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Preface
During my Technical Medicine clinical internships, I had the chance to speak with neuropathic pain pa­
tients. These patients experience terrible pain throughout the day, which is very hard to comprehend
as a healthy person. It is not surprising that these patients score their Quality of Life far worse com­
pared to healthy people. In one of the conversations with Prof.dr. M.J.A. Malessy, my clinical internship
supervisor at the time, we brainstormed on methods to mitigate neuropathic pain at the peripheral level:
we could focus on the origins of neuropathic pain and try to inhibit the neural signals that cause it. That
meeting formed the basis of this thesis where I combine the medical knowledge from the Technical
Medicinemaster program, and the technical knowledge from the Systems and Control master program
to inhibit neuroma pain in­silico and measure neural activity in­vivo.

Before I start to take you as a reader through my thesis project, I would like to thank some people
and organizations for helping me during my thesis. First, my supervisors, Prof.dr. M.J.A. Malessy,
Prof.dr.ir. W.A. Serdijn, Dr. S. Pequito, Dr. S.G.A. van Neerven, and K. Kolovou­Kouri, M.Sc., for guiding
me during the ups­and­downs of this project. Without you as supervisors, this work would have looked
totally different. The process of writing a scientific article together was very educational.

I would like to thank Prof.dr. M. Devor for pointing out to me the possibility to use the software of
the extended Hodgkin­Huxley model through the open­access ModelDB database and Dr. O. Dick for
sharing her software implementation of the extended Hodgkin­Huxley model by email. I express my
thanks to Ing. J. Bastemeijer for helping me with the design of the amplifier, the Jitter company for
providing software examples of GUI design, Mr. M. Chalaki for helping me during the in­vivo experi­
ments, Dr. S. Chatterjee for sharing software for the in­silico experiments, and Dr. V. Giagka for giving
feedback on my work. Furthermore, I express my thanks to Prof.dr.ir. J. Harlaar and Dr. M. Negrello
for being in my graduation committee, and the Painless foundation for supporting this research.

I would also like to thank my parents, who have proofread my work. My girlfriend has always been
there to give me advice and has reviewed some parts; many thanks!

Finally, I would like to thank the developers of the Zoom Video Communications platform for devel­
oping such an excellent teleconferencing tool. It was indispensable during the coronavirus pandemic.

U.C.A.M. (Hubald) Verzijl
Delft, October 2021
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Summary
Neuropathic pain (NP) affects approximately seven to ten percent of the general population. Seventeen
percent of NP patients scored their life as “worse than death”. Amyriad of causesmay underlie NP, such
as stroke or spinal cord injury. Also, damage or disease of the peripheral nervous system (PNS) may
result in NP. One of the main issues of NP caused by a peripheral nerve injury (PNI) is the development
of a neuroma, which is a tumor­like mass at the proximal end of a severed nerve that can become very
painful. Neuromas show unique neurophysiological characteristics. Cell membrane alternations lead
to different ion channel distributions, which in turn result in subthreshold oscillations (SO) and ectopic
discharges (ED). It is assumed that this behavior could lead to NP generation.

Electrical neurostimulation (ENS) is used to treat patients, thereby applying pre­programmed stim­
ulation patterns to the affected nerves. However, the pain­provoking signals which run through the
nerves are not detected and analyzed before ENS is provided. Furthermore, it is questionable whether
(the currently applied) pre­programmedENS defuses these signals anyway. In addition, pre­programmed
ENS is not effective at all moments of the pain experience caused by fluctuations in signal intensity. As
the clinical results are discouraging, and in view of the high costs, the popularity of this technology is
currently waning. Optimization of this potentially powerful technique is needed to improve the outcome
and make this technology useful to implement in the treatment strategy of patients with intractable oth­
erwise difficult to treat pain syndromes. Theoretically, optimization of stimulation technology is possible
by actually neutralizing SO and ED, which should lead to mitigating the generation of NP.

We propose an approach to neutralize SO and ED consisting of several steps. Firstly, the nerve
activity is real­time monitored. Secondly, a decision mechanism (called a ‘controller’) is developed that
constructs electrical neurostimulation (ENS) patterns to neutralize SO and ED. Finally, these patterns
are actually applied to the nerve by an electrical stimulator.

To design a SOand ED neutralizing controller, we seek to provide a data­driven real­time (closed­loop)
ENS that suppresses SO and ED in individual neurons in­silico. Because of related stimulation, neu­
rophysiological, and computational limitation constraints, we leverage a scheme known as model pre­
dictive control (MPC). We use a class of models known as fractional­order systems (FOS) as a proxy
to avoid complex models. We show that by applying MPC with a FOS proxy, it is possible to neutralize
SO and ED in three well­established mathematical models of neuropathic pain. Since SO and ED are
considered drivers of NP, suppression might mitigate NP.

To apply our approach, a dedicated setup is required, capable of measuring the pain­provoking
signals in nerves (which are in the range of 10 µV), while embedding processing power and extensions
for simultaneous stimulation. As this setup is currently unavailable, we designed a hardware setup
consisting of a preamplifier, a main amplifier, and corresponding software to control the setup. Analog
band­pass filters, the driven right leg circuit, and shielding techniques were implemented to increase
the maximum signal­to­noise ratio. We validated the setup using specifically designed artificial cali­
bration signals. During in­vivo experiments, recordings of nerve action potentials were performed in
lugworms and in the sciatic nerve of rats, which revealed single­unit and multi­unit neural activity. This
full functional, validated and in­vivo tested neural amplifier for microneurography can thus measure
activity from a peripheral origin, potentially also pain­related activity, such as SO and ED. Additionally,
this setup could implement real­time closed­loop ENS to suppress SO and ED in­vivo.

To close the loop, the suggested (arbitrary shaped) ENS patterns from the in­silico experiments
should be applied at the level of the peripheral nerve. Currently, available ENS systems cannot apply
arbitrary waveforms to biological tissue. We elaborated on methods to implement arbitrary waveforms
using pulse­width modulated (PWM) signals by taking advantage of the biological tissue’s dielectric
properties. Increasing the PWM frequency is required, or a low­pass filter should be added to the
stimulator’s output.

This thesis provides the essential information to eventually apply our theoretical proposed strategy
in­vivo. We conclude this work with a review of the ultimate goal: relief of NP. We outline the next steps
within this project, and we make some recommendations for further research to translate NP mitigation
from theory to practice.
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General introduction

Neuropathic pain
Neuropathic pain (NP) affects approximately seven to ten percent of the general population [1]. NP is
one of the main types of chronic pain, and is defined by the International Association for the Study of
Pain (IASP) as “pain caused by damage or disease affecting the somatosensory nervous system” [2].
NP hugely impacts a patient’s everyday life, either at work or at home [3]. A questionnaire among NP
patients revealed that seventeen percent scored their life as “worse than death” [4, 5].

In principal, the treatment of NP focuses on the source of the pain. However, a myriad of causes
may underlie NP. Any type of injury to the central nervous system (CNS), such as stroke or spinal
cord injury, may lead to the development of a central NP syndrome [6]. Also, damage or disease of the
peripheral nervous system (PNS) may result in NP, e.g., peripheral nerve injuries (PNI) due to trauma or
surgery [6]. One of the main issues of NP caused by a PNI is the development of a neuroma. Neuroma
formation following PNI may occur, and that is the result of an unsuccessful neuro­regeneration process
unable to restore original axonal connections. A neuroma is a tumor­like mass at the proximal end of
a severed nerve that can become very painful [7].

In case a painful neuroma has developed, the first step to relieve pain is by using medications.
Unfortunately, specific neuropathic painkillers do not exist since the exact cause of NP generation is
unknown. Therefore, NP is treated with unconventional analgesics; these medications have other in­
dications in other medical settings and are not normally thought of as analgesics [8]. Considering NP,
an antidepressant such as amitriptyline can be used to treat NP [9]. The medications to treat NP are,
however, frequently ineffective or induce severe side effects, such as drowsiness [10, 11]. In selected
cases, resection of the neuroma may be considered [12], which also does not consistently lead to pain
relief. Patients may still experience NP even after the neuroma has been resected [13, 14]. An alterna­
tive treatment option for NP is electrical neurostimulation (ENS), which can be applied at different target
levels, e.g., the peripheral nerve or spinal cord [15, 16]. In open­loop ENS, pre­programmed patterns
of electrical pulses are applied via electrodes [17, 18]. These systems do not always result in pain relief
for all types of chronic pain either [16]. The downside of open­loop ENS is that the patterns are prede­
fined and independent of any signals in the body that are interpreted by the brain as ‘pain’. Therefore,
open­loop ENS may not even diminish these pain­provoking signals. Furthermore, open­loop ENS is
not effective at all moments of the pain experience caused by fluctuations in signal intensity. In ad­
dition, the side effect of open­loop ENS is the generation of a constant cumbersome sensation in an
area that is larger than the original pain area. As the clinical results are disappointing, and in view
of the high costs, the popularity of this technology is currently waning. Optimization of this potentially
powerful technique is needed to improve the outcome and make this technology useful to implement
in the treatment strategy of patients with intractable otherwise difficult to treat pain syndromes.

Neuromas show unique neurophysiological characteristics. Cell membrane alternations result in
different ion channel distributions [19–21], which in turn result in subthreshold oscillations (SO) and
ectopic discharges (ED) [22]. It is assumed that this behavior could lead to NP generation [22]. Theo­
retically, by neutralizing SO and ED, it should be possible to mitigate the generation of NP [23]. In this
thesis, we defined our working hypothesis as “by neutralizing SO and ED, the generation of NP could
be mitigated”. In other words, we target the NP­causing characteristics of a neuroma.

We propose a methodology to neutralize SO and ED by adapting the ENS pattern real­time in
response to sensed physiological signals. This methodology is called closed­loop and is visualized in
Figure 1; it consists of several steps. Firstly, the nerve’s activity is real­time monitored and compared
to the ultimate goal: neutralizing SO and ED. Secondly, any deviations in the nerve activity are used
by a decision mechanism (called a ‘controller’) to construct an ENS pattern that influences the activity
in the nerve, such that our goal (neutralization of SO and ED) is achieved. Finally, the stimulation
pattern is applied to the nerve by a stimulator. However, the currently available stimulation patterns
are (hardware) limited. This thesis elaborates on several aspects of our proposed methodology: the
controller design, the nerve monitor setup, and the stimulator design.
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2 General introduction
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Goal: neutralizing SO and ED

Figure 1: Proposed closed­loop methodology to neutralize SO and ED, and thereby mitigate the generation of NP. The controller
determines stimulation patterns that (theoretically) neutralize SO and ED. We design the controller in Chapter 1. The controller
requires real­time neural activity; therefore, electrodes are applied to a nerve to monitor the nerve activity, for which an amplifier
is required. We discuss the design of a neural amplifier further in Chapter 2. Next, the stimulation pattern (obtained in the
controller) is applied by the stimulator and is discussed in Chapter 3.

Affect neuroma behavior
In Chapter 1, we discuss the NP mitigation at the neuron level through ENS. In prior research, mathe­
matical models were designed that capture the neuroma’s unique neurophysiological aspects [24–26].
These models describe the SO and ED at a single axon level based on the cell membrane character­
istics or phenomenological properties. We will derive specific ENS patterns to neutralize SO and ED.
These patterns are data­driven and real­time updated and are applied during in­silico experiments on
several mathematical models. In the experiments, we observed that certain ENS patterns could be
found which do neutralize SO and ED. However, translating these in­silico findings to in­vivo validation
experiments, entails several challenges: (i) the neuroma behavior must be quantifiable; and (ii) the
ENS systems should be capable of implementing the developed ENS patterns.

Extended neural signal amplifier for microneurography
Nerve action potentials (AP) are electrical signals generated by the nervous system. They encode
information, which is generated in the sensory organs of the body, and are conducted via peripheral
nerves to the brain. Thereby, the brain receives signals regarding the status of the internal organs and
the outer world. Revealing these APs gives us fundamental knowledge about the functioning of the
human nervous system. For example, this information may yield helpful insights in neural functions
and dysfunctions concerning blood pressure control and thermoregulation [27]. In addition, this infor­
mation may be beneficial during the improvement of hand prostheses functionality [28]. Furthermore,
neuromas generate activity in the PNS (in the form of SO and ED) that is interpreted by the brain as
‘pain’, it is also essential to detect APs that are related to the neuroma. In this way, the unique neuroma
characteristics, in relation to the generation of NP, can be observed in­vivo. Moreover, the effect of
ENS can be monitored.

Neural activity can be recorded in­vivo using microneurography. Commercially available hardware
is available, but is, however, only capable of performing microneurography recordings, i.e., there are no
possibilities of performing calculations online (or real­time) by the hardware itself. In addition, the avail­
able setup does not allow to connect additional hardware, e.g., an ENS system. These shortcomings
emphasize the need for improvement by a dedicated setup, capable of measuring this nerve activity,
while embedding processing power and extensions for simultaneous stimulation. Therefore, we focus
in Chapter 2 on the design of an open­source neural signal amplifier for microneurography that tackles
classical problems with interference rejection, ease of use, and customizability. This design should
include possibilities to perform online calculations, connect additional hardware, and should be able to
implement algorithms that require simultaneous neural recording and stimulation. We designed a full
functional, validated and in­vivo tested microneurography amplifier.
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An arbitrary waveform electrical neurostimulator
Neural signals which run within the peripheral nerve can be blocked or altered in order to reduce the
generation of pain, which is currently done by applying open­loop ENS. Electrical neurostimulators
can activate the tissue using several stimulation techniques [29]. However, the stimulation patterns
as suggested in Chapter 1 (to reduce the generation of pain) cannot be applied by the stimulator right
away: the stimulation hardware is restricted to a number of patterns.

In Chapter 3 we elaborate on a basic stimulator design and discuss extensions that use the bio­
logical tissue’s characteristics to apply arbitrary electrical waveforms. Using these extensions, future
experiments could be performed that validate the SO and ED suppression in­vivo.

Outcome of the thesis
This thesis has several outcomes. Firstly, the in­silico experiments (Chapter 1) show that ENS pat­
terns can be derived which are able to neutralize SO and ED, and so, the generation of NP could
potentially be blocked. These findings contribute to improving ENS technology for the treatment of NP
pain caused by neuromas and different sources with similar phenomenological characteristics. The
content of Chapter 1 has been used for a scientific paper that is currently under review:

U.C.A.M. Verzijl, M.J.A. Malessy, S.G.A. van Neerven, W.A. Serdijn, K. Kolovou­Kouri, V. Giagka, and
S. Pequito (2021). “Mitigating neuropathic pain at the neuron level through electrical neurostimulation:
a model predictive control approach with fractional­dynamics proxy”.

Secondly, our work covers multiple aspects of mitigating NP. Besides the theoretical point of view,
we incorporate the practical side of NP mitigation, such as recording neural activity and stimulating
neural tissue. These combined conditions result in valuable insights into how NP could be mitigated
in future research. Thirdly, this thesis has led to the development of a functional signal amplifier for
microneurography with a user­friendly setup that can be applied to measure the activity in nerves,
while embedding processing power and extensions for simultaneous stimulation. It is a first step in
tackling the limitations of existing hardware and shows promising results for future development aimed
at neutralizing the NP generating activity.

Outline of the thesis
This master thesis reflects research performed in a combined setting of two master programs: Systems
and Control at the Delft University of Technology and the joint program Technical Medicine at the Leiden
University, the Delft University of Technology, and the Erasmus University Rotterdam.

Chapter 1 focuses on neutralizing neuroma behavior in­silico causing neuropathic pain. The chapter
covers the Systems and Control research activities of this project and consists of (i) mathematical
models mimicking neuroma behavior; (ii) the development of a control strategy to neutralize SO and
ED; and (iii) the conduction of various in­silico experiments.

Chapter 2 and Chapter 3 cover the Technical Medicine research activities. Chapter 2 presents the
design of a neural signal amplifier, including the design requirements for successful microneurography
recordings, design considerations, setup validation, and in­vivo experiments. In Chapter 3, the basic
requirements for the design of a stimulator are presented, and several options are introduced to extend
the design to implement arbitrary waveforms using the biological tissue’s dynamics.

Finally, in the general discussion, we reflect on the findings of our research and look into possible
future in­vivo experiments to validate our in­silico findings.
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1
Mitigating neuropathic pain at the neuron
level through electrical neurostimulation:
a model predictive control approach with

fractional­dynamics proxy
Objective: To suppress neuropathic pain at the neuron level through electrical stimulation.
Approach: Today’s electrical stimulators are open­loop or event­triggered. We seek to provide a
data­driven real­time (closed­loop) electrical neurostimulation that suppresses neuropathic pain in­silico
under the assumption that this pain is generated in a neuroma by subthreshold oscillations (SO) and
ectopic discharges (ED) in individual neurons. Because of related stimulation, neurophysiological, and
computational limitation constraints, we leverage a scheme known as model predictive control (MPC).
We use a class of models known as fractional­order systems (FOS) as a proxy to avoid complex models.
We consider three well­established mathematical models of neuropathic pain. The first two models are
based on neurophysiological principles; and the third model is based on a phenomenological modeling
approach. Specifically, we consider the stimulation pattern required to regulate the FOS to regulate
the mathematical model of a neuron.
Main results: We show that by applying MPC with a FOS proxy, it is possible to suppress SO and ED
at the single­axon level.
Significance: Our in­silico results suggest that at a single­axon level, SO and ED can be suppressed.
Since SO and ED are considered drivers of neuropathic pain, suppression might mitigate pain. Our
findings contribute to improving electrical stimulation technology for the treatment of neuropathic pain
caused by neuromas and different sources with similar phenomenological characteristics.

5
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1.1 Introduction
Peripheral nerve injuries (PNI) may result in the development of a neuroma that could become painful [6].
In case a painful neuroma developed, the first step to relieve pain is by using specific neuropathic
painkillers, such as amitriptyline [9]. Unfortunately, these types of medications are frequently ineffec­
tive or induce severe side effects, such as drowsiness [10]. In selected cases, resection of the neuroma
may be considered [12], which also does not always lead to pain relief. Patients may still experience
neuropathic pain (NP) even after the neuroma has been resected [13, 14]. An alternative treatment
option for NP is electrical neurostimulation (ENS), which can be applied at different target levels, e.g.,
the peripheral nerve or spinal cord [15, 16]. In ENS, electrical pulses are applied via electrodes [18].
Patients experience the stimuli as a constantly present (non­painful) tingling sensation, which may, to
a certain extend, mask the pain [16, 30]. Different stimulation schemes can be applied to reduce the
pain. If a stimulation scheme is defined before the application and is, therefore, without real­time (or
‘on the fly’) adjustments, it is called open­loop stimulation [31].

In contrast, closed­loop stimulation is data­driven. It adapts the level and intensity of the provided
stimuli based on measurements of pain­causing processes. This type of stimulation can be either
responsive or with real­time feedback. In a closed­loop setting, measurements of specific processes
that cause pain are used to update the stimulation scheme, thereby aiming at optimization of pain
neutralization. This contrasts with the former that uses a predefined set of strategies to address specific
(broader) scenarios. That said, pain­generating neuromas have unique pathophysiological properties
which do not occur in healthy nervous tissue: (i) an increase of subthreshold oscillations (SO); and (ii)
ectopic discharges (ED). Both SO and ED likely underlie the generation of NP [22, 23]. Our working
hypothesis is that NP generation can be naturalized by suppressing SO and ED, as was suggested in
theory before [23]. In order to suppress SO and ED, a closed­loop ENS need to be developed that will
minimize the rate of the ED and/or the amplitude of the SO.

In what follows, we aim to develop a (data­driven) system that continuously adapts the stimulation
scheme based on real­time tissue measurements to suppress SO and ED on a single­axon level. In
order to develop data­driven real­time ENS to mitigate NP, it is of importance to show first whether
it is theoretically possible to neutralize SO and ED in­silico. We present the fundamentals of mathe­
matical modeling and introduce several mathematical models which capture the neuroma firing pattern.
Next, we enumerate the fundamentals of feedback, model predictive control, and fractional­order mod­
els. These different concepts are applied using simulations on several well­established mathematical
neuroma models to show how SO, ED, and potentially NP can be neutralized. Data­driven real­time
ENS has the potential to optimize the pain neutralizing effect and solve problems related to habitua­
tion and fluctuating pain experience. We envisage that a closed­loop strategy will prevent over­ and
under­stimulation and, therefore, reduce the need for painkillers and enhance the individual’s quality of
life in the long term. Data­driven real­time ENS possesses the potential to treat NP not only caused by
a neuroma, but also pain generated by different sources with similar phenomenological characteristics.

1.2 Data and methods
This section is organized in subsections. Firstly, the nerve anatomy relevant for the development of NP
and action potential generation is reviewed. Subsequently, the current understanding of SO and ED
generation within a neuroma leading to NP will be outlined. Additionally, several mathematical models
that capture the neuropathophysiological processes of SO and ED in the neuroma will be described.
We will conclude this section with our proposed dynamical system­based feedback control scheme to
suppress SO and ED in­silico.

1.2.1 Cell membrane and action potentials
The peripheral nervous system (PNS) connects the central nervous system (CNS) to the end­organs
in the limbs and organs. The PNS is composed of numerous nerves that conduct information from the
periphery to the CNS and vice versa. This information is encoded in action potentials (AP). A peripheral
nerve contains multiple axons depending on its location and type. The axons are the extensions of the
nerve cell (also called neuron), connecting the cell with the end organ in the body. The axon is a hollow
tube­like structure consisting of a membrane, the axolemma, containing cytoplasm or axoplasm. Each
axon throughout its length is wrapped around by multiple Schwann cells. These cells form a myelin
sheath for insulation. Between the Schwann cells lie uninsulated gaps, called nodes of Ranvier. Here,
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the axolemma is exposed to the extracellular space.
Ion channels are located within the nodes. These channels are specialized proteins through which

charged ions can cross themembrane, e.g., sodium (Na+), potassium (K+), and some are leak channels
which will be denoted as 𝑙. These channels are voltage­gated: the voltage (or potential) across the
membrane will open or close a specific channel. The electrical voltage across the membrane that
balances this system is called the equilibrium potential and is often around −65mV. A small external
positive current stimulus of several µAs could lead to a positive membrane inward electrical current flow,
depolarizing the neuron. If the cell membrane potential exceeds the threshold potential, an AP will be
generated. An AP is a fast depolarization, repolarization, and hyperpolarization of a specific part of the
neuron, depolarizing adjacent areas. Consequently, an AP is conducted along an axon, e.g., from the
brain to the muscles in the foot. The AP conduction velocity is increased by saltatory conduction: the
AP jumps from one node of Ranvier to the next node.

1.2.2 Subthreshold oscillations and ectopic discharges
Following axonal damage, the part of the axon which is disconnected from the cell body will disintegrate;
a process called Wallerian degeneration. The proximal part of the axon, still in continuity with the cell
body, will start to elongate and attempt to re­establish its connection with the end organ, a process
called neuroregeneration [32]. This process is often complicated by the presence of damaged fibrous
tissue around the tip of the severed axon. This fibrous tissue will block the outgrowth of axons, which
results in the formation of a neuroma.

In turn, neuroma formation may lead to the development of NP elicited by the spontaneous dis­
charge of the blocked axons in the neuroma [22]. The cell membranes of the axons in a neuroma
show an abnormal distribution and typing of ion channels compared to ‘normal’ axons [19–21]. This
transformed distribution results in an altered response to a small stimulus or depolarization.

Neurophysiological recordings (using patch­clamp techniques) from neuroma tissue show mem­
brane potential fluctuations below the AP generation threshold. These fluctuations have been explained
and abbreviated previously, and are called subthreshold oscillations (SO) [22]. Additionally, random
generation of APs is observed, which are termed ectopic discharges (ED) [22]. SO and ED are occa­
sionally also measured in healthy neurons [23] and are illustrative shown in Figure 1.1. However, in
neuroma tissue, this behavior is amplified [22, 23]. We and others [23] hypothesize that by blocking
SO and ED, the experienced NP can be reduced.

Figure 1.1: Illustration of subthreshold oscillations (SO) and ectopic discharges (ED), as measured with patch­clamp techniques.
The left part of the figure contains SO (frequency of 100Hz and amplitude around 10mV). The right part contains randomly fired
APs.

1.2.3 State­of­the­art mathematical models of spontaneous neuroma discharge
Mathematical models use the mathematical language to describe the behavior of a system. These
models are able to predict the system’s future behavior for specific input conditions. In our context,
mathematical models should describe and predict the neurophysiological signals of a neuroma (SO
and ED) at the level of a single neuron, for different levels of stimulation currents. These models
can then be used for in­silico experiments to show how SO and ED can be inhibited by applying our
feedback control scheme. Several mathematical models of spontaneous neuroma discharge have
been described in the literature, which we briefly discuss here.

State­space models are mathematical models that describe the future behavior of a system through
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a finite set of time­dependent variables 𝑥1(𝑡), ..., 𝑥𝑛(𝑡) ∈ ℝ called state variables, grouped together in the
state vector 𝑥(𝑡) ∈ ℝ𝑛, where time 𝑡 ∈ ℝ+ ≡ {𝑡 ∈ ℝ | 𝑡 ≥ 0} [33]. State variables can represent arbitrary
characteristics of a system. In the case of a cell membrane model, these variables can represent the
flow of ions through a specific ion channel. The input to the model is given by 𝑢(𝑡) ∈ ℝ𝑛𝑢 , and, in our
case, this input is a stimulation current.

The state vector is continuously updated through a set of equations

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), (1.1)

called continuous­time (CT) state­space representation, where 𝑥(0) is the initial condition. Additionally,
�̇�(𝑡) ∶= 𝑑

𝑑𝑡𝑥(𝑡) and 𝑓 ∶ ℝ+ × ℝ
𝑛 × ℝ𝑛𝑢 → ℝ𝑛 is a known function which describes the dynamics of

the neurophysiological system as SO and ED. Differential equation solvers are used to obtain the
time­domain response. If 𝑥(𝑡) is restricted to a set of discrete points 𝑥𝑘 = 𝑘𝑇, where 𝑘 ∈ ℤ+ ≡ (0, 1, 2, ...)
and 𝑇 is the sampling period, the variable 𝑥𝑘 is called the discrete­time (DT) variable. A DT state­space
is written as

𝑥𝑘+1 = 𝑓(𝑘, 𝑥𝑘 , 𝑢𝑘), (1.2)

where 𝑥0 is the initial condition, 𝑢𝑘 ∈ ℤ𝑛𝑢 and 𝑓 ∶ ℤ+ × ℤ𝑛 × ℤ𝑛𝑢 → ℝ𝑛 [34].
In reality, function 𝑓 (CT or DT) is often a simplification of the actual system. After time 𝑡 or steps 𝑘,

the model’s state can deviate from the actual system’s state. State estimation is then applied to update
the mathematical model’s state using measurements from the real system to overcome system­model
mismatch [33].

1.2.3.1 Extended Hodgkin­Huxley model
In 1952, Hodgkin and Huxley described the AP. They modeled the cell membrane by using a mathemat­
ical state­space representation [35]. The model since then bears their name: the Hodgkin­Huxley (HH)
model. It expresses the current flow over time 𝑡 ∈ ℝ+, through a sodium (𝐼𝑁𝑎+(𝑡) ∈ ℝ), a potassium
(𝐼𝐾+(𝑡) ∈ ℝ) and a leak channel (𝐼𝑙(𝑡) ∈ ℝ) [35]. The total current through the membrane (𝐼(𝑡) ∈ ℝ) is
defined as

𝐼(𝑡) =𝐶𝑚�̇�𝑚(𝑡) +
𝐼𝑁𝑎+ (𝑡)

⏜⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⏜�̄�𝑁𝑎+𝑚(𝑡)3ℎ(𝑡) (𝑣𝑚(𝑡) − 𝐸𝑁𝑎+)

+
𝐼𝐾+ (𝑡)

⏜⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏜�̄�𝐾+𝑛(𝑡)4(𝑣𝑚(𝑡) − 𝐸𝐾+)+
𝐼𝑙(𝑡)

⏜⎴⎴⎴⎴⏞⎴⎴⎴⎴⏜�̄�𝑙(𝑣𝑚(𝑡) − 𝐸𝑙) . (1.3)

In Equation (1.3), 𝐶𝑚 ∈ ℝ+ is the membrane capacitance and 𝑣𝑚(𝑡) ∈ ℝ a state variable representing
the membrane potential. Parameters �̄�𝑁𝑎+ ∈ ℝ+, �̄�𝐾+ ∈ ℝ+, and �̄�𝑙 ∈ ℝ+ represent the channel’s
conductance, and 𝐸𝑁𝑎+ ∈ ℝ, 𝐸𝐾+ ∈ ℝ, and 𝐸𝑙 ∈ ℝ the Nernst potential, or resting potential. The HH
model contains several gating parameters; namely,𝑚(𝑡) ∈ [0, 1], ℎ(𝑡) ∈ [0, 1], and 𝑛(𝑡) ∈ [0, 1]. These
are state variables and are described by first order systems

�̇�(𝑡) = 𝑚∞(𝑣𝑚(𝑡)) − 𝑚(𝑡)
𝜏𝑚(𝑣𝑚(𝑡))

, (1.4)

ℎ̇(𝑡) = ℎ∞(𝑣𝑚(𝑡)) − ℎ(𝑡)
𝜏ℎ(𝑣𝑚(𝑡))

, (1.5)

�̇�(𝑡) = 𝑛∞(𝑣𝑚(𝑡)) − 𝑛(𝑡)
𝜏𝑛(𝑣𝑚(𝑡))

, (1.6)

where �̇�(𝑡) ∈ ℝ, ℎ̇(𝑡) ∈ ℝ, and �̇�(𝑡) ∈ ℝ. The (membrane voltage dependent) steady­state values
for activation are indicated by 𝑚∞(𝑣𝑚(𝑡)) ∈ [0, 1], ℎ∞(𝑣𝑚(𝑡)) ∈ [0, 1], and 𝑛∞(𝑣𝑚(𝑡)) ∈ [0, 1]. Lastly,
𝜏𝑚(𝑣𝑚(𝑡)) ∈ ℝ+, 𝜏ℎ(𝑣𝑚(𝑡)) ∈ ℝ+, and 𝜏𝑛(𝑣𝑚(𝑡)) ∈ ℝ+ represent the (membrane voltage dependent)
time constants of the different ion channels. The steady­state values for activation and time constants
are ion channel­specific: by adjusting these two parameters, we can capture the dynamics of different
subtypes of, e.g., Na+ ion channels.

The mathematical HH model from Equation (1.3) appeared to be insufficient to capture SO and ED
completely. Others extended the HH model to include a fast (F), medium (M), and slow (S) sodium
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channel, and neglected the potassium channel, based on the cell membrane characteristics of a neu­
roma [24]. The modified HH then became

𝐼(𝑡) = 𝐶𝑚�̇�𝑚(𝑡) + 𝐼𝐹𝑁𝑎+(𝑡) + 𝐼𝑀𝑁𝑎+(𝑡) + 𝐼𝑆𝑁𝑎+(𝑡) + 𝐼𝑙(𝑡), (1.7a)
𝐼𝐹𝑁𝑎+(𝑡) = �̄�𝐹𝑁𝑎+𝑚𝐹(𝑡)3ℎ𝐹(𝑡)(𝑣𝑚(𝑡) − 𝐸𝑁𝑎+), (1.7b)
𝐼𝑀𝑁𝑎+(𝑡) = �̄�𝑀𝑁𝑎+𝑚𝑀(𝑡)ℎ𝑀(𝑡)(𝑣𝑚(𝑡) − 𝐸𝑁𝑎+), (1.7c)
𝐼𝑆𝑁𝑎+(𝑡) = �̄�𝑆𝑁𝑎+𝑚𝑆(𝑡)ℎ𝑆(𝑡)(𝑣𝑚(𝑡) − 𝐸𝑁𝑎+). (1.7d)

The different 𝑚∞(𝑣𝑚(𝑡)), 𝜏𝑚(𝑣𝑚(𝑡)), ℎ∞(𝑣𝑚(𝑡)), and 𝜏ℎ(𝑣𝑚(𝑡)) constants of each channel (S, M, and
F) were modified such that they fell within the range of a dorsal root ganglion (DRG) neuron of a rat [24].

Figure 1.2 shows the membrane voltage over time for several input currents for the mathematical
model described by Equations (1.7a) ­ (1.7d). This model resulted in SO and ED, with the same proper­
ties as seen during ex­vivo neurophysiological recordings [36]. See Appendix A.1.1 for further details
on the influence of different ion channels.
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Figure 1.2: Different responses (i.e., outputs captured by 𝑣𝑚(𝑡)) upon different stimulation inputs 𝐼(𝑡) to the extended HH model
described by Equations (1.7a) ­ (1.7d).

1.2.3.2 Extended Morris­Lecar model
APs can also be modeled using other mathematical models. Morris and Lecar introduced a model
that also describes the current flow through the membrane. Although the Morris­Lecar (ML) model
uses potassium and leak channels, a calcium channel (Ca2+) was implemented instead of a sodium
channel [37]. Thereby, it was assumed that the Ca2+ ion channel is much faster (i.e., almost instanta­
neously) as compared to the K+ channel at all times 𝑡 ∈ ℝ+. Formally, 𝜏𝐶𝑎2+(𝑣𝑚(𝑡)) → 0+. Therefore,
the dynamics of the Ca2+ channel become neglectable. The mathematical ML model describes the
current through the cell membrane as

𝐼(𝑡) =𝐶𝑚�̇�𝑚(𝑡) +
𝐼𝐶𝑎2+ (𝑡)

⏜⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏜�̄�𝐶𝑎2+𝑀∞(𝑣𝑚(𝑡))(𝑣𝑚(𝑡) − 𝐸𝐶𝑎2+)

+
𝐼𝐾+ (𝑡)

⏜⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏜�̄�𝐾+𝑁(𝑡)(𝑣𝑚(𝑡) − 𝐸𝐾+)+
𝐼𝑙(𝑡)

⏜⎴⎴⎴⎴⏞⎴⎴⎴⎴⏜�̄�𝑙(𝑣𝑚(𝑡) − 𝐸𝑙), (1.8a)

�̇�(𝑡) = 𝑁∞(𝑣𝑚(𝑡)) − 𝑁(𝑡)𝜏𝑁(𝑣𝑚(𝑡))
, (1.8b)

where �̄�𝐶𝑎2+ ∈ ℝ+ is the conductivity of the calcium channel and 𝐸𝐶𝑎2+ ∈ ℝ the Nernst potential. The
functions 𝑀∞(𝑣𝑚(𝑡)) ∈ [0, 1], 𝑁∞(𝑣𝑚(𝑡)) ∈ [0, 1], and 𝜏𝑁(𝑣𝑚(𝑡)) ∈ [0, 1] are only dependent on 𝑣𝑚(𝑡).
The reduced system has two state variables: 𝑣𝑚(𝑡) and 𝑁(𝑡), which represent the membrane voltage
and a recovery variable [37].

Next, Rho and Prescott made adaptions to the ML model such that it captured SO and ED [25].
They modified the functions which describe 𝑀∞(𝑣𝑚(𝑡)), 𝑁∞(𝑣𝑚(𝑡)) and 𝜏𝑁(𝑣𝑚(𝑡)) and added a weak
noise term to Equation (1.8a). This noise approximates the effect of stochastic channel opening. The
extended ML model became

𝐼(𝑡) =𝐶𝑚�̇�𝑚(𝑡) + 𝐼𝐶𝑎2+(𝑡) + 𝐼𝐾+(𝑡) + 𝐼𝑙(𝑡) + 𝑛(𝑡), (1.9)
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where 𝑛(𝑡) ∼ 𝒩(0, 𝜎2) represents an additive white Gaussian noise (AWGN) source with 𝜎 = 20mV.
We refer to Appendix A.1.2 for further details on the ML model. In Figure 1.3, SO and ED for different
inputs are shown using the model from Equation (1.9).
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Figure 1.3: Different responses (i.e., outputs captured by 𝑣𝑚(𝑡)) upon different stimulation inputs 𝐼(𝑡) to the extended ML model
described by Equation (1.9).

1.2.3.3 Map­based model
The mathematical HH and ML models were based on neurophysiological principles. However, SO
and ED can also be modeled by neglecting the dynamics of the individual ion channels, and by only
describing the membrane potential patterns. This is called a phenomenological modeling approach. A
map­based (MB) model captures the dynamical properties of a neuron, without modeling specific ion
channels [38]. The basis of a MB model entails the following dynamics

𝑥𝑘+1 = 𝑓(𝑥𝑘), (1.10)

where 𝑓(𝑥𝑘) = {
𝑣(𝑥𝑘) if 𝑥𝑘 < 𝜃,
𝑣𝑠 if 𝜃 < 𝑥𝑘 < 𝑣𝑠 ,
𝑣𝑟𝑒𝑠𝑒𝑡 if 𝑥𝑘 ≥ 𝑣𝑠 ,

with 𝑥𝑘 ∈ ℝ representing the membrane potential in mV at time 𝑘 ∈ ℤ+ and 𝜃 ∈ ℝ representing the
firing threshold of a neuron. The spike voltage is indicated by 𝑣𝑠 ∈ ℝ, the membrane voltage after a
spike by 𝑣𝑟𝑒𝑠𝑒𝑡 ∈ ℝ and 𝑣(𝑥𝑘) ∶ ℝ → ℝ can be an arbitrary function to shape the AP. This model is
defined in discrete time steps 𝑘, thus without having a unit as ‘ms’.

The standard MB model appeared to be incapable of including SO and ED. In order to exhibit SO
and ED, Shilnikov and Rulkov extended the MB model by introducing an additional state. By doing so
the model became

𝑥𝑘+1 = 𝑓𝛼(𝑥𝑘 , 𝑦𝑘 + 𝛽) + 𝜁𝑘 , (1.11a)
𝑦𝑘+1 = 𝑦𝑘 − 𝜇(𝑥𝑘 + 1 − 𝜎), (1.11b)

where 𝑥𝑘 ∈ ℝ represents the membrane potential and 𝑦𝑘 ∈ ℝ an arbitrary state that can turn the spike
generator on or off [26]. The (dimensionless) injected current is modeled by 𝜎 ∈ ℝ, 𝛼, 𝛽 ∈ ℝ are
arbitrary tuning parameters and 0 < 𝜇 ≪ 1 is the coupling parameter of both states. They assumed
that noise influences the spiking behavior of a neuron. This noise was modeled by an AWGN source,
i.e., 𝜁𝑘 ∼ 𝒩(0, 𝑠2). A piecewise continuous function was defined for 𝑓𝛼(𝑥𝑘 , 𝑦𝑘 + 𝛽) ∶ ℝ × ℝ → ℝ. For
further details see Appendix A.1.3.

The AWGN source, modeled by 𝜁𝑘, randomly shifts 𝑥𝑘+1, which will constantly move the stable point
of the system. In the time domain, this resulted in SO. If stable points are absent, they will appear as
ED in the time domain. Figure 1.4 illustrates the MB model for 𝜎 ∈ {−0.005,−0.001, 0.001}.
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Figure 1.4: Different responses (i.e., outputs captured by 𝑥𝑘) upon different stimulation inputs 𝜎 to the extended MB model
described by Equation (1.11a) and (1.11b).

1.2.4 Dynamical system­based feedback control
In an open­loop system, the input of a system does not change upon the system’s output. Simply
speaking, in the case of ENS for NP, the applied stimulus is independent of the presence of SO and
ED. If the opposite occurs, then we have a closed­loop system, which is also called feedback control.
The dependency can be defined such that the system will achieve a certain objective. The goal of
feedback control is to find an input signal which steers the state from its initial state 𝑥(0) = 𝑥𝑖𝑛𝑖𝑡 ∈ ℝ𝑛
to a destination state 𝑥(𝑇) = 𝑥𝑑𝑒𝑠 ∈ ℝ𝑛 at destination time 𝑇 ∈ ℝ+ by adapting 𝑢(𝑡) ∈ ℝ𝑛𝑢 for 𝑡 ∈ [0, 𝑇],
and for a desirable sequence of instances of 𝑇. In our case, the input signal should be an electrical
stimulus that will steer the state away from causing NP by inhibiting SO and ED. Thus, we aim to
establish a control scheme to find an input 𝑢(𝑡) ≡ 𝑢(0), ..., 𝑢(𝑇) that suppresses SO and ED. To this
end, we leveraged one type of control scheme, namely Model Predictive Control (MPC), to find 𝑢(𝑡).

1.2.4.1 Model Predictive Control
A control strategy was used to steer the output of a process to a specific objective while satisfying a set of
constraints on the state and the input. These constraints may represent hardware limitations or patient
safety requirements (e.g., limiting the maximum stimulus current to prevent tissue damage). MPC uses
the system’s mathematical model to predict how the output of a process will respond to an arbitrary
input. For a specific time horizon, called the prediction horizon 𝑃, the MPC solves an optimization
problem to find an input sequence that steers the state towards the specified goal. After solving the
optimization problem, a subsection of the prediction horizon (the control horizon 𝑀) is applied to the
process. Repeating this process at a regular sampling time interval results in closed­loop feedback.

Since control devices are often digital, we require DT models and controller types. Therefore, all
the models defined in CT were cast as DT systems; see [34] for further details.

To steer the state towards a certain goal, we pursue to make the states within the prediction horizon
(𝑥𝑘+𝑗 for 𝑗 = 1, 2, ..., 𝑃) look like the predefined reference 𝑟𝑘+𝑗 for 𝑗 = 1, 2, ..., 𝑃 by adapting 𝑢𝑘+𝑗 for 𝑗 =
0, 1, ..., 𝑃 − 1. An optimization function can be defined that penalizes any difference between the future
states within the prediction horizon and the predefined reference using a weight matrix 𝑄. Moreover, to
limit large fluctuations on the input 𝑢𝑘+𝑗 for 𝑗 = 0, 1, ..., 𝑃 − 1, the input can be penalized using a weight
matrix 𝑅.

In mathematical terms, in the discretized MPC framework, the goal is to find an optimal control input
𝑢∗𝑘+𝑗 for 𝑗 = 0, 1, ..., 𝑃 − 1 that minimizes the quadratic cost function of the form

(cost function) minimize
𝑢𝑘 ,...,𝑢𝑘+𝑃−1

𝔼{
𝑃
∑
𝑗=1
‖𝑥𝑘+𝑗 − 𝑟𝑘+𝑗‖2𝑄𝑘+𝑗 +

𝑃−1
∑
𝑗=0

‖𝑢𝑘+𝑗‖2𝑅𝑘+𝑗}

(constraints) subject to 𝑥𝑘 = observed or estimated current state,
𝑥𝑘+𝑗+1 = 𝑓(𝑘 + 𝑗, 𝑥𝑘+𝑗 , 𝑢𝑘+𝑗), 𝑗 = 0, 1, ..., 𝑃 − 1,
other linear constraints on 𝑥𝑘+1, ..., 𝑥𝑘+𝑃 , 𝑢𝑘 , ..., 𝑢𝑘+𝑃−1,

(1.12)

where ‖𝑥𝑘+𝑗 − 𝑟𝑘+𝑗‖2𝑄𝑘+𝑗 = (𝑥𝑘+𝑗 − 𝑟𝑘+𝑗)⊺𝑄𝑘+𝑗(𝑥𝑘+𝑗 − 𝑟𝑘+𝑗) and ‖𝑢𝑘+𝑗‖2𝑅𝑘+𝑗 = (𝑢𝑘+𝑗)⊺𝑅𝑘+𝑗(𝑢𝑘+𝑗). Fur­
thermore, 𝑄𝑘+1, ..., 𝑄𝑘+𝑃 ∈ ℝ𝑛×𝑛 and 𝑅𝑘 , ..., 𝑅𝑘+𝑃−1 ∈ ℝ𝑛𝑢×𝑛𝑢 are given positive semidefinite matrices
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representing a weight, penalizing state deviations or large input changes, respectively [39]. The pre­
diction horizon is indicated by 𝑃.

Spontaneous neuroma discharge is difficult to capture with state­space models and often results
in highly nonlinear models, see Section 1.2.3 for the extended HH model, the extended ML model,
and the map­based model. In addition, the models can only predict the system’s evolution accurately
for a small time interval. Furthermore, using the presented (highly nonlinear) mathematical neuroma
models within the MPC resulted in computationally intensive optimization problems that could not be
solved within the sampling time of simple hardware (e.g., implantable stimulation devices).

Therefore, we propose to leverage a class of parametric mathematical models with few interpretable
parameters, that can serve as a proxy for rather complex mathematical models. These proxies do not
show the same behavior as the well­known models. Nevertheless, they capture key statistical prop­
erties, making them useful within the MPC scheme, while overcoming difficulties with computationally
intensive optimization problems. We will discuss these models in further detail in Section 1.2.4.2 before
we incorporate them into our proposed control scheme described in Section 1.2.4.3.

1.2.4.2 Fractional­order systems
Neurophysiological processes often poses properties (regarding the current state of these processes)
which show a non­negligible dependence on several past states. These properties could be sufficient to
create a mathematical model which may serve as a proxy for the (complex) well­established neuroma
models. Therefore, we introduce a fractional­order system (FOS)

Δ𝛼�̂�𝑘+1 = 𝐴�̂�𝑘 + 𝐵𝑢𝑘 + 𝐵𝑤𝑘 𝑤𝑘 , �̂�0 = 0, (1.13)

where �̂�𝑘 ∈ ℝ𝑛 represents the state vector of the FOS, 𝐴 ∈ ℝ𝑛×𝑛 is the state coupling matrix and
𝛼 ∈ ℝ𝑛+ the vector of fractional­order coefficients. Here, 𝑤𝑘 denotes an AWGN vector following an
𝒩(0, Σ) distribution (where Σ ∈ ℝ𝑛×𝑛 represents the covariance matrix) that is scaled by matrix 𝐵𝑤𝑘 with
appropriate dimensions. The input to the system is given by 𝑢𝑘 ∈ ℝ𝑛𝑢 , and matrix 𝐵 ∈ ℝ𝑛×𝑛𝑢 is a
scaling matrix that describes how the stimuli are provided to different states and these are referred to
as the input matrix.

To illustrate the non­negligible dependency in time of neuroma dynamics upon the past states, the
sample autocorrelation function for the extended ML model is provided in Figure 1.5. This function is
decaying slowly with non­negligible values for increasing lags. This suggests that the system has an
intrinsic long­range memory which is often modeled well with fractional systems [40, 41]. As such, the
statistical properties of the highly nonlinear models are captured by a linear FOS by determination of
the fractional­order coefficients [42, 43].
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Figure 1.5: Sample autocorrelation of the extended ML model. This figure illustrates that the system has significant intrinsic
long­range memory.

These FOSs can be used within the MPC framework to retrieve an input that regulates the FOS
and, simultaneously, informative to regulate the real model. Simply speaking, we can use �̂�𝑘 (i.e., the
state estimate using linear FOS) instead of 𝑥𝑘 (i.e., the state of the nonlinear system describing the
true mathematical model) within the MPC scheme.
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1.2.4.3 Proposed dynamical system­based feedback control scheme
In Figure 1.6, we show our applied methodology. First, we used system identification (SI) to find the
parameters of a FOS using one of the (detailed) mathematical models presented in Section 1.2.3. Next,
we defined the cost function and constraints for the MPC as specified by Equation (1.12) by using the
obtained FOS instead of the real model. Therefore, we adjusted the third line of Equation (1.12) to

Δ𝛼�̂�𝑘+𝑗+1 = 𝐴𝑘+𝑗�̂�𝑘+𝑗 + 𝐵𝑘+𝑗𝑢𝑘+𝑗 , 𝑗 = 0, 1, ..., 𝑃 − 1. (1.14)

Within the optimization objective, we penalized the error 𝑒𝑘+1, ..., 𝑒𝑘+𝑃 between reference 𝑟𝑘+1, ..., 𝑟𝑘+𝑃
and the predicted future states of the FOS �̂�𝑘+1, ..., �̂�𝑘+𝑃. After solving the optimization problem for the
prediction horizon 𝑃, we applied the derived optimal inputs 𝑢∗𝑘 , 𝑢∗𝑘+1..., 𝑢∗𝑘+𝑀−1 to the FOS and the real
mathematical model for the control horizon 𝑀 to update 𝑘 with 𝑘 + 𝑀 − 1. We used a state estima­
tor – more specific a Kalman filter – to update the states of the FOS �̂�𝑘+1, ..., �̂�𝑘+𝑃 by using the real
mathematical model’s output 𝑥𝑘+1, ..., 𝑥𝑘+𝑃. In this way, state estimates of the FOS were derived us­
ing real mathematical model’s input and output. Thereafter, we solved the optimization problem again
for the next time step 𝑘 to find the optimal inputs 𝑢∗𝑘 , 𝑢∗𝑘+1..., 𝑢∗𝑘+𝑀−1 for the subsequent control horizon𝑀.

MPC Mathematical
model

FOS

State
observer

𝑢∗𝑘𝑟𝑘
+

𝑒𝑘 𝑥𝑘

𝑥𝑘

�̂�𝑘
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−

Figure 1.6: Our proposed dynamical system­based feedback control scheme. The reference is indicated by 𝑟𝑘, the state vector
of the FOS by �̂�𝑘, and the state vector of one of the well­known mathematical models by 𝑥𝑘. We used a Kalman filter as a state
observer to update �̂�𝑘, using 𝑥𝑘 such that the state estimates of the FOS are derived using the real mathematical model’s input
and output. The error 𝑒𝑘 between the reference and state vector of the FOS was used within the MPC scheme to find an optimal
input 𝑢∗𝑘.
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1.3 Simulation results
In the following, we will show the results of the application of our proposed feedback. We used the
fractional­order MPC as a proxy for the three well­established mathematical models in the context of
mitigating the SO and ED described above. Notice that the FOS in Equation (1.13) is described by
scalar parameters 𝐴 and 𝛼.

1.3.1 Extended Hodgkin­Huxley model
1.3.1.1 System identification from the model
To utilize 𝐴 and 𝛼 of the FOS in Equation (1.13), we simulated the extended HH model for 2500ms –
sampled at 100 kHz with a stimulation current of 0.5µA. Using these parameters, SO and ED could
clearly be identified. Lowering the stimulation current will diminish the SO and ED, while lowering the
sampling frequency results in incorrectly shaped APs. We created a subsection from the data between
750 and 900ms and by using the method as in [42], we obtained 𝐴 = −0.0098 and 𝛼 = 1.1532. Any
interval could be chosen for the subsection, as long as it contains some SO and ED. Furthermore, we
assumed that 𝐵 = 1.

1.3.1.2 An MPC with fractional­dynamics proxy approach
We created a predictive model using a (𝑝 = 15)­step (0.15ms) approximation of the FOS plant, with a
(𝑃 = 20)­step (0.5ms) prediction horizon and a (𝑀 = 10)­step (0.2ms) control horizon. These values
were chosen to create a predictive model that takes into account the non­negligible dependency of the
last 15 steps and uses this dependency to predict the system’s next 20 future outputs. Increasing these
values results in more computational problems, while a decrease could lead to a predictive model that
captures too few statistical properties of the real neuroma model.

We have set the reference to achieve a membrane potential of −57mV. In this range, the SO
and ED should be inhibited. The predictive model was used within the MPC framework as shown
in Equation (1.12). We defined 𝑄𝑘 = 𝐼𝑛 and 𝑅𝑘 = 𝐼𝑛𝑢 to penalize the importance of the membrane
voltage and for overly aggressive stimulation. The safety constraints for the stimulation current were
implemented as −5 ≤ 𝑢𝑘 ≤ 5. We applied the obtained inputs to the FOS and to the HH model; a
Kalman state estimator with disturbance and noise covariance data 𝑄 = 1 and 𝑅 = 1, respectively, was
used to update the states of the FOS using the outputs of the HH model.

The results are presented in Figure 1.7: the open­loop response (red curve) contains SO and ED,
while the closed­loop response (blue curve) does not show this behavior within the controller active
interval. These results indicate that it is possible to find pulse­shaped stimuli that suppress SO and ED
with our proposed dynamical system­based feedback control scheme.
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Figure 1.7: An MPC with a fractional­dynamics proxy approach applied to the extended HH model. The red curve shows the
open­loop response (without any feedback). We created a predictive model using a (𝑝 = 15)­step (0.15ms) approximation of the
FOS plant, with a (𝑃 = 20)­step (0.5ms) prediction horizon and a (𝑀 = 10)­step (0.2ms) control horizon. The simulation results
are represented by the blue curve. The reference for the membrane potential was −57mV. The controller was active between
1000 and 2500ms. The green curve indicates the applied stimulation current.
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1.3.2 Extended Morris­Lecar model
1.3.2.1 System identification from the model
The extended MLmodel was sampled at 20 kHz and simulated for 800ms, while the applied stimulation
current was 32µA to obtain SO and ED. The required stimulation current was much higher than the
current applied to the extended HHmodel. We will further address these findings in the discussion. We
used the interval between 375 and 400ms as input signal for system identification of the FOS. However,
any interval should suffice, as long as it contains SO and ED. Using the method proposed in [42], we
obtained 𝐴 = −0.01 and 𝛼 = 1.1502. Thereby, we assumed that 𝐵 = 1.

1.3.2.2 An MPC with fractional­dynamics proxy approach
For this model, we created a predictive model with a (𝑝 = 15)­step (0.75ms) approximation of the
FOS plant, a (𝑃 = 20)­step (1ms) prediction horizon and a (𝑀 = 10)­step (0.5ms) control horizon. To
inhibit SO and ED, we set the membrane potential’s reference at −40mV, which equals the equilibrium
potential of this model if the stimulation current equals 0. The membrane voltage and overly aggressive
stimulation were penalized with 𝑄𝑘 = 𝐼𝑛 and 𝑅𝑘 = 𝐼𝑛𝑢 . The safety constraints for the stimulation current
were set as −5 ≤ 𝑢𝑘 ≤ 5. A Kalman state estimator with disturbance and noise covariance data 𝑄 = 1
and 𝑅 = 1, respectively, was implemented to update the FOS states using the ML model’s outputs.
Figure 1.8 shows the results of this simulation. With this strategy, the SO and ED were also inhibited.
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Figure 1.8: An MPC with a fractional­dynamics proxy approach applied to the extended ML model. The open­loop response
is given by the red curve. The predictive model was a (𝑝 = 15)­step (0.75ms) approximation of the FOS plant, using a
(𝑃 = 20)­step (1ms) prediction horizon and a (𝑀 = 10)­step (0.5ms) control horizon. The response is shown by the blue curve.
The reference for the membrane potential was −40mV. Suppression of SO and ED could be observed within the controller
active interval (between 100 and 350ms). The green curve indicates the applied stimulation current.
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1.3.3 Extended map­based model
1.3.3.1 System identification from the model
The extended HH and MLmodels are based on neurophysiological principles. The extended MBmodel
is a phenomenological model that describes SO and ED patterns, only based on arbitrary time and
membrane potential units. The FOS described in Equation (1.13) was identified using a simulation
(with 𝜎 = −0.001) of the MB model for 2000 time steps, where the subsection between time step
number 1 and 1550 was used to perform SI. We obtained 𝐴 = 1.0131 and 𝛼 = −0.0083, and assumed
furthermore that 𝐵 = 1.

1.3.3.2 An MPC with fractional­dynamics proxy approach
The predictive model that we created was based on a (𝑝 = 15)­step approximation of the FOS plant, a
(𝑃 = 50)­step prediction horizon, and a (𝑀 = 10)­step control horizon being arbitrary time units. Noise
𝜁𝑘 in the MB model initiates SO and ED by constantly moving or canceling the model’s stable point. For
further details, we refer to Appendix A.1.3.

To inhibit SO and ED, we aimed to steer the state in a direction such that 𝜁𝑘 had less effect on
the model’s behavior. By pushing the stable point towards 𝑥𝑛 ≤ −1.5, noise 𝜁𝑘 still resulted in SO,
without any ED. Therefore, we defined the state reference at −1.5, although this state value can never
be reached due to the system characteristics. We completed our strategy by penalizing the membrane
voltage and overly aggressive stimulation with 𝑄𝑘 = 𝐼𝑛 and 𝑅𝑘 = 𝐼𝑛𝑢 . To limit the stimulation current,
we set −0.5 ≤ 𝑢𝑘 ≤ 0.5. Due to the arbitrary units of the stimulation current, these saturation limits are
smaller than applied to the two models described above. Again, we used a Kalman state estimator with
disturbance and noise covariance data 𝑄 = 1 and 𝑅 = 1, respectively, to update the states of the FOS.
The results show SO and ED suppression (Figure 1.9). Note the arbitrary x­axis and y­axis units: this
model does not describe the membrane potential in mV nor the stimulation current in µA. Note also
that the reference state value of −1.5 was never reached.
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Figure 1.9: An MPC with a fractional­dynamics proxy approach was applied to the extended MB model. The open­loop response
is illustrated by the red curve. This model is a phenomenological model. The time scale and membrane potential have arbitrary
units. The predictive model was a (𝑝 = 15)­step approximation of the FOS plant, with a (𝑃 = 20)­step prediction horizon and a
(𝑀 = 10)­step control horizon. The reference for the membrane potential was −1.5, and the red curve shows the closed­loop
response. Within the controller active interval (between 100 and 350), suppression of SO and ED could be observed. The green
curve represents the applied stimulation current.
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1.4 Discussion
1.4.1 Mitigating neuropathic pain
Currently, NP is regarded as being caused by the firing of neurons in a neuroma, which in turn leads to
SO and ED. Theoretically, by neutralizing SO and ED, it should be possible to mitigate the generation
of NP. To capture SO and ED formation, three models were proposed: an extended HH model [24],
an extended ML model [25], and an extended MB model [26]. The underlying elements in the three
mathematical neuroma models of SO and ED are different.

The extended HH and ML models describe the ion channels in the cell membrane. Where the HH
model is based on sodium, potassium, and leak channels, the ML is based on calcium, potassium,
and leak channels. Both models can capture similar membrane potential patterns, despite the different
characteristics between sodium and calcium channels. Interestingly, the stimulation current required to
obtain a similar input­output response for the ML model, when compared to the HH model, differs by a
factor of 64, while they both model SO and ED. This is important while implementing the control strategy
in­vivo in the future: stimulation amplitude scaling may be required to obtain the correct behavior.

The extended MB model is based on a phenomenological modeling approach, bypassing the prop­
erties and function of different ion channels in the cell membrane. This model focuses on capturing
similar patterns as the HH and ML models. As a result, the time scale, the output, and the stimulation
‘current’ have arbitrary units. This makes it difficult to compare the output ‘voltages’ and stimulation
‘currents’ of the MB model to the HH and ML models. Although the MB model is not based on any bio­
logical cell membrane characteristics, our proposed dynamical system­based feedback control scheme
shows outstanding results in terms of SO and ED suppression.

These models are highly nonlinear. In order to avoid the usage of a model of great complexities
within the MPC framework, we used a FOS and showed that it could capture the statistical properties
of the three well­known neuroma models. By regulating the FOS, our results (see Section 1.3, and
corresponding Figure 1.7, Figure 1.8, and Figure 1.9, respectively) imply that it is possible to regulate
the real neuroma model. In all simulations, the obtained input to suppress SO and ED resembled
pulse­shaped patterns.

Our results suggest that the proposed scheme enables a data­driven real­time approach to neu­
tralize SO and ED. These results may contribute to the development of ENS systems to mitigate NP.
Furthermore, the variability in the stimulation patterns observed can equip us with a mechanism to
solve problems related to lead migration, habituation, and fluctuating pain experience. We envisage
that a closed­loop strategy will prevent over­ and under­stimulation and, therefore, reduce the need
for painkillers and enhance the individual’s quality of life in the long term. Data­driven real­time ENS
possesses the potential to treat NP caused by neuromas and different sources with similar phenomeno­
logical characteristics.

1.4.2 Computational implementation remarks
One of the disadvantages of using the well­established neuroma models for MPC is that it can become
too computationally intensive to implement on (simple) stimulation hardware. Therefore, we used a
FOS as a proxy for the ground truth mathematical model and provided evidence that this could be a
feasible and computationally efficient alternative for the well­established models. However, one could
argue that this approach still results in computationally intensive optimization problems, while a linear
model, one that only uses the last state to determine the current one, would be sufficient as well. Hence,
we performed simulations using a truncation that boils down to a linear model approximation (i.e., with
𝑝 = 1). These simulation results lead to the conclusion that it might not be possible to attain the desired
goal. For further details see Appendix A.2.

1.4.3 State­of­the­art versus proposed control
ENS technology is already applied in neuropathic pain treatment, but the level of pain reduction is
generally not sufficient and side effects are frequently present. Open­loop and closed­loop stimulators
are available to treat the symptoms of neuropathic pain [17, 31]. These stimulators target the spinal
cord or the DRG. A rate of stimulus pulses is applied, and the patient experiences a constantly present
(non­painful) tingling that masks the pain. The closed­loop stimulator of Saluda Medical monitors the
tissue level activation (e.g., the result of summation of many action potentials) at the spinal cord and
aims to keep this level constant by adapting the stimulator’s intensity [31]. By doing so, the stimulator
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is able to compensate for lead dislocation and movement of the spinal cord, which is one of the disad­
vantages of ENS. However, the effectiveness of the treatment – the percentage pain relief (PPR) – is
not monitored. Furthermore, the system does not recognize any fluctuations in the experienced level
of pain or pain habituation, and therefore, it does not compensate for these shifts.

We focused on ENS application at the level of the peripheral nerve and explored the possibilities to
suppress ED and SO on a single­axon level. The advantage of stimulation at the peripheral nerve level
is, that it is less invasive than spinal cord stimulation in terms of the implantation of electrodes. Addi­
tionally, it might provide stimulation of a targeted area relate to the painful nerve, rather than involving
stimulation of an entire region, which is actually larger than the painful area. To distinguish the effect
of open­loop stimulation on the suppression of SO and ED, we also applied biphasic pulses, compa­
rable to stimulation patterns currently in use. In Appendix A.3, we show the results for an open­loop
strategy where the pulse width (PW) of the anodic and cathodic phase of the biphasic pulses equals
250µs. The pulses were applied with a frequency of 50Hz and amplitude 2µA. We observed that
in the open­loop strategy using biphasic pulses, the SO and ED were not suppressed. Application of
anodic non­biphasic pulses (PW 250µs and amplitude 2µA at 500Hz) showed similar results. How­
ever, application of cathodic non­biphasic pulses (PW 250µs and amplitude −2µA at 500Hz) resulted
in improved outcomes in terms of SO and ED suppression. Thus, with an open­loop strategy using
non­biphasic pulses, suppression of SO and ED appears to be possible. In our experience, this holds
for specific patterns that can only be found by trial­and­error. An advantage of the closed­loop strategy
is that continuous application of stimulation pulses is not necessary. In contrast, in the open­loop strat­
egy, continuous application of stimulation pulses takes place, even when SO or ED are not present.
Thus, the proposed strategies can lead to a significant battery performance increase.

1.4.4 Implications for real­time neurostimulation
During the in­silico experiments, our proposed dynamical system­based feedback control scheme re­
sulted in arbitrarily shaped stimulation pulses that could inhibit SO and ED. The next step needs to be
the implementation of our proposed control scheme in a real­time in­vitro setup to verify the results on
DRG neurons. However, the currently available stimulation hardware is not capable of implementing
such arbitrarily shaped stimulation pulses.

The total energy that is transferred during a single constant current stimulation pulse is expressed by
the charge 𝑄 = 𝐼𝑠𝑡𝑖𝑚𝑡𝑝𝑢𝑙𝑠𝑒, where 𝐼𝑠𝑡𝑖𝑚 ∈ ℝ is the constant stimulation current and 𝑡𝑝𝑢𝑙𝑠𝑒 ∈ ℝ+ the pulse
duration. State­of­the­art stimulators often implement charge­balanced biphasic stimulation pulses, in
other words, after a stimulation pulse 𝑄 = 0. Charge balancing is required to prevent electrolysis
with electrode dissolution and tissue destruction [44]. We added this charge balancing constraint and
a biphasic pulse constraint to our MPC strategy to simulate the prevention of electrolysis while SO
and ED should be suppressed. The results suggest that the SO and ED could not be inhibited in this
situation. In this respect, we refer to Appendix A.4. It is questionable whether these mathematical
models can be used in combination with a charge balancing constraint. Injecting and removing the
same amount of current could create an altered cellular response in­vivo, while these models do not
capture this behavior in­silico.

After taking a closer look at the stimulation patterns (e.g., Figure 1.8, the actuation current shown in
green), it becomes clear that the applied stimulation pulses become mainly negative after some time.
This indicates that a particular charge is constantly removed from the cell. During simulations, we
applied a continuous positive stimulation current to initiate SO and ED. Our MPC strategy will eventu­
ally try to cancel out this additional artificial stimulation current to inhibit SO and ED, and the applied
stimulation pulses will be, therefore, mainly negative. However, in an in­vivo setup, this non­balanced
stimulus could lead to electrolysis.

We assumed that the strength­duration relationship for a stimulation equals 𝑄 = 𝐼𝑠𝑡𝑖𝑚𝑡𝑝𝑢𝑙𝑠𝑒. The
strength­duration curve relates the intensity of a stimulus (required to activate a neuron) to its dura­
tion [45]. A lower stimulation current would require a longer duration to activate the neuron. However,
this does not hold for all 𝑡𝑝𝑢𝑙𝑠𝑒 ∈ ℝ+. For a neuronal membrane, if 𝑡𝑝𝑢𝑙𝑠𝑒 → ∞, the minimal required
current to create an AP equals the rheobase current, 𝐼𝑟ℎ𝑒𝑜𝑏𝑎𝑠𝑒 [45, 46]. During extracellular current
stimulation, the applied current should be higher than a certain lower threshold (𝐼𝑟ℎ𝑒𝑜𝑏𝑎𝑠𝑒) to create an
AP. Recent work showed that an upper threshold might also be possible for specific pulse durations [46].
Increasing the stimulation above this upper threshold does not lead to an altered cellular response. It
has been argued that the transferred energy for pulses shorter than polarization time (𝑡𝑝𝑢𝑙𝑠𝑒 ≤ 1µs)
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becomes constant. Strictly speaking, increasing the stimulation current for high frequency pulses (≥
1MHz) does not increase the total transferred charge [46].

We could utilize the strength­duration relationship of a neuronal stimulation in our strategy. Arbitrarily
shaped pulses could be applied to inhibit the SO and ED, after which the charge was balanced with a
current below the 𝐼𝑟ℎ𝑒𝑜𝑏𝑎𝑠𝑒 to prevent additional induced activity. A different, more aggressive charge
balancing method would be by compensating the applied charge by large ultra­high frequency pulses
(≥ 1MHz), such that the total transferred charge to the membrane is less or equal to 𝐼𝑠𝑡𝑖𝑚𝑡𝑝𝑢𝑙𝑠𝑒. These
pulses will probably introduce additional activity. This post­stimulation protocol can be included in our
strategy, such that the arbitrarily shaped pulses will compensate for this additional activity.

1.4.5 Translation to in­vivo experiments
Weconsidered threewell­establishedmathematical models of neural firing patterns in neuromas. These
models capture the behavior of a single­axon. In an in­vitro setup, measurements can be performed
on, and stimuli can be applied to a single­axon. However, translating this work to in­vivo to mitigate NP
by measuring and stimulating a peripheral nerve introduces several additional challenges. 1) During
in­vivomeasurements, the SO and ED activity of multiple axons will be measured simultaneously using,
e.g., microneurography. This activity is called compound action potential (CAP). In the current work,
SO and ED are measured on a single­axon level using patch­clamp techniques. Therefore, additional
work needs to be done to discriminate the activity of individual axons from CAP recordings. 2) By
stimulating a peripheral nerve, the activation field is spread over the nerve, which will affect the mem­
brane potential of many axons. Ideally, the stimulation should be adapted such that SO and ED are
suppressed in NP axons and at the same time not affecting the (healthy) axons. 3) Without charge bal­
ancing, tissue damage could occur. The strength­duration relationship of a neuronal stimulation is not
included in the well­known neuroma models. Including these characteristics could result in stimulation
patterns that inhibit SO and ED while having a balanced charge in the tissue after stimulation. 4) We
assumed that by suppressing SO and ED, the NP could be mitigated. However, instead of minimizing
the ED’s rate and the SO’s amplitude, different objectives (e.g., a non­constant membrane potential
without ED, or having a healthy nerve signal as the reference) can be formulated that could potentially
lead to NP decrease as well.

1.5 Conclusion
Subthreshold oscillations (SO) and ectopic discharges (ED) generated in neuroma may cause neuro­
pathic pain (NP). This pain may be suppressed by electrical neurostimulation. However, current tech­
nology using continuous stimulation often proofs insufficient. We proposed a dynamical system­based
feedback control scheme for stimulation that uses the key statistical properties of SO and ED. By em­
ploying three well­known mathematical neuroma models, we provided evidence in­silico that our pro­
posed scheme is capable of neutralizing SO and ED at the single axon level. Our results contribute
to the development of electrical neurostimulation systems with which it will be possible to reduce NP
significantly.
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Design of an extended neural signal

amplifier for microneurography
Objective: To measure nerve action potentials using a setup that embeds expansion capabilities, such
as electrical neurostimulators.
Approach: Nerve action potentials are electrical signals generated by the nervous system. They en­
code information which is generated in the sensory organs of the body, conducted via peripheral nerves
to the brain. Thereby, the brain receives signals regarding the status of the internal organs and the
outer world. Depending on the type of stimuli and, in particular, those related to pathological processes,
these signals can evoke ‘pain’. Neural signals which run within the peripheral nerve can be blocked or
altered in order to reduce the generation of pain, which is currently done by applying constant electrical
stimulation. The pain provoking signals which run through the nerves are commonly not detected and
analyzed before electrical stimulation is provided. Constant electrical stimulation is not effective at all
moments of the pain experience caused by fluctuations in signal intensity. In addition, the side effect of
constant stimulation is the generation of a constant cumbersome sensation in an area which is larger
than the original pain area. These shortcomings emphasize the need for improvement by a dedicated
setup, capable of measuring this nerve activity, while embedding processing power and extensions
for simultaneous stimulation. As the main goal, this setup should amplify and digitize signals from the
peripheral nerve, which are in the range of 10 µV, while the bandwidth of interest is between 500 and
5000Hz. We designed a hardware setup that consists of a preamplifier, a main amplifier, and corre­
sponding software to control the amplifier. Analog band­pass filters, the driven right leg circuit, and
shielding techniques were implemented to increase the maximum signal­to­noise ratio. We validated
the setup using specifically designed artificial calibration signals. During in­vivo experiments, record­
ings of nerve action potentials were performed in lugworms and in the sciatic nerve of rats.
Main results: The designed setup was capable of measuring nerve action potentials at the level of a
single or a few axons. The driven right leg circuit, analog band­pass filter, and shielding implementation
fulfilled the hardware requirements.
Significance: The in­vivo experiments show that our setup can measure action potentials in peripheral
nerves. With this setup, it is potentially possible to detect pain­related activity and discriminate sub­
threshold oscillations and ectopic discharges that are related to neuropathic pain. Additionally, this
setup could implement closed­loop algorithms that require simultaneous neural recording and stimula­
tion.

21



22 2. Design of an extended neural signal amplifier for microneurography

2.1 Introduction
2.1.1 Nervous system
Scientists and physicians separate the nervous system into two parts. The first part, the central nervous
system (CNS), contains the brain and the spinal cord. It processes sensory information and controls
the activity of the muscles and internal organs of the body. The second part, the peripheral nervous sys­
tem (PNS), contains sensors that continuously monitor the body’s state in terms of movement, internal
and external environmental changes. Furthermore, the PNS contains nerves that provide for the com­
munication between the CNS and rest of the body. This communication includes sensory information
(from the sensors in the PNS) and motor control information (to regulate movements) [47].

The PNS consists of nerves, acting as ‘information highways’ between different parts of the human
body. A nerve is composed of axons that are slender projections originating from neurons. Neurons
are nerve cells that communicate with each other via electrical signals. Different types of neurons can
be identified; e.g. sensory neurons (respond to external or internal stimuli and transmit their information
to the CNS),motor neurons (transmit signals from the CNS to the muscles), and interneurons (connect
different types of neurons in the same region, such that these neurons can communicate with each
other) [47].

Figure 2.1a shows the structure of a neuron, the building blocks of nerves. It consists of a cell body,
an axon and dendrites. The axon (also called ‘fiber’) transmits signals away from the neuron cell body
and ends at another cell, e.g., another neuron or muscle cell. The axon can be as long as 1 meter,
such as the axons that communicate with the muscles in the foot. While axons transmit signals away
from the cell body, dendrites conduct signals towards the cell body.

The structure of a nerve is shown in Figure 2.1b. The endoneurium is a connective tissue layer
around an individual axon, with several axons combined forming a nerve fascicle. The connective
tissue layer around a fascicle is called the perineurium. A nerve can consist of several fascicles, finally
surrounded by a connective tissue layer labeled as the epineurium [48]. The different connective tissue
layers separate the axons electrically, protect the axons, and help to reduce potential pulling forces on
the axons.

(a) Structure of a single sensory neuron including cell body, axon
and dendrites [49].

(b) Structure of a nerve, including the different tissue layers around
the axon, fascicle and entire nerve [48].

Figure 2.1: Structure of a neuron and a nerve.

Action potentials (AP) are signals that play a major role in the communication between neurons. An
AP is a steep depolarization, repolarization and hyperpolarization of the membrane potential, caused
by the disturbance of equilibrium at the cell membrane. We discussed the different ion channels respon­
sible for this equilibrium in Section 1.2.1. The AP can be divided into five phases [50] as we show in
Figure 2.2. 1) Stimulation: A small stimulus leads to a small depolarization, sodium ions can flow (down
the concentration gradient) into the cell. If the membrane potential passes the cell’s threshold (often
around −55mV), the cell will depolarize further. Otherwise, it will fall back to the equilibrium potential.
2) Rising depolarization: This increase of membrane potential will further activate other voltage­gated
sodium channels, resulting in faster cell depolarization. 3) Repolarization: At a specific membrane po­
tential, the voltage­gated sodium channels will close, and potassium voltage­gated ion channels open
and potassium ions flow outwards. As a result, the membrane potential will decrease. 4) Hyperpo­
larization: The voltage­gated potassium channels are time delayed and will not close immediately if
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the equilibrium membrane reaches the equilibrium potential of −70mV, causing a hyperpolarization.
Sodium channels open to restore equilibrium. 5) Resting state: The cell membrane potential is close
to the equilibrium potential.
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Figure 2.2: The action potential distinguished in
several steps [50].

The AP’s phases take place at a specific spot at the
axon; however, the AP is conducted along an axon. The
conductance speed (in m/s) along an axon depends on
the degree of myelinization of the axon and its thickness.
We can differentiate the axons into two groups: myelinated
and unmyelinated axons [51]. Schwann cells cover both
nerve axons; however, only on the myelinated axons, the
Schwann cells produce a myelin sheath. Myelin is a fatty
substance and has a high conductance. The myelin sheath
is a noncontinuous isolation sheath around the nerve, which
contains gaps (called nodes of Ranvier) between parts of
sheaths [51]. In a myelinated axon, the AP jumps from
node to node, increasing the conduction speed. E.g., un­
myelinated 𝐶 axons are thin (radius 0.5 to 2 µm) and have a
conductivity speed of 0.5 to 2m/s. These axons often carry
nociceptive, temperature, and mechanoreception informa­
tion. In contrast, myelinated 𝐴𝛿 axons are also thin (2 to
5 µm), but have an increased conductivity velocity of 12 to 30m/s and often carry nociceptive, cold,
and touch information. Finally, myelinated 𝐴𝛽 axons are thicker (radius 5 to 12µm), resulting in a con­
ductance velocity of 30 to 70m/s. The latter captures touch and pressure information [51], although
the involved axon for many types of senses is still unknown. For a complete overview of different axons,
see Appendix A.5.

Nerves are built out of various axon types (myelinated, unmyelinated, thick and thin), conducting
a mixture of information. Revealing the traffic inside nerves could yield additional information about
how the CNS communicates with the different parts of the body. On a single axon level, patch­clamp
techniques are used to study this traffic [52]. Using these techniques, the intracellular potential of an
individual neuron is measured ex­vivo or in­vitro (for further details see Appendix A.6). However, to
expose the nerve activity of single or multiple axons, these techniques are inappropriate. Alternatively,
microneurography can be used to study in­vivo recordings of signals transduced by the axons.

2.1.2 Microneurography
Instead of measuring inside a neuron, nerve activity can be measured near the neuron using an elec­
trode. Depending on the effective electrode area, the electrode will capture the activity (or APs) at
the axon transferring sensory or motor information to or from one neuron (single­unit) or multiple neu­
rons (multiple­unit). The simultaneous activation of many axons in a small space results in local field
potentials (LFP) [53].

During a microneurographic recording, a physician inserts a small needle of 200 microns (µm) into
a nerve bundle, as shown in Figure 2.3a. Figures 2.3b shows the cross­section of a nerve, including
the electrode. The electrode is epoxy resin coated to isolate it from surrounding tissue – except the
non­isolated part at the tip (the top 30µm). This way, single­unit measurements of a large fiber, or
multiple­unit measurements of multiple smaller fibers are performed. One could also use a non­isolated
electrode to record multiple­unit activity from all the axons in the vicinity of the electrode.

Microneurography is performed with respect to surrounding (non­neuron) tissue. For that purpose,
a reference electrode (which is a non­isolated electrode) is placed just outside the nerve bundle [55].
By doing so, LFPs fluctuations in the order of 10 µV can be measured. These (bio)potentials are much
smaller than the intracellular AP membrane voltages measured by patch­clamp since microneurogra­
phy is performed outside the neuron. The LFPs cover a large diversity of frequencies, often between
500 and 5000Hz [56].

Microneurography can be applied to participants that are fully awake. These participants can then
be exposed to different sensory stimuli like touch, pin­prick, heat or cold and asked for their sensory
experience (e.g., painful, non­painful, cold, warm, touch, and pricking). Depending on the exact elec­
trode location in the nerve, activity from different types of fibers can be recorded. Figure 2.4 shows the
different recordings of a myelinated and an unmyelinated axon, where the AP shape differs to a large
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(a) Setup for microneurography with two electrodes, one
in the median nerve, the other outside the nerve. The
green wire is connected to the skin [54].

(b) Cross section of human sural nerve. The red cone represents the non­isolated
tungsten area of the microneurography electrode, that exceeds 30µm from the tip. The
large cell on the top and bottom left represents a Schwann cell nucleus. The cell with
the black edge on the bottom is a small myelinated axon. In between these large
structures, a number of unmyelinated axons can be seen [55].

Figure 2.3: Microneurography.

extent. However, the shape of the recorded AP heavily depends on the electrode location in respect
to the axon(s). We elaborate on this further in the discussion of this chapter (Section 2.5).

Motor control information and sensory information signals can both be captured using microneurog­
raphy. Neural activity can however be generated by different sources as well. In Section 1.2.2, we
discussed the formation of a neuroma after peripheral nerve injury. This can also generate neural ac­
tivity that is interpreted by the brain as painful. Capturing these signals yields additional information to
improve the treatment of a neuroma. Our goal is to capture signals coming from painful sources, such
as neuroma tissue, and compare this to the electrical signals of healthy nervous tissue.

Figure 2.4: Typical contours of nerve impulses in unmyelinated 𝐶 axons (shown inA) and myelinated 𝐴𝛽 axons (shown inB) [57].

2.1.3 Interference
When measuring biopotentials, an adequate handling of interferences (a disturbance caused by exter­
nal sources) is expected. If not handled appropriately, LFPs can not be measured adequately. In the
field of bioamplifier designs, electromagnetic inferences are mainly considered.

Electromagnetic interference (EMI) can be generated through man­made (e.g. from electronics) or
natural (e.g. lightning) sources. Powerline interference (PLI) is an electromagnetic­type interference
caused by the powerlines, and is characterized (in Europe) by a 50Hz signal together with its harmon­
ics. PLI and EMI play a major role in the field of biopotential amplifiers, and have to be taken into
account [58].

Disturbances enter the system through a coupling path, e.g., through conductive, capacitive, and
inductive coupling. In the case of PLI, a capacitive coupling exists from the powerlines to the electrode
leads and the body [59]. Figure 2.5 illustrates these couplings: PLI causes a small current that travels
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through the body. This current leads (due to the patient’s impedance) to voltages that have different
values at different location on the body. Therefore, these couplings result in a voltage difference be­
tween the patient and the amplifier common and in an inter­electrode voltage difference. These voltage
differences – including the biopotential of interest – appears at the input of the amplifier. Any voltage
difference caused by PLI should be ignored by the amplifier to successfully amplify the biopotentials.

Patient Amplifier

𝐶2

𝐶𝑇 𝐶𝐵
𝑉𝑠𝑠

Leads

𝐶𝐿 𝐶𝐶

220 V
50 Hz

Figure 2.5: EMI is coupled to the system through coupling capacitors 𝐶2 and 𝐶𝑇. It can also be coupled to the leads by capacitor 𝐶𝐿
and through the power coupling capacitor 𝐶𝐶. Capacitor 𝐶𝐵 is coupled between AC ground and the amplifier’s ground. Adapted
from [59].

For instance, in case of a differential amplifier, PLI may result in a voltage that appears simultane­
ously at the inputs, also called common­mode (CM) voltage (𝑉𝑐𝑚). Furthermore, a differential­mode (DM)
voltage (𝑉𝑑𝑚) is present that originates from biopotentials (e.g., neural activity), or at worst, from PLI
coupled to the leads. In Figure 2.6 we show a schematic representation of a differential amplifier used
to record biopotentials (𝑉𝑑𝑚) through microneurography, where PLI is present (𝑉𝑐𝑚). An ideal ampli­
fier would only amplify the 𝑉𝑑𝑚 signals (originating from neural activity), without amplifying 𝑉𝑐𝑚 or 𝑉𝑑𝑚
caused by PLI. However, in reality, the output of the amplifier is described by

𝑉𝑜𝑢𝑡 = 𝐴𝑑𝑚(𝑉+ − 𝑉−) +
1
2𝐴𝑐𝑚(𝑉+ − 𝑉−), (2.1)

where 𝐴𝑑𝑚 represents the DM gain and 𝐴𝑐𝑚 the CM gain. For an ideal amplifier 𝐴𝑑𝑚 ≫ 𝐴𝑐𝑚. To
quantify this, the common­mode rejection ratio (CMRR) is defined as

𝐶𝑀𝑅𝑅 = 20 log10 (
𝐴𝑐𝑚
|𝐴𝑐𝑚|

) , (2.2)

and indicates how much of the common­mode signal will appear on the output. One of the goals in
amplifier designs is to maximize the CMRR [58].
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Figure 2.6: Differential mode amplifier setup: 𝑉𝑑𝑚 represents the biopotential and 𝑉𝑐𝑚 a voltage offset caused by, e.g., PLI.

Several possibilities are available to limit the effect of EMI on the output of the amplifier. 1) Increase
the CMRR of the amplifier, 2) decrease the amplitude of the CM signals 𝑉𝑐𝑚, 3) using analog filters, or
4) application of data post­processing techniques such as (digital) filtering. We will elaborate on these
techniques more extensively in the system design, Section 2.2.2.

2.1.4 Available hardware for microneurography
Commercially available hardware can be used to perform microneurographic recordings. Figure 2.7
shows the setup supplied by ADInstruments, consisting of a neural amplifier (Neuro Amp EX ), a high
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impedance headstage (Neuro Amp EX Headstage), and the software for data acquisition and analy­
sis (LabChart) [60]. The neural amplifier is a low noise and high gain amplifier, with a bandwidth of
100Hz to 5 kHz. The headstage has a gain of 𝐴𝑣 = 100V/V, with a 10Hz high pass filter, and uses
shielding and a driven right leg (DRL) circuit to minimize the common mode interference [58]. This will
be discussed further in Section 2.2.3.

Neuro Amp EX
Headstage Neuro Amp EX LabChart

10Hz high pass
𝐴𝑣 = 100V/V

100Hz to 5 kHz
AD­converter

Data acquisition
and analysis

Electrode reference

Electrode nerve

Electrode DRL

Figure 2.7: ADInstruments recording stages for microneurography [60].

This setup is used and recommended in recent microneurographic studies [61, 62]. But although
this setup can record neural signals, it cannot be extended with additional hardware, e.g., a neural
stimulator or an additional headstage to record at two locations simultaneously. Furthermore, this setup
does not contain any embedded processing power that can be used to deploy custom algorithms, e.g.,
to control the stimulator. These shortcomings emphasize the need for improvement by a dedicated
setup, capable of measuring this nerve activity, while embedding processing power and extensions for
simultaneous stimulation.

2.1.5 Hardware proposal and requirements for microneurography
Our goal is to design an open­source and low­cost neural signal amplifier platform for microneurogra­
phy. The amplifier should enable multiple channel recording, while embedding processing power and
extensions for simultaneous stimulation. The design includes software at a host that can control our
amplifier. We call our proposed design the extended neural signal amplifier.

The design meets several requirements to record neural activity while including the extensions for
multiple channel recording and simultaneous stimulation. We branched the requirements into hardware
and software requirements:

• Hardware: Amplify low­level neural signals of 10 µV with a gain of 𝐴𝑣 ≈ 20000V/V.

• Hardware, software: Frequency range of interest is between 500 and 5000Hz. Filter out other
frequencies.

• Hardware: Rejection of the 50Hz harmonic PLI and other EMI.

• Hardware, software: An analog­to­digital resolution of at least 14­bit.

• Hardware, software: Digital communication with a host that supports at least 20 000 samples per
second.

• Software: Real­time data visualization on the host, with hardware control options to adjust the
amplifier’s gain.

• Software: Real­time data processing; store and export recorded data.

2.1.6 Chapter structure
We will discuss the design of the extended neural signal amplifier in several steps. 1) We introduce the
global system design, whereafter the different modules will be elucidated in more detail. 2) The system
is validated using artificial signals; we compare the validation results with the design specifications. 3)
To validate our amplifier on living tissue, we set up in­vivo experiments with worms and rats to perform
microneurographic recordings. 4) We conclude this chapter with a discussion on our design and future
recommendations.
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2.2 System design
In the following section, we discuss the design of the extended neural signal amplifier into more de­
tail. First, we show the global system setup and provide some background on filter design. Next, we
elaborate on the different modules step­by­step.

2.2.1 Global system design
Similar to the setup of ADInstruments for microneurography [60], we will split our design into several
modules. Figure 2.8 shows our proposed design, consisting of a preamplifier, main amplifier, and host
software.

Preamplifier Main amplifier Host
software

Signal gain
Band­pass filtering
PLI & EMI rejection

Selectable signal gain
Supplemental filtering

Analog­to­digital conversion
Additional hardware connections

Power supply

Communication interface
Data acquisition
Data visualization
Data storage

Electrodes
from nerve

Figure 2.8: Extended neural amplifier, consisting of a preamplifier, main amplifier, and host software.

The preamplifier is the first amplification stage after the nerve electrodes. This amplifier will be situ­
ated close to the source (the nerve) to limit external interference. Besides amplification of the frequency
range of interest, the preamplifier should limit PLI and EMI. The main amplifier performs further ampli­
fication in selectable steps. Besides additional gain, the main amplifier should contain supplemental
filtering, an analog­to­digital converter (ADC), and include connections for future additional hardware,
such as a stimulator. Apart from signal processing, the main amplifier should also generate the supply
voltages for the different modules, using the voltage from an external power supply. We complete the
setup with a host software that provides a communication interface between the main amplifier and the
host. This software will visualize recordings in real­time and control the setup features to improve the
user­friendliness.

2.2.2 Filter design background
In our setup, the amplification of signals within a certain frequency range is crucial. To accomplish
this, we first need to address the background theory of the main building blocks of our design: the
filters. Filter examples include the low­pass filter (LPF), the high­pass filter (HPF), the band­pass
filter (BPF), and the notch filter (NF). Filters can be passive or active; passive filters are made from
passive components and do not require an external power supply. Active filters are implemented by
using active components, and, therefore, require an external power supply. Furthermore, the active
filter can amplify the signal, where the passive filter cannot. First, we discuss the passive filter.

Passive filters are filters that are built up of passive components like resistors, capacitors, and
inductors. An example is the Half L section topology, as shown in Figure 2.9. In this figure, the 𝑍1 and
𝑍2 represent the passive components.

𝑍1
𝑍2

+

−
𝑉𝑖𝑛

+

−
𝑉𝑜𝑢𝑡

Figure 2.9: Half L passive filter topology.



28 2. Design of an extended neural signal amplifier for microneurography

The generalized transfer function of this circuit is given by

𝑉𝑖𝑛 (
1
𝑍1
) = 𝑉𝑜𝑢𝑡 (

1
𝑍1
+ 1
𝑍2
) , (2.3)

→ 𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= 1/𝑍1
1/𝑍1 + 1/𝑍2

= 1
1 + 𝑍1

𝑍2

. (2.4)

If we assume that 𝑍1 is a resistor (𝑍𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 = 𝑅) and 𝑍2 a capacitor (𝑍𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 =
1
𝑠𝐶 ), a LPF is created

with transfer function
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= 𝐻(𝑠) = 1
1 + 𝑠𝑅𝐶 , (2.5)

and the cutoff frequency can be determined by

𝑓𝑐 =
1

2𝜋𝑅𝐶 . (2.6)

BPF are often designed by cascading a LPF and a HPF; however, the frequency response of two
cascaded resistor­capacitor (RC) circuits is not simply the product of the two first­order transfer func­
tions. The input and output impedance of consecutive RC circuits could result in deviated filter behavior.
Furthermore, the gain of a passive filter is always less than or equal to 1. In other words, signals cannot
be amplified using passive filters. Therefore, we need to consider an active filter topology [63]. This
topology has many advantages that are essential for our design, which we will discuss next.

In this thesis, we designed the active LPF and HPF, using the Sallen­Key topology as illustrated in
Figure 2.10. This topology has several advantages: 1) Simple design, 2) a non­inverting amplifier is
used to increase the voltage gain, 3) the filter has a high input impedance and a low output impedance,
4) it is a second­order filter (40 dB/decade roll­off), and 5) the damping factor 𝜁 can be determined
to shape the filter’s behavior [64]. These advantages are important for our design since we deal with
low­voltage signals that should be amplified and band­pass filtered using several cascaded filter stages.
Furthermore, our overall amplifier design should be straightforward.
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−
𝐴
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𝑍4

𝑉𝑣𝑖𝑟𝑡 ≈ 1.65V

𝑉𝑖𝑛 ≈ 0 ∼ 3.3V
𝑉𝑜𝑢𝑡

Figure 2.10: Generalized Sallen­Key circuit.

The ideal transfer function of this Sallen­Key filter is given by
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= 𝐾
𝑍1𝑍2
𝑍3𝑍4

+ 𝑍1
𝑍3
+ 𝑍2
𝑍3
+ 𝑍1(1−𝐾)

𝑍4
+ 1

, (2.7)

where 𝐾 = 1 + 𝑅4
𝑅3
. We configured a second­order LPF by selecting 𝑍1 = 𝑅1, 𝑍2 = 𝑅2, 𝑍3 =

1
𝑠𝐶1

, and

𝑍4 =
1
𝑠𝐶2

. The second­order HPF was created by selecting 𝑍1 =
1
𝑠𝐶1

, 𝑍2 =
1
𝑠𝐶2

, 𝑍3 = 𝑅1, and 𝑍4 = 𝑅2.
We will later refer to these LPF and HPF designs during the elaboration on the design of the different
modules as presented in Figure 2.8.
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2.2.3 Driven right leg circuit background
EMI and PLI (Section 2.1.3) become dominant when measuring neurophysiological signals in the order
of tens of µV. The capacitive coupling – resulting in a common­mode voltage 𝑉𝑐𝑚 on the inputs of the
amplifier – impairs the output of the amplifier 𝑉𝑜𝑢𝑡.

To limit the effect of PLI on the output, the voltage difference between the patient and the amplifier
reference can be actively reduced. The common­mode is monitored constantly and mirrored around
the reference voltage (in this case 𝑉𝑣𝑖𝑟𝑡) and driven back to the body [65]. In other words, we force
the common­mode voltage 𝑉𝑐𝑚 to become equal to the reference voltage 𝑉𝑣𝑖𝑟𝑡 ≈ 1.65V, by actively
driving a current to cancel any voltage deviation between the patient and the reference. This method
is called driven right leg (DRL) and is designed around an (inverting) operational amplifier (or opamp)
integrator with direct current (DC) gain control, as seen in Figure 2.11. The DC voltage gain 𝐴𝑣0 and
corner frequency 𝑓0 of the opamp integrator with DC gain control are defined by

𝐴𝑣0 =
𝑅2
𝑅1

, and 𝑓0 =
1

2𝜋𝐶𝑅2
. (2.8)

We will refer to this DRL circuit during the design of the preampliers.

𝑉𝑐𝑚

𝑉𝑣𝑖𝑟𝑡 ≈ 1.65V

𝑅1

𝛿𝐼𝑐𝑚
𝐶
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−

+
𝐴

𝑅𝑝𝑟𝑜𝑡
To DRL electrode

Figure 2.11: DRL circuit to actively steer the common­mode voltage towards 𝑉𝑣𝑖𝑟𝑡. The circuit consists of an (inverting) opamp
integrator with DC gain control. The patient protection resistor 𝑅𝑝𝑟𝑜𝑡 limits the current 𝛿𝐼𝑐𝑚 – to cancel the voltage deviation –
up to a maximum of 10µA. Adapted from [59].
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2.2.4 Preamplifier v1.0
The preamplifier is the first filter and amplification stage of our setup. Signals in the order of a few tens
of µV are magnified to mV. Figure 2.12 shows the inputs and outputs of the preamplifier. The inputs of
this module include the power supply, the nerve lead 𝐿𝑛𝑒𝑟𝑣𝑒, and the reference lead 𝐿𝑟𝑒𝑓. The output
consists of the driven right leg lead 𝐿𝐷𝑅𝐿 to reject PLI, the amplified signal 𝑉𝑠𝑖𝑔𝑛𝑎𝑙, the reference voltage
𝑉𝑟𝑒𝑓, and the leads­off detection lines 𝐿𝑂𝐷+ and 𝐿𝑂𝐷−.

Preamplifier
v1.0

Analog Devices AD8232
𝐴𝑣 = 100V/V

Band­pass 500 to 5000Hz
Driven right leg

𝑉𝑐𝑐 = 5V
𝑉𝑠𝑠

𝑉𝑠𝑖𝑔𝑛𝑎𝑙
𝑉𝑣𝑖𝑟𝑡 ≈ 1.65V

𝐿𝑂𝐷+
𝐿𝑂𝐷−

𝐿𝑛𝑒𝑟𝑣𝑒

𝐿𝑟𝑒𝑓

𝐿𝐷𝑅𝐿

Figure 2.12: Inputs and outputs of preamplifier v1.0.

2.2.4.1 Circuit design
AD8232 To ensure reproducibility and to simplify the design, the system utilizes commercially avail­
able integrated circuits (IC). Analog Devices supplies a single­lead heart rate monitor front end, the
AD8232. Although this device is designed for (wearable) fitness and activity heart rate monitors, it
contains an instrumentation amplifier (IA), multiple LPFs and HPFs, a DRL circuitry, an operational
amplifier (opamp) for additional gain, and EMI filters. The frequency cutoff (𝑓𝑐) of all filters, additional
gain, and DRL specifications are user selectable, making it a suitable IC for our preamplifier.

Power supply The AD8232 requires a clean power supply. We used an low­dropout (LDO) regulator
to regulate the voltage 𝑉𝑐𝑐 = 5V down to 𝑉𝑠𝑢𝑝𝑝𝑙𝑦 = 3.3V. A light­emitting diode (LED) was included for
visual feedback.

Band­pass filter and biopotential amplifier We designed our band­pass filter and amplifier around
the AD8232. Using the various opamps, we designed an second­order high­pass filter at 𝑓𝑐 = 500Hz,
and a first­order low­pass at 𝑓𝑐 = 5000Hz. The internal gain of 𝐴𝑣 = 100V/V was used without addi­
tional gain. The biopotential between 𝐿𝑛𝑒𝑟𝑣𝑒 and 𝐿𝑟𝑒𝑓 is amplified in respect to the voltage reference
𝑉𝑣𝑖𝑟𝑡, also called ‘virtual ground’, which is ≈ 1.65V. As an example, a biopotential (within the band­
width’s cutoff frequencies) between−100, … , 100 µV will be amplified such that 𝑉𝑠𝑖𝑔𝑛𝑎𝑙 = 1.64, … , 1.66V.
Without a virtual ground, the amplifier will saturate, resulting in improper output voltages.

Interference rejection The AD8232 embeds a DRL circuit (Section 2.2.3) that we used to suppress
PLI. Besides the PLI, other frequency ranges of EMI are essential to consider. The radio frequency
is the range between several tens of kHz and hundredths of GHz, with the inference caused by these
frequencies called radio frequency interference (RFI), and can be canceled by a passive low­pass filter.
The AD8232 includes two 1MHz passive low­pass filters on the inputs of the instrumentation amplifier.

Patient safety To avoid safety hazards, no hardware fault may result in large currents through the
patient. Therefore, a protection resistor 𝑅𝑝𝑟𝑜𝑡 is added in series with the different electrodes. The
maximum leakage current for medical equipment is defined at 10 µV resulting in 𝑅𝑝𝑟𝑜𝑡 = 330 kΩ (as­
suming a supply voltage of 3.3V).
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Leads­off detection TheAD8232 includes a number of smart features, including a leads­off detection.
Using the DRL electrode, the common­mode voltage will be in the range of 𝑉𝑣𝑖𝑟𝑡 ≈ 1.65V. By connecting
a pull­up resistor between the amplifier input and the power supply, the device can detect deviations
and indicate which lead is probably not connected using the 𝐿𝑂𝐷+ and 𝐿𝑂𝐷− outputs.

2.2.4.2 Board design
We designed a small two­layer printed circuit board (PCB), that can easily be shielded using a case.
Figure 2.13 and 2.14 show the design of the 20 mm × 30 mm PCB. The wire to the main amplifier is sol­
dered directly onto the board (1, … , 6) to limit the interference and to create a robust connection. Finally,
the leads are connected to the PCB using a pluggable terminal block to simplify the (dis)connecting of
the leads. In Figure A.15 of Appendix A.11, we show the different steps of the assembling process.

(a) Preamplifier v1.0 front. (b) Preamplifier v1.0 back.

Figure 2.13: Preamplifier v1.0 board design.

Figure 2.14: 3D render of preamplifier v1.0 board design including components.

2.2.4.3 Prior validation
Prior to the first validation of the system, it became clear that preamplifier v1.0 (based on the AD8232)
contained an advanced feature that hampered the preamplifier’s performance. Furthermore, some clip­
ping of the input signals was observed. In the following paragraphs, we first discuss these phenomena
before we examine the design of the improved preamplifier v2.0.

Too much intelligence The AD8232 was originally designed for activity heart rate monitors, which
uses conductive pads attached to the body as electrodes to perform an electrocardiogram (ECG). In this
situation, the electrode­skin impedance is around several tens of kΩ [66]. We connected microneurog­
raphy electrodes (which have a non­isolated tip, as discussed in Section 2.1.2) to the amplifier input.
These electrodes resulted in an impedance in the order of GΩ that activated the leads­off detection.
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Subsequently, the output of the amplifier was blocked. Therefore, our preamplifier could not measure
any biopotentials using the microneurography electrodes, which led to a re­evaluation and re­design
of the hardware, which will be discussed in Section 2.2.5.

Clipping Without connecting any electrodes, the preamplifier v1.0 mainly amplified the PLI of 50Hz.
However, the frequency domain of the output signal also showed large magnitudes at the harmonic
frequencies of 50Hz. This phenomenon could be explained by the fact that the amplifier became
saturated; namely, the input signal amplitude multiplied by the amplifier’s gain exceeded the output
voltage range. In this case, the output voltage was clipped and had the appearance of a square wave.
In the frequency domain, this resulted in odd­integer harmonic components [67].

If a signal is symmetrically clipped with respect to the waveform, the frequency domain shows large
magnitudes at the components of odd­integer harmonics (𝑓, 3𝑓, 5𝑓, 7𝑓, … Hz). However, if the signal is
not symmetrically clipped, the frequency domain shows large magnitudes at only the components of
integer harmonics (𝑓, 2𝑓, 3𝑓, 4𝑓, … Hz). The latter was observed in our preamplifier v1.0.

PLI rejection In case of PLI presence, a 50Hz notch filter must be included after a high gain ampli­
fication stage to suppress the PLI. However, in the case of amplifier saturation (as discussed above),
the amplifier induces harmonic signals that the subsequent notch filter will not suppress. Therefore,
the output signal still contains a lot of noise.

The preamplifier v1.0, based on the AD8232, contains a DRL circuit (Section 2.2.3) to suppress
the PLI. However, it includes a single (high­gain) instrumentation amplifier without any notch filter. An
inadequate working DRL circuit will result in clipping inside the instrumental amplifier and, therefore, a
lot of noise at the output.

Therefore, a better solution would be implementing a multi­stage amplifier. The first stage amplifies
the signal with a small gain, and the output signal will not clip. Furthermore, this stage also has a
large output impedance. After this stage, the 50Hz signals are suppressed using a notch filter. The
subsequent stages amplify the signal even further, and now clipping does not occur since the 50Hz is
absent. A DRL could potentially improve the PLI rejection even further. This multi­stage design was
implemented in the preamplifier v2.0 (Section 2.2.5).
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2.2.5 Preamplifier v2.0
The first preamplifier design (based on the AD8232) was not able to measure any biopotentials using mi­
croneurography electrodes. We re­designed the hardware, leaving out all unnecessary features, such
as the leads­off detection. We focused on a system that has sufficient gain, proper filtering, and interfer­
ence rejection. At this point, we have already designed and built the main amplifier (Section 2.2.6). For
a system compatible with the main amplifier, we defined the same inputs and outputs as for preamplifier
v1.0, except for the leads­off detection lines (as shown in Figure 2.15).

Preamplifier
v2.0

𝐴𝑣 = 4098V/V
Band­pass 500 to 5000Hz

Driven right leg

𝑉𝑐𝑐 = 5 V
𝑉𝑠𝑠

𝑉𝑠𝑖𝑔𝑛𝑎𝑙
𝑉𝑣𝑖𝑟𝑡 ≈ 1.65 V

𝐿𝑛𝑒𝑟𝑣𝑒

𝐿𝑟𝑒𝑓

𝐿𝐷𝑅𝐿

Figure 2.15: Inputs and outputs of preamplifier v2.0.

2.2.5.1 Circuit design

Figure 2.16: Neuron SpikerBox to record neural signals from
cockroach nerves [68].

Recording nerve activity is performed by (neuro)­
scientists all over the world. Today, even children
can experiment with electrophysiology using the
setup shown in Figure 2.16: the Neuron Spiker­
Box built by Backyard Brains [68]. This kit con­
tains an amplifier and recording electrodes (ball
pins) to record APs in a cockroach’s leg and visu­
alize the results on a smartphone. The electronic
design of SpikerBox is open source, making it a
good starting point for the design of our preampli­
fier to record neural activity using microneurogra­
phy electrodes.

The design of our preamplifier v2.0 consists
of several amplification and filter stages based
on SpikerBox’s design. Figure 2.17 shows our
adapted global system design after including ad­
ditional filtering stages and a DRL circuit to reject
interferences. Next, we elaborate on the different
stages. The complete schematic can be found in
Appendix A.8.

IA & HPF
𝑓𝑐 = 5Hz

𝐴𝑣 = 6.5V/V
Notch filter
𝑓𝑟 = 50Hz

HPF
𝑓𝑐 = 500Hz
𝐴𝑣 = 48.5V/V

LPF
𝑓𝑐 = 5000Hz
𝐴𝑣 = 13V/V

DRL
circuit

𝐿𝑛𝑒𝑟𝑣𝑒
𝐿𝑟𝑒𝑓

𝐿𝐷𝑅𝐿

Main
amplifier

Figure 2.17: Global system design of preamplifier v2.0. The instrumentation amplifier is indicated by IA. HPF and LPF represent
the high­ and low­pass filters.
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Instrumentation amplifier & high­pass filter circuit The first stage (after the protection resistors
𝑅𝑝𝑟𝑜𝑡) is shown in Figure 2.18. This stage amplifies the potential difference between 𝐿𝑛𝑒𝑟𝑣𝑒 and 𝐿𝑟𝑒𝑓,
and attenuates the lower frequencies. To suppress any common­mode on the input 𝑉𝑖𝑛, an instrumen­
tation amplifier (IA) with a sufficiently large CMRR is required. We selected the INA826, an IA with
a CMRR of 100 dB (at 5 kHz and gain 𝐴𝑣 = 5V/V). The INA826 supports a common­mode range
that extends to below single­supply ground, and this allowed us to ground 𝐿𝑟𝑒𝑓 in a future stage while
persevering the possibility to amplify potential differences.

𝑅𝑝𝑟𝑜𝑡
+

−

𝐼𝐴

𝑅𝑝𝑟𝑜𝑡

𝑅𝐺/2

𝑅𝐺/2

𝐿𝑛𝑒𝑟𝑣𝑒

𝐿𝑟𝑒𝑓

𝑉𝑐𝑚

𝑅1

−

+

𝐶1

𝑉𝑟𝑒𝑓

𝑉𝑜𝑢𝑡 → to notch filter

𝑉𝑣𝑖𝑟𝑡 ≈ 1.65V
𝐴

Figure 2.18: IA and HPF stage. The potential difference between 𝐿𝑛𝑒𝑟𝑣𝑒 and 𝐿𝑟𝑒𝑓 is amplified and shifted by 1.65V. A HPF at
𝑓𝑐 ≈ 5Hz removes any DC offset.

We created a voltage level midway between the ground (0V) and 𝑉𝑠𝑠 (3.3V). This voltage is called
the virtual ground 𝑉𝑣𝑖𝑟𝑡 and is created by a voltage divider followed by an opamp buffer resulting in
𝑉𝑣𝑖𝑟𝑡 = 1.65V. We use 𝑉𝑣𝑖𝑟𝑡 throughout the different stages.

After the amplification, we shifted the output of the IA by the virtual ground level (1.65V) using 𝑉𝑟𝑒𝑓
as input of the IA. Hence, 𝑉𝑜𝑢𝑡 < 𝑉𝑣𝑖𝑟𝑡 if 𝐿𝑛𝑒𝑟𝑣𝑒 < 𝐿𝑟𝑒𝑓 and 𝑉𝑜𝑢𝑡 > 𝑉𝑣𝑖𝑟𝑡 if 𝐿𝑛𝑒𝑟𝑣𝑒 > 𝐿𝑟𝑒𝑓. By doing so,
we are able to amplify the potential difference correctly (without saturating the IA) while using a single
(or only positive) power supply.

To complete this stage, we designed a (first­order) HPF to remove any DC offset. For this, we
selected 𝑓𝑐 ≈ 5Hz, using the equations presented in Section 2.2.2. To satisfy the design requirements,
we selected the passive components as shown in Table 2.1.

IA and HPF circuit
𝐴𝑣 = 6.5V/V, 𝑓𝑐 = 5Hz
Component Value

𝑅𝐺 9.4 kΩ
𝑅1 300 kΩ
𝐶1 0.1µF

Table 2.1: Passive component values of the IA and HPF stage, shown in Figure 2.18.
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Driven right leg circuit We used the DRL circuit (Section 2.2.3) from Figure 2.11 (including an opamp
buffered 𝑉𝑣𝑖𝑟𝑡) to steer 𝑉𝑐𝑚 to potential level of the virtual ground 𝑉𝑣𝑖𝑟𝑡. Using Equation (2.8), we selected
the passive components (Table 2.2) such that the opamp integrator with DC gain control has a gain of
−19.5V/V and a cutoff frequency of 𝑓𝑐 = 400Hz.

DRL circuit
𝐴𝑣 = −19.5V/V, 𝑓𝑐 = 400Hz
Component Value

𝑅1 20 kΩ
𝑅2 390 kΩ
𝐶 39pF

Table 2.2: Passive component values of the DRL circuit, shown in Figure 2.11.

Notch filter circuit Although the DRL circuit and a high CMRR of the IA will suppress the CM voltages
(caused by the PLI), the DM voltage (caused by, e.g., PLI on the leads) may still be amplified by the
IA. Therefore, we applied additional filtering after the IA stage. By parallelizing a HPF and a LPF, a
band­stop filter can be designed. A band­pass filter that rejects a tiny band of frequencies is called a
notch filter. We used a Twin­T notch filter (as shown in Figure 2.19) to filter out any PLI interference
around 50Hz after the IA stage. To obtain a low impedance filter output, we applied an opamp buffer.

𝑅1 𝑅1

𝐶1
𝐶2𝑅2

𝐶1

+

−
𝐴

𝑉𝑣𝑖𝑟𝑡 ≈ 1.65V

from IA → 𝑉𝑖𝑛 ≈ 0 ∼ 3.3V
𝑉𝑜𝑢𝑡 → to HPF

Figure 2.19: Twin­T notch filter including opamp buffer.

A transfer function of this circuit can be obtained with help from [69]. The required passive component
values to suppress frequencies in the range of 50Hz are shown in Table 2.3. The corresponding Bode
plot is shown on Figure A.13a of Appendix A.7, where we observe that the 50Hz PLI is suppressed
with an additional 50 dB.

Notch filter circuit
𝑓𝑐 = 50Hz, 𝐴𝑣 = 1V/V
Component Value

𝑅1 300 kΩ
𝑅2 33 kΩ
𝐶1 22nF
𝐶1 10nF

Table 2.3: Passive component values of the notch filter, shown in Figure 2.19.
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Band­pass filter and amplification circuit We designed our HPF and LPF (including signal gain)
based on the Sallen­Key topology (which is an active filter, see Section 2.2.2). The cascaded HPF
and LPF were created by the passive components as defined in Table 2.4. The resulting Bode plot
for the HPF, LPF, and cascaded filters are shown in Figure A.13b, A.13c, and A.13d of Appendix A.7.
Component tolerances may influence the behavior as we illustrate in Figure A.13c of Appendix A.7.

HPF circuit LPF circuit
𝑓𝑐 = 500Hz, 𝜁 ≈ 0.707 𝑓𝑐 = 5000Hz, 𝜁 ≈ 0.707

𝐴𝑣 = 48.5V/V 𝐴𝑣 = 13V/V
Impedance Value Impedance Value
𝑍1 =

1
𝑠𝐶1

𝐶1 = 1µF 𝑍1 = 𝑅1 𝑅1 = 412Ω
𝑍2 =

1
𝑠𝐶2

𝐶2 = 0.1µF 𝑍2 = 𝑅2 𝑅2 = 1.1 kΩ
𝑍3 = 𝑅1 𝑅1 = 680Ω 𝑍3 =

1
𝑠𝐶1

𝐶1 = 0.1µF
𝑍4 = 𝑅2 𝑅2 = 4.7 kΩ 𝑍4 =

1
𝑠𝐶2

𝐶2 = 22nF

Table 2.4: Impedances of 𝑍1, 𝑍2, 𝑍3, and 𝑍4 to create a HPF and LPF that satisfy our design requirements. The damping factor
is indicated by 𝜁.

2.2.5.2 Board design
We designed again a small two­layer PCB as shown in Figure 2.20 and 2.21. Since the board con­
tains more components compared to preamplifier v1.0, the dimensions have increased to 50 mm ×
15 mm. The connections are comparable to preamplifier v1.0: the wire to the main amplifier is directly
soldered onto the board, and the leads are connected through the pluggable terminal block. This board
is assembled in a similar way as shown in Appendix A.11.

(a) Preamplifier v2.0 front. (b) Preamplifier v2.0 back.

Figure 2.20: Preamplifier v2.0 board design.

Figure 2.21: 3D render of preamplifier v2.0 board design including components.

Overall theoretical performance We presented the different amplification and filtering stages of
preamplifier v2.0. Cascading the different stages should lead to a successful biopotential amplifier. To
illustrate the frequency response of the cascaded stages, we performed an analysis of the cascaded
system as shown in Figure A.13d of Appendix A.7. From this figure, it is evident that the amplifier has a
steep roll­off for frequencies below 500Hz and above 5000Hz. Furthermore, the notch filter frequency
is visible.
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2.2.6 Main amplifier
The main amplifier is the final hardware stage before the host software, with Figure 2.22 showing its
different inputs and outputs. This stage digitizes the signals from the preamplifiers, contains compu­
tational power, implements communication interfaces, and creates supply voltages for the different
hardware units. The communication interfaces include a universal serial bus (USB), serial peripheral
interface (SPI), and universal asynchronous receiver­transmitter (UART) bus, which we will discuss in
more detail in the following sections.

Main
amplifier

Preamplifier processing
Computational power

Communication interfaces

𝑉𝑐𝑐 = 9 ∼ 12V
𝑉𝑠𝑠

SPI bus [to stimulator]
UART bus

𝑉𝑢𝑠𝑏 = 5V
USB bus

𝑉𝑐𝑐 = 5V
𝑉𝑐𝑐 = 3.3V

𝑉𝑠𝑖𝑔𝑛𝑎𝑙
𝑉𝑣𝑖𝑟𝑡

𝑉𝑠𝑖𝑔𝑛𝑎𝑙
𝑉𝑣𝑖𝑟𝑡

From preamplifier | Channel 2

From preamplifier | Channel 1

Figure 2.22: Inputs and outputs of the main amplifier.

2.2.6.1 Circuit design
In this part we go into detail on several essential elements of the main amplifier. We refer for the
complete schematic of the main amplifier to Appendix A.9.

Microcontroller The heart of the main amplifier is the STM32F446RE, a microcontroller unit (MCU)
with an Arm Cortex­M4 32­bit central processing unit (CPU). The Cortex­M4 CPU can run up to a
frequency of 180MHz and provides a floating point unit (FPU) single precision coprocessor core. The
STM32F446RE contains, among other things, flash memory of up to 512 kilobytes (kB), several 12­
bit ADCs, and (advanced) communication interfaces like USB and SPI. This MCU complies with the
computational power and communication interfaces requirements.

Power supply A 9V battery is used as the primary energy source to create an isolated system. To
prevent any additional noise, an LDO regulator lowers the supply voltage to 5V. Next, two LDO regu­
lators are applied to create a supply voltage of 3.3V for the analog domain (containing the preamplifier
input processing parts), and a separate supply for the digital parts (e.g., MCU, digital communication
interfaces). Cascading multiple LDO regulators is an inefficient way to lower the supply voltage from
9V to 3.3V; however, this method produces less additional noise compared to a switched­mode power
supply (SMPS). Given our design requirements, efficiency is not essential.

Similar to the preamplifier, we created a virtual ground by using a voltage divider and an opamp
buffer. We generated a separate virtual ground for each preamplifier channel, and we will refer to this
voltage as 𝑉𝑜𝑓𝑓𝑠𝑒𝑡.

Preamplifier input processing One of the essential tasks of the main amplifier is the digitization of
the preamplifier signals. Before these signals enter the ADC, the signal goes through several stages, as
we show in Figure 2.23. Firstly, the input signals from the preamplifier (𝑉𝑠𝑖𝑔𝑛𝑎𝑙 and 𝑉𝑣𝑖𝑟𝑡) are subtracted
using an IA, and the output is shifted by the virtual ground level 𝑉𝑜𝑓𝑓𝑠𝑒𝑡. This stage ensures that the
input signal is referenced to 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 instead of 𝑉𝑣𝑖𝑟𝑡 and buffers the input signal. Subsequently, the signal
passes through a notch filter, as we introduced in Figure 2.19. This filter can be enabled or disabled
by the user. In Section 2.2.2 we introduced the design of a HPF and a LPF. These filters are applied in
the filtering stages for 𝜁 ≈ 0.707. The user can enable the filters and select the cutoff frequency of the
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HPF (𝑓𝑐 =50Hz or 500Hz) and the LPF (𝑓𝑐 = 2500Hz or 5000Hz), or can disable the filters. We refer
to Appendix A.9 for exact circuit layout and component selection. The final stage before the ADC is the
programmable­gain amplifier (PGA) that adds additional gain (between 𝐴𝑣 = 1V/V and 𝐴𝑣 = 200V/V)
to increase the signal’s amplitude towards the ADC full scale (the minimum and maximum voltages that
the ADC can measure). Finally, we use the internal ADC of the MCU, preceded by a passive LPF that
serves as an anti­aliasing filter at 𝑓𝑐 = 1MHz.

IA
𝐴𝑣 = 1V/V

Notch filter
𝑓𝑟 = 50Hz

HPF
𝑓𝑐 = …𝐻𝑧, 𝜁 ≈ 0.707

LPF
𝑓𝑐 = …𝐻𝑧, 𝜁 ≈ 0.707

PGA
𝐴𝑣 = …V/VLPF & ADC

𝑉𝑜𝑓𝑓𝑠𝑒𝑡

𝑉𝑠𝑖𝑔𝑛𝑎𝑙
𝑉𝑣𝑖𝑟𝑡

𝑉𝑎𝑑𝑐

On Off
50Hz

Off
500Hz

2500Hz
Off

5000Hz

1
2

5
1020

50
100

200

Figure 2.23: Global system design of preamplifier input processing stage on the main amplifier. The instrumentation amplifier
is indicated by IA. HPF and LPF represent the high­ and low­pass filters, the programmable­gain amplifier is identified as PGA,
and the analog­to­digital conversion stage as ADC.

Discretizing using ADC We used the internal ADCs of the MCU to sample the signal after the PGA
and the virtual ground level 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 simultaneously. We defined the channel voltage as

𝑉𝑐ℎ = 𝑉𝑎𝑑𝑐 − 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 . (2.9)

In the design requirements (Section 2.1.5), we specified an ADC resolution of at least 14­bits, while
the frequency range of interest is between 500Hz and 5000Hz. However, the MCU’s ADC has a
resolution of only 12­bit. Therefore, we will use a technique called oversampling to increase the ADC’s
solution [70].

According to Nyquist’s theorem, the sampling frequency 𝑓𝑠 of an ADC is determined by the highest
frequency component 𝑓𝑚𝑎𝑥 in the signal, i.e.:

𝑓𝑠 > 2𝑓𝑚𝑎𝑥 . (2.10)

In our design, 𝑓𝑚𝑎𝑥 is equal to the highest frequency component after the LPF. In other words, 𝑓𝑚𝑎𝑥 =
5000Hz, being the highest frequency within the frequency range of interest. Thus, we defined 𝑓𝑠 =
20 kHz. Nevertheless, using the MCU’s ADC, the resolution is still 12­bit.

Increasing 𝑓𝑠 can be used to increase measurement resolution and the signal­to­noise ratio (SNR),
if we assume that white Gaussian noise (WGN) is present on the input. For each additional bit of
resolution, we need to oversample the signal by a factor of four

𝑓𝑜𝑠 = 4𝑤𝑓𝑠 , (2.11)

where 𝑓𝑜𝑠 is the oversampling frequency, and 𝑤 the number of additional bits of resolution. In our
situation – we require 2 additional bits – this results in an oversampling frequency of 𝑓𝑜𝑠 = 320 kHz [70].
After taking 16 (12­bit) samples at 𝑓𝑜𝑠 = 320 kHz, the data is averaged to obtain 14­bit samples at
20 kHz. Besides the additional number of bits, oversampling also improves the SNR [70].

However, the cost of oversampling is an increasedCPUutilization. The direct memory access (DMA)
controller can move data from the ADC direct to the random­access memory (RAM), independently of
the CPU. We set up a DMA stream that continuously fills a buffer of size 16. An interrupt at 20 kHz
averages the buffer to obtain a 14­bit sample. The ADC stage is illustrated in Figure 2.24.
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Figure 2.24: ADC with oversampling procedure graphically represented. The buffer of size 16 – containing the 12­bit ADC data
– is indicated by 𝑏𝑢𝑓.

2.2.6.2 Board design
The board design is shown in Figure 2.25 and 2.26. The top part contains the analog circuits, including
the preamplifier input processing from Figure 2.23. The different headers can be used in combination
with jumpers to select certain cutoff frequencies 𝑓𝑐. The MCU is placed in the bottom left part, together
with an USB­C connector and the serial wire debug (SWD) header to program the MCU. A connector is
placed on the bottom of the PCB; this connector contains the supply voltages and digital communication
(SPI) bus for the stimulator (Chapter 3). The bottom right of the PCB is organized as a supply voltage
generation area, where the input of the 9V battery is lowered to several voltage levels. A heat sink
can be placed close to the LDO regulator to eliminate the LDO regulator’s excess heat. For future
use, a star ground is created in the center of the PCB. In Figure A.14 of Appendix A.10 we illustrate
the different parts of the board in more detail, and in Appendix A.11 we show the different steps of the
assembling process.

(a) Main amplifier front. (b) Main amplifier back.

Figure 2.25: Main amplifier board design.
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Figure 2.26: 3D render of main amplifier board design including components, without the connectors to the preamplifier.
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2.2.7 Software
In the previous sections, we discussed the design of the preamplifier and the main amplifier. Microneu­
rographic signals from the nerve are amplified and digitized in several stages. These data needs to
be transferred to a host (e.g., a PC) and visualized there, as a final processing stage. The host is in
control of the hardware such that specific settings of the peripherals can be adapted. In Figure 2.27, we
show the global design of the software, divided into embedded and host­side software. In the following
sections, we will discuss the different aspects of this global design.

CLI
host

ADC
FSM

𝑉𝑐ℎ𝑥

Cal. DAC
control

LED
control

PGA
control

Stim.
control

VCP
driver

VCP
driver

CLI
user

Receive
input

GUI

Process
input

Control Export
data

Play
sound

USBRx

Tx

Thread 1 Thread 2 Thread 3

Rx

Tx

Embedded Host side

Figure 2.27: Global design of the software, separated in an embedded and a host side. A virtual COM port (VCP) is deployed
over USB.We use this port for the command­line interface (CLI) to control the gain of the programmable­gain amplifier (PGA), the
analog­to­digital conversion finite­state machine (ADC FSM), the calibration digital­to­analog (cal. DAC), and the stimulator (stim.
control). The host entails a graphical user interface (GUI) to visualize the recordings and control the hardware.

2.2.7.1 Embedded software
The embedded software (or often called ‘firmware’) is written in the programming language 𝐶 by using
the common microcontroller software interface standard (CMSIS) tools provided by Arm Ltd., for the
Cortex­M4 core. The peripherals are set up using the STM32CubeMX framework, a graphical tool
that allows for a straightforward configuration of STM32 microcontrollers and microprocessors. We
compiled and debugged the firmware using the GNU Arm Embedded toolchain for the STM32F446RE
MCU. To avoid any usage of delay functions, our firmware is interrupt­driven.

Command line interface The firmware on the MCU is in control of the different peripherals of the
main amplifier. To read out analog values from the ADC, or adjust the gain of the PGA, we need a
communication interface between the MCU and the host. For this purpose, we created a command
line interface (CLI) over a serial port. We used a virtual COM (communication) port (VCP) driver to
establish a serial connection (through the build­in USB of the MCU and the build­in USB of the host) to
transmit (Tx) and receive (Rx) messages.

These American Standard Code for Information Interchange (ASCII) encoded messages contain
commands to control the different peripherals of the hardware but could also contain the digitized sig­
nal values of the preamplifier, obtained in the ADC stage. We implemented a CLI to control a variety
of functions, which we will discuss next. Using a serial port terminal emulator (e.g., CoolTerm), trans­
mitting the command help revealed the available commands (cmd), as we show in Figure 2.28.



42 2. Design of an extended neural signal amplifier for microneurography

Figure 2.28: Command line interface (CLI) over the serial port terminal emulator called CoolTerm. Transmitting help revealed
the available commands.

Analog­to­digital conversion finite­state machine A simple finite­state machine (FSM) is imple­
mented to transmit the data from the ADCs through the CLI as shown in Figure 2.29. After a measure

idlestart entry run stop

event­start event­stop

Figure 2.29: Analog­to­digital conversion finite­state machine.

start event (event­start), the main amplifier will initialize the correct peripherals (timers, interrupt,
ADC, LED) during the entry state, and will enter the run state. During this stage, the main amplifier
generates a stream at 20 kHz, containing the voltages 𝑉𝑐ℎ of preamplifier channel 1 and 2. We would
like to receive each new sample comma­separated on a new line. For example, it is assumed that we
measure a voltage of 1.2345V on channel A, and a voltage of 0.5678V on channel B (14­bit resolution).
Since our serial port terminal is ASCII encoded, we need to transmit

1.2345,0.5678\r\n

where \r and \n represent ASCII ‘return’ and ‘new line’ characters. Expressed in data size, this
message is 15 bytes, or 120 bits long. Assuming a data­rate of 20 000 samples per second, this
results in 2.4Mbit/s. Although this is within the USB 1.1 requirements of the STM32F446RE (FullSpeed,
12Mbit/s), we can improve this message further to reduce the complexity of the host driver. This
method is called the enhanced communication protocol and is discussed in the next paragraph.

After an event­stop command, the main amplifier will stop the datastream and it will wait in the
idle state for a future event­start command.
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Enhanced communication protocol The CLI is ideal for debugging purposes; it is an easy way
to test the peripherals of the hardware, in particular, the ASCII encoded messages are human inter­
pretable. However, if the CLI is mainly used by the host side GUI, the messages do not need to be
ASCII encoded anymore and can thus be simplified to improve the performance of the CLI. Further­
more, using simplified messages, the performance requirements on the host driver (Section 2.2.7.2)
become less important.

To transmit commands from the host to the main amplifier, the ASCII CLI commands are encoded
into 32­bit numbers as shown in Table 2.5. This table shows the commands as a hexadecimal number.
Additional bytes after the command might be used to pass additional information, e.g., PGA gain for
a specific channel number. After the main amplifier receives the command, it will respond with an
acknowledge command.

Enhanced CLI commands
Command Hexadecimal Consecutive data Encoding

CliCMDLedOn 0x3F3F3F3F None
CliCMDLedOff 0x3F3F3F3A None

CliCMDGain 0x66667777 0xVVWW VV[1:0] = PGA chan [1,2]
WW[7:0] = PGA gain [1,2,
5,10,20,50,100,200]

CLICMDMeasureStart 0x88889999 None
CLICMDMeasureStop 0x99998888 None

CliCMDStimV 0x22223333 0xVVVVVVVV V...V[31:0] = mV [32­bit]
0xWWWWWWWW W...W[31:0] = uS [32­bit]

CliCMDStimI 0x22223333 0xVVVVVVVV V...V[31:0] = uA [32­bit]
0xWWWWWWWW W...W[31:0] = uS [32­bit]

CliCMDStimInterPulse 0x22223333 0xVVVVVVVV V...V[31:0] = uS [32­bit]

Table 2.5: Commands of the enhanced communication protocol.

Every byte that is transmitted from embedded to the host side is build up using a certain structure,
as we show in Figure 2.30. The 6 most significant bits (MSB) contain the bits of a 16­bit number
𝐷 = 𝐷15, … , 𝐷0, the least significant bit (LSB) defines which channel is represented by number 𝐷. The
second LSB indicates whether the data byte contains control parameters. In case an acknowledgement
should be sent by the main amplifier, an OK­command is send, which is defined as 0b00000011 (the
command bit and the channel bit are set to 1).

𝐷15/9 𝐷14/8 𝐷13/7/3 𝐷12/6/2 𝐷11/5/1 𝐷10/4/0 𝐶 𝑐ℎ1/𝑐ℎ2

Part of 16­bit number 𝐷

Control bit

Channel bit

Figure 2.30: Encoded data byte, transmitted from the embedded to the host side. The 6 MSBs contain parts of a 16­bit number
𝐷. The LSB is used to link the number 𝐷 to the ADC channel. The second LSB is used for control byte encodings.

We devised a method to transmit 𝑉𝑐ℎ (14­bit resolution stored in a 16­bit integer) of both channels
within a 6­byte message buf[], by encoding the data in the byte structure as shown in Figure 2.30.
First, the 16­bit number 𝑉𝑐ℎ of channel 1 is split in a two 6­bit numbers and one 4­bit number. These
parts of the 16­bit number are placed into the 6 MSBs of buf[0], buf[1], and buf[2]. Furthermore,
the LSB of these bytes is set to 0 (indicating that the number represents the first channel. We did the
same for the second channel (𝑉𝑐ℎ of channel 2 splitted into three parts and placed into the 6 MSBs
of buf[3], buf[4], and buf[5]), however, the LSB is set to 1 (represents 𝑉𝑐ℎ of second channel).
In Listing 2.1, we show the bitwise operations to create the 6­byte buffer using the channel voltages.
Using logical shifts, the message buf[] is constructed.
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Listing 2.1: Bitwise operations to create the 6­byte buffer using the channel voltages

buf [ 0 ] = ( ( ch_1 >> 8) & 0xFC) | 0x00 ;
buf [ 1 ] = ( ( ch_1 >> 2) & 0xFC) | 0x00 ;
buf [ 2 ] = ( ( ch_1 << 2) & 0x3C) | 0x00 ;
buf [ 3 ] = ( ( ch_2 >> 8) & 0xFC) | 0x01 ;
buf [ 4 ] = ( ( ch_2 >> 2) & 0xFC) | 0x01 ;
buf [ 5 ] = ( ( ch_2 << 2) & 0x3C) | 0x01 ;

Additional features Some commands of the human interpretable CLI, as seen on Figure 2.28 are
briefly presented here. When, using the command leads, the leads­off detection status of preampli­
fier v1.0 can be accessed. The command gain controls the gain of the PGA, the command led the
blue LED, and the commands amp and freq the amplitude and frequency of the validation digital­to­
analog converter (DAC). The measurements are started with measure and the stimulator is controlled
by stim_*. The latter will be discussed in Chapter 3. All these commands have an equivalent hex­
adecimal command for the enhanced communication protocol.

2.2.7.2 Host side software
For the host side­software, we used Python as a programming language to implement the different
elements of Figure 2.27. Python is a rudimental programming language, for which many libraries are
available to extend its functionality. However, since Python is an interpreted language, it might intro­
duce delays compared to compiled languages such as 𝐶. Therefore, we created several threads that
run in parallel. A thread is a separate flow of execution. In other words, using threads, the software can
performmultiple tasks simultaneously. Without these multiple threads, we may miss out on preamplifier
data and may have to deal with frozen software.

Thread 1 ­ Command­line interface The first thread uses the CLI over the serial port by implementing
a VCP driver in Python. This thread is in charge of the serial port and is constantly checking for
incoming data, e.g., checking for potential control bytes (control bit set to 1) and processing the data
stream that contains a 6­byte buffer at 20 kHz encoding the 𝑉𝑐ℎ voltages. These encoded voltages are
real­time processed, and the data is passed to a Numpy array. Since this thread is constantly running,
using the standard (interpreted) Python functions would introduce a huge delay. Therefore, we used
the Numba library that translates Python functions to optimized machine code at runtime [71]. During
the first run, the software runs slower, since it needs to compile the code. However, the compiled code
after the first run can be reused, resulting in significant time savings.

Besides receiving data, this thread is also responsible for transmitting commands. In the embedded
software part, we presented that the CLI was implemented using ASCII encoded commands. To reduce
the message length, we encoded the commands in hexadecimal numbers, as provided by Table 2.5.

Since the incoming data rate is high (around 960 kbit/s), adding more tasks to this thread may result
in losing samples. Two different threads will perform the other tasks of the host software.

Thread 2 ­ Graphical user interface The ease of use is essential during complicated microneuro­
graphic recordings. Therefore, we created a graphical user interface (GUI) that permits users to use
graphic items (e.g., buttons) to control the functionalities of the main amplifier. Under the hood, the GUI
sends specific CLI commands (of the enhanced communication protocol) if, e.g., a button is pressed.

We used the Qt framework to create the GUI, with the PySide package providing the bindings for
Python. Figure 2.31 shows the implemented functionality of the GUI. Here we discuss the various
elements in more detail.

• Start/stop button [top left]: start the 20 kHz data stream containing voltages of both preamplifier
channels.

• Graphs [bottom]:

1. mV ADC: real­time ADC voltage, one channel is plotted. The x­axis is 2 seconds.
2. uV : real­time microneurography value, gain of amplifier is used to determine electrode volt­

ages. The x­axis is 2 seconds.
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3. mV : as 1), but with a smaller timescale of 0.1 second. If the mV ADC exceeds the threshold
defined by the dial button [top left], the result is shown in this graph.

4. Magnitude: Magnitude Bode plot of the mV ADC signal.

• Record checkbox [top]: used to export data to a .mat file, containing measurement data and
GUI settings. After unchecking, the data is saved under the name given in the text inputbox.

• Sound checkbox [top]: enable/disable sound.

• Gain [top]: adapt gain of PGA (1,2,5,10,20,50,100,200).

• Labels:

– Data rate: input data stream in samples per second.
– Total gain: preamplifier gain multiplied by PGA gain.
– Measure range: ADC saturation levels (0 ∼ 3.3V) divided by the total gain.

• Enable BP checkbox: Enable software band­pass filter, result plotted in first graph.

• Event checkbox: The checking and unchecking times will be saved and included in the exported
.mat file. Can be used to mark certain events.

• Stimulator control: See Chapter 3.

– Radio buttons: V or mA stimulation mode.
– Amplitude: Specify total V or mA.
– PW [uS]: Applied pulse width in µs.
– Inter [uS]: Interval between two consecutive pulses in µs.
– STIM button: Apply stimulus.

Thread 3 ­ Playing sound The last thread of the host software is responsible for the sound. The
received input of the data stream is copied to the sound buffer at 20 kHz and played. Commercial
amplifiers have similar features, which are helpful during microneurographic recordings to verify correct
electrode placement. If noise is present, a characteristic 50Hz tone can be heard. If APs are recorded,
every single AP produces a ticking sound (an AP contains relative high frequencies). The latter would
imply that the electrode is placed close to an axon.
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Figure 2.31: Graphical user interface (GUI) created using the Qt framework. The GUI communicates using the enhanced
communication protocol over the VCP. Here, no (microneurography) electrodes are connected to the preamplifier; the setup is
measuring noise.
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2.3 System validation
Before we performed in­vivo microneurographic recordings, we validated the different components of
our setup. Since the frequency­versus­gain plot and the CMRR are crucial for a working setup for
microneurography, we focused on these aspects during the validation. For this purpose, we made use
of artificial (amplitude­ and frequency­varying) sinusoids that could be generated by the main amplifier.

Although we started the design phase with the preamplifier, we first validated the main amplifier. To
successfully verify the performance of the preamplifier, a well­understood and correct performing main
amplifier was required. The validation of the preamplifier v1.0 will not be addressed any further, since
in Section 2.2.4.3 we included a prior validation and its limitations.

2.3.1 Main amplifier
The preamplifier input processing stage is the most crucial element of the main amplifier. We powered
the main amplifier – without the preamplifier attached – and created a voltage divider (as shown in
Figure 2.32 and 2.33) that was connected to the main amplifier’s validation DAC and one of the input
channels. Using this circuit, 𝑉𝑣𝑖𝑟𝑡 > 0V; which is a requirement for the proper functioning of the main
amplifier’s IA.

In this divider, 𝑉𝑠𝑖𝑔𝑛𝑎𝑙 > 𝑉𝑣𝑖𝑟𝑡 if 𝑉𝑖𝑛 ≠ 0V. In other words, 𝑉𝑜𝑢𝑡 (after the IA stage of Figure 2.23)
will always be above the 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 voltage for a non­negative DC 𝑉𝑣𝑖𝑛 voltage. The main amplifier’s HPF
removes the DC voltage, such that 𝑉𝑜𝑢𝑡 was centered around 𝑉𝑜𝑓𝑓𝑠𝑒𝑡.

𝑉𝐷𝐴𝐶 ≈ 0 ∼ 3.3 V
𝑅1

10 kΩ
𝑅2 1 kΩ

𝑅3

10 kΩ
𝑉𝑠𝑠 = 0 V

𝑉𝑠𝑖𝑔𝑛𝑎𝑙+

−
𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛/21

𝑉𝑣𝑖𝑟𝑡

+

−
𝑉𝑖𝑛 = 𝐴 sin(2𝜋𝑓) + 1.65 V

Figure 2.32: Voltage divider used for the main amplifier validation, where amplitude 𝐴 ∈ (−1.65V,1.65V) and 𝑓 the frequency
in Hz.

Figure 2.33: Setup including the voltage divider from Figure 2.32. This setup was used to validate the main amplifier’s input
processing stage. The input of the voltage divider was connected to the main amplifier’s DAC. The output of divider to the 𝑉𝑠𝑖𝑔𝑛𝑎𝑙
and 𝑉𝑣𝑖𝑟𝑡 terminals of the IA.

We implemented a frequency sweep (consisting of 100 logarithmically divided frequencies) between
10Hz and 10 kHz, using the main amplifier’s internal 12­bit DAC with an amplitude of 500mV. Each
frequency was applied for 50 ⋅ 1/𝑓𝑟𝑒𝑞 seconds, or 50 periods. The voltage divider from Figure 2.32
reduced this amplitude by 21V/V. We set the cutoff frequency 𝑓𝑐 of the HPF at 50Hz and of the LPF at
5000Hz. We set the PGA gain at 50V/V. After sampling, we obtained the ADC voltages as we show
in Figure 2.34. From this figure, it is clear that specific frequencies were amplified.
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Figure 2.34: ADC readings for a frequency sweep validation signal between 10Hz and 10 kHz.

Theoretical versus realized Bode plot Using the frequency sweep as shown in Figure 2.34, we
were able to determine the magnitude Bode plot of the realized main amplifier hardware. We divided
the observed ADC voltage amplitude for a specific frequency by the applied validation amplitude after
the voltage divider.

We theoretically implemented themain amplifier input processing filter (Figure 2.23) to obtain a Bode
plot as shown in Figure 2.35. The theoretical results show a second­order roll­off (−40dB/decade)
above cutoff frequencies 𝑓𝑐 of the HPF and the LPF. Furthermore, the effect of the notch filter was
visible around 50Hz. The PGA gain was set at 50V/V. In this figure, the observed gain using the
frequency sweep is shown for both HPF cutoff frequencies (50Hz and 500Hz) and both LPF cutoff fre­
quencies (500Hz and 2500Hz). These results correspond to the theoretical filter design. Notice three
things: 1) The gain around 1 kHz in Figure 2.35a was around 33.75dB ≈ 50V/V, which corresponds
to the selected gain of PGA. 2) The observed notch filter cutoff frequency seemed to be > 50Hz (to
be addressed at a later point). 3) In Figure 2.35a, the gain below 100Hz saturated at ≈ ­10 dB. At
these frequencies, the maximum and minimum of the observed ADC voltage were at the level of the
main amplifier’s (background) noise. In other words, in this region, the noise level was larger than the
amplified validation input signal.
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(a) HPF cutoff at 50Hz and LPF cutoff at 5000Hz.
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(b) HPF cutoff at 500Hz and LPF cutoff at 2500Hz.

Figure 2.35: Theoretical versus realized Bode plots of the main amplifier including a notch filter (cutoff at 50Hz).

Noise caused by USB The main amplifier was connected to the PC by an USB cable. Therefore,
the ground of the main amplifier was connected to the ground of the PC – introducing additional noise
to the main amplifier’s ground. To prevent ground loops, we added a USB isolator between the PC and
the main amplifier. The results showed a decrease in noise.
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2.3.2 Preamplifier v2.0
We validated the preamplifier using similar methods as for the main amplifier’s validation. The setup is
shown in Figure 2.36.

Figure 2.36: Setup including the voltage divider from Figure 2.32 using 𝑅1 = 𝑅3 = 20 kΩ and 𝑅2 = 330 kΩ. The divider was
connected to the main amplifier’s DAC (shown on the right) and to the input terminals of the preamplifier (shown on the left). This
setup was used to validate the preamplifier.
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Figure 2.37: Theoretical versus realized Bode plot of the pream­
plifier. HPF cutoff at 500Hz, LPF cutoff at 5000Hz, and notch
filter cutoff at 50Hz.

Theoretical versus realized Bode plot We
performed a similar frequency sweep as we did
for the main amplifier to validate the preamplifier.
We connected the preamplifier to the main ampli­
fier, disabled the main amplifier’s HPF and LPF,
set the PGA gain at 1V/V and set the validation
signal’s amplitude to 50mV. We adapted the re­
sistors of the voltage divider from Figure 2.32 to
𝑅1 = 𝑅3 = 20 kΩ and 𝑅2 = 330 kΩ, resulting in a
1:122 ratio. Figure 2.37 shows the observed gain
between 10Hz and 10 kHz, which corresponded
to the theoretical design. Around 2.5 kHz, the
gain was 71.5dB ≈ 3750V/V. However, for fre­
quencies below 100Hz, it seemed that the gain
was around 40dB ≈ 100V/V. Again, this was
a result of the noise that causes non­zero maxi­
mum and minimum amplitudes (values of 50mV
are observed) of the ADC readings. In other
words, the level of the noise was again larger than
the amplified validation input signal.



50 2. Design of an extended neural signal amplifier for microneurography

Driven right leg circuit To minimize the effect of PLI on our setup, we included a driven right leg
circuit in the design. The common­mode voltage was monitored and mirrored around the reference
voltage and driven back to the body. To validate this circuit, we placed the 𝐿𝑛𝑒𝑟𝑣𝑒 and 𝐿𝑟𝑒𝑓 leads in
gelatin, as illustrated in Figure 2.38.

Figure 2.38: Setup to test performance of the DRL circuit. On the left, the plastic container was filled with gelatin. The red and
black wires represent the 𝐿𝑛𝑒𝑟𝑣𝑒 and 𝐿𝑟𝑒𝑓 leads. The blue wire can be placed in the gelatin, activating the DRL circuit. In this
picture, the DRL circuit was not activated, resulting in the ADC voltages shown in Figure 2.39a. The preamplifier (v2.0) is shown
in the middle, on the right is the main amplifier.

The recordings without and with the connected DRL electrode are shown in Figures 2.39a and
2.39b respectively, while the frequency amplitude spectrum plots are shown in Figure 2.40. These
results reveal that the PLI of 50Hz, including its harmonics, were suppressed after using the DRL circuit.
Furthermore, Figure 2.40b shows that the 50Hz was inhibited, while its harmonics were present. This
can be explained by the preamplifier’s notch filter of 50Hz.
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(a) Without DRL lead attached.
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(b) With DRL lead attached.

Figure 2.39: Raw ADC voltages for the setup shown in Figure 2.38. The gain of the PGA was set at 1V/V. These figures show
an amplitude decrease from ≈ 1500mV to 50mV using the DRL electrode.
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(a) Amplitude spectrum on a linear y­scale.
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(b) Amplitude spectrum on a logarithmic y­scale.

Figure 2.40: Amplitude spectrum of the signals from Figure 2.39. These results show that the PLI of 50Hz and its harmonics
are minimized.

Faraday cage During trials for measurement of neural signals in the axon of a lugworm (will be dis­
cussed further in Section 2.4), we still measured some 50Hz harmonics, although the DRL method
was performing well to reject PLI. Therefore, as shown in Figure 2.41, we have built a Faraday cage
that should block all electromagnetic fields in order to increase the EMI rejection performance. We
grounded the cage by connecting it to the main amplifier’s (isolated) ground. Small animals can fit in
this cage to validate the setup during in­vivo experiments. Figure 2.42 shows the reduced measured
noise; the Faraday cage without using the DRL method shows the best performance in terms of EMI
rejection.

Figure 2.41: Setup including the Faraday cage. The container with gelatin was placed inside the cage and the cage was
connected to the (isolated) main amplifier’s ground.
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Figure 2.42: Amplitude spectrum of the signals from Figure 2.39 and also using the setup including the Faraday cage, as shown
in Figure 2.41.
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2.4 In­vivo experiments
In this section, we have used our neural signal amplifier for microneurographic recordings in­vivo. We
performed several in­vivo experiments on lugworms and rats, as illustrated by the timeline in Figure 2.43.
First, we tested the preamplifier v1.0 using an anesthetized rat. Due to the leads­off detection, this
amplifier was unusable for microneurographic recordings; therefore, we will not discuss this experiment
in further detail. For the first rat experiment, we used the updated preamplifier v2.0 and observed a
stimulus artifact. Before performing the second rat experiment, we applied our setup to a lugworm,
including the Faraday cage. These results were promising, and finally, we were able to measure APs
during the second rat experiment.

In the following sections, we will discuss the experiments performed on lugworms to capture neural
behavior. After that, we will discuss the experiments that were performed using rats.

Test setup
with rat

First rat
experiment

Lugworms
experiment

Second rat
experiment

Preamplifier v1.0
DRL circuit

R: No activity

Preamplifier v2.0
DRL circuit

R: Stimulus artifact

Preamplifier v2.0
Faraday cage
R: Single­unit

Preamplifier v2.0
Faraday cage
R: Multi­unit
R: Single­unit

Validation
finished

Figure 2.43: In­vivo experiments timeline.

2.4.1 Measurements in lugworms
2.4.1.1 Anatomy
Lugworms are large marine organisms (Figure 2.44a) and are often used as bait for sport fishing. In
Figure 2.44b, we show their anatomy: lugworms have a ventral nerve cord that runs along the length
of their body.

(a) A lugworm in its natural habitat [72].
(b) The anatomy of a lugworm, notice the ventral nerve cord that
runs along the length of the body [73].

Figure 2.44: Lugworm.

2.4.1.2 Setup overview
We punctured the ventral nerve cord of a lugworm using two needles and placed the lugworm inside the
Faraday cage. Then, we used a (wooden, non­conductive) chopstick to touch the worm to provoke APs.
To limit any environmental noise, a Faraday cage (without using the DRL circuit) was used. According
to Figure 2.42, this setup was optimal to limit noise from EMI. The gain of the main amplifier was set at
20V/V, resulting in an overall gain (main amplifier and preamplifier) of ≈ 82000V/V or ≈ 98.3dB. We
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sampled at 20 kHz and used the setup’s sound output to help placing the needles correctly. Figure 2.45
shows this setup, including the lugworm, the preamplifier, and the Faraday cage.

Figure 2.45: Setup overview to measure APs in a lugworm. The needles were placed inside the ventral nerve cord and connected
to the preamplifier. The lugworm was placed inside the Faraday cage. A wooden chopstick to provoke APs is shown on the left.

2.4.1.3 Results
Background activity After placing the needles, we recorded neural background activity in the ven­
tral nerve cord of the lugworm. During these measurements, we were not touching the lugworm. Fig­
ure 2.46a shows the recorded background activity, where many spontaneous individual APs can be
observed. The amplitudes of the APs are not equal; some smaller and larger spikes can be identified.

To validate the size and shape of single APs, we attempted to create an averaged AP. To do so, we
select all spikes that are above 5µV. Sometimes APs are measured in rapid succession, which are
difficult to compare to a single AP. We ignored all APs that have another AP within an interval of 10ms.
This resulted in 89 selected APs, as shown in Figure 2.46a.

We show the overlay of these spikes in Figure 2.46c. The averaged AP is around 1ms in duration
and has an amplitude between −10 and 10µV. These values are comparable to literature findings [55].

Chopstick evoked activity We pressed gently on the lugworm using the wooden chopstick shown
in Figure 2.45, with a frequency of ≈ 1Hz. The raw data recording is shown in Figure 2.46b. By
comparing these data to the neural background activity (Figure 2.46a), it can be seen that a neural AP
train is repeated with a frequency of 1Hz.

Again, we selected spikes above 5µV and not followed by another spike within 10ms, to determine
the averaged AP. The result is shown in Figure 2.46d. Although the averaged AP differs from the
background activity spike (Figure 2.46c), a clear pattern can be identified.

2.4.1.4 Remarks
Despite the fact that the overlay plots of the background activity and chopstick evoked activity are
different, the raw data plots clearly show the individual spikes. However, placing the needles at random
in the lugworms was often not successful. Careful needle placement (close to the ventral nerve cord)
was required to record APs.

We used non­isolated needles, which record the activity from many (smaller) axons simultaneously
(see Section 2.1.2). However, we were able to discriminate single APs easily, a topic that we address
further in the discussion.
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(a) Raw microneurographic recordings in a ventral nerve cord of a lugworm. The measurements were performed for 10 s, with the measured
potential shown on the left axis in µV. The axis on the right indicates the sampled ADC voltage. The ADC­stage saturates at −1650 and 1650mV.

(b) Raw microneurographic recordings in a ventral nerve cord of a lugworm during gentle touches with a chopstick at 1Hz. The measurements
were performed for 10 s, with the measured potential shown on the left axis in µV. The axis on the right indicates the sampled ADC voltage. The
ADC­stage saturates at −1650 and 1650mV.
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(c) The averaged AP of the single APs in Figure 2.46a.
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(d) The averaged AP of the single APs – evoked with a chopstick – in
Figure 2.46b.

Figure 2.46: Results of microneurographic recordings in the ventral nerve cord of a lugworm.
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2.4.2 Measurements in rats
We performed two experiments on rats, a few weeks apart. The results from the first rat experiment
were studied and used to improve the setup for the second rat experiment.

All recordings on rats were conducted at the LUMC animal facility, in a controlled laboratory en­
vironment. The experiments were conducted on anesthetized (Temgesic + Isoflurane; 0.05mg/kg
buprenorphine/ 5% induction, 2% maintenance isoflurane) adult Sprague­Dawley rats (female or male,
10­12 weeks old) in accordance with national­ and EU regulations regarding animal care (LUMC,
AVD1160020171627). Animals were housed in a temperature­ and humidity­controlled environment
with a light/ dark cycle of 12 h:12 h, and free access to food and water. Every attempt was made to
minimize the number of animals used, as well as their pain and discomfort.

2.4.2.1 Anatomy
The Sprague­Dawley rats were anesthetized and the sciatic nerve was exposed, which is frequently
used for microneurographic recordings [74]. The sciatic nerve runs down the lower part of the leg,
and is the longest and widest nerve of a rat. It connects the spinal cord and brain with the skin and
muscles of the thigh and leg, and is therefore responsible for the innervation and control of the skin and
musculature of the lower leg and foot. Vice versa, it transfers sensory information from the skin of the
foot and lower leg musculature to the spinal cord and brain. Figure 2.47 shows the rat in experimental
setup during our experiments, with the sciatic nerve exposed.

(a) Anesthetized rat, sciatic nerve of right leg is
exposed.

(b) Sciatic nerve including shaved skin. (c) Sciatic nerve in detail. 1, sciatic nerve; 2,
common fibular nerve; 3, tibial nerve; 4, sural
nerve. Bar = 8mm [75].

Figure 2.47: Sciatic nerve anatomy of a Sprague­Dawley rat.

The entire sciatic nerve at midthigh is composed of about 27 000 axons. Of these axons, 6% are
myelinated motor axons, 23% myelinated and 48% unmyelinated sensory axons, and 23% unmyeli­
nated sympathetic axons [76]. Hence, the sciatic nerve contains a large number of unmyelinated axons,
which are thinner than myelinated axons (Section 2.1.1).
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2.4.2.2 Setup overview ­ first experiment

Figure 2.48: Microneurography electrodes. White tab: isolated
(single­unit), blue tab: non­isolated (multi­unit).

For the first experiment, we used two reference
electrodes, namely, electrodes that do not have
an isolated shield. By doing so, we increased the
probability of picking up any activity from axons in
the vicinity of the electrode. We placed one (iso­
lated) microneurography electrode into the sciatic
nerve, and the second (non­isolated) electrode
into the surrounding tissue, such as connective
tissue, as we show in Figure 2.49. To improve
the CMRR, the DRL circuit was used. The DRL
electrode was connected using a disposable elec­
trode. Figure 2.48 shows an isolated (single­unit)
and non­isolated (multi­unit) electrode.

(a) The disposable DRL electrode is shown on the top left and the preamplifier on the bottom
right.

(b) Two reference electrodes: one placed in the
sciatic nerve and one in the surrounding tissue.

Figure 2.49: Overview of the setup of the first rat experiment.

2.4.2.3 Results ­ first experiment
During these experiments, no background neural activity was observed. To provoke APs, we stimulated
the right leg by slightly scratching the skin with the terminals of a 9V battery. Figure 2.50 shows the
results of the provoked APs. We selected APs above 50µV and with a minimal spacing of 10ms to
create an overlay as shown in Figure 2.51.

Figure 2.50: Raw microneurographic recordings. The measurements were performed for 40 s, with the measured potential
shown on the left axis in µV. The axis on the right indicates the sampled ADC voltage. The ADC­stage saturates at −1650 and
1650mV.
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2.4.2.4 Remarks ­ first experiment
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Figure 2.51: The averaged of the single spikes in Figure 2.50.

Although the results from Figure 2.50 looked
promising, the averaged spike from Figure 2.51
shows some extraordinary characteristics. Firstly,
the amplitude is in the order of 300µV, which was
much bigger than an expected AP measured us­
ing microneurography (0­10 µV). Secondly, the
spikes can only be initiated by using a 9V bat­
tery; no spontaneous AP detection was present.
Third, the observed spikes were also provoked by
stimulation of other parts of the rat, e.g., left leg
or back using the 9V battery terminals. As such,
these spikes were classified as stimulus artifacts,
which is often seen during experiments where
an electrical stimulus is used to evoke APs [77].
Furthermore, the recordings within the −25µV
to 25µV range were dominated by background
noise caused by EMI. This led to an improved
setup to reject this interference further.

2.4.2.5 Setup overview ­ second experiment
Sufficient noise reduction is essential for successful microneurography. Therefore, we applied a Fara­
day cage (see noise levels in Figure 2.42) for the second experiment. Using this setup, we could focus
on the −20 to 20µV interval; this is the range where we expected to measure APs using microneurog­
raphy (see Section 2.4.1.3 for APs in worms).

In Figure 2.52, the setup for the second experiment is shown. As mentioned, the anesthetized rat
was placed inside the Faraday cage. Like in the previous experiment, to increase the chance of picking
up nerve activity, two reference electrodes were used. These electrodes can pick up any activity from
an axon in the vicinity of the entire electrode.

Figure 2.52: Setup overview for the second experiment. The rat was placed inside the Faraday cage. Two reference electrodes
were used: one is placed in the sciatic nerve and one inside the surrounding tissue.

Weperformed background neural activity measurements in both legs (in Figure 2.52, the right sciatic
nerve is exposed). Furthermore, the activity was recorded while the leg was slightly touched with a
cotton swab with a frequency of ≈ 1Hz, as shown in Figure 2.53. The electrodes were readjusted
repeatedly until a signal was picked up by the electrodes.
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Figure 2.53: Recording of neural activity using microneurography in the left sciatic nerve of a rat. The left leg was slightly touched
with a cotton swab at ≈ 1Hz.

2.4.2.6 Results ­ second experiment (multi­unit recording)
The comparison of Figure 2.54a to Figure 2.54b shows that we were able to record activity of multiple
axons. In Figure 2.54a the rat was not stimulated: The signal mainly consisted of noise, with many
smaller spikes superimposed to the noise level. In Figure 2.54b, the paw of the rat was pressed multiple
times with a cotton swap. This repetitive pattern resulted in an alternating level of the multiple axon’s
(multi­unit) activity, which was clearly visible by repetitive blocks of spikes occurring in the frequency of
stimulation.

(a) Background activity. Although the majority looks like noise, many (smaller) sharp spikes can be seen. In contrast to the noise level, this is
difficult to discriminate.

(b) Cotton swab evoked activity (Figure 2.53). A repetitive pattern at 1Hz can be observed.

Figure 2.54: Raw recordings of the second experiment. The rat was placed in the Faraday cage and two reference electrodes
were used for the recordings. The measured potential is shown on the left axis in µV. The axis on the right indicates the sampled
ADC voltage, the ADC­stage saturates at −1650 and 1650mV.
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2.4.2.7 Results ­ second experiment (single­unit recording)
For the final experiment, we used a single­unit microneurography electrode (discussed in Section 2.1.2).
Even though it was challenging to record activity with this electrode (since the non­isolated tip was
extremely small and only measures very local potentials, the success of these recordings was highly
depending on correct needle placement) a few APs were obtained. The needle was replaced multiple
times in the sciatic nerve (Figure 2.55b), and after some trials, successful recordings were obtained as
shown in Figure 2.55a. The average of the spikes (Figure 2.55c) looks like an AP from an unmyelinated
C axon [57].

(a) Raw recordings of the second experiment. The measured potential is shown on the left axis in µV. The axis on the right indicates the sampled
ADC voltage, the ADC­stage saturates at −1650 and 1650mV.

(b) Placement of the single­unit microneurography electrode in the sci­
atic nerve.
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(c) Mean AP of the APs shown in Figure 2.55a.

Figure 2.55: Results of microneurographic recordings in the sciatic nerve of a rat using a single­unit electrode. The Faraday
cage was used to limit the interference.
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2.5 Discussion
Here we introduced the design requirements for a successful neural amplifier for microneurography.
Additionally, we elaborated on the design of our hardware step­by­step. The system was validated
in­vivo on lugworms and in rats, APs were recorded. The design requirements, validation, and results
of the in­vivo study are discussed here. We conclude with recommendations for (future) hardware
improvements.

2.5.1 Amplifier’s gain
Microneurographic signals are in the order of tens of µV. To amplify these signals to the hundredths
of mV range, a large gain of 𝐴𝑣 ≈ 20000V/V is required. Using the preamplifier’s gain and the main
amplifier’s PGA gain, we were capable of creating a gain ranging between 4098V/V and 819650V/V,
which was (software) selectable in several steps. Using these different gains, the neural signal could
be amplified such that the maximum range of ADC stage was used. The maximum gain exceeds the
necessary requirements for microneurographic purposes.

2.5.2 Too much bandwidth
In Section 2.1.5, we defined the design requirement for the bandwidth of our neural signal amplifier:
500Hz to 5000Hz. In this frequency range, microneurographic signals are present. In our first designs,
we implemented a HPF on the preamplifier with a cutoff frequency of 5Hz instead of 500Hz. Using
this wide bandwidth, all available information was amplified. Potential bandwidth narrowing methods
(additional filtering) could be implemented using analog filters (on the main amplifier), or in the digital
domain. In this enlarge bandwidth range, however, movement (artifacts) and other (non­neural) activi­
ties were observed. We observed that the amplifier became saturated which resulted in unsuccessful
microneurographic recordings. Therefore, we adapted the HPF’s cutoff frequency to 500Hz. This is an
indication that a larger bandwidth does not necessarily lead to better results. According to the results,
a bandwidth between 500Hz and 5000Hz seems appropriate for microneurographic recordings.

2.5.3 Interference rejection
We elaborated on several EMI rejection techniques. Firstly, we implemented a DRL circuit that actively
steers the common­mode voltage towards a specified level. This technique resulted in suppression
of the 50Hz PLI (and its harmonics), as we showed in Figure 2.39. Without a DRL circuit, the noise
(after amplification) saturated the ADC stage. Including the DRL circuit, the noise level at the ADC
stage decreased to several mV. We could even further improve these results by using a Faraday cage
(Figure 2.42); which shielded the interior from external EMI.

A combination of the Faraday cage and the DRL circuit did not lower the noise levels further, to
the contrary. The combination of both techniques resulted in similar EMI reduction levels as when
only the DRL circuit was used. We hypothesize that a DRL lead can also pick up environmental noise.
Additionally, the DRL circuit potentially introduced additional noise to the Faraday cage. Therefore, we
did not use the DRL circuit in combination with the Faraday cage. However, this is a crucial assessment
in the situation that the microneurography target (e.g., a human) does not fit within the Faraday cage.
The DRL method by itself may not be sufficient to suppress interference to perform microneurography
successfully.

2.5.4 Digitization and real­time data visualization
The 14­bit ADC resolution design requirement appeared to be more than sufficient for microneuro­
graphic recordings. Sampling data at high frequency rates (including oversampling to increase resolu­
tion), and implementing an embedded driver and a host driver to communicate the digitized values at
20 000 samples per second, was challenging. Although, by making use of the Python package Numba,
the host side driver was optimized. Moreover, the use of different threads (for specific tasks) resulted
in a smooth operating GUI that visualizes the recorded data real­time. Large amounts of data could
be produced by the setup; e.g., a microneurographic recording of one minute could yield a .mat file of
several hundredths of megabytes.
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2.5.5 Recorded action potential shape
The AP’s shape as recorded in unmyelinated 𝐶 and myelinated 𝐴𝛽 axons in humans are shown in
Figure 2.4. By comparing these shapes to the observed APs in the ventral nerve cord of the lugworm
(Figure 2.46c and Figure 2.46d), we saw several differences.

Firstly, our background recorded AP (Figure 2.46c) looks similar to the myelinated AP from Fig­
ure 2.4. However, in the lugworm, the AP is negative­going first, while the AP in a myelinated 𝐴𝛽 axon
is positive­going first. In literature, this is explained as the microelectrode tip being close to a node of
Ranvier [78].

Secondly, the amplitude (in µV) of the recordings performed in lugworms (presented in Figure 2.46c
and Figure 2.46d) compared to human recordings (Figure 2.4) showed amplitude differences. These
differences may be explained by electrode placement (e.g., tip further away from nerve). Moreover, the
gain of the preamplifier is not uniform within the bandwidth (Figure 2.35 and Figure 2.37). In software,
the digitized value is converted to corresponding voltage levels at the tip of the electrode. A too large
scaling factor may have been used in software that leads to a smaller electrode voltage than the actual
voltage.

Thirdly, the APs evoked with a chopstick (Figure 2.46d, multiple axons were recorded after contact)
showed that, besides the large peak (probably caused by some large axons, see next section), some
smaller peaks were present. These smaller peaks may originate from many (smaller) axons that were
not simultaneous active at the background, but were now activated simultaneously by the chopstick.
Not all axons had the same conduction speed, and that may result in multiple peaks. Therefore, this
activity could be classified as multi­unit activity. In this case, the observed activity looked like LFPs.

2.5.6 Lugworm’s ventral nerve cord versus rat’s sciatic nerve
We used lugworms and rats to test our setup and record microneurography in­vivo. During these
experiments, we placed both isolated (single­unit) as non­isolated (multiple­unit) electrodes in (or close
to) a nerve. Recordings from the lugworms using non­isolated electrodes showed clearly identifiable
and separate APs (or single­unit activity), as shown in Figure 2.46. However, non­isolated electrodes
used on a rat’s sciatic nerve resulted in multi­unit activity (see Figure 2.54).

Looking at the cross­sectional view of the lugworm’s ventral nerve (Figure 2.56b) could yield addi­
tional information. Three large axons (giant fibers) are present which play a crucial role in the worm’s
rapid escape responses [79] to explain this difference. These axons have a thick myelinated sheet.
Placing an electrode in (or close to) the ventral nerve cord results in recording the activity mainly from
these giant axons. The activity from many other smaller axons (shown below the giant axons in Fig­
ure 2.56b) is presented less prominent in the recording. Smaller axons have a smaller total transmem­
brane ionic current flow, and therefore, the resulting extracellular potentials differences (that can be
measured using microneurography) are smaller.

(a) Top and middle: cross­section of a worm, bot­
tom: cross­section of the ventral nerve cord [80].

(b) Cross­sectional view of the upper part of the ventral nerve. Three giant axons are
shown: two lateral giant fibers (LGF) and one medial giant fiber (MGF) [79].

Figure 2.56: Ventral nerve cord of a lugworm.

The sciatic nerve of a rat does not contain giant axons and contains relatively many unmyelinated
axons (see Section 2.4.2.1). Placing a non­isolated electrode results in a recording of many signals
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derived from varying types of axons (see Figure 2.54). Based on the above, we could classify this
activity as multi­unit activity. To pick up single­unit activity, an isolated electrode (placed very close to
an axon) is required. However, very accurate placement of the isolated electrode becomes essential
and challenging in these circumstances and requires multiple needle adjustments before finding the
right position for recording. I.e., placing the tip of the electrode in one of the connective tissue layers
(Section 2.1.1) may result in a recording without any neural activity.

2.5.7 Setup improvements
Our setup was capable of recording neural activity using microneurography. However, to further im­
prove its performance, we provide some suggestions for future hardware and software improvements.

• The data rate was set at 20 000 samples per second; however, 1 or 2% was missed due to the
Python driver at the host. In Section 2.3.1, we validated the performance of the main amplifier.
We observed that the cutoff frequency of the notch filter is not exactly at 50Hz; it is around 52Hz.
This could be due to component tolerances, but also due to missing samples leading to a higher
observed frequency. The latter could be resolved by improving the Python driver, or by including
timing information in the data stream (see Section 2.2.7.1).

• A Faraday cage improves the noise rejection significantly (see Section 2.42). Besides shielding
the lugworm or rat during in­vivo experiments, we could also shield the preamplifier and main
amplifier by placing these hardware components in (metal) enclosures.

• We designed the GUI using the Qt framework, where the PySide package provides the bindings
for Python. This package utilizes the CPU for running the different threads and rendering the
GUI; therefore, our software demands much processing power of the CPU. Additional features
may reduce the performance of the software, hence, it may be required to use the graphics
processing unit (GPU) or different compiled programming languages (such as C/C++) for future
software versions.

• During our in­vivo experiments, the microneurography electrodes were placed by hand. Due to
the elasticity of the connecting wire, the electrode was moving slightly after placement. Moreover,
precise placement of the electrode in the sciatic nerve, such that the non­isolated tip was within
the nerve tissue, was extremely challenging. Therefore, a micromanipulator could be very useful
to place the electrodes accurately during in­vivo experiments.

2.6 Conclusion
Neurophysiological signals are electrical signals generated by the nervous system. Depending on the
type of stimulus and in particular pathologies, these signals are sometimes interpreted by the brain as
‘pain’. To neutralize the painful signals, we require a setup that is capable of measuring neural activity,
while embedding processing power and extensions for simultaneous stimulation. We successfully de­
veloped a functional signal amplifier for microneurography with a user­friendly setup that can be applied
to measure the activity in nerves. With this setup, it is potentially possible to detect pain­related activ­
ity and discriminate subthreshold oscillations and ectopic discharges that are related to neuropathic
pain. Additionally, this setup could implement closed­loop algorithms that require simultaneous neural
recording and stimulation. It is a first step in tackling the limitations of existing hardware and shows
promising results for future development and neutralizing activity that leads to generation of NP.
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3
A discussion on arbitrary waveform

electrical neurostimulators
Objective: To review the application of arbitrary waveform to biological tissue.
Approach: An electrical neurostimulator (ENS) implements voltage­controlled, current­controlled, or
charge­controlled stimulation pulses. These pulses are often biphasic to prevent electrolysis with elec­
trode dissolution and tissue destruction. The pulse width, the amplitude, and the frequency can be
adapted. However, most stimulators cannot implement arbitrary waves at the tissue level. We use the
dielectric properties of gray matter of the brain using the Cole­Cole equation and discuss stimulator
extensions that utilize the tissue’s characteristics to implement arbitrary waveforms. We assume that
the stimulator implements pulse­width modulation (PWM) signals.
Main results: The Cole­Cole equation of gray matter shows that it has a low­pass filter (LPF) behavior.
Our simulation results suggest that arbitrary waves (using a PWM signal) can be implemented at the
gray matter in two ways: with increased PWM frequency, or with LPF added to the stimulator’s output.
Significance: Our results (using the dielectric properties of gray matter) provide a basis for further re­
search on ENS designs for arbitrary waveform implementation.
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3.1 Introduction
In this thesis, we neutralized SO and ED at single axon level in Chapter 1: we were able to meet
our objective in­silico. One of the following steps is to validate these findings in­vivo. Therefore, an
electrical neurostimulator (ENS) is required that is capable of implementing specific calculated and
variating stimulation patterns.

The results from the in­silico experiment, using the extended HH model (Figure 1.7), suggest that
electrical current pulses of 30 µs with varying amplitude are required to neutralize SO and ED. In this
chapter, we elaborate on stimulator extensions to implement pulses of this magnitude.

Several methods can be used to activate neural tissue. A well­established method to stimulate a
nerve is through direct application of electrical stimulation. Nevertheless, there are also other appropri­
ate methods, e.g., magnetic, optogenetic, thermal, acoustic/mechanical, and chemical stimulation [29].
In this chapter, we focus on electrical stimulation.

3.1.1 Direct electrical stimulation
The application of an extracellular potential gradient across a neuron results in closely related intra­
cellular potentials [29]. The change of intracellular voltages induce ionic current flows inside the cell,
resulting in local hyperpolarizations and depolarizations [29]. The latter could influence the AP gener­
ation process related to pain (Section 1.2.1 and Section 2.1.1).

3.1.2 Stimulus mode
Three different stimulator modes are often used to generate the extracellular potential gradient:
voltage­controlled, current­controlled, and charge­controlled. During voltage­controlled stimulation, the
output of the stimulator is a voltage. The applied current depends on the inter­electrode impedance
and follows Ohm’s law [81]. The total amount of charge applied during a stimulus pulse is difficult to
monitor due to the variations of the inter­electrode impedance [81]. During current­controlled stimula­
tion, the stimulator applies a constant current to the tissue. The total applied charge to the tissue can
more easily be determined than voltage­controlled stimulation; the applied current is constant. How­
ever, additional hardware is required to translate the voltage from a voltage source (e.g., a battery) to
a constant current, which requires energy to operate [81]. Finally, during charge­controlled stimulation,
internal capacitors in the stimulator are sequentially charged up to a particular value. While stimulating,
the capacitors are discharged into the tissue. This circuit requires switches in the stimulator to be able
to charge and discharge the capacitors sequentially [82].

3.1.3 Stimulus shape
Usually, the stimulation is applied as a pulse. A monophasic pulse consists of a cathodic or anodic
phase. During a biphasic pulse, twomonophasic pulses are applied subsequently; however, the polarity
of the second pulse is reversed. This means that a cathodic phase is followed by an anodic phase, and
an anodic phase is followed by a cathodic phase. The second pulse of a biphasic pulse is used to
cancel the accumulated charge of the first pulse. After the first pulse, the accumulated charge can
also be canceled by shortening the electrodes. In this situation, the discharge of the tissue is known as
passive discharge [81]. The discharge phase is crucial for long­term implantable stimulators, as charge
accumulation over time could result in electrolysis with electrode dissolution and tissue destruction [44].
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3.1.4 Ultra­high frequency stimulation
The conventional stimulusmodes apply pulses to the tissue at relatively low frequencies, up to 1200Hz [83].
A different method to drive the right amount of charge to an electrode is by ultra­high frequency (UHF)
stimulation [18]. During UHF stimulation, the cathodic and anodic phases are created using a sequence
of current pulses at a high rate (≈ 1MHz) [84]. Figure 3.1 illustrates this stimulation pattern in com­
parison to the conventional constant­current stimulation biphasic pulse. UHF has great potential for
reducing the power loss in the current driver during conventional current­controlled stimulations [84].
See Appendix A.12 for further details.
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used.
Switched Capacitor neural Stimulators (SCNS) have been

introduced thanks to the fact that no external components are
needed. In [14], a reconfigurable switched capacitor DC-DC
converter with an adaptive supply is used to provide four
different stimulation voltages, starting from an external input
voltage of 6V. The power efficiency is limited both by the par-
asitic capacitance of the capacitors involved in the conversion
and by the large amount of high-voltage switches needed to
generate all the different voltages for the neurostimulator. In
[14], similarly to adaptive-supply stimulators, the stimulator
voltage needs to accommodate the channel with the highest
stimulation voltage, thereby affecting the power efficiency of
the channels with a lower voltage compliance.

We have previously presented a neurostimulator architecture
that uses a different way of stimulating the neural tissue
compared to constant current stimulators [2]. Each stimulation
phase is made of a sequence of current pulses injected in the
tissue at a high frequency (e.g., 1MHz). This concept of UHF
stimulation will be further elaborated on in Section II. This
fundamentally different stimulation type, together with the
core of the architecture presented in [2], have great potential
for achieving highly energy efficient multichannel stimulation.

In this work, we propose a new energy efficient, multi-
channel, UHF neural stimulator architecture. The key novel
contributions of this paper are that the power efficiency is
dramatically improved, especially when 8 channels are used
simultaneously, and the external high voltage (HV) power
supply, commonly used in neural stimulators, is avoided.

HV supplies, either external or on-chip, are usually neces-
sary in neural stimulator, to ensure delivery of the required
charge to large load variation. The proposed neurostimulator
is powered up from a 3.5V input voltage and can deliver the
required charge without further limitations on the range of
100⌦ < Rtissue < 1 k⌦.

These results are achieved both by implementing a novel
zero-current detection scheme and by using a gate-driver
circuit that allows to use thin-gate oxide transistors as high-
voltage switches. This drastically reduces the parasitic capac-
itance at the most critical node of the circuit.

The rest of the paper is organized as follows. In Section II,
the concept of UHF stimulation is presented, together with
a discussion on a previous implementation of a switched-
capacitor high frequency neural stimulator. Section III de-
scribes the overall architecture of the stimulator and elaborates
on the circuit details. Section IV reports the measurement
results of a prototype IC realization. In Section V, a Figure Of
Merit (FOM), originally introduced in [15], is used to compare
the proposed system with other stimulator circuits present in
literature. Finally, in Section VI, conclusions are drawn.

II. RELATED WORK

The two widely used stimulation schemes are the so called
Current-Mode Stimulation (CMS) and Voltage-Mode Stimula-
tion (VMS) schemes. In CMS, the stimulator generates a well-
defined current that flows into the tissue via the electrode-
tissue interface (ETI). The total charge delivered to the tissue
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Fig. 1: Sketch of a biphasic pulse, produced by constant current
stimulation (top) and by UHF stimulation (bottom) (a); high level
architecture of an UHF neural stimulator with a sketch of the current
profile for single channel (b) and multi-channel operation (c) [2].

depends on the stimulation duration and the amplitude of the
current, i.e., the charge is independent of the tissue and ETI
impedance. In VMS, a constant and well-defined voltage is
applied across the electrodes and thus the tissue and ETI. As
a consequence, the charge transferred to the tissue depends on
the electrode impedance itself. CMS is usually preferred over
VMS for its precise charge control resulting in less circuitry
to keep the residual charge within safety limits.

In this section, we first outline the concept of UHF neural
stimulation. Then, we extensively discuss a recent implemen-
tation of a UHF neural stimulator that employs a switched-
capacitor DC-DC converter to generate the pulses.

A. Principle of UHF stimulation

The concept of UHF dynamic stimulation was introduced
for the first time in [1]. It uses a different way of stimulating
the neural tissue compared to constant-current stimulators.
Each stimulation phase, i.e. the anodic and the cathodic phase,
is made of a sequence of current pulses injected into the tissue
at a high rate. In Fig. 1 (a), an example of such a biphasic
pulse is shown.

The amplitude of the pulses, indicated as A in Fig. 1 (a),
can be regulated and sets the stimulation intensity. In [1], by
means of a stimulator circuit made of discrete components, it
is shown that UHF stimulation depolarizes the cell membrane
in a similar way as constant current stimulation does. In vitro

Figure 3.1: The top graph shows a conventional constant­current biphasic pulse, the bottom graph an UHF biphasic pulse. The
cathodic and anodic phase are build up using a sequence of pulses. Figure from [84].

3.1.5 Chapter structure
In this chapter, we discuss a basic voltage­controlled and current­controlled ENS, and elaborate on
future extensions to the system that are required to implement the stimulation patterns found in Chap­
ter 1.
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3.2 Basic stimulator
To better understand the basics of ENS systems, we designed a voltage­controlled and current­controlled
ENS, based on the design of the open­source stimulator Stimjim [85]. We defined the design require­
ments for our stimulator as follows:

• Voltage­controlled: output between −15V and 15V;

• Current­controlled: output between −1mA and 1mA;

• High­impedance and low­impedance outputs.

Basic
stimulator

Isolated ground
Current monitor

𝑉𝑐𝑐 = 5V
𝑉𝑠𝑠

SPI bus
Multiplexer control

𝑉𝑜𝑢𝑡 = −15V to 15V
𝐼𝑜𝑢𝑡 = −1mA to 1mA
𝑍𝑙𝑜𝑤
𝑍ℎ𝑖𝑔ℎ

From main
amplifier

Figure 3.2: Inputs and outputs of the stimulator.

3.2.1 Circuit design
In the following sections, we discuss the critical points of the stimulator. Since the design is adapted
from Stimjim [85], we will not focus on the the circuit design. We refer to Appendix A.13 for the stimu­
lator’s schematic.

3.2.1.1 Power supply
The power supply is based on an isolated DC­DC converter. Isolation is required to ensure that the
stimulus return path is through the stimulation electrode and not through any grounding electrodes.
The latter will result in a different electric field, and unintentional tissues may thereby be activated. We
used the IA0515S from XP Power to transform a 5V input to a positive output voltage up to 15V and
a negative output voltage down to −15V.

3.2.1.2 Digital to voltage­ and current­output
An 16­bit digital­to­analog converter (DAC) IC from Texas Instruments (TI) was selected to create a
voltage between 0V and 2.5V. Next, an opamp shifts the analog­to­digital converter (ADC) output volt­
age towards voltages between 15V and −15V. These voltages are used to create voltage­controlled
stimulation pulses. If the current­controlled mode was selected, the voltages between −15V and 15V
were converted to currents between −1mA and 1mA, using a differential amplifier. To monitor the
applied current, we added a shunt resistor of 100Ω and amplified the voltage drop using an IA. A 12­bit
ADC was applied to obtain a digital value of the applied current.

3.2.1.3 Digital communication
The DAC and ADC are controlled through an SPI bus. Since the ground of the stimulator is separated
from the main amplifier’s ground (due to the isolated DC­DC converter), digital isolators are required to
transmit digital communication over the isolated barrier. Besides the SPI communication bus, several
logic signals pass the isolation barrier. These signals include the output multiplexer’s control signals
and were used to connect the stimulation electrodes to the voltage­output driver, current­output driver,
high­impedance, and low­impedance output.

3.2.1.4 Stimulator patterns
Monophasic and biphasic stimulation pulses were generated by controlling the DAC on the stimulator.
Themain amplifier used the SPI communication bus to control the stimulator. In addition, the stimulation
patterns were be programmed with the help of the GUI (Section 2.2.7.2).
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3.2.2 Board design
The board design is shown in Figure 3.3 and 3.4. The first thing that stands out is the separated
ground plane; these planes divide the stimulator’s ground from the main amplifier’s ground. The DC­
DC converter and the digital isolators were placed above this split. The large connector on the left side
(Figure 3.4) was connected to the main amplifier by a cable. The stimulation probes can be connected
on the right at the green terminal block or at the Bayonet­Neill­Concelman (BNC) connector (not visible
in the 3D render). We showed the assembling process of the stimulator in Appendix A.11.

(a) Stimulator front. (b) Stimulator back.

Figure 3.3: Stimulator board design.

Figure 3.4: 3D render of stimulator board design including components, without the Bayonet­Neill­Concelman (BNC) connector.

3.2.3 Validation
We validated the stimulator in­vitro and in­vivo. For the in­vitro validation, the stimulator probes were
shorted with a 10 kΩ resistor. An oscilloscope was used to verify the performance of the stimulator,
monophasic and biphasic (current or voltage) pulses could be implemented successfully. We noticed
that the stimulator had difficulties creating stimulation pulses that were shorter than 10µs.

We validated the probe in­vivo on rats during the same experiments as discussed in Section 2.4.
Figure 3.5 shows the applied stimulator electrodes. A stimulation pulse activated (visually) the muscles
of the rat’s leg. We also placed a microneurography electrode in the sciatic nerve. However, the
stimulating and recording sites were too close to record any AP: the stimulation artifact dominated the
recording.
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Figure 3.5: View through an operating microscope. Curved needles were used as stimulator electrodes and were placed around
the sciatic nerve of the rat (Section 2.4.2.1).

3.3 Up­grade stimulator
With the presented standard stimulator is was not possible to implement arbitrary waves. In the follow­
ing, we discuss methods to extend this design such that the stimulation pattern can be applied to the
nerve.

3.3.1 Modeling biological tissue
The application of UHF current stimulation to the tissue results in an extracellular potential gradient
across the neuron. However, this potential does not follow the applied stimulation curve [86]. In partic­
ular, the tissue’s dynamics influence the stimulation­current­to­extracellular­potential behavior. Mathe­
matical models are used to that describe the dynamics of biological tissue.

3.3.1.1 Dielectric properties
A well­known model is based on the dielectric properties of biological tissue [87], and uses the Cole­
Cole equation to describe the dielectric behavior over the desired frequency range [88]. This model is
given by

̂𝜖(𝜔) = 𝜖∞ +∑
𝑛

Δ𝜖𝑛
1 + (𝑗𝜔𝜏𝑛)(1−𝛼𝑛)

+ 𝜎𝑖
𝑗𝜔𝜖0

, (3.1)

where ̂𝜖 represents the complex relative permittivity (relative to vacuum), also known as the ‘dielectric
constant’. 𝜔 represents the angular frequency, 𝜖∞ the dielectric constant at infinite frequency, 𝜎𝑖 the
static ionic conductivity, and 𝜖0 the vacuum dielectric constant. To capture the dielectric behavior be­
tween 10Hz and 100GHz, this interval was divided in four (𝑛 = 4) dispersion regions [87]. For each
region 𝑛, the parameters Δ𝜖𝑛, 𝜏𝑛, and 𝛼𝑛 describe the dynamics of that specific region. Following [86],
the relative permittivity 𝜖𝑟 and the relative conductivity 𝜎 are specified as

𝜖𝑟(𝜔) = ℜ [ ̂𝜖𝑟(𝑗𝜔)] , (3.2)
𝜎(𝜔) = ℑ [ ̂𝜖𝑟(𝑗𝜔)] ⋅ −𝜖0𝜔. (3.3)

Given the dielectric constant ̂𝜖𝑟, the impedance 𝑍 is given by

𝑍(𝜔) = 1
̂𝜖𝑟𝑗𝜔𝐶0

, (3.4)

where 𝐶0 sets the absolute value of impedance and is dependent on, e.g., the electrode [86].
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3.3.1.2 Frequency response of gray matter of the brain
Themodel that captures the dielectric properties is a fraction­ordermodel, and should be implementable
in Matlab using the FOMCON toolbox [89]. Unfortunately, we did not obtain good results with this toolbox
due to rounding issues. Given that the fraction­order coefficients 𝛼𝑛 of gray matter are between 0 and
0.22 [90], we set 𝛼𝑛 equal to 0 for all 𝑛. This lead to obtaining a non­fraction­order model that can be
implemented using the basic functionalities of Matlab. Figure 3.6a shows the relative permittivity 𝜖𝑟
and relative conductivity 𝜎, and Figure 3.6b the resulting normalized impedance plot of Equation (3.4),
using the parameters from [90]. Although we simplified the model by setting 𝛼𝑛 to 0 for all 𝑛, the
obtained frequency response looked similar to frequency response of gray matter obtained in prior
research [86].
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(a) Relative permittivity 𝜖𝑟 and relative conductivity 𝜎.
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(b) Normalized impedance Bode plot of Equation (3.4).

Figure 3.6: Frequency responses of gray matter, based on the parameters from [90]. These responses look similar to the
responses obtained in [86].

3.3.2 Tissue potential following current stimulation
We used the frequency response of gray matter to determine the tissue’s potential for constant current
stimulation. For this purpose, we assumed an electrode impedance of |𝑍| = 10 kΩ at 1 kHz. Next, we
applied a constant current pulse­width modulated (PWM) signal at 200 kHz. Furthermore, we set the
amplitude of this PWM signal at 200 µA (signal varies between 0µA and 200µA), and the duty cycle
at 40%. These parameters were similar to parameters used in [86]. Figure 3.7 shows the tissue’s
potential for the applied PWM signal. These simulation results suggest that gray matter tissue acts
as an resistor­capacitor (RC) low­pass filter (LPF). This property could be used to implement arbitrary
waves.
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Figure 3.7: Voltage output of the gray matter model, when a PWM signal (amplitude 200µA and duty cycle 40%) is applied.
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3.3.3 Implementation of an arbitrary tissue voltage shape
UHF pulsesmay be used as themain building blocks to implement arbitrary waves. The LPF property of
biological tissue can be used to steer the tissue’s voltage towards a certain level. However, according
to Figure 3.7, the time constant of the LPF is too small. In other words, the LPF has a high cutoff
frequency, and its final (asymptotic) value is reached relatively fast. To benefit from this effect, the
setup should be adapted in two ways: (i) by increasing the PWM frequency, (ii) by adding an LPF.

Therefore, we created an arbitrary wave in the form of a Gaussian curve. The wave starts at 0 µs and
finishes at 30 µs. This waveform was based on the results of the in­silico experiments (Figure 1.7). The
amplitude of this arbitrary wave was defined at 2V. We will further refer to this curve as the reference.
In addition, here we assume that PWM’s duty cycle can be varied, while the amplitude is fixed at 200µA.
A 100% duty cycle results in a tissue voltage of 2V.

3.3.3.1 Increasing the PWM frequency
In order to create a tissue voltage that is similar to the reference, the duty cycle of the PWM signal has
to be varied. For each single PWM period, we determined the corresponding averaged reference. This
averaged reference was used to vary the duty cycle of the PWM signal. E.g., an averaged reference
of 0.5V resulted in a duty cycle of 25%.

For this stimulation, we increased the PWM frequency to 50MHz. In this way, we benefitted from
the low­pass filtering effect of the tissue. Figure 3.8a shows the reference (Gaussian) curve and the
obtained tissue’s voltage, Figure 3.8b shows the PWM signal for the time interval around 10 s. These
figures illustrate that by varying the duty cycle, arbitrary waves can be designed.
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(a) Reference Gaussian curve and the obtained tissue’s voltage.
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(b) Detailed view of the implemented (current) PWM signal (in Fig­
ure 3.8a) around 10 s.

Figure 3.8: The low­pass filtering behavior of the tissue is used to implement an arbitrary wave. To make use of this behavior,
the PWM frequency is increased to 50MHz.

3.3.3.2 Additional low­pass filter
In the following, we simulated an additional LPF at the stimulator’s output. We created a first­order LPF
and set the cutoff frequency 𝑓𝑐 at 100 kHz. We lowered the PWM frequency to 0.5MHz and used the
same methodology as applied in Section 3.3.3.1 to find the ‘optimal’ duty cycles. Figure 3.9a shows
the tissue’s potential for this simulation, the corresponding implemented current PWM signal is shown
in Figure 3.9b.

The results suggest that by using an additional LPF, an arbitrary wave can be generated. However,
some time delay (equal to the time constant 𝜏 = 1/(2𝜋𝑓𝑐)) was observed.



3.4. Discussion 73

0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

(a) Reference Gaussian curve and the obtained tissue’s voltage.
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(b) The implemented (current) PWM signal.

Figure 3.9: The low­pass filtering behavior of the tissue in combination with an additional LPF is used to implement an arbitrary
wave. The PWM frequency is set at 0.5MHz.

3.4 Discussion
3.4.1 Basic stimulator design limitations
We build a basic stimulator to explore the properties of voltage­controlled and current­controlled ENS
circuits. The design of an ENS based on separate commercially available ICs requires many compo­
nents to be implemented in order to be able to produce a stimulator that satisfies the design require­
ments. Biphasic pulses can be employed by controlling the stimulator’s DAC. However, the DAC is
controlled through an SPI bus, which has (in our case) a limited clock speed of 20MHz. Setting a
new value to the DAC’s output requires 24 bits of data and takes at least 1.2µs of communication time.
This value can only be reached in an optimal hardware setting. Therefore, updating the DAC’s output
multiple times, during a stimulation pulse of 30 µs, is restricted and sensitive to errors due to the high
communication speed.

Updating the duty cycle of the PWM signal and utilizing the gray matter’s dielectric properties may
be a solution to reduce the dependency on the digital communication bus. High­frequency (e.g., 5MHz)
PWM signals can easily be generated by a DMA steam in an MCU.

3.4.2 Stimulator extensions
In Section 3.3.1, we showed that gray matter tissue acts like an LPF for stimulation pulses. However,
the results from Section 3.3.3 suggest that before we can benefit from this characteristic, the PWM
frequency has to be increased significantly (from 200 kHz to 50MHz), or an additional LPF should be
added to the stimulator’s output.

3.4.2.1 Increasing the PWM frequency
Increasing the PWM frequency demands strict requirements to the stimulation hardware; these high
PWM frequencies can hardly be generated by basic hardware. Too much capacitance on the line will
reduce the slew rate of the signal, and for 50MHz PWM signals, the maximum and minimum voltages
may not even be reached. Therefore, while implementing this extension, particular attention should be
paid to this issue.

3.4.2.2 Additional low­pass filter
An additional LPF avoids the problem of generating high­frequency PWM signals. This filter may be
added as passive RC LPF (Section 2.2.2) in the ENS itself or at the tip of the electrode. In addition
to RC filters, the tip of the electrode may contain materials that act like an LPF with a similar cutoff
frequency. Such an investigation fell out of the scope of this thesis.

Due to the averaging algorithm (as discussed in Section 3.3.3.1), the implemented tissue’s voltages
lag ≈1µs behind the reference wave. This lag can be reduced by using the known time constant of
the filter or advanced optimization algorithms that take the tissue dynamics and filter dynamics into
account.
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3.4.2.3 Computational requirements
Real­time calculations to determine the desired duty cycle values for a particular stimulus waveform
can be computationally intensive. The in­silico results of Chapter 1 showed, however, that the shape
of the stimulus is similar and only the amplitude varies. Therefore, predetermined duty cycle values
which can be scaled may be sufficient to implement the required waveforms.

3.4.3 Arbitrary current waveforms
The dielectric properties of gray matter of the brain were used to determine the impedance 𝑍 relating
the applied current to a tissue voltage. However, the results of Chapter 1 suggest stimulus patterns to
neutralize SO and ED in µV. We consider this further in the general discussion.

3.4.4 Charge balancing
Charge balancing is required to prevent electrolysis with electrode dissolution and tissue destruc­
tion [44]. In our proposed up­grade ENS, we did not include hardware to monitor the applied charge.
The applied charge can be estimated in software, based on the stimulus shape, and a neutralizing
stimulus can be implemented subsequently. We refer to the general discussion for an elaboration on
this topic.

3.5 Conclusion
Most electrical neurostimulators cannot implement arbitrary waves at the tissue level. We explored
pros and cons of different methods to apply arbitrary waveforms using pulse­width modulated signals
in relation to specifici tissue characteristics. We employed the Cole­Cole equation, which describes the
tissue’s dielectric properties. Our results suggest that arbitrary waves can be implemented by increas­
ing the frequency of the pulse­width modulated signal or by adding a low­pass filter to the stimulator’s
output. Our results provide a basis for further research on electrical neurostimulator designs for arbi­
trary waveform implementation.
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Mitigating neuropathic pain
Neuropathic pain (NP) due to neuroma formation following a nerve lesion is regarded as being caused
by the firing of neurons, which in turn lead to subthreshold oscillations (SO) and ectopic discharges (ED).
Open­loop stimulation is currently used to treat patients, thereby applying a predefined electrical neu­
rostimulation (ENS) pattern to the affected nerves. The downside of the technique is that during
open­loop ENS, the ENS patterns are predefined and independent of the pain­provoking signals. There­
fore, open­loop ENS is not effective at all moments of the pain experience caused by fluctuations in sig­
nal intensity. In addition, the side effect of open­loop ENS is the generation of a constant cumbersome
sensation in an area that is larger than the original pain area. As the clinical results are disappointing,
and in view of the high costs, the popularity of this technology is currently waning. Optimization of
this potentially powerful technique is needed to improve the outcome and make this technology useful
to implement in the treatment strategy of patients with intractable, otherwise difficult to treat pain syn­
dromes. Theoretically, optimization of stimulation technology is possible by actually neutralizing SO
and ED, which should lead to mitigating the generation of NP. We proposed a closed­loop strategy (Fig­
ure 3.10), where the ENS pattern is real­time adjusted to neutralize SO and ED. Our strategy consists
of several steps. First, the activity in a peripheral nerve is measured. Next, these measurements are
used by a controller to determine an electrical stimulus pattern. Subsequently, the generated stimulus
pattern is applied to the nerve using an electrical neurostimulator. Therefore, our closed­loop ENS
strategy stands out from the currently applied open­loop ENS strategies, by detecting and using the
pain­provoking signals at the peripheral nerve level to adapt the applied ENS pattern.
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Goal: neutralizing SO and ED

Figure 3.10: Proposed closed­loop methodology to neutralize SO and ED, and thereby mitigate the generation of NP.

In Chapter 1, we focused on the design of the controller. We set up a model predictive con­
troller (MPC) that uses mathematical models to find an appropriate stimulus to neutralize SO and ED
at the single axon level. In order to avoid the usage of a model of great complexities within the MPC
framework, we captured the model’s statistical properties in a fractional­order system (FOS), which
was subsequently used within the MPC framework. Using our controller design, we showed in­silico
that SO and ED were be neutralized in three well­known neuroma models by only using the statistical
properties of these models. In all simulations, the obtained input to suppress SO and ED resembled
(arbitrary) pulse­shaped patterns, which were as short as 30 µs.

Real­time neural activity measurements are required for the controller. In Chapter 2, we designed
a dedicated setup, capable of measuring this nerve activity using microneurography, while embedding
processing power and extensions for simultaneous stimulation. Adequate handling of interference was
crucial. If not handled adequately, the neural activity could not be measured appropriately. We rejected
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the interferences using several methods and made valuable recordings in­vivo, which showed APs in
the lugworms’ ventral nerve cord and the rat’s sciatic nerve.

The final step of our proposed strategy was to implement the found generated stimulus pattern at the
peripheral nerve. In Chapter 3, the implementation of (arbitrary) pulse­shaped patterns (as suggested
in Chapter 1) to neutralize SO and ED is discussed. Currently, available stimulation techniques are not
sufficient, and stimulator extensions are required. The results of this chapter suggest that the dielectric
properties of biological tissue can be used (in combination with an additional low­pass filter) to apply
arbitrary stimulus waveforms.

Chapter 1, Chapter 2, and Chapter 3 provide the essential information to eventually apply our the­
oretical proposed strategy in­vivo. However, before we arrive at that stage, additional research is
required.

From theory to practice
The following sections discuss the next steps and the barriers and difficulties concerning the implemen­
tation of our proposed strategy in practice.

Modeling SO and ED
For the in­silico experiments, we implemented three well­known neuroma models which capture SO
and ED. The extended Hodgkin­Huxley (HH) model and the Morris­Lecar (ML) model were based on
the cell membrane modifications, as observed in neuromas. Themap­based (MB) model was based on
phenomenological characteristics. A pattern could be found that neutralizes SO and ED in­silico. How­
ever, these models do not exactly represent the real neuroma behavior and they all behave somewhat
differently. To show that our strategy has the potential to reach promising results, these models are
sufficient. An intrinsic long­term memory is a key feature for our strategy; the applied models and also
the in­vivo neuroma behavior show this property. However, to simulate more complex cases, these
models may result in unexpected behavior.

For example, charge balancing is essential during electrical neurostimulation to prevent electrolysis
with electrode dissolution and tissue destruction [44]. We added charge balancing as a constraint to
our MPC framework, but it did not result in neutralizing SO and ED. However, this does not necessarily
imply that it does not work in a true neuroma. Injecting and removing the same amount of current in
theoretical models does not lead to an altered response, while in­vivo this may be the case.

Our proposed strategy is successful in all three neuroma models. Therefore, the prospect of future
in­vivo experiments is optimistic. Any mismatch between the model and the actual neuroma behavior
may still lead to SO and ED neutralization in­vivo, as the statistical properties are similar. Our strategy
of implementing a FOS could still be used.

Single­unit versus multi­unit activity
The in­silico results (Chapter 1) suggest that stimulus patterns can be derived such that they neutralize
SO and ED. However, our controller design is based on neural activity measurements at the single
axon level (or single­unit). In­vivo experiments to validate the neural amplifier on lugworms and rats
(Chapter 2), showed that single­unit activity can be obtained if giant axons are present. If these axons
are not present, multi­unit activity from many small axons will be recorded simultaneously. Relating this
to in­vivo SO and ED neutralization, crucial information that is required by the controller (Chapter 1)
must then be extracted from these multi­unit recordings. Certain frequency parameters, such as an
increased magnitude of a certain frequency, may show to be sufficient to serve as an input to the
controller in order to find appropriate stimulus patterns.

Success rate of recording neural activity
Adequate handling of interference was crucial to record neural activity using microneurography (Chap­
ter 2). After microneurography electrode positioning, a Faraday cage showed indispensable to reject
any interference. Future applications have to embed the electronics within a shielded enclosure while
implanted into the body, close to the nerve. The level of interference may thereby be reduced, however,
it will remain a fundamental point of attention in the design. Further improvement seems possible by
embedding the preamplifier electronics in the electrode itself, close to the tip of the electrode.

Next to the issues related to the interference, the correct positioning of the electrode is crucial. Our



General discussion 77

applied microneurography electrodes had a (single) non­isolated tip. Electrodes that contain multiple
recording sites potentially increase the chance of effective positioning, which is close to individual axons.
Furthermore, for optimal fixation of the electrodes, they should be placed longitudinally into the nerve
instead of transversally.

Electric field distribution
In Chapter 1, electrical stimulation patterns were developed which neutralize SO and ED in­silico.
These patterns were defined as the required current through the membrane. The extended HH and
extended ML model defined this current as ‘microamp’ and the extended MB model as ‘arbitrary’. The
extended electrical neurostimulator proposed in Chapter 3 applies a potential gradient across the nerve
defined as ‘voltage’. Additional modeling is required to relate the applied electric field to the resulting
current through the membrane. These models have been described before [91].

The electric field depends on the distance between the electrode and the axon, which raises the
question of whether the applied electric field will neutralize SO and ED in all axons. SO and ED are
observed in patch­clamp experiments and are, therefore, measured at the single axon level [23]. It is
unknown whether multiple axons oscillate simultaneously in the same way. If so, the applied electric
field may neutralize the SO in multiple axons. However, if each axon shows different SO and ED
patterns, the applied stimulation pattern may adversely evoke SO and ED in specific axons. Clearly,
an appropriate stimulus which is able to neutralize the effect of SO and ED of all axons should be
implemented.

Neutralizing SO and ED
Throughout this thesis, we assumed that it should be possible to mitigate the generation of NP by our
strategy: neutralizing SO and ED. However, minimizing the rate of ED (without neutralizing SO) may
mitigate the generation of NP as well. Alternatively, limiting the EDs to a maximum per time period,
e.g., one hour, could be sufficient. Furthermore, alternating these approaches may resolve issues with,
e.g., habituation.

Regardless of our results, it remains to be proven that our strategy will indeed eventually mitigate
the generation of NP. The generation of data (that reveals information regarding SO and ED activity
contributing to the generation of NP) is of great importance in the development of a strategy that should
ultimately mitigate the generation of NP.

To summarize, the goal of this project was to suppress SO and ED neural activity. Thereby, engi­
neers need to keep the patient’s demands in mind: the relief of NP is the ultimate goal, and every step
that brings us closer to that goal is worth exploring. Even the smallest relief may change someone’s
life for the better.
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A.1 Modeling subthreshold oscillations and ectopic discharge
A.1.1 Extended Hodgkin­Huxley model
We discussed the modifications that others [24] applied to the Hodgkin­Huxley (HH) model, such that
the model describes subthreshold oscillations (SO) and ectopic discharge (ED). The extended HH
model is described by

𝐼(𝑡) = 𝐶𝑚�̇�𝑚(𝑡) + 𝐼𝐹𝑁𝑎+(𝑡) + 𝐼𝑀𝑁𝑎+(𝑡) + 𝐼𝑆𝑁𝑎+(𝑡) + 𝐼𝑙(𝑡), (A.1a)
𝐼𝐹𝑁𝑎+(𝑡) = �̄�𝐹𝑁𝑎+𝑚𝐹(𝑡)3ℎ𝐹(𝑡)(𝑣𝑚(𝑡) − 𝐸𝑁𝑎+), (A.1b)
𝐼𝑀𝑁𝑎+(𝑡) = �̄�𝑀𝑁𝑎+𝑚𝑀(𝑡)ℎ𝑀(𝑡)(𝑣𝑚(𝑡) − 𝐸𝑁𝑎+), (A.1c)
𝐼𝑆𝑁𝑎+(𝑡) = �̄�𝑆𝑁𝑎+𝑚𝑆(𝑡)ℎ𝑆(𝑡)(𝑣𝑚(𝑡) − 𝐸𝑁𝑎+). (A.1d)

To better understand the influence of the different ion channels on the final membrane voltage, Fig­
ure A.1 shows the values of the activation (𝑚) and inactivation (ℎ) parameters of the fast (F),medium (M),
and slow (S) sodium ion channels. The different time constants and steady­state values of the activa­
tion and inactivation parameters are used to model the different ion channels. Of note, the shape of
the 𝑚 and ℎ parameter graphs is similar to the membrane voltage. A similar shape is expected since
these parameters are the building blocks for every individual spike.
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Figure A.1: Simulation of the extended HH model described by Equation (A.1a) ­ (A.1d). The figure on the left shows the
membrane voltage, the smaller plots in the middle, and on the right, visualize the values of the activation 𝑚 and inactivation ℎ
parameters.

The influence of conductance and time constant adjustments were studied before [24], but were re­
peated, especially because some parameters were not addressed in prior research. Gradually reducing
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�̄�𝐹𝑁𝑎+ and �̄�𝑀𝑁𝑎+ removed the oscillations and ectopic activity. A reduction of �̄�𝑆𝑁𝑎+ resulted in a narrower
window of stimulation currents that triggered oscillations and ectopic activity. Increasing 𝜏𝑚(𝑣𝑚(𝑡)) of
the medium and slow sodium channel given by Equation (A.1c) and (A.1d), while 𝜏𝑚(𝑣𝑚(𝑡)) of the fast
channel given by Equation (A.1b) was kept constant, resulted in a gradual decrease of the stimulation
current window that triggered ectopic discharge. At time constants above 0.5ms, the ectopic activity
disappeared

Three crucial aspects were concluded [24]. First, 𝑔𝐹𝑁𝑎+ is related to burst and sustained spike
discharge. Second, the medium current (𝑔𝑀𝑁𝑎+ ) is essential for the oscillations, and thirdly, the slow
current (𝑔𝑆𝑁𝑎+ ) is essential for the interrupt tonic firing and enabling bursting.
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Figure A.2: Similar to Figure A.1 however, only the membrane voltage and the inactivation parameter ℎ of the slow ion channel
are shown.

Figure A.2 shows the same input­output response as in Figure A.1. Only the membrane voltage
and the inactivation parameter ℎ of the slow channel S are shown. The inactivation parameter ℎ seems
to influence the ectopic discharge behavior. During oscillatory periods, the parameter ℎ increases until
a threshold is reached, then the neuron starts firing. During this burst, the parameter ℎ decreases until
the firing stops. This figure shows that the parameter ℎ is responsible for activating and deactivating
the ED.

A.1.2 Extended Morris­Lecar model
The Morris­Lecar (ML) model was adapted by others, such that it was capable of capturing spiking
activity and subthreshold behavior [25]. The complete extended ML model is given by

𝐼(𝑡) = 𝐶𝑚�̇�𝑚(𝑡) +
𝐼𝐶𝑎2+ (𝑡)

⏜⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏜�̄�𝐶𝑎2+𝑀∞(𝑣𝑚(𝑡))(𝑣𝑚(𝑡) − 𝐸𝐶𝑎2+)

+
𝐼𝐾+ (𝑡)

⏜⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏜�̄�𝐾+𝑁(𝑡)(𝑣𝑚(𝑡) − 𝐸𝐾+)+
𝐼𝑙(𝑡)

⏜⎴⎴⎴⎴⏞⎴⎴⎴⎴⏜�̄�𝑙(𝑣𝑚(𝑡) − 𝐸𝑙)+𝑛(𝑡), (A.2a)

�̇�(𝑡) = 𝑁∞(𝑣𝑚(𝑡)) − 𝑁(𝑡)
𝜏𝑁(𝑣𝑚(𝑡))

, (A.2b)

𝑀∞(𝑣𝑚(𝑡)) = 0.5 [1 + tanh(𝑣𝑚(𝑡) − 𝛽𝑚𝛾𝑚
)] , (A.2c)

𝑁∞(𝑣𝑚(𝑡)) = 0.5 [1 + tanh(𝑣𝑚(𝑡) − 𝛽𝑤𝛾𝑤
)] , (A.2d)

𝜏𝑁(𝑣𝑚(𝑡)) =
1

cosh(𝑣𝑚(𝑡)−𝛽𝑤)
2𝛾𝑤

. (A.2e)

In this adapted model, 𝑣𝑚(𝑡) represents the membrane voltage and 𝑁(𝑡) the recovery variable.
𝐸𝐶𝑎2+ ∈ ℝ, 𝐸𝐾+ ∈ ℝ and 𝐸𝑙 ∈ ℝ are the equilibrium potentials of the calcium, potassium and leak ion
channels, 𝑔𝐶𝑎2+ ∈ ℝ+, 𝑔𝐾+ ∈ ℝ+ and 𝑔𝑙 ∈ ℝ+ the ion channel conductivities. The external stimulus
current is expressed by the parameter 𝐼(𝑡) ∈ ℝ. 𝛽𝑚 ∈ ℝ, 𝛽𝑤 ∈ ℝ and 𝛾𝑤 ∈ ℝ can be used to set
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the steady state values of the 𝑀∞(𝑣𝑚), 𝑁∞(𝑣𝑚) and 𝜏𝑁(𝑣𝑚) parameters. An additive white Gaussian
noise (AWGN) source 𝑛(𝑡) ∼ 𝒩(0, 𝜎2) with 𝜎 = 20mV was added. This noise approximates the effect
of stochastic channel opening [25].

This model is capable of generating spiking activity and SO. This (NP) behavior was only seen if 𝛽𝑤
was increased from −21mV to −13mV. By changing 𝛽𝑤, the voltage versus current relation of slower
recovery variable 𝑁(𝑡) is adapted. A smaller current flow was noticed while lowering 𝛽𝑤 [25]. This
lowered flow resulted in a model that could become unstable faster than the original system, explaining
the ectopic activity.

A.1.3 Extended map­based model
The standard map­based (MB) model appeared to be incapable of including SO and ED. In order to
exhibit SO and ED, Shilnikov and Rulkov extended the MB model by introducing an additional state.
By doing so the model became

𝑥𝑘+1 = 𝑓𝛼(𝑥𝑘 , 𝑦𝑘 + 𝛽) + 𝜁𝑘 , (A.3a)
𝑦𝑘+1 = 𝑦𝑘 − 𝜇(𝑥𝑘 + 1 − 𝜎), (A.3b)

where 𝑥𝑘 ∈ ℝ represents the membrane potential and 𝑦𝑘 ∈ ℝ an arbitrary state that can turn the spike
generator on or off [26]. The (dimensionless) injected current is modeled by 𝜎 ∈ ℝ, 𝛼, 𝛽 ∈ ℝ are
arbitrary tuning parameters and 0 < 𝜇 ≪ 1 is the coupling parameter of both states. They assumed
that noise influences the spiking behavior of a neuron. This noise was modeled by an AWGN source,
i.e., 𝜁𝑘 ∼ 𝒩(0, 𝑠2). The piecewise continuous function 𝑓𝛼(𝑥𝑘 , 𝑦𝑘 + 𝛽) ∶ ℝ × ℝ → ℝ, was defined by [26]
as

𝑓𝛼(𝑥𝑘 , 𝑦𝑘 + 𝛽) =
⎧

⎨
⎩

−𝛼2/4 − 𝛼 + 𝑦𝑘 + 𝛽 if 𝑥𝑘 < −1 − 𝛼/2,
𝛼𝑥𝑘 + (𝑥𝑘 + 1)2 + 𝑦𝑘 + 𝛽 if −1 − 𝛼/2 ≤ 𝑥𝑘 ≤ 0,
𝑦𝑘 + 1 + 𝛽 if 0 < 𝑥𝑘 < 𝑦𝑘 + 1 + 𝛽,
−1 if 𝑥𝑘 ≥ 𝑦𝑘 + 1 + 𝛽.

(A.4)

The cobweb plot of parameter 𝑥𝑘 of the system defined in Equation (A.3a) and (A.3b) is presented in
Figure A.3 and A.4; these figures show two cobweb plots for two different parameters 𝑦𝑘 in 𝑓𝛼(𝑥𝑘 , 𝑦𝑘+𝛽).
Figure A.3 shows the trajectory for 𝑦 = −0.2: the trajectory converges to a stable point. Figure A.4
shows the trajectory for 𝑦 = 0.2, in this situation the system did not reach a stable point. Varying the
parameter 𝑦𝑘 results in turning the ectopic discharge generation on or off.
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Figure A.3: The cobweb plot of parameter 𝑥𝑘 of the system
defined in Equation (A.3a) and (A.3b) for 𝑦𝑘 = −0.2 and𝛽 = 0.
A stable point is present that moves along the line 𝑥𝑘 = 𝑥𝑘+1
which results in SO in the time domain. Due to the existence
of a stable point, not a single spike (or ED) is generated.
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Figure A.4: The cobweb plot of parameter 𝑥𝑘 of the system
defined in Equation (A.3a) and (A.3b) for 𝑦𝑘 = 0.2 and 𝛽 =
0. The curve 𝑓𝛼 from Figure A.3 has slightly moved up. The
stable point has disappeared and ED will be generated. The
trajectory of a single spike is shown.

It is assumed that an AWGN influences the spiking behavior in a neuron [26], as indicated by 𝜁𝑘 in
Equation (A.3b). This noise can be interpreted as a random vertical shift of the piecewise continuous
function 𝑓𝛼 as shown in Figures A.3 and A.4. Due to this shift, the stable point (if present) will constantly
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move along the line 𝑥𝑘 = 𝑥𝑘+1. In other words, the stable point is different for every time step. This
behavior will result in SO in the time domain. If the shift is large enough, stable points are absent,
appearing as ED in the time domain. Bymodifying the parameter 𝜎 (stimulation ‘current’), the parameter
𝑦𝑘 is moved slightly, which changes the probability that 𝜁𝑘 will introduce ED.

A.2 An MPC with fractional­dynamics proxy approach using a lin­
ear control scheme

Figure A.5 shows the closed­loop simulation on the ML model using a (𝑝 = 15)­step approximation.
Figure A.6 shows the closed­loop simulation on the ML model using a (𝑝 = 1)­step approximation, or
simplified linear control scheme. Comparing Figure A.5 with Figure A.6 shows that both approximations
are sufficient to suppress SO and ED, although in the (𝑝 = 1)­step approximation, a positive and a more
aggressive stimulation current (in terms of the total applied energy and fluctuations of the actuation
current) is required. Translated to the stimulation hardware, this could limit the lifetime of the battery.
The different outcomes of both simulations indicate that a more stable membrane potential can be
achieved using the (𝑝 = 15)­step approximation, while the applied charge was lower. Therefore, our
proposed dynamical system­based feedback control scheme will resolve problems related to the use
of complex well­established neuroma models and the use of a simplified linear control scheme.
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Figure A.5: An MPC with a fractional­dynamics proxy approach applied to the extended ML model. The open­loop response
is given by the red curve. The predictive model was a (𝑝 = 15)­step (0.75ms) approximation of the FOS plant, using a
(𝑃 = 20)­step (1ms) prediction horizon and a (𝑀 = 10)­step (0.5ms) control horizon. The response is shown by the blue curve.
The reference for the membrane potential was −40mV. Suppression of SO and ED could be observed within the controller
active interval (between 100 and 350ms). The green curve indicates the applied stimulation current.
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Figure A.6: An MPC with a fractional­dynamics proxy approach applied to the extended ML model. We adapted the predictive
model used in Figure A.5 by only adjusting the (𝑝 = 15)­step (0.75ms) approximation of the FOS to a (𝑝 = 1)­step (0.05ms)
approximation. Suppression of SO and ED could be observed within the controller active interval (between 100 and 350ms).
However, the stimulation current in this (𝑝 = 1)­step approximation is mainly positive, more aggressive, and has larger amplitudes
compared to Figure A.5. Thus, the (𝑝 = 1)­step approximation can lead to significant battery performance decrease.
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A.3 An open­loop strategywith predetermined stimulation patterns
using the ML model

An open­loop strategy is applied with biphasic pulses (pulse width (PW) 250µs and amplitude 2µA) at
50Hz as we show in Figure A.7. In this situation, no SO and ED suppression is achieved.
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Figure A.7: Open­loop stimulation with biphasic pulses (PW 250µs and amplitude 2µA) at 50Hz using the ML model. The SO
and ED are not suppressed.

Updating the stimulation pattern to a non­biphasic anodic pulses (PW 250µs and amplitude 2µA)
and increasing the stimulation frequency to 500Hz does not lead to SO and ED suppression either, as
we show in Figure A.8. However, application of a cathodic pulse (PW 250µs and amplitude −2µA) at
a frequency of 500Hz results in SO and ED suppression (Figure A.9). Open­loop stimulation may lead
to SO and ED suppression, however, the required stimulation pattern was found by trial­and­error.
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Figure A.8: Open­loop stimulation with anodic pulses (PW 250µs and amplitude 2µA) at 500Hz using the ML model. The SO
and ED are not suppressed.
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Figure A.9: Open­loop stimulation with cathodic pulses (PW 250µs and amplitude −2µA) at 500Hz using the ML model. The
SO and ED are suppressed. The required stimulation pattern was found by trial­and­error.
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A.4 AnMPCwith fractional­dynamics proxy approach including ad­
ditional constraints

Electrolysis with electrode dissolution and tissue destruction may occur if an imbalanced stimulation is
applied to the tissue. To prevent electrolysis, the charge after a stimulation pulse should be equal to
zero, 𝑄 = 0. We added this charge balancing constraint to our MPC strategy to simulate the prevention
of electrolysis while SO and ED are suppressed.

A.4.1 Biphasic pulse constraint
Stimulators often apply biphasic pulses to overcome the problem of electrolysis. We defined a biphasic
pulse constraint with several domains of freedom for the optimization algorithm: 1) Beginning of the
pulse could be anodic or cathodic first, 2) the amplitude can be varied, and 3) the length of anodic
and cathodic phase together can be varied. However, the duration of the anodic and cathodic phases
should be identical, and the integral over the stimulation amplitude of a single pulse should be equal to
zero.

Figure A.10 shows the result of an MPC with a fractional­dynamics proxy approach, including the
biphasic pulse constraint. From this figure, it follows that the SO and ED can not be inhibited in this
situation.
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Figure A.10: An MPC with a fractional­dynamics proxy approach, applied to the extended ML model, including a biphasic pulse
constraint. The open­loop response is given by the red curve. The predictive model is a (𝑝 = 15)­step (0.75ms) approximation of
the FOS plant, using a (𝑃 = 20)­step (1ms) prediction horizon and a (𝑀 = 10)­step (0.5ms) control horizon, this time response
is shown by the blue curve. The reference for the membrane potential was −40mV. Suppression of SO and ED could not
be observed within the controller active interval (between 100 and 350ms). The green curve indicates the applied (biphasic)
stimulation current.

A.4.2 Charge balancing constraint
Besides the biphasic constraint, we were able to generate a less restricted stimulation pattern. In order
to do so, we defined that the integral over the stimulation amplitude of a single pulse should be equal
to zero. From the results in Figure A.11 it can be derived that our MPC strategy will compensate for the
total applied current at the end of the pulse. This strategy still resulted in unsuccessful suppression of
SO and ED. This does not imply that the charge balancing constraint will not result in unsuccessful SO
and ED suppression in­vivo. However, we cannot show it using our mathematical models in­silico.

A.4.3 Complicated optimization problems
Adding constraints did not result in sufficient suppression of SO and ED. However, due to the simplicity
of the applied models, it does not mean that suppression of SO and ED pulses in individual axons is
impossible. These models may ignore specific characteristics, while they are essential for SO and ED
suppression.

Additional charge constraints to our proposed dynamical system­based feedback control scheme
complicated the optimization problem. Our proposed control scheme, including the FOS, resulted in
a quadratic objective function with linear constraints, which could be solved easily by a quadratic pro­
gramming solver. The optimization problem will transform into a constrained nonlinear multivariable
function by introducing other nonlinear constraints to describe the biphasic pulse or charge balancing
constraint. This problem is more difficult to solve and requires more advanced methods that solve the
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Figure A.11: AnMPCwith a fractional­dynamics proxy approach, applied to the extendedMLmodel, including a charge balancing
constraint. The open­loop response is given by the red curve. The predictive model is a (𝑝 = 15)­step (0.75ms) approximation
of the FOS plant, using a (𝑃 = 20)­step (1ms) prediction horizon and (𝑀 = 10)­step (0.5ms) control horizon, this time response
is shown by the blue curve. The reference for the membrane potential was −40mV. Suppression of SO and ED could not
be observed within the controller active interval (between 100 and 350ms). The green curve indicates the applied (balanced)
stimulation current.

optimization problem, while including the (nonlinear) constraints.
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A.5 Types of axons

Axon
type Subtype Sheath Functions Radius

(µm)

Conductance
velocity
(m/s)

Spike
duration
(ms)

Absolute
refractory
period
(ms)

A

𝛼
Myelinated

Proprioception
somatomotor 12­20 70­120 0.4­0.5 0.4­1

𝛽 Touch, pressure 5­12 30­70

𝛾 Motor for muscle
spindles 3­6 15­30

𝛿 Pain, cold, touch 2­5 12­30

B Myelinated Preganglionic
autonomic <3 3­15 1.2 1.2

C
Dorsal
horns Unmyelinated

Pain, temperature,
mechanoreception
and reflex response

0.5­2 0.5­2 2 2

Sympathetic Unmyelinated
Pilomotor,

sudomotor and
vasomotor

0.7­2.3 0.7­2.3 2 2

Table A.1: Conductance velocity of different axon types [51].
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A.6 Recording neuronal activity
A.6.1 Intracellular recording
During intracellular recordings, the investigator places an electrode in the neuron. A high signal­to­
noise ratio (SNR) amplifier records the measured voltage in the neuron. Individual action potentials
can be measured and analyzed. To study the influence of the different voltage­gated ion channels,
researchers use voltage­clamp techniques. During these measurements, the potential in the neuron
is kept constant by injecting a small current. The injected current will leave the neuron through the
neuron’s ion channels and, due to the voltage­gated ion channels, the flow depends on the applied
potential. This setup is shown in Figure A.12. Individual ion channels could be studied in further detail
by blocking specific ion channels using fluids. Researchers can examine the membrane potential vs.
ion channel activation characteristic for individual ion channels or ion channel groups in detail.

this reason, the conventional microelectrodes are also
known as “sharp” microelectrodes. Unlike Cole’s origi-
nal voltage-clamp approach, the microelectrodes can
be applied to cells much smaller than the squid giant
axon (Figure 16.20). There are two variations of this
technique: (1) two-electrode voltage clamp and (2)

single-electrode voltage clamp. The latter variation uses
one impaling electrode only, which serves as both a cur-
rent-passing and voltage-recording electrode. The sin-
gle-electrode can be applied to very small cells that
would be impossible to impale with two electrodes.
The disadvantage of the sharp microelectrode is that
it does not conduct as well as the wire, and sometimes
cannot pass current rapidly enough to compensate for
the cell membrane current. Another disadvantage
involves space clamp issues. Cole, Hodgkin, and Hux-
ley’s voltage clamp employed a long wire inserted
throughout the squid giant axon that allowed for
uniform voltage clamping of the axon along its entire
length (Figure 16.19). The current passed through a
sharp microelectrode, however, decreases gradually
from the impaling point to the more distant parts of
the cell membrane. In other words, the current sup-
plied by a microelectrode may not uniformly affect dif-
ferent parts of a larger or irregularly shaped cell (e.g.,
neurons with complex dendritic structure).

16.5.1.3 Patch-Clamp Technique

This technique allows the study of single-ion channels
as well as whole-cell ion channel currents. Essentially,
the patch-clamp technique is an improved and refined
version of the voltage-clamp technique. It requires a
low electrical noise borosilicate glass electrode, also
known as a patch electrode or patch pipette, with a
relatively large tip (>1 mm) that has a smooth surface
rather than a sharp tip as with the conventional micro-
electrodes. This is a major difference between the patch
electrode and the sharp electrode used to impale cells
directly through the cell membrane (Figure 16.20).

Membrane potential
amplifier

Intracellular
electrode

Squid axon Feedback
amplifier

Recording
device

Extracellular
electrode

Signal
generator

Figure 16.19 Diagram illustrating the voltage-clamp
technique applied to the giant squid axon. The voltage clamp
operates by negative feedback. The membrane potential
amplifier measures membrane potential and outputs to the
feedback amplifier. It subtracts the membrane potential from
the holding potential, which it receives from the signal
generator. This signal is amplified and output is sent into the
axon via the current electrode. Whenever the cell diverges
from the holding potential, an error signal is generated, which
is the difference between the holding potential and the actual
cell membrane potential. The feedback circuit passes current
into the cell to reduce the error signal to zero. Thus, the
voltage-clamp circuit produces a current equal and opposite
to the ionic current.

Reference
electrode

Less than 1 µm

Rseal=500 mΩ

Amplifier Amplifier

Over 1 µm

Rseal≥10 GΩ
Gigaseal

Conventional (sharp)
microelectrode

Patch-clamp

Figure 16.20 Comparison between the conventional (sharp) microelectrode and patch-clamp technique. The sharp
microelectrode is less than 1mm at the tip and impales the cell, whereas the patch-clamp electrode is over 1mm at the tip
and forms a gigaseal (>10 GO) with the cell membrane.

16.5 Methods for the Study of Ion Channels

415

Figure A.12: Intracellular recording setup; the measured potential in the neuron membrane is amplified. During a voltage­
clamp measurement, the feedback amplifier regulates the current such that the membrane potential is kept constant. During a
current­clamp measurement, the current flow is kept constant and the membrane potential is measured [92].

Besides the voltage­clamp methods, also current­clamp methods are used to study the neuron be­
havior. During these experiments, a setup injects a constant current into the neuron. The constant
current can also be seen as an external stimulus. If the injected current leads to an exceeding of the
firing threshold, the neuron will generate an action potential. Researchers use these current­clamp
methods to investigate the action potentials of individual neurons. By using specific ion channel block­
ers, the therapeutic effects of certain drugs can be investigated [93].

A.6.2 Extracellular recording
Instead of measuring inside the neuron, scientists can also place an electrode in the extracellular space
(outside the neuron). Depending on the effective electrode tip area, the electrode captures the activity
generated by one (single­unit) neuron or multiple (multiple­unit) neurons. The simultaneous activation
of many neurons in a small space results in local field potentials [53].

Extracellular recordings have amuch smaller amplitude in the order of ‘µV’, compared to the intracel­
lular recordings that show action potentials in the order of ‘mV’. Electrodes could be placed in various
tissues (e.g., brain) or close to neurons to measure the activity. To capture the activity in peripheral
nerves, scientists use microneurography.
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A.7 Theoretical Bode plots of the preamplifier v2.0
The theoretical Bode plots of the preamplifier v2.0 are shown in Figure A.13. The cutoff frequency
of the notch filter is at 50Hz, the cutoff frequency of the HPF at 500Hz, and of the LPF at 5000Hz.
Figure A.13c shows the effect of component tolerances. In this figure, we used 5% tolerance on the
resistors and capacitors. We plotted the worst­case results. A waterbed effect is observed, the damping
ratio 𝜁 increases from 0.744 to 1.54.
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(a) Notch filter of the preamplifier v2.0.
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(b) High pass filter of the preamplifier v2.0.
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(c) Low pass filter of the preamplifier v2.0. The effect of component
tolerances is also shown.
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(d) Combined filters of the preamplifier v2.0.

Figure A.13: Theoretical Bode plots of the preamplifier v2.0 filters.
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A.8 Preamplifier schematic
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A.10 Main amplifier PCB regions
We divided the design of the main amplifier into several regions, as illustrated in Figure A.14. Below,
we enumerate the different regions:

• Preamplifier 1 circuit: The preamplifier is connected through the connector on the right. The
first stage is the IA (U8). Next, opamp U7 is used to implement the notch filter. U9 creates the
low­ and high­pass (Sallen­Key) filters. The resistors and capacitors define the gain and cutoff
frequencies of the different filtering stages. The different jumpers (e.g., JP2, JP3, and JP4) can
select a different cutoff frequency or disable the selected filter stage. Finally, IC U10 embeds the
PGA.

• Preamplifier 2 circuit: Similar as the Preamplifier 1 circuit, but now for the second preamplifier.

• Power circuit: The supply voltage (9V battery) enters this circuit at the bottom right. First, a large
LDO (U3) lowers the supply voltage to 5V. A heatsink may be used to release excess heat. The
large capacitors (C21 and C22) stabilize the supply voltage, U2 lowers the voltage to 3.3V.

• Digital circuit: The MCU is presented by U1, which can be programmed through the JTAG header
J6. We embedded a USB­C connector (J7) for communication with the host (PC). Finally, the
MCU’s operation frequency is determined by crystal Y1.

• Stimulator connector : The basic stimulator (Chapter 3) can be connected to this port. The main
amplifier provides a supply voltage and communicates with the stimulator through an SPI bus.
Different hardware modules could be connected to this port.

Preamplifier 1
circuit

Preamplifier 2
circuit

Power
circuit

Stimulator
connector

Digital
circuit

Figure A.14: Main amplifier PCB regions.
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A.11 PCB assembling process
In Figure A.15 we show the different steps of the assembling process of the preamplifier (v1.0), the
main amplifier, and the stimulator PCB.

(a) Required parts are sorted in the trays (shown at the top). The PCB
was ordered as a panel.

(b) A stencil is placed at the PCB to apply the correct amount of solder
paste. The stencil is aligned using bolts.

(c) The interactive HTML BOM plugin for KiCad simplifies the assembly:
it shows where each component should be placed at the PCB.

(d) The solder paste is applied, and some surface mount devices (SMD)
are already placed.

(e) After placing the SMDs, the PCB is heated, and the solder paste
melts. After cooling down, the components are fixed.

(f) The last step is assembling the through­hole components by hand
soldering. After that, the boards can be separated.

Figure A.15: Assembling process of the preamplifier (v1.0), the main amplifier, and the stimulator PCB.
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A.12 Stimulator power efficiency
Figure A.16 shows a constant­current topology. This circuit uses a sense resistor 𝑅𝑠𝑒𝑛𝑠𝑒 to keep the
voltage constant by controlling a transistor. The sense resistor is constant, the current through the load
𝑅𝑙𝑜𝑎𝑑 will be constant too, independent of the applied load [84]. Consider, e.g., a tissue impedance of
𝑅𝑡𝑖𝑠𝑠𝑢𝑒 = 10 kΩ, a stimulation current of 𝐼𝑠𝑡𝑖𝑚 = 0.1mA and a supply voltage of 𝑉𝐷𝐷 = 3V. This results
in a voltage drop of 1V across the load (e.g., the tissue). The voltage drop across the current driver
will be 2V, which results in a power loss of 0.2mW in the current driver. Therefore, the system, as
shown in Figure A.16, is in an inefficient system. In the case of an implantable device (which often has
a battery as a power source), an inefficient system results in reduced battery life.

Istim = 0.1mA
Ploss = 0.2mW = 66%  

Current driver

DAC

VDD=3V

Rload=10kΩ

Rsense

Figure A.16: Custom schematic of a possible current driver topology. A constant 𝑅𝑠𝑒𝑛𝑠𝑒 is used to create a constant current,
independent of the load. The voltage overhead is lost in the current driver.

One of the challenges is to limit the amount of lost energy. It could be limited by lowering the volt­
age supply towards the required voltage across the load (e.g., the electrodes). Several methods are
proposed to lower the voltage. The first method generates multiple voltage supplies from the main
power supply. During stimulation, the system switches to the closest minimum supply voltage required
for the electrodes [94]. However, it does not result in a significant improvement due to the additional
hardware that is required, since the additional hardware also requires energy [84]. A second method
proposes a circuit that continuously adjusts the supply voltage [95, 96]. However, for a system con­
taining many stimulation channels (in which many different impedance levels are involved), the supply
voltage required for the lower output voltages is too high, which leads to inefficiencies [84].

Ultra­high frequency stimulation may resolve the power efficiency problem. Many small stimulation
pulses may be used to build up the charge within the tissue. A current driver is in this situation not
required anymore. However, the power efficiency investigation is not part of this thesis.
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