
the high-priority tasks are handled first followed by the low-priority ones.

(II.) Dynamic Planning-based approach: Here the tasks arrive during the execution. So, the
scheduling task keeps changing concerning time. Nonetheless, the previously created tasks are
executed but not eliminated.

(IV.) Dynamic best effort approach: This approach aims to meet the tasks’ deadlines and does not
promise that all the tasks are finished.

In addition to these algorithms, several queuing techniques like First-In-First-Out (FIFO), Longest
Queue First (LQF), Highest Priority First (HPF), random, and Round Robin (RR) have been studied
by several researchers (Jing et al. 1998; Peeters 2015). A detailed explanation of these techniques is
mentioned below (Stewart 2009):

¢ First-In-First-Out: FIFO (First-In-First-Out) is a queuing technique where the first item that
enters the queue is the first one to be served or processed. This technique is also known as the
”first-come, first-served” method. In a FIFO queue, items are added to the end of the queue and
removed from the front.

Longest Queue First: Longest queue first, also known as the ”largest queue first” or “workload
balancing” technique, prioritizes the queue with the most number of items waiting in it. This
technique is often used in situations where the service times for each item are relatively short,
and the goal is to reduce the total waiting time for all items.

Highest Priority First: Highest Priority First is a queuing technique that assigns priority levels
to different items in the queue, with the highest-priority items being served first. This technique
is often used in situations where some items are more important or urgent than others, and it is
necessary to ensure that they are processed quickly.

* Round Robin: Round Robin is a queuing technique that allocates a fixed amount of time for
each item in the queue to be processed. If an item is not processed within its allocated time, it is
moved to the back of the queue and the next item is processed. This technique is often used in
situations where there are many items in the queue, and it is necessary to ensure that each item
receives some processing time. Round Robin is also useful for preventing any single item from
monopolizing processing resources.

Often researchers draw parallels to job-shop machine scheduling problems, where the entities to be
merged represent the jobs to be processed by a machine. To effectively manage the scheduling process,
researchers have developed several algorithms that offer control and decision-making capabilities.
The careful selection of an algorithm significantly influences the ability to achieve an optimal
solution (Cormen et al. 2009). Therefore, it becomes essential to explore the various ways algorithms
can be classified, as these classifications provide valuable insights into their characteristics and
applications. One approach involves categorizing algorithms based on their implementation method,
while another considers their execution behaviour, including series, parallel, and distributed ways of

2023.MME.8848

3.1. Optimization of parcel merging in a parcel sorting system 22

execution. Furthermore, algorithms can be classified as deterministic or non-deterministic, among
other possibilities. By understanding these classification approaches a comprehensive understanding
of algorithmic properties can be gained and one can make informed choices in selecting the most
suitable algorithms.

3.1. Optimization of parcel merging in a parcel sorting system

Haneyah et al. (2013) developed an Integer Linear Programming (ILP) approach for a parcel merging
process that employed tilt-trays (Figure 3.1) to transport parcels. The goal of this research was to aim at
maximizing utilization and minimising the imbalance in waiting times. Initially, an exact static branch
and bound optimization technique was developed. With the objective of minimizing both the total
and average waiting times, the approach utilizes a weighted sum to minimize an imbalance variable.
The infeed with the highest value of the imbalance variable indicates the most significant imbalance
within the system. The results showed that no empty trays were present and the workload is balanced.
However, the experimentation proved that the time taken to obtain an exact solution is higher and hence
cannot be applicable to a real-world scenario. To overcome this issue, they have presented a dynamic
space allocation approach. By utilizing a dynamic allocation approach, this exact algorithm guarantees
an optimal solution in any given situation when compared with the exact formulation. In the context of
dynamic space allocation, the researchers implemented a Priority Based Algorithm (PBA) to prioritize
and ensure a balanced flow from all infeeds, without exhibiting bias towards a single infeed. Parcels
from infeeds with significantly longer waiting times compared to other infeeds are accorded higher
priority. As the waiting time for unallocated parcels remains uncertain, a preliminary assignment is
made to the furthest downstream unallocated tray.

Figure 3.1: Tilt Tray, (Autotech 2023)

The dynamic assignment procedure that was developed by Haneyah et al. (2013), comprises two
distinct phases: the search procedure and the reallocation procedure. During the search procedure, new
parcels are assigned to unallocated trays. The reallocation procedure, on the other hand, is only initiated
for parcels whose priority value surpasses a specified threshold. However, if a new parcel arrives from
a high-priority infeed, the reallocation procedure takes precedence over the search procedure. Within
the reallocation procedure, not only empty trays but also trays allocated to parcels with low priorities
are considered.

The priority-based algorithm they put forward, is a method that gradually assigns new parcels to a
specific position in a sequence. When multiple parcels are in competition, a priority function is used,
as demonstrated in Equation 3.1, to determine which parcel receives the highest value. It is worth

2023.MME.8848

3.1. Optimization of parcel merging in a parcel sorting system 23

noting that the effect of changing the value of @ would be low but not zero on the overall utilization or
balancing as this only plays a role in the queue procedure.

When incoming free trays become available, a group of potential parcels is identified. This is the set
of candidate parcels with at most one candidate from each infeed. The length of the space window
is determined based on the consecutive number of available free trays. Once the space window is
equal to or larger than the largest parcel size, the potential parcels can be assigned according to
their priority. If there is only one potential parcel, no priority calculation is required. In order to
be eligible for assignment, the potential parcels must be able to fit within the space window, and
previous parcels must have already been allocated and are expected to arrive at the relevant tray on time.

prioritys, = a x BalanceMeasures, + (1 — o) x ThroughputMeasurey,, 3.1)

* where f €1,2,...,n; is the set of infeeds,

* pis the sequence of numbers of the parcel on a particular infeed. For instance, parcel 1 of infeed
one is denoted as (1, 1) as can be seen in Figure 3.2,

* « is the weighing parameter

The researchers use the extent to which a candidate parcel can occupy the available space window on
the merge conveyor as the throughput measure as described in Equation 3.2. This gives priority to the
largest candidate parcel as they presume that delaying the delivery of the large parcel creates a risk
of not finding another space window that can accommodate this parcel for a long time. Furthermore,
the balance measure of the parcel depends on the particular infeed that transports the candidate parcel
(Equation 3.3). Considering that F = {f € F |3 p: (f,p) € C} which indicates that there exists a
parcel p of the infeed f that belongs to the set of candidate parcels C'.

l
ThroughputMeasure, = % Y(f,p) €C (3.2)
TOth
BalanceMeasuref, = —<——————+ Y(f,p) €C (3.3)
p Zf’EF’ TOth

* where [y, is the length of the parcel p of infeed f and sw is the available space window,

* T'otWy is the total waiting time of an infeed calculated as the sum of waiting times of all the
parcels of that infeed.

» ('is the set of Candidate parcels and sw is the space window.

The workload balancing is measured in terms of imbalance in waiting times between the infeed with
maximum total waiting time and the infeed with a minimum total waiting time using the Equation 3.14.

maz fep{TotWs} — mingep{TotW;}
max pep{TotW;}

ImbalanceWT = * 100% (3.4)

In an ideal scenario, the throughput of the merge conveyor equals the sum of the maximum capacities
of all the infeeds. However, in practical situations, when multiple infeeds simultaneously introduce
parcels onto the merge conveyor, the downstream infeeds experience a decrease in their throughput
compared to their individual maximum capacities. As more infeeds are in operation, the overall system
dynamics change, leading to a reduction in the effective throughput of each individual infeed.

2023.MME.8848

3.2. Window re-allocation to reduce the imbalance among infeeds 24

Fly Merge Merge Merge Merge
Through Infeed Infeed Infeed Infeed Merge
Point Point Point Point Point Point

: Flow ’ 1 1

—_— 1 1
! 1 1
]]

- |||

. 2 1 ne n,-1

ne-3

@),

ay C V8
. @2 0
(1,2) (3,2) (n!.l]
' (2.3) 0 .
U

4 é
(4 % 0'. /

Infeed 2 ' , Downstream

Parcels

Infeed 1

Infeed 3

Infeed ny

Figure 3.2: Merge area Modeling, (Haneyah et al. 2013)

It should be emphasized that the researchers consider the lengths of the parcels to range from 1 to
3 trays and calculate the inter-arrival times in terms of the number of trays so that the distance can
be measured directly. The authors of (Haneyah et al. 2013), explored a merge area layout with a
total of 12 possible combinations of input parameters. This was achieved by considering 3 ranges of
inter-arrival times and 4 densities of fly-through parcels. They adopted a standard length of 11 trays
for the infeeds in their practical implementation. Additionally, in each simulation experiment, they
generated 2500 parcels on each infeed. Empirical findings demonstrate that the proposed approach
successfully achieves a balance among the infeed lines. The difference in waiting times is substantially
reduced from 17% to 4.2%. Moreover, the dynamic priority allocation procedure generally yields a
slightly higher throughput compared to the conventional first-come-first-serve method.

3.2. Window re-allocation to reduce the imbalance among infeeds

In the pursuit of identifying new control algorithms, during the literature review different control
techniques utilized in the field of BHS were also studied. Johnstone et al. (2015) discussed a set of
merge allocation rules that include: (1) FIFO, (2) Feeder line priority, (3) Merge line priority, (4)
Merge flush, and finally, (5) Merge timeout. Based on a set of constraints on the parcel dimensions,
and spacing between the parcels, they studied a window assignment control logic system where
they compared a fixed window-size algorithm to a variable window-size algorithm with a FIFO
method. They concluded that the infeed’s position plays a significant impact on the performance
of the system and the variable length algorithm performs better when the infeed is at the desired position.

G. Kim et al. (2017), extended the research on window assignment control logic system and identified
a re-allocation algorithm that tends to reallocate the assigned windows to minimize the waiting times
of baggage in different infeeds. Similar to the approach of Haneyah et al. (2013), the authors of this
paper distinguish between a search procedure and a reallocation procedure. Initially, incoming baggage
is allocated to the earliest possible window. A list is created to keep track of eligible windows for

2023.MME.8848

3.3. Optimization of vehicle merging in Traffic Management System 25

reallocation. Windows become eligible if they meet two conditions: the parcel has not exceeded the
maximum number of window re-allocations, and the window has not been moved beyond the position
of the corresponding infeed.

The reallocation procedure involves breaking the FIFO rule by switching baggage between two
windows. Each possible switch is evaluated based on a benefit function.

SC(Bag(A), Bag(B)) = MW (C) — MW (R) (3.5)

The Switching Condition (SC') for two bags is determined by evaluating the waiting times of the new
and old window positions. MW (C') corresponds to the maximum waiting time of the current situation,
which is calculated as the ratio of the difference between the assigned window of baggage A and its
location, to the conveyor velocity. On the other hand, MW (R) corresponds to the maximum waiting
time for the reallocation situation and is calculated as the ratio of the difference between the assigned
window of baggage B and the location of baggage A, to the conveyor velocity.

Dist(W(A)) — Dist(Bag(A))

MW(C) - ‘/'CO'N/'U@:UOT' (3‘6)
MW (R) = Dist(W (B‘)/) Dist(Bag(A)) 37)
conveyor

This function takes into account the maximum waiting times of parcels in the current situation and
the switched scenario. After calculating the benefits, the options for the reallocation process are
determined by comparing the waiting times of the new and old window positions. The whole idea of
reallocation is to reduce the waiting times of the baggage in the downstream flow by exchanging or
swapping the windows of the parcels as depicted in Figure 3.3.

The findings demonstrate a substantial reduction in the imbalance, although complete elimination
is not achieved. There is a noticeable decrease in waiting time to some extent. The level of
balance varies depending on the maximum number of reallocation switches and the distribution
of incoming baggage. The uniform and triangular distributions exhibit better performance with a
single reallocation, whereas the exponential distribution shows improved results with two reallocations.

|III mpy

I Im @ v we)
[az] =] =

=&
@ NEan m m w’éc

Bag(a) Bae(@) Bag(C) Bag(A) Bag(B) Bag(C)

(a) Before Window - reallocation (b) After Window - reallocation

Figure 3.3: Window- reallocation algorithm, (G. Kim et al. 2017)

2023.MME.8848

3.3. Optimization of vehicle merging in Traffic Management System 26

3.3. Optimization of vehicle merging in Traffic Management
System

While parcel merging and vehicle merging involve different dynamics, it was observed that the
techniques used to control the process of merging are similar. Consequently, inspiration for controlling
the merging process can be drawn from traffic management systems, specifically the highway on-ramp
vehicle merging and intersection management of CAVs. To reduce the challenges posed by the
increasing traffic density, the transportation system has been provided paramount importance for
development and has been a hot research topic for so many years now. Figure 3.4 shows different
lane merge operations that usually happen in the day-to-day commute of different vehicles.

/ - - \/ Merge Zone
/ % Acceleration
/ Lane

(a) Highway On-Ramp merging

'
]:j - V E Merge Zone

(b) Lane Merging

Figure 3.4: Different merges in traffic system

Marinescu et al. (2012), proposed a merging algorithm based on their previous work on slot-based
driving, which leveraged cooperation between vehicles on the main motorway and between motorway
and on-ramp vehicles to achieve an efficient merging process. The algorithm aimed to maximize the
utilization of road infrastructure and improve the merging manoeuvre performed by human drivers.
The algorithm facilitated smooth and coordinated merging between vehicles by employing cooperative
behaviour. The evaluation of the algorithm demonstrated that the proposed algorithm achieved high
throughput and low delay on the on-ramp, surpassing the merging performance of the human driver
model.

To identify the globally optimal passing orders of vehicles, one direct approach is to exhaustively
enumerate all the possible passing orders, which, unfortunately, suffer from inevitably high
computational complexity. To overcome this challenge, P. Li et al. (2017), Miiller et al. (2016), Ahn
et al. (2017) formulated this problem as a Mixed Integer Linear Programming (MILP), one of the exact
algorithms and succeeded in providing solutions. L. Li et al. (2006) proposed an innovative solution
space representation using a spanning tree, coupled with a pruning rule to search for the globally
optimal passing order. These strategies, employing optimization methods and pruning rules, offer
improved computational efficiency over the exhaustive enumeration approach.

Cooperative driving has emerged as a transformative approach to transportation, revolutionizing the
way vehicles interact and operate on the road. Through advancements in communication technologies,

2023.MME.8848

3.3. Optimization of vehicle merging in Traffic Management System 27

such as Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) systems, vehicles have gained
the ability to exchange critical information in real-time. This enables cooperative driving systems to
enhance road safety, optimize traffic flow, and improve overall driving efficiency. Cooperative driving
strategies can be classified into two categories (Meng et al. 2018): (1) An ”ad hoc negotiation based”
which involves considering the vehicles approaching the intersection and devising short-term driving
plans for them through bilateral negotiations rather than being preplanned or scheduled. This strategy
aims to approximately adhere to a first-come-first-served order, allowing for some adjustments. While
this approach often results in a local optimal solution in various scenarios, it lacks a globally optimal
solution (Huang et al. 2012). (2) A Planning based” strategy that takes into account vehicles that are
expected to reach the intersection within a specific spatial range and create long-term driving plans for
these vehicles. Planning-based approaches, as opposed to ad hoc negotiation-based approaches, offer
more flexibility in cooperative driving and have the potential for higher traffic efficiency. However,
the computational requirements of planning-based approaches increase significantly as the number of
vehicles involved grows.

To overcome the limitations of significant computational time and sub-optimality, Pei et al. (2019)
proposed a computationally efficient strategy based on Dynamic Programming (DP). Initially, they
formulated the merging problem for vehicles as a MILP problem to show the increase in complexity
with an increase in the number of vehicles. The following Figure 3.5 describes the scenario which was
considered in their paper.

1 Mamging
| Cantrol Zome fome |

Link 1 I3) o
r

Figure 3.5: Single Lane Merge Zone, (Pei et al. 2019)

The mathematical model is as follows: To improve traffic efficiency by optimizing the passing order of
vehicles, they formulate the objective function as:

J = max{t{*"} v s ¢ passign (3.8)

where J represents the total access time of the vehicles, T assign is the set of access times assigned to
all the vehicles, and ¢;°*" is the access time assigned to vehicle 1.
Subject to the following constraints:
R (9)
This constraint ensures rear-end collision-free safety.
To formulate the optimization problem, a binary variable is introduced to represent the passing order

between vehicle 7 and vehicle j. If k;; = 1, it means that vehicle 7 can enter the merge zone prior to
the vehicle j. Furthermore, to prevent converging collisions and ensure that only one vehicle can pass

2023.MME.8848

3.3. Optimization of vehicle merging in Traffic Management System 28

through the merge zone, the following constraints are imposed:

EISSIN g8 M kg > Ay, (3.10)

(2
£SO L M (1 = kyg) 2 Ay, (3.11)
Note that the variable M represents a large positive constant. By multiplying the inequality constraint
by M, the constraint becomes M times greater than the original inequality. This essentially “relaxes”
the constraint and allows the solver to explore different solutions (Bazaraa et al. 2005). A;, and Ay,
denote specific time difference thresholds that ensure the minimal allowable safe gaps between the
vehicles for avoiding rear-end collisions and the converging collisions at the merge zone respectively.

Considering the number of vehicles in Link 1 of Figure 3.5 as m and the number of vehicles in Link 2
as n, using the Branch and Bound Method a globally optimal solution can be obtained if the numbers
are small. For every vehicle in Link 1, there are n possible vehicles in Link 2 that it can interact with.
For each pair of vehicles (7, j), we have one binary variable k;;. Since k;; can take on two possible
values (0 or 1), there are 2 possible combinations for each pair. However, as the number of vehicles
increases in each link, the size of the solution space increases exponentially (in the order of 2™"). This
proves that this method can be extremely time-consuming. To overcome this issue, they employed
dynamic programming that can decrease the computational times to the order of a quadratic polynomial.

The task of determining a passing order can be viewed as the process of sequentially assigning the
right of way to vehicles in the Merge Zone. Therefore, the optimization problem was regarded as a
sequential decision problem, where the decision variable r; represents the right of way. In a merging
scenario, the decision variable 7; can take one of two possible values from the set of right-of-way
options RW = {1,2}. If r; = 1, it indicates that a vehicle from link 1 is granted the right of way to
enter the Merging Zone. Similarly, if r; = 2, it signifies that a vehicle from link 2 is given the right of
way.

To facilitate this decision process, the problem is divided into multiple stages, allowing it to be treated
as a class of similar problems within the framework of dynamic programming. In this model, (m + n)
stages are required, excluding the initial stage, to assign the right of way to all vehicles in the Control
Zone, where (m + n) represents the total number of vehicles in the Control Zone. To simplify the
notation and understanding, the stages are numbered from 0 to (m + n), with stage 0 representing the
initial stage and subsequent stages progressing until all vehicles have been assigned the right of way
as can be seen in Figure 3.6. This approach allows for an organized and systematic allocation of the
right of way and access times among the vehicles, considering each stage’s unique characteristics and
requirements.

2023.MME.8848

3.3. Optimization of vehicle merging in Traffic Management System 29

State Definition

Accumulated number of vehicles assigned with access time on link 2 up to stage i.

§i(m, 0, Ti9— Denote the link id with the right of way at stage i

£assign $0(0,0,75)
B (assign Accumulated number of vehicles assigned with access time on link 1 up to stage . <=
y . assigna S assignz
e 5 v The Complete State Space: = s (10,1 5(012) ¢
I o 50(0,0,7) Initial state B P
i ¥
1
‘ . sty G (112) s(Ll1) assionz
| ™ 4 5(1,01) 50012) stage | < edE A
1 519 _—
\) & qasima D sz
ke assig® 220D 012 sl 5022 stage2
) 5222
s3(2,1.2) 53(2,1.1) 53(1,22) 53(12.1) stage 3 (assty
5
(22.2) s@21) stage 4

(c) Examples of access time assignment during state
(a) An illustration of the merging on-ramp scenario (b) State definition and the complete state space of the simple scenario. transition. Two feasible passing orders are illustrated.

with 4 vehicles.
50(0.0,75) [> (00.7) i> 5(00,70) i> /ana, — (A, C, B, D)

51(10,1) 5(0,1.2) 5:(1,0,1) 5:(01,2) 51(1,0,1) 51(0,1,2) A 5:(0,12)
52(2,0,1) 55(112) £(11,1) 5(022) | s2(2.0,1) 52(112) 5(11,1) 5(022) | s2(200) CES(112) s(1L1,1) 5(022) | s5p(201) CE5(112) 5,(1,1,1) 5(0,2.2)

53(2,1,2) s3(2,1,1) 53(1,2.2) 53(1.21) | ss(212) BY ss211) 53(1,2.2) s3(1.2,1) s3(212) B s3240) 53(1,22) s3(12,1) 53(21,2) BY s3(211) 53(1,2.2) s3(1,.2,1)

D s,(221) D 5,(221) D 54(2.21) D 5,(221)

(dy An illustration of the backtracking approach for the optimal passing order, e.g., A-C-B-D.
Figure 3.6: Back Tracking of Dynamic Programming (Pei et al. 2019)

Although from the Figure 3.7a it can be seen that the existing optimal strategy and DP strategy have the
same total passing time, with an increase in the number of vehicles, the computational time taken for
the DP is significantly low as shown in Figure 3.7b. In a similar fashion, Lin et al. (2020) formulate
and propose a DP algorithm to find the optimal solution for a two-lane vehicle merging problem. In
addition to the general two-lane merging scenario, they extend their research to other scenarios as can
be depicted from Figure 3.8 and improvise their DP algorithm to prove that it can efficiently minimize
the average delays of the vehicles and reduce the time needed for all the vehicles to pass through the
merge point when compared to some greedy algorithms.

50 T T T T 60 T T
b Ad hoc negotiation based stategy —®— Ad hoc negotiation based stategy
—d— Existing optimal strategy —de— Existing optimal strategy
45 —@—DP based strategy 4 50 —€— DP based strategy R

| a0t . g
= 5 0.25
pret o
g E 02
bt c
£ - %30- 015 1
g 5
8 2
- g 0.1
g 3 | —e——eo—°
Q Q
F | 20t 0.05 |
245 25 255 26 265 27
| ok]

. ; bbbt m

.
5 10 15 20 25 30 5 10 15 20 W 30
Number of vehicles Number of vehicles

(a) Total Passing Time vs Number of Vehicles (b) Total Computation Time vs Number of Vehicles

Figure 3.7: Results of DP based strategy, (Pei et al. 2019)

2023.MME.8848

3.4. Key Performance Indicators 30

Merging Intersection
A

Incoming Lanes

» Merging Point

(o)) ¥
tm |
Second Me{ging Intersection | T : i
| D 00 ¢ owsnern

Transfer Lane

Tncoming LdneA First M(:rl,m(3 Intersection @]

ED—/— . lttn)
Incoming Lane B ﬁ):] ED“[“ el (g} :
Incoming Lane C Merging Manager Merglrlg MEIHEJgEI’
(a) Consecutive lane merging (b) Vehicle merging from 3 lanes

Figure 3.8: Different Scenarios of lane merging, (Lin et al. 2020)

Autonomous Intersection Management (AIM) was an early attempt by Dresner et al. (2008) to create
a centralized algorithm for managing intersections with connected autonomous vehicles (CAVs). In
AIM, intersections are represented as a grid of squares, with each square corresponding to a discrete
time interval. When vehicles approach the intersection, they request permission to enter by providing
their estimated time of arrival and velocity. The Intersection Manager (IM) uses this information to
predict the vehicle’s future trajectory in terms of time and space, determining which square it will
occupy and when. The IM then checks for any conflicts with other vehicles’ time-space reservations.
If a conflict arises, the IM rejects the request, causing the vehicle to slow down and retry later after a
timeout. If no reservation is assigned to a vehicle, it will stop before the intersection and make another
request. If there are no conflicts, the vehicle proceeds and enters the intersection. AIM follows a
query-based intersection management (QB-IM) approach, where vehicles ask the IM for safe passage
and receive a YES/NO response. However, this approach can result in increased network overhead
and reduced throughput.

Pei et al. (2022) extend their work (Pei et al. 2019) and propose a novel state-space formulation that
represents the complete solution space of cooperative driving at signal-free intersections. Through
extensive analysis, the algorithm is demonstrated to achieve optimality in cooperative driving under
various traffic demand settings. The theoretical analysis provides insights into the workings of the
proposed dynamic programming approach. Importantly, the results highlight that the computation
time of the control algorithm is sufficiently short, enabling the real-time implementation of optimal
cooperative driving.

3.4. Key Performance Indicators

As evident from the information provided above, the primary indicators (KPIs) employed to assess
the models in question were throughput, utilization, and imbalance. This section will subsequently
elaborate on each of these KPIs, explaining them comprehensively.

3.4.1. Throughput

Throughput, which is defined as the rate at which the material moves through the system per unit time
(Thorne 2006), is a crucial metric in this industry and is usually measured in terms of the number
of parcels per hour or day (a unit time). To cater to the rapidly expanding market and maintain high
levels of efficiency, the conveyor systems must constantly evolve to handle higher volumes of packages.
Achieving higher throughput in the parcel sorting industry is a challenging task, which requires careful
planning and coordination of the infeed rates, parcel size, and velocities among many other factors.

2023.MME.8848

3.5. Conclusion 31

> (Number of Parcels processed)
Time duration

Throughput = [parcels per hour] (3.12)

3.4.2. Utilization

Utilization is another metric that refers to the degree to which the system is being used or occupied
relative to its maximum capacity (Haneyah et al. 2013). Higher utilization implies efficient usage of
the conveyor system, with minimal empty space between parcels, thereby enabling more parcels to be
transported within a given time frame.

> nen Parcel_lengths, + (N — 1) Fized_gap

Vimerge * Time_duration

[%] (3.13)

Utilization =

where N is the total number of parcels processed by the system and the Fized gap, is the minimum
gap that is required to avoid parcel overlapping or collision. Further, V¢4 is the velocity of the
merge conveyor and the Time_duration is the total time the system has been in running.

Both throughput and utilization are directly related to each other. When the utilization of the conveyor
is low, there are more empty spaces between the parcels on the merge conveyor, leading to a reduced
throughput. However, when considering the parcel size variations, there will be certain situations
where a huge parcel occupies the most space on the merge conveyor which translates to less throughput.
These kinds of situations are inevitable and are the primary reason for companies to consider the
average throughput of the system.

3.4.3. Load Imbalance

One significant issue identified in the existing reservation control system is the notable difference in
throughput between upstream and downstream infeed conveyors. To address this, a key performance
indicator is introduced to measure the disparity in throughput between the minimum and maximum
values for each infeed, thereby consolidating it into a single metric. Hence, the imbalance can be
calculated as:

max fep{Throughput s} — minscp{Throughput}

Imbalance = .100 [%] (3.14)

max pe p{Throughput s }
where f is the infeed in a set of infeeds denoted by F.

3.5. Conclusion

In conclusion, the literature study conducted in this chapter helps to answer the second sub-research
question that aims to identify a suitable control algorithm to overcome the issue of low utilization.
The chapter emphasizes on the importance of optimal control in enhancing the efficiency of merge
zones in parcel industries. The trade-offs associated with increasing belt speed and layout changes are
discussed, highlighting the need for further investigation in this domain. The chapter, further explored
various control algorithms for parcel merging and vehicle merging processes, aiming to improve
system performance.

Upon thorough examination of the available literature, it became evident that a research gap exists
in the realm of parcel industries regarding the utilization of different techniques like optimization or
alternative scheduling approaches. This gap highlighted the need to explore and investigate various

2023.MME.8848

3.5. Conclusion 32

methods that have the potential to enhance the parcel merging process—an essential aspect that
significantly impacts the overall system throughput.

Although several researchers have employed exact algorithms such as Integer Linear Programming
to address this issue, it is apparent that these approaches suffer from a notable drawback: they are
time-consuming. As a result, there is a demand for alternative techniques that can offer more efficient
solutions. Interestingly, dynamic programming has emerged as a promising approach in the field of
vehicle lane merging, demonstrating favourable results. Nevertheless, it is important to acknowledge
that this approach has not been implemented in the particular context of parcel merging thus far. Given
the success it has shown in similar domains, it would be prudent to consider implementing dynamic
programming in the field of parcel merging.

By incorporating dynamic programming into the parcel merging process, it is anticipated that the
system’s overall performance and throughput could be significantly improved. Leveraging the lessons
learned from other related areas, this technique holds promise for addressing the challenges and
complexities associated with parcel merging, thereby enhancing operational efficiency and customer
satisfaction in the parcel industry.

2023.MME.8848

Model Building

By creating virtual representations of real-world scenarios, simulation facilitates experimentation
and evaluation, obviating the necessity for resource-intensive and time-consuming physical
implementations. Simulation is a fundamental and indispensable tool across diverse fields, serving as
a robust method for comprehending, analyzing, and forecasting intricate systems (Kellner et al. 1999).
This capability provides researchers and practitioners with a safe and controlled environment to
test alternative strategies, evaluate performance metrics, and make informed decisions. Moreover,
simulation empowers the exploration of scenarios that are inherently challenging, hazardous, or
infeasible to replicate in reality, thereby unlocking new insights and avenues for innovation. This
chapter provides insights into the modelling steps followed and paves a path towards model
experimentation which will be carried out in the chapter 5.

4.1. Modelling Steps

A model represents an actual system (Banks 1999). The development of a simulation model begins
with a thorough understanding of the system that will be modelled. This understanding is established
in chapter 2 through a detailed examination of the system’s operations and control methods. Following
this, the model conceptualization phase involves simplifying the real-world system. This includes
identifying and breaking down the system to be modelled, as well as gaining a clear understanding
of the relevant processes involved in the merging of parcels into the merge conveyor. The second
chapter revealed that factors such as velocity profiles, parcel dimensions, and load-balancing techniques
significantly impact the parcel merging process. Once all the relevant elements for accurately modelling
the system are identified, the conceptualization phase can be translated into the implementation of
the model. This involves implementing the system in software. Subsequently, the simulation model
undergoes verification to ensure it performs correctly and validation to assess whether it can replace the
real system for experimentation purposes. After the simulation model passes these checks, experiments
can be carried out using the model to check for the feasibility of the developed model in real-world
applications.

4.1. Modelling Steps 34

Model i
° e' . Model Implementation Model Validation | Simulate | Experimentation
Conceptualization
T |
|
| : Check Interpret
: :
4 s Model d
b s Model Verification ode rur{ an
Analysis

Conclusion and
feasibility of the
solution

Figure 4.1: Modelling steps, Inspired from (Sharma 2015)

4.1.1. Step 1: Model Conceptualization

The initial phase of model development, as outlined in section 4.1, involves model conceptualization.
This step is crucial as it sets the foundation for the entire modelling process. Model conceptualization
involves identifying and defining the key elements and relationships that will be incorporated into the
model. The aim of model conceptualization is to create a conceptual framework that represents the
essential components and interactions within the system. During this phase, the model developer needs
to make decisions regarding the scope and boundaries of the model, the level of abstraction, and the
appropriate modelling techniques to be employed. Additionally, potential limitations and assumptions
of the model should be acknowledged and documented. The output of this phase is a well-defined and
structured conceptual model that serves as a basis for further model development, parameterization, and
validation.

Model Description and Assumptions
The system consists of a single merge conveyor and six infeeds with triple infeed belts can be seen in
Figure 4.2. A few technical descriptions of the system are mentioned in the Table 4.1.

Table 4.1: System Parameters

Name Parameter # Units
Merge Conveyor Length 15 m
Merge Conveyor Width 1,5 m
Infeeds Number 6 -
Infeed Position (1,2) Distance from the merge start | 1,75 | m
Infeed Position (3,4) Distance from the merge start | 7,92 | m
Infeed Position (5,6) Distance from the merge start | 11,16 | m
Infeed inclination to merge | Angle 30 degrees

The simulation model doesn’t encompass every single detail and behaviour, so it’s necessary to make
assumptions and abstractions when creating the model. This can result in minor inaccuracies within the
simulation but can reduce the complexity of the model. It’s important to acknowledge these inaccuracies
since it’s inevitable to include requirements, constraints, and assumptions when building a simulation
model.

Model Constraints

1. The merge conveyor runs at a constant velocity of 2.2 m/s

2023.MME.8848

4.1. Modelling Steps 35

2. Each infeed can deliver a maximum of 3200 parcels per hour

3. The inter-departure time between two parcels from the same infeed cannot be less than 1 second
4. A gap of at least 15 ¢m among two parcels is mandatory on the merge conveyor

5. The dimensions of the parcels cannot exceed the specified range

6. Parcels cannot be interchanged once placed on the infeed

7. No two parcels can be on the same acceleration conveyor of the infeed, as only one parcel can be
accelerated or decelerated at a time.

8. In the three-belt infeed, each belt is approximately 70 cm long and the junction belt travels at a
constant velocity.

o Merge
Conveyor

Infeed2 Infeed 4 Infeed 6

Figure 4.2: Layout of the system

Model Assumptions
1. Parcels are placed on the conveyor with the shorter side leading
2. Parcels do not slip

3. Parcels are fully rotated after they reach the merge conveyor into the flow direction of the merge
conveyor

4. All the parcels are centred on the conveyors
5. The length of the parcel is known on the first infeed belt of the three infeed belts.

6. Parcels are generated in the simulation based on the maximum capacity of the infeeds using a
normal distribution, while in real-time they are placed by an employee or a robot at random
intervals of time.

2023.MME.8848

4.1. Modelling Steps 36

7. Velocity profiles for the infeeds are not taken into consideration. However, the maximum time
for the parcel to reach the merge conveyor is factored in to stay close to reality.

8. Parcels are considered by the algorithm for attaining the best possible sequence only when they
are ready to be merged. In essence, they are on the infeed acceleration belts waiting for the
command from the merge controller to start accelerating towards the merge conveyor.

Processes in the model
The entire model comprises three major processes. Each of them will be discussed in detail in this part
of the chapter.

Process 1. Parcel generation

In order for a parcel and its associated processes to exist within a simulation, it is essential to construct
a parcel generator. The role of the parcel generator process is to generate parcels with specific
dimensions based on a normal distribution until the simulation ends. These parcel-generation events
occur at random intervals of time based on the infeed capacity of 3200 parcels per hour. During this
process, the parcels are only added to the infeeds if there is sufficient space available to accommodate
the parcel’s length while still maintaining the minimum required gap between parcels. If the infeeds
cannot accommodate the incoming parcel, it is held until the previous parcel has been injected into
the merge conveyor. The pseudo-code for this parcel generation can be seen in the algorithm 1 of
Appendix B.

Once a parcel is generated and enters the infeed, its entry time into the infeed queue and the
corresponding parcel length are recorded in an array called parcel entries.” This array serves a crucial
purpose in the subsequent processes. It effectively communicates that the parcels are prepared for
merging and are awaiting information on the confirmed time at which they should reach the merge
point. For instance, an example of the “parcel entries” array for a system with three infeeds could
resemble the following representation: [[(0.5, 3), (1, 15)], [(2, 10)], [(6, 17), (1, 34), (2, 25)]]. This
list comprises the entry time and length of parcels for each of the three infeeds, formatted as [(time,
length)] pairs.

In order to continue into the subsequent processes, it is important to gain an understanding of the
functioning of the merge conveyor class, algorithm 3, in managing the merging process. Let us
consider a hypothetical scenario where there are parcels of random lengths present on each of the
six infeed conveyors, awaiting merging onto the merge conveyor. Prior to starting the process, an
imaginary segment is generated that is aligned with the axis of the merge conveyor, which is located
before the actual start of the merge conveyor itself (for clarification, please refer to the green segment
in the Figure 4.3).

This segment has the same velocity as that of the merge conveyor and is the event trigger for this model.
The length of this segment is predetermined to be a maximum of 500 ¢m. This can be varied but the
maximum cannot exceed 500 cm as the fly-through detection is located at 650 ¢cm towards the negative
x direction. The maximum length of 500 c¢m for the segment is considered to make sure that even
if there is a fly-through parcel that has the maximum length of the entire parcel distribution, it is not
affected by the last parcel of the segment in front of it. The forthcoming analysis will elaborate on a
control algorithm that aims to efficiently occupy the given parcels within the segment. The algorithm
fills the parcels in a manner that maximizes the segment’s utilization. In the event that there is residual
space left unoccupied after assigning slices to all the parcels, the subsequent segment begins from the
trailing edge of the last-filled parcel.

2023.MME.8848

4.1. Modelling Steps 37

Figure 4.3: Imaginary Segment and fly-through detection point

Process 2: Control Algorithm

Following the initial entries of parcels, these entries are utilized to determine the optimal sequence for
the parcels on the infeeds that can fill the entire segment while maintaining appropriate gaps between
the parcels. This is where DP becomes essential. Prior to exploring how DP identifies the best sequence,
it is important to comprehend how a problem can be solved using DP. According to Nayak (2020), a
straightforward example of DP is the solution to the Fibonacci series. Essentially, the Fibonacci series
is a sequence where each number is the sum of the two preceding numbers. To compute the Fibonacci
number at position n, knowledge of the Fibonacci numbers at positions n-1 and n-2 is required. Let’s
consider the following example of finding fib(5). To know the value of fib(5), it is necessary to compute
the value of fib(3) and fib(4), which are the two preceding numbers. This is a general recursive problem.

It is evident from the Figure 4.4 that there are several computations of the function for the same number
in different stages (highlighted in the same color). If n is the number of stages, then the time complexity
would be something as follows after approximation:

T(n)=2+«xT(n—-1)+1 4.1)

Breaking down this function, it can be seen that to find Fibonacci of nth element, Fibonacci of n — 1
and n — 2 must be calculated for n+1 stages.

For the next stage:
Tn—1)=2*%*(T(n—-2)+1)]+1 4.2)

2023.MME.8848

4.1. Modelling Steps 38

Stage 0 Fib(5)
Stage 1 Fib(2) Fib(4)

| |
Stage 2 Fib(1) / Fib(2) Fib(2) Fib(3)

| NG

Stage 3 Fib{0) Fib{1) ><Fib(0} Fib(1) Fib(2)

| | |
Stage 4 Fib(0) Fib(0) Fib{0) Fib(1)

|

Stage 5 Fib(0)

Figure 4.4: Fibonacci Series recursion tree

When doing this for k stages, the time complexity raises and reaches an order of 2*. To avoid this
huge computational time, the DP approach has a technique called *Memoization’ (Cooper et al. 1981).
Memoization is a technique commonly used in the DP to optimize the computation of recursive
functions. It involves storing the results of expensive function calls and reusing those results instead
of recomputing them. This helps to avoid redundant calculations by storing the values of previously
solved subproblems in a data structure, such as an array or a hash table. When a subproblem needs to
be solved again, the stored value is retrieved, eliminating the need for recalculation. It can be seen from
Figure 4.5 that the computation time has significantly reduced to an order of n. The function is called
only n + 1 times. By employing DP, we convert a single optimization problem in n dimensions into
n separate one — dimensional optimization problems that can be solved individually. Employing
DP for this problem not only decreases the computational time but ensures an exact solution that can
be the best fit in a given situation.

Stage 0 Fib(5)
Stage 1 Fib(3}/ \Fib(d:l
Stage 2 Fib(1) ‘/ Fib(2) ;&{-2-} \ Fibi2}
l .

Stage 3 Fib(0) F+bl+v+} ><F+h{9} F+l£—1+ Fib{2}

| | N
Stage 4 Fibio} Fib{o} Fibig) Fibfa}
Stage 5 ;+t£9}

Figure 4.5: Fibonacci Series recursion tree using DP

Now that there is a clear picture of how the DP works, it can be easy to understand how it can be used
to optimally utilize the entire segment with the available parcel information. To tackle the present
problem using DP, it is essential to establish the state space and state transition for the model (Pei
et al. 2019).

2023.MME.8848

4.1. Modelling Steps 39

To enhance the comprehension of the DP approach, let’s examine an example. It is important to note
that for this hypothetical example, the safety gap requirements between the parcels are neglected for
better understanding. Presume two infeeds, each containing two parcels. For illustrative purposes, we
will assume a remaining 60 centimetres of gap on the segment that can accommodate the four available
parcels. Infeed 1 has a queue of two parcels awaiting processing: [10, 15], while Infeed 2 also has two
parcels in its queue, to be merged: [25,22]. The state space and state transition shall be explored from
here.

State Space

The state space would encompass (x + y + 1) stages, where x represents the number of parcels from
Infeed 1 and y denotes the number of parcels from Infeed 2, ranging from stage Sp to S;1,. Each
stage is described by a triplet state (z;, y;, g;), where g represents the remaining gap after assigning
a parcel, and 7 signifies the stage number. The initial state is denoted as Sy(0,0, g), and the final
state is Sy (2, y, g), in this case, Sp(0,0,60) and S4(2,2, —18). With an increase in the state space,
there is a possibility that the computational time for DP can be higher. However, in the current
situation, the state space is bounded by the amount of available space on the segment, the number
of infeeds and the number of parcels in each infeed. Hence, computational time would not be a problem.

State transition
State transition refers to the progression of states after a parcel has been assigned to the segment. The
state transition equation emerges as follows:

Si(zi, i, 9i) = h((zi-1, Yi—1, 9i-1), 9i) 4.3)

where h(.) is considered as the state transition function (Figure 4.6).

Stage 0 So(0,0,60)
v
/ N,
4 EL

Stage 1 51(1,0,50) 51(0,1,35)

1) A~

/ J,Ox |‘¥2> 3)

Stage 2 $2(2,0,35) S2(1L,1,25) S, (0,2,13)
Stage 3 (2,1,10) S5 (2,1,10) S (1,2,3)
Stage 4 51(2,2,-18) 54(2.2,-18) Sq (2.2,-18)

Figure 4.6: Assigning parcels using DP

As mentioned by Pei et al. (2019), the aforementioned state space and state transition possess the
following properties:

Property 1: There is a decision-making process consisting of multiple stages, starting from stage 1 to
stage ”i.” The outcomes or results of the decisions made in each stage are reflected in the
parameters of a state called ”.S;.” In simpler terms, as the decision-making process advances

from stage 1 to stage ¢, the choices made at each stage have an impact on the state S;.

2023.MME.8848

4.1. Modelling Steps 40

Property 2: The shift from one state to another happens when moving from one stage to the next stage
in the decision-making process.

Property 3: Different orders of the state can attain the same state in the next transition. For instance,
S1(1,0,50) and S1(0, 1, 35) attain the same state So(1, 1, 25) in stage 2.

Property 4: Infeasible solutions are directly eliminated during the construction of the solution space by
keeping track of the parcels that have been assigned or not.

According to Nelson (1995), the Markovian property is a stochastic property that has a form of
historical dependency where the probability of each event depends only on the state attained in the
previous event. By virtue of Property 1, the state exhibits the Markovian property, which represents
the feasible conditions of the DP model (Blackwell 1962). Property 2 enables a remarkable reduction
in the number of transitions in the DP model. Similarly, Property 3 facilitates an extensive decrease in
the number of states in the DP model. Property 4, while ensuring optimality, substantially reduces the
size of the solution space. Consequently, the state space solely encompasses all feasible passing orders
of the parcels.

From the Figure 4.6, it becomes evident that there are multiple paths leading to the optimal stage
of leaving only a 3-centimetre gap. It is worth mentioning that certain states highlighted in red are
considered infeasible since a negative gap is not possible. Furthermore, paths 1 and 3 of Figure 4.6
violate constraint number 3 discussed in the subsection 4.1.1 and hence cannot be considered as a
feasible solution leaving path 2 as the optimal solution for this example. Nevertheless, one limitation
of the DP approach is its inherent bias towards starting from the left and searching the solution space.
In the context of a parcel industry, this sequential left-to-right approach may not be optimal, as it
can lead to downstream infeeds being left with insufficient space due to upstream infeeds delivering
parcels at higher rates in some cases.

To mitigate this biasing issue, a priority system can be introduced based on the occupancy levels of
the infeeds. By assigning higher priority to the more occupied infeed compared to others, a more
balanced allocation of space can be achieved. This approach has shown promising results in previous
studies (Haneyah et al. 2013), making it a viable option to ensure that the control algorithm remains
unbiased towards any specific infeed. To facilitate the sorting based on the maximum filled queue, a
sorting algorithm known as Heap sort is employed for the current model. However, it is worth noting
that there is always a possibility to shift priorities to other infeeds in case one of the infeeds has more
infeed capacity. For instance, if an infeed can deliver 10000 parcels per hour and the others can deliver
relatively less number of parcels per hour, using a most filled queue technique would not be the best
option as the infeed with higher capacity always has more parcels coming in than that of the others.
This can result in imbalance again. Since, the capacity of all the infeeds is the same, a maximum filled
queue option is suitable for the current model.

A max heap is a complete binary tree where the value of each node is greater than or equal to the
values of its child nodes (Schaffer et al. 1993). This ensures that the maximum element is always at the
root of the heap. The process of creating a max heap involves building the heap bottom-up, starting
from the last non-leaf node and repeatedly sifting down” elements to their correct positions. This
ensures that the largest element moves to the root of the heap. Once the max heap is constructed, the
algorithm repeatedly extracts the maximum element from the root of the heap and places it at the end
of the array. This is achieved by swapping the root with the last element, reducing the heap size, and
then performing a sift down” operation to maintain the heap property. By repeatedly extracting the

2023.MME.8848

4.1. Modelling Steps 41

maximum element and maintaining the heap property, the array eventually becomes sorted (Figure 4.7).
The sorted elements are stored in the remaining portion of the input array, starting from the end.

A B B B

(e.

(a) I (b)) :
o {‘ : ® G < : 0

Figure 4.7: Example of a max heap sorting

Heap sort efficiently maintains a max heap, enabling quick access to the maximum element. A
combination of the above two algorithms can provide an optimal solution by improving the utilization
using the DP and maintaining a load balancing among the infeeds by considering the maximum filled
queue first using the Heap sort algorithm. This ensures that no infeed has the highest priority and makes
sure that the infeed with the maximum filled capacity is always considered.

Process 3: Handling entry and exit in a time frame

This function is responsible for managing the parcels entering and exiting a conveyor system within a
specific time period. It works with multiple queues in the system. The function processes the parcels
by comparing their arrival and exit times with the given time frame. It ensures that the parcels are
handled in the correct order based on their arrival and exit times.

For each queue, the function checks if there are more parcels waiting to enter or exit. Inside a loop, it
examines the next entry and exit parcels. If both are present and their times fall within the specified
time frame, the function takes the appropriate action. If the entry parcel arrived before the exit parcel,
it adds the entry parcel to the corresponding queue. If the exit parcel occurred earlier, it removes a
parcel from the queue. The function continues processing parcels as long as there are both entry and
exit parcels within the time frame.

In the given scenario, when a sequence of infeeds is obtained (e.g., [infeedl, infeed2, infeed3]), a
calculation is performed to determine the time it takes for a specific slice on the segment of the
conveyor system to reach each corresponding infeed. This calculated time serves as the exit time for
the parcel from its respective infeed. If the calculated time for the assigned slice on the segment to
reach the assigned infeed is denoted as x, the parcel undergoes acceleration to ensure it reaches the
merge point within the specified time frame. In practical terms, if the distance between the merge point
and the location of the parcel on the infeed is too great to be covered in the assigned time, the parcel
needs to be accelerated at ¢ + x seconds. This acceleration allows the parcel to attain the necessary
speed so that it arrives at the assigned time, ensuring timely merging within the conveyor system.

2023.MME.8848

4.1. Modelling Steps 42

4.1.2. Step 2: Model Implementation
This section focuses on the implementation of the conceptualized model described earlier in
subsection 4.1.1. It provides insights into how the model is applied in the simulation process.

There are several types of simulations that are used based on the project requirements. Based on the state
change of variables, there are two primary simulation types (Maria 1997): Discrete Event Simulation
(DES) and Continuous Simulation. DES models the behaviour of a system as a sequence of discrete
events that occur at specific points in time. These events can include arrivals, departures, changes in
state, or any other significant occurrences in the system. The simulation tracks the chronological order
of events and the system’s state, allowing for the analysis of system performance and behaviour. On
the other hand, continuous simulation involves state variables that change continuously over time. This
simulation is mainly used to simulate the behaviour of complex and dynamic systems, which can also
be done by DES. While Continuous Simulation has its merits, such as the ability to model smoothly
changing processes, it might not be the most suitable option for our current simulation task. Given the
discrete nature of our events and the need to capture detailed interactions among distinct entities, DES
emerges as the preferred choice to develop the simulation model.

Discrete Event Simulation

In various applications, queuing models have been instrumental in understanding system characteristics,
primarily through analytical solutions. However, it is important to note that analytical solutions are
feasible only for a limited set of problems. When dealing with complex queuing systems, simulation
is commonly employed. DES has emerged as the primary tool for drawing conclusions about intricate
queuing networks (Babulak et al. 2010). It is uncommon to come across simulation studies that utilize
continuous simulation for analyzing queuing systems. To elaborate, queuing models are mathematical
representations used to study the behaviour and performance of systems with waiting lines or queues.
Analytical solutions involve solving equations and formulas to obtain precise results, providing
valuable insights into the system’s characteristics such as average wait times, utilization rates, and
queue lengths. However, these analytical solutions are only applicable to relatively simple queuing
models with certain assumptions and conditions.

As queuing systems grow in complexity, analytical solutions become increasingly challenging or even
infeasible to obtain. This is where simulation techniques, specifically discrete event simulation, come
into play. DES involves modelling the discrete events that occur within a system, such as customer
arrivals, service completions, and queue dynamics (Allen 2011). By simulating the system over time
and capturing the interactions between events, DES allows for studying and drawing conclusions about
complicated queuing networks. A generic controller for a single replicate of discrete event simulation
is shown in Figure 4.8. As the current system involves queues (parcels in different infeeds waiting
to be merged into the merge conveyor), DES is a great tool to implement and analyse the developed
control algorithm.

2023.MME.8848

4.1. Modelling Steps 43

Review
—>| chronology and
aggregate counts

Identify list of
candidate events

Move internal q ™
clock to time of End replicate
next event \ y

Figure 4.8: Generic controller model for a single replicate of discrete event simulation, (Allen 2011)

DES offers several advantages in modelling a wide range of systems (Banks 1999). Firstly, DES
exhibits high flexibility, enabling the representation of both simple and complex systems, as long
as they can be described in terms of discrete events and states. Secondly, DES is event-driven,
focusing on significant events and simulating only when necessary, resulting in efficient utilization of
computational resources and faster simulations. Additionally, DES captures the dynamic behaviour of a
system over time, facilitating the study of system interactions and comprehension of complex scenarios.
Moreover, DES is scalable and capable of handling large-scale systems by simulating only essential
events, making it suitable for analyzing systems with numerous components or entities. However, DES
also presents certain disadvantages. Building a DES model can be complex, necessitating meticulous
identification and representation of events, entities, and system states. Furthermore, due to the discrete
nature of events, DES may not capture continuous changes in the system state with high precision,
leading to some level of approximation when representing system behaviour.

Software implementation

Multiple methods exist for conducting DES, and numerous software options are available, including
Arena, Matlab, Simulink, Python, Demo3d, and others. Each software package has its own set of
strengths and weaknesses. However, for the purpose of this study, Python was selected as the preferred
software for performing the simulation because it offers various advantages that make it well-suited
for DES. Firstly, Python is a versatile and widely-used programming language with a large user
community, extensive documentation, and numerous libraries specifically designed for simulation
purposes (Python Core Team 2019). This provides researchers with a wealth of resources and support.
Secondly, Python’s syntax is relatively simple and readable, allowing for easy implementation and
modification of simulation models. Additionally, Python offers seamless integration with other
scientific and data analysis libraries, enabling researchers to analyze simulation outputs efficiently.
Lastly, Python’s open-source nature and free availability make it a cost-effective option compared to
commercial software packages.

With the advantages it holds and the possibilities of using various open-source libraries for simulating,
Python was chosen as the mode to perform the simulations.

Hardware and Software used:
Hardware:

¢ Intel(R) Core(TM) i7-10850H CPU @ 2.70 GHz
* 64 GB RAM
* Windows 10 Enterprise

2023.MME.8848

4.1. Modelling Steps 44

Software:

e Python 3.11.3
¢ Visual Studio Code IDE

4.1.3. Step 3: Model Verification

According to Thacker et al. (2004), model verification involves that the model implementation
accurately reflects the developer’s conceptual depiction of the model and its solution. To ensure that
the model is verified and provides the expected results, manual checks were put into place to check for
any unwanted effects.

1. Check: Are the slices being assigned to the parcels appropriately?
When parcels are allocated to the slice, the anticipated result comprises the starting and ending
locations of the slice, as well as the corresponding infeed from which the parcels originate. The
illustration presented in Figure B.1 demonstrates that considering the parcels available at a given
moment when the segment is ready to be filled, the segment is utilized to its maximum capacity.

2. Check: Is any of the infeed delivering two parcels one behind the other, violating the
inter-departure time constraint?
From the model constraints discussed in subsection 4.1.1, it can be seen that no two parcels can
come from the same infeed one after the other and the infeed cannot deliver more than 3200
parcels per hour. Running the simulation several times proved that these constraints were not
overlooked. A small example can also be seen in the Figure B.1.

3. Check: The slice’s placement on the segment should be chosen in such a way that the parcel can
reach the merge.
In order to assign a slice, it is imperative to verify that the parcel can reach the designated
slice within the specified timeframe. This verification process guarantees that parcels have the
capability to reach the merge point. If a parcel is unable to meet this criterion, it will not be
taken into consideration for the slice assignment. This assessment relies on the calculation of
time which is based on the distance between the slice and the infeed, as well as the velocity of
the merge.

4.1.4. Step 4: Model Validation

Model validation typically refers to the process of confirming that a computerized model, within its
relevant domain, demonstrates a satisfactory level of accuracy that aligns with its intended purpose
Sargent (2011). When validating a model, the focus is on evaluating its performance about its intended
purpose or application. This purpose can vary depending on the domain and context of the model. The
validation process involves comparing the model’s outputs or predictions against known or observed
data. This data is typically separate from the data used to train the model, ensuring an unbiased
evaluation. By comparing the model’s outputs with the actual outcomes or observations, one can assess
the model’s accuracy and determine whether it meets the desired level of performance.

Validation is not a one-time activity but an iterative process that involves refining and improving the
model based on the evaluation results. If the model does not demonstrate satisfactory accuracy or align
with its intended purpose, adjustments may be necessary, such as modifying the model’s structure,
adjusting parameters, or incorporating additional data.

There are various validation techniques as suggested by Sargent (2011):

2023.MME.8848

4.1. Modelling Steps 45

* Extreme Condition Tests: The model’s structure and outputs need to exhibit plausibility even
when faced with highly improbable and extreme combinations of factor levels within the system.
This requirement ensures that the model remains reliable and consistent in its predictions across
a wide range of scenarios. As an illustration, if the levels of in-process inventories were to
reach zero, it would be expected that the production output would typically be zero as well. By
accounting for such unlikely conditions, the model demonstrates its robustness and ability to
handle various circumstances that may arise in the system.

Test 1: When the infeeds can deliver only 100 parcels per hour, the utilization drop should be
very significant.

Test 2: Zero merge speed should result in an error.

* Parameter Variability - Sensitivity Analysis: This method involves systematically modifying
the input values and internal parameters of a model in order to observe and analyze their impact on
the model’s behaviour and output. It is crucial for the model to accurately capture the relationships
that exist in the real system it represents. This technique can be employed in both qualitative
and quantitative ways, allowing for the assessment of not only the directions but also the precise
magnitudes of the model’s outputs. Parameters that exhibit sensitivity, meaning they significantly
influence the model’s behaviour or output, must be carefully calibrated before the model can be
properly utilized.

Sensitivity Analysis

The utilization and throughput of the system are influenced by major parameters, including the infeed
parcel arrival rate, the amount of space available for parcels on the infeed, and the speed of the
conveyors. These findings were concluded in chapter 2 of this thesis. Additionally, the segment size
is a significant factor in the current model that affects the system’s utilization and throughput. In
subsection 4.1.1, it was mentioned that the segment size can vary from the maximum length of the
parcel distribution to a maximum of 500 cm. By varying the segment size, it is expected that changes
in utilization and throughput will be observed.

In the current model, the segment size plays a crucial role in determining the number of parcels
processed during each iteration. In a no fly-through parcel case, irrespective of the size of the segment,
the n'" segment starts from the trailing edge of the last parcel on the (n — 1)** segment. Nonetheless,
when a fly-through parcel is detected, the subsequent segment begins after the trailing edge of the
fly-through parcel. This means that as the segment size increases, the utilization of the system is
expected to decrease when there are insufficient parcels to fill the segment. This is because larger
segments are more likely to have wasted space due to the presence of fly-through parcels when there are
not enough parcels to fill the segment. Having mentioned that reducing the segment size to extremely
low values can conversely reduce the utilization as the algorithm struggles to allot longer parcels into
the segment due to limited space.

To identify an optimal segment size in the presence of fly-through, the simulation was executed ten
times for segment size ranging from 150 to 500 cm with an increase of 50cm, and the analysis of the
results, as illustrated in Figure 4.9, reveals that reducing the segment size has a notable impact on
utilization in the presence of a fly-through. Specifically, decreasing the segment size resulted in higher
throughput and utilization. To comprehend this phenomenon more effectively, let us consider an
example. Suppose there are only four parcels in the entire system when a segment of 500 is generated.
Assuming all parcels are of equal size of 50 cm for the purpose of explanation, it becomes evident that
they occupy 260 cm (including the fixed 15 cm gap between parcels) of the 500 cm segment. However,

2023.MME.8848

4.1. Modelling Steps 46

if a fly-through parcel is detected while the slices on this segment are being assigned, as mentioned
earlier, the next segment begins after the trailing edge of the fly-through parcel.

Consequently, the remaining 240 cm becomes wasted space in the segment because of the absence of any
other parcel that can fill this space. A cumulative of this wasted space in similar situations throughout
the simulation, results in lower utilization. However, it is worth noting that if there are parcels available
in the system, the leftover segment will still be utilized until the fly-through parcel’s leading edge. If it
was a segment size of 150 cm for the same example, it can be easy to imagine that there is no wasted
space and thus better utilization. Therefore, considering the existing constraints of the model, a smaller
segment size in the presence of fly-through parcels can enhance both utilization and throughput.

Effect of segment size on Effect of segment size on
throughput of the system utilization of the sytem
500 100,00
.............................. B Average
U I R R e utilization (%)
g 2 =s0 M N B B W O
:f. ’Jf 70,00
£ _ 1500 _; 60,00
E :é 5 50,00
_f‘: 1000 é 40,00
] = 30,00
=500 S 2000
10,00
0 0,00
150 200 250 300 350 400 450 500 150 200 250 300 350 400 450 500
Segment size [m] Segment size [cm]
(a) Average Throughput for different segment sizes (b) Average Utilization for different segment sizes

Effect of the segment size on
the imbalance of the system
10,00

900 B Average
imbalance (%)

500 e
3,

2,00

1,00

0,00

150 200 250 300 350 400 450 500

Segment size [cm]
(¢) Average Imbalance for different segment sizes

Figure 4.9: Effect of Segment Size

This outcome of larger segment sizes attaining lower utilization and throughput can also be attributed
to two major factors that were concluded in the chapter 2. Firstly, the timing of parcel announcements
played a crucial role. Under the same parameter settings, a larger segment size led to improved
throughput and utilization if the parcels could be announced slightly earlier. This means that the
position of PEC must be further upstream of the infeed to have prior information on the parcel arrivals.
Secondly, the infeed capacity of 3200 parcels per hour proved to be significant. If it is feasible to
achieve an individual throughput surpassing 3200 parcels per hour per infeed, larger segment sizes
may yield similar results to that of the smaller segment sizes. Additionally, the overall imbalance in
the system is influenced by several factors. These factors include the distribution of parcel lengths, the
order in which parcels are allocated, and the space constraints of the infeeds. These elements have a

2023.MME.8848

4.2. Conclusion towards Experimentation 47

more significant impact on the system’s imbalance than the segment size alone.

4.2. Conclusion towards Experimentation

Within this chapter, an elaborate simulation model utilizing Dynamic Programming is constructed using
discrete event simulation techniques for the specified layout which answers the third sub-research
question. Throughout the development process, the concept of the control algorithm undergoes
significant advancement, maturing rapidly to enhance the model’s effectiveness. Additionally, the
model is subjected to thorough verification and validation processes, confirming its readiness for
subsequent experimentation. However, it is crucial to acknowledge that the validation and verification
procedures conducted do not imply that the model is flawless or error-free. To truly assess its strengths
and weaknesses, a comprehensive evaluation can only be achieved through experimentation. This
evaluation will be carried out in the next chapter and will shed light on the model’s performance under
various conditions and scenarios, allowing for a more nuanced understanding of its capabilities.

The upcoming chapter will primarily focus on the execution of these experiments, aiming to extract
valuable insights regarding the model’s behaviour and performance. Through these systematic
experiments, any limitations can be uncovered, identify potential areas for improvement, and gain a
deeper understanding of the model’s overall effectiveness.

2023.MME.8848

Model Experimentation

Once the simulation model has been created, verified, and validated, it becomes a valuable tool for
conducting experiments. Using DES, simulation experiments can be performed to explore various
scenarios and compare them with the existing algorithm employed in the industry. This allows for
a comprehensive assessment of the advantages and disadvantages associated with the developed
model. The initial step in this process involves determining the appropriate simulation run time. This
establishes the duration necessary for the simulation to run in order to facilitate a fair comparison.
Subsequently, multiple scenarios can be tested under the same parameter settings, and the resulting
KPIs, as discussed in chapter 3, can be utilized for comparing the outcomes. By comparing these
scenarios, it becomes possible to ascertain the superiority of the current model over the existing
algorithm. Furthermore, in this chapter, a cost-benefit analysis is conducted to evaluate the feasibility
of further investing in the development of the proposed model for real-time applications.

5.1. Simulation time

In DES, the duration of the simulation plays a crucial role in accurately capturing the system’s
behaviour and evaluating its performance (Fishman 2001). A sufficiently long simulation time is
essential to ensure that the system has stabilized and reached a steady-state condition. This allows for
reliable measurements of KPIs and a comprehensive analysis of the system’s behaviour. Running the
simulation for a longer duration helps to mitigate the influence of transient behaviour, startup effects,
and initial conditions. It allows the system to stabilize and reach a point where its behaviour can be
reliably analyzed and evaluated. Moreover, a longer simulation time provides a more representative
snapshot of the system’s performance under realistic conditions, as it considers a larger sample size of
parcels and captures a broader range of system dynamics.

To achieve this steady-state condition, the simulation must run for a duration that allows for an
adequate number of events and interactions to occur. In the case of the developed algorithm for parcel
sorting systems, the utilization metric, for example, depends on the successful passage of parcels
through the entire system, including the infeed conveyors and the merge conveyor. It is only after
several parcels have been processed that the utilization metric can be accurately calculated. Since the
trajectory of parcels depends on the preceding parcel, the accurate behaviour of a real system can only
be determined after several parcels have passed through the initial startup phase. It can be seen in
Figure 5.1 that the utilization increases rapidly for a certain time and attains a plateau. To ensure that
this condition is true, the simulation times of half an hour and one hour are considered. The simulation

5.1. Simulation time 49

was run for 20 iterations for both conditions to check for variability in the results.

By running simulations for 30 minutes and one hour, we can assess the algorithm’s performance
over extended periods and gain insights into its robustness, stability, and efficiency. These longer
simulation times provide a more comprehensive understanding of the system’s behaviour and allow
for more confident conclusions to be drawn regarding its performance and suitability for real-world
applications.

Merge Utilization (3-min average)

100 ~

801

60 4

40 -

Utilization (percent)

204

—— Model Output
S N Overall Average: 96.34%

T T T T T
0 100 200 300 400 500
Time (secs)

Figure 5.1: 3- minute average of the merge utilization

Simulation time: Half an Hour

In order to assess the algorithm’s performance over an extended period, a simulation time of half an
hour was chosen. This duration allows for a sufficient number of events and interactions to occur
within the parcel sorting system, providing a comprehensive view of its behaviour. The simulation was
executed for 20 iterations to account for any variability in the results with the fly-through occurrence
rate of about 10 per cent of the total parcel generation. The graphs obtained from the simulation
provide valuable insights into the system’s performance during this timeframe. Key performance
indicators such as throughput, utilization, imbalance, and the number of parcels delivered by each
infeed are plotted and analyzed.

The analysis of the half-hour simulation data provides valuable insights into the performance of the
parcel sorting system. By examining the box plots for key metrics including imbalance, throughput,
utilization, and individual infeed throughput from Figure 5.2, we can gain a deeper understanding of
the system’s behaviour.

2023.MME.8848

5.1. Simulation time 50

Throughput of the System for 30 mins Utilization of the System for 30 mins
6060 %6
— 6040 § 95,8
23 6020 z 956
2
o4& 6000 2 954
2% 5980 M Throughput TR 952 M Utilization
& g
22 5960 §e 95
g g g
<= 2 5940 N 94,8
= 2 =
” 5920 D 946
5900 94,4
(a) Throughput of the system for 20 iterations (b) Utilization of the system for 20 iterations
Imbalance of the System
1 Parcels delivered by each infeed for 30 mins
920
= 10 5 900 M Infeed 1
S8 g 8 M Infeed 2
° s niees
S 6 2 % \ B Infeed 3
- M Imbalance B 840 : nfee
.g 4 f 820 R Infeed 4
B 2 ; 800 ‘ M Infeed 5
e 780
0 2 760 M Infeed 6
1 740
(¢) Imbalance of the system for 20 iterations (d) Individual infeed throughput for 20 iterations

Figure 5.2: KPIs for 30 minutes simulation run time

The results reveal that in terms of throughput, the merge conveyor demonstrates consistent performance,
with a mean throughput of around 5990 parcels per half hour. The narrow range of throughput across
iterations suggests stability in the system’s overall performance. However, variations in individual
infeed throughput indicate potential differences in parcel arrival rates or variations in the merging
process. The system exhibits a relatively balanced distribution of parcels among the infeeds, with
a median imbalance of approximately 5%. However, a couple of iterations display higher levels of
imbalance, reaching up to 9.76%.

The system showcases efficient utilization, with a mean utilization value of approximately 95%. This
indicates optimal usage of the available space on the merge conveyor. The relatively small range of
utilization values among iterations further supports the system’s consistent utilization performance.
Examining the individual infeed throughput reveals variations among the infeeds. Certain infeeds
consistently achieve higher throughput, while others demonstrate slightly lower throughput. These
variations may be attributed to factors such as differences in parcel arrival rates or parcel dimensions
even.

Simulation time: one hour

To gain a more comprehensive understanding of the algorithm’s performance and its long-term
sustainability, a simulation time of one hour was chosen. This extended duration allows for a deeper
exploration of the system’s behaviour and performance under various operational conditions. By
running the simulation for a longer period, a larger number of events and interactions take place within
the parcel sorting system, providing a more robust assessment of its operational characteristics. The
one-hour simulation captures the dynamics of the system over an extended time frame, shedding
light on any potential patterns, fluctuations, or trends that may emerge. The graphical representations
obtained from the simulation provide valuable insights into the algorithm’s ability to sustain optimal

2023.MME.8848

5.1. Simulation time 51

performance over a prolonged operational period.

Throughput of the System for one hour Utilization of the System for one hour
12950 96,5
=1 L]
5 12900 g %
= 2,
0 12850 o 95,5
=] 2 ’
o= o P
© "2 12800 M Throughput °x 95 W Utilization
8= k|
5 12750 S 945
3 =
£ 12700 5 94
12650 93,5
(a) Throughput of the system for 20 iterations (b) Utilization of the system for 20 iterations
Imbalance of the System for one hour Parcels delivered by each infeed for one hour
8 2100
= 7 B M Infeed 1
2 5 2050 |
Z 2
A ;; ‘ ‘ M Infeed 2
2 5 o X
2_ 3 2000 [[Infeed 3
T 4 [Imbalance 5 E \
§ 3 ,:5- 1950 Infeed 4
Z:; 2 g M Infeed 5
E s 1900 B Infeed 6
0 1850
(c) Imbalance of the system for 20 iterations (d) Individual infeed throughput for 20 iterations

Figure 5.3: one hour simulation time

The simulation results for a one-hour time period as depicted in Figure 5.3 provide valuable insights
into the performance of the system. The average throughput, representing the number of parcels
processed, remains relatively stable at around 12,800 parcels. This indicates that the system is able
to handle a substantial volume of parcels within the given time frame. However, it is worth noting
that there is some variation in throughput values across different iterations, suggesting occasional
fluctuations in the system’s performance.

The utilization of the merge conveyor, which measures the extent to which the system utilizes its
capacity, exhibits a commendable average value of approximately 95.7%. This indicates that the
system efficiently utilizes available space, minimizing empty gaps between parcels. Despite the overall
high utilization, there are slight variations in utilization values throughout the simulation, suggesting
some variability in the workload distribution among the infeed conveyors.

The imbalance in throughput of infeeds, which represents the disparity between the maximum and
minimum throughput among the infeed conveyors, averages around 3.5%. This indicates a relatively
balanced distribution of parcels among the infeeds, with no significant discrepancy in workload
allocation. However, it is important to note that in a few instances, the imbalance exceeds 5%,
indicating a slight deviation from perfect load balancing. This could be accounted for the reason of
having parcel dimension variability. It can be possible that there might have been instances where one
of the infeed had a parcel too long to be accommodated in the segment and had to wait for a very short
duration thereby reducing its corresponding infeed’s throughput, resulting in a higher imbalance.

2023.MME.8848

5.2. Comparison with the current algorithm 52

Analyzing the individual throughput of each infeed conveyor, it is observed that the system achieves
a relatively equitable distribution of workload among the infeeds. The average throughput for each
infeed ranges from approximately 1,950 to 2,055 parcels, suggesting a balanced allocation of parcels
across the different infeed conveyors.

After conducting simulations for both half an hour and one hour, it becomes evident that the KPIs tend
to stabilize and maintain consistent values across multiple iterations, demonstrating their robustness
for different simulation duration. Additionally, the throughput nearly doubled when the simulation
duration was increased to one hour, and simultaneously, the imbalance decreased compared to the
half-hour simulation. This improvement in imbalance can be attributed to the presence of a normal
distribution in both parcel arrivals and parcel dimensions.

A normal distribution tends to concentrate the number of parcel arrivals and their dimensions around
a central value over time (Altman et al. 1995). This characteristic ensures that the heap algorithm
consistently receives at least two parcels in each infeed. The heap algorithm, which is employed for
iterating and sorting the infeeds, utilizes a maximum filled queue technique to select the topmost
element, remove a parcel from it, and update its state. This approach maintains a max heap structure,
promoting a balanced flow from all the infeeds.

5.2. Comparison with the current algorithm

In this section, a comprehensive comparison is conducted between the newly developed algorithm
and the existing algorithm currently utilized by Vanderlande. The focus of this evaluation is on
KPIs including throughput, utilization and load imbalance. The primary objective is to thoroughly
assess the performance of the proposed algorithm in these specific areas and identify its strengths and
weaknesses when compared to the current industry-level algorithm. A moving average technique was
employed to create a smoothed depiction of the data as suggested by Hyndman (2011), facilitating
the identification of long-term trends or patterns by averaging values within the time frame of 3 minutes.

To ensure a realistic evaluation, various scenarios are meticulously designed to resemble a variety
of operational conditions. These scenarios are broadly categorized into two groups: one without
any fly-through parcels and the other with a 10% fly-through parcel occurrence rate, which closely
mirrors real-world circumstances. Additionally, within these scenarios, different cases are carefully
considered and will be further expounded upon in the subsequent sections. Although there can be
several combinations possible to test the algorithm, the selected cases provide a holistic view of the
algorithm’s performance.

5.2.1. Scenario with no fly-through parcels

To ensure a comprehensive evaluation of the developed algorithm, various sub-cases have been
identified based on discussions with industry experts. These sub-cases are designed to simulate different
operational conditions within the context of a scenario without any fly-through parcels. The sub-cases
are as follows:

Case 1: A happy flow from all six infeeds: This sub-case represents the ideal situation where all 6
infeeds are functioning smoothly, allowing for an optimal merging process.

Case 2: The first and the last infeed operating: Here, the evaluation centres on a situation where only
the first and last infeeds are operational, while the middle infeeds are offline.

2023.MME.8848

5.2. Comparison with the current algorithm 53

Case 3: Only the first four infeeds operate: In this sub-case, the system is configured to simulate a
scenario where only the first four infeeds are operational, while the remaining 2 infeeds are
temporarily out of service.

Case 4: Only the first two infeeds operate: This sub-case focuses on a scenario where only the first
two infeeds are functioning, while the other infeeds are non-operational.

Although the second and the last case involves only two infeeds that are operating, their position plays
a crucial role in the overall KPIs. The difference will be visible while discussing the results. To ensure
a concise and focused explanation, this section will delve into the details of two specific cases. It is
important to note that a comprehensive analysis of all cases can be found in Appendix C, providing an
overview of the findings.

Case 1: A happy flow from all six infeeds

The purpose of this section is to assess the performance of the developed algorithm in comparison to the
current industry standard under the specific scenario of a smooth flow of parcels from all 6 infeeds. This
evaluation will provide valuable insights into the algorithm’s effectiveness in optimizing the merging
process when all infeeds are operational.

Table 5.1: No fly-through Happy Flow KPI comparison

Scenario Current Algorithm Developed algorithm
No fly-through | Throughput [pph] | Utilization [%] | Throughput [pph] | Utilization [%]
Happy Flow 11181 89.1 12540 95.13

Current Control Algorithm

The results of the KPIs for the scenario without any fly-through parcels and a happy flow from all 6
infeeds are presented in the Table 5.1 and the graphs shown in Figure 5.4. It is important to note that the
simulation was conducted using the same parameter settings with the fixed gap mode. The duration of
the simulation was determined based on the time required to reach a plateau in the performance metrics.
Since the current model stabilizes after a certain period of time, the simulation was extended for an
additional three minutes to capture a more comprehensive view of the system’s performance.

Merge flow rate (3-min average) Merge utilization (3-min average)

12000 100 ¢

10000 f ol

8000
60
6000

40 F

Flow rate (pph)
Utilization (%)

4000

2000 20

Model output —— Model output
Overall average (11181 pph) — — —Overall average (89.1 %!
0 L . . 1 n n .

0
O 60 120 180 240 300 360 420 480 540 600 0 60 120 180 240 300 360 420 480 540 600
Time (s) Time (s)
(a) 3-minute average of Throughput (b) 3-minute average of Merge Utilization

2023.MME.8848

5.2. Comparison with the current algorithm

54

Flow rate (pph)

3000

2500

o
o
o
]

-
[
o
S

-
o
=3
o

o)
[=3
S

Infeed/flythrough flow rates (3-min average)

—Infeed 1
Infeed 2|7
Infeed 3
—Infeed 4| |
—Infeed 5

Infeed 6

60 120 180 240 300 360 420 480
Time (s)

(¢) 3-minute average of Infeed imbalance

540

600

Figure 5.4: 3-minute average graphs of KPIs using current control algorithm

Developed DP-based Algorithm

The graphs displayed in Figure 5.5 illustrate the 3-minute average trends of key performance indicators
obtained using the developed control algorithm.

Flow rate (pph)

Merge flow rate (3-min average)

e

Merge Utilization (3-min average)

100

12000

10000 -

8000

6000

4000 -

2000

—— Model Output
-~ Overall moving Average: 12540

e e

e it cn s S

80+

60 +

40

Utilization (percent)

201

T
300
Time (secs)

T T
100 200

(a) 3-minute average of Merge flow rate

Flow rate (pph)

T
400

—— Model Output
~ Overall Average: 95.13%

T T T
500 600 o 100

Infeed/flythrough Flow Rates (3-min average)

T T T T
300 400 500 600

Time (secs)

T
200

(b) 3-minute average of Merge Utilization

25004
2000+
1500
1000 1 — Infeed 1
Infeed 2
Infeed 3
500 —— Infeed 4
Infeed 5
—— Infeed 6
04 fly through
T T T T T T T
0 100 200 300 400 500 600
Time (secs)

(¢) 3-minute average of Infeed imbalance

Figure 5.5: 3-minute average graphs of KPIs using developed algorithm

2023.MME.8848

5.2. Comparison with the current algorithm 55

Comparing the performance of the current algorithm and the developed algorithm in a scenario with a
smooth flow of parcels from all six infeeds, several conclusions can be drawn.

Firstly, it is evident that the developed algorithm outperforms the current industry standard in terms of
throughput. The current algorithm achieves an average throughput of 11,181 parcels per hour, while
the developed algorithm significantly improves this metric with a throughput of 12,540 parcels per
hour. This indicates that the developed algorithm is more efficient in processing and merging parcels,
resulting in higher overall throughput.

Secondly, the utilization of the system is substantially enhanced by the developed algorithm. The
current algorithm achieves a utilization rate of 89.1%, whereas the developed algorithm demonstrates a
remarkable improvement with a utilization rate of 95.13%. This indicates that the developed algorithm
better utilizes the available resources, minimizing empty gaps between parcels and maximizing the
system’s capacity. Finally, from Figure 5.4c and Figure 5.5c, it can be seen that all the infeeds have
more or less the same throughput in the developed algorithm when compared to the industry-level
algorithm.

Case 2: The first and last infeed operating

This section specifically focuses on a particular scenario in which only the first and last infeed conveyors
are operational. By examining this case, valuable insights can be obtained regarding the performance
of the developed algorithm compared to the current industry standard under these specific operational
conditions. It is worth noting that although the infeeds considered are labelled as infeed 1 and infeed
2 in the legends of the graphs presented in Figure 5.6¢ and Figure 5.7c, they actually represent infeed
1 and infeed 6. This labelling discrepancy arises from the fact that, in the simulation, these infeeds are
modelled as queues, resulting in their representation as infeed 1 and infeed 2. However, it is important
to clarify that their original designations correspond to infeed 1 and infeed 6.

Table 5.2: No fly-through infeed 1 and 6 operating

Scenario Current Algorithm Developed algorithm
No fly-through | Throughput [pph] | Utilization [%] | Throughput [pph] | Utilization [%]
Infeed land
Infeed 6

6645 533 6929 54.31

Current Control Algorithm

This section provides an assessment of the performance of the current control algorithm utilized in the
merging process. The graphs shown in Figure 5.6 present the 3-minute average graphs depicting KPIs
for the current case of first and last infeed working. The analysis of these graphs offers insights into
the behaviour of the current algorithm in managing the merging process. The obtained results serve as
a reference point for comparison with the developed DP-based algorithm

2023.MME.8848

5.2. Comparison with the current algorithm

56

Flow rate (pph)

Merge flow rate (3-min average)

—

7000

6000 -

Flow rate

Utilization (%)

1000 —— Model output

Overall average (6645 pph)

0 . . . n

0 60 120 180 240 300 360 420

Time (s)

(a) 3-minute average of Merge flow rate

480

Merge utilization (3-min average)

—— Model output
Overall average (53.3 %)

240 300 360 420
Time (s)

0 60 120 180 480

(b) 3-minute average of Merge Utilization

Infeed/flythrough flow rates (3-min average)

—Infeed 1
||—Infeed 2

0 60 120

180

240 300
Time (s)

360 420 480

(¢) 3-minute average of Infeed imbalance

Figure 5.6: 3-minute average graphs of KPIs using current control algorithm

Developed DP-based Algorithm

The graphs displayed in Figure 5.7 illustrate the 3-minute average trends of key performance indicators
obtained using the developed control algorithm.

Merge flow rate (3-min average)

8000 4

M\"’"‘\

7000 +

6000

& w
=] =]
S =]
s) =1
L L

3000 4
2000 1

1000 1
—— Model Qutput

o -~ Overall moving Average: 6929

S

T T T T T
o] 100 200 300 400 500
Time (secs)

(a) 3-minute average of Merge flow rate

Merge Utilization (3-min average)

60

50 4 _\“—‘.J'q_
= 40
£
@
<4
g
30
c
2
K]
N
= 20
=]

10

—— Model Output
o4 -~ Overall Average: 54.31%
T T T T T T
o] 100 200 300 400 500
Time (secs)

(b) 3-minute average of Merge Utilization

2023.MME.8848

5.2. Comparison with the current algorithm 57

Infeed/flythrough Flow Rates (3-min average)

4000

3500 4

3000 -

Flow rate (pph)
N
a
o
o

=)
7 =1
=3 S
=3 =1

1000

500 Infeed 1
Infeed 2
o fly through

T T T T T T
0 100 200 300 400 500
Time (secs)

(¢) 3-minute average of Infeed imbalance

Figure 5.7: 3-minute average graphs of KPIs using developed control algorithm

The analysis of the specific situation, where only the first and last infeed conveyors are operational,
provides valuable insights into the comparative performance of the developed algorithm against the
current industry standard. From the comparison in Table 5.2, it is evident that in this particular case, the
developed algorithm exhibits superior performance compared to the current algorithm. Specifically,
the developed algorithm achieves a significantly higher average throughput of 6,929 parcels per hour,
surpassing the average throughput of 6,645 parcels per hour achieved by the current algorithm.

Furthermore, the utilization improvement achieved by the developed algorithm, while modest in
magnitude, still demonstrates its efficacy compared to the current industry standard. With a utilization
rate of 54.31% for the developed algorithm compared to 53.3% for the current algorithm, even
a relatively small difference can have a significant impact in practice. This marginal increase in
utilization indicates that the developed algorithm optimizes the use of available space, reducing
empty spaces and improving the overall efficiency of the merge conveyor. While the difference may
seem subtle, it is indicative of the algorithm’s ability to make incremental enhancements in system
performance, which can accumulate and yield notable improvements over time. Thus, the developed
algorithm shows promising potential in achieving more efficient utilization, thereby contributing to the
overall optimization of the parcel transport system.

5.2.2. Scenario with 10 per cent fly-through parcels

Building upon the subsection 5.2.1 that focused on scenarios without fly-through parcels, this section
delves into the specific case of the 10% fly-through parcel scenario. By 10% fly-through parcels, it is
meant that in 10 parcels of the parcel generation, there is one fly-through parcel. Within this scenario,
further sub-cases are carefully considered to provide a more nuanced analysis. The sub-cases include:

Case 1: All six infeeds are operational
Case 2: Only the first two infeeds are operational
Case 3: Only four infeeds are operational

The primary objective of this section is to demonstrate how the developed algorithm performs in
comparison to the current industry standard within the context of the 10% fly-through parcel scenario.

2023.MME.8848

5.2. Comparison with the current algorithm

By examining the results obtained from these sub-cases, we can gain insights into the algorithm’s

efficacy and its ability to handle different operational configurations.

Case 1: All the six infeeds are operational

In

this section, the performance of the developed algorithm is compared with the current control
algorithm in a scenario where all six infeeds are operational and a 10% fly-through parcel occurrence

rate is present.

Table 5.3: All the six infeeds in operational condition in the presence of a 10% fly-through parcel occurrence rate

Scenario Current Algorithm Developed algorithm
10% fly-through | Throughput [pph] | Utilization [%] | Throughput [pph] | Utilization [%]
6 infeeds 11052 87 12597 95.11

Current Control Algorithm

The graphs presented in Figure 5.8 depict the three-minute average patterns of important performance
metrics, obtained through the utilization of the current industry-level control algorithm.

Flow rate (pph)

i Merge utilization (3-min average)
12000 - Merge flow rate (3-min average) 100

10000 | 80|

oy
8000 =
= 60}
S
6000 - 3
£ 40
4000 - =}
201
2000 Model output ——Model output
Overall average (11052 pph) Overall average (87.0 %)
o ‘ ‘ ‘ ‘ ‘ : ; : : 0 ‘ ‘ ‘ ‘ : ‘ : ; ‘
0 60 120 180 240 300 360 420 480 540 0 60 120 180 240 300 360 420 480 540
Time (s) Time (s)
(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization

Infeed/flythrough flow rates (3-min average)

—Infeed 1
——Infeed 2
Infeed 3
—Infeed 4
—Infeed 5
Infeed 6

——Flythrough
1500 L [=——Fiythrough|

Flow rate (pph)
5]
o
o

o
=3
S

0

0 60 120 180 240 300 360 420 480 540
Time (s)

(¢) 3-minute average of Infeed imbalance

Figure 5.8: 3-minute average graphs of KPIs using current control algorithm

2023.MME.8848

5.2. Comparison with the current algorithm 59

Developed DP-based Algorithm

The graphs displayed in Figure 5.9 illustrate the 3-minute average trends of key performance indicators
obtained using the developed control algorithm.

Merge flow rate (3-min average) Merge Utilization (3-min average)
100+
NS A e i mgrnn AN N P
12000 -

10000 - 801
S

E 8000 o 60
g o
- =N
v 2
© 6000 4 S

: 2 o
“ 40004 g

20

20004
—— Model Qutput —— Model Qutput
04 -~ Qverall moving Average: 12597 04 -— Overall Average: 95.11%
6 1ll)(] 2 60 360 460 560 (I) 160 2 ll)(] 360 4[‘)(] 560
Time (secs) Time (secs)
(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization

Infeed/flythrough Flow Rates (3-min average)

20004

1500 -

1000

Flow rate (pph)

Infeed 1

I,;.:,- Infeed 2
500 1 @i Infeed 3
};Z‘ —— Infeed 4

Infeed 5

5;" Infeed 6

o f fly through

T T T T T T
0 100 200 300 400 500
Time (secs)

(¢) 3-minute average of Infeed imbalance

Figure 5.9: 3-minute average graphs of KPIs using developed control algorithm

The results obtained from the comparison provide valuable insights into the performance of the two
algorithms in terms of throughput and utilization.

The analysis of the results revealed that the developed algorithm exhibits notable advantages over
the current algorithm. In terms of throughput, the developed algorithm achieved a higher value of
12,597 parcels compared to the current algorithm’s throughput of 11,052 parcels. This indicates that

the developed algorithm is capable of efficiently processing and handling a larger volume of parcels
within the given time frame.

Furthermore, the utilization of the merge conveyor was significantly improved with the implementation
of the developed algorithm. It achieved a utilization rate of 95.11%, surpassing the utilization rate of
87% achieved by the current algorithm. This enhancement in utilization suggests that the developed
algorithm optimizes the usage of available space on the merge conveyor. The imbalance in this is

2023.MME.8848

5.2. Comparison with the current algorithm 60

more or less similar for both the algorithms, except for the fact that the upstream infeeds have a higher

throughput at the beginning of the simulation (Figure 5.8c) for the current algorithm when compared
to the developed algorithm.

Case 2: Only the first two infeeds are operational

In the following section, the performance of the developed algorithm is assessed through a comparison
with the current control algorithm in a specific case. This case involves the operation of the first two
infeeds and a 10% occurrence rate of fly-through parcels. The primary goal is to evaluate how the
developed algorithm performs relative to the current control algorithm under these specific conditions.

Table 5.4: The first two infeeds in operational condition in the presence of a 10% fly-through parcel occurrence rate

Scenario Current Algorithm Developed algorithm
10% Fly through | Throughput [pph] | Utilization [%] | Throughput [pph] | Utilization [%]
2 infeeds 6972 55.5 8502 65.7

Current Control Algorithm

The graphs presented in Figure 5.10 depict the three-minute average patterns of important performance
metrics, obtained through the utilization of the current industry-level control algorithm.

- Merge flow rate (3-min average) . Merge utilization (3-min average)

_6000

Flow rate (pph
-
(=3
g
Utilization (%)

20

2000 -

—— Model output o 10 —— Model output

Overall average (6972 pph) Overall average (55.5 %)

0 60 120 180 240 300 360 420 480 00 60 120 180 240 300 360 420 480
Time (s) Time (s)

(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization

Infeed/flythrough flow rates (3-min average)

—Infeed 1
+ |—Infeed 2
Flythrough

0 60 120 180 240 300 360 420 480
Time (s)

(¢) 3-minute average of Infeed imbalance

Figure 5.10: 3-minute average graphs of KPIs using current control algorithm

Developed DP-based Algorithm

The graphs displayed in Figure 5.11 illustrate the 3-minute average trends of key performance indicators
obtained using the developed control algorithm.

2023.MME.8848

5.3. Reflecting on the comparison 61

Merge flow rate (3-min average) Merge Utilization (3-min average)
P e T WY e W s N
8000 - —~ ST 504 HTINN e
50 -
6000 4 _
=
z S 404
g 5
- a
P 2
T 4000 4 5 30
E: g
= =}
> 204
2000
10
—— Model Output —— Model Output
04 —— Overall moving Average: 8063 o4 ~—— Overall Average: 60.42%
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (secs) Time (secs)
(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization

Infeed/flythrough Flow Rates (3-min average)

3500 - I < WP
3000 +
_ 2500+
=
[=3
=]
o 2000+
o
£ 1500 4
w
1000
500 - ' Infeed 1
f Infeed 2
0 fly through
T T T T T T T
0 100 200 300 400 500 600
Time (secs)

(¢) 3-minute average of Infeed imbalance

Figure 5.11: 3-minute average graphs of KPIs using developed control algorithm

Examining the Figure 5.10, Figure 5.11 and the Table 5.4 reveals notable differences between the
two algorithms in terms of throughput and utilization. The current algorithm exhibits a throughput
of 6,972 parcels per hour with a corresponding utilization of 55.5%. In contrast, the developed
algorithm showcases improved performance, achieving a higher throughput of 8,063 parcels per
hour, accompanied by a utilization rate of 60.42%. These results clearly indicate that the developed
algorithm surpasses the current algorithm in terms of both throughput and utilization in the scenario
where only the first two infeeds are operational while considering a 10% fly-through parcel occurrence.
Furthermore, the graph from Figure 5.10c reveals that the current algorithm takes a while to achieve
a state of proper balance among the infeeds in the current algorithm which is not the case for the
developed algorithm as depicted in Figure 5.11c.

The observed significant increase in throughput can be attributed to the efficient control mechanism
implemented by the developed algorithm. By optimizing the merging process, the algorithm ensures
smoother and more streamlined parcel movement. Moreover, the higher utilization achieved by the
developed algorithm underscores its ability to efficiently utilize available space on the merge conveyor,
resulting in improved overall efficiency and reduced empty spaces between parcels.

2023.MME.8848

5.3. Reflecting on the comparison 62

5.3. Reflecting on the comparison

The outcomes of all cases are presented in Table 5.5 and Table 5.6. Additional graphs illustrating the
remaining cases can be found in Appendix C, which collectively provide an extensive analysis of
the algorithm’s performance across different cases. The results evidently indicate that the developed
algorithm has, to a significant extent, surpassed the industry-level algorithm in terms of both utilization
and throughput. This notable improvement can be attributed to the careful planning that the algorithm
employs for parcel handling.

Firstly, in the algorithm that is being used in the industry, as discussed in section 2.3, when a parcel is
detected and announced by the infeed controller, the search algorithm of the merge controller actively
secks available space along the length of the merge conveyor, preceding the parcel’s designated
infeed location. Consequently, this approach leads to a considerable amount of unused space, thereby
diminishing the overall throughput. On the contrary, the DP-based algorithm adopts a more efficient
strategy by employing a fixed segment size that starts before the merge conveyor. During the segment
generation event, the algorithm strives to utilize the available parcels while also considering the fixed
gaps to fill the segment, thus effectively reducing the problem of unused gaps and resulting in better
utilization and throughput.

Secondly, within the context of the no fly-through scenario, the discussion pertained to various cases,
and a notable observation was made concerning the performance of Infeed 1 and 6 compared to the
first two infeeds. While these two cases may appear similar, their outcomes exhibit notable distinctions.
The data presented in Table 5.5 reveals that the case with the first two infeeds in operation demonstrates
a higher throughput when compared to the scenario where infeeds 1 and 6 are active.

The underlying reason behind this discrepancy lies in the operational dynamics of the two cases. In the
situation involving infeeds 1 and 6, the primary factor leading to the lower throughput is the waiting
times experienced at infeed 6. Due to the parcel processing sequence, only after a parcel has exited
infeed 6 can another parcel be announced and processed, which inevitably slows down the overall
throughput. On the other hand, in the case where infeeds 1 and 2 are operational, the lower throughput
can be attributed to a different cause. In this case, both infeeds continuously deliver parcels one after
the other. However, the arrival rate of parcels is comparatively lower, resulting in reduced throughput
and an increase in empty spaces within the system.

Finally, the graphs for the DP-based algorithm demonstrate a consistent linear growth until a specific
simulation time, at which point they stabilize. This phenomenon is attributed to the inherent statistical
nature of parcel arrival rate distribution. Notably, the linear progression is not observable in the
industry’s algorithm, as their graphing process commences only after the KPIs’average stabilises.
Conversely, the DP-based algorithm plots the graphs from the onset of simulation time, resulting in
a linear increase within a specific interval, as opposed to an abrupt transition.

2023.MME.8848

5.4. Cost Benefit Analysis 63

Table 5.5: No fly-through all cases

Scenario Current Algorithm Developed algorithm
No Fly-through | Throughput [pph] | Utilization [%] | Throughput [pph] | Utilization [%]
6 infeeds 11181 89.1 12540 95.13
Infeed 1 and
Infeed 6 6645 53.3 6929 54.31
4 infeeds 10621 84.3 11493 88.68
2 infeeds 6738 53.8 7074 56.54

Table 5.6: 10% fly-through all cases

Scenario Current Algorithm Developed algorithm
10% Fly-through | Throughput [pph] | Utilization [%] | Throughput [pph] | Utilization [%]
6 infeeds 11052 87 12597 95.11
2 infeeds 6972 55.5 8063 60.42
4 infeeds 10084 78.6 11977 89.28

However, the development of an algorithm alone does not guarantee its seamless implementation in
real-time operations. Several additional factors come into play when considering the replacement
of the current algorithm in practical applications. One significant factor is the cost implications
associated with implementing the developed algorithm. Companies are likely to invest in replacing
the existing algorithm only if they can reap sufficient benefits from the proposed solution. Therefore,
the subsequent section will present an overview of the cost-benefit analysis, shedding light on the
economic considerations and potential advantages of adopting the developed algorithm.

5.4. Cost Benefit Analysis

According to Mishan et al. (2020), Cost-benefit analysis (CBA) is a powerful decision-making
tool widely used in various fields to evaluate the economic feasibility and efficiency of potential
projects, policies, or interventions. With its roots in welfare economics, CBA provides a systematic
framework for assessing the costs and benefits associated with different alternatives quantitatively
and objectively. By considering both monetary and non-monetary factors, such as social and
environmental impacts, CBA enables decision-makers to make informed judgments and prioritize
resource allocation. Its application spans diverse sectors, including public policy, infrastructure
development, environmental management, and healthcare, among others. The primary objective of
CBA is to compare the costs and benefits of different options consistently and transparently. By
monetizing both positive and negative impacts, CBA enables decision-makers to assess whether the
benefits of a project or policy outweigh its costs. This analysis goes beyond the traditional financial
evaluation by incorporating a broader range of factors that contribute to societal welfare and well-being.

In the material handling industry, where the adoption of new software solutions is not frequent, the
decision to develop a new algorithm or software requires careful cost-benefit analysis. Conducting
such an analysis is crucial as it allows companies to weigh the costs associated with the development
and testing phases against the anticipated benefits and performance improvements (Erdogmus 2007).
This systematic evaluation empowers decision-makers to make informed judgments and effectively
allocate resources.

2023.MME.8848

5.4. Cost Benefit Analysis 64

The foremost requirement for any newly developed algorithm is reliability and robustness. According
to Azar et al. (2021), reliability refers to the capacity of an algorithm to demonstrate consistent
and precise performance across diverse conditions. A reliable algorithm exhibits the capability to
generate consistent outcomes consistently over time and across various environments. On the contrary,
robustness characterizes the ability of a control algorithm to deliver optimal performance despite the
presence of disturbances or uncertainties. A robust algorithm is adept at sustaining its performance
even when the controlled system experiences alterations or fluctuations. It must perform consistently
and efficiently in real-world scenarios, ensuring smooth operations in material handling systems.
Additionally, compatibility with the hardware adopted by customers is crucial. For merge control
algorithms, the hardware commonly used is Programmable Logic Controllers (PLCs), which are
manufactured by industry-leading companies such as Siemens and others (B. J. Kim et al. 1991).
Therefore, any new software being developed needs to seamlessly integrate with these widely used
hardware systems.

Undertaking the development of a new algorithm or model incurs costs, both in terms of time and
resources (Arm et al. 2018). Based on discussions with an expert from Vanderlande, a lead time of 6
months is considered more than sufficient to successfully develop and test a new algorithm. According
to Goldratt et al. (2004), the lead time represents the duration from the initiation of the development
process to the completion of the testing phase. During this period, a team of two highly skilled personnel
is typically required to handle the development phase efficiently. To further illustrate the associated
costs, let us consider an example. Assuming a lead time of 4 months, with two personnel working on the
development phase and one or two technicians involved in the testing phase, the estimated operational
costs associated just with the employee salary would be as follows:

Operational costs = 4 (months) x 4(week/month) x 40 (hrs/week) * €100 (/hour) x 2 employees
— €128,000

In addition to these costs, there are additional operational expenses related to technicians and setting up
the hardware to test and validate the software, which can be approximated to 80,000 euros. Therefore,
the total investment required to fully develop a new model and make it operational would amount close
to 200,000 euros. However, it is important to note that this example represents an ideal scenario with
average pay rates, and if the lead time exceeds the projected duration, it would result in additional costs.

Justifying such a significant investment in a new model necessitates demonstrating a performance
improvement of at least 5 per cent when compared to the current model. This benchmark serves
as a minimum threshold to ensure that the investment is worthwhile. Achieving this performance
improvement can yield several benefits for the company. Firstly, it provides a competitive edge
over other market players, allowing the company to differentiate itself and attract more customers.
Secondly, improved performance can lead to higher turnover rates and increased revenue, as clients
value efficient and reliable material handling systems (Shaw 2011). While the immediate profit may
not be significant, the expanded market reach resulting from improved performance can contribute to
long-term growth and success.

Additionally, such performance improvements can enable not only the introduction of a new system
but also upgrades to the existing system at clients’ ends. This allows the company to continuously
enhance their solutions and adapt to changing customer needs and industry trends. In the dynamic
material handling industry, striving for higher performance is always a significant goal for companies

2023.MME.8848

5.5. Conclusion 65

to maintain their competitiveness. However, the company believes that continuously improving
the current system is more practical and beneficial in the long run, as opposed to developing a new
algorithm or system in every cycle. This approach ensures that the company can maximize the value
and potential of their existing software while staying responsive to customer requirements and industry
advancements.

Based on the comprehensive comparison presented in section 5.2, it is evident that the developed
algorithm consistently outperforms the current industry-level algorithm in multiple cases. The
KPIs analyzed in the evaluation process demonstrate significant improvements when the developed
algorithm is employed. These findings highlight the potential value of implementing the developed
algorithm, particularly when the aim is to enhance the overall efficiency of the process. The
demonstrated superiority of the developed algorithm, as indicated by the favourable KPI results,
suggests that investing in the adoption and integration of this algorithm could yield substantial benefits
and contribute to the optimization of the system’s operations.

5.5. Conclusion

This chapter contributes to addressing the fourth and fifth sub-research questions by conducting a
comprehensive evaluation of the developed algorithm for parcel sorting systems. The evaluation is
carried out through model experimentation, with a particular focus on the simulation time as a crucial
factor in accurately assessing system behaviour and performance. Simulations were conducted for
a duration of 30 minutes and one hour to gain insights into the algorithm’s robustness, stability, and
efficiency over extended periods.

The simulation results consistently demonstrated the superior performance of the developed algorithm
compared to the current industry-level algorithm in various scenarios. The analysis of key performance
indicators revealed significant improvements when employing the developed algorithm. Specifically,
the developed algorithm achieved higher throughput and utilization rates, showcasing its effectiveness
in optimizing the merging process and maximizing resource utilization. These findings were consistent
across scenarios with and without fly-through parcels, further confirming the algorithm’s superiority
under challenging operational conditions.

Furthermore, a cost-benefit analysis was conducted to assess the economic feasibility of implementing
the developed algorithm, addressing the fifth research question. The analysis considered factors such
as reliability, robustness, compatibility with hardware systems, and associated costs. The estimated
investment required for developing and implementing the algorithm was weighed against a benchmark
of at least 5% performance improvement to justify the investment. The developed algorithm surpassed
this benchmark and demonstrated its potential for real-world implementation, warranting further
research and investment.

In conclusion, the results of the model experimentation provide strong evidence of the developed
algorithm’s superior performance in terms of throughput and utilization. The findings emphasize the
potential benefits and efficiency gains that can be achieved by adopting the developed algorithm in
real-world parcel sorting systems.

2023.MME.8848

Conclusion

The objective of this thesis was to develop a control algorithm with the potential to enhance the
utilization of a merge conveyor in a line sorter sortation system. A conceptual design and model were
developed and assessed using discrete event simulation. This chapter primarily focuses on answering
the research questions and drawing conclusions based on the findings of this study. Additionally, the
chapter concludes by presenting remarks and recommendations for future research in this area.

6.1. Conclusion: Answering the research questions

This section answers the research questions as defined in subsection 1.3.1. A detailed answer to each
of the sub-research questions will help to conclude with the answer to the main research question.

(1) Which factors significantly impact the parcel merging process and the utilization of the merge
conveyor in a sorting system?
In chapter 2, an in-depth exploration has been conducted to examine the factors that significantly
impact the parcel merging process and the utilization of the merge conveyor in a sorting system. By
analyzing these factors, valuable insights have been gained into their significance and implications.

The parcel merging process holds a critical role in ensuring seamless transportation and efficient
merging within the sorting system. One of the crucial factors that influence this process is the velocity
profiles of parcels, as discussed in subsection 2.1.1. Consideration of parcel compatibility in terms of
size and shape is essential for smooth transportation and integration within the system. The presence
of variable parcel dimensions can introduce challenges related to irregular spacing and slice allocation,
highlighting the need to address this factor.

Another significant factor is the timing of parcel announcements on the infeeds. Proper coordination
is crucial, as it directly affects the merge controller’s search for available space once the infeed
controller announces a parcel’s arrival. Moreover, the speed at which the merge operation is performed
plays a vital role. Striking a balance between the utilization of the merge conveyor and achieving
load balancing among the infeeds presents a trade-off that necessitates careful consideration. While
maximizing utilization might be tempting, neglecting load balancing can result in suboptimal system
performance. Thus, finding an optimal balance between these objectives is also crucial.

6.1. Conclusion: Answering the research questions 67

(2) What existing approaches for similar problems suggest a suitable control algorithm for the current
issue of low utilization?

The literature study concluded in chapter 3, focused on identifying an optimal control algorithm to
improve the merge conveyor utilization. Emphasis was placed on implementing effective control
mechanisms to enhance merge zone efficiency. Extensive exploration of various control algorithms
for parcel and vehicle merging processes was conducted to enhance overall system performance.

Through the literature review, a notable research gap emerged in the utilization of optimization
techniques and alternative scheduling approaches in the context of parcel industries. This highlighted
the need to investigate methods that had the potential to enhance the parcel merging process—a critical
aspect with significant implications for system throughput and utilization. While exact algorithms
like Integer Linear Programming were utilized, their inherent time-consuming nature prompted the
search for more efficient alternatives. One promising approach that demonstrated success in vehicle
lane merging was dynamic programming. However, its application specifically in the field of parcel
merging had yet to be explored comprehensively.

The incorporation of dynamic programming into the parcel merging process held promising prospects
for significant improvements in system performance and throughput. Drawing insights from related
areas, dynamic programming offered a potential solution to address the challenges and complexities
associated with parcel merging, ultimately leading to enhanced operational efficiency and increased
customer satisfaction in the parcel industry.

(3) How can the selected control algorithm be developed for the Line-Sorter sortation system?

This sub-research question is answered in the chapter 4. To address the question of developing
the selected control algorithm for the Line-Sorter sortation system, a comprehensive approach
was undertaken in this research. By leveraging the capabilities of Discrete Event Simulation, a
simulation model was meticulously constructed to replicate the merging process within the Line-Sorter
system. The utilization of DES was motivated by its inherent advantages, including its adaptability
in representing systems of varying complexities and its ability to accurately capture the dynamic
behaviour of the system over time.

Python, a versatile programming language widely recognized for its extensive documentation,
thriving user community, and an array of simulation libraries, was chosen as the preferred software
implementation platform for DES. The decision to adopt Python was driven by its seamless integration
with various scientific and data analysis tools, making it an increasingly popular choice among
researchers and practitioners. Furthermore, the open-source nature of Python, coupled with its
cost-effectiveness compared to commercial software packages, further solidified its appeal for this
study.

Within the developed simulation model, a virtual segment aligned with the merge conveyor was
introduced, initiating before the actual merge conveyor’s start. This virtual segment is the event trigger.
It emulated the movement of the merge conveyor itself, synchronizing their speeds accordingly. In
order to achieve optimal parcel sequencing, a control algorithm rooted in dynamic programming was
meticulously designed. Recognizing the potential challenge posed by higher imbalances, it became
imperative to incorporate a balancing technique capable of maintaining a desirable load balance among
the various infeeds. To this end, a maximum heap sort algorithm was employed, intelligently sorting
the infeeds based on the maximum filled queue technique. To evaluate the performance of the control
algorithm, different KPIs identified in the chapter 3 were employed.

2023.MME.8848

6.1. Conclusion: Answering the research questions 68

The developed simulation model underwent a series of rigorous verification and validation procedures,
ensuring its precision, dependability, and appropriateness for conducting experiments. The outcomes of
the sensitivity analysis revealed a clear relationship: when fly-through parcels were present, a smaller
segment size led to increased utilization and improved throughput. It is essential to acknowledge that
the model was constructed while adhering to a predefined set of constraints and assumptions, with the
aim of closely aligning with the real-world conditions of the Line-Sorter sortation system. However,
it is important to emphasize that the model’s scope was deliberately limited to the merging process
exclusively, neglecting the comprehensive modelling of the sortation zone and the overflow zone.

(4) How does the selected control algorithm perform compared to the current algorithm that is being
used in the industry?

In order to assess the performance of the developed control algorithm in comparison to the industry-level
algorithm, a comparative analysis was conducted in section 5.2 using the previously defined KPIs.
Various scenarios were executed under consistent parameter settings to facilitate a comprehensive
evaluation. The findings clearly indicate that the developed algorithm has a better performance when
compared to the current control algorithm, as demonstrated by the comparative results depicted in the
section 5.2.

It is important to note that while the developed algorithm exhibits advantages over the current algorithm
within the existing layout, certain limitations were identified during the evaluation process. These
limitations will be elaborated in the section 6.2 of this chapter. Nonetheless, based on the results and
considering the current circumstances, the main conclusion drawn is that the developed algorithm
holds a competitive edge over the current algorithm.

(5) What are the implications of implementing the developed control algorithm in terms of their impact
on the costs for Vanderlande?

Merely developing an algorithm and claiming its superiority over the existing one would be an
inadequate solution, as any changes implemented in a system typically come with associated costs in
the real world. Therefore, it is imperative to conduct a cost-benefit analysis to evaluate the feasibility
of further investment and development of the developed algorithm for real-time applications. While
the developed model closely aligns with real-world scenarios, certain assumptions made, such as parcel
slip or parcel orientation, may have an impact on the overall key performance indicators. Consequently,
it becomes essential to substantiate that the algorithm’s benefits justify the allocation of resources and
funding.

Consultations with an expert from Vanderlande revealed that companies generally invest in researching
and developing new algorithms only when the improvements achieved are at least five per cent greater
than the current one in use. Such a significant improvement offers various advantages. Firstly, it
establishes a competitive edge over other market players, attracting new customers and consequently
increasing the company’s revenue. Secondly, it enhances customer satisfaction and enables the
adaptation of solutions to clients’ existing systems. Given that the current model has exhibited
promising results and superior performance, it represents a potential option for further research and
development. Considering an estimated investment of approximately €200, 000, which can attract new
customers and boost revenue, the return on investment (ROI) appears to be significantly higher.

Based on the results obtained for the developed model, the evidence presented in section 5.2
unequivocally demonstrated its superior performance. The findings revealed that the developed model
surpassed the current algorithm, exhibiting KPI values that were at least five per cent higher. This

2023.MME.8848

6.2. Discussion and Recommendations 69

outcome represents a significant breakthrough, signifying that continued research on this algorithm
has the potential to bring about substantial changes and advantages to both the system and the company.

A cumulative of all the five aforementioned sub-research questions can help in answering the main
research question of:

“How can the parcel merging process and utilization of the merge conveyor in a line-sorter sortation
system be improved by introducing a new control algorithm?”

By populating the imaginary segment with parcels based on available gaps during the event of segment
generation, rather than searching and assigning a slice each time a parcel enters the system, it can be
inferred that the utilization of dynamic programming as a control algorithm leads to superior utilization
compared to other techniques. Throughout this thesis, the importance of striking a balance between
utilization and load balancing has been emphasized. To ensure balanced loads among the infeeds, a
max heap algorithm is employed that sorts the infeeds based on the maximum filled queue. This thesis
represents an initial exploration of the implementation of dynamic programming as a control algorithm
aimed at enhancing merge conveyor utilization.

6.2. Discussion and Recommendations

This section discusses the results and methodology employed in the thesis. Firstly, it is examined
whether the chosen method adequately addresses the main research question. Based on the preceding
information, it can be concluded that introducing a DP-based control algorithm can enhance the overall
utilization of the system. The primary focus of the thesis was to identify a new control algorithm,
but it could have also explored the potential for improving utilization with the existing industry-level
algorithm in different layouts.

Several assumptions were made in the thesis, which could impact the obtained results. In practical
scenarios, there are multiple variables at play beyond the ones considered in this thesis. For instance,
the velocity profiles and the time it takes for a parcel to reach the merge were abstracted from real-life
conditions to isolate the effect of velocity profiles and maintain a realistic approximation. Additionally,
the current model was developed entirely using Python software. However, using different software
might yield similar or different results, and this aspect needs to be verified.

The current model utilizes the maximum filled queue technique to prioritize the infeeds. However,
in real-time situations, this assumption may not always hold true, as there could be an infeed with
consistently higher capacity, making it the most filled queue at all times. Consequently, employing a
different priority-based technique may yield slightly different throughput outcomes. Moreover, it is
crucial to consider that in real-world scenarios, the capacity of infeeds can dynamically vary, while
the current model assumes a constant capacity of 3200 parcels per hour for every infeed. Therefore,
conducting additional experiments is necessary to evaluate the algorithm’s behaviour in more realistic
scenarios.

Regarding the positioning of the infeeds further downstream in the system, the assigned slice
on the segment would have to travel a longer distance to reach the most downstream infeed.
Consequently, parcels on the downstream infeeds may experience extended waiting times. Case 2 from
subsection 5.2.1 demonstrates that the utilization remains relatively stable. Nevertheless, if infeed 6
were positioned even further downstream in the given layout under the same working conditions, the

2023.MME.8848

6.2. Discussion and Recommendations 70

utilization of the developed algorithm could experience a marginal decrease. Although the overall
decline in utilization would not be significant in the presence of all the infeeds, a slight decrease can be
expected in this specific scenario. Furthermore, if the velocities of the infeed conveyors are lower than
the current situation, parcels may require more time to reach the merge conveyor, potentially resulting
in decreased overall utilization and throughput.

In the context of parcels, the current research assumes a normal distribution for parcel dimensions,
which may not accurately reflect real-time conditions. Furthermore, the weight of parcels plays a
crucial role, as parcels can topple based on their centre of gravity, which is mass-dependent. Other
kinematic constraints, such as slip, were not considered in the current research. It is worth noting that
these factors can also impact the overall key performance indicators.

To further increase the utilization, similar to related research on parcel sorting system merging processes,
it was evident that early knowledge of the next parcel for each infeed, i.e., parcel announcement, can
provide the controller with more time to allocate a slice, regardless of the control algorithm being
used. It is important to note that the developed model was designed based on a fixed gap mode
between the parcels on the merge conveyor. Examining its performance with different gap modes
could yield different results, and such variations should be thoroughly examined. It is recommended
that Vanderlande conducts tests and analyzes the system’s behaviour in light of these considerations.

Regarding costs, the cost-benefit analysis conducted in this research was based on approximate values
provided by an expert from Vanderlande. However, it is important to consider that additional costs
may have been overlooked. Additionally, while the control algorithm developed works well for a line
sorter, it is recommended that Vanderlande tests the algorithm for different layouts and on a loop sorter
as well. Despite differences in merge operations between line sorters and loop sorters, the process of
allocating a slice for a parcel is similar. Conducting several tests and fine-tuning the algorithm can
potentially yield promising results using dynamic programming.

While previous research has primarily focused on improving imbalance and utilization, there has been
limited attention given to sustainability aspects. Although increased throughput and utilization can
yield positive benefits such as reduced energy consumption, the magnitude of these effects is relatively
small. A potential avenue for future research could involve identifying a control technique that can
dynamically operate under different speed variations and adapt to conditions based on peak loading
and normal load situations.

2023.MME.8848

References

Agrawal, G.K., and S.S. Heragu. 2006. “A survey of automated material handling systems in 300-mm
SemiconductorFabs.” [EEE Transactions on Semiconductor Manufacturing 19 (1): 112—120. https:
//doi.org/10.1109/TSM.2005.863217.

Ahn, H, D Del Vecchio - IEEE Transactions on Automatic, and undefined 2017. 2017. “Safety
verification and control for collision avoidance at road intersections.” ieeexplore.ieee.org, https:
/lieeexplore.ieee.org/abstract/document/7987071/.

Allen, Theodore T. 2011. “Introduction to Discrete Event Simulation and Agent-based Modeling.”
Introduction to Discrete Event Simulation and Agent-based Modeling, 1-7. https://doi.org/10.
1007/978-0-85729-139-4 1.

Altman, Douglas G., and j. Martin Bland. 1995. “Statistics notes: The normal distribution.” BM.J 310
(6975): 298. ISSN: 0959-8138. https://doi.org/10.1136/BMJ.310.6975.298.

Arm, J., F. Zezulka, Z. Bradac, P. Marcon, V. Kaczmarczyk, T. Benesl, and T. Schroeder. 2018.
“Implementing Industry 4.0 in Discrete Manufacturing: Options and Drawbacks.” 15th IFAC
Conference on Programmable Devices and Embedded Systems PDeS 2018, [FAC-PapersOnLine
51 (6): 473-478. ISSN: 2405-8963. https://doi.org/https://doi.org/10.1016/j.ifacol.2018.07.106.

Autotech, Falcon. 2023. Falcon Autotech Tilt-Tray Sorters. Accessed June 30, 2023. https://www.
falconautotech.com/tilt-tray-sorter/.

Azar, Ahmad Taher, Fernando E. Serrano, Anis Koubaa, Habiba A. Ibrahim, Nashwa Ahmad Kamal,
Alaa Khamis, Ibraheem Kasim Ibraheem, et al. 2021. “Robust fractional-order sliding mode control
design for UAVs subjected to atmospheric disturbances.” Unmanned Aerial Systems: Theoretical
Foundation and Applications: A Volume in Advances in Nonlinear Dynamics and Chaos (ANDC)
(January): 103—128. https://doi.org/10.1016/B978-0-12-820276-0.00012-1.

Babulak, Eduard, and Ming Wang. 2010. Discrete Event Simulation: State of the Art. 1-9. August. ISBN:
978-953-307-115-2. https://doi.org/10.13140/RG.2.1.2068.1767.

Bals, Pim. 2021. 4 control strategy approach for automated handling systems in the Merge Zone Bals,
Pim. https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-
integrity/.

Banks, Jerry. 1999. “Introduction to simulation.” Winter Simulation Conference Proceedings 1:7—-13.
ISSN: 02750708. https://doi.org/10.1145/324138.324142.

Bazaraa, M. S., John J. Jarvis, and Hanif D. Sherali. 2005. “Linear programming and network flows,”
726. https://www .wiley.com/en-ie/Linear+Programming+and + Network + Flows % 2C+3rd +
Edition-p-9780471703778.

https://doi.org/10.1109/TSM.2005.863217
https://doi.org/10.1109/TSM.2005.863217
https://ieeexplore.ieee.org/abstract/document/7987071/
https://ieeexplore.ieee.org/abstract/document/7987071/
https://doi.org/10.1007/978-0-85729-139-4_1
https://doi.org/10.1007/978-0-85729-139-4_1
https://doi.org/10.1136/BMJ.310.6975.298
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.07.106
https://www.falconautotech.com/tilt-tray-sorter/
https://www.falconautotech.com/tilt-tray-sorter/
https://doi.org/10.1016/B978-0-12-820276-0.00012-1
https://doi.org/10.13140/RG.2.1.2068.1767
https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-integrity/
https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-integrity/
https://doi.org/10.1145/324138.324142
https://www.wiley.com/en-ie/Linear+Programming+and+Network+Flows%2C+3rd+Edition-p-9780471703778
https://www.wiley.com/en-ie/Linear+Programming+and+Network+Flows%2C+3rd+Edition-p-9780471703778

References 72

Blackwell, David. 1962. “Discrete Dynamic Programming.” The Annals of Mathematical Statistics 33
(2): 719-726. ISSN: 0003-4851. https://doi.org/10.1214/AOMS/1177704593.

Boysen, Nils, Stefan Fedtke, and Felix Weidinger. 2017. “Truck Scheduling in the Postal Service
Industry.” https://doi-org.tudelft.idm.oclc.org/10.1287/trsc.2016.0722 51 (2): 723-736. ISSN:
15265447. https://doi.org/10.1287/TRSC.2016.0722.

Cardenas, Ivan Dario, Wouter Dewulf, Thierry Vanelslander, Christophe Smet, and Joris Beckers. 2017.
“The e-commerce parcel delivery market and the implications of home B2C deliveries vs pick-up
points.” The e-commerce parcel delivery market and the implications of home B2C deliveries vs
pick-up points 44 (2): 235-256. ISSN: 03035247. https://doi.org/10.19272/201706702004.

Chen, James C., Tzu-Li Chen, and Yu-Hsin Lee. 2023. “Simulation optimization for parcel hub
scheduling problem in closed-loop sortation system with shortcuts.” Simulation Modelling
Practice and Theory 124:102728. ISSN: 1569-190X. https://doi.org/https://doi.org/10.1016/
j.simpat.2023.102728.

Cooper, Leon, and Mary W. Cooper. 1981. Introduction to dynamic programming. 289. Pergamon Press.
ISBN: 9780080250656. http ://p5070 - www . sciencedirect. com . tudelft. idm. oclc . org/book/
9780080250656/introduction-to-dynamic-programming.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to
Algorithms, Third Edition. 3rd. The MIT Press. ISBN: 0262033844. https://dl.acm.org/doi/10.
5555/1614191.

Cross, Tony, John Sutton, and Donald F. Wood. 1986. “Book reviews.” Transportation Planning and
Technology 11 (1): 81-86. https://doi.org/10.1080/03081068608717331.

Dresner, Kurt, and Peter Stone. 2008. “A Multiagent Approach to Autonomous Intersection
Management.” J. Artif. Intell. Res. 31:591-656. ISSN: 10769757. https://doi.org/10.1613/JAIR.
2502.

Drissi Elbouzidi, Adnane, Abdessamad Ait El Cadi, Robert Pellerin, Samir Lamouri, Estefania Tobon
Valencia, and Marie-Jane Bélanger. 2023. “The Role of Al in Warehouse Digital Twins: Literature
Review.” Applied Sciences 13 (11). ISSN: 2076-3417. https://doi.org/10.3390/app13116746.

Erdogmus, Hakan. 2007. “Cost-Benefit Analysis of Software Development Techniques and Practices.”
In 29th International Conference on Software Engineering (ICSE’07 Companion), 178—179. https:
//doi.org/10.1109/ICSECOMPANION.2007.28.

Fedtke, Stefan, and Nils Boysen. 2014. “Layout Planning of Sortation Conveyors in Parcel Distribution
Centers.” https://doi.org/10.1287/trsc.2014.0540 51 (1): 3—18. ISSN: 15265447. https://doi.org/
10.1287/TRSC.2014.0540.

Fishman, George S. 2001. “Discrete-Event Simulation.” Discrete-Event Simulation, https://doi.org/10.
1007/978-1-4757-3552-9.

2023.MME.8848

https://doi.org/10.1214/AOMS/1177704593
https://doi.org/10.1287/TRSC.2016.0722
https://doi.org/10.19272/201706702004
https://doi.org/https://doi.org/10.1016/j.simpat.2023.102728
https://doi.org/https://doi.org/10.1016/j.simpat.2023.102728
http://p5070-www.sciencedirect.com.tudelft.idm.oclc.org/book/9780080250656/introduction-to-dynamic-programming
http://p5070-www.sciencedirect.com.tudelft.idm.oclc.org/book/9780080250656/introduction-to-dynamic-programming
https://dl.acm.org/doi/10.5555/1614191
https://dl.acm.org/doi/10.5555/1614191
https://doi.org/10.1080/03081068608717331
https://doi.org/10.1613/JAIR.2502
https://doi.org/10.1613/JAIR.2502
https://doi.org/10.3390/app13116746
https://doi.org/10.1109/ICSECOMPANION.2007.28
https://doi.org/10.1109/ICSECOMPANION.2007.28
https://doi.org/10.1287/TRSC.2014.0540
https://doi.org/10.1287/TRSC.2014.0540
https://doi.org/10.1007/978-1-4757-3552-9
https://doi.org/10.1007/978-1-4757-3552-9

References 73

Gasperin, Simon, and Dirk Jodin. 2012. “Dynamic merge of discrete goods flow — Impact on throughput
and efficiency.” Logistics Journal Referierte Veriffentlichungen 2012 (July). https://doi.org/10.
2195/1j Rev_gasperin_en 201202 01.

Gibney, Elizabeth. 2022. “Open-source language Al challenges big tech’s models.” Nature 606 (7916):
850-851. ISSN: 14764687. https://doi.org/10.1038/D41586-022-01705-Z.

Goldratt, Eliyahu M., and Jeff Cox. 2004. “The Goal: A Process of Ongoing Improvement - Eliyahu M.
Goldratt, Jeff Cox - Google Books,” https://books.google.co.uk/books?hl=en&Ir=&id=HyxL
DQAAQBAJ&oi=fnd&pg=PT4 &ots=cofq7m8SvB &sig=4-y0JW 1JliCFOxi6SONSM7IHwn8 &
redir_esc=y#v=onepage&q&f=false%20https://books.google.com.ph/books?hl=en&lr=&id=
HyxLDQAAQBAIJ&oi=tnd&pg=PT4&dq=The+goal:+A+process+of+ong.

Handling, Modern Material. 2023. Sorting conveyor, June. Accessed June 23, 2023. https://www .
istockphoto.com/videos/conveyor-belt.

Haneyah, S. W.A., J. M.J. Schutten, P. C. Schuur, and W. H.M. Zijm. 2013. “Generic planning and
control of automated material handling systems: Practical requirements versus existing theory.”
Computers in Industry 64 (3): 177-190. ISSN: 0166-3615. https://doi.org/10.1016/J.COMPIND.
2012.11.003.

Hoven, Matthijs van den. 2019. Utilization Improvement of a Sortation System for the Parcel Industry.
Technical report. Technical report, Eindhoven University of Technology, the Netherlands.

Huang, Shan, Adel W. Sadek, and Yunjie Zhao. 2012. “Assessing the Mobility and Environmental
Benefits of Reservation-Based Intelligent Intersections Using an Integrated Simulator.” /EEE
Transactions on Intelligent Transportation Systems 13 (3): 1201-1214. ISSN: 1524-9050. https:
//doi.org/10.1109/TITS.2012.2186442.

Hyndman, Rob J. 2011. Moving Averages, edited by Miodrag Lovric, 866—869. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN: 978-3-642-04898-2. https://doi.org/10.1007/978-3- 642 -
04898-2 380.

Jing, GG, WD Kelton, JC Arantes - ... Proceedings (Cat. No ..., and undefined 1998. 1998. “Modeling a
controlled conveyor network with merging configuration.” ieeexplore.ieee.org, https://ieeexplore.
ieee.org/abstract/document/745851/.

Johnstone, M, D Creighton, S Nahavandi - Simulation Modelling Practice, and undefined 2015. 2015.
“Simulation-based baggage handling system merge analysis.” Elsevier, https://www.sciencedirect.
com/science/article/pii/S1569190X15000131?casa_token=aiFNCiNpdY8AAAAA:y9LcU6KK7
zLTI4EbfflknIMObhn1dbp3ks9azy8gpTEoil 8zBj-W6FnEWR9bK 1{fvlkpe6j2wRdA.

Kellner, Marc 1., Raymond J. Madachy, and David M. Raffo. 1999. “Software process simulation
modeling: Why? What? How?” Journal of Systems and Software 46 (2-3): 91-105. ISSN:
0164-1212. https://doi.org/10.1016/S0164-1212(99)00003-5.

2023.MME.8848

https://doi.org/10.2195/lj_Rev_gasperin_en_201202_01
https://doi.org/10.2195/lj_Rev_gasperin_en_201202_01
https://doi.org/10.1038/D41586-022-01705-Z
https://books.google.co.uk/books?hl=en&lr=&id=HyxLDQAAQBAJ&oi=fnd&pg=PT4&ots=cofq7m8SvB&sig=4-y0JW1JliCF0xi68ONSM7IHwn8&redir_esc=y#v=onepage&q&f=false%20https://books.google.com.ph/books?hl=en&lr=&id=HyxLDQAAQBAJ&oi=fnd&pg=PT4&dq=The+goal:+A+process+of+ong
https://books.google.co.uk/books?hl=en&lr=&id=HyxLDQAAQBAJ&oi=fnd&pg=PT4&ots=cofq7m8SvB&sig=4-y0JW1JliCF0xi68ONSM7IHwn8&redir_esc=y#v=onepage&q&f=false%20https://books.google.com.ph/books?hl=en&lr=&id=HyxLDQAAQBAJ&oi=fnd&pg=PT4&dq=The+goal:+A+process+of+ong
https://books.google.co.uk/books?hl=en&lr=&id=HyxLDQAAQBAJ&oi=fnd&pg=PT4&ots=cofq7m8SvB&sig=4-y0JW1JliCF0xi68ONSM7IHwn8&redir_esc=y#v=onepage&q&f=false%20https://books.google.com.ph/books?hl=en&lr=&id=HyxLDQAAQBAJ&oi=fnd&pg=PT4&dq=The+goal:+A+process+of+ong
https://books.google.co.uk/books?hl=en&lr=&id=HyxLDQAAQBAJ&oi=fnd&pg=PT4&ots=cofq7m8SvB&sig=4-y0JW1JliCF0xi68ONSM7IHwn8&redir_esc=y#v=onepage&q&f=false%20https://books.google.com.ph/books?hl=en&lr=&id=HyxLDQAAQBAJ&oi=fnd&pg=PT4&dq=The+goal:+A+process+of+ong
https://www.istockphoto.com/videos/conveyor-belt
https://www.istockphoto.com/videos/conveyor-belt
https://doi.org/10.1016/J.COMPIND.2012.11.003
https://doi.org/10.1016/J.COMPIND.2012.11.003
https://doi.org/10.1109/TITS.2012.2186442
https://doi.org/10.1109/TITS.2012.2186442
https://doi.org/10.1007/978-3-642-04898-2_380
https://doi.org/10.1007/978-3-642-04898-2_380
https://ieeexplore.ieee.org/abstract/document/745851/
https://ieeexplore.ieee.org/abstract/document/745851/
https://www.sciencedirect.com/science/article/pii/S1569190X15000131?casa_token=aiFNCiNpdY8AAAAA:y9LcU6KK7zLTl4EbffJknIMObhn1dbp3ks9azy8gpTEoi18zBj-W6FnEWR9bK1fvJkpe6j2wRdA
https://www.sciencedirect.com/science/article/pii/S1569190X15000131?casa_token=aiFNCiNpdY8AAAAA:y9LcU6KK7zLTl4EbffJknIMObhn1dbp3ks9azy8gpTEoi18zBj-W6FnEWR9bK1fvJkpe6j2wRdA
https://www.sciencedirect.com/science/article/pii/S1569190X15000131?casa_token=aiFNCiNpdY8AAAAA:y9LcU6KK7zLTl4EbffJknIMObhn1dbp3ks9azy8gpTEoi18zBj-W6FnEWR9bK1fvJkpe6j2wRdA
https://doi.org/10.1016/S0164-1212(99)00003-5

References 74

Kim, B J, J E Alleman, C S Gee, and J T Bandy. 1991. “Use of programmable logic controllers to
automate control and monitoring of U. S. Army waste-water treatment systems. Final technical
report” (July). https://www.osti.gov/biblio/5935158.

Kim, Gukhwa, Junbeom Kim, and Junjae Chae. 2017. “Balancing the baggage handling performance of
a check-in area shared by multiple airlines.” Journal of Air Transport Management 58 (January):
31-49. ISSN: 0969-6997. https://doi.org/10.1016/J.JAIRTRAMAN.2016.08.017.

Landschiitzer, Christian, Matthias Fritz, and Dirk Jodin. 2012. “KNOWLEDGE BASED
ENGINEERING AND MODERN CAE FOR SORTING SYSTEMS?” [in English]. Proceedings
in Manufacturing Systems 7 (2): 69—76. ISSN: 2343-7472.

Li, L, FY Wang - IEEE Transactions on Vehicular technology, and undefined 2006. 2006. “Cooperative
driving at blind crossings using intervehicle communication.” ieeexplore.ieee.org, https://ieeexpl
ore.ieee.org/abstract/document/4012536/?casa_token=0UnNkqldre4AAAAA:KRrBMfBhy8Lh
Rp-WNCoWD7Dv-VBDOPvL7q7R8LD1L-DATh_dEFMbgqXqVQdAioslqtPPCi61Adg.

Li, PT, and X Zhou Methodological. 2017. “Recasting and optimizing intersection automation as
a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound
search.” Elsevier, https://www.sciencedirect.com/science/article/pii/S01912615173047827casa
token=q Aw0jK tUoAAAAA:0cGIFVErY4ARGMRvubadFCFwBaqrBfweiHmXSL7ZMEnz3Z
Y 1bk3Gx-XvILAY 1t LIBaVpWEPnvU.

Lin, Shang Chien, Hsiang Hsu, Yi Ting Lin, Chung Wei Lin, Iris Hui Ru Jiang, and Changliu Liu. 2020.
“A Dynamic Programming Approach to Optimal Lane Merging of Connected and Autonomous
Vehicles.” IEEE Intelligent Vehicles Symposium, Proceedings, 349—356. https://doi.org/10.1109/
1V47402.2020.9304813.

Maria, Anu. 1997. “Introduction to Modeling and Simulation.” In Proceedings of the 29th Conference
on Winter Simulation, 7-13. WSC ’97. Atlanta, Georgia, USA: IEEE Computer Society. ISBN:
078034278X. https://doi.org/10.1145/268437.268440.

Marinescu, Dan, Jan Curn, Mélanie Bouroche, and Vinny Cahill. 2012. “On-ramp traffic merging
using cooperative intelligent vehicles: A slot-based approach.” IEEE Conference on Intelligent
Transportation Systems, Proceedings, ITSC, 900-906. https://doi.org/10.1109/ITSC.2012.
6338779.

McGuire, Patrick M. 2009. “Conveyors : Application, Selection, and Integration” (August). https://doi.
org/10.1201/9781439803905.

Meens, Jasper. 2017. “Model Based Design Approach for Merge Balancing,” Eindhoven University of
Technology, the Netherlands.

Meng, Yue, Li Li, Fei Yue Wang, Keqiang Li, and Zhiheng Li. 2018. “Analysis of Cooperative Driving
Strategies for Nonsignalized Intersections.” IEEE Transactions on Vehicular Technology 67 (4):
2900-2911. ISSN: 00189545. https://doi.org/10.1109/TVT.2017.2780269.

2023.MME.8848

https://www.osti.gov/biblio/5935158
https://doi.org/10.1016/J.JAIRTRAMAN.2016.08.017
https://ieeexplore.ieee.org/abstract/document/4012536/?casa_token=OUnNkqIdre4AAAAA:KRrBMfBhy8LhRp-WNCoWD7Dv-VBD0PvL7q7R8LD1L-DATh_dEFMbqXqVQdAioslqtPPCi61Adg
https://ieeexplore.ieee.org/abstract/document/4012536/?casa_token=OUnNkqIdre4AAAAA:KRrBMfBhy8LhRp-WNCoWD7Dv-VBD0PvL7q7R8LD1L-DATh_dEFMbqXqVQdAioslqtPPCi61Adg
https://ieeexplore.ieee.org/abstract/document/4012536/?casa_token=OUnNkqIdre4AAAAA:KRrBMfBhy8LhRp-WNCoWD7Dv-VBD0PvL7q7R8LD1L-DATh_dEFMbqXqVQdAioslqtPPCi61Adg
https://www.sciencedirect.com/science/article/pii/S0191261517304782?casa_token=q_Aw0jK_tUoAAAAA:ocGlFvErY4ARGMRvuba4FCFwBaqrBfweiHmXSL7ZMEnz3ZY1bk3Gx-Xv9LAY1t_LJBaVpWEPnvU
https://www.sciencedirect.com/science/article/pii/S0191261517304782?casa_token=q_Aw0jK_tUoAAAAA:ocGlFvErY4ARGMRvuba4FCFwBaqrBfweiHmXSL7ZMEnz3ZY1bk3Gx-Xv9LAY1t_LJBaVpWEPnvU
https://www.sciencedirect.com/science/article/pii/S0191261517304782?casa_token=q_Aw0jK_tUoAAAAA:ocGlFvErY4ARGMRvuba4FCFwBaqrBfweiHmXSL7ZMEnz3ZY1bk3Gx-Xv9LAY1t_LJBaVpWEPnvU
https://doi.org/10.1109/IV47402.2020.9304813
https://doi.org/10.1109/IV47402.2020.9304813
https://doi.org/10.1145/268437.268440
https://doi.org/10.1109/ITSC.2012.6338779
https://doi.org/10.1109/ITSC.2012.6338779
https://doi.org/10.1201/9781439803905
https://doi.org/10.1201/9781439803905
https://doi.org/10.1109/TVT.2017.2780269

References 75

Mishan, E.J., and Euston Quah. 2020. “Cost-Benefit Analysis” (August). https://doi.org/10.4324/
9781351029780.

Mothership. 2015. Mothership weighing and scanning. Accessed February 15, 2023. https://mothership.
sg/2022/03/ninja-vans-new-automated-hub/.

Miiller, Eduardo Rauh, Rodrigo Castelan Carlson, and Werner Kraus Junior. 2016. “Intersection control
for automated vehicles with MILP.” IFAC-PapersOnLine 49 (3): 37-42. ISSN: 24058963. https:
//doi.org/10.1016/J.IFACOL.2016.07.007.

Nayak, Sukanta. 2020. “Dynamic programming.” Fundamentals of Optimization Techniques with
Algorithms (January): 191-221. https://doi.org/10.1016/B978-0-12-821126-7.00007-3.

Nelson, Randolph. 1995. “Markov Processes.” Probability, Stochastic Processes, and Queueing Theory,
329-389. https://doi.org/10.1007/978-1-4757-2426-4 8. https://link-springer-com.tudelft.idm.
oclc.org/chapter/10.1007/978-1-4757-2426-4 8.

Peeters, K. 2015. “Balancing Control of Material Handling Systems.” PhD diss., Eindhoven University
of Technology, the Netherlands.

Peffers, Ken, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. 2014.
“A Design Science Research Methodology for Information Systems Research.”
https.//doi-org.tudelft.idm.oclc.org/10.2753/M1S0742-1222240302 24 (3): 45-77. ISSN:
07421222. https://doi.org/10.2753/MIS0742-1222240302.

Pei, Huaxin, Shuo Feng, Yi Zhang, and Danya Yao. 2019. “A Cooperative Driving Strategy for Merging
at On-Ramps Based on Dynamic Programming.” /EEE Transactions on Vehicular Technology 68
(12): 11646-11656. ISSN: 19399359. https://doi.org/10.1109/TVT.2019.2947192.

Pei, Huaxin, Yuxiao Zhang, Yi Zhang, and Shuo Feng. 2022. “Optimal Cooperative Driving at
Signal-Free Intersections With Polynomial-Time Complexity.” IEEE Transactions on Intelligent
Transportation Systems 23 (8): 12908-12920. ISSN: 15580016. https://doi.org/10.1109/TITS.
2021.3118592.

Pfohl, Hans Christian, Pascal Wolff, and Johannes Kern. 2020. “Transshipment hub automation in
China’s courier/express/parcel sector.” Urban Freight Transportation Systems (January): 163—180.
https://doi.org/10.1016/B978-0-12-817362-6.00009-4.

Python Core Team. 2019. Python: A dynamic, open source programming language. Python Software
Foundation. https://www.python.org/.

Ramamritham, Krithi, and John A. Stankovic. 1994. “Scheduling Algorithms and Operating Systems
Support for Real-Time Systems.” Proceedings of the IEEE 82 (1): 55-67. ISSN: 15582256. https:
//doi.org/10.1109/5.259426.

Sargent, Robert. 2011. “Verification and validation of simulation models,” 37:166—183. January. https:
//doi.org/10.1109/WSC.2010.5679166.

2023.MME.8848

https://doi.org/10.4324/9781351029780
https://doi.org/10.4324/9781351029780
https://mothership.sg/2022/03/ninja-vans-new-automated-hub/
https://mothership.sg/2022/03/ninja-vans-new-automated-hub/
https://doi.org/10.1016/J.IFACOL.2016.07.007
https://doi.org/10.1016/J.IFACOL.2016.07.007
https://doi.org/10.1016/B978-0-12-821126-7.00007-3
https://doi.org/10.1007/978-1-4757-2426-4_8
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-1-4757-2426-4_8
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/978-1-4757-2426-4_8
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1109/TVT.2019.2947192
https://doi.org/10.1109/TITS.2021.3118592
https://doi.org/10.1109/TITS.2021.3118592
https://doi.org/10.1016/B978-0-12-817362-6.00009-4
https://www.python.org/
https://doi.org/10.1109/5.259426
https://doi.org/10.1109/5.259426
https://doi.org/10.1109/WSC.2010.5679166
https://doi.org/10.1109/WSC.2010.5679166

References 76

Schaffer, Russel, and Robert Sedgewick. 1993. “The Analysis of Heapsort.” Journal of Algorithms 15
(1): 76-100. ISSN: 0196-6774. https://doi.org/10.1006/JAGM.1993.1031.

Sharma, Prateek. 2015. “Discrete-Event Simulation.” INTERNATIONAL JOURNAL OF SCIENTIFIC
TECHNOLOGY RESEARCH 4 (04). ISSN: 2277-8616. www.ijstr.org.

Shaw, Jason D. 2011. “Turnover rates and organizational performance.”
http://dx.doi.org/10.1177/2041386610382152 1 (3): 187-213. ISSN: 2041-3866. https : // doi .
org/10.1177/2041386610382152.

Stewart, William J. 2009. “Probability, Markov Chains, Queues, and Simulation.” (No Title) (July).
https://doi.org/10.2307/]J.CTVCMA4GTC.

Thacker, B.H., S.W. Doebling, F.M. Hemez, M.C. Anderson, J.E. Pepin, and E.A. Rodriguez. 2004.
Concepts of Model Verification and Validation. http://inis.iaea.org/Search/search.aspx?orig q=RN:
36030870.

Thorne, David R. 2006. “Throughput: A simple performance index with desirable characteristics.”
Behavior Research Methods 38 (4): 569-573. ISSN: 1554351X. https://doi.org/10.3758/
BF03193886/METRICS.

Vanderlande. 2023a. Vanderlande - Parcel Innovative systems. Sorting, March. Accessed March 23,
2023. https://www.vanderlande.com/systems/sorting/.

. 2023b. Vanderlande Technologies. Accessed March 23, 2023. https://www.vanderlande.com/.

. 2023c. Warehousing sortation system - CROSSORTER, May. Accessed May 23, 2023. https:
/lwww.vanderlande.com/systems/sortation/crossorter;.

. 2023d. Warehousing sortation system - CROSSORTER, May. Accessed June 29, 2023. https:
//www.vanderlande.com/systems/sorting/crossorter- 1200-and-1500/.

Vanderlande.com. 2023. Company profile | About Vanderlande - Vanderlande industries, March.
Accessed March 23, 2023. https://www.vanderlande.com/about-vanderlande/company-profile/.

Ven, Otto Van De. 2022. Design of a platooning algorithm for real-time control of a Posisorter’s
overflow zone DEPARTMENT OF MECHANICAL ENGINEERING.

Yunardi, Riky Tri, Winarno, and Pujiyanto. 2016. “Contour-based object detection in Automatic
Sorting System for a parcel boxes.” ICAMIMIA 2015 - International Conference on Advanced
Mechatronics, Intelligent Manufacture, and Industrial Automation, Proceeding - In conjunction
with Industrial Mechatronics and Automation Exhibition, IMAE (July): 38—41. https://doi.org/10.
1109/ICAMIMIA.2015.7507998.

2023.MME.8848

https://doi.org/10.1006/JAGM.1993.1031
www.ijstr.org
https://doi.org/10.1177/2041386610382152
https://doi.org/10.1177/2041386610382152
https://doi.org/10.2307/J.CTVCM4GTC
http://inis.iaea.org/Search/search.aspx?orig_q=RN:36030870
http://inis.iaea.org/Search/search.aspx?orig_q=RN:36030870
https://doi.org/10.3758/BF03193886/METRICS
https://doi.org/10.3758/BF03193886/METRICS
https://www.vanderlande.com/systems/sorting/
https://www.vanderlande.com/
https://www.vanderlande.com/systems/sortation/crossorter/
https://www.vanderlande.com/systems/sortation/crossorter/
https://www.vanderlande.com/systems/sorting/crossorter-1200-and-1500/
https://www.vanderlande.com/systems/sorting/crossorter-1200-and-1500/
https://www.vanderlande.com/about-vanderlande/company-profile/
https://doi.org/10.1109/ICAMIMIA.2015.7507998
https://doi.org/10.1109/ICAMIMIA.2015.7507998

Research Paper

Research Paper is continued from the next page

Enhancing Merge Conveyor Utilization in a Line-Sorter
Sortation System by Introducing a New Control Algorithm

Revanth Sai Yayavaram
revanth.yayavaram97@gmail.com

Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology

Abstract

The parcel transport industry utilizes automated parcel sorting systems to effectively manage incoming parcels. These systems
typically comprise multiple infeed conveyors that converge onto a single merge conveyor for parcel merging. However, the
conventional First-Come-First-Serve merging method results in reduced utilization of the merge conveyor and throughput.
To address this, a novel approach is proposed in this study, combining a dynamic programming-based control algorithm
with a maximum heap algorithm. This approach aims to enhance the utilization of the merge conveyor and achieve a
balanced load among the infeeds. To optimize utilization, an additional imaginary segment is introduced ahead of the merge
conveyor, synchronously moving with the merge conveyor’s speed. This segment is intelligently populated with parcels using
dynamic programming, eliminating unnecessary empty spaces. Results demonstrate that the dynamic programming approach
outperforms other techniques in terms of utilization. This research presents an initial investigation into implementing dynamic

programming as a control algorithm to improve merge conveyor utilization in the parcel transport industry.

Key words: Line Sorter Sorting System, Dynamic Programming, Max Heap, Parcel Merging, Throughput, Utilization

1 Introduction

Online orders and e-commerce have experienced expo-
nential growth, reaching unprecedented levels in the
present world scenario. Today, it is common for indi-
viduals to expect their orders or parcels to be delivered
within a couple of days or no more than a week. How-
ever, behind the scene, there exists a vast and complex
world of Material Handling Systems (MHS) that oper-
ates to make this possible. MHS can be observed in var-
ious aspects of modern economies, such as parcel and
postal services, airports handling baggage, warehouses
moving pallet loads, seaports managing shipping con-
tainers, manufacturing systems transporting parts, and
many other applications (S. W. Haneyah et al. 2013).

A Material Handling System encompasses a range of
methods, facilities, equipment, and labour employed to
move materials from one source to another (Cross et
al. 1986). Customizable to specific industry needs, MHS
efficiently handle diverse products, from small parts
to heavy loads. Automated Material Handling Systems
(AMHS), a type of MHS, employ advanced technolo-
gies to automate material movement, storage, and re-
trieval (Agrawal and Heragu 2006). In the parcel in-

dustry, parcel sorting systems, consisting of conveyors,
sorters, scanners, and other components, play a vital role
in sorting parcels based on destination, size, weight, and
other criteria (Pfohl et al. 2020). Companies like UPS,
DHL, and FedEx heavily rely on robust conveying sys-
tems to handle the immense influx of parcels (Cardenas
et al. 2017).

A typical parcel sorting system utilizes single or multiple
infeed lines to load parcels onto the merge conveyor (S.
Haneyah et al. 2011). Parcels received from trucks are
placed on the infeed belt by operators or robots, with
variable numbers, lengths, and spacing of the infeeds.
Photoelectric Cells (PECs) on the infeed conveyors as-
sess parcel dimensions and trigger a request to reserve
a slice in the available empty space on the merge con-
veyor through communication between the infeed and
merge controllers. A typical slice and the space can be
seen in Figure 1. The fly-through parcels are parcels
that haven’t been sorted in the initial sorting area and
are reintroduced later for sorting (S. W. Haneyah et
al. 2013). The current reservation algorithm proves inef-
fective, resulting in empty spaces on the merge conveyor
and imbalanced reservations after the parcels merge, as
depicted in Figure 2. This issue of decreased utilization

requires a new control algorithm to optimize the parcel
merging process and improve system efficiency in parcel
handling industries (Drissi Elbouzidi et al. 2023).

Fly-through parcels Slice

AN

Merge Conveyor|

Space

PEC

Infeed: 1

Fig. 1. Single infeed system

Fig. 2. Multiple infeed system

To optimize efficiency, the integration of sensors and
sorting algorithms is crucial for processing thousands of
parcels daily (Drissi Elbouzidi et al. 2023). This research
aims to introduce a new control algorithm to enhance the
utilization of the merge conveyor of a line sorter sortation
system without ignoring the load balance among the in-
feeds. An increase in utilization can also result in higher
throughput of the system. Briefly stated, throughput is
the rate at which the material moves through the system
per unit time (Thorne 2006), is a crucial metric in this
industry and is usually measured in terms of the number
of parcels per hour or day (a unit time). Utilization, on
the other hand, is another metric that refers to the degree
to which the system is being used or occupied relative
to its maximum capacity (S. W. Haneyah et al. 2013).
Leveraging advanced control algorithms and system op-
timization techniques, sorting systems’ efficiency can be
improved, facilitating more effective handling of higher
parcel volumes. To achieve the goal of introducing a new
control algorithm, the following research question was
developed:

” How can the parcel merging process and utiliza-
tion of the merge conveyor in a line-sorter sor-
tation system be improved by introducing a new
control algorithm?”

2 Research Approach

A well-supported research methodology, as formulated
by Peffers et al. (2014), can also be applied to research
control algorithms in existing systems. In their paper,
the authors outline a methodology for information sys-
tems, which can be adapted to address problems related

to technology and organizations. This methodology is
well-suited for the current research, which focuses on
developing and introducing a new control algorithm to
improve the utilization of the main conveyor of a parcel
sorting system. The research approach begins by iden-
tifying the problem of low utilization in the parcel in-
dustry’s sorting systems and defining the objectives for
addressing this issue. The primary concern is the effi-
cient utilization of the main conveyor (also known as the
merge conveyor) in handling the increasing volume of
parcels while avoiding costly system modifications. To
achieve this, the focus is on enhancing the control algo-
rithm that manages local parcel traffic, with particular
emphasis on the critical step of parcel merging. By im-
proving the control algorithm, it is expected that higher
utilization of the conveying system can be achieved.

The next step involves the development of an efficient
control algorithm that can improve the parcel merging
process and increase utilization. To accomplish this, po-
tential algorithms that have shown promising results in
similar applications will be explored. This exploration
will involve a thorough review of the literature and an
examination of existing algorithms to identify the most
suitable solution for the present problem.

Once the control algorithm is developed, the next step
is to design and develop a simulation model of the sort-
ing system, specifically tailored to the given layout. The
simulation model will serve as a virtual representation
of the parcel sorting system, allowing for the demon-
stration of how the new control algorithm can be imple-
mented in the parcel merging process of the line-sorter
sortation system. Through a series of experiments con-
ducted using the simulation model, the effectiveness of
the solution in enhancing utilization can be evaluated.
The experiments will consider different scenarios and pa-
rameters to assess the algorithm’s performance and its
impact on key performance indicators such as utiliza-
tion, throughput, and imbalance.

In the final step, the experiments conducted in the pre-
vious step will be utilized to evaluate the developed al-
gorithm. Key performance indicators (KPIs) such as uti-
lization, throughput, and imbalance will be employed
to compare the performance of the developed algorithm
with that of the current algorithm used in the industry.
This evaluation will provide evidence to demonstrate
that the developed algorithm is a viable solution to the
problem of low utilization. Additionally, the costs asso-
ciated with implementing the current algorithm will be
analyzed to assess the economic implications of adopt-
ing the new control algorithm.

3 Literature Review

Efficient control algorithms play a vital role in optimiz-
ing sorting systems in the parcel industry. While increas-

ing conveyor speed improves throughput, it can lead to
unintended consequences like slips. Layout changes of-
fer opportunities for improvement but increase system
footprint and cost. Balancing the benefits and costs of
layout changes is crucial for cost-benefit analysis (Fedtke
and Boysen 2014). Limited literature exists on control
algorithm enhancement, highlighting the need for fur-
ther investigation. Previous studies by Peeters (2015),
Meens (2017), and Hoven (2019) have provided valuable
insights into modifying control strategies. Additional
strategies by S. W. Haneyah et al. (2013) and Kim et
al. (2017) in the literature show potential and outper-
form existing techniques.

The presence of multiple infeeds in the system results
in high imbalance measures. Load balancing techniques
such as FIFO, Longest Queue First, Highest Priority
First, random, and Round Robin have been studied by
several researchers (Jing et al. 1998; Peeters 2015). Ac-
cording to Stewart (2009), FIFO follows a first-come-
first-served method; the Longest Queue First prioritizes
the queue with the most waiting items; the Highest Pri-
ority First serves items with higher priority first; Round
Robin allocates a fixed time for each item in the queue.
All these techniques aim to reduce waiting times and
improve load balancing.

Often researchers draw parallels between job-shop ma-
chine scheduling problems and parcel merging. The se-
lection of an algorithm significantly impacts the ability
to achieve optimal solutions (Cormen et al. 2009). Algo-
rithms can be classified based on their implementation
method, execution behaviour, determinism, and other
factors. Understanding these classifications helps in se-
lecting suitable algorithms.

S. W. Haneyah et al. (2013) developed an Integer Lin-
ear Programming (ILP) approach for optimizing par-
cel merging using tilt-trays in a parcel sorting system.
They aimed to maximize utilization and minimize wait-
ing time imbalances. The research involved two phases:
an exact static branch and bound optimization tech-
nique and a dynamic space allocation approach. The lat-
ter utilized a Priority Based Algorithm (PBA) to priori-
tize parcel flow from all infeeds, based on waiting times.
The researchers conducted experiments and found that
the dynamic allocation approach achieved a balanced
workload and improved throughput. The proposed ap-
proach reduced waiting time imbalances from 17% to
4.2% and resulted in slightly higher throughput com-
pared to the conventional branch and bound method.

During the literature review, Johnstone et al. (2015) pro-
posed merge allocation rules for baggage handling sys-
tems (BHS), including FIFO, feeder line priority, merge
line priority, merge flush, and merge timeout. They com-
pared fixed and variable window-size algorithms with a
FIFO method, finding that the variable length algorithm

performed better when the infeed was in the desired po-
sition.

Kim et al. (2017) extended this research by introduc-
ing a reallocation algorithm in the window assignment
control logic system. They tracked eligible windows for
reallocation based on the maximum number of realloca-
tions and the position of the corresponding infeed. The
reallocation procedure involved switching baggage be-
tween windows and breaking the FIFO rule. They evalu-
ated each potential switch using a benefit function that
considered the waiting times of the new and old window
positions. The findings showed significant reductions in
imbalance and waiting times, although complete elimi-
nation was not achieved. The level of balance depended
on factors such as the maximum number of reallocation
switches and the distribution of incoming baggage. Uni-
form and triangular distributions performed better with
a single reallocation, while the exponential distribution
showed improved results with two reallocations.

Traffic management systems, particularly highway on-
ramp merging and intersection management of con-
nected autonomous vehicles (CAVs), provide inspiration
for controlling the parcel merging process. Researchers
have proposed various merging algorithms based on
cooperative behaviour, optimization methods, and dy-
namic programming (Marinescu et al. 2012). To de-
termine optimal passing orders, Li and Methodological
(2017), Miiller et al. (2016), and Ahn et al. (2017) formu-
lated the problem as a Mixed Integer Linear Program-
ming (MILP) and provided solutions. Li et al. (2006)
proposed a solution using a spanning tree representation
coupled with pruning rules, offering improved computa-
tional efficiency.

Cooperative driving strategies can be categorized as
”ad hoc negotiation-based” or ”planning-based” (Meng
et al. 2018). Ad hoc negotiation-based strategies ap-
proximate a first-come-first-served order through bilat-
eral negotiations, while planning-based approaches cre-
ate long-term driving plans. Planning-based approaches
offer more flexibility but require more computational re-
sources. To overcome computational challenges, Pei et
al. (2019) proposed a computationally efficient strategy
based on Dynamic Programming (DP). Their DP algo-
rithm optimizes passing order and access times, achiev-
ing lower computational times compared to exhaustive
enumeration. Lin et al. (2020) extended the DP algo-
rithm to various merging scenarios, demonstrating its
efficiency in minimizing delays and passing times com-
pared to greedy algorithms. Pei et al. (2022) proposed
a novel state-space formulation for cooperative driving
at signal-free intersections. Their dynamic programming
approach achieved optimality in cooperative driving and
enabled real-time implementation.

As evident from the information provided above, the pri-
mary indicators employed to assess the models in ques-

tion were throughput, utilization, and imbalance. This
part of the literature review section will subsequently
elaborate on each of these KPIs, explaining them com-
prehensively.

Throughput

Throughput is the rate at which material moves through
the system per unit time (Thorne 2006). In the parcel
sorting industry, throughput is measured as the number
of parcels processed per unit of time, such as parcels per
hour or day.

Throughput — S>(Number of Parcels processed)

[parcels per hour]

(1)

Time_duration

Utilization

Utilization is another metric that refers to the degree to
which the system is being used or occupied relative to its
maximum capacity (S. W. Haneyah et al. 2013). Higher
utilization implies efficient usage of the conveyor system,
with minimal empty space between parcels, thereby en-
abling more parcels to be transported within a given
time frame.

Y nen Parcel lengths, + (N — 1)Fized_gap

Vinerge * Time_duration

(%]
(2)

where N is the total number of parcels processed by the
system and the Fized_gap, is the minimum gap that is
required to avoid parcel overlapping or collision. Further,
V_merge is the velocity of the merge conveyor and the
Time_duration is the total time the system has been in
running.

Utilization =

Both throughput and utilization are directly related to
each other. When the utilization of the conveyor is low,
there are more empty spaces between the parcels on the
merge conveyor, leading to a reduced throughput. How-
ever, when considering the parcel size variations, there
will be certain situations where a huge parcel occupies
the most space on the merge conveyor which translates to
less throughput. These kinds of situations are inevitable
and are the primary reason for companies to consider
the average throughput of the system.

Load I'mbalance

Another significant issue identified by many researchers
is the notable difference in throughput between up-
stream and downstream infeed conveyors. To address
this, a KPI is introduced to measure the disparity in
throughput between the minimum and maximum val-
ues for each infeed, thereby consolidating it into a single
metric. Hence, the imbalance can be calculated as:

max s p{Throughput s} — minsc p{Throughput}

Imbalance = .100 [%]
(3)
where f is the infeed in a set of infeeds denoted by F'.

max sep{Throughputy}

4 Simulation Model

The development of a simulation model begins with a
thorough understanding of the system that will be mod-
elled. Following this, the model conceptualization phase
involves simplifying the real-world system. This includes
identifying and breaking down the system to be mod-
elled, as well as gaining a clear understanding of the rel-
evant processes involved in the merging of parcels into
the merge conveyor. Once all the relevant elements for
accurately modelling the system are identified, the con-
ceptualization phase can be translated into the imple-
mentation of the model. This involves implementing the
system in software. Subsequently, the simulation model
undergoes verification to ensure it performs correctly
and validation to assess whether it can replace the real
system for experimentation purposes. After the simula-
tion model passes these checks, experiments can be car-
ried out using the model to check for the feasibility of
the developed model in real-world applications.

Model
C -

-‘ Model Validation

‘ '{Modcllmplemema(ion Simule »{ Experimentation ‘

Check Interpret

v
Model run and
Analysis

Model Verification

Fig. 3. Modelling steps, Inspired from (Sharma 2015)
4.1 Model Conceptualization

The initial phase of model development involves con-
ceptualizing the model. This crucial step establishes the
foundation for the entire modelling process by identi-
fying and defining key elements and relationships. The
goal is to create a conceptual framework that repre-
sents the essential components and interactions within
the system. The output is a well-defined and structured
conceptual model that serves as the basis for subsequent
development, parameterization, and validation.

Process 1: Parcel Generation

The parcel generator process is crucial for simulating
the existence of parcels and their associated processes.
Parcels are generated based on specific dimensions de-
rived from a normal distribution throughout the simu-
lation. Generation occurs randomly according to the in-
feed capacity of 3200 parcels per hour. Parcels are added

to the infeeds only if sufficient space is available, main-
taining the required gap between parcels. If space is un-
available, the incoming parcel is held until the merge
conveyor can accept it.

Generated parcels enter the infeed and their entry time
and length are recorded in an array called ”parcel en-
tries.” This array serves as crucial communication for
subsequent processes, indicating that the parcels are
ready for merging and awaiting confirmation of their ar-
rival time at the merge point. The ”parcel entries” array
represents the entry time and length of parcels for each
infeed, formatted as [(time, length)] pairs.

In order to proceed with the control algorithm process,
there are a few things that must be understood. Con-
sider a hypothetical scenario with random-length parcels
on each of the six infeed conveyors, waiting to merge
onto the merge conveyor. Before starting the process, an
imaginary segment is generated aligned with the merge
conveyor’s axis, located before the actual start of the
merge conveyor (see the green segment in Figure 4). This
segment has the same velocity as the merge conveyor
and serves as the event trigger for the model. Its length
is predetermined to be a maximum of 500 cm, ensuring
compatibility with the fly-through detection located at
650 cm. The control algorithm described in the forth-
coming analysis aims to optimize the segment’s utiliza-
tion by efficiently filling the given parcels. If there is
residual space after assigning slices to all the parcels, the
subsequent segment starts from the trailing edge of the
last-filled parcel.

Imaginary segment

Fig. 4. Imaginary Segment and fly-through detection point

Process 2: Control Algorithm

Following the initial entries of parcels, these entries
are utilized to determine the optimal sequence for the
parcels on the infeeds that efficiently fill the entire seg-
ment while maintaining appropriate gaps between the
parcels. This is where DP becomes essential. To tackle
the present problem using DP, it is essential to establish
the state space and state transition for the model.

Consider a hypothetical scenario with two infeeds, each
containing two parcels. For simplicity, we neglect the gap

requirements. Infeed 1 has parcels [10, 15] in its queue,
while Infeed 2 has parcels [25,22]. The corresponding
state space and state transitions for this example will be
explained from here on.

State Space: The state space consists of (x + y + 1)
stages, denoting the number of parcels from Infeed 1
() and Infeed 2 (y), ranging from Sy to Sy4,. Each
stage is described by a triplet state (x;, y;, g;), where g;
represents the remaining gap and ¢ is the stage num-
ber. The initial state is Sy(0, 0, g), and the final state is

Sac+y(xa Y, g)'

State Transition: The state transition equation is
given by:

Si(i,Yir 9i) = M((zi=1,Yi-1,9i-1), gi) (4)

where h(.) represents the state transition function.

Stage 0 50(0,0,60)
e
M
Stage 1 54(1,0,50) Su0,1,35)
— T2 (Bi/ 3

Stage2 5:(2,0,35) S1(1,125) " 51 (0,213)

- :
Stage3 55(2,1,10) 5 (2,1,10) 53(1,2.3)
Stage 4 5 (22-18) 542,2-18) S4(22-18)

Fig. 5. Parcel assignment using DP

As mentioned by Pei et al. (2019), the aforementioned
state space and state transition possess the following
properties:

(1) There is a decision-making process consisting of
multiple stages, starting from stage 1 to stage 7i.”
The outcomes or results of the decisions made in
each stage are reflected in the parameters of a
state called 7.S;.” In simpler terms, as the decision-
making process advances from stage 1 to stage i,
the choices made at each stage have an impact on
the state S;.

(2) The shift from one state to another happens when
moving from one stage to the next stage in the
decision-making process.

(3) Different orders of the state can attain the
same state in the next transition. For instance,
S51(1,0,50) and S1(0,1,35) attain the same state
S2(1,1,25) in stage 2.

(4) Infeasible solutions are directly eliminated during
the construction of the solution space by keeping
track of the parcels that have been assigned or not.

According to Nelson (1995), the Markovian property is a
stochastic property that has a form of historical depen-
dency where the probability of each event depends only
on the state attained in the previous event. By virtue of
Property 1, the state exhibits the Markovian property,

which represents the feasible conditions of the DP model
(Blackwell 1962). Property 2 enables a remarkable re-
duction in the number of transitions in the DP model.
Similarly, Property 3 facilitates an extensive decrease in
the number of states in the DP model. Property 4, while
ensuring optimality, substantially reduces the size of the
solution space. Consequently, the state space solely en-
compasses all feasible passing orders of the parcels.

From the Figure 5, it becomes evident that there are
multiple paths leading to the optimal stage of leaving
only a 3-centimetre gap. However, certain states high-
lighted in red are considered infeasible since a nega-
tive gap is not possible. Moreover, paths 1 and 3 de-
picted in Figure 5 are unattainable due to the presence of
an inter-departure time constraint, which prevents two
parcels from the same infeed from being consecutively
merged. Consequently, these paths are deemed infeasi-
ble and cannot be regarded as viable solutions. Never-
theless, one limitation of the DP approach is its inher-
ent bias towards starting from the left and searching the
solution space. In the context of a parcel industry, this
sequential left-to-right approach may not be optimal, as
it can lead to downstream infeeds being left with insuf-
ficient space due to upstream infeeds delivering parcels
at higher rates in some cases.

To mitigate this biasing issue, a priority system can be
introduced based on the occupancy levels of the infeeds.
By assigning higher priority to the more occupied infeed
compared to others, a more balanced allocation of space
can be achieved. This approach has shown promising re-
sults in previous studies (S. W. Haneyah et al. 2013),
making it a viable option to ensure that the control al-
gorithm remains unbiased towards any specific infeed.
To facilitate the sorting based on the maximum filled
queue, a max heap algorithm is employed for the current
model. However, it is worth noting that there is always a
possibility to shift priorities to other infeeds in case one
of the infeeds has more infeed capacity. For example, if
one infeed has a significantly higher parcel delivery rate
compared to the others, using a most filled queue tech-
nique may not be optimal. In this case, the infeed with
higher capacity will consistently receive a larger volume
of parcels compared to the others. This can result in im-
balance again. Since, the capacity of all the infeeds is the
same, a maximum filled queue option is suitable for the
current model.

Process 3: Handling parcels entries and exits

The function manages the entry and exit of parcels in a
time-limited conveyor system, handling multiple queues.
It processes parcels by comparing their arrival and exit
times within the designated timeframe, ensuring proper
order based on these times. For each queue, the function
examines the next entry and exit parcels within a loop.
If both parcels fall within the timeframe, the function
takes the appropriate action. If the entry parcel arrives
before the exit parcel, it adds the entry parcel to the

corresponding queue. If the exit parcel occurs earlier, a
parcel is removed from the queue. This process continues
as long as there are both entry and exit parcels within
the timeframe.

In the given scenario, a calculation is performed to de-
termine the time it takes for a specific slice on the con-
veyor system to reach each corresponding infeed in a se-
quence. This calculated time serves as the exit time for
the parcel. If the calculated time to reach the assigned
infeed is denoted as x, the parcel undergoes acceleration
to reach the merge point within the designated time-
frame. If the distance between the merge point and the
parcel’s location on the infeed is too great to cover in the
assigned time, the parcel needs to be accelerated at t +x
seconds. This acceleration ensures the parcel arrives at
the assigned time, enabling timely merging within the
conveyor system.

4.2 Model Implementation

Simulation is a fundamental and indispensable tool
across diverse fields, serving as a robust method for com-
prehending, analyzing, and forecasting intricate systems
(Kellner et al. 1999). Specifically, Discrete Event Sim-
ulation (DES) is employed to model system behaviour
by representing events that occur at specific points in
time. These events encompass arrivals, departures, state
changes, or other significant occurrences within the sys-
tem (Babulak and Wang 2010). By tracking the chrono-
logical order of events and the system’s state, simula-
tion enables the analysis of system performance and be-
haviour. Moreover, DES is particularly suitable for sim-
ulating intricate and dynamic systems, which makes it
the chosen approach for this research. While analyti-
cal solutions provide precise results for simpler queuing
models, they are often infeasible for complex systems.
DES, on the other hand, models discrete events and in-
teractions within the system, allowing for the analysis
of complicated queuing networks. DES offers flexibility,
efficiency, scalability, and the ability to capture dynamic
behaviour. However, it requires careful model construc-
tion and may involve some level of approximation (Banks
1999).

Python was selected as the preferred software for simu-
lation due to its versatility, extensive libraries, readabil-
ity, integration capabilities, and cost-effectiveness. With
its advantages and availability of open-source libraries,
Python serves as the ideal choice for conducting the sim-
ulations in this study (Python Core Team 2019). The
hardware setup for this research consists of an Intel(R)
Core(TM) i7-10850H CPU operating at a clock speed of
2.70 GHz, accompanied by 64 GB of RAM. The operat-
ing system utilized is Windows 10 Enterprise. The soft-
ware employed for the research includes Python 3.11.3
as the programming language and Visual Studio Code
IDE as the development environment.

4.8 Model Verification and Validation

According to Thacker et al. (2004), model verification
involves that the model implementation accurately re-
flects the developer’s conceptual depiction of the model
and its solution. To ensure that the model is verified and
provides the expected results, manual checks were put
into place to check for any unwanted effects. Firstly, the
allocation of slices to parcels was examined to ensure
proper assignment based on the starting and ending lo-
cations of the slice and the corresponding infeed. Sec-
ondly, it was verified that no two parcels from the same
infeed occurred consecutively, and the constraint of not
exceeding 3200 parcels per hour was upheld. Lastly, the
placement of slices on the segment was validated to en-
sure that parcels could reach the merge within the spec-
ified timeframe.

Model validation, according to Sargent (2011), involves
confirming that a computerized model demonstrates a
satisfactory level of accuracy aligned with its intended
purpose. The validation process compares the model’s
outputs against known or observed data, separate from
the training data, to assess its performance. Validation
is an iterative process that includes refining the model
based on evaluation results. Various validation tech-
niques were employed, such as extreme condition tests,
and parameter variability through sensitivity analysis.

Extreme condition tests assess the model’s plausibility
and reliability under highly improbable combinations of
factors. Parameter variability through sensitivity analy-
sis systematically modifies input values and parameters
to analyze their impact on the model’s behavior. These
validation techniques ensure the model’s accuracy, ro-
bustness, and ability to handle diverse scenarios.

From the sensitivity analysis, it was evident that seg-
ment size plays a critical role in the utilization and
throughput of the system. Smaller segment sizes result
in higher utilization and throughput, especially when
dealing with fly-through parcels. Larger segment sizes
can lead to wasted space and lower utilization because
of the capacity of the infeeds. Reducing the segment size
improves both utilization and throughput, considering
the existing constraints. Factors such as the timing of
parcel announcements and the infeed capacity also influ-
ence the impact of segment size. Achieving earlier par-
cel announcements and exceeding the infeed capacity of
3200 parcels per hour per infeed can mitigate the nega-
tive effects of larger segment sizes.

4.4 Model Experimentation

In DES, the simulation duration is crucial for accurately
evaluating system behaviour and performance. A longer
simulation time ensures system stabilization and steady-
state conditions, minimizing the impact of transient be-
haviour and initial conditions. By running the simulation

for an extended period, a more representative assess-
ment of the system’s performance under realistic con-
ditions is obtained, considering a larger sample size of
parcels and capturing a wider range of system dynam-
ics. To achieve a steady state, the simulation must allow
for an adequate number of events and interactions, par-
ticularly for metrics like utilization that depend on the
passage of multiple parcels through the system. Only af-
ter several parcels have been processed can the accurate
behaviour of the real system be determined, as parcel
trajectories are influenced by preceding parcels and the
initial startup phase.

To evaluate the algorithm’s performance over an ex-
tended period, a simulation time of one hour was se-
lected. This duration captures an ample number of
events and interactions within the model, offering a com-
prehensive understanding of its behaviour. The simula-
tion was repeated 20 times to consider result variability.
Analyzing the generated graphs, crucial metrics includ-
ing throughput, utilization, imbalance, and infeed parcel
counts provide valuable insights into the system’s per-
formance during this timeframe.

Throughput of the System for one hour Utilization of the System for one hour
12950 95

12900 £ %

95,5
95 W Utilization

((a)) Throughput of the ((b)) Utilization of the sys-
system tem

12850

Imbalance of the System for one hour
8 2100

7 W nfecd

7 ?] $ * M Infecd 2
- 5 2 2000 X 3
5=] = B Infeed 3
s Imbalance g

i B bl : s Infed

4
3 5 1950
2
1

Parcels delivered by each infeed for one hour

5 W Infeed §
s o B infeed 6
0

((c)) Imbalance among the ((d)) Individual infeed
infeeds throughput

The simulation results, depicted in Figure 1, provide
valuable insights into the system’s performance during a
one-hour time period. The average throughput remains
stable at around 12,800 parcels, indicating efficient pro-
cessing capacity. The utilization of the merge conveyor
is commendably high at approximately 95.7%, ensuring
effective space utilization. The imbalance in through-
put among the infeeds averages around 3.5%, indicat-
ing a balanced workload distribution. However, there are
occasional instances where the imbalance exceeds 5%.
Overall, the system achieves equitable workload alloca-
tion among the infeed conveyors, with average through-
put ranging from 1,950 to 2,055 parcels per infeed.

Comparison with industry level algorithm
A comprehensive comparison is conducted between the
newly developed algorithm and the current industry-

level algorithm, focusing on key performance indicators
such as throughput, utilization, and load imbalance. The
primary objective is to thoroughly assess the perfor-
mance of the proposed algorithm in these areas and iden-
tify its strengths and weaknesses compared to the cur-
rent algorithm.

To ensure a realistic evaluation, various scenarios are
meticulously designed to resemble both typical opera-
tional conditions and exceptional situations. These sce-
narios are broadly categorized into two groups: one with-
out any fly-through parcels and the other with a 10%
occurrence rate of fly-through parcels, closely mirroring
real-world circumstances. Within these scenarios, differ-
ent cases are considered to provide a holistic view of the
algorithm’s performance. For explanation purposes, the
first case from each scenario will be explained in detail.

Scenario 1: Without Fly-through Parcels

(1) Happy flow from all six infeeds

(2) First and last infeeds operating, while middle in-
feeds offline

(3) Only the first four infeeds operating, with the re-
maining two infeeds temporarily out of service

(4) Only the first two infeeds operating, with the other
infeeds non-operational

Table 1
No fly through all cases
Scenario Current Algorithm Current Algorithm Developed Algorithm Developed Algorithm
No fly through Throughput [pph] Utilization [%)] Throughput [pph] Utilization [%)
Happy Flow 11181 89.1 12540 95.13
Infeed 1 and Infeed 6 6645 53.3 6929 54.31

4 infeeds 10621 84.3 11493 88.68
2 infeeds 6738 53.8 7074 56.94

Case 1: Happy flow Comparing the performance of
the current algorithm and the developed algorithm in a
scenario with a smooth flow of parcels from all six in-
feeds reveals several notable findings. Firstly, the devel-
oped algorithm outperforms the current industry stan-
dard in terms of throughput. The current algorithm
achieves a throughput of 11,181 parcels per hour, while
the developed algorithm significantly improves this met-
ric with a throughput of 12,540 parcels per hour. This
signifies the enhanced efficiency of the developed algo-
rithm in processing and merging parcels, resulting in
higher overall throughput. Additionally, the utilization
of the system is substantially enhanced by the devel-
oped algorithm. The current algorithm achieves a uti-
lization rate of 89.1%, whereas the developed algorithm
demonstrates a remarkable improvement with a utiliza-
tion rate of 95.13%. This showcases the developed algo-
rithm’s ability to better utilize available resources, mini-
mizing empty gaps between parcels and maximizing the
system’s capacity. Finally, a comparison of the infeed
throughputs between the two algorithms (as shown in
Figure 7(c) and Figure 8(c)) indicates that the devel-
oped algorithm achieves more balanced infeed through-
puts when compared to the industry-level algorithm.

Merge utilization (3-min average)

o Merge flow rate (3-min average) 100~

10000

Flow rate (pph)

4000

2000

o | L | 5 oo

0

0 60 120 180 240 300 360 420 480 540 600 07 63 20 180 A0l 300 1360, 450 460 40 igo0
Time (s) Time (s)

((a)) 3-minute average of ((b)) 3-minute average of
Merge flow rate Merge Utilization using

—_— Infeed/flythrough flow rates (3-min average)

2500 -

2000

1500

low rate (pph)

& 1000

500

0 60 120 180 240 300 360 420 480 540 600
Time (s)

((c)) 3-minute average of Infeed imbalance

Fig. 7. KPIs using the current industry-level control algo-
rithm in no-fly-through case

Merge flow rate (3-min average)

o o

0
Time (secs)

((a)) 3-minute average of
Merge flow rate

((b)) 3-minute average of
Merge Utilization

Infeedflythrough Flow Rates (3-min average)

2500

2000

1500

Flow rate (pph)

((¢)) 3-minute average of Infeed imbalance

Fig. 8. KPIs using the Developed DP-based control algorithm
in no-fly-through case

Scenario 2: With 10% Fly-through Parcels

(1) All six infeeds operational
(2) Only the first two infeeds operational
(3) Only four infeeds operational

Table 2
10% fly through all cases
Scenario Current Algorithm ~ Current Algorithm Developed Algorithm Developed Algorithm

10% fly through ~ Throughput [pph] Utilization %] Throughput [pph] Utilization %]

6 infeeds 11052 87 12597 95.11
4 infeeds 10084 78.6 11977 89.28
2 infeeds 6972 55.5 8063 60.42

Case 1: Siz infeeds operating with a 10% fly-

through occurrence rate The comparison of the two
algorithms provides valuable insights into their perfor-
mance regarding throughput and utilization. The results
indicate significant advantages of the developed algo-
rithm over the current algorithm. The developed algo-
rithm achieved a higher throughput of 12,597 parcels,
compared to the current algorithm’s throughput of
11,052 parcels, demonstrating its efficiency in process-
ing a larger volume of parcels within the given time
frame. Additionally, the utilization of the merge con-
veyor improved substantially with the developed algo-
rithm, reaching a utilization rate of 95.11% compared to
the current algorithm’s rate of 87%. This improvement
suggests that the developed algorithm optimizes space
utilization on the merge conveyor. Regarding imbalance,
both algorithms exhibit similar patterns, although the
current algorithm initially has higher upstream infeed
throughput during the simulation compared to the de-
veloped algorithm (Figure 9(c)).

Merge utilization (3-min average)

Merge flow rate (3-min average 100
12000 L ¢ 0°)

10000
£ 8000

2 a0

B
& a0t

2000 —— Mosel aut

fout
Overal average (87.0 %)

0 60 120 180 240 300 30 420 480 540 0 6 120 180 240 300 360 420 480 540
Time (5) Time (s)

((a)) 3-minute average of
Merge flow rate

((b)) 3-minute average of
Merge Utilization using

flow rates (3-min average)

3000

2500

2 2000
8

o
2 1500
3

S 1000t

500

0
0 60 120 180 240 300 360 420 480 540
Time (s)

((c)) 3-minute average of Infeed imbalance

Fig. 9. KPIs using the current industry-level control algo-
rithm in no-fly-through case

From the analysis presented in both Table 1 and Ta-
ble 2, it becomes evident that the algorithm based on
dynamic programming (DP) has exhibited a substantial
degree of superiority over the algorithm utilized at the
industry level, both in terms of utilization and through-
put. This noteworthy enhancement can be attributed to
the meticulous planning principles employed by the DP-
based algorithm.

In the algorithm currently employed by the industry,
upon the detection and announcement of a parcel by the
infeed controller, the search algorithm of the merge con-
troller actively seeks available space along the length of
the merge conveyor prior to the designated infeed loca-
tion of the parcel. Consequently, this approach results
in a significant amount of unutilized space that cannot
accommodate additional parcels. In contrast, the DP-
based algorithm adopts a more efficient approach by
employing a fixed segment size that initiates before the

Merge flow rate (3-min average)

Merge Utilization (3-min average)

((a)) 3-minute average of
Merge flow rate

((b)) 3-minute average of
Merge Utilization

Infeed/flythrough Flow Rates (3-min average)

1500

1000

Infeed 1

Flow rate (pph)

Infeed 2
. Infeed 3
7 Infeed 4

Infeed 5

500

infeed 6
o # fiy through

Time (secs)

((c)) 3-minute average of Infeed imbalance

Fig. 10. KPIs using the Developed DP-based control algo-
rithm in no-fly-through case

merge conveyor.

During the process of segment generation, the DP-based
algorithm strives to optimize the utilization of available
parcels while also considering fixed gaps within the seg-
ment. This strategic approach effectively mitigates the
issue of unused gaps, leading to better utilization of space
and subsequently improving overall throughput.

The development of a new algorithm requires careful
consideration beyond its creation. Factors such as cost
implications and practicality play a significant role in
determining its successful implementation. Conducting
a cost-benefit analysis is essential to assess the economic
feasibility and potential advantages of adopting the new
algorithm.

According to Mishan and Quah (2020), Cost-benefit
analysis (CBA) is a powerful decision-making tool used
across various fields. It systematically evaluates the costs
and benefits of different options, considering both mone-
tary and non-monetary factors. In the material handling
industry, where the adoption of new software solutions is
infrequent, conducting a cost-benefit analysis is crucial
for informed decision-making (Erdogmus 2007).

Reliability and robustness are crucial aspects of a newly
developed algorithm (Azar et al. 2021),. Reliability en-
sures consistent and precise performance across diverse
conditions, while robustness enables optimal perfor-
mance in the presence of disturbances or uncertainties.
Compatibility with widely used hardware systems, such
as Programmable Logic Controllers (PLCs), is also es-
sential for seamless integration.

Developing a new algorithm incurs costs in terms of time
and resources (Arm et al. 2018). Operational costs as-
sociated with employee salaries and additional expenses
for testing and validation should be considered. Speak-
ing to an expert at the company, justifying the invest-
ment in a new algorithm requires demonstrating a per-
formance improvement of at least five per cent compared
to the current algorithm.

Improved performance not only provides a competi-
tive edge but also leads to higher turnover rates and
increased revenue (Shaw 2011). It allows for system
upgrades and adaptation to customer needs and indus-
try trends. Based on the comprehensive comparison of
KPIs, the developed algorithm consistently outperforms
the current industry-level algorithm. Thus, implement-
ing the developed algorithm can enhance efficiency and
process performance, contributing to the optimization
of system operations.

5 Conclusion and discussion

By implementing dynamic programming as a control al-
gorithm, the utilization of the merge conveyor can be sig-
nificantly improved compared to other techniques. This
research emphasizes the importance of balancing uti-
lization and load distribution. A max heap algorithm is
employed to ensure balanced loads among the infeeds.
While this study focuses on the implementation of dy-
namic programming to enhance merge conveyor utiliza-
tion, it serves as an initial exploration of this control
algorithm.

In discussing the results and methodology, it can be con-
cluded that the chosen method successfully addresses the
main research question, enhancing overall system uti-
lization. However, the research could have also explored
the potential for improving utilization with the existing
industry-level algorithm in different layouts which was
left out of the scope. Assumptions made in the study,
such as abstracting velocity profiles and software selec-
tion, may impact the obtained results and should be val-
idated in practical scenarios. A limitation using this ap-
proach will be prevalent when the downstream infeeds
are located further downstream in the system, thereby
increasing the waiting times of the parcels on those in-
feeds.

The current model’s prioritization using the maximum
filled queue technique and all the infeeds having the
same capacity, may not always hold true in real-time sit-
uations. Different priority-based techniques could yield
slightly different throughput outcomes. While the uti-
lization remains consistent in most cases, certain layout
configurations or infeed positions can affect the devel-
oped algorithm’s performance. Additionally, testing the
model with different gap modes is recommended to fully

10

understand its behaviour and potential variations in re-
sults as only a fixed safety gap of 15cm was considered
in between each parcel.

6 Future Research

The developed algorithm aimed to closely simulate real-
world conditions, but certain assumptions played a cru-
cial role. Recommendations and remarks based on the
research findings include considering the position and ve-
locity of infeed conveyors to avoid long waiting times for
parcels on downstream infeeds. It is important to con-
duct additional experiments to evaluate the algorithm’s
behaviour in more realistic scenarios. Factors such as
parcel weight and kinematic constraints should be con-
sidered as they can impact system performance. Early
knowledge of the next parcel (parcel announcement) can
improve slice allocation and system efficiency. Future re-
search should focus on sustainability aspects and explore
dynamic control techniques. Costs should be carefully
analyzed, taking into account potential overlooked ex-
penses. Finally, this control algorithm can be tested on
different layouts and different sorters to identify if it can
perform well in all situations.

References

Agrawal, G.K., and S.S. Heragu. 2006. “A survey
of automated material handling systems in 300-
mm SemiconductorFabs.” IFEFE Transactions on
Semiconductor Manufacturing 19 (1): 112-120.
https://doi.org/10.1109/TSM.2005.863217.

Ahn, H, D Del Vecchio - IEEE Transactions on Auto-
matic, and undefined 2017. 2017. “Safety verifica-
tion and control for collision avoidance at road in-
tersections.” ieeexplore.ieee.org, https://ieeexplore
.deee.org/abstract/document /7987071 /.

Arm, J., F. Zezulka, Z. Bradac, P. Marcon, V. Kacz-
marczyk, T. Benesl, and T. Schroeder. 2018. “Im-
plementing Industry 4.0 in Discrete Manufacturing:
Options and Drawbacks.” 15th IFAC Conference
on Programmable Devices and Embedded Systems
PDeS 2018, IFAC-PapersOnLine 51 (6): 473-478.
ISSN: 2405-8963. https://doi.org/https://doi.org/1
0.1016/j.ifacol.2018.07.106.

Azar, Ahmad Taher, Fernando E. Serrano, Anis Koubaa,
Habiba A. Ibrahim, Nashwa Ahmad Kamal, Alaa
Khamis, Ibraheem Kasim Ibraheem, et al. 2021.
“Robust fractional-order sliding mode control de-
sign for UAVs subjected to atmospheric distur-
bances.” Unmanned Aerial Systems: Theoretical
Foundation and Applications: A Volume in Ad-
vances in Nonlinear Dynamics and Chaos (ANDC)
(January): 103-128. https://doi.org/10.1016/B978
-0-12-820276-0.00012-1.

Babulak, Eduard, and Ming Wang. 2010. Discrete Event
Sitmulation: State of the Art. 1-9. August. ISBN: 978-
953-307-115-2. https://doi.org/10.13140/RG.2.1.2
068.1767.

Banks, Jerry. 1999. “Introduction to simulation.” Win-
ter Simulation Conference Proceedings 1:7-13. 1SSN:
02750708. https://doi.org/10.1145/324138.324142.

Blackwell, David. 1962. “Discrete Dynamic Program-
ming.” The Annals of Mathematical Statistics 33
(2): 719-726. 1SSN: 0003-4851. https://doi.org/10.1
214/AOMS/1177704593.

Cardenas, Ivan Dario, Wouter Dewulf, Thierry Vanels-
lander, Christophe Smet, and Joris Beckers. 2017.
“The e-commerce parcel delivery market and the
implications of home B2C deliveries vs pick-up
points.” The e-commerce parcel delivery market
and the implications of home B2C deliveries vs
pick-up points 44 (2): 235-256. 1SSN: 03035247.
https://doi.org/10.19272/201706702004.

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. 2009. Introduction to Al-
gorithms, Third Edition. 3rd. The MIT Press. ISBN:
0262033844.

Cross, Tony, John Sutton, and Donald F. Wood. 1986.
“Book reviews.” Transportation Planning and Tech-
nology 11 (1): 81-86. https://doi.org/10.1080/030
81068608717331.

Drissi Elbouzidi, Adnane, Abdessamad Ait El Cadi,
Robert Pellerin, Samir Lamouri, Estefania Tobon
Valencia, and Marie-Jane Bélanger. 2023. “The
Role of Al in Warehouse Digital Twins: Literature
Review.” Applied Sciences 13 (11). 1SSN: 2076-3417.
https://doi.org/10.3390/app13116746.

Erdogmus, Hakan. 2007. “Cost-Benefit Analysis of Soft-
ware Development Techniques and Practices.” In
29th International Conference on Software Engi-
neering (ICSE’07 Companion), 178-179. https://d
oi.org/10.1109/ICSECOMPANION.2007.28.

Fedtke, Stefan, and Nils Boysen. 2014. “Layout Planning
of Sortation Conveyors in Parcel Distribution Cen-
ters.” https://doi.org/10.1287/trsc.2014.0540 51
(1): 3-18. 1SSN: 15265447 https://doi.org/10.1287
JTRSC.2014.0540.

Haneyah, S. W.A., J. M.J. Schutten, P. C. Schuur, and
W. H.M. Zijm. 2013. “Generic planning and control
of automated material handling systems: Practical
requirements versus existing theory.” Computers in
Industry 64 (3): 177-190. 1sSN: 0166-3615. https://d
oi.org/10.1016/J.COMPIND.2012.11.003.

Haneyah, Sameh, Johann Hurink, Marco Schutten,
Henk Zijm, and Peter Schuur. 2011. “Plan-
ning and Control of Automated Material Han-
dling Systems: The Merge Module,” 281-286.
https://doi.org/10.1007/978-3-642-20009-0_45.

11

Hoven, Matthijs van den. 2019. Utilization Improvement
of a Sortation System for the Parcel Industry. Tech-
nical report. Technical report, Eindhoven Univer-
sity of Technology, the Netherlands.

Jing, GG, WD Kelton, JC Arantes - ... Proceedings
(Cat. No ..., and undefined 1998. 1998. “Modeling
a controlled conveyor network with merging config-
uration.” ieeexplore.iece.org, https://ieeexplore.iee
e.org/abstract/document /745851 /.

Johnstone, M, D Creighton, S Nahavandi - Simula-
tion Modelling Practice, and undefined 2015. 2015.
“Simulation-based baggage handling system merge
analysis.” FElsevier, https://www.sciencedirect.co
m /science /article / pii /S1569190X 15000131 7 casa._
token =aiFNCiNpdYS8AAAAA :y9LcUGKK7zLTI4
EbffJknIMObhn1dbp3ks9azy8gpTEoil8zBj- W6F
nEWRI9bK1fvJkpe6j2wRdA.

Kellner, Marc I., Raymond J. Madachy, and David
M. Raffo. 1999. “Software process simulation mod-
eling: Why? What? How?” Journal of Systems
and Software 46 (2-3): 91-105. 1SsN: 0164-1212.
https://doi.org/10.1016/S0164-1212(99)00003-5.

Kim, Gukhwa, Junbeom Kim, and Junjae Chae. 2017.
“Balancing the baggage handling performance of a
check-in area shared by multiple airlines.” Journal
of Air Transport Management 58 (January): 31-49.
ISSN: 0969-6997. https://doi.org/10.1016/J.JAIRT
RAMAN.2016.08.017.

Li, L, FY Wang - IEEE Transactions on Vehicular tech-
nology, and undefined 2006. 2006. “Cooperative
driving at blind crossings using intervehicle com-
munication.” ieeexplore.ieee.org, https:/ /ieeexplo
re.ieee.org / abstract / document /4012536 / ?casa_
token =0UnNkqldre4AAAAA : KRrBMfBhy8LhR,
p- WNCoWD7Dv- VBDOPvL7q7R8LD1L-DATh_
dEFMbgXqVQdAioslqtPPCi61Adg.

Li, PT, and X Zhou Methodological. 2017. “Recast-
ing and optimizing intersection automation as a
connected-and-automated-vehicle (CAV) schedul-
ing problem: A sequential branch-and-bound
search.” Elsevier, https : / / www . sciencedi
rect . com / science / article / pii / S0191261
517304782 ? casa_token = q AwOjK_tUoAAAAA
: ocGIFvErY4ARGMRvubadF CFwBaqrBfweiHm
XSL7ZMEnz37Y 1bk3Gx-Xv9LAY 1t _LJBaVpWE
PnvU.

, Shang Chien, Hsiang Hsu, Yi Ting Lin, Chung Wei
Lin, Iris Hui Ru Jiang, and Changliu Liu. 2020. “A
Dynamic Programming Approach to Optimal Lane
Merging of Connected and Autonomous Vehicles.”
IEEF Intelligent Vehicles Symposium, Proceedings,
349-356. https://doi.org/10.1109/IV47402.2020.9
304813.

Lin

Marinescu, Dan, Jan Curn, Mélanie Bouroche, and
Vinny Cahill. 2012. “On-ramp traffic merging us-
ing cooperative intelligent vehicles: A slot-based
approach.” IEEE Conference on Intelligent Trans-
portation Systems, Proceedings, ITSC, 900-906.
https://doi.org/10.1109/ITSC.2012.6338779.

Meens, Jasper. 2017. “Model Based Design Approach for
Merge Balancing,” Eindhoven University of Tech-
nology, the Netherlands.

Meng, Yue, Li Li, Fei Yue Wang, Keqgiang Li,
and Zhiheng Li. 2018. “Analysis of Cooper-
ative Driving Strategies for Nonsignalized In-
tersections.” IEEE Transactions on Vehicular
Technology 67 (4): 2900-2911. 1SSN: 00189545.
https://doi.org/10.1109/TVT.2017.2780269.

Mishan, E.J., and Euston Quah. 2020. “Cost-Benefit
Analysis” (August). https://doi.org/10.4324/9781
351029780.

Miiller, Eduardo Rauh, Rodrigo Castelan Carlson, and
Werner Kraus Junior. 2016. “Intersection con-
trol for automated vehicles with MILP.” IFAC-
PapersOnLine 49 (3): 37-42. 18SN: 24058963.
https://doi.org/10.1016/J.IFACOL.2016.07.007.

Nelson, Randolph. 1995. “Markov Processes.” Proba-
bility, Stochastic Processes, and Queueing Theory,
329-389. https://doi.org/10.1007/978-1-4757-242
6-4_8. https://link-springer-com.tudelft.idm.oclc.o
rg/chapter/10.1007/978-1-4757-2426-4_8.

Peeters, K. 2015. “Balancing Control of Material Han-
dling Systems.” PhD diss., Eindhoven University of
Technology, the Netherlands.

Peffers, Ken, Tuure Tuunanen, Marcus A. Rothen-
berger, and Samir Chatterjee. 2014. “A De-
sign Science Research Methodology for In-
formation Systems Research.” htips://doi-
org.tudelft.idm.oclc.org/10.2753/MI1S0742-
1222240802 24 (3): 45-77. 1sSN: 07421222.
https://doi.org/10.2753 /MIS0742-1222240302.

Huaxin, Shuo Feng, Yi Zhang, and Danya Yao.
2019. “A Cooperative Driving Strategy for Merg-
ing at On-Ramps Based on Dynamic Program-
ming.” IEEE Transactions on Vehicular Tech-
nology 68 (12): 11646-11656. 1SSN: 19399359.
https://doi.org/10.1109/TVT.2019.2947192.

Huaxin, Yuxiao Zhang, Yi Zhang, and Shuo Feng.
2022. “Optimal Cooperative Driving at Signal-Free
Intersections With Polynomial-Time Complexity.”
IEEE Transactions on Intelligent Transportation
Systems 23 (8): 12908-12920. 1ssN: 15580016.
https://doi.org/10.1109/TITS.2021.3118592.

Pei

Pei

12

Pfohl, Hans Christian, Pascal Wolff, and Johannes
Kern. 2020. “Transshipment hub automation
in China’s courier/express/parcel sector.” Urban
Freight Transportation Systems (January): 163—
180. https://doi.org/10.1016/B978-0-12-817362-6
.00009-4.

Python Core Team. 2019. Python: A dynamic, open
source programming language. Python Software
Foundation. https://www.python.org/.

Sargent, Robert. 2011. “Verification and valida-
tion of simulation models,” 37:166-183. January.
https://doi.org/10.1109/WSC.2010.5679166.

Sharma, Prateek. 2015. “Discrete-Event Simulation.”
INTERNATIONAL JOURNAL OF SCIENTIFIC
TECHNOLOGY RESEARCH 4 (04). 1SSN: 2277-
8616. www.ijstr.org.

Shaw, Jason D. 2011. “Turnover rates
and organizational performance.”
http://dxz.doi.org/10.1177/2041386610382152
1 (3): 187-213. ISSN: 2041-3866.
https://doi.org/10.1177/2041386610382152.

Stewart, William J. 2009. “Probability, Markov Chains,
Queues, and Simulation.” (No Title) (July). https
://doi.org/10.2307/J.CTVCM4GTC.

Thacker, B.H., S.W. Doebling, F.M. Hemez, M.C. An-
derson, J.E. Pepin, and E.A. Rodriguez. 2004.
Concepts of Model Verification and Validation.
http://inis.iaea.org / Search /search . aspx 7 orig_
q=RN:36030870.

Thorne, David R. 2006. “Throughput: A simple per-
formance index with desirable characteristics.” Be-
havior Research Methods 38 (4): 569-573. ISSN:
1554351X. https://doi.org/10.3758 /BF03193886
/METRICS.

Simulation Model

B.1. Simulation Process

The utilization of a Process Description Language is essential to describe the processes employed in
the model. This language, expressed in pseudo-code, provides a comprehensive representation of the
aforementioned processes. It is worth noting a couple of important aspects. Firstly, the frequent use of
”self.xxx” in the descriptions, where ”self” refers to the actor itself, while ”xxx” denotes an attribute,
function, or process associated with the actor. Secondly, functions and processes are enclosed in
parentheses ’()’, allowing for the inclusion of arguments as inputs. In some cases, ”self” is used as an
argument, indicating that another actor’s process refers to the initial actor and can modify its attributes
as needed.

B.1.1. Infeed Class

The Infeed class, algorithm 1, represents a data structure for managing parcels in a queue with a specified
capacity. It has various methods for adding parcels, calculating the used space, moving parcels from the
queue to allotted slots, and removing parcels from allotted slots. The class keeps track of the parcels,
capacity, remaining percentage of the queue, held parcels, removed parcels, slot allotments, and added
parcels.

B.1. Simulation Process 91

Algorithm 1 Infeed Class

1: Input: number, capacity
2: Output: An instance of Infeed
3: number <— number
4: parcels <[]
5: capacity <— capacity
6: remaining_percent <— 100.0
7: held_parcels < []
8: removed_ parcels < []
9: slot_alloted < []
10: added parcels < []
11:
12: function calculate used space()
13: Input: None
14: Output: The used capacity of the queue
15: used capacity < 0
16: for each parcel in parcels
17: used_capacity <— used capacity + parcel[0] + safety gap
18: end for
19: for each parcel in slot_alloted
20: used_capacity < used_capacity + parcel[0] + safety gap
21: end for
22 return used_capacity - safety gap
23: end function
24:
25: function add_parcel(parcel length, id)
26: Input: parcel length, id
27: Output: None
28: current used capacity < calculate used space()
29: used capacity after parcel added <— current used_capacity + parcel length + safety gap
30: remaining_percent after parcel added < 100.0 - ((used capacity after parcel added * 100) /
capacity)
31: remaining_percent after parcel added < O then
32: hold until remaining_percent > parcel length
33: held parcels.append([parcel length, id])
34: return
35: else
36: parcels.append([parcel length, id])
37: added_parcels.append([parcel length, id])
38: remaining_percent <— remaining_percent after parcel added
39: endif
40: end function
41: =0

2023.MME.8848

B.1. Simulation Process 92

Algorithm 2 Infeed Class (Continued)

1: function move to_alloted()

2: Input: None

3 Output: None

4 not parcels then

5: return

6: end if

7. removed parcel < parcels[0]
8: slot alloted.append(removed parcel)
9: parcels.pop(0)

10: end function

11:

12: function remove_parcel()

13: Input: None

14: Output: None

15: not slot_alloted then
16: return
17: endif

18: removed parcel < slot alloted[0]

19: removed parcels.append(removed parcel)

20: slot_alloted.pop(0)

21: current_used capacity <— calculate used space()

22: remaining_percent <— 100.0 - ((current_used capacity * 100) / capacity)
23: end function =0

B.1.2. Merge Conveyor Class

The following code, algorithm 3, defines a class called Merge Conveyor representing a merge conveyor
system. It contains an initialization method that sets the number of infeeds, infeed capacity, and
parcel gap. The class includes various functions to generate random parcel lengths and unique IDs,
fill the infeeds with parcels before the algorithm starts, generate fly-through parcels, generate parcels
for the infeeds, and generate sequences of parcels using different approaches like heap and dynamic
programming. Additionally, there are functions to handle the entry and exit of parcels within a
specified time frame. It is worth mentioning that only the necessary parts of the code are elaborated to
make it better for understanding purposes.

2023.MME.8848

B.1. Simulation Process 93

Algorithm 3 Merge Conveyor Class

Input: num_infeeds, infeed capacity, parcel gap

Output: An instance of MergeConveyor

num_infeeds <— num_infeeds

infeeds <— [Infeed(i, Infeed capcaity) for i in range(num_infeeds)]
merge conveyor parcels < []

parcel entries <— [[] for _in range(num_infeeds)]

parcel exits < [[] for _ in range(num_infeeds)]

fly through entries + []

fly through locations < []

id_count < 1

N e A S s

—_ =
N =2

. function generate random_parcel length(max length, min_length, mean parcel length, std dev)

13: Input: max_length, min_length, mean parcel length, std dev
14: Output: Randomly generated transport parcel length
15: ... (Code for generating parcel length)
16:
17: function generate id()
18: Input: None
19: Output: Generated ID
20: ... (Code for generating unique ID)
21:
22: function generate fly through parcels()
23: Input: None
24: Qutput: None
25: ... (Code for generating fly-through parcels)
26:
27: function generate parcels()
28: Input: None
29: Output: None
30: ... (Code for generating parcels)
=0

2023.MME.8848

B.1. Simulation Process 94

Algorithm 4 Merge Conveyor Class (continued)

1: function generate sequence using heap(last parcel trailing edge, segment_size)
2. Input: last parcel trailing edge, segment size

3 Output: Sequence array

4. infeeds copy < a copy of infeeds’ parcels

5. infeeds heap < an empty heap

6: indices < an array of zeros

7: sequence_array <— an empty array

8: segment left < segment size

9

10: i+ 0to NUM_INFEEDS - 1

11: infeed sum <+ 0

12: for each parcel in infeeds_copy[i][indices][i]:]

13: infeed sum < infeed sum + parcel[0]

14: end for

15: append [infeeds[i].capacity - infeed sum, i] to infeeds heap

16: end for

17: heapify infeeds_heap

18:

19: while segment left > 0

20: [most filled queue remaining percent, most filled queue number] <— pop infeeds heap

21: last parcel infeed = most_filled queue number

22: break

23: if not infeeds_copy[most_filled queue number]

24: break

25: indices[most filled queue number] > length of infeeds copy[most filled queue number]

26: break

27: released parcel length, id < infeeds copy[most filled queue number]|[indices[most filled queue number]]

28:

29: released parcel length < segment left

30: append [last parcel trailing edge, last parcel trailing edge + released parcel length,
most_filled queue number, id] to sequence array

31: last_parcel trailing edge < last parcel trailing edge + released parcel length

32:

33: increment indices[most_filled _queue number] by 1

34: infeeds heap <— an empty heap

35: i< 0to NUM INFEEDS - 1

36: infeed sum < 0

37: for each parcel in infeeds_copy][i][indices][i]:]

38: infeed sum < infeed sum + parcel[0]

39: end for

40: append [infeeds[i].capacity - infeed sum, i] to infeeds heap

41: end for

42 heapify infeeds heap

43: segment_left <— segment left - released parcel length

44: end while
45: return sequence array and end function
=0

2023.MME.8848

B.1. Simulation Process 95

Algorithm 5 Merge Conveyor Class (continued)

1:

—_
—_— O

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:
31:
32:
33:

34
35:

36:
37:

38:

N A A T

function generate DP_sequence array(last parcel trailing_edge, segment_size, fun,
last_parcel_infeed)
Input: last_parcel trailing edge, segment_size, fun, last_parcel infeed
Output: Sequence array
sequence_array < []
ans < fun(segment_size, [0] * 6, ””, {}, last_parcel infeed)
sequence <— ans[1]
indices < [0] * 6
idx in sequence:
idx < int(idx)
parcel, id < self.infeeds[idx].parcels[indices[idx]]
sequence_array.append([last parcel trailing edge, last parcel trailing edge + parcel, idx,
id])
last_parcel trailing edge += parcel
indices[idx] +=1
return sequence_array

function get min_gap sequence DP(gap left, indices, sequence, memo, last used infeed)
Input: gap left, indices, sequence, memo, last used infeed
Output: Min gap sequence
Procedure:
gap_left is already computed in the memo table then
Return the stored value for gap left
End If
Initialize final ans gap as gap left and final ans_sequence as an empty string
each queue from 0 to NUM_INFEEDS do
last used infeed is the same as the current queue then
Continue to the next iteration of the loop
End If
queue index is out of range or the parcel length at the queue index is greater than
gap_left then
Continue to the next iteration of the loop
End If
Get the parcel length and id from the queue at the current index
Increase the index of the current queue by 1
Recursively call get min_gap sequence DP with reduced gap left, updated indices,
appended sequence, memo, and current queue as last used infeed
the returned gap is smaller than final ans gap then
Update final ans gap with the returned gap and final ans sequence with the
returned sequence
End For
Store final ans gap and final ans_sequence in the memo table for the current gap left, indices,
and last_used infeed
Return final ans gap and final ans_sequence
=0

2023.MME.8848

B.1. Simulation Process 96

Algorithm 6 MergeConveyor Class (continued)

1: function get min_gap sequence DP_ with heap(gap left, indices, sequence, = memo,
last used infeed)

2: Input: gap left, indices, sequence, memo, last used infeed
3: Output: Min gap sequence
4. Procedure:
5: gap_left is already computed in the memo table then
6: Return the stored value for gap_left
7: Initialize final ans_gap as gap left and final ans_sequence as an empty string
8: Get the queue order based on the current indices and last used infeed
9: each queue in the queue order do
10: queue index is out of range or the parcel length at the queue index is greater than
gap_left then
11: Continue to the next iteration of the loop
12: Get the parcel length and id from the queue at the current index
13: Increase the index of the current queue by 1
14: Recursively call get min_gap sequence DP_with heap with reduced gap left, updated
indices, appended sequence, memo, and current queue as last used infeed
15: the returned gap is smaller than final ans_gap then
16: Update final ans gap with the returned gap and final ans sequence with the
returned sequence
17: Store final ans_gap and final _ans_sequence in the memo table for the current gap left, indices,
and last used infeed
18: Return final ans gap and final ans_sequence

19: function get order(indices, last used infeed)

20: Input: indices, last used infeed

21: Output: Queue order

22: ... (Code for getting the order of queues)

23:

24: function handle entry exit parcels in time frame(start time, end time)
25: Input: start_time, end time

26: QOutput: None

27: ... (Code for handling entry and exit parcels within a time frame)
28:
29: while time < SIMULATION TIME
30: ... (Code for the simulation loop)
=0

2023.MME.8848

B.2. Model Verification 97

B.2. Model Verification

Check I and 2: For various segment sizes, the simulation was performed multiple times to verify if the
maximum size of the segment exceeds the specified cap. From the Figure B.1, it is apparent that, for
a segment setting of 200 cm, the difference between the start and end of the segment does not exceed
200 cm. Additionally, as expected, the next segment starts immediately after the previous segment
ends. It is also evident that no two slices are consecutively assigned to the same infeed. This implies
that the constraint on inter-departure times is not violated.

Sepment 1:
Start: @, End: 67, Infeed: 3
Start: 67, End: 129, Infeed: 6
Start: 129, End: 199, Infeed: 1
Segment 2:
Infeed: 5
Infeed: 2
Infeed:
Infeed: 2

Infeed: 6
Infeed:
Infeed: 3

Segment

Start: 584, : 655, Infeed:
Start: 655 d >, Infeed:
Start: 715 : 762, Infeed: 2

Segment

Start: d 8, Infeed:
Start: 8 d Infeed: 6
Start: 3 ¢ Infeed: S
Start: : 941, Infeed: !

Figure B.1: Slice allocation in the segment

Check 3: Based on a simulation, the times at which parcels enter and exit are sampled and recorded in
the Table B.1. As explained in item 4.1.1, the parcel entries and exits are stored as a list containing the
time and length information of each incoming or outgoing parcel from the infeed. This test assists in
determining if the parcel can reach the merge before the designated segment slice reaches the infeed.

Table B.1: Parcel entry and exit verification

Parcel entries

Parcel exits

[4.4, 68, 1d-35]

[5.69, 68, id-35]

[5.45, 63, 1d-39]

[7.755 , 63, 1d-39]

[8.06, 58, id-51]

[9.265, 58, 1d-51]

[1.87, 51, id-22]

[4.773 , 51, id-22]

[2.27, 76, id-23]

[7.232, 76, id-23]

[6.08 , 65, id-42]

[8.932, 65, id-42]

B.3. Model Validation

B.3.1. Extreme Condition tests
As discussed in subsection 4.1.4, in extreme conditions the model should perform as expected. To do
so, the following tests were performed and checked if the expected outcomes are met or not.

2023.MME.8848

B.3. Model Validation

98

PS C:\Users\nlrsyay\Desktop\Thesis\Simulation> &
op/Thesis/Simulation/
= KPIs -
Throughput of the system
utilization_percent = 1:
Imbalance:

op/Thesis/Simulation/xx.p;
(most recent call last):
\Users\nlrsyay\Desktop\Thesis\Simulation)
[-11[2]] += 1 if merge ar

:/Users/nlrsyay/AppData/Local/Programs/Python/Python311/python. exe

x.py”, line 547, in <module>
ay[-1][2] != -1 else 1

Figure B.2: Both extreme condition tests

:/Users/nlrsyay/Deskt

2023.MME.8848

Model Experimentation

C.1. Scenario: No flythrough

C.1.1. Case 3: No fly-through and 4 infeeds
Current FCFS Control Algorithm

Merge flow rate (3-min average) Merge utilization (3-min average)
12000 100 -
10000 | gol
< 8000t g
e = 60f
) S
§ 60001 =
z £ 40f
2 4000t 5
20+
20001 —— Model output —— Model output
Overall average (10621 pph) Overall average (84.3 %)
0 ‘ ‘ | ‘ ; ; ; L 0 . ‘ . . : ;
0 60 120 180 240 300 360 420 480 0 60 120 180 240 300 360 420 480
Time (s) Time (s)
(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization

Infeed/flythrough flow rates (3-min average)

3500 — Infeed 1
L —Infeed 2
3000 Infeed 3
—— Infeed 4
= 2500
Q
& L
< 2000
e
3 1500 [-
o
L1000 -
500 -
0 . I . L I . .
0 60 120 180 240 300 360 420 480

Time (s)
(¢) 3-minute average of Infeed imbalance

Figure C.1: 3-minute average graphs of KPIs using current control algorithm

Developed DP-based Algorithm

C.1. Scenario: No flythrough 100

Merge flow rate (3-min average) Merge Utilization (3-min average)

12000 AN N o e, i i e T S G
A
801
10000 A
= 8000 < 60
g 14
o o
T e
E 6000 1 g
S 40 4
g g
4000 4 E]
204
2000 A
—— Model Output —— Model Output
04 —— Overall moving Average: 11493 o ——— Overall Average: 88.68%
T T T T T T T T T T T T
] 100 200 300 400 500 0 100 200 300 400 500
Time (secs) Time (secs)

(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization

Infeed/flythrough Flow Rates (3-min average)

3500 1
3000 4
2500
=
g; 2000 4
b
£ 15001
=
o
w
1000
—— Infeed 1
500 1 Infeed 2
Infeed 3
0 —— Infeed 4
T T T T T T
[} 100 200 300 400 500

Time (secs)

(¢) 3-minute average of Infeed imbalance

Figure C.2: 3-minute average graphs of KPIs using developed control algorithm

C.1.2. Case 4: No fly-through and 2 infeeds
Current FCFS Control Algorithm

Merge flow rate (3-min average)
7000

Merge utilization (3-min average)

60
6000 50l
= 5000 —
s K407
4000} <
2 230t
23000 =
5 2000 =
& 2000 - Sar
1000 —— Model output 10F ——Model output
Overall average (6738 pph) Overall average (53.8 %)
0 . . . N i I L . n N
0 60 120 180 240 300 360 420 00 60 120 180 240 300 360 420

Time (s) Time (s)

(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization

2023.MME.8848

C.1. Scenario: No flythrough

101

Infeed/flythrough flow rates (3-min average)

3500

3000

= 2500

pp

~ 2000 -

1500 |-

Flow rate

1000

500 [

[——1Infeed 1
||=Infeed 2

0 60 120 180 240 300 360 420
Time (s)

(¢) 3-minute average of Infeed imbalance

Figure C.3: 3-minute average graphs of KPIs using current control algorithm

2023.MME.8848

C.2. Scenario: 10% fly-though 102

Developed DP-based Algorithm

Merge flow rate (3-min average) Merge Utilization (3-min average)

8000 1 /"‘\AM._\ 60| M
oot w
b ol
50 -
6000 _
ﬁ E
- =5
P 2
© 4000 A 5 30
g g
T =
5 204
2000
10 |
—— Model Output —— Model Output
o4 -~ Overall moving Average: 7074 0 -~ QOverall Average: 56.54%
0 100 200 300 400 500 0 100 200 300 400 500
Time (secs) Time (secs)
(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization
Infeed/flythrough Flow Rates (3-min average)
4000 - -
3000
=
o
3
o)
® 2000 A
H
2
T
1000 -
— Infeed 1
Infeed 2
o] £ fly through
0 100 200 300 400 500

Time (secs)

(¢) 3-minute average of Infeed imbalance

Figure C.4: 3-minute average graphs of KPIs using developed control algorithm

C.2. Scenario: 10% fly-though

C.2.1. Scenario 7: 10 % fly-through and 4 infeeds
Current FCFS Control Algorithm

Merge flow rate (3-min average)
12000 [

Merge utilization (3-min average)

80 ¢

10000 F SRSy
- 60

8000 =
i g
5 c
§ 6000} 240
3 N
3 | =
& 4000 =}

2000 20

—godel"oulput 10084 0 ——Model output
. | | | ‘ veral averag‘a (PP) Overall average (78.6 %)
0 I L l | T I
0 60 120 180 . 240 300 360 420 0 60 120 180 240 300 360 420
ime (s) Time (s)
(a) 3-minute average of Merge flow rate (b) 3-minute average of Merge Utilization

2023.MME.8848

C.2. Scenario: 10% fly-though

103

3000

2500 [-

Flow rate (pph
s o 8
(=] (=3 (=3
o o o

T

Infeed/flythrough flow rates (3-min average)

60 120 180 240 300 360 420

Time (s)

(¢) 3-minute average of Infeed imbalance

— Infeed 1
Infeed 2
Infeed 3
—Infeed 4
—— Flythrough

Figure C.5: 3-minute average graphs of KPIs using current control algorithm

Developed DP-based Algorithm

Throughput of the system (3-min average)

Merge Utilization (3-min average)

P i P

—— Model Output
~ Overall Average: 89.28%

12000
801
10000
=
= 8000 £ 60
g g
H 6000 <
2 6000 5
S 404
H 5
= =
4000 1 5
204
2000 A
—— Throughput of the system
04 Overall moving Average: 11927 o4
T T T T T T T T
] 100 200 300 400 500] 100
Time (secs)

(a) 3-minute average of Merge flow rate

Infeed/flythrough Flow Rates (3-min average)

3000 4
2500 4
— 2000 A
=
=3
L=
O
+ 1500 4
i
=
2
* 1000 { 4
i —— Infeed 1
Infeed 2
500 Infeed 3
— Infeed 4
o fly through
T T T T T T T
0 100 200 300 400 500 600
Time (secs)

(¢) 3-minute average of Infeed imbalance

T T T T
300 400 500 600

Time (secs)

T
200

(b) 3-minute average of Merge Utilization

Figure C.6: 3-minute average graphs of KPIs using developed control algorithm

2023.MME.8848

	Preface
	Summary
	Nomenclature
	Introduction
	Company Background
	Research Overview
	Research Problem

	Research Objective and Scope
	Research Questions

	Research Approach
	Research Methodology

	Structure of the report

	Parcel Sorting Systems in Practice
	Infeed Zone
	Infeed Parameters

	Important terms related to parcel merging process
	Merge Zone
	Sortation Zone
	Overflow Zone
	Problem Diagnosis
	Load Balancing Techniques
	First Come First Serve (FCFS) Algorithm
	Round Robin (RR) Algorithm
	Estimated Merge Algorithm
	Early Announcement of Parcels

	Buddy Search
	Conclusion

	Selection of Control Algorithm
	Optimization of parcel merging in a parcel sorting system
	Window re-allocation to reduce the imbalance among infeeds
	Optimization of vehicle merging in Traffic Management System
	Key Performance Indicators
	Throughput
	Utilization
	Load Imbalance

	Conclusion

	Model Building
	Modelling Steps
	Step 1: Model Conceptualization
	Step 2: Model Implementation
	Step 3: Model Verification
	Step 4: Model Validation

	Conclusion towards Experimentation

	Model Experimentation
	Simulation time
	Comparison with the current algorithm
	Scenario with no fly-through parcels
	Scenario with 10 per cent fly-through parcels

	Reflecting on the comparison
	Cost Benefit Analysis
	Conclusion

	Conclusion
	Conclusion: Answering the research questions
	Discussion and Recommendations

	References
	Research Paper
	Simulation Model
	Simulation Process
	Infeed Class
	Merge Conveyor Class

	Model Verification
	Model Validation
	Extreme Condition tests

	Model Experimentation
	Scenario: No flythrough
	Case 3: No fly-through and 4 infeeds
	Case 4: No fly-through and 2 infeeds

	Scenario: 10% fly-though
	Scenario 7: 10 % fly-through and 4 infeeds

