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SUMMARY

In-memory computing is a promising computing paradigm due to its capability to allevi-
ate the memory bottleneck. It has even higher potential when implemented using mem-
ristive devices or memristors with various beneficial characteristics such as nonvolatility,
high scalability, near-zero standby power consumption, high density, and CMOS com-
patibility. Exploring in-memory computing architectures in the combination with mem-
ristor technology is still in its infancy phase. Therefore, it faces challenges with respect
to the development of the devices, circuits, architectures, compilers and applications.

This thesis focuses on exploring and developing in-memory computing in terms of ar-
chitectures (including classification, limited schemes of instruction set, micro-architecture,
communication and controller, as well as automation and simulator), and circuits (in-
cluding logic synthesis flow and interconnect network schemes).

In-Memory architecture classification and survey - We first investigate the state-of-the-
art of in-memory computing and propose a classification to have an overview on both
existing and unexplored architectures. The classification is based on three main criteria:
computation location (i.e., where the results are produced), memory technology (i.e.,
the memory technology is used), and computation parallelism (i.e., the maximum paral-
lelism level can be exploited). Based on the computation, four main classes are derived:
Computation-inside-Memory Array (CIM-A) which produces results inside the mem-
ory and within the memory array, Computation-in-Memory Peripheral (CIM-P) which
produces results inside the memory and within the peripheries, Computation-outside-
Memory Near (COM-N) which produces results outside the memory and near the mem-
ory core, and Computation-outside-Memory Far (COM-F) which which produces results
outside the memory and far from the memory core, respectively. Subsequently, we re-
view and compare the four classes and existing architectures quantitatively. The pro-
posed classification and survey show not only the architectures that were explored in
details in this dissertation, but also potential architectures that can be explored in the
future.

Architecture Level- We propose two architectures representing CIM-A and CIM-P class
from the above classification. For CIM-A class, we first propose a concept of integrating
computation and memory into one physical device, specifically memristive or memris-
tor devices. This concept has potentials to alleviate the memory wall or memory bot-
tleneck in particular, and the architecture and technology wall in general. We demon-
strate the potentials of this concept using a health care application and mathematical
application. Thereafter, we use this concept to perform a parallel addition using only
the crossbar array which also stores the operands of the function. We show the prelimi-
nary result of this parallel adder in comparison with conventional architectures such as
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x SUMMARY

multicore and GPU architecture. Subsequently, we implement the above parallel adder
while taking into consideration its controller, communication and interconnect network
schemes. Two implementations using two distinct logic designs are compared with a
multicore architecture. The results show that the two implementations outperform mul-
ticore architecture at least two orders of magnitude in terms of performance, energy, and
area combined metrics. In addition, the controller and communication pose relatively
large overheads in this architectures. Even though many aspects of this architecture in
particular and CIM-A class in general were explored, there are still many questions re-
garding to the integration between CMOS controller and memristor crossbars, the trade-
off between isolation and parallelism, as well as the generation of complex and efficient
functional units as building blocks, etc.

For CIM-P class, we first show the potentials of Computation-in-Memory (CIM) core
(i.e., a memristor crossbar with capability to perform logical operations using peripheral
circuitry). Thereafter, we propose different architectures that can integrate an arithmetic
CIM core into different position of the memory hierarchy (i.e., computational cache,
main memory or accelerator). Thereafter, we select the architecture that use CIM core
as accelerator due to the current state of memristive devices and in-memory comput-
ing architecture. Subsequently, we investigate the potentials of this architecture using
an analytical model. Finally, we build a simulation platform to port applications exe-
cuting on the proposed architecture. With this, we verify our assumptions on the ana-
lytical model and explore potential applications for the proposed architecture. Both the
analytical and simulation results show that the proposed architecture outperforms the
conventional architecture at least one order of magnitude in terms of performance and
energy. It is worth to notice that the architecture as well as simulation platform are in
their infancy stage, and more efforts are required to fully utilize the architecture’s poten-
tials on big data applications.

Circuit Level - As it is essential to build basic blocks for in-memory computing architec-
tures, we propose logic synthesis automation tools and interconnect networks to real-
ize digital complex function on memristor crossbar. First we propose a generic synthe-
sis framework to map a digital arithmetic function described in hardware description
language (HDL) on memristor circuits. We demonstrate this framework using two case
studies of 2-bit counter and 8-bit adder. As this framework is a preliminary result, ef-
forts are still required to automate the framework and explore more complex functions.
Thereafter, we propose different interconnect network schemes that can be used in a
memristive circuit/design. Using a case study of parallel adder (based on CIM-A class
architecture), we demonstrate three schemes including direct scheme using only copy
operation, indirect scheme using CMOS circuits (i.e., controller), and hybrid scheme
which combines the direct and indirect scheme. The results show that hybrid scheme
provides the highest performance and lowest energy consumption, hence, should be
considered to be used in CIM architecture. It is worth to emphasize that the proposed
solution are roughly evaluated and more detail implementations are required to realize
these solutions in certain designs/systems.



SAMENVATTING

Gegevensverwerking-in-geheugen is een veelbelovend computerparadigma vanwege de
mogelijkheid om het geheugenknelpunt te verlichten. Het heeft een nog hogere potentie
wanneer het wordt geïmplementeerd met behulp van geheugenresistieve elementen of
geheugenweerstanden met verscheidene voordelige kenmerken zoals niet-vluchtigheid,
hoge schaalbaarheid, bijna nul standby-stroomverbruik, hoge dichtheid en CMOS-comp-
atibiliteit. Het verkennen van gegevensverwerking-in-geheugenarchitecturen in com-
binatie met geheugenweerstandstechnologie bevindt zich nog in de kinderschoenen.
Daarom staat het voor uitdagingen met betrekking tot de ontwikkeling van de elemen-
ten, schakelingen, architecturen, compilers en applicaties.

Dit proefschrift richt zich op het verkennen en ontwikkelen van gegevensverwerking-in-
geheugen op het gebied van architecturen (waaronder classificatie, beperkte schema’s
van instructieset, micro-architecturen, communicatie en controllers, evenals automa-
tisering en simulators), en schakelingen (waaronder logische-synthesestappenplan en
verbindingsnetwerkschema’s).

Gegevensverwerking-in-geheugenarchitecturenclassificatie en –overzicht - We onder-
zoeken eerst de state-of-the-art van gegevensverwarking-in-geheugen en stellen een clas-
sificatie voor om een overzicht te hebben van zowel bestaande als niet eerder onder-
zochte architecturen. De classificatie is gebaseerd op drie hoofdcriteria: berekeningslo-
catie (d.w.z. waar de resultaten worden geproduceerd), geheugentechnologie (d.w.z. de
geheugentechnologie die wordt gebruikt) en berekeningsparallellisme (d.w.z. het maxi-
male parallellisme dat kan worden benut). Op basis van berekening worden vier hoofd-
klassen afgeleid: Gegevensverwerking-in-Geheugen Array (GiG-A) die resultaten produ-
ceert in het geheugen en in de geheugenarray, Gegevensverwerking-in-Geheugen Peri-
feer (GiG-P) die resultaten produceert in het geheugen en binnen de periferie, Gegeven-
sverwerking-buiten-Geheugen Dichtbij (GbG-D) die resultaten buiten het geheugen en
in de buurt van het geheugen produceert, en Gegevensverwerking-buiten-Geheugen Ver
(GbG-V) die resultaten buiten het geheugen produceert en ver van het geheugen, res-
pectievelijk. Vervolgens bekijken en vergelijken we de vier klassen en bestaande archi-
tecturen kwantitatief. De voorgedragen classificatie en overzicht tonen niet alleen de
architecturen die in detail in dit proefschrift zijn onderzocht, maar ook potentiële archi-
tecturen die in de toekomst kunnen worden onderzocht.

Architectuurniveau - We stellen twee architecturen voor die de GiG-A- en GiG-P-klasses
vertegenwoordigen uit de bovenstaande classificatie. Voor de GiG-A-klasse stellen we
eerst een concept voor voor het integreren van zowel berekening als geheugen in één
fysiek apparaat, in het bijzonder geheugenresistieve- of geheugenweerstandselemen-
ten. Dit concept heeft de potentie om de geheugenmuur of het geheugenknelpunt in
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xii SAMENVATTING

het bijzonder, en de architectuur- en technologiemuur in het algemeen, te verlichten.
We demonstreren de mogelijkheden van dit concept met behulp van een toepassing
voor de gezondheidszorg en een wiskundige toepassing. Daarna gebruiken we dit con-
cept om een parallelle optelling uit te voeren met alleen de kruisschakelingsarray waarin
ook de operanden van de functie worden opgeslagen. We vergelijken het voorlopige re-
sultaat van deze parallelle met conventionele architecturen zoals multicore- en GPU-
architecturen. Vervolgens implementeren we de bovengenoemde parallelle opteller, re-
kening houdend met de controller, communicatie en verbindingsnetwerkschema’s. Twee
implementaties met twee verschillende logische ontwerpen worden vergeleken met een
multicore-architectuur. De resultaten laten zien dat de twee implementaties beter pres-
teren dan een multicore-architectuur op het gebied van prestaties, energie en combi-
naties van prestatiepunten. Bovendien vormen de controller en communicatie relatief
grote overheadkosten in deze architecturen. Hoewel veel aspecten van deze architec-
tuur in het bijzonder voor de CIM-A-klasse ook en in het algemeen werden onderzocht,
zijn er nog steeds veel vragen over de integratie tussen CMOS-controller en geheugen-
weerstandskruisschakelingen, de wisselwerking tussen isolatie en parallellisme, evenals
het genereren van complexe en efficiënte functionele eenheden als bouwstenen, enz.
Voor de GiG-P-klasse tonen we eerst de mogelijkheden van de Gegevensverwerking-
in-Geheugen (GiG)-kern (d.w.z. een geheugenweerstandskruisschakeling met de mo-
gelijkheid om logische bewerkingen uit te voeren met behulp van perifere schakelin-
gen). Daarna stellen we verschillende architecturen voor die een rekenkundige GiG-kern
kunnen integreren in verschillende posities van de geheugenhiërarchie (d.w.z. compu-
tercache, hoofdgeheugen of versneller). Daarna selecteren we de architectuur die de
GiG-kern als versneller gebruikt vanwege de huidige status van geheugenresistieve ele-
menten en GiG-architectuur. Vervolgens onderzoeken we de potentie van deze architec-
tuur met behulp van een analytisch model. Tot slot bouwen we een simulatieplatform
om applicaties te porten die op de voorgestelde architectuur worden uitgevoerd. Hier-
mee verifiëren we onze veronderstellingen over het analytische model en verkennen we
mogelijke toepassingen voor de voorgedragen architectuur. Zowel de analytische als de
simulatieresultaten tonen aan dat de voorgestelde architectuur beter presteert dan de
conventionele architectuur in termen van prestaties en energie met ten minste één orde
van grootte. Het is de moeite waard om op te merken dat zowel de architectuur als het si-
mulatieplatform in de kinderschoenen staan en dat er meer werk verricht moet worden
om de mogelijkheden van de architectuur voor big data-applicaties volledig te kunnen
benutten.

Schakelingsniveau - Omdat het essentieel is om basisblokken te bouwen voor GiG-ar-
chitecturen, stellen we automatiseringsmiddelen voor logische synthese voor en verbin-
den we netwerken om de digitale complexe functie op de geheugenweerstandskruis-
schakeling te realiseren. Eerst stellen we een generiek syntheseplan voor om een digi-
tale rekenkundige functie in hardware description language (HDL) op geheugenweer-
standsschakelingen te implementeren. We demonstreren dit stappenplan met behulp
van twee casestudy’s, een 2-bits teller en een 8-bits opteller. Omdat dit stappenplan
een voorlopig resultaat is, zijn er nog inspanningen nodig om het stappenplan te auto-
matiseren en complexere functies te verkennen. Daarna stellen we verschillende ver-
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bindingsnetwerkschema’s voor die kunnen worden gebruikt in een geheugenresistieve
schakeling/ontwerp. Aan de hand van een case study van een parallelle opteller (geba-
seerd op de architectuur van de GiG-A-klasse), demonstreren we drie schema’s inclusief
een direct schema met alleen een kopieerbewerking, een indirect schema met CMOS-
schakelingen (d.w.z. een controller) en een hybride schema dat het directe en indirecte
schema combineert . De resultaten laten zien dat een hybride schema de hoogste pres-
taties en het laagste energieverbruik oplevert en daarom moet worden beschouwd als
degene om te gebruiken in de GiG-architectuur. Het is de moeite waard om te benadruk-
ken dat de voorgestelde oplossing ruwweg wordt geëvalueerd en dat meer gedetailleerde
implementaties nodig zijn om deze oplossingen in bepaalde ontwerpen/systemen te re-
aliseren.
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1
INTRODUCTION

Nowadays, most human activities rely on computing systems such as embedded comput-
ers, personal computers and servers, in order to communicate, process and store infor-
mation. Conventional computing systems are based on a load-store architecture that in-
trinsically suffers from three well-known walls: the memory wall, the power wall and the
instruction-level parallelism wall. In the last several decades, the computer performance
has been mainly driven by improvements in the technology. However, CMOS technology
is reaching its physical -if not economical- limits. Therefore, today’s computing systems
face challenges in meeting the ever-increasing requirements. In order to solve this prob-
lem, novel architectures coupled with emerging technologies are under research as a com-
plement or alternative for future computing systems. In this chapter, we first introduce
the motivation behind Computation-in-Memory (CIM) architecture using memristive de-
vices; it is a novel architecture that performs computation inside the resistive memory.
Subsequently, we present the opportunities and challenges to develop such an architec-
ture. Thereafter, we briefly describe the research directions of this dissertation, followed by
its main contributions. Finally, we outline the remainder of this dissertation.
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2 1. INTRODUCTION

1.1. MOTIVATION
Today’s big data and embedded applications have impacted many aspects of human life
from health-care to network security [1–3]. These applications do not only require a huge
storage and computing capacity, but also high energy efficiency. Therefore, it is essential
to build faster, more energy efficient and compact computing systems.

Computing system’s performance has been driven by technology scaling for the last
several decades [4]. Unfortunately, technology scaling has gradually come to an end
and suffers from a lot of problems [5, 6]. These problems can be summarized with the
following three walls [7]:

• Reliability wall occurs as technology scaling is reaching its physical limits [6], which
leads to a reduced life time and increased failure rate [8].

• Leakage wall occurs because static power becomes dominant due to the usage of
volatile CMOS technology and decreasing threshold voltages [9]; this makes the
static power become dominant in the total power consumption.

• Cost wall occurs due to the complexity in fabricating and testing new devices; this
reduces the economical benefits when commercializing these new devices [10].
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Figure 1.1: Trends of Microprocessors in the Last 40 Years [11, 12]

Meanwhile, existing computing systems are also facing three famous architecture
walls [13] that are inherent to von Neumann architectures [14], as shown in Fig. 1.1:

• Memory wall occurs due to the different processor and memory speed. As a result,
data cannot be efficiently fed to processors through long latency and limited off-
chip bandwidth interconnections, especially for multicore processors [5, 15, 16].
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• Power wall occurs due to the heat generated by high frequency processors, which
leads to dark silicon and a saturated computing performance [17, 18].

• Instruction-level parallelism (ILP) wall occurs due to the increasing difficulty to
extract sufficient parallelism for multicore processors; this leads to a saturating
performance as adding more resources will not result in increased performance [17].

All above-mentioned walls have posed difficulties in improving the performance of
existing architectures based on existing technologies. Therefore, novel architectures as
well technologies are required to address those problems. In-memory computing is a
novel computing paradigm that has the potentials to improve the architecture perfor-
mance for specific applications by integrating processing and storage units in the same
physical location using resistive devices [19, 20]. Resistive technology [19, 21, 22] includ-
ing various resistive devices; each has potentials to be used as a complementary tech-
nology to CMOS due to its scalability, high density, nonvolatility, zero leakage power and
CMOS compatibility [23–26]. Therefore, in-memory computing based on resistive tech-
nology is promising to build high performance and energy efficient computer systems.

1.2. OPPORTUNITIES AND CHALLENGES
This section discusses the opportunities and challenges of developing in-memory com-
puting architectures using resistive devices. Fig. 1.2 shows different aspects that need
to be explored in order to implement the new in-memory computing architectures, in-
cluding device, logic, architecture, compiler and application. Each aspect is discussed
next.
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Figure 1.2: Overview of In-Memory Computing

Devices: In-memory computing can be implemented using various technologies
ranging from conventional charge-based memories such as DRAM/SRAM/Flash [27–29]
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or emerging non charge-based memories [30]. The non charge-based memories can be
further divided into different types based on their physical mechanism: resistive [30, 31],
"magnetic" memories [30, 32, 33], molecular memories [34–37] or mechanical memo-
ries [38, 39], etc. Resistive memories store the data as a resistance value; it includes
Resistive RAM (RRAM) [31], phase change memory (PCM) [40], etc. The resistance in
RRAM is determined by the presence or absence of a conductive filament between its
two electrodes [30], while the resistance in PCM relies on a change between amorphous
and crystalline phases [41, 42]. Magnetic memories, such as Magnetic RAM (MRAM),
store the data using the magnetization direction of the free layer with respect to the
hard or reference layer; it includes, for example, conventional magnetic RAM [43] and
STT-MRAM [44, 45]. The resistive and magnetic memories are organized in crossbars
with cells placed at each junction. The other types of memories, (i.e., molecular mem-
ories, mechanical memories) have not been shown to be useful for computing yet. It is
worth mentioning that each of these memory technologies has its own characteristics
(read/write latency, endurance, capacity, etc.). Among them, resistive memories can be
used effectively for both memories and computation with high scalability, high integra-
tion density, and near-zero standby power, etc. [46–48]. Several prototypes of up to 32GB
resistive memory have been reported recently [49–51] as shown in Fig. 1.3. However, it
also faces challenges in terms of high dynamic write power, endurance, variability, cost
and inefficient device modeling [46, 47, 52].

Figure 1.3: Trends of Emerging Device Technologies [53]

Circuits: One important aspect of architectures is logic and circuit design. Efficient
logic and circuit design is required to build architectures with a high scalability, high
performance and low energy consumption. In-memory computing can perform com-
putations using only resistive cells or hybrid circuits where the resistive cells are used



1.2. OPPORTUNITIES AND CHALLENGES

1

5

together with peripheral circuits. Resistive logic circuits that enable in-memory com-
puting in particular have been summarized in recent surveys [54, 55]. However, circuit
designs for in-memory computing is still in an early stage; hence, there is a lack of ef-
ficient circuit design for logic and arithmetic operations, a proper instruction set, an
appropriate interconnect network schemes, as well as a synthesis flow to automate the
design process.
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Figure 1.4: Memory-centric Computing

Architectures: The idea of performing computations inside the memory has been
proposed since 1970; the authors refer to it as Logic-in-Memory (LIM) [56] and use it for
caches. Thereafter, similar concepts were developed using different technologies rang-
ing from embedded DRAM to 3D-stacked DRAM. Different names were used to illustrate
the same basic concept such as Processing-in-Memory (PIM) [57, 58], Near-Memory-
Computing (NMC) [59], and recently Computation-in-Memory (CIM) [20]. Typically,
these architectures perform parts of the operations within or near the memory arrays
with the objective to reduce the amount of data movement. By reducing the memory
bottleneck, the performance can be improve dramatically; e.g., at least 10x [20, 60] for
CIM.
The above architectures can be classified into two groups based on the computation
location which is defined as where the results are produced; this includes Computation-
in-Memory (CIM) and Computation-Out-Memory (COM). Each of these two groups can
be classified further as shown in Fig. 1.4: CIM-A where the computation result is pro-
duced inside the memory array; CIM-P where the computation result is produced in the
peripheral circuits of the memory core; COM-N where the computation result is pro-
duced in the logic layers located inside the memory system near the memory core; and
COM-F where the computation result is produced outside the memory system far from
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Figure 1.5: Memory-Centric Computing Classification

the memory core, i.e., processors. In order to further differentiate between architec-
tures, the memory technology and computation parallelism are also considered. Exam-
ples of memory technologies include conventional charge-based (DRAM, SRAM, Flash,
etc.) and emerging non-charge-based memory (resistive RAM, magnetic RAM, molec-
ular memory, etc.). The computation parallelism includes task-level, data-level, and
instruction-level. The range of all possible sub-classes using these three criteria and
their associated architectures are shown in Fig. 1.5.
As there are many architectures, it is essential to explore various architectures to iden-
tify their potentials for memory-intensive applications. In addition, a lot of effort is still
required to develop CIM instruction sets, micro- and macro- architectures as well as
finding appropriate applications. Moreover, other fundamental components of the ar-
chitecture still need exploration such as the interconnect network, communication, and
controller. Furthermore, performance trade-offs between the architectures is still un-
known and must be further explored. Therefore, it is essential to develop an analytical
model and a simulation framework to investigate these aspects.

Compilers: As in-memory computing is still in its fancy stage, limited work on pro-
gramming languages and compilers has been proposed [61, 62]. These articles proposed
a programming language based on a domain-specific language and a compiler using
arithmetic skeleton as a template to mapping an algorithm onto memristor crossbar,
respectively. Further work is required to explore the potentials of in-memory comput-
ing, especially in terms of efficient programming to extract parallelism from applica-
tions, minimize internal communication between the components of the architecture,
and map data intelligently into memory for efficient computation.

Applications: Some applications have been evaluated roughly using in-memory com-
puting with positive results [20, 57, 63]. These applications include big data, memory



1.3. RESEARCH TOPICS

1

7

intensive problems in some specific fields such as database manipulation, image pro-
cessing, bio-sequencing, etc. However, it is essential to find and explore appropriate
applications that could efficiently make use of CIM architecture and exploit its intrinsic
properties. Note that the considered in-memory computing architecture can perform
only limited number of specific operations efficiently. Hence, it is worth to explore var-
ious applications which have a high percentage of these operations. For example, some
previous work has proposed quite a lot of applications consisting of a large number of
logical operations such as database processing, graph processing, security encryption,
and bio-sequencing [64–69]. In addition, exploring applications requires an automated
simulation framework as well as novel algorithms that can be optimized for specific ar-
chitectures. Hence, it is essential to explore potential algorithms, characterize and tune
these algorithms to exploit the potential in-memory architectures.

1.3. RESEARCH TOPICS
Many challenges described in Section 1.2 still need to be addressed. The research car-
ried out in this thesis focuses mostly on the investigation of new architectures that ex-
ploit emerging non-volatile memory technology (i.e., resistive RAM). In addition to ar-
chitectures (including a limited instruction set, micro-architecture, communication and
controller, and automation and simulator), it covers a part of circuit design (i.e., logic
synthesis and interconnect network) as shown by the colored boxes in Fig. 1.2.

• Exploration of In-Memory Computing Architectures: As in-memory computing
is emerging due to new available memory technologies, it is essential to under-
stand the concept of Computation-in-Memory (CIM), define the space of in-memory
computing and classify it. In this thesis, we first explore the scope of in-memory
computing in terms of devices, circuits and architectures. Thereafter, we identify
classification metrics to determine the complete space of in-memory computing
and define the complete space of existing and possible future architectures.

• Architecture Level: Based on the above explored space, we select two architec-
tures to be further explore, analyze their pros and cons as well as their potentials
in dealing with data-intensive applications. For each architecture, we implement
different case study and investigate the instruction set, communication and con-
troller as well as the interconnect overhead of these implementation to show their
potentials and limitations. We also investigate an analytical model and simulator
to explore the performance of this architecture for different applications.

• Circuit Level: In order to build the above architecture, it is essential to design dif-
ferent primitive functions. Hence, a logic synthesis framework is required to accel-
erate the design process. In this thesis, we investigate a synthesis framework that
synthesizes logic functions using resistive circuits; thereafter, these circuits can
be used in the in-memory computing architectures to perform operations within
the memory. In order to build the above architecture, an interconnect network is
required to connect multiple primitive functions and blocks. Therefore, we also
explore various interconnect networks and communication schemes.
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1.4. CONTRIBUTIONS
The contributions of this dissertation are directly related to the research topics presented
in the previous section.

1.4.1. EXPLORATION OF IN-MEMORY COMPUTING ARCHITECTURES
We study the existing in-memory architectures and propose a classification that includes
both the conventional and future emerging architectures. With respect to this research
topic, the main contributions are as follows:

• A classification of memory-centric computing architectures that is based on three
metrics [70]: computation location, memory technology and computation par-
allelism. The computation location indicates where the computations are per-
formed (e.g., near or far from the memory) and provides an insight regarding the
severeness of the memory wall. The memory technology, which provides char-
acteristics of the memory, can enable new computer architectures (e.g., resistive
computing). The computation parallelisms specifies the type of parallelism that
can be exploited in an architecture (e.g. task level parallelism). With these dis-
tinct metrics, the classification shows four main classes based on the first met-
ric: Computation-in-Memory Array (CIM-A), Computation-in-Memory Peripheral
(CIM-P), Computation-out-Memory Near(COM-N), Computation-out-Memory Far
(COM-F).

• A survey of existing memory-centric computing architectures [71]; it reviews more
than 30 architectures in the context of the four above-mentioned classes. In ad-
dition, we present a qualitative comparison of the four main classes, and the pros
and cons of the existing architectures.

1.4.2. ARCHITECTURE LEVEL
We investigate the feasibility and evaluate the performance of two in-memory architec-
tures. Based on the above classification, we focus on two in-memory architectures: CIM
which is a CIM-A architecture and CIMX which is a CIM-P architecture. With respect to
this research topic, the main contributions are as follows:

1. Computation-in-Memory (CIM) architecture

• A CIM architecture that interweaves computation and storage into a physical
non-volatile memory crossbar [20]. The memory crossbar consists of mem-
ristive devices placed at each horizontal and vertical nanowire junction. A
control and communication block applies voltages to these horizontal and
vertical nanowire to perform useful operations.

• A CIM Parallel Adder that maps a mathematical function (i.e., parallel ad-
dition) on the memristor crossbar [72, 73]. This mapping is evaluated us-
ing a simplified analytical model and compared against two conventional
architectures (i.e., multicore and GPU). The potential performance, energy
and area of this mapping shows approximately an improvement of two or-
ders of magnitude with respect to the other two architectures. We propose
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two implementations based on two distinct memristive logic designs (i.e.,
Boolean and implication logic) to realize the above CIM parallel adder. Both
implementations consist of a memristor crossbar, controller and communi-
cation network. They are evaluated using an analytical model and compared
against a multicore architecture. The results show that the two implementa-
tions outperform the multicore architecture with two orders of magnitude in
terms of performance, energy and area.

2. Computation-in-Memory Accelerator (CIMX)

• A CIM core design [74] based on scouting logic [75]. Moreover, the poten-
tial characteristics and applications of CIM core is roughly explored. In ad-
dition, the CIM core’s performance is analyzed in comparison with conven-
tional multicore.

• A CIMX architecture using CIM core [76]. Several different architectures us-
ing CIMX at different memory hierarchy are proposed, as well as their pros
and cons are discussed. Based on the discussion, we selected a promising
architecture where a CIM core accelerator is added to a conventional archi-
tecture. An analytical model is also proposed to estimate the performance
of the proposed architecture. The results are compared against the conven-
tional part of the architecture, i.e. the conventional architecture without the
CIM core. In order to estimate the performance based on applications, we
propose a simulation framework to explore appropriate applications that can
benefit from the proposed architecture. The simulation framework is used
for both the conventional and proposed in-memory architectures. Both an-
alytical and simulation results show that the proposed architecture obtains
at least one order of magnitude improvements in terms of performance and
energy.

1.4.3. CIRCUIT LEVEL

At circuit level, we propose automation tools to generate basic functional units and in-
terconnect network schemes to connect these basic functional units. With respect to this
research topic, the main contribution is as follows:

• A synthesis framework [77]; it uses the memristive design methods to map a logic
circuit described in HDL to memristor circuits (i.e., including both memristor cross-
bar and discrete memristors). Thereafter, we validate the framework using two
case studies: a 2-bit counter and 8-bit adder.

• Three different interconnect network schemes to support communication between
functional components within or between resistive crossbars [78]. The first scheme
utilizes the primitive copy operation [79] to perform communication directly in-
side the memristor crossbar. The second scheme uses the CMOS circuits (i.e., con-
troller) outside the memristor crossbar to perform communication by reading out
a value from the source memristor and writing this value back to the destination
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memristor. The third scheme combines the two above schemes and is called a hy-
brid scheme. We evaluate the proposed schemes using the CIM parallel adder case
study.

1.5. THESIS ORGANIZATION
The remainder of this thesis is illustrated in Fig. 1.6 and described next.

Chapter 2 presents the overview of resistive devices and state-of-the-art of in-memory
computing. First, it presents the background of resistive devices (e.g., history and work-
ing principles), and their applications for memories, logic designs and computing archi-
tectures. Thereafter, it discusses the contributions of this dissertation with respect to the
classification and survey of in-memory computing architectures.

Chapter 3 discusses the contributions of this dissertation with respect to the architec-
ture level. First, it discusses the CIM architecture that perform parallel addition as a case
study. Thereafter, it discusses the CIM accelerator (CIMX) architecture, its associated
analytical model and simulation framework.

Chapter 4 discusses the contributions of this dissertation with respect to the logic level.
It first proposes a generic synthesis framework that can exploit different memristive logic
design methodologies. Thereafter, it shows two case studies using the Boolean logic cir-
cuit design method [80]. Thereafter, it shows interconnect network schemes to provide
communication between function components inside the in-memory architecture.

Chapter 5 concludes this dissertation and shows possible future research directions.
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OVERVIEW AND CLASSIFICATION

This chapter discusses the fundamentals of the memristive device and in-memory com-
puting architecture. In terms of memristive device background, it discusses memristive
devices, circuits and architectures. First, it briefly presents the history, working principles,
and major properties of memristive devices. Thereafter, it discusses the potential applica-
tions of memristive devices in the following domains: non-volatile memory, logic design,
and computing architecture. In terms of in-memory computing architectures, it presents a
classification of memory-centric computing architectures and a survey based on this clas-
sification. First, it proposes a classification based on three metrics: computation location,
memory technology and computation parallelism. The classification shows a complete
space exploration of memory-centric architectures including existing and potential future
architectures; therefore, it shows the position of in-memory computing in the whole archi-
tecture space. Thereafter, it reviews existing architectures quantitatively, compares among
four main classes based on computation location, as well as discusses their pros and cons.

The content of this chapter is based on the following research article:

1. H.A. Du Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, D. Fey, Memristive Devices for Computing: Beyond
CMOS and Beyond von Neumann, IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), Abu Dhabi, UAE, October, 2017, pp. 1-10

2. H.A. Du Nguyen, J. Yu, M. Abu Lebdeh, M. Taouil, S. Hamdioui, F. Catthoor, A Classification of In-
Memory Computing, under review.

3. H.A. Du Nguyen, J. Yu, M. Abu Lebdeh, M. Taouil, S. Hamdioui, F. Catthoor, A Survey of In-Memory
Computing, to be submitted.
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2.1. PROBLEM STATEMENT
Today’s computer architectures suffer from many challenges both at technology level
and architecture level. As a consequence, existing architectures are unable to deal with
emerging big data applications. At the technology level, many emerging technologies
are currently explored to find a substitution for CMOS devices. Among them, memris-
tive devices show many promising characteristics such as nonvolatility, zero static power
consumption, small footprint, and CMOS compatibility. At architecture level, many ar-
chitectures are proposed to solve the limitations of von-Neumann architectures in terms
of memory bottleneck, power constraint and instruction-level parallelism exploitation.
Therefore, two questions are still open: (1) what are the potential capabilities of memris-
tive devices for a new non von-Neuman architecture, (2) what is the potential space to
be explored in memory-centric computing architectures? This chapter focuses on these
two questions.

Exploration of memristive device potentials: it is essential to comprehensively ex-
plore the potential of memristive devices in building logic functions, memories, arith-
metic operations, and novel computer architectures. Especially, the unique properties
of memristor devices are investigated to be applied in the concept of neuromorphic and
emerging computation-in-memory architecture.

Exploration of in-memory computing architectures: it is essential to comprehensively
explore the complete space of computing architectures using the memory-centric ap-
proach. First, the memory-centric computing architectures are classified so that a com-
plete space can be explored. Second, the existing architectures are placed into this clas-
sification; with this overview, potential architectures are identified and further explored.

2.2. MAIN CONTRIBUTIONS
The main contributions in the above aspects are as follows.

CPU

DRAM

External Memory

CIM
Accelerator

L1

Program

loop1:

loop2:

loop3:

CIM 
Accelerator

(a) Architecture (b) Expected Application 

Figure 2.1: CIM-based Architecture

Exploration of memristive device potentials [54]: Memristive device, better known as
memristor, is the fourth fundamental two-terminal element, next to the resistor, capac-
itor, and inductor. It was initially proposed in 1971 by the circuit theorist Leon Chua
[81]. Memristive device became renowned in 2008 when the first physical memristor de-
vice was fabricated by HP Lab [21]. Memristive devices can be used for logic functions,
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memories, arithmetic operations, and novel computer architectures. As I mainly con-
tributes to the novel computer architectures, specifically the computation-in-memory
architecture, the corresponding contribution is explained as follows.

In terms of novel computer architectures, two emerging resistive computing archi-
tecture including Computation-in-Memory (CIM) and neuromorphic processing are de-
scribed. The CIM-based architecture consists of a conventional processor, caches, CIM
accelerator, main memory DRAM and external memory (as shown in Fig. 2.1(a)). CIM
accelerator is beneficial to a program as shown in Fig. 2.1(b). In this case, multiple in-
voked loops work on the same large datasets; obviously the data should be initialized on
the CIM accelerator. Each time the loop is invoked, the processor sends a request to the
CIM accelerator; the latter, performs the requested operations and returns the results to
the processor. Examples of such applications are database applications, where multiple
queries (each consisting of large loops) are applied to a fixed database. These queries are
used to look for specific data patterns in the database.

Exploration of in-memory computing architectures [70, 71]: We present a memory-
centric computing classification based on three metrics: computation location, mem-
ory technology, and computation parallelism [70]. The computation location indicates
where the computation results are produced (e.g., near or far from the memory) and
provides an insight regarding the severeness of the memory wall. The memory technol-
ogy is a fundamental component in enabling new computer architectures (e.g., resistive
computing). The computation parallelisms specifies the type of parallelism that can be
exploited in an architecture (e.g., task level parallelism). With these distinct metrics, the
classification covers all computing architectures in general and memory-centric com-
puting in specific. Among them, in-memory computing architectures play a major role.
Next, we will explain the classification metrics in detail.

Memory System in Package (SiP)

Memory core

Data mem
Bank i

SAs

R
o

w
 A

d
d

r.
 M

u
x

Data mem
Bank i

R
o

w
 A

d
d

r.
 M

u
x

Memory array

SAsPeripheral circuits

Extra logic circuits

Computational cores

Low BW

High BW

P
e

ri
p

h
e

ra
l 

c
ir

c
u

it
s

2

1

3

4

High-Max BW

Figure 2.2: Memory-centric Computing

A computer architecture or system consists of one or more memories and computa-
tional units as shown in Fig. 2.2. The memories is the main storage unit; it can include
only memory core with memory arrays and its supporting peripheral circuits, or mem-
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ory core with extra logic circuits, which is called memory System-in-Packages (SiP). The
computations is performed traditionally using computation cores, however, they can
also be performed using extra logic circuits, peripheral circuits and memory array of the
memory SiP.

In case computations take place inside the memory core, depending on where the
result of the computation is produced, an architecture can be placed into two classes:
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• CIM-Array (CIM-A): In CIM-A, the computing result is produced within the array.
Examples of architectures that fit within this class are PLiM [82], ReVAMP [83],
MPU [84], CIM device [85], etc. The CIM-A core typically requires a significant re-
design of the memory array to support computing, as conventional memory cell
layout and their embedding in the bit and wordline structure may not allow them
to be used for computation-in-memory. In addition, modifications in the periph-
ery are sometimes needed to support the changes in the cell changes. Therefore,
CIM-A architectures can be sub-divided into two groups: (1) basic CIM-A where
only changes inside the memory array are required, and (2) hybrid CIM-A where in
addition to major changes in the memory array also minimal to medium changes
are required in the peripheral circuit.

• CIM-Periphery (CIM-P): In a CIM-P, the computing result is produced within the
peripheral circuitry. Examples of proposal architectures that fit in this class are
PRIME [86], Pinatubo[64], CIM-Accelerator [54], etc. This architecture typically
focuses on special circuits in the peripheral circuit to realize e.g., bit-wise logic op-
erations [64, 75], matrix-vector multiplication exploiting Ohm’s law [87], etc. Even
though the computational results are produced in the peripheral circuits for CIM-
P, the memory array could be a significant component in the computations. For
example, when multiple rows are activated simultaneously in the array, different
logic [64, 75] and arithmetic operations [84, 88] can be realized in the periphery.
As the peripheral circuits are modified, the currents/voltages applied to the mem-
ory array are typically different than in the conventional memory. Hence, similarly
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as to the CIM-A sub-classes, the CIM-P architectures are also further divided into
two groups: (1) basic CIM-P where only changes inside the peripheral is required,
which means the current levels should not be affected, and (2) hybrid CIM-P where
the majority of the changes take place in the peripheral circuit and minimal to
medium changes in the memory array.

For computations take place outside the memory core, computations take either
place in the extra logic circuits inside the memory SiP (3) or in the traditional com-
putational cores (4) such as CPU, FPGA, etc. In case of the former, the computations
take place near the memory core and the architecture is referred to as Computation-
Outside-Memory Near (COM-N). In case of the latter, the architecture is referred to as
Computation-Outside-Memory Far (COM-F).

The existing architectures are classified based on the above discussed metrics; the
result is shown in Fig. 2.3. The classification contains 48 categories. Some categories,
the ones located in red planes, show that a lot of work has been done for that partic-
ular class. For the categories in the pink planes, a moderate number of work has been
done. To our best knowledge, no architectures exists in the blue planes; these fields are
currently unexplored as they received no attention yet from the research community or
non-existing due to current restrictions of the technology. We also present a survey on
the existing architectures and evaluates these architectures quantitatively [71].
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Abstract—Traditional CMOS technology and its continuous
down-scaling have been the driving force to improve perfor-
mance of existing computer architectures. Today, however, both
technology and computer architectures are facing challenges that
make them incapable of delivering the growing computing per-
formance requirement at pre-defined constraints. This forces the
exploration of both novel architectures and technologies; not only
to maintain the economic profit of technology scaling, but also
to enable the computing architecture solutions for big-data and
data-intensive applications. This paper discusses the emerging
memristive device as a complement (or an alternative) to CMOS
devices and shows how such devices enable novel computing
paradigms that will solve the challenges of today’s architectures
for certain applications. The paper covers not only the potential
of memristor devices in enabling novel memory technologies, logic
design styles, and arithmetic operations, but also their potential
in enabling in-memory computing and neuromorphic computing.

I. INTRODUCTION
Today’s and emerging applications including internet-of-

things (IoT) and big data applications are extremely demand-
ing in terms of storage and computing performance. Such
world-changing applications will not only impact all aspects
of our daily life, but also change a lot in the IC and computer
manufacture industry. Emerging applications require comput-
ing performance which was typical of supercomputers a few
years ago, but with constraints on size, power consumption and
guaranteed response time which are typical of the embedded
applications [1,2]. Both current device technologies and com-
puter architectures are encountering significant challenges that
make them incapable of providing the required functionalities
and properties.
Nanoscale CMOS technology is facing three walls [2]: (1)

the reliability wall as technology scaling leads to increased
failure rate and reduced device lifetime [2], (2) the leakage
wall as static power dominates and might be even larger than
dynamic power at more advanced technology nodes (due to
volatile technology and decreasing supply voltage) [3]; (3) the
cost wall as the cost per transistor via pure geometric scaling
of process technology is plateauing [4]. These walls have led
to the slowdown of the CMOS scaling. On top of that, today’s
computer architectures are facing the three well-known walls
[5]: (1) the memory wall due to the growing gap between pro-
cessor and memory speeds, and the limited memory bandwidth

making the memory access as the killer of performance and
energy consumption for data-intensive applications; e.g. big-
data; (2) the Instruction Level parallelism (ILP) wall due to the
complexity of extracting sufficient parallelism to keep all cores
running; (3) the power wall as the practical power limit for
cooling is reached, which leads to no further increase of CPU
clock frequency. In order for computing systems to continue
delivering required performance and sustaining profits for
the near future, alternative computing architectures have to
be explored in the light of emerging device technologies.
Resistive computing, neuromorphic computing and quantum
computing are some candidates for the next-generation com-
puting paradigms, while memristor devices, quantum dots,
spin-wave devices are couple of emerging device technologies
[6]. Among these technologies, memristor is a promising
candidate to complement and/or replace traditional CMOS (at
least for some applications) due to many advantages such
as near-zero standby power, high device scalability, high
integration density, and CMOS process compatibility [7,8].
Therefore, it provides significant potential to implement high
density memories [9–11], different logic design styles [12–16],
and consequently enabling new computing paradigms [17–21].
This paper will comprehensively explore the potential of

memristors in building logic functions, memories, arithmetic
operations, and novel computer architectures. Section I briefly
describes the history and characteristics of memristive devices.
Section II and III overview the logic design styles and non-
volatile memories based on memristive devices, respectively.
Section IV shows how the unique properties of memristor
devices enable the concept of neuromorphic and emerging
computation-in-memory architecture. Section V highlights the
major challenges for memristive device based computing,
followed by a conclusion of this paper.

II. MEMRISTIVE DEVICES: WHAT ARE THEY?

Memristive device, better known as memristor, is the fourth
fundamental two-terminal element, next to the resistor, capac-
itor, and inductor. It was initially proposed in 1971 by the
circuit theorist Leon Chua [22]. He noticed that there was still
a missing relationship between flux and charge as shown by the
dashed line in Fig. 1(a). Theoretically, a memristive device is a
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Fig. 1: Stateful Logic

passive element that maintains a relationship between the time
integrals of current and voltage across a two-terminal element,
while considering the internal state variable of the device.
Hence, a memristor can be expressed either by a function of
charge q or flux φ. An important fingerprint of a memristor
is the pinched hysteresis loop current-voltage characteristic
as illustrated in Fig. 1(b). It shows that memristive devices
have two stable states: high RH and low RL resistive states.
When the voltage across the memristive device is greater than
the absolute value of its threshold voltage (i.e., Vth), then it
switches from one resistive state to another. Secondly, it has
the ability to remember its history (i.e., the internal state).
After a silent period of more than 30 years, memristive

device became renowned in 2008 when the first physical
memristor device was fabricated by HP Lab [23]. HP built
a metal-insulator-metal device using a titanium oxide as a in-
sulator sandwiched by two metal electrodes. They successfully
identified the memristive behaviour over its two-terminal node
as described by Leon Chua. The device tunes its resistance by
controlling positive charged oxygen vacancies in the insulator
layer by applying different voltages. After the first memristive
device was manufactured, many memristor devices based on
different type of materials have been proposed such as HfOx,
TaOx, SiOx [7,8].

III. MEMRISTIVE DEVICES FOR LOGIC
This section first classifies existing memristor-based logic

design styles. Thereafter, it briefly describes examples of each
class. Finally, it qualitatively compares them.

A. Classification

Multiple logic design styles have been proposed [12–16,24–
27]. We divide them into several classes using the following
criteria:

• Input Data Representation indicates whether the input
data is represented by a voltage or resistance.

• Output Data Representation indicates whether the out-
put data is represented by a voltage or resistance.

• Processing Elements indicates whether the data is pro-
cessed based on memristors only or by using a hybrid
cmos/memristor combination. Obviously the control of
the memristors is always done using CMOS circuits.
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Fig. 2: Classification of Memristor-Based Logic Design Styles.

Fig. 2 shows the classification result; there are eight classes
in total. Each class is named based on the input and output rep-
resentation signals, and the processing element. For instance,
scouting logic is located in the RVH class where R indicates
the input data representation, V the output data representation
and H hybrid CMOS/memristor processing. The classification
clearly shows that the existing logic designs fit in five defined
classes, and that three classes are potentially not explored yet.

• VVH: Memristor ratioed logic [24], PLA-like [12], cur-
rent mirror based threshold logic [13], and programmable
threshold logic [25] belong to this class. They use a volt-
age to represent both input and output data and CMOS
gates (e.g., inverter [12,13,24] and D Flip-Flop [25]) as a
threshold function (and inverter). The memristors are used
as either configuration switches [12,24] or input weights
[13,25].

• RVH: Pinatubo [28] and Scouting logic [27] are the work
published in this class. They use a resistance to represent
the input data and a voltage to represent the output data.
Both logic styles perform logic operations by modifying
memory read operations.

• RVM: CMOS-like logic [26] is the only existing work in
this class. It uses a resistance to represent the input data
and a voltage to represent the output data. It replaces
MOSFETs in the pull-up and -down network of the
conventional CMOS logic with memristors.

• VRM: Complementary Resistive Switching (CRS) logic
[14] is the only published work in this class. It uses
a voltage to represent the input data and a resistance
to represent the output data. CRS logic performs logic
operations by modifying memory write operations. In
addition, You et al. extended the existing CRS logic gates
with other Boolean logic gates which requires also fewer
execution steps [29].

• RRM Snider [15] and stateful [16] logic belong to this
class. They use a resistance to represent both the input
and output data. They perform logic operations by using
memristors as voltage dividers which conditionally switch

OVERVIEW AND CLASSIFICATION
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the output memristors. Lehtonen et al. [30] extended
stateful logic to support more types of logic operations
(e.g., AND-IMP and OR-IMP). Kvatinsky et al. [31] and
Xie et al. [32] extended Snider logic to support more
types of logic operations (e.g., AND and OR).

In the remainder of this section, the working principle of
two logic design styles will be given as examples since they are
the most popular candidates to implement resistive computing
systems. Finally, a comparison between the state-of-the-art
will be provided.

B. RVH: Scouting Logic

As Pinatubo and scouting logic share the same idea, we
use scouting logic as an example using different circuit im-
plementations. Scouting logic [27] supports the AND, OR and
XOR logic operations. Scouting logic uses resistances RH and
RL to represent its logic inputs 0 and 1, respectively; it uses
voltages Vdd and GND to represent its logic output 1 and 0,
respectively.
Scouting logic is inspired by memory read operations.

Typically when a cell is read, say Memristor M1 of Fig. 3(a),
a read voltage Vr is applied to its row and the switch S1
is activated. Subsequently, a current Iin will flow through the
bit line to the input of the sense amplifier (SA). This current
is compared to the reference current Iref. If Iin is greater
than Iref (i.e., when M1 is RL state), the output of the SA
changes to Vdd (logic 1). Similarly, when M1 is RH state,
Iin<Iref and subsequently the output changes to logic 0. For
proper operations, Iref should be fixed between high and low
currents of Fig. 3(b). Instead of reading a single memristor
at a time, scouting logic activates the two inputs of the gate
simultaneously (e.g., M1 and M2 in Fig. 3(a)). As a result,
the input current to the sense amplifier is determined by the
equivalent input resistance (M1//M2). This resistance results
in three possible values: RL

2 , RH

2 and RL//RH≈RL. Hence,
the input current Iin can have only three values. By changing
the value of Iref different gates can be realized.
For example, to implement an OR gate Iref should be set

between 2Vr

RH
and Vr

RL
as depicted in Fig. 3(b)). When the

inputs are p = 0 and q = 1, the input current Iin to the sense
amplifier is around Vr

RL
. As 2Vr

RH
<Iref< Vr

RL
, Iin > Iref and the

output voltage Vout is Vdd. The AND and XOR operations
work in a similar way. Note that the XOR gate needs two
references which is not shown in Fig. 3(a). More details on
the sense amplifier can be found in [27].
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Fig. 4: Stateful Logic

C. RRM: Stateful Logic

Stateful logic [16] supports material implication (IMP) as
primitive logic operation. The IMP operation is denoted by
Eq. 1.

IMP: q′ = p→ q = p̄+ q (1)

Here p and q are inputs while q′ is the output. Stateful
logic uses RH and RL represent logic 0 and 1, respec-
tively; both for the inputs and outputs. An IMP gate consists
of two memristors (i.e., Mp and Mq) and a resistor Rs

(RL�Rs�RH ). Mp is only used for the input p while Mq
is used both for the input q and output q′. To perform the
operation, control voltages Vh and Vw are applied to Mp
and Mq, respectively; the control voltages typically satisfy the
relationship: 0<Vh=

Vw

2 <Vth<Vw<2Vth.
To illustrate the working principle of stateful logic, an

example of an IMP gate is given for the inputs p = 1
and q = 0, as shown in Fig. 4. It consists of three steps.
First, all the memristors are reset to RH by applying voltages
Vp = Vq =GND and Vx = Vw (see Fig. 4(a)). Second, Mp is
programmed to RL (p = 1) by applying voltages Vp = Vw,
Vq = Vh and Vx = 0 (see Fig. 4(b)). Vh is used to prevent Mq
from undesired switching. Finally, the IMP gate is evaluated
by applying voltages Vp = Vh, Vq = Vw and keeping the row
floating (see Fig. 4(c)). Therefore, Vx≈Vh (RL�Rs�RH )
and the voltage across Mq is Vq − Vx ≈ Vw − Vh < Vth. As
a result, Mq stays in RH . More details and the latest progress
can be found in [16,30,33].

D. Comparison

We use the following metrics to qualitatively compare the
existing memristor logic design styles.

• Array Compatibility indicates whether the logic style is
compatible with normal 1R and/or 1T1R memory arrays
or not.

• CMOS Controller Requirement indicates whether the
logic style needs a CMOS circuit to control it or not.

• Nonvolatility indicates whether the logic style can store
the data when it is powered off or not.

• Area indicates how area-efficient the logic style is to
perform operations.

• Speed indicates how fast the logic style is to perform
operations.

• Energy Consumption indicates how energy-efficient the
logic style is to perform operations.

• Scalability indicates how well the logic style can be
scaled to implement more complex circuits.

2
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TABLE I: Comparison Between Existing Logic Styles

Style Class Array Control NV Speed Area Energy Scalability Robustness
Memristor ratioed logic VVH No No No + ++ ++ ++ +
PLA-like memristor logic VVH No No No + ++ ++ ++ ++

Current mirror threshold logic VVH No No No + ++ ++ ++ ++
Programmable threshold logic VVH No No No + ++ ++ ++ ++
Pinatubo / Scouting logic RVH Yes Yes Yes + + ++ + +

CMOS-like logic RVM No Yes Yes - - - - +
CRS logic VRM Yes Yes Yes - - - - -
Snider logic RRM Yes Yes Yes - - - - -
Stateful logic RRM Yes Yes Yes - - - - -

• Robustness indicates how robust the logic style is to
be resilient against the unrelaible CMOS and memristor
technology.

Table I shows the comparison result. We can draw the
following conclusions with respect to the metrics.

• Array Compatibility: Design styles of RVH, VRM and
RRM are compatible with memory arrays. CMOS like
memristor logic is not compatible with memory arrays
due to its irregular topology. Design styles of VVH are
not compatible with 1R/1T1R array as they need to add
CMOS inverters or D flip-flops to memory arrays. Note
that array compatibility is an important requirement to
implement resistive computing systems.

• CMOS Controller Requirement: The logic styles of
VVH do not need additional CMOS control units as their
inputs and outputs are voltage based. In contrast, other
logic styles need to transduce the data between voltages
and resistances, and also need the controller to control
each step during execution. Note that several logic design
styles require multiple execution steps.

• Nonvolatility: Only the design styles of VVH are volatile,
as both their inputs and outputs are represented by
voltages. In contrast, other logic styles have their input
and/or output represented by resistances, and thus are
nonvolatile.

• Speed: The design styles of VVH and RVH are faster
as they can finish logic operations in a single step. In
contrast, other logic design styles are slower as they need
multiple steps.

• Area: Design styles of VVH require smaller area as
they do not need CMOS controllers. In contrast, other
design styles require larger area as they need CMOS
controllers. In addition, Pinatubo/Scouting logic needs a
simpler controller as it only needs a single step instead
of multiple [27].

• Energy Consumption: Three main factors impact on
the energy consumption; they are controller necessity,
nonvolatiltiy and speed. Design styles of VVH do not
need CMOS controllers and they are fast, and hence they
are likely not to consume a lot energy to perform logic
operations. Design styles of RVH are nonvolatile and

fast, and hence they are likely to consume less energy
to perform logic operations. In contrast, the other design
styles possibly need more energy as they need complex
controllers and longer time to perform logic operations.

• Scalability: Controller necessity impacts on the scala-
bility. Design styles of VVH are the easiest to scale up
as they do not need CMOS controllers. Design styles of
RVH are easier to scale as they need a simpler controller.
In contrast, the other design styles are hard to scale up
as they need complex controllers.

• Robustness: Controller necessity impacts on the robust-
ness as many transistors are involved by controllers. In
addition, design styles are more reliable if the memristors
do not need to switch during logic operations. This
is because memristor devices suffer from cycle-to-cycle
variation [2]. Except memristor ratioed logic, design
styles of VVH are likely to be most robust as they need
no CMOS controllers and memristor switching. Design
styles of RVH and RVM are more reliable than other
styles as they do not need to switch memristors during
logic operations.

Overall, in order to implement the resistive computing
architectures, design styles of RVM , VRM, and RRM are
very suitable due to their array compatibility. Among them,
scouting logic is the most promising candidate due to its good
performance in the remaining aspects. In addition, the design
styles of VVH and RVM are possible alternatives to replace
CMOS logic.

IV. MEMRISTIVE DEVICES FOR MEMORIES

Many non-volatile memory elements have been pro-
posed such as phase-change-memories (PCMs), spin-torque-
transfer magnetic RAMs (STT-MRAMs), and resistive RAMs
(ReRAMs). A very good introduction into the the topic of
memristive memory and the ReRAM technology is given
in the first two chapters [34], [35], in the book Resistive
Switching, edited by Ielmini and Waser [36].
Each of these device classes shows a more or less different

technology and working principle causing different benefits
and drawbacks what itself leads to different appropriate use
scenarios of these devices. In the following we will briefly

OVERVIEW AND CLASSIFICATION
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show an overview of these memristive devices used as mem-
ories.
PCMs are based on the use of calcogenide materials which

can be switched between an amorphous and a crystalline state.
This is realised by heating up a conductive rod reaching
through the calcogenide material with a high write current.
The two states show different behaviours in their electric
resistance when the current is flowing through such a device.
If the calcogenide is crystalline, the whole device is in the low
resistance state (LRS), in contrast it is in the high resistance
state (HRS) if the calcogenide is amorphous. Furthermore,
it is also possible to adjust intermediate states which are
located between the two extremes, the LRS and the HRS. This
possibility leads us to the first benefit of such PCM devices,
namely its feasible multi-level cell operation. Additionally,
PCMs offer a quite mature technology and show a good
compatibility (MLC) with CMOS. PCMs have more than 109

an endurance comparable to ReRAMs which have the best
endurance of current non-volatile memristive devices. The
endurance corresponds to the maximum number of possible
switching cycles up to the moment, in which the device does
not work anymore. On the other side there are some challenges
in the controlling of the switching process. This refers to
the necessary high write circuits, a 10x slower switching
speed than ReRAMs due to the slow crystalline process, and
the resistance drift in the amorphous state that has to be
compensated on circuit level.
STT-RAMs are based on a parallel and anti-parallel config-

uration of a stack of ferromagnetic layers forming a magnetic
tunnel junction (MTJ) structure. The magnetization at the
terminals of the MTJ stack is on one side fixed, therefore
this side is denoted as a fixed layer, whereas on the opposite
side the so-called free layer is located, which can be switched
between two magnetization directions. If both layers are in
parallel to each other, the electrons with opposite orientation
spin-polarized can pass with a high probability through the
stack. Therefore in this case the device is in HRS. In contrast,
if the two layers are polarized anti-parallel to each other the
probability that an electron can pass both layers is low, since
the electron will always meet a layer with different polarization
to its own one independent in which direction the electron is
spin-polarized. Therefore in this case the device is in a HRS.
The benefits of such technology is the fast switching and its
relatively mature technology even if it is a challenge to make
it compatible with CMOS because the MTJ stack can consist
of more than ten layers of not easy to handle ferromagnetic
materials, e.g. CoFeB or MgO. Nevertheless, due to its low
energy efficient features STT-MRAM technology is strongly
discussed to use them in last-level caches.
The ReRAM technology can be subdivided in three different

approaches which all exploit nanoionic switching mechanisms.
These three approaches are typified either as electrochemical
memory (ECM), valence change memory (VCM) (see Fig. 5),
or thermochemical memory (TCM) which are using different
ionic mechanisms to generate different resistances. In TCMs
and ECMs a so-called filamentary structure is used to build up
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Fig. 5: ECM (left) and VCM (right) ReRAMS (ECM).

and down small metallic bridges by redoxation and oxidation
processes in ionized material layers consisting of e.g. T iO2

or HfO2 which are entangled between two metal plates as
terminals. TCMs are unipolar, i.e. the same voltage is applied
to the poles and a filament with low resistance characteristic
is growing from both sides. In contrast to that, in ECM
two opposite voltages are applied to the terminals which are
normally composed of different metals. By this bipolar control
mechanisms voltage and reversed voltage signals are used to
build up the metallic filament by a redox transitions and to
dissolve it again by launching local oxidation processes.

In VCMs not only a filament but also a complete metallic
layer or an area interface is built up and dissolved by the
exchange of ions. VCMs are also bipolar devices and they
correspond to the technique that was used in the memristors
of Hewlett Packard [37]. Due to the focus on ion motion as
underlying switching process much more localized structures
in the nanometer range sized cells, e.g. 10x10 nm1 or even
less, can be realized offering good scalability. A large HRS
/ LRS ratio makes the interfacing to resistance evaluating
CMOS circuits easier. ReRAMs are further characterized by
fast switching in the ns range, but even 100 ps have been
demonstrated. This characteristic is given due to the small
distances the ions have to move and the high electrical field
forces that occur in the nanoscale active region causing a so-
called Joule heating what for its part further increases the
ion mobility. A further advantage is the good compatibility
of ReRAMs with CMOS manufacturing processes even if
3D integration of PCMs is a little bit easier since PCMs
need only a unipolar selection device compared to the bipolar
ReRAMs switching. The endurance, which is may be the most
important feature for memristive elements concerning their
use in computing circuits either as memory or as switching
element, is reported very different in literature. One can find
values of 106 cycles up to more than 1012 cycles. The power
comsumption is in the pf range, which makes ReRAMs a good
candidate for an use in embedded applications. For example,
in 2013 Panasonic is the first semiconductor manufacturer
who integrated ReRAM into their microcontroller for storing
firmware [38].
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V. MEMRISTIVE DEVICES FOR ARITHMETIC

This section lays a focus on how memristive devices can be
used to realise new computing concepts for arithmetic circuits.
In particular, the presented concepts will exploit qualitative
benefits of memristive devices that can not be so easily realised
with pure SRAM or DRAM memory cells. This will be on
the digital side the multi-level cell (MLC) capability which
can be used for new ternary computing concepts like e.g.
ternary adders. Ternary content-addressable memory (TCAM)
is another architecture in which memristive devices are used
for ternary computing schemes [39]. However, TCAM does
not exploit the MLC feature. It uses two memristors for a
storing a logical 1 and 0, and an additional third memristor
for the realisation of the don’t care state, which is essential
for a CAM. Therefore, the rest of this section will only focus
on the ternary computing.
Actually, ternary computing schemes for arithmetic opera-

tions like addition, subtraction, multiplication and division are
long known. First mathematical investigations go back to the
17th century. Two newer ground breaking work was done by
Avizienis [40] and Parhami [41]. The first work shown that
carry-free additions can be realised by using so-called signed-
digit numbers to a base r ≥ 3. It means that numbers are
not presented in the usual sign magnitude presentation, like
e.g. in one’s or two’s complement, but each digit can also
have negative values. Then, independent of the operand’s word
length an addition can be carried out in O(1) instead of O(N)
or O(log(n)) which is unavoidable if pure binary numbers and
at the same time a reasonable number of integrated Boolean
gates is utilized. In 1988 Parhami [41] presented a solution in
which also a base r = 2 can be used to make the realisation
with digital electronics possible.
The question remains why such ternary concepts were not

used in the last decades in integrated microprocessors if their
benefits concerning the run time of arithmetic operations
are obvious. One answer to that question is that no CMOS
compatible storage device was available that could store three
states. This had led to a situation that the complete register
files, the caches and even the data segments of the main
memory had to be doubled by two SRAM or DRAM cells
to store three states. With the emerging of MLC-capable
memristive devices this situation has changed. The idea to use
MLC memristive devices for ternary adders was first published
in [42]. The first technical solution using MLC ReRAMs for
redundant arithmetic operations is shown in [43]. The clear
qualitative benefit over SRAM and DRAM memory for ternary
arithmetic can be exploited in two directions. First, MLC based
memristive devices can be used as ternary memory in digital
CMOS circuits or, second, in pure in-memory computing
circuits in which a well-directed state transfer between the
three states in one memristive device is induced according to
the compute rules of ternary computing.
The way how a ternary addition works is explained by

means of the example shown in the Table II. The basic idea
to avoid a carry transfer over more than two digits is that in

TABLE II: Addition of Two Ternary Numbers.

x = (0 0 -1 0)2 = (−2)10
+y = (0 1 -1 0)2 = (+2)10

step 1:
0 -1 -2 0 = z

0 1 0 0 0 = t

step 2:
0 1 1 0 0 = z′

0 -1 -1 0 0 = t′

step 3:
0 0 0 0 0 = s = 0

Fig. 6: Prototyping Platform for Memristive Ternary Adder.

step 1 only 0, −1, or −2 is used for the result of a digit in the
intermediate sum z; whereas in the so-called transfer vector t
only 0 or a positive 1 is used. This avoids a further generation
of a carry. The rules of math have to be observed, i.e. 0 + 1
yields −1 for zi and 1 for ti+1. The second step is necessary to
get rid of the −2 in digit z1. Now, −2 turns to −1 in digit t′2.
In general, by repeatedly applying the rules of addition, only
0s and 1s are generated in the vector z′ while only 0s and -1s
in vector t′. Then, no situation can occur that two positive 1s
or two negative 1s will meet at the same digit position and no
carry can occur. Therefore the addition requires exactly three
steps independent of the operands’ word length.
Details about the complete Boolean logic for the ternary

compute steps and an extensive comparison with other pos-
sible ternary representations concerning a solution with MLC
capable memristive devices can be found in [44].
The memristive ternary adder was realized as a first pro-

totype using discrete electronic devices (Fig. 6) consisting of
an FPGA board (a) that implements the Boolean logic for the
ternary adder, a device from BioInspired Inc. (c) to provide
the memristors, and an interface card (b) designed by our own
which realises the communication between the FPGA and the
memristor device via ADC and DAC functions. More details
in the set up can be found in [45].
Fig. 7 shows a measurement of the memristor device used

as ternary storage. There are two sets of five measurement
curves to see. Each curve shows the current running through
the memristor by reading the memristor with an applied low
voltage after we wrote a memristor in subsequently increased
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Fig. 7: Determine the Resistance of a Memristor.

Fig. 8: Testing Program for a Memristive Ternary Adder.

voltage steps of δV = 0.5 V . This was done for two different
compliant current limits of 10 μA and 40 μA. Even though
the five curves for a certain current compliance level scatters
widely, we still could clearly distinguish the three desired
states.
Fig. 8 shows a screen display of the program that controls

carried out experiments. Multiple of the in all 20 memristor
cells in the memristor device (Fig. 6c) were addressed as
ternary registers. Their content was read in the FPGA. Then,
the new ternary result was calculated there and written back
to the ternary memristor device.

VI. MEMRISTIVE DEVICES FOR RESISTIVE COMPUTING

Resistive computing enabled by memristive technology has
introduced new opportunities to renovate existing computing
paradigms for embedded and low power computing [46,47],

CPU

DRAM

External Memory

CIM
AcceleratorL1

Program

loop1:

loop2:

loop3:

CIM 
Accelerator

(a) Architecture (b) Expected Application 

Fig. 9: CIM-based Architecture

in-memory computing [18,21,48] as well as neuromorphic
computing [49,50].
The rest of this section will describe the Computation-in-

Memory (CIM) and neuromorphic processing as examples of
the emerging resistive computing.

A. Computation-in-Memory

One potential in-memory computing architecture is CIM,
which was introduced in [18] based on the concept of inte-
grating computation and storage units in a dense memristor
crossbar. CIM is implemented as an accelerator (for specific
applications) and integrated into conventional architectures to
improve overall computer performance [2,18].
The CIM-based architecture consists of a conventional

processor, caches, CIM accelerator, main memory DRAM
and external memory (as shown in Fig. 9(a)). Similarly as
in conventional architectures, the processor fetches, decodes
and executes a big data program. However, in conventional
architectures, the intensive memory accesses consume (relative
to ALU instructions) an enormous amount of energy and
significantly degrade the overall performance due to frequent
cache misses. As compared to an ALU operation, loading
a word from the on-chip SRAM (50x) and off-chip DRAM
(6400x) cost much more energy [51,52]. Eliminating this
communication will impact the overall performance signif-
icantly, especially for data-intensive applications. In order
to reduce the data transfers between caches and memories,
the CIM accelerator will execute the data-intensive parts of
the program locally within the CIM accelerator. Note that
the CIM accelerator can perform parallel operations locally
on the data stored in the non-volatile memory, hence the
memory bottleneck can be significantly reduced. Therefore,
the CIM architecture achieves significant improvements in
both performance and energy consumption. The performance
can be further improved if appropriate applications are mapped
on the CIM accelerator.
The potential applications that benefit from CIM accelerator

are (big data) applications where communication between
processor and memory results in a low performance and high
energy consumption. In case the CIM accelerator’s capacity
is large enough to store the application data, a high level of
parallelism can be exploited. In addition, a higher performance
can be achieved when different operations are applied to the
same data, i.e., data that is not changing frequently; this also

2

22 PAPER 2.1



Fig. 10: Evaluation Results for CIM and Multicore Architectures

benefits the endurance of the non-volatile memory of the
CIM accelerator. Last but not least, if the processor provides
appropriate instructions to the CIM accelerator ahead of the
normal execution time, the CIM accelerator already can start
performing its operations while the CPU is simultaneously
executing other operations, resulting in overall performance
improvement.
Fig. 9(b) illustrates a program that could be executed

efficiently on the CIM accelerator. In this case, multiple
invoked loops work on the same large datasets; obviously
the data should be initialized on the CIM accelerator. Each
time the loop is invoked, the processor sends a request to the
CIM accelerator; the latter, performs the requested operations
and returns the results to the processor. Examples of such
applications are database applications, where multiple queries
(each consisting of large loops) are applied to a fixed database.
These queries are used to look for specific data patterns in the
database.
To illustrate how the CIM-based computer architecture

advances the state-of-the-art, its estimated performance will be
compared to a multicore-based architecture. The assumptions
for the multicore architecture and CIM-based architecture are
similar to those in [53]; the multicore architecture consists of 4
cores (ALU only), two levels of caches (32KB L1 and 256KB
L2) and 4GB DRAM; the CIM-based architecture consists of
one core (ALU only), two levels of caches (32KB L1 and
256KB L2), 2GB DRAM, and a CIM accelerator with a dedi-
cated computing unit and a 2GB memory. The non-accelerated
part is executed by the ALU of the conventional processor and
the accelerated part by CIM’s dedicated computing unit. The
memory operations are modeled based on cache miss rates and
DRAM access time, similarly as provided in [18,53]. Three
metrics are used for the evaluation: (1) performance energy
efficiency ηPE (defined by MOPs/mW), (2) energy efficiency
ηE (defined by pJ/op), and (3) performance area efficiency
ηPA (defined by MOPs/mm2).
Fig. 10 shows the results of the evaluation metrics for both

architectures. It assumes that 90% of the instructions can be
accelerated on CIM. Both architectures execute petabyte prob-
lem size. As the organization of the CIM-based architecture
preserves the conventional part of a multicore architecture (i.e.,

CPU, caches, DRAM and external memory), only 10x im-
provement is obtained with respect to the performance-energy
efficiency. However, the CIM-based architecture achieves four
orders of magnitude energy efficiency improvement in com-
parison with the multicore architecture. Furthermore, the pro-
posed architecture is 15x area-efficient than the multicore
architecture. In comparison with state-of-the-art, the proposed
architecture is capable of realizing significant improvements,
despite the high switching latency and low endurance of
memristor technology. The improvements are the result of a
significant reduction of cache and DRAM accesses and the
usage of non-volatile memory. The reduction of memory ac-
cesses leads to a lower latency and lower energy consumption,
while the non-volatile memory reduces the static power to
practically zero.

B. Neuromorphic Processing
Memristive devices related to neuromorphic processing con-

cern the weights that have to be used in artificial neural
networks. They are quasi naturally mapped onto different
stored resistance levels. Moreover, the neuromorphic process-
ing systems use memristive devices as not only processing
elements but also storing elements, which is not possible using
CMOS memories. This finally leads to more energy-efficient
and smaller circuits as compared to current CMOS solutions.
Actually, the proposals found in literature to use memristive

devices for analogue processing came much earlier and have
also a much higher number than the proposals for digital
solutions. The idea, e.g. for memristive spike-time-dependent
plasticity (STDP) networks [54], [55] is to mimic directly
the functional behaviour of a neuron. In STDP networks the
strength of a link to a cell is determined by the time correlation
of incoming signals to a neuron along that link and the output
spikes. The shorter the input pulses occur compared to the
output spike, the stronger the input links to the neuron are
weighted. In contrast, the longer the input signals lay behind
the output spike, the weaker the link is adjusted. This process
of strengthening or weakening the weight shall be directly
mapped onto memristors by increasing or decreasing their
resistance depending which voltage polarity is applied to the
terminals of a two-terminal memristive device. This direct
mapping of an STDP network to an analogue equivalent of the

OVERVIEW AND CLASSIFICATION

2

23



biological cells by an artificial memristor based neuron cells
shall emerge new extreme low-energy neuromorphic circuits.
An example how memristive devices are used for neu-

romorphic processing is a chip based on PCM technology
realized by IBM. The chip comprises 64k cells, consisting
of 256 axons by 256 dendrites and was demonstrated in
2015 [56]. The update of the artificial synaptic weights uses
STDP as an in-situ learning function. Besides this memristor
based STDP networks, there are lots of other proposals, e.g.
[57], for neural networks to be realised with memristor based
crossbar and mesh architectures for cognitive detection and
vision applications.

VII. OPPORTUNITIES AND CHALLENGES
A. Opportunities

Memristive devices provide significant opportunities with
respect to the following aspects.

• Memristive devices are a promising alternative for the
leakage wall that limits CMOS technology scaling.They
are non-volatile and require low energy consumption;
hence, they can be used to produce memory and logic
circuits that have practically zero static power [58–60].

• Memristive devices could also help solving the computer
architecture walls. Memristive devices are capable of both
storing and computing, which enables new computing
paradigms [18,52,61]. Furthermore, massive parallelism
can be achieved as the high density of memristive de-
vices facilitate more functional units within the same
area [20,53]. In addition, the high energy consumption
of today’s computers can also be reduced due to the low
dynamic energy and zero static energy consumption [53].

• The above benefits (non-volatility, low energy consump-
tion and scalability) provide solutions for emerging ap-
plications such as embedded and low power systems for
IoT [62], big data and health care applications [18].

B. Challenges

Despite the above opportunities, memristive devices are
facing several challenges.

• Memristive devices are still in their infancy stage; hence,
there is a lack of libraries with well-optimized memristive
designs as well as mature automation tools to speed-up
the exploration process.

• Memristive devices suffer from limited endurance which
is currently around (1012) [8]. This is insufficient for
general purpose computing; therefore, a new computing
paradigm or logic style is required to deal with this
limited endurance (e.g., high-radix computing [63]). In
addition, researchers strongly believe that the endurance
will substantially increase and reach 1016 [64]

• Memristive devices also face reliability challenges in both
manufacturing and design phase. Nonvolatile memory
manufacturing has to deal with nonuniform resistance
profile across the crossbar array, resistance drift, inherent
device-to-device and cycle-to-cycle variations as well as
yield issues [2]. Furthermore, the intrinsic variation of

memristive devices make it difficult to design robust logic
circuits [2,65].

• The integration of memristive devices with CMOS is
still an open research question. It seems that this kind
of integration is possible as presented in [66]; however,
details of stacking memristive layers on top of CMOS
are still in research. Moreover, there is limited work
that investigates the impact of the CMOS controller on
an entire memristive system [53]. Further investigation
requires not only the optimization of the CMOS part,
but also its efficient use to control the crossbars while
maintaining the system scalability.

VIII. CONCLUSION
Memristive devices provide many opportunities; not only to

enable next-generation non-volatile memories (with fast access
speed, up to 1TB storage capacity, and multi-level capability),
but also to enable novel alternative computing architectures
required for emerging applications, such as energy-efficient
neuromorphic systems and computation-in-memory architec-
tures. However, there are still many challenges ahead that need
to be addressed.
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ABSTRACT
Technological and architectural improvements have been constantly
required to sustain the demand of faster and cheaper computers.
However, CMOS down-scaling is suffering from three technology
walls: leakage wall, reliability wall and cost wall. On top of that,
performance increase due to architectural improvements is also
gradually saturating due to three well-known architecture walls:
memory wall, power wall and instruction level parallelism (ILP)
wall. Hence, a lot of research is focusing on proposing and develop-
ing new technologies and architectures. In this paper, we present a
comprehensive classification of memory-centric computing archi-
tectures; it is based on three metrics: computation location, level of
parallelism and used memory technology. The classification does
not only provide an overview of existing architectures with their
pros and cons, but also unify the terminology that uniquely identi-
fies these architecture, and highlight the potential future architec-
tures that can be further explored. Hence, it sets up a direction for
future research in the field.
ACM Reference Format:
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1 INTRODUCTION
For several decades, technology scaling has provided a 43% per-
formance gain for each successive node and cheaper computers
as a result of a higher operating frequency and lower cost per
transistor, respectively [14, 51]. On top of that, smart architectural
improvements such as pipelining and cache hierarchies increased
the computer performance up to 50% every two years [46]. How-
ever, CMOS scaling suffers from three main walls: leakage wall,
reliability wall and cost wall [42], while computer architectures also
face three walls: memory wall, power wall and instruction level
parallelism (ILP) wall [96]. In order to address these walls, novel
technologies and architecture are under research to improve the
performance [51]. As a result, an enormous amount of computer
architectures has been proposed recently. Therefore, a complete
classification of these architectures is needed; not only to have a
useful way of describing and comparing them, but also to have a
clear view about what is explored and what not yet.
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Limited work has addressed this problem. Most of the well-
known classifications separate the processors from the memory.
Therefore, these classifications often are processor-centric based
architectures, such as Flynn’s [34], Skillicorn’s [113] and Shami-
Hemani’s classification [108]. Although these classifications work
well for processor-centric architectures proposed in the past decades,
they are not applicable to the emerging memory-centric architec-
tures. Other small-scale surveys mostly target a specific type of
computer architectures such as vector processors, automata pro-
cessors or processing-in-memory architectures [22, 55, 66, 104, 109,
118, 121, 122]. These surveys only discuss a limited part of the com-
puter architecture classification, and in addition, do not contain
the complete space of both conventional processor-centric architec-
tures and memory-centric architectures. Therefore, these surveys
often make no distinction between processing inside and near the
memory. This leads to a confusion in terminology (e.g., processing-
in-memory, logic-in-memory, in-memory computing, near-memory
computing, etc.). For example, Hybrid Memory Cube is considered
to be near-memory-computing [97], however, it is also referred
to as processor-in-memory [3]. Some recent classifications and re-
views did mention those architectures in the context of technology
development [90, 131]. However, these papers mostly targeted the
technological feasibility instead of the characteristics and variants
of such computer architectures. In addition to the above, there
are some architecture-related papers that briefly discussed the fea-
tures of emerging architectures [85, 87, 102]. However, they are
incomplete, focus mostly on relatively narrow aspects and only clas-
sify the architectures based on applications [85] and logic design
methods [87, 102]. In short, there is still a lack of systematic and
complete classification that focuses on memory-centric computing
or computer architectures in general. This is exactly the target of
this paper.

This paper presents a comprehensive classification of memory-
centric computing, and discusses both conventional and emerging
computing architectures. The classification is based on three met-
rics: computation location, memory technology and computation
parallelism. The computation location indicates where the computa-
tions are performed (e.g., near or far from thememory) and provides
an insight regarding the severeness of the memory wall. The mem-
ory technology, which provides characteristics of the memory, can
enable new computer architectures (e.g., resistive computing). The
computation parallelisms specifies the type of parallelism that can
be exploited in an architecture (e.g. task level parallelism). With
these distinct metrics, the classification covers all computing archi-
tectures in general and memory-centric computing in specific. Note
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Figure 1: Computer Architecture

however that it does not make previous proposed classifications
obsolete, as they typically target specific sub-classes. In short, the
contributions of this paper are the following:

• Unify the terminology for computer architectures such that
it is applicable to all computing paradigms including con-
ventional, in-memory and near-memory computing.

• Propose a complete classification that includes both existing
and emerging architectures.

• Explain one representative architecture of each sub-class in
detail.

• Discuss and evaluate the main advantages and disadvantages
of the different classes and selected architectures.

• Highlight the whole space of memory-centric computing,
including the non-explored architectures.

The rest of this paper is structured as follows. Section 2 shows the
metrics used in the classification, briefly introduces the four classes,
and provides a quantitative comparison among them. Sections 3, 4,
and 5 present the characteristics of the three memory-centric com-
puting classes; the fourth class contains the traditional von Neuman
architectures and is out-of-the-scope of this paper. Section 6 dis-
cusses the pros and cons of this classification and compares its with
existing ones. Finally, section 7 concludes this paper.

2 CRITERIA AND CLASSIFICATION
In this section, we first present the set of metrics we use to classify
computer architectures. Thereafter, we show our classification and
map the existing architectures on it. Finally, we compare the classes
qualitatively based on their most important metric.

2.1 Classification Metrics
We propose several metrics to classify computer architectures based
on the computing resources and memory. A computer architecture
or system consists of (one or more) memories and (one or more)
computational units as shown in Fig. 1. The memories can reside
in a core (i.e., memory core) or System-in-Packages (SiP). A mem-
ory core consists of one or more cell arrays (used for storage) and
peripheral circuits (used to access the memory cells). Note that reg-
ister files and caches are not considered as storage here, as they are
optimized for speed with relatively small capacity and temporary
storage [46]. Hence, the long term storage of data takes place in the
higher layers such as main memory and solid-state disks. Tradition-
ally, the computing takes place in the computational cores. However,
recently architectures with computing power in the memory have
been proposed [43, 95, 97]. In case the memory contains additional
logic circuits such as in Hybrid Memory Cubes (HMC) [97], we
speak of a System in Package (SiP). With an increasing distance
from the main memory array, the available bandwidth (specified
by BW in Fig. 1) reduces; note that the bandwidth here is related to
the memory bottleneck and will be discussed further in Section 2.3.
Based on these definitions, the following metrics are used to classify
computer architectures: computation location, memory technology
and computation parallelism; they are discussed next.

Computation location: it indicates where the result of the com-
putation is produced. A computation is defined here as a primitive
logic function (e.g., logical operations) or arithmetic operation (e.g.,
addition, multiplication). Fig. 1 indicates the four possibilities where
a computation result can be produced; they can be identified by
four circled numbers. If the result is produced within the memory
core, (i.e., the computing takes places within one of the memories),
then the computer architecture is referred to as Computation-Inside-
Memory (CIM). If the result is produced outside the memory core,
then the architecture is referred to as Computation-Outside-Memory
(COM). Both CIM and COM can be further sub-classified.

It is worth stressing that CIM architectures perform computa-
tions within the memory core. As already mentioned, the memory
consists of a memory array and the peripheral circuits. More specifi-
cally, depending onwhere the result of the computation is produced,
CIM architectures can be divided into two basic sub-classes. These
sub-classes can be combined into many hybrid combinations. We
will now describe this large space by focusing first on the two
extreme sides of this space:

• CIM-Array (CIM-A): In CIM-A, the computing result is pro-
duced within the array. Note that this is different from a
standard write operation. Typical examples of CIM-A ar-
chitectures use memristive logic designs such as MAGIC
and imply [63, 69]. CIM-A architectures require always a
redesign of cells to support such logic design, as the conven-
tional memory cell dimensions and their embedding in the
bit- and wordline structure do not allow them to be used for
logic. A memory cell is namely heavily optimized in terms of
processing stack and layout; hence, any changes in the array
access require a completely new cell design and character-
ization process as the material stack of a memory array is
specifically optimized for specific control voltages, current,
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etc. In addition, modifications in the periphery are sometimes
needed to support the changes in the cell changes. Therefore,
CIM-A architectures can be sub-divided into two groups: (1)
basic CIM-A where only changes inside the memory array
are required, and (2) hybrid CIM-A where in addition to ma-
jor changes in the memory array also minimal to medium
changes are required in the peripheral circuit. An example
of basic CIM-A is an architecture that performs computa-
tions using implication logic [73]. In this logic style, only
one memory row is activated at a time, and a number of
columns (bits) are read out through sense amplifiers. Hence,
due to the same usage as in normal memory, the peripheral
circuits do not require any modifications. An example of
hybrid CIM-A is an architecture that performs computations
using MAGIC [69]; in this case, multiple memory rows are
written simultaneously; due to the high write currents modi-
fications are required to the cell and medium changes in the
peripheral circuits are needed to activate the multiple rows.

• CIM-Periphery (CIM-P): In CIM-P, the computing result is
producedwithin the peripheral circuitry. Typical examples of
CIM-P architectures contains logical operations and vector-
matrix multiplications [20, 77, 130]. CIM-P architectures typ-
ically contain dedicated peripheral circuits such as DACs
and/or ADCs [36, 107], and customized sense amplifiers [77,
130]. Note that more radical changes in the peripheral cir-
cuit can be made in the future (e.g., changing in control
voltages leads to radical changes in voltage drivers and sense
amplifiers, or including a full functional processor inside
memory banks). Even though the computational results are
produced in the peripheral circuits for CIM-P, the memory
array is a substantial component in the computations. As
the peripheral circuits are modified, the currents/voltages
applied to the memory array are typically different than in
the conventional memory. Hence, similarly as to the CIM-A
sub-classes, the CIM-P architectures are also further divided
into two groups: (1) basic CIM-P where only changes inside
the peripheral is required, which means the current levels
should not be affected, and (2) hybrid CIM-P where the ma-
jority of the changes take place in the peripheral circuit
and minimal to medium changes in the memory array. An
example of basic CIM-P is Pinatubo logic [77]. Pinatubo acti-
vates two or more (but not many) rows of a memory array
simultaneously during read operations for computations; in
addition to a customized sense amplifier to perform the logic

operation, this architecture also requires modifications in
the address decoder to activate several rows. Note however,
that modifications in the cell/array are not required as the
total read current is still small. An example of hybrid CIM-P
is ISAAC [107]. ISAAC activates all rows of a memory ar-
ray at the same time during read operations to perform a
matrix vector product using an ADC read out circuit. This
architecture accumulates currents in the bitline that impose
higher electrical loading in the memory array; hence, not
only the periphery circuit is heavily modified but also the
cell requires changes due to the high bit-line current.

The difference between CIM-A and CIM-P classes is the loca-
tion of producing results. The results of CIM-A architectures are
produced inside the memory array, which may sometimes require
read-out operations to obtain the results for further calculations;
instead, in CIM-P the results are obtained directly after the oper-
ations and may sometimes need an additional step to write the
results back to memory. In order to perform computations, both
sub-classes impact the design of the memory core. However, in
many/most cases both the cell and the peripheral circuitry require
changes, i.e., they are hybrids. In case these changes affect mostly
the cell, we speak of hybrid CIM-A, otherwise hybrid CIM-P.

In COM classes, computations take either place in the extra
logic circuits inside the memory SiP (3) or in the traditional compu-
tational cores (4) such as CPU, FPGA, etc. In case of the former, the
computations take place near the memory core and the architecture
is referred to as Computation-Outside-Memory Near (COM-N). In
case of the latter, the architecture is referred to as Computation-
Outside-Memory Far (COM-F). Note that the bandwidth is still high
for COM-N as compared to COM-F, but lower than CIM-A and
CIM-P.

Note that architectures where the computation takes place in
difference places (e.g., array and peripheral) are called composite
architectures. Hence, they are compositions of the leaf nodes in our
classification tree. In addition, an architecture could have multiple
primitive functions, each with a different computation location.
Also these architectures are considered to be composite.

In addition to the computation location, which specifies where
the results are produced, it is possible to further divide the classes
using the computation method; it specifies how the computation is
performed. For example, CIM-A often uses memristor-based compu-
tations such as IMPLY [13, 111], Snider [114], MAGIC [69]. CIM-P
often uses current summations such as Scouting logic [130], Am-
bit [106] and Pinatubo [77]. However, this metric is not included
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to the classification for two reasons: (i) it is strongly coupled to
the computational location, and (ii) it makes the classification too
complex and hence loses its simplicity. Nevertheless, including
such a metric can be complementary to our work. A further sub-
classification based on this metric can be based on existing work in
other classifications as shown in [25, 102].
Memory technology: it indicates which technology is used to
implement the memory array. The technologies are either conven-
tional charge-based memories such as DRAM/SRAM [82, 83, 89]
or emerging non charge-based memories [103]. The non charge-
based memories can be further divided into different types based
on their physical mechanism: resistive [71, 103], "magnetic" memo-
ries [9, 18, 103], molecular memories [39, 74, 75, 99] or mechanical
memories [15, 40]. Resistive memories store the data as a resistance
value; it includes Resistive RAM (RRAM) [125], phase change mem-
ory (PCM) [71], etc. The resistance in RRAM is determined by the
presence or absence of a conductive filament between its two elec-
trodes [103], while the resistance in PCM relies on a change between
amorphous and crystalline phases [101, 126]. Magnetic memories,
such as Magnetic RAM (MRAM), store the data using the magnetiza-
tion direction of the free layer with respect to the hard or reference
layer; it includes, for example, conventional magnetic RAM [135]
and STT-MRAM [35, 48]. The resistive and magnetic memories
are organized in crossbars with cells placed at each junction. The
other types of memories, (i.e., molecular memories, mechanical
memories) have not been shown to be useful for computing yet;
hence, they are not discussed further in this classification. It is
worth mentioning that each of these memory technologies has its
own characteristics (read/write latency, endurance, capacity, etc.)
and therefore are deployed at different levels in the memory hierar-
chy [103]. Therefore, the memory technology does not only dictate
which CIM operations are technology-wise feasible, but also where
in the memory hierarchy they take place.

Computation parallelism: it indicates the level of parallelism
that can be exploited in a computer system; i.e., task, data, and/or
instruction level parallelism, as shown in Fig. 2. An architecture sup-
ports task level parallelism when it contains multiple independent
control units and multiple data memories, as shown in Fig. 2a. The
independent control units can be used to execute multiple threads
or instruction sequences from the same application concurrently;
examples are multithreading [29, 120] and multicore systems [38].
In data parallelism, a single control unit is used to apply the same
instruction concurrently on a collection of data elements, as shown
in Fig. 2b; note that all execution units share the same control sig-
nals. The data elements can be processed using constant sizes (e.g.,
vector and array processor [27, 32]) or varying sub-word sizes (e.g.,
SWAR (SIMD Within A Register) processor [33, 98]). In instruction
level parallelism, a single control unit is used to execute various
instructions concurrently, as shown in Fig. 2c; hence, the execution
units have different control signals. A further distinction can be
made based on intra-instruction (e.g., pipe-lined processor [119]),
inter-instruction (e.g., VLIW processor [127]) parallelism, or a com-
bination of them (e.g., speculative processor [84]).

The three above-mentioned criteria (i.e., computation location,
memory technology and computation parallelism) are dependent
on each other. The computation location has a big impact on the

feasibility of the memory technology and the computation par-
allelism. For example, realizing ILP in CIM-A is quite difficult or
realizing COM-N with SRAM is not economically feasible. Also
the parallelism is not fully independent from the computation loca-
tion (e.g, CIM/COM) and memory technology. For example, data
parallelism is often applied straightforward in CIM-A and CIM-
P [26, 36]; however it is difficult to realize ILP in CIM-A, while it
is much easier in COM-N and COM-F due to the intrinsic pipeline
stages in conventional processors. The computation parallelism is
also affected by the technology as the technology poses restrictions
on the endurance. For example, exploiting ILP in CIM-A architec-
tures demands a high endurance as more writes are required to
store immediate stages and hence, are not attractive for emerging
memories like RRAM and PCM with endurance limitations.

2.2 Classification
We classify the existing architectures based on the above discussed
metrics; the result is shown in Fig. 3. The references of the abbrevi-
ated architectures are listed in Table 1.

The classification contains 48 categories. Some categories, the
ones located in red planes, show that a lot of work has been done
for that particular class. For the categories in the pink planes, a
moderate number of work has been done. To our best knowledge,
no architectures exists in the blue planes; these fields are currently
unexplored as they received no attention yet from the research
community or non-existing due to current restrictions of the tech-
nology; these blue planes are not further discussed in this paper
due to two main reasons: (1) scope of the paper; the technical and
economical feasibility of these planes requires an intensive discus-
sion and is by itself a new contribution and (2) space limitations.
Later on, we will discuss several architectures from the red and
pink planes.

The developments in memory-centric computing are shown in
the timelime of Fig. 4; this shows the trend of computing mov-
ing from COM-F to COM-N, CIM-A and CIM-P. In the figure, a
larger circle indicates that more work has been proposed in that
year. Note that the conventional architectures in COM-F are not
memory-centric and hence, are left out. The concept of merging
computation and memory was introduced back in 1970 [116]. This
concept became popular around 1997 in COM-N architectures and
was further developed until 2002. These COM-N architectures, such
as VIRAM [67] (initially named IRAM), DIVA [23] or FlexRAM [60],
never commercialized due to the limitations of embedded DRAM
technology (i.e., costly fabrication process, and inefficient speed
and memory capacity trade-off [52, 61, 62]). After that, a long silent
period in academia community was observed from 2002 to 2010.
Meanwhile, industrial efforts have been invested to deploy large
eDRAM in commercial COM-N systems such as POWER7 proces-
sor [58], PlayStation2 [6] and Intel’s top-class CPUs [68]. From 2012
to 2016, new commercial COM-N architectures based on novel 3D
stacking technology have been proposed such as Hybrid Memory
Cube (HMC) [47] and High Bandwidth Memory (HBM) [80]. In the
last several years, with the emerging of resistive technology, CIM-A
and CIM-P architectures started to become popular.

Note that many of the architectures are hybrid and/or composite
which means that they can map into multiple classes. In order to
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Table 1: Abbreviation
List

Abbreviation Reference
DRISA-3T1C [76]
ReVAMP [8]
PLiM [37]
MPU [49]
CIM [26, 43]
CRS [111]
ISAAC [107]
DPP [36]
IMI [31]
AMBIT [106]
DRISA-1T1C [76]
S-AP [117]
Neural$ [28]
Compute$ [1]
Pinatubo [77]
PRIME [20]
CIMA [25]
ReAP [132]
R-AP [133]
STT-CiM [53]
DDN [19]
S-Mem [81]
A-PAGE [94]
HIVE [3]
D-AP [92]
DIVA [23]
HMC [47]
AMC [91]
HBM [80]
DRAMA [30]
FlexRAM [60]
VIRAM [67]
ProPRAM [124]
ReGP [88]
Pipelined [46, 119]
VLIW [79, 127]
Vector Proc. [21, 32, 98]
Multicore [50]
GPU [64, 93]

simplify Figure 3, the architectures are classified based on their
dominant features. For example, DPP exploits both ILP and DLP;
however, DPP focuses more on performing various parallel oper-
ations using multiple functional units, while it also processing a
whole row/column inside the memory; hence, the dominant feature
of DPP parallelism is selected as ILP.

2.3 Qualitative Evaluation
In this subsection, we briefly compare the different computing types
qualitatively using the most important classification metric, i.e., the

computation location. This metric dictates the type of data move-
ments, computation requirements, available bandwidth, memory
design efforts, endurance requirement and maturity. With respect
to the computation requirements, we discuss whether the architec-
tures require a specific data alignment and whether they have the
capability to realize complex functions. With respect to the memory
design efforts, we discuss the modifications that are required for
the cells, array, peripheral circuit and controller. With respect to
maturity, we do not only mean the readiness of the memory tech-
nology, but also the available programming and software support,
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and current status (i.e., simulations, prototype or fabrication) for
such architectures. The results are shown in Table 2 and 3; their
content will be discussed next.
Data movement outside the memory core indicates whether
the data will remain in the memory core during computing or
transferred to computational units outside it. It affects the memory
bottleneck due to latency and the energy consumption of data
transfers. Both CIM-A and CIM-P architecture have a relatively
low amount of data movement outside the memory core, as the
processing occurs inside the memory core. Therefore, they have the
potential to alleviate thememory bottleneck. Instead of moving data
from the memory to the computational cores, in these architectures
the instructions are moved and directly applied to the memory;
these instructions typically operate on a large data set, hence a high
level of parallelism can be obtained. Note however that the current
state of the art typically allows limited functions to be implemented
in these architectures. Therefore, complex functions would still
require data movements to the computational cores outside the
memory. For COM-N and COM-F architectures, data is first read
from the memory. Thereafter, they are typically stored in registers
before being fed to the processing units. The amount parallelism
is limited here due to constraints in the bandwidth, number of
available registers and processing units.

Computation requirements include data alignment and the abil-
ity to implement complex functions efficiently. Data alignment is
required for all architectures. However, CIM-A and CIM-P classes
perform computations directly on the data residing inside the mem-
ory, and hence, the robustness and performance are impacted more
by data misalignment. Note that performing a data alignment can-
not be handled by the host processors in in-memory computing
architectures due to a far communication distance, while adding
additional logic inside the memory core to handle this is also not
trivial. It requires an area overhead to temporary store operands
and do the alignment with CMOS logic. For other classes, the impact
of data alignment is less severe; nevertheless, data misalignment
can cause a performance degradation in other classes as well.

As the primitive operations in CIM-A and CIM-P are limited,
architectures in these classes face challenges in computing complex
functions such as arithmetic operations with integer or floating
point numbers. As a result, a lot of primitive operations are required
to realize such complex functions, if even possible. For example, a
multi-bit addition in CIM requires multiple single-bit addition as
primitive operations and communication operations between these
single-bit additions [26].On top of that, each primitive step that
involves a write operation in a memristor based CIM architecture
suffers from a high latency due to its high write time. In addition,
current CIM-P architectures require a high cost to implement a di-
verse set of arithmetic operations as their efficiency today is mainly
limited to bitwise logical operations and matrix vector multiplica-
tions. Moreover, providing complex functionality using peripheral
circuits in CIM-P is difficult, due to limited available area on the
memory core. Note that despite these drawbacks, the performance
can be still high when sufficient parallelism is exploited, e.g., by op-
erating on multiple crossbars in parallel. Furthermore, data doesn’t
have to be transferred to the main processor and hence, the energy

and performance can be improved. In COM-N and COM-F, com-
putations are performed by CMOS circuits which contain mature,
optimized and if needed, dedicated functional units. However, the
main bottleneck comes from the many additional data transfers
through the memory hierarchy.

Available bandwidth specifies how much data can be transferred
between the computational and storage units. This metric is impor-
tant as it affects the amount of parallelism that can be exploited.
The available bandwidth is considered as similarly as bandwidth
specification of multiple level in the memory hierarchy; hence it
includes four ranges: max (TBs), high (10 GBs), medium (GBs) and
low (MBs) [12]. Note that these terms are used for nowadays’ mem-
ory technology as the exact bandwidth values are subject to change
with new or different technologies. CIM-A architecturesmay exploit
the maximum bandwidth, as operations happen inside the memory
array. CIM-P architectures have a bandwidth range from high to
max, depending on the complexity of the peripheral circuitry. Note
that the peripheral circuits can be complex, e.g., when large cus-
tomized sense amplifiers are used. Therefore, the placement of such
sense amplifiers may be limited due to area constraints. In such
cases, still a relative high bandwidth can be realized. For COM-N,
the bandwidth is bounded by on-chip interconnections between
the memory core and extra logic circuits; for example, in Hybrid
Memory Cube [97] the bandwidth is limited by the number of TSVs
and available registers. This bandwidth for TSV is considered high
in comparison with COM-F, where the bandwidth is even lower
due to off-chip interconnections [128].

The four classes (i.e. CIM-A, CIM-P, etc.) also require the mem-
ory design efforts to obtain a functional memory. In some cases,
it is very difficult (or may be even practically impossible) to modify
the cells, array, periphery and controller. CIM-A architectures re-
quire a redesign of the cell in order to make the computing feasible.
Re-characterizing the cell requires a huge effort and induces a huge
cost. Other classes, except for hybrid CIM-P, do not require this
modification due to the usage of standard memory cells. In terms of
changes in the periphery, CIM-P architecture require complex read-
out circuits as the output value of two or more accessed cells may
end up in multiple levels. Moreover, complex peripheral circuits
(i.e., ADC, DAC) limit the scalability when they exhibit internal bot-
tlenecks and could also dominate the area of the memory core when
thememory sizes are small. Hence, CIM-P is mainly useful for larger
sizes. Other classes, except for hybrid CIM-A, can utilize existing
optimized read-out circuits, and hence do not require modifications
in the periphery. In terms of memory controller, the complexity
reduces from high to low for CIM-A, CIM-P, COM-N and COM-F,
respectively. CIM-A architectures require a complex controller as it
is responsible for both controlling the crossbar (consisting of a large
number of states, each controlling different voltage drivers) and
handling data transfer (which involves the usage of buffers/registers
to store temporary values). CIM-P architectures have relatively sim-
pler controllers as the computations are constructed in a similar
manner as for conventional memory (read/write) operations. The
difference is that they typically have to deal with more in-memory
operations. COM-N and COM-F architectures utilize the memory
in a conventional way, and hence, standard memory controllers
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Data
Move-
ment
outside
memory
core

Computation
requirements Available

band-
with

Memory design efforts

Data
Align-
ment

Complex
function

Cells &
array

Periphery Controller

CIM-A No Yes High latency Max High Low/medium High
CIM-P No Yes High cost High-Max Low/medium High Medium
COM-N Yes NR Low cost High Low Low Low
COM-F Yes NR Low cost Low Low Low Low
NR: Not Required

Table 2: Comparison among Architecture Classes in terms of Data Movement, Computation Requirements, Available Band-
width and Memory Design Efforts

Endurance
requirement

Maturity Applications

Software
support

Technology Development

CIM-A High Emerging Simulation Data Intensive - Computational Complexity
CIM-P Medium Emerging Simulation Data Intensive - Bitwise operations
COM-N Medium Commercialized Fabricated General-purpose and Application-specific
COM-F Low Common Practise Fabricated General-purpose

Table 3: Comparison among Architecture Classes in terms of Endurance Requirement, Maturity and Applications

can be used.

Endurance requirement specifies how many write operations
can be performed before the memory of the architecture starts to
fail. A memory that needs a higher number of writes will have
a lower lifetime when both have technology-wise the same en-
durance. Three ranges can be specified for the architectures: a high
endurance requirement (i.e. much higher than DRAM endurance
1015 [134]); a medium endurance requirement approximately equal
to DRAM endurance; and a low endurance requirement much less
than the DRAM endurance. CIM-A has in general a high endurance
requirement due to the need of multiple write steps to perform sim-
ple Boolean functions. CIM-P has a lower endurance requirement
as operations are performed during read operations [130]. Never-
theless, results have to be still written back to the memory in order
to perform complex functions. As CIM-A and CIM-P architectures
are typically based on emerging devices such as memristors, their
endurance could be a potential issue. Similarly to CIM-P, COM-N
architectures operate closely to the memory and have to write back
the results to the main memory due to the absence/limited number
of registers and caches. In contrast, COM-F architectures have a
much lower endurance requirement as computations are performed
using CMOS and the results of the operations are rarely written
back to the main memory due to the usage of registers and caches.

Maturity does not only refer to how feasible/reliable the mem-
ory technology is, but also how much software support exists and
the current development status of the architectures in the classes.
As CIM-A and CIM-P are relatively new concepts and typically
resistive based, a lot of work has still to be done to realize these
architectures both from a hardware and software point of view. Re-
sistive memories and non-volatile memories in general are typically
under research development. For example, the limited endurance
puts a constraint on the amount of computations that can be per-
formed in resistive based CIM-A architectures. On the software
side, programming languages, compilers, simulators still need to
be developed in general for these architectures. In COM-N class,
several architectures have been prototyped in the industry and
therefore, they are more mature than CIM-A and CIM-P. Archi-
tectures in COM-N have also more software support as they are
equipped with tool chains that allow product development on these
architectures; for example, Micron’s automata processor is already
commercialized and is programmed in Automata Network Markup
Language (ANML) [92]. COM-F architectures are today’s conven-
tional von Neumann architectures. They have the highest maturity
from both technological point and software support.With respect to
the development status, CIM-A and CIM-P architectures mostly are
verified using simulations, either cycle-accurate simulations [4, 11]
or circuit verification simulation (i.e., HSpice). COM-N and COM-F
architectures are further developed; they have been demonstrated

2

32 PAPER 2.2



Manuscript, In review, 2019 H.A. Du Nguyen et al.

in prototypes and commercial products [97, 100]. In general, COM
architectures are more mature than CIM architectures.
Applications that run effectively on the architectures are also
described in Table 3. In general, CIM architectures can be more
efficient than COM architectures for certain data intensive applica-
tions as they are less affected by the memory bottleneck. For CIM-A
architectures and several CIM-P architectures (e.g., Pinatubo, CIMA,
STT-CiM), there are currently limited types of operations can be
efficiently performed on these architectures; hence, limited range
of applications can be mapped on these architectures. For example,
CIM-A architectures focus more on arithmetic operations such as
matrix multiplication [45], parallel addition [26]. CIM-P architec-
tures focus on bulk bitwise applications such as database processing,
graph processing, image processing, security and biosequencing
application [2, 7, 44, 77, 105, 106]. COM-N architectures are used
for both general-purpose and application-specific. A limited num-
ber of COM-N architectures are considered as general purpose
computers such as FlexRAM [59] and SM [81]. Other COM-N archi-
tectures targets specific applications such as vector processing (e.g.,
VIRAM [56], DIVA [24], AMC [91], etc.), automata processing (D-
AP [92]), and neural computation (DDN [19]). COM-F architectures
are mostly designed for general-purpose applications.

3 COMPUTATION-IN-MEMORY - ARRAY
(CIM-A)

The CIM-A class contains mostly resistive computing architectures
that use memristive-based logic circuits [25] to perform computa-
tions and resistive RAM (RRAM) as memory technology. The re-
sistive logic circuits may implement different design styles such as
stateful logic [73], IMPLY [70], MAGIC [69], CRS-based logic [111],
etc. These design styles can be further classified, as presented
in [102]. In addition to resistive computing, computations can be
performed using DRAM cells as demonstrated in [76] which will
be explained later.

Few architectures have been proposed in this class; they are Com-
plementary Resistive Switch (CRS) [111], Computation-in-Memory
(CIM) [26, 41, 43], Memristive Memory Processing Unit (MPU) [49],
Programmable Logic-in-Memory Computer (PLiM) [37], ReRAM
based VLIW architecture (ReVAMP) [8], A DRAM-based Reconfig-
urable In-Situ Acceleratorwith a 3T1C cell design (DRISA-3T1C) [76].
Most of the architectures, except for REVAMP, have similar organi-
zations. They contain amemristor crossbar (except for DRISA-3T1C)
that is used for both storage and computation and a controller that
applies the voltages to the memory array. Each architecture uses
a different logic style and controller; for example, CRS, MPU, and
PLiM use CRS-based logic, Memristive-Aid loGIC (MAGIC), and
majority logic, respectively, while CIM can use any logic styles.
ReVAMP uses a different architecture and integrates the resistive
memory in a pipelined processor in which the memory replaces
both the cache and register file. It optimizes traditional pipelined
processors by combining the execution, memory and write-back in
a single stage. DRISA-3T1C contains a DRAM memory array and
performs NOR instructions by reading two rows simultaneously
and writing the results back via the sense amplifier to another row.
During the read, the capacitances of the accessed cells will discharge
the bitline via a transistor when one or both cell values are high;
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nomenclature is introduced and the basic CRS logic concept is 

summarized. Then the inherent carry calculation capability of 

CRS devices is highlighted. In section III the novel adder 

schemes are explained, and in section IV the operation is 

verified by dynamical pulse simulations. In section V a 

comparison to Lehtonen’s and Kvatinsky’s adder approaches 

is drawn. Finally, in section VI the work is summarized and an 

outlook is given. 

II. COMPLEMENTARY RESISTIVE SWITCH-LOGIC 

A. Passive crossbar arrays 

Ultra dense ReRAM-based memory architectures will be 

hybrid architectures with a standard CMOS component which 

is responsible for controlling the passive crossbar arrays. 

These arrays will be fabricated on top of the CMOS layers in 

the backend of line (BEOL) [7]. In general, the size of the 

crossbar arrays should be sufficiently large to justify the 

control circuit overhead. Thus, either appropriate selector 

devices are required at each cross point, or complementary 

resistive switches should be applied [9].  

The basic idea underlying our approach is to extend the 

application of hybrid CMOS/crossbar architectures from pure 

memory operations towards logic-in-memory operations, by 

enabling a sequential access to the crossbar array devices [15]. 

Fig. 1a depicts a possible layout. The system could consist of 

many arrays and one control unit, which coordinates and 

addresses the signals to the specific wordlines (wl) and bitlines 

(bl). A typical array size could be for example 128 by 128 

lines. Fig. 1a shows a system using CRS crossbar devices with 

only two arrays (A0 and A1) and an array size 3 by 5 to 

illustrate the basic concept. The structure of array A0 is 

depicted below this system section, showing that every 

intersection of a word- and bitline is a CRS cell. These CRS 

cells will be referred to as AzCRSwlxbly (cmp. Fig. 1), where 

Az denotes the name of the array, in which the cell can be 

found, wlx denotes the wordline of the cell and bly denotes the 

bitline. Thus the CRS cell A0CRSwl2bl0 is found in array A0 

at intersection wl2 and bl0.  

 
Fig. 1 (a) Expected system section layout, which consists of two Arrays (A0 

and A1) and a control unit. (b) Each array has three wordlines (wl0, wl1 and 

wl2) and five bitlines (bl0, bl1, bl2, bl3 and bl4). The three red marked cells are 

used to compute a two bit addition. 

 

The control unit enables free communication between all lines 

and is a key element for consecutive logic. 

B. Complementary Resistive Switches 

CRS cells consist of two anti-serially connected ReRAM cells.  

A basic CRS operation in sweep mode is depicted in Fig. 2a. 

Both logic values ‘0’ and ‘1’ are represented by an in total 

high resistive state, since one cell is in HRS. ’0’ is represented 

by LRS/HRS and ‘1’ by HRS/LRS. The ‘ON’ state is only a 

transition state, which is reached while changing the inner 

state from ‘0’ to ‘1’ or back. Here a half select scheme (e.g. 

[19]) is applied, so that there are three different voltage levels 

available at the word- and bitlines, low, high and ground. The 

devices need steep switching kinetics, since the devices must 

enable switching with the maximum voltage across the device 

for a given time period. Additionally, the cells must prevent 

switching if half of the maximum voltage is applied during the 

same time period. Note that a very steep switching kinetic is 

an intrinsic feature of resistive switching devices [20, 21], thus 

passive crossbar arrays are feasible. 

C. CRS single-bit logic operations 

In [15] we introduced a CRS compatible ‘stateful’ logic 

approach. Fig. 2b represents a CRS cell as a finite state 

machine with two states. To switch from ‘0’ to ‘1’ the high 

potential, which is represented by the logical one ‘1’, needs to 

be applied at the wordline and the low potential, logical zero 

‘0’, at the bitline of the cell. Otherwise the machine will stay 

in the ‘0’-state. To switch from ‘1’ to ‘0’ the low potential 

needs to be applied at the wordline and the high potential at 

the bitline of the cell. Otherwise the cell will stay in the ‘1’-

state. 

The general logic equation to represent this behavior is given 

by [15]: 

( ) ( ) RIMP '  NIMP 'Z wl bl Z wl bl Z= +  (1) 

where wl is the wordline connected to the device and bl the 

bitline, Z’ is the device state prior to the application of the 

signals at wl and bl, and Z is the device state after applying the 

signals. As follows, if the device is in state ‘1’ (Z’ = ‘1’), the 

cell performs a reverse implication (RIMP) if the cell is in 

state ‘0’ (Z’ = ’0’) an inverse implication (NIMP) is 

performed. 14 out of 16 Boolean functions are directly 

feasible within this approach [15]. The XOR and XNOR 

functions can only be realized with a second CRS cell. Note 

that a computation on more than one device is feasible, if the 

wl or bl input is the same for these computations on different 

devices.  

Equation (1) must be considered as the basic equation to 

develop a synthesis tool for CRS-logic. For Borghetti’s imply 

logic a few approaches for such a tool were presented [17, 22]. 

D. CRS carry bit and sum bit calculation 

An adder is the first step from basic logic operations towards 

complex arithmetic operations, since in CMOS all basic 

arithmetic operations (multiplier, divider and substractor) are 
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Figure 5: Complementary Resistive Switch-logic Crossbar
Array (CRS) [111]

only when both capacitance values are zero the bitline remains high.
As examples, we only describe the CRS and ReVAMP architectures
next in more detail; they are the latest proposed architectures that
represent a basic CIM-A and hybrid CIM-A architectures, respec-
tively. Due to page limitations, only one representative figure is
used to describe each architecture.

3.1 Basic CIM-A architecture
Complementary Resistive Switch (CRS) architecture was proposed
in 2014 by A. Siemon, et al., from RWTH Aachen University [111].
It is a memristor based architecture that exploits data level paral-
lelism using implication logic. The architecture consists of multiple
crossbars and a control unit (as shown in Fig. 5 [111]). The crossbar
stores and performs logic operations using CRS cells; a CRS cell
consists of two resistive switches or resistive RAMs. The control
unit distributes signals to the intended addresses (wordlines and
bitlines) to perform operations on the crossbars.

The crossbar is controlled by a sequence of operations including:
write-in (WI), read-out (RO), write-back (WB), and compute (CP).
Before the operations can be performed, the crossbar part used
for computation is once entirely reset to a logic value 0. The WI
operation writes a logic value into a memristor. The RO operation
reads a logic value from a cell; the logic output value is determined
by the sense amplifier. The RO operation is destructive and changes
the value of the memristor to logic value 1. The task of the WB
operation is to recover the destroyed value. Finally, the CP instruc-
tions are used to execute the implication logic gates [78, 111]. The
data transfer between CRS cells is carried out through the control
unit using a RO and WB operations; in other words, the control
unit reads a value of the source CRS cell and writes this value into
the destination cell.

In addition to the general characteristic of CIM-A described in
Table 2 and 3, CRS has the following advantages:

• It is less impacted by the sneak path currents due to the
usage of CRS cells. The cell’s resistance is always equivalent
to high resistance, hence, sneak path currents are eliminated.
However, variations in resistances will make such paths
practically unavoidable unless a 1T2R cell is used.

• CRS logic requires fewer cells to perform computations than
Fast Boolean Logic (FBL) [129].

However, it also has the following limitations:
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Figure 6: ReRAM based VLIW architecture (ReVAMP) [8]

• The latency of the primitive functions varies and requires
read-out instructions to determine the voltages that have to
be applied.

• The RO operation is destructive, hence, a WB operation is
required after each RO operation, which increases the latency
and energy of computations.

• The data tranfer method is indirect as it is based on the read-
out and write-back scheme. As all cells have high resistance,
direct copying of cells in the crossbar is not applicable.

• The control unit imposes a high overhead as it is responsible
for both controlling the crossbar (requiring a large number
of states) and transferring data (which involves the usage of
buffers/registers to store temporary values).

• The architecture requires additional compiling techniques
and tools to convert conventional Boolean logic functions
to implication logic.

This architecture was only evaluated at circuit level using adders.
Therefore, it is hard to make general conclusions on the perfor-
mance and the applicability of this architecture.

3.2 Hybrid CIM-A architecture
ReVAMP was proposed in 2017 by D. Bhattacharjee, et al., from
Nanyang Technological University [8]. It is a memristor based ar-
chitecture that exploits data parallelism using majority logic. The
architecture consists of an Instruction Fetch (IF), Instruction De-
code (ID), and Execute (EX) stage (as shown in Fig. 6 [8]). The
IF block fetches instructions from the Instruction Memory using
the program counter (PC) as address, and puts the resulting in-
struction in the Instruction Register (IR). The ID block decodes the
instruction and generates control signals which are placed in the
control registers of the EX block. The EX stage finally executes the
instruction.

The IF and ID stages are similar to those of the traditional five-
pipelined RISC architecture. The IF stage includes an Instruction
Memory (IM) and a Program Counter (PC). The ID stage contains
registers (IR and Primary Inputs), and an Instruction Decode and

Control Signal Generation. The EX stage consists of several reg-
isters (i.e., Data Memory Register (DMR), Primary Input Register
(PIR), Mux control (Mc ) register, Control (Cc ) register, Wordline
(Wc ) register), as well as a crossbar interconnect, wordline select
multiplexer, data Source Select multiplexer, and a Write circuit to
control the crossbar that stores data. Once an instruction is fetched
and decoded in IF and ID, respectively, the control registers in EX
are filled with suitable values. These values control the multiplexers
that are responsible for applying the right control signals to the
crossbar. Depending on the operation, primary inputs from PIR or
data retrieved from the crossbar stored in DMR can be used for the
next operation. The crossbar interconnect permutes the inputs and
control signals (indicated by Cc ) to generate the voltages that need
to be applied to the memory crossbar. The Write circuit applies
these voltages to the targeted wordline address (indicated by Wc ).

In addition to the general characteristic of CIM-A described in
Table 2 and 3, ReVAMP has the following advantages:

• The data transfer may include direct (within the crossbar
based on copying resistance values) and indirect (based on
read-out/write-back) schemes.

• The crossbar is based on only one device per cell, result-
ing in a more compact architecture as compared with other
architectures which make use of two devices per cell (i.e.,
Complementary Resistive Switch CRS [111]).

• The architecture does not suffer destructive reads as is the
case for CRS architecture [111], hence thewrite energymight
be less due to the absence of a write back operation.

However, it also has the following limitations:

• The latency of majority primitive functions varies depend-
ing on the functional complexity; in addition, before any
operations are applied to the cells, these cells first have to
be read-out in order to determine the appropriate control
voltages.

• The architecture has to deal with sneak path currents. Possi-
ble solutions as mentioned above.
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• The EX stage is complex as it integrates both the control sig-
nals for memory and computations. Therefore, it is not easy
to pipeline this architecture, as the EX stage will consume
more time than the other stages; i.e., the stages IF, ID, and
EX are not balanced.

• The architecture requires additional compiling techniques
and tools to convert conventional Boolean logic functions
to majority logic gates.

The architecture is simulated and evaluated using EPFL bench-
marks [5] and compared against PLiM [37], which is based on a
resistive memory with the same logic style.

4 COMPUTATION-IN-MEMORY - PERIPHERY (CIM-P)
The CIM-P class consists of architectures which perform computa-
tions during read-out operations (i.e., two or more word lines are
activated simultaneously) using special peripheral circuitry. Such
operations are typically analog in nature. As there are less restric-
tions on the functionality of the cell, various memory technologies
can be used in this category such as DRAM, SRAM and non-volatile
memory technologies.

A medium number of architectures have been proposed in this
class: Resistive Associative Processor (ReAP) [132], A Processing-in-
Memory Architecture for Neural Network Computation in ReRAM-
based Main Memory (PRIME) [20], A Convolutional Neural Net-
work Accelerator with In-Situ Analog Arithmetic (ISAAC) [107], In-
Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology (Ambit) [106], A Processing-in-Memory Archi-
tecture for Bulk Bitwise Operations (Pinatubo) [77], In-Memory
Intelligence (IMI) [31], Compute Caches (Compute$) [1], A DRAM-
based Reconfigurable In-Situ Accelerator with 1T1C design (DRISA-
1T1C) [76], Computation-in-MemoryAccelerator (CIMA) [25], Com-
puting in Memory Spin-Transfer Torque Magnetic RAM (STT-
CiM) [53], Cache Automaton (S-AP) [117], Neural Cache (Neu-
ral$) [28], RRAM Automata Processor (R-AP) [133], Data Parallel
Processor (DPP) [36].

These architectures fundamentally perform computations in
the same way by activating multiple rows simultaneously in the
memory and using generally specialized sense amplifiers and/or
ADC converters to get the results. ReAP performs computations
by implementing Content-addressable-Memory (CAM) operations
using look-up-tables (LUTs). PRIME and ISAAC perform vector-
matrix multiplications for neural applications. Ambit, IMI, Com-
pute$, DRISA-1T1C, Pinatubo, CIMA, STT-CIM, Neural$ and DPP
perform computations using customized sense-amplifiers only; Am-
bit, IMI and DRISA-1T1C use DRAM, Compute$ and Neural$ uses
SRAM, while the rest is based on non-volatile memory. These ar-
chitectures can only perform logical operations except for IMI,
DRISA-1T1C, Neural$ and DPP which also perform more complex
functions by having additional logic inside the peripheral circuits.
S-AP and R-AP implement inner product operations in automata
processors. S-AP is implemented using SRAM technology while
R-AP uses non-volatile memory. As examples, we only describe
the R-AP and DPP architectures next in more details; they are the
latest proposed architectures that represent basic CIM-P and hybrid
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Figure 7: General Architecture forAutomata Processor [133]

CIM-P architectures, respectively.

4.1 Basic CIM-P architecture
R-AP was proposed in 2018 by J. Yu, et al., from Delft University of
Technology [133]. The architecture targets an automata processor
which exploits data level parallelism by performing computations
using state machines. An automata processor contains two main
components: the State Transition Elements (STEs) and the routing
matrix; the STE stores the accepting states, while the routing matrix
stores the state transitions as shown in Fig. 7 [133]. The automata
processor accepts one input symbol at a time, generates next active
states and decides whether a complete input string is accepted or
not.

The architecture consists of STEs and a routing matrix which
are implemented using RRAM technology. Each RRAM column
corresponds to an STE which stores the accepting states in RRAM
cells, as shown in Fig. 8a [133]. The input symbol is fed to all the
STEs simultaneously. The sense amplifiers collect a dot-product
results of a vector-matrix multiplication. The output of the STE
together with the routing matrix are used to determine the next
active states, as shown in Fig. 8b [133]; this process is carried on
until all input symbols are processed. In case the one or more final
active states are part of the acceptance states, it means that the
input string has been matched with the corresponding pattern of
the acceptance state. Note that data transfer inside the automata
processor is carried out using the routing matrix.

In addition to the general characteristic of CIM-P described in
Table 2 and 3, R-AP has the following advantages:

• The architecture is used as a read-favoured accelerator, which
has a positive impact on the endurance due to infrequent
use [16, 123]. Only when the automata changes, the STEs
and routing matrix have to be updated.

• Automata processing can be used to perform both logical
and arithmetic operations in general.

• Data can be transferred using both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes
low energy and has a small footprint.

• The automata processing techniques and tooling are quite
mature, hence it is feasible to explore many applications
using automata processing.

However, it also has the following limitations:
• The modified peripheral circuitry (row drivers) might pose
high overhead in the memory system.
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Figure 2. In-situ ReRAM array operations.

crossbar topology. A shared bus facilitates communication
inside a cluster. A hierarchical topology inside the tile limits
the network power consumption, while providing sufficient
bandwidth for infrequent communication typical in data-
parallel applications.
Each memory array can be thought of as a vector process-

ing unit with few SIMD lanes. The processor adopts a SIMD
execution model. Each array is mapped to a specific instruc-
tion buffer. All arrays mapped to the same instruction buffer
execute the same instruction. Every cycle, one instruction
is read out of the each instruction buffer and multi-casted
to the memory arrays in the tile. The execution model is
discussed in detail in Section 4.
The processor evaluated in this paper consists of 4,096

tiles, 8 clusters per tile, and 8 memory arrays per cluster.
Each array can store 4KB of data and has 8 SIMD lanes of 32
bits each. Consequently, the processor has aggregate SIMD
width of two million lanes, aggregate memory capacity of
1GB and 494mm2 area. The resolution of ADC and DAC is
set to 5 and 2 bits.

2.2 Instruction Set Architecture
The proposed Instruction Set Architecture (ISA) is simple and
compact. Compared to a standard SIMD ISA, In-memory ISA
does not support complex (e.g. division) and specialized (e.g.

shuffle) instructions because these are hard to do in-situ in-
memory. Instead, compiler transforms complex instructions
to a set of lut, add and mul instructions as discussed later.
The ISA consists of 13 instructions as shown in Table 1. Each
ReRAM arrays executes the instruction locally, hence the
operand addressing modes reference rows inside the array
or local registers. The instructions can have a size of up to 34
bytes. Now we discuss the functionality and implementation
of individual instructions.
1) add The add instruction is an n-ary operation that adds
the data in rows specified by <mask>. The <mask> is a 128-bit
mask which is set for each row in the array that participates
in addition. Figure 2 (a) shows an add operation. The mask
is fed to word-line DACs, which is used to apply a Vdd (’11’)
or Vdd/2 (’10’) to the word-lines. A ’1’ in the mask activates
a row. Each bit-cell in a ReRAM array can be abstractly
thought of as variable resistor. Addition is performed inside
the array by summing up currents generated by conductance
(=resistance−1) of each bit-cell. A sample and hold (S + H)
circuit receives the bit-line current and feeds it the ADC
unit which outputs the digital value for the current. The
result from each bit-line represents the partial sum for bits
stored in that bit-line. Aword or data element is stored across
multiple bit-lines. An external digital shifter and adder (S +
A) combines the partial sums from bit-lines. The final result
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Figure 9: Data Parallel Processor (DPP) [36]

• The architecture requires additional compiling techniques
and tools to perform conventional Boolean logic functions
using automata processing.

The architecture has been validated using circuit level simula-
tions and evaluated against S-AP [117].

4.2 Hybrid CIM-P architecture
DPP was proposed in 2018 by D. Fujiki, et al. from University of
Michigan [36]. DPP is a RRAM-based architecture that exploits
instruction and data level parallelism by performing computations
using a combination of RRAM-based dot-product operations and
LUTs. The architecture consists of multiple RRAM tiles connected
as an H-tree; each tile has multiple clusters and some logic units (as
shown in Fig. 9 [36]). Tiles and clusters form a SIMD-like processor
that performs the parallel operations. The architecture is considered
as a general purposed architecture as it can perform all primitive
functions such as logical, arithmetic, shift and copy operations.

In addition to clusters, each tile has several units to support the
computations including instruction buffer, Shift and Add (S+A), and
router. Each cluster additionally has one or more computational
units; they are Shift and Add (S+A), Sample and Hold (S+H), DAC
and ADC, a LUT and register file (as shown in the right part of
Fig. 9). While reading from the high latency RRAM, other units
are simultaneously used for processing. Therefore, the S+H is used
to read data (in the form of a current) from the RRAM array and
temporarily store it. Once that data is needed, it is fed to an ADC
to convert the analog value to a digital value. The S+A is used to
perform carry propagation in a multiple-bit addition. DAC is used
to apply a digital value to the RRAM array with an appropriate
control voltage. Some complex functions that cannot be realized
with these units are performed using LUTs and register file in each
cluster. Data transfer can be performed by enabling two memory

rows for direct copy operations, or using the buffers and read-out
operations for indirect copy operations.

In addition the general characteristic of CIM-P described in Ta-
ble 2 and 3, DPP has the following advantages:

• Computations include both logical operations and simple
arithmetic operations (i.e., addition, multiplication).

• Data can be transferred using both direct and indirect schemes.
• The architecture uses non-volatile memory, hence consumes
low energy and has a small footprint.

• This architecture is claimed to be general purpose, hence it
can exploits existing instruction set, compiling techniques
and tools, as well as applications.

However, it also has the following limitations:

• The architecture uses non-volatile memory as main memory,
which may impact the life time due to limited endurance [16,
123].

• As the sense amplifies are complex, a trade-off between area
and bandwidth has to be made.

The architecture potential was simulated and evaluated against
CPU Intel Xeon E5-2697 using a subset of PARSEC benchmarks [10]
and against GPU NVIDIA Titan XP using Rodinia benchmarks [17].

5 COMPUTATION-OUT-MEMORY - NEAR
(COM-N)

The COM-N class consists of architectures that perform compu-
tation using additional logic units outside the memory core but
inside the memory SiP. These architectures were proposed in the
past and evolved through different memory technologies ranging
from conventional DRAM, embedded DRAM to emerging memory
technologies such as RRAM.

Many architectures have been proposed in this class: Vector Intel-
ligent RAM (VIRAM) [56, 65, 67, 95], Active Page(A-Page) [94], Ad-
vance Intelligent Memory System (FlexRAM) [60], Modular Recon-
figurable Smart Memories (S-Mem) [81], Data-intensive Architec-
ture (DIVA) [23, 24], Hybrid Memory Cube (HMC) [54, 97], Active
Memory Cube (AMC) [91], Micron Automata Processor (D-AP) [92],
A machine-learning supercomputer (DDN) [19], An Architecture
for Accelerated Processing Near Memory (DRAMA) [30], High-
Bandwidth Memory (HBM) [57, 72, 80, 115], A Near Data Com-
puting Architecture using Non-Volatile Memory (ProPRAM) [124],
Resistive GP-SIMD (ReGP) [88], HMC Instruction Large Vector
Extensions (HIVE) [3].

These architectures mainly differ as a consequence of using dif-
ferent technologies. VIRAM, FlexRAM, SM, DIVA, and DRAMA are
based on embedded DRAM technology and try to integrate pro-
cessing units near the main memory; FlexRAM integrates multiple
single-core processors with caches, SM a reconfigurable proces-
sor, VIRAM and DIVA a vector processor, and DRAMA a Coarse-
grain reconfigurable accelerators. A-Page is based on reconfigurable
DRAM architecture which integrates conventional DRAM into an
FPGA; it implements the reconfigurable logic near the main DRAM
memory. HMC, AMC, HBM, and HIVE are based on 3D-stacked
DRAM; HMC and HBM support general computing, while AMC
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register bank inside the HMC to perform operations. The
HIVE instructions pass through the pipeline in the same way
as a memory load operation. HIVE instructions that do not
require memory addresses, such as HIVE lock and unlock,
will bypass the Address Generation Unit (AGU) and wait to
be transmitted inside the Memory Order Buffer (MOB). All
HIVE instructions are placed inside the MOB to be delivered
to the memory subsystem. These instructions wait inside the
MOB for an answer from the HMC, which returns the status of
the operation as successful or raises exceptions. The processor
uses these instructions’ status to control execution flags, such
as overflow and not-a-number, among others.

HIVE instructions that perform loads and stores work
with virtual addresses. Therefore, the addresses have to be
translated by the Translation Look-aside Buffer (TLB) and
checked for correct permissions to access the given address
range. After passing through the TLB, the requests follow the
cache memory hierarchy, bypassing the memory caches. The
cache directory needs to be changed as well, to ensure a write-
back of all the modified data in the range at which the specific
HIVE instruction will operate. Although we implement HIVE
in an out-of-order processor, in-order processors could also be
modified to work with the HIVE instructions. It is important
to note that all modifications inside the processor are also
required to make use of the new ISA present in the HMC
specification. Thus, we expect that only minor changes inside
the processor are required to support the HIVE instructions.

D. HMC Modifications

When HIVE receives a HIVE lock instruction, it has to lock
the mechanism to operate only for the thread that requested the
lock. In case the memory is already locked, the lock instruction
is sent back to the requester with a fail status. When a lock
is granted, the HIVE instructions are able to perform their
operations. Locking the mechanisms avoids that one thread
modifies the content of registers that are being used by a
different thread. This locking system can also be used to power
gate or clock gate all HIVE resources after a certain period of
time, reducing the energy overhead during idle periods. Normal
memory access requests (both reads and writes) can still be
serviced while HIVE is locked, such that other threads that do
not use HIVE can continue to execute.

To perform vector instructions inside the DRAM, we
require three main logic additions to the HMC, a HIVE
sequencer, a register bank, and the vector functional units.
Figure 2 illustrates HIVE inside an HMC 2.0 module, with
32 vaults and 8 banks per vault. HIVE can be easily adapted
to different HMC layouts (such as different numbers of banks
per vault or row buffer sizes). In our mechanism, the HIVE
sequencer handles the instructions in-order until they can
be executed and sends the status after the instructions are
executed. During HIVE load/store operations, the sequencer
is also responsible for broadcasting the 8 KB request split
into 128 sub-requests of cache line size (64 bytes). Each sub-
request is sent to its respective vault controller.

The additional register bank inside HIVE is used to store
the sub-requests coming from any vault/bank inside the HMC.
Each register can handle 128 positions of 64 bytes each (8,192
bytes in total). Thus, sub-requests can be issued to different
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Fig. 2: HMC module with our mechanism architecture.

vaults/banks to increase performance. HIVE interacts with
the DRAM devices only during load and store operations by
copying data to and from the HIVE registers. Therefore, our
mechanism does not require new DRAM signals.

HIVE executes instructions in-order, but its functional units
act as a restricted data-flow processor. A given operation can
start as soon as the registers are ready. To support this data-
flow, we use a flag associated with each register that indicates
if the operand is ready. Each HIVE instruction needs to erase
this flag for its destination register, and re-enables it whenever
the instruction becomes ready. This system allows the DRAM
to open rows from different banks in parallel, and also ensures
that once a HIVE instruction requires operands that are not
ready yet, execution will stall. When registers are ready, the
functional units operate in several steps (HIVE cycles) to
process the entire register. The number of steps depends on
the number of functional units. We explore the performance
trade-offs of the number of functional units in Section IV.

All functional units operate at the frequency of the HMC
vault controller. After completion, each HIVE instruction sends
a status to the processor, such that our instructions behave
similarly to a normal memory request. These acknowledgment
signals provide important information for the processor regard-
ing the status of each operation, such as overflow, division-by-
zero and other exceptions. For instance, in the Intel AVX-512
instruction set, 17 bits are enough to provide the information
regarding the operation status [24]. For the evaluation of our
mechanism, we consider an acknowledgment of 64 bits in
order to correctly simulate the impact of the transmission of
the status bits on the final performance. Note that the number
of status bits does not increase linearly with the operation size.
For example, between AVX-128 and AVX-512, only two bits
were added, because only a single flag is raised if one or more
sub-operations cause an exception.

IV. EXPERIMENTAL EVALUATION OF HIVE

This section presents the simulation environment, the appli-
cation kernels and the evaluation results of HIVE. To simplify
the explanations, we refer to SSE+DDR and SSE+HMC when
executing an application that uses SSE instructions in a system
with DDR or HMC memory modules respectively. We refer to
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Figure 10: HMCModule with HMC Instruction Large Vector
Extensions (HIVE) [3]

and HIVE are optimized for VLIW and vector processing, respec-
tively. DaDianNao, D-AP, ReGP, and ProPRAM utilize logic units
that are located near the memory. DaDianNao and D-AP imple-
ments a neural network and an automata processor, respectively
with very simple logic units inside the conventional DRAM. ReGP
integrates a simplified SIMD processor near non-volatile memory.
ProPRAM utilizes existing logic units near the non-volatile mem-
ory to perform simple computations such as addition and logical
operations. As an example, we only describe the HIVE and ReGP
architectures next in more details; They are the most recent archi-
tectures proposed in COM-N class.

HIVE was proposed in 2016 by M. A. Z. Alves, et al., from Fed-
eral University of Rio Grande do Sul [3]. HIVE is a Hybrid Memory
Cube (HMC) [54, 97] based architecture that performs large vector
operations inside the logic die of a HMC. The architecture consists
of a host processor and a HMC module that is extended with a
HIVE, as shown in Fig. 10 [3]. The host processor, not shown in
the figure, is a pipelined-like architecture with six stages; it fetches,
decodes, renames, dispatches, executes and commits a sequence
of instruction. If an instruction fragment has to be executed using
in-memory instructions, the processor diverts the instruction frag-
ment to the HMC module. HMC module executes the fragment and
returns the result back to the processor.

HMC module consists of multiple DRAM layers, logic vaults,
HIVE controller, a crossbar switch and multiple-lane links to host
processor (as shown in the left side of Fig. 10). The data is stored
in multiple DRAM layers and retrieved by the HIVE. The HIVE
controller contains a register bank, functional units and a HIVE
sequencer (as shown in the bottom right of Fig. 10). The logic vaults
contains a vault controller, write and read buffer, and a DRAM
sequencer (as shown in the top right of Fig. 10). Once the HIVE
sequencer receives an instruction, it locks the involved memory
address space; if the memory has already been locked, the requested
instruction returns a fail status to processor; otherwise, a memory
synchronization occurs by flushing related cache data into DRAM.
The logic vaults and HIVE subsequently execute the instructions
by reading data to read buffers and register bank, performing oper-
ations using functional units, and (optional) storing into memory
using write buffers. The operations in HIVE are based on vector

operations that operate on 8KB of data at a time executed by the
32 logic vaults and HIVE functional units. As the amount of data
is large, a DRAM sequencer and HIVE sequencer schedule these
operation accordingly. The results can be collected in register banks
and sent back to the host processor through the crossbar switch
and links.

In addition to the general characteristic of COM-N described in
Table 2 and 3, HIVE comes with the following advantages:

• The parallelism is high due to vector processing on 8KB of
data.

• The architecture uses HMCwhich is mature, commercialized
and has some advantages such as high performance, high
bandwidth, low power, high density [54, 97].

However, it also has the following limitation:

• The architecture has a complex HMC module which has a
control, communication and programming overhead.

The architecture is simulated and evaluated using some inte-
ger (vector search and memory reset/set operations) and floating-
point (vector sum, matrix stencil, and matrix multiplication) kernels
against three baseline platforms; both HIVE and baseline platforms
are based on the Intel Atom processor. Like HIVE, the three baseline
platforms have also additional processing capacities; for the base-
line platforms they are as follows: 1) HMC instructions using HMC
2.0 memory [47] (HMC+HMC), 2) 128-bit SSE instructions with
DDR-3 1333 modules (SSE+DDR) and 3) 128-bit SSE instructions
with HMC 2.0 (SSE+HMC).

ReGP was proposed in 2016 by A. Morad, et al., from Technion-
Israel Institute of Technology [88]. ReGP is a RRAM memory based
architecture that exploits data parallelism by attaching a SIMD-like
processing unit to the resistive memory, as shown in Figure 11 [88].
The architecture consists of a sequential processor (which is a
conventional processor), its L1 and LLC cache, sharedmemory array
and SIMD processor. The sequential processor executes traditional
code and controls the SIMD processor in a master-slave mode. The
SIMD processor executes parallel instructions on the data stored in
the shared memory array.

The SIMD processor contains multiple processing units (PUs), a
sequencer and a Network on Chip (NoC) with reduction tree. Each
PU contains registers, a single bit full-adder and a function gener-
ator to perform arithmetic and logical operations. The sequencer
receives instructions from the sequential processor and assigns
them to PUs. The PUs load data from the shared memory array
and perform the requested operations. If required, the NoC and
reduction trees are used to perform more complex functions.

In addition to the general characteristic of COM-N described in
Table 2 and 3, ReGP comes with the following advantages:

• The parallelism is high due to multiple parallel processing
units.

• The architecture uses non-volatile memory, hence consumes
a low amount of energy and has a small footprint.

• The architecture can reuse compilers, programming lan-
guages and tools from SIMD architectures.

However, it also has the following limitation:
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• The operations within the processing units are simple; com-
plex functions such as floating point operations can cause a
high overhead.

The architecture is simulated and evaluated against CMOS GP-
SIMD [87] using a benchmark for dense matrix multiplications [86].

6 DISCUSSION
This section aims to first evaluate the completeness of the proposed
classification. Thereafter, we compare it with existing work in the
field.

6.1 Completeness
The proposed classification presented in Fig. 3 is complete and com-
prehensive. These points can as follows be proven: (i) theoretically,
due to the exploration of all the possible classes derived from the
classification metrics, and (ii) practically, by mapping all existing
memory-centric architectures on the classification.

Theoretically, the classification contains four main classes de-
rived from the "computation location" (first metric); both inside
and outside, approximately close or distant from the memory core.
Moreover, the second metric consists of both charge-based and non-
charge-based memories. Finally, the parallelism metric ranges from
instruction, to data and task levels. Each metric is in it self complete,
and therefore, the entire classification is complete. The classification
does not only contain the existing solutions, but also highlights the
potential future solutions that can be further explored (e.g., classes
in blue spaces in Fig. 3). Note that hybrid architectures are also cov-
ered in this classification. For example, a conventional architecture
(COM-F) with accelerator in CIM-P class (e.g., ReAP, ISAAC, CIMA)
is considered a hybrid architecture, i.e., a COM-F/CIM-P hybrid.

Practically, it contains an overview of the most existing com-
puter architectures and places them in perspective. In addition, the
classification can be used to illustrate the past and future trends
(see Fig. 4). Moreover, it clearly depicts a shift from conventional
processor-centric architectures towards memory-centric architec-
tures based on emerging technologies (3D stacking, RRAM, etc.).

6.2 Related work
Comparison with traditional/processor-centric architecture
classifications: conventional classifications like Flynn’s [34], Skil-
licorn’s [113] and Shami-Hemani’s [108] classification are quite
comprehensive and were considered complete at the time they were
published. However, these classifications focus on processor-centric
architectures and, hence they can only be used to classify conven-
tional architectures (i.e., architectures in COM-F class). Aside from
the above mentioned classifications, some publications on COM-N
class have presented intensive architectural reviews [22, 109, 112].
However, they have a restricted focus on near-memory-processing
architectures based on 2D, 2.5D, and 3D-stacked DRAM. Signh’s
classification [112] is the most recent work that provides a review
of near-memory computing architectures, i.e. COM-N architectures.
It classifies architectures mainly based on the memory hierarchy
and processing type (e.g., programmable unit, fixed functional unit
and reconfigurable unit). Moreover, it evaluates the architectures
based on multiple characteristics of memory, processing, evalua-
tion tools, interoperability, and application domains. However, the
classification is not easy to use as the metrics are not systematic.
Furthermore, it is not clear if the classification is complete and if
it covers all ranges of near-computing architectures. Last but not
least, in comparison with the aforementioned classifications, our
proposed classification goes one step further to cover both conven-
tional and emerging architectures by having the additional classes
CIM-A and CIM-P. Moreover, the proposed classification is so broad
that several of its classes are not explored yet. New architectures
in these unexplored areas can be easily added to the classification.
In addition, our proposed classification uses three selective metrics
which create distinctive and easy-to-use terminologies, classes and
sub-classes.

Comparison with recent/emerging architecture classifica-
tions: recent surveys and classifications for emerging architectures
have been proposed by Mittal [85] and Reuben [102]. Mittal’s clas-
sification only tries to link architectures with their applications.
Specifically, the classification discusses three unconventional ar-
chitectures: processing-in-memory, machine learning and neural
network based architectures using RRAM. They mostly focus on ap-
plications containing dot-product operations in the RRAM crossbar.
This classification is not complete, as RRAM in particular and emerg-
ing memory technology in general can also be used to implement
other functions such as bitwise logic operations [77, 130], arithmetic
operations using implication logic [69, 110], Boolean logic[114, 129],
etc. Reuben’s classification classifies existing resistive logic design
methods into three classes: in-memory, near-memory and out-of-
memory computing. The near-memory class has three sub-classes
without identifiers (e.g., they are based on how data moves out
of the memory array; this includes data movements (1) between
consecutive logic levels, (2) for computing each Sum-of-Products,
(3) for computing each logic gate). This classification, however, tries
to redefine the terminologies without defining clear generic metrics
for each class. Instead, each class uses different criteria to distin-
guish between their sub-classes. Therefore, it is not a systematic
and comprehensive classification, which makes it difficult to use
in identifying and exploring architectures. Moreover, it is difficult
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to judge if the classification is complete. Furthermore, the classifi-
cation focuses only on resistive memories, while other emerging
memory technologies are also promising. Overall, both Mittal and
Reuben classifications are not complete and comprehensive enough
to classify all architectures.

6.3 Future directions and challenges
This section mainly highlights future trends in memory-centric
computing. We observe that computation in memory is one of the
solutions to alleviate the memory bottleneck for certain applica-
tions. Both the bandwidth between the core and main memory
as well as the overall latency can be significantly improved by
computation-in-memory architectures. In addition, implementing
computation-in-memory in main memory (using DRAM, memris-
tive devices) is more feasible than using on-chip memory (SRAM)
due to technology limitations and economical feasibility. Further-
more, the twomain directions that are currently explored are CIM-A
and CIM-P, in which CIM-P is more feasible than CIM-A due to
the complex underlining memory technology. Last but not least,
computation-in-memory (CIM-A and CIM-P) do not make conven-
tional architectures obsolete; in fact, multicore architectures with
caches are relevant for applications with high data locality, while
computation-in-memory architectures can be only used efficiently
for certain specific applications.

It is worth mentioning that the focus of this paper is proposing
a unified terminology and classification instead of presenting a
survey. In our future work we will present a survey that intensively
discusses all architectures.

7 CONCLUSION
In this paper, we have proposed a classification using three metrics:
computational location, memory technology and level of paral-
lelism. We have used the most important metric, i.e. computational
location, to describe and evaluate the four main classes (and the se-
lected architectures therein). The work shows that architectures do
not only require to be memory bottleneck free, but also energy and
area efficient. In order to accomplish that, the architectures must
be implemented with the right technologies. The relationship and
dependency between the architecture and technologies becomes
stronger for memory-centric computing architectures. This work
also showed that new architectures typically emerge after new tech-
nology developments (e.g., introduction of 3D stacking and RRAM).
Our classification unifies the prior work and aims to provide a com-
prehensive and unique terminology for memory-centric computing
architectures. Finally, the classification does not only present an
overview of existing architectures, but also predicts the potential
of future architecture variants, including hybrid architectures that
may combine different strengths of the different classes.
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Abstract—Faster and cheaper computers have been constantly demanding technological and architectural improvements. However,
current technology is suffering from three technology walls: leakage wall, reliability wall and cost wall. Meanwhile, existing architecture
performance are also saturating due to three well-known architecture walls: memory wall, power wall and instruction level parallelism
(ILP) wall. Hence, a lot of novel technologies and architectures have been introduced and developed intensively. Our previous work has
presented a comprehensive classification and broad overview on memory-centric computer architectures. In this paper, we aims to
discuss all the memory-centric architectures thoroughly and evaluates their advantages and disadvantages.

Index Terms—Computation-in-Memory, Computer Architectures, Resistive Computing, Classification.

F

1 INTRODUCTION

FOR several decades, CMOS down-scaling and archi-
tecture improvements have doubled computer perfor-

mance following Moore law [1], [2], [3]. However, existing
technology suffers from three main walls: leakage wall, reli-
ability wall and cost wall [4], while computer architectures
also face three walls: memory wall, power wall and instruc-
tion level parallelism (ILP) wall [5]. In order to address
these walls, a lot of novel technologies and architecture are
under research to improve the performance [1]. As a result,
an enormous amount of computer architectures has been
proposed so far.

Since the first von Neuman architecture in 1982, com-
puter architectures have been evolved to various complex
organizations including pipelined, superscalar, multicore,
etc. [3], [6], [7]. In an effort to further improve their per-
formance, a concept of integrating memory and processing
units, so-called Logic-in-Memory (LIM), was invented in
1970 [8]; however, it was only applied to cache/on-chip
memory and was soon abandoned due to its ineffectiveness.
Since 2000, big data and embedded applications have been
on the rise and required a new computer system with not
only higher performance but also energy efficient. In order
to fulfill these requirements, several architectures were ex-
plored with the concept of LIM applied for main memories,
and regarded as Processing-In-Memory (PIM) architectures
(i.e., FlexRAM [9], DIVA [10], intelligent RAM [11], etc).
However, the PIM architectures were also shortly dismissed
due to limitation of embedded DRAM technology [12], [13],
[14]. Since 2008, emerging non-volatile memroy technology
(i.e., memristor) has revived the concept of Processing-In-
Memory under the new name In-Memory Computing [15]
or Computation-In-Memory [16]. The novel architectures
together with new technology promise a lot of potentials in
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terms of performance, energy and area [16], [17]. Some ex-
amples can be listed as Computation-In-Memory (CIM) [18],
ReVAMP [19], Pinatubo [20], etc. All these architectures
have common and distinct features, and was addressed
inconsistently in the community. This leads to confusion
in differentiate among architectures and exploring novel
potential architectures.

In our previous work, we have presented a classification
of architectures that gathers and classifies existing architec-
tures, and also show unexplored architectures []. Based on
the classification, this paper provides an intensive survey on
existing memory-centric architectures. The contributions of
this paper are the following:

• Presenting main characteristics and working princi-
ples of existing memory-centric architectures.

• Discussing and evaluating main advantages and dis-
advantages of each architecture.

• Comparing among different existing architectures
and outlook the characteristics of the future archi-
tectures.

The rest of this paper is structured as follows. Section
2 summarizes the metrics used in the classification, the
overview of different classes with their existing architec-
tures. Section 3 and 4 present two main categories in the
proposed classification including CIM-A and CIM-P, respec-
tively; each section describes and evaluate the architectures
qualitatively. Section 5 compares existing architectures and
discusses the future architecture requirements. Finally, sec-
tion 6 concludes this paper. Due to the page limits, we also
include Appendix A and B that describe and evaluate the
architectures in the other two less-focused categories: COM-
N and COM-F, respectively; note that the comparison in
section 5 still includes these two categories.

2 CRITERIA AND CLASSIFICATION

In this section, we first summarize a set of metrics used in
the classification. Thereafter, we show our classification of
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Fig. 1: Computer Architecture and Proposed Classification

computer architectures and map the existing architectures
on it.

2.1 Classification Metrics

The classification includes several metrics to classify com-
puter architectures based on the its computing resources
and memory. A computer architecture or system consists of
one or more memories and computational units as shown in
Fig. 1a. The memories is the main storage unit; it can include
only memory core with memory arrays and its supporting
peripheral circuits, or memory core with extra logic cir-
cuits, which is called memory System-in-Packages (SiP). The
computations is performed traditionally using computation
cores, however, they can also be performed using extra
logic circuits, peripheral circuits and memory array of the
memory SiP. A computer system can be classified based on
three metrics:

• Computation position: it defines where the result
of the computation is produced. A computation in-
cludes a primitive logic function (e.g., logical oper-
ations) or arithmetic operation (e.g., addition, mul-
tiplication). The four possibilities of computation
position can be seen at the four circles in Fig. 1a.
If the result is produced within the memory core, the
computer architecture is referred to as Computation-
In-Memory (CIM); otherwise, the result is produced
outside the memory core and the architecture is re-
ferred to as Computation-Out-Memory (COM). Both
CIM and COM can be further sub-classified.

• CIM: Computations in CIM either takes place
in the memory array (1) or peripheral circuit
(2) which are referred to as Computation-In-
Memory Array (CIM-A) and Computation-
In-Memory Peripheral (CIM-P), respectively.
Both sub-classes impact the design of the
memory, either the redesign of cells to support
computing within the crossbar, or special
circuits in the peripheral circuit such as
customized sense amplifiers [20], [21], or the
usage of ADCs [22].

• COM: Computation in COM take either
place in the extra logic circuits inside the
memory SiP (3) or in the traditional com-
putational cores (4) which are referred to
as Computation-Out-Memory Near (COM-N)
and Computation-Out-Memory Far (COM-F),
respectively.

Note that hybrid architectures are considered when
a primitive function can generate its results at
multiple computation positions, or an architecture
has multiple primitive functions, each with a
different computation position.

• Memory technology: it defined which technology
is used to implement the memory array. The
technologies includes conventional charge-based
memories such as DRAM/SRAM/Flash [23], [24],
[25] and emerging non charge-based memories [26].
The non charge-based memories include different
types distinguished by their physical mechanism;
these includes resistive [26], [27], ”magnetic”
memories [26], [28], [29], molecular memories [30],
[31], [32], [33], mechanical memories [34], [35], and
other types of memories, (i.e., molecular memories,
mechanical memories) that can currently not be used
for computing and are not discussed further in this
classification.

• Computation parallelism: it defines the level of par-
allelism that can be exploited in a computer system;
i.e., task, data, and/or instruction level parallelism.
In task level parallelism, a system has multiple inde-
pendent control units and data memories; examples
include multithreading [36], [37] and multicore sys-
tems [7]. In data parallelism, a system has a single
control unit is used to apply the same instruction
concurrently on a collection of data elements; ex-
amples includes data elements with constant sizes
(e.g., vector and array processor [38], [39]), and
varying sub-word sizes (e.g., SWAR (SIMD Within
A Register) processor [40], [41]). In instruction level
parallelism, a system has a single control unit is
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used to execute various instructions concurrently;
examples include intra-instruction (e.g., pipe-lined
processor [42] and inter-instruction (e.g., VLIW pro-
cessor [43]) parallelism. Additionally, they can be
combined together as in speculative processor [44].

2.2 Classification
Based on the above discussed metrics, 48 classes can be
differentiated; among them, 13 classes are occupied by the
existing architectures which are located in red planes and
pink planes. The red planes demonstrate that a lot of work
has been done for that particular class. The pink planes
demonstrate a moderate number of work has been done.
The blue planes demonstrate either unexplored classes due
to no attention yet of the research community, or non-
existing due to current restrictions of the memory tech-
nology. In the following sections, we will discuss all the
architectures in the red and pink planes.

3 COMPUTATION-IN-MEMORY - ARRAY (CIM-A)
The CIM-A class contains mostly resistive computing ar-
chitectures that use memristive-based logic circuits [45] to
perform computations and resistive RAM (RRAM) as mem-
ory technology. Few architectures have been proposed in
this category. Table 1 shows a brief comparison among the
architectures which will be explained in each subsection.

On one hand, all these architectures have several com-
mon advantages:

• Low memory bottleneck due to computing inside the
memory.

• High data parallelism due to the possibility of per-
forming concurrent operations inside the crossbars.

• Low leakage and small footprint due to the usage of
non-volatile memory technology.

On the other hand, they all share several limitations:

• High computing latency per access due to the high
latency of writing memristors and the need of multi-
ple write steps to perform Boolean functions. Note
that despite a high computing latency, the perfor-
mance can be still high when sufficient parallelism
is exploited.

• Higher endurance requirement due to the need of
multiple write steps to perform Boolean functions.

• Requires redesigning of the cell in order to make the
computing feasible.

The following subsections discuss the details and char-
acteristics of each architecture.

3.1 CRS: Complementary Resistive Switch Architec-
ture
Complementary Resistive Switch (CRS) architecture was
proposed in 2014 by A. Siemon, et al., from RWTH Aachen
University [46]. It is a memristor based architecture that
exploits data level parallelism using implication logic. The
architecture consists of multiple crossbars and a control unit
(as shown in Fig. 2 [46]). The crossbar stores and performs
logic operations using CRS cells; a CRS cell consists of

two resistive switches or resistive RAMs. The control unit
distributes signals to the intended addresses (wordlines and
bitlines) to perform operations on the crossbars.

The crossbar is controlled by a sequence of operations
including: write-in (WI), read-out (RO), write-back (WB),
and compute (CP). Before the operations can be performed,
the crossbar part used for computation is once entirely reset
to a logic value 0. The WI operation writes a logic value
into a memristor. The RO operation reads a logic value from
a cell; the logic output value is determined by the sense
amplifier. The RO operation is destructive and changes the
value of the memristor to logic value 1. The task of the
WB operation is to recover the destroyed value. Finally, the
CP instructions are used to execute the implication logic
gates [46], [47]. The data transfer between CRS cells is
carried out through the control unit using a RO and WB
operations; in other words, the control unit reads a value of
the source CRS cell and writes this value into the destination
cell.

In addition to the general advantages of CIM-A architec-
tures, CRS has the following advantages:

• It is less impacted by the sneak path currents due
to the usage of CRS cells. The cell’s resistance is
always equivalent to high resistance, hence, sneak
path currents are eliminated. However, variations in
resistances will make such paths practically unavoid-
able unless a 1T2R cell is used.

• CRS logic requires fewer cells to perform computa-
tions than FBL.

However, it also has the following limitations:

• The latency of the primitive functions varies and
requires read-out instructions to determine the volt-
ages that have to be applied.

• The RO operation is destructive, hence, a WB op-
eration is required after each RO operation, which
increases the latency and energy of computations.

• The data tranfer method is indirect as it is based on
the read-out and write-back scheme. As all cells have
high resistance, direct copying of cells in the crossbar
is not applicable.

• The control unit imposes a high overhead as it is
responsible for both controlling the crossbar (requir-
ing a large number of states) and transferring data
(which involves the usage of buffers/registers to
store temporary values).

• The area of CRS cells is larger than those based on a
single memristor cells.

• The architecture requires additional compiling tech-
niques and tools to convert conventional Boolean
logic functions to implication logic.

This architecture was only evaluated at circuit level us-
ing adders. Therefore, it is hard to make general conclusions
on the performance and the applicability of this architecture.

3.2 CIM: Computation-in-Memory
CIM was proposed in 2015 by H.A. Du Nguyen, et al.,
from Delft University of Technology [16], [17], [48]. It is a
memristor based architecture that exploits data level par-
allelism by using any memristor logic style; the authors
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nomenclature is introduced and the basic CRS logic concept is 

summarized. Then the inherent carry calculation capability of 

CRS devices is highlighted. In section III the novel adder 

schemes are explained, and in section IV the operation is 

verified by dynamical pulse simulations. In section V a 

comparison to Lehtonen’s and Kvatinsky’s adder approaches 

is drawn. Finally, in section VI the work is summarized and an 

outlook is given. 

II. COMPLEMENTARY RESISTIVE SWITCH-LOGIC 

A. Passive crossbar arrays 

Ultra dense ReRAM-based memory architectures will be 

hybrid architectures with a standard CMOS component which 

is responsible for controlling the passive crossbar arrays. 

These arrays will be fabricated on top of the CMOS layers in 

the backend of line (BEOL) [7]. In general, the size of the 

crossbar arrays should be sufficiently large to justify the 

control circuit overhead. Thus, either appropriate selector 

devices are required at each cross point, or complementary 

resistive switches should be applied [9].  

The basic idea underlying our approach is to extend the 

application of hybrid CMOS/crossbar architectures from pure 

memory operations towards logic-in-memory operations, by 

enabling a sequential access to the crossbar array devices [15]. 

Fig. 1a depicts a possible layout. The system could consist of 

many arrays and one control unit, which coordinates and 

addresses the signals to the specific wordlines (wl) and bitlines 

(bl). A typical array size could be for example 128 by 128 

lines. Fig. 1a shows a system using CRS crossbar devices with 

only two arrays (A0 and A1) and an array size 3 by 5 to 

illustrate the basic concept. The structure of array A0 is 

depicted below this system section, showing that every 

intersection of a word- and bitline is a CRS cell. These CRS 

cells will be referred to as AzCRSwlxbly (cmp. Fig. 1), where 

Az denotes the name of the array, in which the cell can be 

found, wlx denotes the wordline of the cell and bly denotes the 

bitline. Thus the CRS cell A0CRSwl2bl0 is found in array A0 

at intersection wl2 and bl0.  

 
Fig. 1 (a) Expected system section layout, which consists of two Arrays (A0 

and A1) and a control unit. (b) Each array has three wordlines (wl0, wl1 and 

wl2) and five bitlines (bl0, bl1, bl2, bl3 and bl4). The three red marked cells are 

used to compute a two bit addition. 

 

The control unit enables free communication between all lines 

and is a key element for consecutive logic. 

B. Complementary Resistive Switches 

CRS cells consist of two anti-serially connected ReRAM cells.  

A basic CRS operation in sweep mode is depicted in Fig. 2a. 

Both logic values ‘0’ and ‘1’ are represented by an in total 

high resistive state, since one cell is in HRS. ’0’ is represented 

by LRS/HRS and ‘1’ by HRS/LRS. The ‘ON’ state is only a 

transition state, which is reached while changing the inner 

state from ‘0’ to ‘1’ or back. Here a half select scheme (e.g. 

[19]) is applied, so that there are three different voltage levels 

available at the word- and bitlines, low, high and ground. The 

devices need steep switching kinetics, since the devices must 

enable switching with the maximum voltage across the device 

for a given time period. Additionally, the cells must prevent 

switching if half of the maximum voltage is applied during the 

same time period. Note that a very steep switching kinetic is 

an intrinsic feature of resistive switching devices [20, 21], thus 

passive crossbar arrays are feasible. 

C. CRS single-bit logic operations 

In [15] we introduced a CRS compatible ‘stateful’ logic 

approach. Fig. 2b represents a CRS cell as a finite state 

machine with two states. To switch from ‘0’ to ‘1’ the high 

potential, which is represented by the logical one ‘1’, needs to 

be applied at the wordline and the low potential, logical zero 

‘0’, at the bitline of the cell. Otherwise the machine will stay 

in the ‘0’-state. To switch from ‘1’ to ‘0’ the low potential 

needs to be applied at the wordline and the high potential at 

the bitline of the cell. Otherwise the cell will stay in the ‘1’-

state. 

The general logic equation to represent this behavior is given 

by [15]: 

( ) ( ) RIMP '  NIMP 'Z wl bl Z wl bl Z= +  (1) 

where wl is the wordline connected to the device and bl the 

bitline, Z’ is the device state prior to the application of the 

signals at wl and bl, and Z is the device state after applying the 

signals. As follows, if the device is in state ‘1’ (Z’ = ‘1’), the 

cell performs a reverse implication (RIMP) if the cell is in 

state ‘0’ (Z’ = ’0’) an inverse implication (NIMP) is 

performed. 14 out of 16 Boolean functions are directly 

feasible within this approach [15]. The XOR and XNOR 

functions can only be realized with a second CRS cell. Note 

that a computation on more than one device is feasible, if the 

wl or bl input is the same for these computations on different 

devices.  

Equation (1) must be considered as the basic equation to 

develop a synthesis tool for CRS-logic. For Borghetti’s imply 

logic a few approaches for such a tool were presented [17, 22]. 

D. CRS carry bit and sum bit calculation 

An adder is the first step from basic logic operations towards 

complex arithmetic operations, since in CMOS all basic 

arithmetic operations (multiplier, divider and substractor) are 
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Fig. 2: Complementary Resistive Switch-logic Crossbar Ar-
ray (CRS) [46]

have showed the potential of this architecture using Fast
Boolean Logic (FBL) [49] and implication logic [46]. The
architecture consists of a memristor crossbar, and a control
and communication block as shown in Fig. 3 [17]. The
memristor crossbar stores data and performs computations.
The control and communication block applies appropriate
voltages to the memristor crossbar.

The architecture uses state machines stored in the con-
trol and communication block to compute and transfer data
in the crossbar. Once triggered, the state machine applies
an appropriate sequence of control voltages to the rows
and columns of the memristor crossbar. Depending on the
memristor types, the data transfer occurs directly inside the
crossbar (for single RRAM cells) or indirectly through the
control and communication block outside the crossbar (for CRS
cells) using the CRS read-out/write-back scheme.

In addition to the general advantages of CIM-A architec-
tures, CIM comes with the following advantage:

• The architecture can accommodate any type of mem-
ristor logic design due to the flexibility of the control
and communication block.

• In case FBL is used, the latency of primitive functions
(i.e., addition, multiplication) is a constant number.

• The data transfer using both direct and indirect
schemes has been intensively explored in [50], [51].

• The control block of FBL is less complex than the
control block of implication logic due to a fixed
number of write steps and a simpler control voltage

scheme [49].
• In case single RRAM cell is used, the write energy

and area of a RRAM cell is smaller in comparison
with a CRS cell.

However, it also has the following limitations:

• The architecture has to deal with sneak path cur-
rents in case a single RRAM cell (0T1R) is used as
multiple rows and columns are activated simulta-
neously. Possible solutions to alleviate the problem
consist of isolating each FBL circuit, or the usage
of a transistor-memristor (1T1R) structure to actively
control each memristor using a transistor [52], [53],
or isolated/half select voltages [54], [55].

• In case FBL is used, typically a lot of cells are required
due to LUT based computing.

• In case CRS cells are used, the same drawbacks
of CRS architecture applies, i.e., a larger cell area,
the control unit imposes a high overhead as the
controllers are responsible for both controlling the
crossbar and transferring data, and it requires ad-
ditional compiling techniques and tools to convert
conventional Boolean logic functions to implication
logic .

The potentials of the architecture are demonstrated using
a case study of a binary-tree based parallel adder and
multiplier [48], [56]; the architecture is compared with a con-
ventional multicore architecture. CIM architecture achieves
at least one order of magnitude improvements in terms of
delay, energy and area.

3.3 MPU: Memristive Memory Processing Unit

MPU was proposed in 2016 by R. Ben Hur, et al., from
Technion-Israel Institue of Technology [57]. It is a memristor
based architecture that exploits data level parallelism us-
ing Memristive-Aid loGIC (MAGIC) [58]. The architecture
consists of a conventional processor, MPU controller and a
memristive memory as shown in Fig. 4. The processor con-
tains a control unit, an arithmetic and logic unit, and a mem-
ory controller. The MPU controller includes a Processor-
In/Out block to interface to the conventional CPU, control
blocks to execute specific commands (arithmetic, set/reset,
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Fig. 1: CIM Architecture Overview

parallel adders in the memristor crossbar, i.e., one based on
implication logic and one on Boolean logic.

To our best knowledge, this is the first publication that
considers the cost of the entire system (i.e., the crossbar and
CMOS controller). The delay, area and energy costs of the
CMOS controller, peripheral circuits (required to read and
write to the crossbar), and the crossbar itself are analyzed.
In addition, we evaluate the scalability of the parallel adder
for both implementations and discuss their advantages and
disadvantages.

The rest of this paper is structured as follows. Section II
briefly describes the parallel addition algorithm, CIM archi-
tecture, and how the parallel adder algorithm is mapped on the
crossbar. Section III presents the state-of-the-art of memristor
adders and selects the two best memristor adders. These two
adders are used in Section IV to build the memristor-based
parallel adder. In this section, we discuss all implementation
aspects (i.e., memristor crossbar, interconnect network, periph-
eral, CMOS controller). Section V provides a performance
comparison between the two implementations, and discusses
their advantages and disadvantages. Finally, Section VI con-
cludes this paper.

II. COMPUTATION-IN-MEMORY PARALLEL ADDER

In this section, we briefly explain the high-level design of
CIM parallel adder design [44]. First, we describe its algorithm
and the CIM computing paradigm. Thereafter, we map the
algorithm on CIM. Finally, we conclude with the potentials of
the CIM parallel adder.

A. Parallel Addition Algorithm

Fig. 1a shows the parallel addition that is based on a
reduction tree that computes the sum of multiple numbers. All
the inputs n1 to nN are added in the first stage in pairs, where
N the number of inputs. Subsequently, the obtained partial
results are added in successive stages until the final result
(sum) is obtained. The parallel addition algorithm is based
on the binary reduction tree and has a log2(N) lower bound
time complexity. This complexity is realized when enough
available resources are available (e.g., adders) to perform all
additions in each stage concurrently. Furthermore, the results
of each stage are fed directly to the next stage with a minimum
communication cost.

B. Computation-in-Memory Architecture

The CIM architecture consists of three components (see also
Fig. 1b):
• A memristor crossbar, which consists of interweaved

computation and storage units mapped on the grid where
memristors are placed at horizontal and vertical nano-
wire junctions.

• A control and communication unit, which applies control
signals to the memristor crossbar; memristors are passive
devices, and as such, they need to be controlled with
conventional CMOS logic. Furthermore, this block en-
ables communication within the memristor crossbar using
nano-wires and/or metal wires.

• A peripheral circuit is required to interface between the
controller and memristor crossbar. It consist of voltage
drivers, sense amplifiers, etc. Note that the peripheral
circuit is not depicted in Fig 1b.

The CIM architecture has the following major advantages
over classical architectures:
• Flexibility: the placement of computation and storage

units is flexible and optimized based on application-
specific requirements to enable local communication; this
leads to low latency.

• Massive parallelism: as computation and storage units are
tightly coupled in the same physical memristor crossbar,
the memory bottleneck is reduced. Hence, a huge amount
of operations can be performed in parallel. Due to the
memristor’s hysteresis curve, they can be used both for
logic and memory [43,45].

• Low area: due to its small feature size of 4F 2, the
memristor crossbar requires a low area.

• Low energy: as memristors have zero leakage, only
dynamic energy has to be considered [46].

C. Parallel Adder

In our previous work [44], we mapped the parallel addition
algorithm on the memristor crossbar referred to as CIM
parallel adder. Due to a flexible placement, the communi-
cation between memory and logic units can be optimized
by exploiting application-specific computational and storage
patterns. For example, an h-tree layout is considered in the
CIM matrix multiplier presented in [47]. Fig. 2 shows the
proposed organization of adders and storage units for the
parallel adder of N inputs; this layout is selected due to its
area efficiency.
The parallel addition algorithm based on the binary reduction
tree (Fig. 1a) is split into two parts. The lower part of the
tree with corresponding inputs ni (1 ≤ i ≤ N/2) is used
to add the first half of the inputs; their corresponding adders
are mapped from left to right on the memristor crossbar (see
Fig. 2). To optimize the area and keep a regular structure, the
upper part of the tree is mapped from right to left. The results
of these two parts are finally added together in the middle
of the memristor crossbar (see sum in Fig. 2). This mapping
minimizes the communication between the adders and storage
units, simplifies the interconnect network and reduces the
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Fig. 3: The Computation-In-Memory Architecture (CIM) [48]

read and write block) and a output multiplexer to ap-
ply appropriate voltages to specific rows/columns of the
memristive memory. The conventional processor sends an
instruction to the memristive memory using its own mem-
ory controller and the MPU controller. The memory con-
troller of the processor recognizes the memristive memory
instructions in a similar manner as conventional memory
operations, while the MPU controller determines whether
to treat the memristive memory as a storage element or a
processing element. Based on that, the MPU controller ap-
plies read/write signals or a sequence of signals to perform
logical or arithmetic operations.

The MPU controller uses the Processor-In unit to divert
the instructions to specific blocks (such as arithmetic, read
and write blocks) responsible for the execution of those
operations. Each block determines the appropriate voltages
that have to be applied to the memristive memory. The
set/reset, read and write block have a latency of 1 cycle,
while the arithmetic block requires multiple cycles to ex-
ecute a vector operations using MAGIC logic [58]. Data
movements in the crossbar are performed directly using
copy and INV (double negation) operations.

In addition to the general advantages of CIM-A architec-
tures, MPU comes with the following advantages:

• The latency of MAGIC primitive functions is fixed.
• The data transfer may include direct (based on copy-

ing) and indirect (based on read-out/write-back)
schemes.

• The MPU controller is simpler than for the CRS
architecture, as each operation consists of a fixed
number of steps while less control voltage values are
used.

• The write energy of a single MAGIC cell is smaller in
comparison to those of a CRS cell.

• MAGIC requires in comparison to FBL fewer cells to
perform computations.

However, it also has the following limitations:

• The architecture has to deal with sneak path currents.
Possible solutions are mentioned in Section 3.2.

• The control voltages used in MAGIC have to satisfy
the constraint 2Vreset<Vw<Vset, where Vset is the
minimum voltage required to switch a memristor
from RH to RL, and Veset is the minimum voltage

  
 

  

Since vector operations benefit most from stateful logic, most 
of the extended ISA are actually vector instructions. 

To execute an instruction within the MPU, the memory 
controller sends the MPU commands along with conventional 
read and write commands to the MPU, using an extended 
conventional processor-memory interface protocol (e.g., DDR4 
protocol). The command is received by the MPU controller, 
which interprets it, convert the command into a sequence of 
MAGIC operations, and then sends the corresponding control 
signals in order to execute the operations within the memristive 
memory. These control signals are converted into applied 
voltages across all wordlines and bitlines of the memristive 
memory by using single analog multiplexers with digital select 
inputs for all wordlines and bitlines, as shown in Figure 3. 
Based on the applied voltages, the resistance of the output 
memristors may change, thus the logical state of the memory 
cells is updated, according to the result of the computation. As 
described in Section 2, the data within the memory acts as the 
input of the logical operations and the result is immediately 
stored within the memory cells, without the need to transfer 
data out of the memory array. As a result, the use of MPU 
allows alleviating the memory wall, and reducing the system 
energy. 

IV. MPU CONTROLLER 

A. General Description and Work Principle 
MPU controller is responsible for performing the required 

operations within the memory. The processor sends to the MPU 
controller standard read and write instructions as well as 
processing commands. Based on the message from the 
processor, the controller dynamically decides whether an 
element is a data storage element or a processing element. To 
execute a conventional read or write operation, the controller 
sends the suitable control signals to all bitlines and wordlines 
of the addressed memristors (depending on the addresses 
received from the processor). Using analog multiplexers, the 
control signals determine which voltage(s) to apply (e.g., VSET, 
VRESET, VREAD, as described in Section II-A) to each bitline and 
wordline. 

Performing processing tasks is more complicated since it 
requires a sequence of logical steps. The MPU controller 
receives macro-instructions from the processor, and breaks 
them into numerous micro-instructions. These micro-

instructions are built on several levels of abstraction, where the 
lowest level is the basic logical operation (i.e., MAGIC NOR 
operation). The MPU controller pipelines the control signals to 
the memory, changing the applied voltages on each memory 
clock cycle. Pipelining the micro-instructions maximizes the 
processing efficiency in terms of speed and energy. 

We have designed such an MPU controller in VHDL 
environment. The general structure of the MPU controller is 
illustrated in Figure 4. An instruction which is sent to the MPU 
controller enters the 'Processor In' block which interprets it, and 
sends it for further interpretation to the suitable block, 
depending on the command type. The available block types are: 
read, write, SET/RESET and arithmetic. Read and write 
commands are similar to conventional memory commands. 
SET and RESET commands writes, respectively, ones or 
zeroes to areas with dynamic sizes. The MPU controller uses 
these commands to clear areas of the memory during different 
stages of the computation processes, or while initializing the 
memory. While these three block types perform the operation 
by applying voltages during a single clock cycle, the arithmetic 
block requires multiple clock cycles to execute different logic 
and arithmetic operations. The exact number of steps depends 
on the operation type and vector size. In each step (clock cycle) 
of the computation, different voltages are applied to the bitlines 
and wordlines, executing NOR operations in different 
locations. The arithmetic block is discussed in details in the 
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Figure 4. MPU controller block diagram. 
Fig. 4: The Memristor Memory Processing Unit (MPU) [57]

required to switch a memristor from RL to RH ; in
other words, it requires that the memristors have a
higher Vset than Vreset, leading to an unbalanced
hysteresis loop. This limits the types of memristors
that can be used for MAGIC.

• The architecture requires additional compiling tech-
niques and tools to convert conventional Boolean
logic functions to MAGIC gates.

The potential of the architecture is demonstrated by per-
forming a logical bit-wise OR operation of two 8-bit vectors
in 20 steps. The latest research has shown that MAGIC can
be used for several arithmetic operations such as addition,
multiplication, etc. [59], [60], [61].

3.4 PLiM: Programmable Logic-in-Memory Computer

PLiM was proposed in 2016 by P. Gaillardona, et al., from
EPFL [62]. It is a memristor based architecture that exploits
data parallelism using majority logic [63]. The architecture
consists of a resistive memory organized in banks and a
Logic-in-Memory (LiM) controller block as shown in Fig.
5. The memory is a memristive crossbar that stores both
the instructions and data. The LiM controller is composed
of a number of registers and a finite state machine (FSM).
The controller functions as a simple processor; it fetches
instructions from the memory array, decodes and executes
the operation inside the memory.

The LiM controller operates in two modes: conven-
tional memory read/write mode and in-memory instruction
mode. In the read/write mode, the FSM is deactivated, and
the memory array is read or written in the same manner as a
standard memory. In the in-memory instruction mode, FSM
is activated, and an instruction is performed using majority
logic gates inside the memory. Once the FSM is enabled, the
following operations are performed. First, the FSM resets all
registers in the LiM controller. Second, an instruction is read
from the address in the program counter (PC) and decoded
to obtain the addresses of the two operands and output; the
addresses of the two operands are stored in registers @A and
@B, while the output address is stored in register @Z. Third,
the value of the two operands are read using the addresses
in registers @A and @B; the obtained values are stored in
registers @A and @B, respectively. Fourth, depending on the
logic values (0 or 1) of the operands, appropriate voltages
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control FSM and few registers. With this architecture, the
program and data are loaded in the memory array and a
bit-level addressing is required. Program code generation is
discussed in the following sections.
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D. Elementary Logic Operations on the Memristive Array
Boolean AND and OR operations can be emulated using

the Resistive Majority operator. A majority operator reduces
to AND/OR logic when one operand is set to constant 0 and
1, respectively. We present the following exemplary machine
code for the PLiM controller module in order to perform C
= A.B and C = A+B. The operations are directly performed

on the storage of C. C is pre-programmed to either 0 or 1 de-
pending on the Boolean operation. Note that direct addressing
is used for constants for which the @ sign is not used.

AND
1: 0, 1, @C; //C=0 2: 0, 1, @Binv; //Binv=0
3: 1, @B, @Binv; //Binv=B 4: @A, @Binv, @C; //C=A.B
OR
1: 1, 0, @C; //C=1 2: 0, 1, @Binv; //Binv=0
3: 1, @B, @Binv; //Binv=B 4: @A, @Binv, @C; //C=A+B
A bit-level addressing is required for operations that ma-

nipulate and rearrange bits within a word. For example, the
following machine code implements a 1-bit left rotate on a 4-
bit array Z = Z3Z2Z1Z0, with X and Y as auxiliary locations:

1-BIT LEFT ROTATE
01: 0, 1, @X; 02: 1, @Z3, @X; // X = Z3

03: 0, 1, @Y; 04: 1, @Z2, @Y; // Y = Z2

05: @Z2, @Y, @Z3; // Z = Z2Z2Z1Z0

06: 0, 1, @Y; 07: 1, @Z1, @Y; // Y = Z1

08: @Z1, @Y, @Z2; // Z = Z2Z1Z1Z0

09: 0, 1, @Y; 10: 1, @Z0, @Y; // Y = Z0

11: @Z0, @Y, @Z1; // Z = Z2Z1Z0Z0

12: 0, 1, @Y; 13: 1, @X, @Y; // Y = X = Z3

14: @Y, @X, @Z0; // Z = Z2Z1Z0Z3

E. RM3 Instruction Simulation
We validate the presented RM3 by running electrical sim-

ulations on a resistive memory array.
We consider a simple 4×4 bits memory array built using a

dynamic Valence Change Mechanism (VCM) model fitted on
experimental kinetics data and a bipolar rectifying selector.
Full details about the compact model are available in [17].
Each memory cell implements the basic RM3 operator. Here,
the input Z corresponds to the resistive state, while P and Q

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 429

Fig. 5: The Programmable Logic-in-Memory Computer
(PLiM) [62]

are applied to the crossbar at address @Z to perform a
majority logic gate. Finally, the PC is incremented by one.

In addition to the general advantages of CIM-A architec-
tures, PLiM has the following advantages:

• The data transfer may include both direct and indi-
rect schemes.

• The write energy and area of a memristor cell is
smaller as compared to a CRS cell.

However, it also has the following limitations:

• The latency of majority primitive functions varies
depending on the functional complexity and some
read-outs are required to determine the voltage val-
ues to be applied.

• The architecture has to deal with sneak path currents.
Possible solutions as mentioned in Section 3.2.

• The LiM controller is complex as it has to determine
the control voltage values based on the operands’
values.

• The architecture requires additional compiling tech-
niques and tools to convert conventional Boolean
logic functions to majority logic gates.

The architecture is evaluated with a PRESENT Block
Cipher algorithm [64], which encrypts a 64-bit plain text
with an 80 or 128-bit key. The algorithm is compiled into
a sequence of majority logic gates and executed on PLiM.
Unfortunately, the results show that PLiM’s performance is
almost a factor of two slower than a 180nm FPGA imple-
mentation [64].

3.5 ReVAMP: ReRAM based VLIW architecture
ReVAMP was proposed in 2017 by D. Bhattacharjee, et al.
from Nanyang Technological University [19]. It is a mem-
ristor based architecture that exploits data parallelism using
majority logic. The architecture consists of an Instruction
Fetch (IF), Instruction Decode (ID), and Execute (EX) stage.
The IF block fetches instructions from the Instruction Mem-
ory using the program counter (PC) as address, and puts the
resulting instruction in the Instruction Register (IR). The ID
block decodes the instruction and generates control signals
which are placed in the control registers of the EX block. The
EX stage finally executes the instruction.
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The IF and ID stages are similar to those of the traditional
five-pipelined RISC architecture. The IF stage includes an
Instruction Memory (IM) and a Program Counter (PC). The
ID stage contains registers (IR and Primary Inputs), and an
Instruction Decode and Control Signal Generation. The EX
stage consists of several registers (i.e., Data Memory Regis-
ter (DMR), Primary Input Register (PIR), Mux control (Mc)
register, Control (Cc) register, Wordline (Wc) register), as
well as a crossbar interconnect, wordline select multiplexer,
data Source Select multiplexer, and a Write circuit to control
the crossbar that stores data. Once an instruction is fetched
and decoded in IF and ID, respectively, the control registers
in EX are filled with suitable values. These values control
the multiplexers that are responsible for applying the right
control signals to the crossbar. Depending on the operation,
primary inputs from PIR or data retrieved from the crossbar
stored in DMR can be used for the next operation. The cross-
bar interconnect permutes the inputs and control signals
(indicated by Cc) to generate the voltages that need to be
applied to the memory crossbar. The Write circuit applies
these voltages to the targeted wordline address (indicated
by Wc).

In addition to the general advantages of CIM-A architec-
tures, ReVAMP has the following advantages:

• The data transfer may include direct (within the
crossbar based on copying resistance values) and
indirect (based on read-out/write-back) schemes.

• The crossbar is based on only one device per cell,
resulting in a more compact architecture as compared
with other architectures which make use of two de-
vices per cell (i.e., Complementary Resistive Switch
CRS [46]).

However, it also has the following limitations:

• The latency of majority primitive functions varies
depending on the functional complexity; in addition,
before any operations are applied to the cells, these
cells first have to be read-out in order to determine
the appropriate control voltages.

• The architecture has to deal with sneak path currents.
Possible solutions to alleviate the problem consist
of isolating each tile/crossbar, or using a transistor-
memristor (1T1R) structure to actively control each
memristor using a transistor [52], [53], or using iso-
lated/half select voltages [54], [55], [65].

• The EX stage is complex as it integrates both the
control signals for memory and computations. There-
fore, it is not easy to pipeline this architecture, as
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the EX stage will consume more time than the other
stages; i.e., the stages IF, ID, and EX are not balanced.

• The architecture requires additional compiling tech-
niques and tools to convert conventional Boolean
logic functions to majority logic gates.

The architecture is simulated and evaluated using EPFL
benchmarks [66] and compared against PLiM [62], which is
based on a resistive memory with the same logic style.

3.6 DRISA-3T1C: A DRAM-based Reconfigurable In-
Situ Accelerator with 3T1C design
DRISA-3T1C was proposed in 2016 by S. Li, et al. from
University of California [67]. It is a DRAM based architec-
ture that exploits data parallelism by performing NOR gate
inside DRAM cells [63]. The architecture consists of a DRAM
memory organized in a hierarchy of banks, sub-arrays and
mat; each levels are controlled by their corresponding con-
trollers as shown in Fig. 7(a),(b) and (c). The banks are
connected through global bus (gbus) while communication
among subarrays are carried out using bank buffers (bBuf).
The mats perform both data storage and computations.

The memory mats consist of cell regions for both data
and computations, and peripheral circuits including calc-
SA, intra/inter-lance shifter (SHF) and lane forwarding
unit (FWD). The cell regions contains multiple DRAM cells
which consists of three transistors connected to form a NOR
gate and one capacitor to store the data value. In order
to perform computations, two DRAM cells (Rs and Rt) to
be activated simultaneously and one DRAM cell (Rr) to
store the computation result (as shown in Fig. 7). Read
voltages are applied to the sources DRAM cells (Rs and Rt)
through the wordline (rWL) while write voltage is applied
to the result DRAM cell (Rr). The voltage collected by the
sense amplifier (SA) is used to control the transistor in
the Rr DRAM cell. Due to the NOR organization of these
transistors, a NOR operation is realized and produce results
in DRAM cells. The SA (also called calc-SA) cooperates
with extra logic circuitry such as SHF and FWD to perform
complex functions such as addition, copy and inner product.

In addition to the general advantages of CIM-A architec-
tures, DRISA-3T1C has the following advantages:

• The latency of NOR primitive functions is fixed.
• The data transfer may include both direct and indi-

rect schemes.
• The architecture does not suffer destructive read as

in the case of CRS architecture [46], hence the write
energy might be less due to the absence of write-
after-read.

• The controller is simpler than for the CRS architec-
ture, as each operation consists of a fixed number of
steps while fewer control voltage values are used.

• The architecture uses DRAM technology, which has
several benefits such as: high maturity and en-
durance, no sneak path currents, and the accessibility
to optimized architectures, technology and tools.

However, it also has the following limitations:

• The latency of complex functions varies depending
on the functional complexity as each function needs
to be converted into multiple NOR gates.

• The architecture uses DRAM technology which suf-
fers from a low performance, high energy consump-
tion, large footprint and is difficult to scale down.

The architecture is simulated and evaluated against GPU
TITAN X [68] using four CNN applications including 8-layer
AlexNet [69], 16-layer VGG-16 [70], 19-layer VGG-19, and
152-layer ResNet-152 [71].

4 COMPUTATION-IN-MEMORY - PERIPHERALS
(CIM-P)
The CIM-P class consists of architectures which perform
computations during read-out operations (i.e. 2 or more
word lines are activated simultaneously) using special pe-
ripheral circuitry. Such operations are typically analog in
nature. As there are less restrictions on the functionality of
the cell, various memory technologies can be used in this
category such as DRAM, SRAM and non-volatile memory
technologies. A medium number of architectures have been
proposed in this category. Table 2 shows a brief comparison
among the architectures which will be explained in each
subsection.

On one hand, these architectures have several common
advantages:

• Low memory bottleneck as the results are produced
in the peripheral circuitry which is connected directly
to memory array.

• High parallelism due to the the possibility of per-
forming multiple concurrent operations.

• High performance as computations are performed in
a single read step.

• Relatively simple controllers as the operations are
constructed in a similar manner as for conventional
memory (read/write) operations.

• Higher compatibility with available memory tech-
nologies, because redesigning cells would induces a
huge cost for the vendors.

• Lower endurance requirement as operations are
based on reading instead of writing [21].

On the other hand, they all share the following limita-
tions:

• Overhead to align data; note that each operations
requires the data to be aligned in the memory. There-
fore, if the operands are not located in the same
crossbar, data transfer operations are required.

• Additional write overhead when the results have
to be stored back in to the memory. Note that the
outputs are produced as voltages in the peripheral
circuit, and therefore, if the results have to be stored
back in the memory extra write operations would be
necessary.

• Complex peripheral circuits (as they have to be mod-
ified) limit the scalability and could also dominate
the area of the memory core.

• The level of parallelism is determined by the pe-
ripheral circuit. More parallelism leads to larger and
complex peripheral circuits.

• Hard to implement arithmetic operations and as of
today mainly limited to bitwise logical operations.
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• As the equivalent voltage or current of two or more
accessed cells may end up in multiple levels, com-
plex sense amplifiers are required.

The following subsections discuss the details of each
architecture.

4.1 ReAP: Resistive Associative Processor

ReAP was proposed in 2014 by Y. Leonid, et al. from
Technion-Israel Institute of Technology [72]. ReAP is a
RRAM based architecture that exploits data parallelism
using LUTs implemented with Contend Addressable Mem-
ories (CAMs) to perform computations. The architecture
consists of a crossbar of resistive CAM cells and peripheral
circuits including sense amplifiers and registers (as shown
in Fig. 8). A CAM cell consists of two resistive RAM cells
which store the true and complement value of a single
bit. Multiple CAM cells are used to create a look-up-table
(LUTs); together they implement a specific function (e.g. a
1-bit full-adder). In case ReAP is active, it performs a compare
the inputs (stored in register KEY with the LUT words and
produce in case a match occurs the corresponding outputs
in TAG registers.

The compare operation is performed in a similar manner
as in conventional CAMs. First the Match/Word line is pre-
charged. Thereafter, the values in KEY are applied to the bit-
lines depending on the MASK value; if a bit is masked, it is
kept floating. If the KEY matches the content on a particular
wordline, the TAG will generate the value ’1’ at the output,
otherwise ’0’. For example, in case a key bit is one, both
the true (i.e., low resistance) and complement value (i.e.,
high resistance) will keep the floating word line high in
case a one is stored. In case the cell holds a zero, i.e., the
true memristor has a high resistance and complement a
low resistance value, the complement path will discharge
the Match/Word line. Similar conclusions can be drawn in
case the key bit is 0. In order to execute a more complex
function, LUTs can be reconfigured. In such cases the output
of the LUT is fed back to input of the same LUT but with a
different configuration. Another option is to implement the
function using multiple LUTs.

In addition to the general advantages of CIM-P architec-
tures, ReAP has the following advantages:

• The architecture is used as an accelerator, which has
a positive impact on the endurance due to infrequent
use [73], [74]. In contrast, some CIM-P architectures
are used as main memory and they require a much
higher endurance.

nanoscale storage elements (memristors). Memristors are two-ter-
minal devices, where the resistance of the device is changed by the
electrical current or voltage. The resistance of the memristor is
bounded by a minimum resistance RON (low resistive state, logic
‘1’) and a maximum resistance ROFF (high resistive state, logic ‘0’).

A variety of CAM designs, including hybrid CMOS/Magneto-
resistive, CMOS/STT-MRAM, and CMOS/memristor, as well as
memristor-only schemes have been developed [4], [6], [8], [16],
[17]. In this paper, we introduce a ReRAM crossbar based Resistive
Associative Processing Array (Fig. 3a), where each bitcell (Fig. 3b)
consists of a pair of neighboring ReRAM bitcells, formed by a non-
linear bipolar memristor that effectively has a diode for preventing
sneak paths [4], [13]. The second memory bit serves as a comple-
mentary bit. The advantage of this approach (relative to previous
work) is that it requires no special CAM design. It enables a dual
use, where the crossbar array can be operated either as an associa-
tive processing array or a conventional ReRAM.

The top level architecture of the ReAP (Fig. 3a) closely follows
the CMOS based AP architecture of Fig. 1, except for the associative
processing array which is memristor based. The Word and Match
lines, separate in CMOS AP, are combined in the ReAP.

Compare in ReAP is similar to compare operation in resistive
CAM [4]. The Match/Word line is precharged and the key is set on
Bit and Bit-not lines. In the columns that are ignored during
comparison, the Bit and Bit-not lines are kept floating. If all
unmasked bits in a row match the key (i.e., when Bit line ‘1’ is
applied to an RON memristor and Bit-not line ‘0’ is applied to an
ROFF memristor, or vice versa), the Match/Word line remains high
and ‘1’ is sampled into the corresponding TAG bit. If at least one
bit is mismatched, the Match/Word line discharges through an
ROFF memristor and ‘0’ is sampled into the TAG.

Write operation is performed in two phases. First, the V > VON

voltage (where VON is a threshold voltage required to switch to the
“on” state) is asserted to applicable Bit lines (to write ‘1’s) and Bit-
not lines (to write ‘0’s). Second, the V < VOFF voltage (where VOFF

is a threshold voltage to switch to the “off” state) is asserted to Bit-
not lines (to complement the ‘1’s) and Bit lines (to complement
‘0’s). The write affects only the tagged rows.

Compare followed by a write operation are illustrated in Fig. 4,
which shows a fragment of ReAP storing ‘0110’ in the first row and
‘0101’ in the second row; The ReAP content is compared with the
‘011x’ key and a new ‘1xxx’ key is written in the tagged (first) row.

In ReAP, sneak currents affect the compare operation (rather
than read operation in a standard ReRAM crossbar). More specifi-
cally, there are sneak paths leading from a matching Match/Word
Line (which is supposed to retain ‘1’) through neighboring mis-
matching Match/Word Lines to the ground. The purpose of per-
cell diode [4], [13] is to terminate such sneak path, so that current
can only flow from a Match/Word Line to the ground (through a
Bit Line) in one direction.

ReCAM behavior is verified and its performance and energy
figures are obtained by SPICE simulations using memristor TEAM
model [15].

Utilizing a ReRAM crossbar as CAM enables a ReAP bitcell
of 8F 2=k footprint (where k is the number of vertically inte-
grated memristor layers [4]). Such level of integration allows
placing 100M (k ¼ 1) 256-bit PU AP on a single silicon die. To
compare, the CMOS based 10-transistor AP bitcell (cf. Fig. 1b)

area is approximately 250F 2 [9], limiting the AP to 4M PU in the
same silicon area.

The switching time of memristor may reach the range of a hun-
dred picoseconds [1], allowing GHz AP operation. The energy con-
sumption during compare is less than 1fJ per bit. Unfortunately,
the write energy is in the range of few tens of fJ per bit [8], which is
prohibitively high for a 100M PU ReAP, as we show below in
Section 4. However, write energy is dependent on material the
memristor produced of. Discovering more efficient memristor
materials will likely result in lower write energy consumption.

Fig. 1. AP: (a) Top-level view. (b) Tag logic and CMOS NOR-type bitcell.

Fig. 2. Vector Addition in AP: (a) Memory Mapping. (b) Full Adder Truth Table.

Fig. 3. (a) Resistive AP. (b) ReAP bitcell.

Fig. 4. Compare and write in ReAP.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 14, NO. 2, JULY-DECEMBER 2015 149

Fig. 8: Resistive Associative Processor (ReAP) [72]

• Computing based on LUTs is quite mature (e.g., in
FPGA’s) and can benefit from existing techniques
and tools.

• The architecture uses non-volatile memory, hence
consumes a low amount of energy and has a small
footprint.

However, it also has the following limitations:

• Computations using LUTs can be inefficient if the
number of inputs per LUT is large. If multiple
smaller LUTs are used the latency becomes higher.

• The data transfer consists of an indirect read-out
scheme.

• The architecture has to deal with sneak path currents.
Possible solutions are mentioned in Section 3.2.

• The write operations of this architecture may suffer
from high energy consumption, as two memristors
are written per CAM cell.

• The architecture might not exploit the full memory
bandwidth, as it is challenging to fit all sense ampli-
fiers into the memory core.

• The architecture requires additional compiling tech-
niques and tools to convert conventional Boolean
logic functions to CAM based LUTs.

The architecture was evaluated analytically using several
benchmarks [75] such as N-pairs Black-Scholes option pric-
ing, N-point Fast Fourier Transform, and Dense Matrix Mul-
tiplications. They compared the results of these benchmarks
on ReAP with two other platforms: a CMOS equivalent of
ReAP denoted by CMOS-AP and GTX480 GPU.
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Hierarchy
level

Computations Memory
Technol-

ogy

Overheads Sneak
path

current
Destructive

read

Required
read-out*

Copy
scheme

Evaluation

Logic
style

Available
functions

Cells Periphery Controller Simulator App.

ReAP Accelerator CAM LUT-based NVM RRAM Modif. Simple Yes No No Both Analytical Arithmetic
PRIME Main memory NN. MM. NVM RRAM Modif. Simple Yes No No Both Analytical Arithmetic
ISAAC Accelerator NN. MM. NVM Memristor Modif. Simple Yes No No Both Analytical CNNs&DNNs
Ambit Accelerator Bool. Logical DRAM 1T1C Modif. Simple No No No Both Rambus Bitwise

Pinatubo Main memory Bool. Logical NVM Memristor Modif. Simple Yes No No Both In-house Bitwise
CIMA Accelerator Bool. Logical NVM Memristor Modif. Simple Yes No No Both Analytical Bitwise

STT-CiM Accelerator Bool. Logical,+, NVM STT-
MRAM

Modif. Simple Yes No No Both STT-CiM
Sim.

(1)

S-AP Accelerator Bool. Logical,+ SRAM 8T Modif. Simple No No No Both VASim ANMLZoo
&Regex

DPP Accelerator Bool. Logical,+,* NVM RRAM Modif. Simple Yes No No Both TensorFlow,
CACTI

PARSEC

R-AP Accelerator MM. Logical,+,* NVM RRAM Modif. Simple No No No Both Hspice No
DRISA-1T1C Accelerator AND,

OR,
NOT

Logical, +,
inner prod-
uct

DRAM 1T1C Modif. Simple No No No Both CACTI-
3DD,
in-house

CNN

IMI Accelerator AND,
XOR

Logical,+ DRAM 2T2C Modif. Simple No No No Both PISA-
CAKE

(2)

Compute$ Cache AND,
NOR,
XOR

Logical,+,*,
copy, search

SRAM 6T Modif. Simple No No No Both SniperSim (3)

Neural$ Cache NN. MM. SRAM 8T Modif. Simple No No No Both Prototyped Inception v3
+: n-bit addition Conv.: Conventional (*): Required read-out during computations
x: n-bit multiplication Modif.: Modified App.: Applications and benchmarks
NVM: Non-volatile memory MM.: matrix multiplication Analytical: Analytical model
NN.: Neural network Bool.: Boolean STT-MRAM: spin-transfer torque magnetic RAM
STT-CiM Sim.: STT-CiM device to architecture evaluation framework
(1): string matching, text processing, low-level graphics, data compression, bio-informatic, image processing and cryptography
(2): Gaussian Blur, Alpha Blend, CSV Parsing, ShA1, and Image Fusion
(3): WordCount, StringMatch, DB-BitMap, BMM, and checkpointing

TABLE 2: Comparison among Architectures of CIM-P Classes

4.2 PRIME: A Processing-in-Memory Architecture for
Neural Network Computation in ReRAM-based Main
Memory

PRIME was proposed in 2016 by C. Pinga, et al., from
University of California [76]. PRIME is a resistive RAM
based architecture that exploits data level parallelism to
perform computations for neural networks (i.e., weighted
vector-matrix multiplication) using high-precision multi-
level sense amplifiers and some extra logic circuits. The
architecture consists of a CPU and multiple RRAM banks;
each RRAM bank contains multiple memory crossbars
(mem subarrays), full function (FF) and buffer subarrays, as
shown in Fig. 9. The CPU sends instructions to the resistive
RAM banks; an instruction is either a memory operation
(read/write) or a neural network computation. The memory
bank performs the request without blocking the CPU, i.e.,
the CPU continues executing (different) instructions simul-
taneously. The results are returned to the CPU for further
processing.

In the resistive RAM banks, the memory crossbars store
data in multiple mats, while the FF and buffer subarrays
serve for computation. Special subarray structures are used
to enable both neural network computations and memory
operations (blue blocks in Fig. 10) feasible. The neural
network computations are mainly performed in the FF
subarray, while the buffer subarray stores temporary data
that needs to be processed; this enables a parallel execution
between CPU and FF subarrays. Neural network compu-
tations are performed using a vector matrix multiplication
between a weighted matrix stored in the FF subarray and a
vector stored in the buffer subarray. Additional logic gates
such as subtraction and sigmoid units are used to compute
negative weights and sigmoid activation functions before
the results are sensed by the multi-level sense amplifiers. In
order to communicate between the memories, a controller
can be use to apply appropriate voltages to the crossbar to

memory aroused a lot of criticism from the cost-sensitive
memory industry [53]. Recently, driven by the data intensive
applications and the 3D-stacking technology, PIM or near
data computing (NDC) is resurgent, with lots of industry
effort (e.g., IBM [54], AMD [4], and Samsung [55]). Recent
efforts [2]–[5], [56] decouple logic and memory designs in
different dies, adopting 3D stacked memories with a logic
layer that encapsulates processing units to perform compu-
tation, as shown in Figure 3(b). This architecture design is
compatible with the hybrid memory cube (HMC) [57] and
high bandwidth memory (HBM) [58].
PRIME is a distinct solution from either early or recent

PIM work. Instead of adding logic to memory, PRIME
utilizes the memory arrays themselves for computing, hence
area overhead is very small. The add-on hardware in PRIME
to enable the computation function consist of simple modifi-
cations of the existing memory peripheral circuits, which are
more manufacture friendly than integrating complex logic
into the memory die. Moreover, PRIME does not rely on 3D-
stacking technology, exempt from its high cost and thermal
problems. Also, while previous work focused on database
and graph processing applications [3], [5], [59], PRIME aims
at accelerating NN applications.
Recent work also employs nonvolatile memory tech-

nologies (ReRAM, PCM, and STT-RAM) to build ternary
content addressable memories (TCAMs), which exploits
memory cells to perform associative search operations [60]–
[62]. However, to support such search operations, it requires
a redesign of their memory cell structures which makes
the cell sizes larger and inevitably increases the memory
cost. Compared to these TCAM designs, PRIME obviates
memory cell redesign, and can support more sophisticated
computation than TCAMs.

III. PRIME ARCHITECTURE

We propose processing in ReRAM-based main mem-
ory, PRIME, which efficiently accelerates NN computation
by leveraging ReRAM’s computation capability and the
PIM architecture. Figure 3(c) depicts an overview of our
design. While most previous NN acceleration approaches
require additional processing units (PU) (Figure 3(a) and
(b)), PRIME directly leverages ReRAM cells to perform
computation without the need for extra PUs. To achieve this,
as shown in Figure 3(c), PRIME partitions a ReRAM bank
into three regions: memory (Mem) subarrays, full function
(FF) subarrays, and Buffer subarrays.
The Mem subarrays only have data storage capability (the

same as conventional memory subarrays). Their microarchi-
tecture and circuit designs are similar to a recent design
of performance-optimized ReRAM main memory [20]. The
FF subarrays have both computation and data storage ca-
pabilities, and they can operate in two modes. In memory
mode, the FF subarrays serve as conventional memory; in
computation mode, they can execute NN computation. There
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Figure 3. (a) Traditional shared memory based processor-coprocessor
architecture, (b) PIM approach using 3D integration technologies, (c)
PRIME design.

is a PRIME controller to control the operation and the
reconfiguration of the FF subarrays. The Buffer subarrays
serve as data buffers for the FF subarrays, and we use the
memory subarrays that are closest to the FF subarrays as
Buffer subarrays. They are connected to the FF subarrays
through private data ports, so that buffer accesses do not
consume the bandwidth of the Mem subarrays. While not
being used as data buffers, the Buffer subarrays can also
be used as normal memory. From Figure 3(c), we can find
that for NN computation the FF subarrays enjoy the high
bandwidth of in-memory data movement, and can work in
parallel with CPU, with the help of the Buffer subarrays.
This section describes the details of our microarchitecture

and circuit designs of the FF subarrays, the Buffer subarrays,
and the PRIME controller. These designs are independent of
the technology assumptions for ReRAM based computation.
For generality, we assume that the input data have Pin bits,
the synaptic weights have Pw bits, and the output data have
Po bits. With practical assumptions, the precision of ReRAM
based NN computation is a critical challenge. We discuss
the precision issue and propose a scheme to overcome
it in Section III-D. Finally, more details are given about
implementing NN algorithms with our hardware design.

A. FF Subarray Design

The design goal for FF subarray is to support both storage
and computation with a minimum area overhead. To achieve
this goal, we maximize the reuse of peripheral circuits for
both storage and computation.
1) Microarchitecture and Circuit Design: To enable the

NN computation function in FF subarrays, we modify de-
coders and drivers, column multiplexers (MUX), and sense
amplifiers (SA) as shown in Figure 4.
Decoder and Driver. We add several components in de-
coders and drivers marked as light blue in Figure 4 A .
First, we attach multi-level voltage sources to the wordlines
to provide accurate input voltages. NN computation requires
that all input data are simultaneously fed into the corre-
sponding wordline. Therefore, we add a latch to control the
input voltage. The control signals determine the combination
of voltage sources that provide the demanding input voltage.

3030

Fig. 9: A Processing-in-Memory Architecture for Neural
Network Computation (PRIME) [76]

move data directly inside it, or use read-out and write-back
schemes.

In addition to the general advantages of CIM-P architec-
tures, PRIME has the following advantages:

• The computations for neural networks are quite ma-
ture and can benefit from existing neural network
techniques and tools.

• The computations for neural networks do not re-
quire a high precision; hence, they are more resilient
against device variations.

• Data can be transferred in the crossbar using both
direct and indirect schemes.

• The architecture uses non-volatile memory, hence
consumes a low energy and has a small footprint.

However, it also has the following limitations:

• The architecture uses non-volatile memory as main
memory, which may impact the life time due to
limited endurance [73], [74].

OVERVIEW AND CLASSIFICATION
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Figure 4. The PRIME architecture. Left: bank structure. The blue and red bold lines represent the directions of the data flow for normal memory and for
computation, respectively. Right: functional blocks modified/added in PRIME. (A) Wordline driver with multi-level voltage sources; (B) column multiplexer
with analog subtraction and sigmoid circuitry; (C) reconfigurable SA with counters for multi-level outputs, and added ReLU and 4-1 max pooling function
units; (D) connection between the FF and Buffer subarrays; (E) PRIME controller.

Second, to drive the analog signals transferring on the
wordlines, we employ a separate current amplifier on each
wordline. Third, rather than two voltage levels used in the
memory mode (for read and write, respectively), NN com-
putation requires 2Pin levels of input voltages. We employ
a multiplexer to switch the voltage driver between memory
and computation modes. Finally, we employ two crossbar
arrays store positive and negative weights, respectively, and
allow them to share the same input port.

Column Multiplexer. In order to support NN computation,
we modify the column multiplexers in ReRAM by adding
the components marked in light blue in Figure 4 B .
The modified column multiplexer incorporates two analog
processing units: an analog subtraction unit and a non-
linear threshold (sigmoid) unit [63]. The sigmoid unit can
be bypassed in certain scenarios, e.g. when a large NN is
mapped to multiple crossbar arrays. In addition, in order
to allow FF subarrays to switch bitlines between memory
and computation modes, we attach a multiplexer to each
bitline to control the switch. Since a pair of crossbar arrays
with positive and negative weights require one set of such
peripheral circuits, we only need to modify half of the
column multiplexers. After analog processing, the output
current is sensed by local SAs.

Sense Amplifier. Figure 4 C shows the SA design with the
following modifications as marked in light blue in the figure.
First, NN computation requires SAs to offer much higher
precision than memory does. We adopt a Po-bit (Po≤8)
precision reconfigurable SA design that has been tested
through fabrication [64]. Second, we allow SA’s precision
to be configured as any value between 1-bit and Po-bit,
controlled by the counter as shown in Figure 4 C . The

result is stored in the output registers. Third, we allow low-
precision ReRAM cells to perform NN computation with
a high-precision weight, by developing a precision control
circuit that consists of a register and an adder. Fourth, we
add a hardware unit to support ReLU function, a function in
the convolution layer of CNN. The circuit checks the sign
bit of the result. It outputs zero when the sign bit is negative
and the result itself otherwise. Finally, a circuit to support
4-1 max pooling is included. More details are discussed in
Section III-E.

Buffer Connection. Figure 4 D shows the communication
between the FF subarrays and the Buffer subarrays. We
enable an FF subarray to access any physical location in
a Buffer subarray to accommodate the random memory
access pattern in NN computation (e.g., in the connection
of two convolutional layers). To this end, extra decoders
and multiplexers are employed in the buffer connection unit.
Additionally, we allow the data transfer to bypass the Buffer
subarray in certain scenarios, e.g. when the output of one
mat is exactly the input of another. After bypassing the
Buffer subarrays, we employ a register as an intermediate
data storage.

Benefits of Our Design are two-fold. First, our design
efficiently utilizes the peripheral circuits by sharing them
between memory and computation functions, which signifi-
cantly reduces the area overhead. For example, in a typical
ReRAM-based neuromorphic computing system [10], DACs
and ADCs are used for input and output signal conversions;
in a ReRAM-based memory system, SAs and write drivers
are required for read and write operations. Yet, SAs and
ADCs serve similar functions, while write drivers and DACs
do similar functions. In PRIME, instead of using both,
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Fig. 10: PRIME’s Bank architecture [76]

• The architecture has to deal with sneak path currents.
Possible solutions are mentioned in Section 3.2.

• As the sense amplifies are complex, a trade-off be-
tween area and bandwidth has to be made.

• In case general purpose computing is desired, the ar-
chitecture requires additional compiling techniques
and tools to perform conventional Boolean logic
functions using neural network computations.

The architecture is synthesized using TSMC CMOS li-
brary 60nm and modeled using NVSIM, CACTI-3D and
CACTI-IO. It is evaluated using MlBench benchmarks [77]
and compared against a CPU-only solution.

4.3 ISAAC: A Convolutional Neural Network Accelera-
tor with In-Situ Analog Arithmetic

ISAAC was proposed in 2016 by S. Ali, et al., from Univer-
sity of Utah [78]. ISAAC is a memristor based architecture
that performs dot-product computations using the mem-
ristor crossbar and CMOS peripheral circuitry to exploit
instruction level parallelism. The architecture consists of
multiple tiles connected through an on-chip concentrated
mesh and an I/O interface, as shown in the left part of
Fig. 11. The architecture is only used during the inference
phase of machine learning applications, i.e., the phase after
training; the inference phase consists of dot product oper-
ations to compute convolutions, shift and add operations
and sigmoid operations. ISAAC processes inputs from the
I/O interface in multiple tiles. After processing, the outputs
are communicated through the I/O interface to the outside
world or a different ISAAC chip.

Each tile of ISAAC contains multiple In-Situ Multiply
Accumulate (IMA) units that are connected through a bus,
an eDRAM buffer, output register (OR), and computation
units (max-pool, sigmoid and Shift-and-Add (S+A)). Each
IMA contains multiple memristor arrays with their DAC
and Sample-and-Hold (S+H) units, an Input and Output
Register (IR, OR), Shift-and-Add (S+A) and multiple ADC
units. Inputs from the I/O interface are delivered to the
memristor arrays and are used to perform a dot product
computation with the weights that are already stored in
the memristor array. The results thereafter go through the
S+H units (to temporarily store data before feeding them
to ADCs) and S+A units (to accumulate data) if applicable.
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Fig. 2. ISAAC architecture hierarchy.

After training has determined the weights for every neuron,
the weights are appropriately loaded into memristor cells with
a programming step. Control vectors are also loaded into each
tile to drive the finite state machines that steer inputs and
outputs correctly after every cycle.

During inference, inputs are provided to ISAAC through an
I/O interface and routed to the tiles implementing the first layer
of the CNN. A finite state machine in the tile sends these inputs
to appropriate IMAs. The dot-product operations involved in
convolutional and classifier layers are performed on crossbar
arrays; those results are sent to ADCs, and then aggregated
in output registers after any necessary shift-and-adds. The
aggregated result is then sent through the sigmoid operator and
stored in the eDRAM banks of the tiles processing the next
layer. The process continues until the final layer generates an
output that is sent to the I/O interface. The I/O interface is
also used to communicate with other ISAAC chips.

At a high level, ISAAC implements a hierarchy of
chips/tiles/IMAs/arrays and c-mesh/bus. While the hierarchy
is similar to that of DaDianNao, the internals of each tile and
IMA are very different. A hierarchical topology enables high
internal bandwidth, reduced data movement when aggregating
results, short bitlines and wordlines in crossbars, and efficient
resource partitioning across the many layers of a CNN.

IV. THE ISAAC PIPELINE

DaDianNao operates on one CNN layer at a time. All the
NFUs in the system are leveraged to perform the required
operations for one layer in parallel. The synaptic weights for
that layer are therefore scattered across eDRAM banks in all
tiles. The outputs are stored in eDRAM banks and serve as
inputs when the next layer begins its operation. DaDianNao
therefore maximizes throughput for one layer. This is possible
because it is relatively easy for an NFU to context-switch from
operating on one layer to operating on a different layer – it
simply has to bring in a new set of weights from the eDRAM
banks to its SRAM buffers.

On the other hand, ISAAC uses memristor arrays to not
only store the synaptic weights, but also perform computations

Fig. 3. Minimum input buffer requirement for a 6×6 input feature map with
a 2× 2 kernel and stride of 1. The blue values in (a), (b), and (c) represent
the buffer contents for output neurons 0, 1, and 7, respectively.

on them. The in-situ computing approach requires that if an
array has been assigned to store weights for a CNN layer, it
has also been assigned to perform computations for that layer.
Therefore, unlike DaDianNao, the tiles/IMAs of ISAAC have
to be partitioned across the different CNN layers. For example,
tiles 0-3 may be assigned to layer 0, tiles 4-11 may be assigned
to layer 1, and so on. In this case, tiles 0-3 would store all
weights for layer 0 and perform all layer 0 computations in
parallel. The outputs of layer 0 are sent to some of tiles 4-11;
once enough layer 0 outputs are buffered, tiles 4-11 perform
the necessary layer 1 computations, and so on.

To understand how results are passed from one stage to the
next, consider the following example, also shown in Figure 3.
Assume that in layer i, a 6×6 input feature map is being
convolved with a 2×2 kernel to produce an output feature
map of the same size. Assume that a single column in an
IMA has the four synaptic weights used by the 2×2 kernel.
The previous layer i − 1 produces outputs 0, 1, 2, ..., 6, 7,
shown in blue in Figure 3a. All of these values are placed
in the input buffer for layer i. At this point, we have enough
information to start the operations for layer i. So inputs 0, 1,
6, 7 are fed to the IMA and they produce the first output for
layer i. When the previous layer i−1 produces output 8, it gets
placed in the input buffer for layer i. Value 0, shown in green
in Figure 3b, is no longer required and can be removed from
the input buffer. Thus, every new output produced by layer i−1
allows layer i to advance the kernel by one step and perform
a new operation of its own. Figure 3c shows the state of the
input buffer a few steps later. Note that a set of inputs is fed
to Nof convolutional kernels to produce Nof output feature
maps. Each of these kernels constitutes a different column in
a crossbar and operates on a set of inputs in parallel.

We now discuss two important properties of this pipeline.
The first pertains to buffering requirements in eDRAM be-
tween layers. The second pertains to synaptic weight storage
in memristors to design a balanced pipeline. In our discussions,
a cycle is the time required to perform one crossbar read
operation, which for most of our analysis is 100 ns.

The eDRAM buffer requirement between two layers is fixed.
In general terms, the size of the buffer is:

((Nx × (Ky − 1)) +Kx)×Nif

where Nx is the number of rows in the input feature map, Ky

and Kx are the number of columns and rows in the kernel,
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Fig. 11: A Convolutional Neural Network Accelerator with
In-Situ Analog Arithmetic (ISAAC) [78]

Finally, if multiple inputs are fetched, a pipeline is created
using IR and OR of the IMAs and tiles. In order to transfer
data within a single memory array, a controller can be
used to apply appropriate voltages to move data directly
inside the memory crossbar, or use read-out and write-back
schemes.

In addition to the general advantages of CIM-P architec-
tures, ISAAC has the following advantages:

• The architecture is used as an accelerator, which has
a positive impact on the endurance due to infrequent
use [73], [74]. In contrast, some CIM-P architectures
are used as main memory and therefore require a
much higher endurance.

• The computations for neural networks are quite ma-
ture and can benefit from existing neural network
techniques and tools.

• The computations for neural networks do not re-
quire a high precision; hence, they are more resilient
against device variation.

• Data can be transferred in the crossbar using both
direct and indirect schemes.

• The architecture uses non-volatile memory, hence
consumes low energy and has a small footprint.

However, it also has the following limitation:

• The architecture has to deal with sneak path currents.
Possible solutions are mentioned in Section 3.2.

• The architecture might suffer from a high overhead
due to the need of ADC and DAC converters.

• As the sense amplifies are complex, a trade-off be-
tween area and bandwidth has to be made.

• In case general purpose computing is desired, the ar-
chitecture requires additional compiling techniques
and tools to perform conventional Boolean logic
functions using neural network computations.

The architecture is evaluated analytically and compared
against DaDianNao architecture (which is an ASIC design
with embedded DRAM) using a suite of CNN [70], [79] and
DNN workloads [80], [81].
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4.4 Ambit: In-Memory Accelerator for Bulk Bitwise Op-
erations Using Commodity DRAM Technology
Ambit was proposed in 2017 by V. Seshadria, et al., from
Carnegie Mellon University [82]. Ambit is a DRAM based
architecture that performs in-memory instructions using
modified peripheral circuits to exploit data level parallelism.
This architecture can be plugged into a computer system as
an accelerator in a similar manner as a GPU. The architec-
ture consists of an Ambit controller and a 3D-stacked DRAM
memory with modified sense amplifiers as shown in Fig.
12. After receiving an instruction from the host processor,
Ambit determines whether a normal memory operation or
an in-memory instruction should be performed. After per-
forming the required operations, the results are transferred
back to the host processor for further processing.

Depending on the type of operation, the Ambit controller
activates single or multiple rows in the DRAM memory. The
currents are summed up based on the values stored in the
DRAM cells, and converted into a digital value using the
modified sense amplifiers. To transfer data, Ambit enables
row copy (RowClone [83]) operations to directly move data
inside DRAM memory. Moreover, an indirect scheme can be
used a well by having the Ambit controller performing read
and write operations.

In addition to the general advantages of CIM-P architec-
tures, Ambit has the following advantages:

• Data can be transferred in the memory using both
direct and indirect schemes.

• The architecture uses DRAM technology, which has
several benefits such as: high maturity and en-
durance, no sneak path currents, and the accessibility
to optimized architectures, technology and tools.

• As a DRAM cell is larger than a memristor based cell,
it is easier to fit the modified sense amplifiers in the
peripheral circuit.

However, it also has the following limitations:

• Computations are currently limited to logical oper-
ations. More research is required to map complex
functions on the architecture.

• The architecture uses DRAM technology which suf-
fers from a low performance, high energy consump-
tion, large footprint and is difficult to scale down.

The architecture is simulated by Rambus simulator and
evaluated against the implementations on multicore Intel
Skylake CPU [84], NVIDIA GeForce GTX 745 GPU [85] and
HMC 2.0 [86] using logical vector operations and bitmap
index application [87], [88].

4.5 Pinatubo: A Processing-in-Memory Architecture for
Bulk Bitwise Operations
Pinatubo was proposed in 2016 by S. Li, et al., from Univer-
sity of California [20]. Pinatubo is a non-volatile memory
based architecture that exploits data level parallelism by
performing bulk bitwise operations using modified sense
amplifiers. The architecture consists of a processor with
caches, a non-volatile main memory, and modified sense
amplifiers (as shown in Fig. 13). The processor sends in-
memory instructions to the main memory and also handles

Ambit: In-Memory Accelerator for Bulk Bitwise Operations MICRO-50, October 2017, Cambridge, MA, USA

For such applications, we believe Ambit can improve the scal-
ability and reduce the overall cost of the system (e.g., by re-
quiring fewer servers). We evaluate the performance of Ambit
on three real-world data-intensive applications over a state-
of-the-art baseline that employs SIMD optimization. First,
Ambit improves end-to-end performance of database queries
that use bitmap indices [3] by 6.0X, averaged across a range
of query parameters. Second, for BitWeaving [75], a recently-
proposed technique to accelerate column scan operations in
databases, Ambit improves performance by 7.0X, averaged
across a range of scan parameters. Third, for the commonly-
used set data structure, Ambit improves performance of set
intersection, union, and diUerence operations by 3.0X com-
pared to existing implementations [41]. Section 8 describes
our full-system simulation framework [22], workloads, re-
sults, and four other applications that can signiVcantly beneVt
from Ambit: BitFunnel [40], masked initialization, encryption
algorithms, and DNA read mapping.

We make the following contributions in this work.

• To our knowledge, this is the Vrst work that integrates sup-
port for bulk bitwise operations directly into a DRAMmem-
ory array. We introduce Ambit, an in-memory accelerator
that exploits the analog operation of DRAM to perform bulk
bitwise operations with high throughput and eXciency.

• We present a low-cost implementation of Ambit, which re-
quires modest changes to the commodity DRAM architec-
ture (less than 1% DRAM chip area overhead). We verify
our implementation of Ambit with rigorous circuit simula-
tions. Ambit requires no changes to the DRAM command
and address interface, and hence, can be directly plugged
onto the system memory bus (Section 5).

• Our evaluations show that Ambit signiVcantly improves the
throughput and energy eXciency of bulk bitwise operations
compared to state-of-the-art CPUs, GPUs, and processing-
in-memory systems using 3D-stacked DRAM. This directly
translates to large performance improvements for three
real-world applications that use bulk bitwise operations.

2. Background on DRAM Operation
Our Ambit accelerator exploits the internal high-

bandwidth operation of the modern DRAM chips and tightly
integrates into the DRAM architecture. In this section, we
provide the necessary background on DRAM operation.

A DRAM-based memory hierarchy consists of channels,
modules, and ranks at the top level. Each rank consists of
a set of chips that operate in unison. Each rank is fur-
ther divided into many banks. All access-related commands
are directed towards a speciVc bank. Each bank consists
of several subarrays and peripheral logic to process com-
mands [27, 29, 59, 60, 67, 68, 97, 116]. Each subarray consists
of many rows (typically 512 or 1024) of DRAM cells, a row of
sense ampliVers, and a row address decoder. Figure 1 shows
the logical organization of a subarray.1
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Figure 1: Logical organization of a DRAM subarray

At a high level, accessing data from a subarray involves
three steps. The Vrst step, row activation, copies data from a
speciVed row of DRAM cells to the row of sense ampliVers
in the subarray. This step is triggered by the ACTIVATE com-
mand. Then, data is accessed from the sense ampliVers using a
READ or WRITE command. Each READ or WRITE accesses only
a subset of the sense ampliVers. Once a row is activated, mul-
tiple READ and WRITE commands can be issued to that row.
An activated bank is prepared for an access to another row by
an operation called precharging. This step is triggered by the
PRECHARGE command. We now explain these operations by
focusing on a single DRAM cell and a sense ampliVer.

Figure 2 shows the connection between a DRAM cell and
a sense ampliVer. Each DRAM cell consists of 1) a capacitor,
and 2) an access transistor that controls access to the cell. Each
sense ampliVer consists of two inverters, and an enable signal.
The output of each inverter is connected to the input of the
other inverter. The wire that connects the cell to the sense
ampliVer is called the bitline, and the wire that controls the

1Although the Vgure logically depicts a subarray as a single monolithic struc-
ture, in practice, each subarray is divided into several MATs. The row de-
coding functionality is also split between a bank-level global row decoder, a
subarray-local row decoder, and wordline drivers [50, 59, 71]. While we de-
scribe our mechanisms on top of the logical organization, they can be easily
engineered to work with the actual physical design.
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Fig. 12: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology (Ambit) [82]

ry is the bitwise operation result upon the open rows. The
results can be sent to the I/O bus or written back to an-
other memory row directly. The major modifications on the
NVM-based memory are in the sense amplifier (SA) design.
Different from a normal memory read operation, where the
SA just differentiates the resistance on the bitline between
Rhigh and Rlow, Pinatubo adds more reference circuit to the
SA, so that it is capable of distinguishing the resistance of
{Rhigh/2 (logic “0,0”), Rhigh||Rlow (logic “0,1”), Rlow/2 (log-
ic “1,1”)} for 2-row AND/OR operations. It also potentially
supports multi-row OR operations when high ON/OFF ra-
tio memory cells are provided. Although we use 1T1R PCM
as an example in this paper, Pinatubo does not rely on a
certain NVM technology or cell structure, as long as the
technology is based on resistive-cell.

Our contributions in this paper are listed as follows,

• We propose a low-cost processing-in-NVM architecture
with insignificant circuit modification and no require-
ment on 3D integration.
• We design a software/hardware interface which is both

visible to the programmer and the hardware.
• We evaluate our proposed architecture on data inten-

sive graph processing and data-base applications, and
compare our work with SIMD processor, accelerator-
in-memory PIM, and the state-of-the-art in-DRAM
computing approach.

2. NVM BACKGROUND
Although the working mechanism and the features vary,

PCM, STT-MRAM, and ReRAM share common basics: all
of them are based on resistive-cell. To represent logic “0”
and “1”, they rely on the difference of cell resistance (Rhigh

or Rlow). To switch between logic “0” and “1”, certain polar-
ity, magnitude, and duration voltage/current are required.
The memory cells typically adopt 1T1R structure [10], where
there are a wordline (WL) controlling the access transistor,
a bitline (BL) for data sensing, and a source line (SL) to
provide different polarized write currents.

Architecting NVM as main memory has been well stud-
ied [28, 15]. The SA design is the major difference be-
tween NVM and DRAM design. Different from the conven-
tional charge-based DRAM, the resistance-based NVM re-
quires a larger SA to convert resistance difference into volt-
age/current signal. Therefore, multiple adjacent columns
share one SA by a multiplexer (MUX), and it results in a
smaller row buffer size.
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Figure 1: A current-based SA (CSA) [8].

Fig. 1 shows the mechanism of a state-of-the-art CSA [8].
There are three phases during sensing, i.e., current-sampling,
current-ratio amplification, and 2nd-stage amplification.

3. MOTIVATION AND OVERVIEW
Bitwise operations are very important and widely used

by database [26], graph processing [5], bio-informatics [21],

and image processing [6]. They are applied to replace ex-
pensive arithmetic operations. Actually, modern processors
have already been aware of this strong demand, and devel-
oped accelerating solutions, such as Intel’s SIMD solution
SSE/AVX.

ALU

NVM-based Main Memory

Operand Row 1

Caches

CPU

(a) Conventional Approach (b) Pinatubo 

Operand Row 2

Operand Row n

Result Row 

All data via the 
Narrow DDR bus

Operand Row 1

Operand Row 2

Operand Row n

Result Row 

Modified SA 

ALU (idle)

Caches (idle)

Only CMD &
Row-ADR

DDR3
Bus

Figure 2: Overview: (a) Computing-centric ap-
proach, moving tons of data to CPU and write back.
(b) The proposed Pinatubo architecture, performs
n-row bitwise operations inside NVM in one step.

We propose Pinatubo to accelerate the bitwise operations
inside the NVM-based main memory. Fig. 2 shows the
overview of our design. Conventional computing-centric ar-
chitecture in Fig. 2 (a) fetches every bit-vector from the
memory sequentially. The data walks through the narrow
DDR bus and all the memory hierarchies, and finally is exe-
cuted by the limited ALUs in the cores. Even worse, it then
needs to write the result back to the memory, suffering from
the data movements overhead again. Pinatubo in Fig. 2 (b)
performs the bit-vector operations inside the memory. On-
ly commands and addresses are required on the DDR bus,
while all the data remains inside the memory. To perform
bitwise operations, Pinatubo activates two (or more) mem-
ory rows that store bit-vector simultaneously. The modified
SA outputs the desired result. Thanks to in-memory calcu-
lation, the result does not need the memory bus anymore. It
is then written to the destination address thought the WD
directly, bypassing all the I/O and bus.

Pinatubo embraces two major benefits from PIM architec-
ture. First, the reduction of data movements. Second, the
large internal bandwidth and massive parallelism. Pinatubo
performs a memory-row-length (typical 4Kb for NVM) bit-
vector operations. Furthermore, it supports multi-row oper-
ations, which calculate multi-operand operations in one step,
bringing the equivalent bandwidth ∼1000× larger than the
DDR3 bus.

4. ARCHITECTURE AND CIRCUIT DESIGN
In this section, we first show the architecture design that

enables the NVM main memory for PIM. Then we show
the circuit modifications for the SA, LWL driver, WD, and
global buffers.

4.1 From Main Memory to Pinatubo
Main memory has several physical/logic hierarchies. Chan-

nels runs in parallel, and each channel contains several ranks
that share the address/data bus. Each rank has typical 8
physical chips, and each chip has typical 8 banks as shown in
Fig. 3 (a). Banks in the same chip share the I/O, and banks
in different chips work in a lock-step manner. Each bank

Fig. 13: The Processing-in-Memory Architecture for Bulk
Bitwise Operations (Pinatubo) [20]

the operations that cannot be performed on the main mem-
ory. After an instruction is sent to the main memory, single
or multiple rows of the memory are activated simultane-
ously depending on the type of instructions (i.e., normal
read or in-memory instructions). The modified sense am-
plifiers thereafter perform a read-out operation to produce
the results which can be a normal read or a bitwise vector
operations. In cases needed, the results are transferred back
to the processor for further processing.

The main memory architecture is shown in Fig. 14; it
consists of multiple banks which are further divided into
mats. Note that the modified sense amplifiers can only
perform bitwise vector operations on data residing in the
same mat. For operations where the data resides in different
mats whether on the same bank or not, extra logic gates (e.g.,
AND, OR) are used to perform the operations. Communi-
cation can be performed by enabling two memory rows for
direct copy operations, or using the buffers and read-out
operations for indirect data transfer.

In addition to the general advantages of CIM-P architec-
tures, Pinatubo has the following advantages:

• Data can be transferred in the memory using both
direct and indirect schemes.

• The architecture uses non-volatile memory, hence
consumes low energy and has a small footprint.

However, it also has the following limitations:

• The architecture uses non-volatile memory as main
memory, which may impact the life time due to
limited endurance [73], [74].

OVERVIEW AND CLASSIFICATION
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has several subarrays. As Fig. 3 (b) shows, Subarrays share
the GDLs and the global row buffer. One subarray contains
several MATs as shown in Fig. 3 (c), which also work in the
lock-step manner. Each Mat has its private SAs and WDs.
Since NVM’s SA is much larger than DRAM, several (32 in
our experiment) adjacent columns share one SA by a MUX.

According to the physical address of the operand rows,
Pinatubo performs three types of bitwise operations: intra-
subarray, inter-subarray, and inter-bank operations.
Intra-subarray operations. If the operand rows are all
within one subarray, Pinatubo performs intra-subarray oper-
ations in each MAT of this subarray. As shown in Fig. 3 (c),
the computation is done by the modified SA. Multiple rows
are activated simultaneously, and the output of the modified
SA is the operation result. The operation commands (e.g.,
AND or OR) are sent by the controller, which change the
reference circuit of the SA. We also modify the LWL driver
is also implemented to support multi-row activation. If the
operation result is required to write back to the same sub-
array, it is directly fed into the WDs locally as an in-place
update.
Inter-subarray operations. If the operand rows are in
different subarrays but in the same bank, Pinatubo performs
inter-subarray operations as shown in Fig. 3 (b). It is based
on the digital circuits added on the global row buffer. The
first operand row is read to the global row buffer, while the
second operand row is read onto the GDL. Then the two
operands are calculated by the add-on logic. The final result
is latched in the global row buffer.
Inter-bank operations. If the operand rows are even in
different banks but still in the same chip, Pinatubo performs
inter-bank operations as shown in Fig. 3 (a). They are done
by the add-on logic in the I/O buffer, and have a similar
mechanism as inter-subarray operations.

Note that Pinatubo does not deal with operations between
bit-vectors that are either in the same row or in differen-
t chips. Those operations could be avoided by optimized
memory mapping, as shown in Section 5.

4.2 Peripheral Circuitry Modification
SA Modification: The key idea of Pinatubo is to use SA
for intra-subarray bitwise operations. The working mecha-
nism of SA is shown in Fig. 5. Different from the charge-
based DRAM/SRAM, the SA for NVM senses the resistance
on the BL. Fig. 5 shows the BL resistance distribution dur-
ing read and OR operations, as well as the reference val-
ue assignment. Fig. 5 (a) shows the sensing mechanism for
normal reading (Though the SA actually senses currents, the
figure presents distribution of resistance for simplicity). The
resistance of a single cell (either Rlow or Rhigh) is compared
with the reference value (Rref-read), determining the result
between “0” and “1”. For bitwise operations, an example for

a 2-row OR operation is shown in Fig. 5 (b). Since two rows
are activated simultaneously, the resistance on the BL is the
parallel connection of two cells. There could be three situ-
ations: Rlow||Rlow (logic “1”,“1”), Rlow||Rhigh (“1”,“0”), and
Rhigh||Rhigh (“0”,“0”)2. In order to perform OR operations,
the SA should output “1” for the first two situations and
output “0” for the last situation. To achieve this, we simply
shift the reference value to the middle of Rlow||Rhigh and
Rhigh||Rhigh, denoted as Rref-or. Note that we assume the
variation is well controlled so that no overlap exists between
“1” and “0” region. In summary, to compute AND and OR,
we only need to change the reference value of the SA.

Rlow Rhigh Rlow||Rlow Rhigh||RhighRlow||Rhigh

 1  region  0  region

Rref-read

 1  region  0  region

RBL Rref-or

CELL 
value  1  0 ( 1 ,  1 ) ( 1 ,  0 ) ( 0 ,  0 )

SA 
output

(a) SA reads with Rref-read. (b)  SA processes OR with Rref-or.

p
d
f

p
d
f

Figure 5: Modifying Reference Values in SA to En-
able Pinatubo.
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Fig. 6 (a) shows the corresponding circuit modification
based on the CSA [8] introduced in Section 2. As explained
above, we add two more reference circuits to support AND/OR
operations. For XOR, we need two micro-steps. First, one
operand is read to the capacitor Ch. Second, the other
operand is read to the latch. The output of the two add-on
transistors is the XOR result. For INV, we simply output
the differential value from the latch. The output is select-
ed among READ, AND, OR, XOR, and INV results by a
MUX. Fig. 6 (b) shows the HSPICE validation of the pro-
posed circuit. The circuit is tested with a large range of
cell resistances from the recent PCM, STT-MRAM, and R-
eRAM prototypes [23].
Multi-row Operations: Pinatubo supports multi-row
operations that further accelerate the bitwise operations. A
multi-row operation is defined as calculating the result of
multiple operands at one operation. For PCM and ReRAM

2
“||” denotes production over sum operation.

Fig. 14: Main memory of Pinatubo [20]

• Computations currently include only logical oper-
ations. More research is required to map complex
functions on the architecture.

• The architecture has to deal with sneak path currents.
Possible solutions are mentioned in Section 3.2.

• As the sense amplifies are complex, a trade-off be-
tween area and bandwidth has to be made.

• Efforts are required to use this architecture with a
host processor. For example, the instruction set of
the host processor has to be adapted and additional
software support is needed to maximally exploit the
performance.

The architecture is simulated using an in-house cycle
accurate simulator modified from Sniper [89] and evaluated
using three applications: vector OR operations, bitmap-
based BFS for graph processing [90] and bitmap-based
database using Fastbit [91].

4.6 CIMA: Computation-in-Memory Accelerator

CIMA was proposed in 2017 by H.A. Du Nguyen, et al.,
from Delft University of Technology [45]. CIMA is a resistive
based accelerator that exploits data level parallelism by
performing computations with custom sense amplifiers. The
architecture consists of a conventional processor, caches,
CIM accelerator, main memory DRAM and external mem-
ory (as shown in Fig. 15). The processor fetches, decodes and
executes non-intensive memory parts of an application and
off-loads the memory intensive parts to the CIM accelerator.
Similarly as in Pinatubo, the CIM accelerator performs
operations by activating one or multiple wordlines. The
difference with Pinatubo however is that CIMA is used as
an accelerator and has a more efficient sense amplifiers. In
case needed, the results are transferred back to the processor
for further processing.

The CIM accelerator consists of a CIM controller, periph-
eral circuits (including decoder, voltage driver, and sense
amplifiers), and a memristor crossbar. The CIM controller re-
ceives instructions from the processor and performs opera-
tions by sensing the current of two or more activated rows of
the crossbar. Based on the type of operation, the customized
sense amplifiers compute the output based on this current.
CIMA uses scouting logic [21]; currently, it can only perform
bitwise logical operations. However, more operations such
as addition, vector-matrix multiplication and matrix-matrix
multiplication have demonstrated to be feasible [92]. The
data transfer in the memory can be performed by enabling
two memory rows using direct copy operations, or using
indirect read-out and write-back operations.

In addition to the general advantages of CIM-P architec-
tures, CIMA has the following advantages:

CPU

DRAM

External Memory

CIMA
L1

Fig. 15: Computation-in-Memory Accelerator (CIMA) [45]

• The architecture is used as an accelerator, which has
a positive impact on the endurance due to infrequent
use [73], [74].

• Data can be transferred in the memory using both
direct and indirect schemes.

• The architecture uses non-volatile memory, hence
consumes low energy and has a small footprint.

However, it also has the following limitations:

• Computations currently include only logical oper-
ations. More research is required to map complex
functions on the architecture.

• The architecture has to deal with sneak path currents.
Possible solutions are mentioned in Section 3.2.

• As the sense amplifies are complex, a trade-off be-
tween area and bandwidth has to be made.

• Additional software support (i.e., profiling and ex-
tracting memory intensive kernels) is required to
maximally exploit the accelerator performance.

The architecture is evaluated against a theoretical model
of a conventional multicore architecture.

4.7 STT-CiM: Computing in Memory Spin-Transfer
Torque Magnetic RAM
STT-CiM was proposed in 2017 by S. Jain, et al., from
Purdue University [93]. STT-CiM is a Spin-Transfer Torque
Magnetic RAM based architecture that that exploits data
level parallelism by performing computations using both
modified sense amplifiers and some additional CMOS gates.
The architecture consists of a conventional architecture with
a STT-MRAM used as scratch-pad memory. This scratch-
pad memory is equipped with the capability to perform in-
memory instructions. These instructions are sent from the
main processor.

The STT-CiM contains a CiM decoder, an array of mem-
ory cells, enhanced address decoder and modified sensing
circuitry to perform computations, as shown in Fig. 16.
Based on the in-memory instruction, the enhanced address
decoder activates one (for normal read) or multiple rows (for
computations) of the memory array. The CiM decoder de-
termines simultaneously the reference currents of the sense
amplifiers. For example, in case an addition is executed, the
set of logic gates for addition is enabled. The results are
captured by the modified sense amplifiers. Data transfer can
be performed by enabling two memory rows for direct copy

2
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Fig. 6. STT-CiM array structure.

circuits are unchanged, as write operations are identical to
the standard STT-MRAM. We next describe enhancements
to sensing and reference generation circuits to enable CiM
operations.

1) Sensing Circuitry: Fig. 6 shows the sensing circuit
enhanced to support all the logic operations discussed in
Section IV-A. It consists of two sense amplifiers, a CMOS
NOR gate, three multiplexers, and three additional logic gates
for the ADD operation. We note that the area and power
overheads associated with these enhancements are minimal,
since the sensing circuit constitutes a small fraction of the
total memory area/power. As shown in Fig. 6, the reference
currents (Irefl and Irefr) produced by the global reference
generation circuit are fed to the two sense amplifiers in order
to realize the sensing schemes discussed in Section IV-A. The
three MUX control signals (sel0, sel1, and sel2) are generated
by the CiM decoder to select the desired CiM operation.

2) Reference Generation: Fig. 6 illustrates the modified
reference generation circuit used to produce the additional
reference currents necessary for the proposed sensing schemes.
It includes two reference stacks, one for each of the two
sense amplifiers in the sensing circuit. Each stack consists
of three bit-cells programmed to offer resistances RP , RAP,
and RREF, respectively. RREF

2 represents the fixed resistance
reference MTJ used in a standard STT-MRAM to perform
read operations. The CiM decoder generates control sig-
nals (rwl0, rwl1, . . . , rwr1, rwr2) that enable a subset of these
bit-cells in the reference stacks, which in turn produces the
desired reference currents. Table II presents the values of these
control signals so as to achieve the required reference currents.

The STT-CiM array can perform both regular memory
operations and a range of CiM operations. The normal read
operation is performed by enabling a single WL and setting

2 RAP > RREF > RP .

TABLE II

STT-CIM OPERATIONS CONTROL SIGNALS

sel0, sel1, and rwl0 to logic “1.” On the other hand, a CiM
operation is performed by enabling two WLs and setting
CiMType to the appropriate value, which results in computing
the desired function of the enabled words. The control signal
values for a read operation as well as CiM operations are
shown in Table II.

C. CiM Operation Under Process Variations

The STT-CiM array suffers from the same failure mecha-
nisms (read disturb failures, read decision failures, and write
failures) that are observed in the standard STT-MRAM. In this
section, we compare the failure rates in the STT-CiM and stan-
dard STT-MRAM. Normal read/write operations in STT-CiM
have the same failure rate as in a standard STT-MRAM,
since the read/write mechanisms are identical. However, CiM
operations differ in their failure rates, since the currents that
flow through each bit-cell differ when enabling two WLs
simultaneously. In order to analyze the read disturb and read
decision failures under process variations for CiM opera-
tions, we performed a Monte Carlo circuit-level simulation
on 1 million samples considering variations in MTJ oxide

Fig. 16: Computing in Memory Spin-Transfer Torque Mag-
netic RAM (STT-CiM) [93]

operations, or using the buffers and read-out operations for
indirect copy operations.

In addition to the general advantages of CIM-P architec-
tures, STT-CiM has the following advantages:

• The architecture is used as an accelerator (i.e.,
scratch-pad memory), which has a positive impact
on the endurance due to infrequent use [73], [74].

• Computations currently include both logical opera-
tions and addition.

• The data transfer may include both direct and indi-
rect schemes.

• The architecture uses non-volatile memory, hence
consumes low energy and has a small footprint.

However, it also has the following limitations:

• The architecture has to deal with sneak path currents.
Possible solutions are mentioned in Section 3.2.

• As the sense amplifies are complex, a trade-off be-
tween area and bandwidth has to be made.

• Additional software support (i.e., profiling and ex-
tracting memory intensive kernels) is required to
maximally exploit the accelerator performance.

The architecture is evaluated using the STT-CiM device-
to-architecture evaluation framework [93] and a set of
benchmarks including string matching, text processing, low-
level graphics, data compression, bio-informatic, image pro-
cessing and cryptography.

4.8 S-AP: Cache Automaton

S-AP was proposed in 2017 by A. Subramaniyan, et al.,
from University of Michigan [94]. The architecture targets
an automata processor which exploits data level parallelism
by performing computations using state machines. An au-
tomata processor contains two main components: the State
Transition Elements (STEs) and the routing matrix; the STE
stores the accepting states, while the routing matrix stores
the state transitions as shown in Fig. 17. The automata
processor accepts one input symbol at a time, generates next
active states and decides whether a complete input string is
accepted or not.
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Fig. 17: General Architecture for Automata Processor [95]

The architecture consists of STEs and a routing ma-
trix which are implemented using SRAM technology. Each
SRAM column corresponds to an STE which stores the
accepting states in SRAM cells. The input symbol is fed to
all the STEs simultaneously. The sense amplifiers collect a
dot-product results of a vector-matrix multiplication. The
output of the STE together with the routing matrix are used
to determine the next active states; this process is carried
on until all input symbols are processed. In case the one
or more final active states are part of the acceptance states,
it means that the input string has been matched with the
corresponding pattern of the acceptance state. Note that
data transfer inside the automata processor is carried out
using the routing matrix.

In addition to the general advantages of CIM-P architec-
tures, S-AP has the following advantages:

• Computations may include logical and arithmetic
operations using automata processing.

• Data can be transferred using both direct and indirect
schemes.

• The architecture uses SRAM technology, which has
several benefits such as maturity, high endurance,
no sneak path currents, and may benefit for the the
existing optimizing techniques and tools.

• As an SRAM cell is relatively large as compared to a
memristor/DRAM cell, it is easier to fit the modified
sense amplifiers in the peripheral circuit.

• The automata processing techniques and tooling are
quite mature, hence it is feasible to explore many
applications using automata processing.

However, it also has the following limitations:

• The architecture uses SRAM technology which suf-
fers from high energy consumption, low scalability
and large footprint.

• The architecture requires additional compiling tech-
niques and tools to perform conventional Boolean
logic functions using automata processing.

The S-AP is simulated using VASim [96] and evaluated
against DRAM-AP and x86 CPU using ANMLZoo [96] and
the Regex [97] benchmark suites.

4.9 DPP: Data Parallel Processor
DPP was proposed in 2018 by D. Fujiki, et al. from Uni-
versity of Michigan [22]. DPP is a RRAM-based architec-
ture that exploits instruction and data level parallelism by
performing computations using a combination of RRAM-
based dot-product operations and LUTs. The architecture
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Figure 1: An example NFA and its mapping to two small SRAM arrays and switches. The NFA accepts patterns {bat, bar, bart,
ar, at, art, car, cat, cart}.
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Figure 2: The figure shows (a) SRAM arrays re-purposed to store 256 STEs, (b) one 2.5MB Last-Level Cache (LLC) slice architecture.,
and (c) Internal organization of one 8KB sub-array.

are allowed to connect to all STEs in the other array via the global
switch.

The transition table in Figure 1 (c) is mapped to local and global
switches. For instance, S1_a and S4_r, are mapped to ST E1 and ST E3,
of Array_1. Since S1_a can transition to S4_r, the local switch cross-
point between ST E1 and ST E3 is set to connected (represented by
black dot). The figure also shows how a connection via global switch
is established for states S2_a mapped to ST E2 of Array_1, and S4_t
mapped to ST E4 of Array_2. This is accomplished by (1) feeding
ST E2 as an input to global switch, (2) connecting second input of
global switch to G4 output which feeds as an input to Array_2’s
local switch, (3) G4 input is connected to ST E4 output (or S4_t ) of
Array_2’s local switch.

2.4 Cache Slice Design
The proposed cache automaton is implemented in the Last-Level
Cache (LLC) in order to accommodate large NFA with thousands of
states. Figure 2 (b) shows the overall organization of a slice of LLC
with the Cache Automaton architecture. The depicted LLC slice is
modelled exactly after Xeon E5 processors [10, 19]. Each LLC slice
is 2.5MB. Intel processors support 8-16 such slices [8]. Each slice
has a central cache control box (CBOX). Remainder of the slice is
organized into 20 columns. A column consists of eight 16 KB data
sub-arrays, and a tag array. Each column represents a way of set-
associative cache. Internally a 16 KB data sub-array consists of four
SRAM arrays with 256×128 6T bit-cells as shown in Figure 2 (c).
Each array has 2 redundant columns and 4 redundant rows to map
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Fig. 18: SRAM Automata Processor(S-AP) [94]
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Figure 2. In-situ ReRAM array operations.

crossbar topology. A shared bus facilitates communication
inside a cluster. A hierarchical topology inside the tile limits
the network power consumption, while providing sufficient
bandwidth for infrequent communication typical in data-
parallel applications.
Each memory array can be thought of as a vector process-

ing unit with few SIMD lanes. The processor adopts a SIMD
execution model. Each array is mapped to a specific instruc-
tion buffer. All arrays mapped to the same instruction buffer
execute the same instruction. Every cycle, one instruction
is read out of the each instruction buffer and multi-casted
to the memory arrays in the tile. The execution model is
discussed in detail in Section 4.
The processor evaluated in this paper consists of 4,096

tiles, 8 clusters per tile, and 8 memory arrays per cluster.
Each array can store 4KB of data and has 8 SIMD lanes of 32
bits each. Consequently, the processor has aggregate SIMD
width of two million lanes, aggregate memory capacity of
1GB and 494mm2 area. The resolution of ADC and DAC is
set to 5 and 2 bits.

2.2 Instruction Set Architecture
The proposed Instruction Set Architecture (ISA) is simple and
compact. Compared to a standard SIMD ISA, In-memory ISA
does not support complex (e.g. division) and specialized (e.g.

shuffle) instructions because these are hard to do in-situ in-
memory. Instead, compiler transforms complex instructions
to a set of lut, add and mul instructions as discussed later.
The ISA consists of 13 instructions as shown in Table 1. Each
ReRAM arrays executes the instruction locally, hence the
operand addressing modes reference rows inside the array
or local registers. The instructions can have a size of up to 34
bytes. Now we discuss the functionality and implementation
of individual instructions.
1) add The add instruction is an n-ary operation that adds
the data in rows specified by <mask>. The <mask> is a 128-bit
mask which is set for each row in the array that participates
in addition. Figure 2 (a) shows an add operation. The mask
is fed to word-line DACs, which is used to apply a Vdd (’11’)
or Vdd/2 (’10’) to the word-lines. A ’1’ in the mask activates
a row. Each bit-cell in a ReRAM array can be abstractly
thought of as variable resistor. Addition is performed inside
the array by summing up currents generated by conductance
(=resistance−1) of each bit-cell. A sample and hold (S + H)
circuit receives the bit-line current and feeds it the ADC
unit which outputs the digital value for the current. The
result from each bit-line represents the partial sum for bits
stored in that bit-line. Aword or data element is stored across
multiple bit-lines. An external digital shifter and adder (S +
A) combines the partial sums from bit-lines. The final result

Session 1A: New Architectures ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
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Fig. 19: Data Parallel Processor (DPP) [22]

consists of multiple RRAM tiles connected as an H-tree; each
tile has multiple clusters and some logic units (as shown
in Fig. 19). Tiles and clusters form a SIMD-like processor
that performs the parallel operations. The architecture is
considered as a general purposed architecture as it can
perform all primitive functions such as logical, arithmetic,
shift and copy operations.

In addition to clusters, each tile has several units to
support the computations including instruction buffer, Shift
and Add (S+A), and router. Each cluster additionally has
one or more computational units; they are Shift and Add
(S+A), Sample and Hold (S+H), DAC and ADC, a LUT
and register file (as shown in the right part of Fig. 19).
While reading from the high latency RRAM, other units are
simultaneously used for processing. Therefore, the S+H is
used to read data (in the form of a current) from the RRAM
array and temporarily store it. Once that data is needed, it is
fed to an ADC to convert the analog value to a digital value.
The S+A is used to perform carry propagation in a multiple-
bit addition. DAC is used to apply a digital value to the
RRAM array with an appropriate control voltage. Some
complex functions that cannot be realized with these units
are performed using LUTs and register file in each cluster.
Data transfer can be performed by enabling two memory
rows for direct copy operations, or using the buffers and
read-out operations for indirect copy operations.

In addition to the general advantages of CIM-P architec-
tures, DPP has the following advantages:

• Computations include both logical operations and
simple arithmetic operations (i.e., addition, multipli-
cation).

• Data can be transferred using both direct and indirect
schemes.

• The architecture uses non-volatile memory, hence
consumes low energy and has a small footprint.

• This architecture is claimed to be general purpose,
hence it can exploits existing instruction set, compil-
ing techniques and tools, as well as applications.

However, it also has the following limitations:

• The architecture uses non-volatile memory as main
memory, which may impact the life time due to
limited endurance [73], [74].

• The architecture has to deal with sneak path currents.
Possible solutions as mentioned in Section 3.

• As the sense amplifies are complex, a trade-off be-
tween area and bandwidth has to be made.

The architecture potential was simulated and evaluated
against CPU Intel Xeon E5-2697 using a subset of PARSEC
benchmarks [98] and against GPU NVIDIA Titan XP using
Rodinia benchmarks [99].

4.10 R-AP: Resistive RAM Automata Processor
R-AP was proposed in 2018 by J. Yu, et al. from Delft Univer-
sity of Technology [95]. R-AP is an automata processor that
exploits data level parallelism by performing computations
similarly as mentioned in Section 4.8. The working principle
of R-AP is similar to the S-AP. In contrast to S-AP, R-AP uses
RRAM based STEs and routing matrice, as shown in Fig. 20.

In addition to the general advantages of CIM-P architec-
tures, R-AP has the following advantages:

• The architecture is used as a read-favoured acceler-
ator, which has a positive impact on the endurance
due to infrequent use [73], [74].

• Automata processing can be used to perform both
logical and arithmetic operations in general.

• Data can be transferred using both direct and indirect
schemes.
item The architecture uses non-volatile memory,
hence consumes low energy and has a small foot-
print.

• The automata processing techniques and tooling are
quite mature, hence it is feasible to explore many
applications using automata processing.

However, it also has the following limitations:

• The architecture has to deal with sneak path currents.
Possible solutions are mentioned in Section 3.2.

• As the sense amplifies are complex, a trade-off be-
tween area and bandwidth has to be made.

• The architecture requires additional compiling tech-
niques and tools to perform conventional Boolean
logic functions using automata processing.

The architecture has been validated using circuit level
simulations and evaluated against S-AP.

4.11 DRISA-1T1C: A DRAM-based Reconfigurable In-
Situ Accelerator with 1T1C design
DRISA-1T1C was proposed in 2016 by S. Li, et al. from
University of California [67]. It is a DRAM based architec-
ture that exploits data parallelism by performing NOR gate
inside DRAM cells [63]. The architecture consists of a DRAM
memory organized in a hierarchy of banks, sub-arrays and
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Fig. 20: Resistive RAM Automata Processor (R-AP) [95]

mat; each levels are controlled by their corresponding con-
trollers as shown in Fig. 21(a),(b) and (c). The banks are
connected through global bus (gbus) while communication
among subarrays are carried out using bank buffers (bBuf).
The mats perform both data storage and computations.

The memory mats consist of cell regions for both data
and computations, and peripheral circuits including calc-
SA, intra/inter-lance shifter (SHF) and lane forwarding unit
(FWD). The cell regions contains multiple standard DRAM
cells. In order to perform computations, complex sense
amplifiers are required. Logical operations including AND
and OR are performed using this complex sense amplifiers
similarly as in the case of Ambit [82]. Other function such
as NOT are performed using extra logic gates and a latch;
in this scheme, one operands row is read out and stored in
a latch, thereafter, another operands row is read out and fed
into a logic gate together with the previous operand rows in
the latch. The SA (also called calc-SA) cooperates with extra
logic circuitry such as SHF and FWD to perform complex
functions such as addition, copy and inner product.

In addition to the general advantages of CIM-P architec-
tures, DRISA-1T1C has the following advantages:

• The architecture is used as an accelerator (i.e.,
scratch-pad memory), which has a positive impact
on the endurance due to infrequent use [73], [74].

• The data transfer may include both direct and indi-
rect schemes.

• The architecture uses DRAM technology, which has
several benefits such as: high maturity and en-
durance, no sneak path currents, and the accessibility
to optimized architectures, technology and tools.

• As a DRAM cell is larger than a memristor based cell,
it is easier to fit the modified sense amplifiers in the
peripheral circuit.

However, it also has the following limitations:

• As the peripheral circuits are complex, a trade-off
between area and bandwidth has to be made.

• The architecture suffers destructive read, hence an
extra copy of the operand rows are required.

• The architecture uses DRAM technology which suf-
fers from a low performance, high energy consump-
tion, large footprint and is difficult to scale down.

The architecture is simulated and evaluated against GPU
TITAN X [68] using four CNN applications including 8-layer
AlexNet [69], 16-layer VGG-16 [70], 19-layer VGG-19, and
152-layer ResNet-152 [71].

4.12 IMI: In-Memory Intelligence

IMI was proposed in 2017 by T. Finkbeiner, et al., from
Micron Technology [100]. It is a DRAM based architecture
that exploits data parallelism by performing computations
using bit-serial computing elements attached to the DRAM’s
sense amplifiers. The architecture consists of a host system
on chip, double data rate (DDR) interface, regular DRAM
and in-memory-computation DRAM arrays with accumula-
tor as shown in Fig. 22. The host system on chip communi-
cates with both regular and in-memory-computation DRAM
through the DDR interface. In-memory computations are
performed inside of the in-memory-computation DRAM.

The in-memory-computation DRAM includes multiple
banks, each with a scalar bank processing control unit
(BPCU). Each bank contains multiple subarrays. Each subar-
ray comprises of 2T2C cells and computing elements that is
capable of performing XOR and AND operations. Complex
functions are based on these operations. The scalar BPCU
controls both the conventional memory operations and in-
memory computation in vector parallel form.

In addition to the general advantages of CIM-P architec-
tures, IMI has the following advantages:

• The data transfer may include both direct and indi-
rect schemes.

• The architecture uses DRAM technology, which has
several benefits such as: high maturity and en-
durance, no sneak path currents, and the accessibility
to optimized architectures, technology and tools.

• As a DRAM cell is larger than a memristor based cell,
it is easier to fit the modified sense amplifiers in the
peripheral circuit.

However, it also has the following limitations:

• As the peripheral circuits are complex, a trade-off
between area and bandwidth has to be made.

• The architecture uses DRAM technology which suf-
fers from a low performance, high energy consump-
tion, large footprint and is difficult to scale down.

The architecture is simulated using a custom-built sim-
ulator called PISA-CAKE and evaluated against GPUs and
AMR processors using several benchmarks such as Gaus-
sian Blur, Alpha Blend, CSV Parsing, ShA1, and Image
Fusion [100].

4.13 Compute$: Compute caches

Compute$ was proposed in 2017 by S. Aga, et al., from Uni-
versity of Michigan [101]. It is a SRAM based architecture
that exploits data parallelism by performing computations
using two differential sense amplifiers [102]. The architec-
ture consists of multiple processors with their own L1, L2
and L3 caches; each cache is a SRAM memory with in-
memoy computation capability as shown in Fig. 23(a). The
applications are mapped to exploit the data locality in L2
caches. The processors and cache hierarchy are designed to
aware of this data locality and in-memory computations.

Each cache contains a cache controller, and multiple sub-
arrays organized in an H-tree form as shown in Fig. 23(b).
The cache controller is extended from the conventional
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The basic architecture starts with the regular
2D planar topography of DRAM for data stor-
age. In this case, the design is built on an 8-Gbit
die divided into eight banks. The banks reach
into the periphery and outside world via an inter-
connection to the DRAM periphery cache. Each 
bank ties into this cache through independent
bank-level data buses (2 Kbits wide). Each bank
is 16 Kbits wide, and each bank stores 1 Gbit of
information. The bank is again divided into sub-
regions called subarrays. There are 64 subarrays 
per bank, and each subarray can address 1,024
rows of DRAM. Each subarray is also paired
with a 16-Kbit-wide sense-amp stripe.

The IMI architecture logically places a  
single bit-serial computing element below each 
sense-amplifier. The computing element is 
capable of basic logical functions (such as XOR 
and AND). More complex operations comprise 
sequences of primitive Boolean logic, including 
higher orders of math operations and floating 
point. This topology implies that there are 64 
subarrays times 16,384 computing elements, 
or 1,048,576 computing elements per bank, 
for a total of 8 million computing elements per 
DRAM die.

DRAM devices generally have charac-
teristics of analog machines. Internal DRAM
states are based on a row-cycle controlled by 
an asynchronous state machine. Such DRAM 
states include precharge, open row, close row, 

equilibrate, and so on. The same states apply 
with the IMI architecture along with additional
states to control the computing logic. The state
machine is controlled in the DRAM periph-
ery by a very long instruction word (VLIW)  
machine called the bank processing control unit  
(BPCU). One control unit is attached to each 
DRAM bank and ultimately translates the IMI 
instruction to be executed into row-cycles that 
control the SIMD computing elements. The
BPCU essentially issues an IMI instruction to the 
entire bank in vector parallel form. The BPCU 
can also perform scalar functions such as pointer 
addressing and loops. The BPCU internally
operates on a microcode engine. One can think 
of each bank as a separable large SIMD core in a
single-instruction, multiple-thread model.

The design of the IMI architecture inter-
face is compatible with double data rate (DDR) 
standards. The IMI implements a 64-bit DDR4 
interface running 2,666 megatransfers per sec-
ond (MT/s). In addition to the DDR4 inter-
face, a sideband eight-wire “status channel” 
serves as a unidirectional communication link 
from the IMI to the host processor or system on 
chip (SoC). The status channel is a low-speed 
interface that can be driven through common 
general-purpose I/O signals (see Figure 1). The 
interface aims to report events back to the host 
environment status as completions, errors, and 
IMI events.
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Figure 1. Top-level architectural diagram of In-Memory Intelligence (IMI). Eight-bank 1-Gbit DRAM device with 64 subarrays 
per bank, 16 Kbits wide and 1,024 rows deep, for a total of 8 million computing elements per die. The status channel provides 
feedback to the host processor. (BPCU: bank processing control unit; DDR: double data rate.)Fig. 22: In-memory Intellgence overview [100]

When in-place processing is not possible for an operation
due to lack of operand locality, we propose to use near-place
Compute Caches. In near-place design, the source operands
are read out from the cache sub-arrays, the operation is
performed in a logic unit placed close to the cache controller,
and the result may be written back to the cache.

Besides operand locality, Compute Caches brings forth
several interesting questions. How to orchestrate concurrent
computation over operands spreading across multiple cache
sub-arrays? How to ensure coherence between compute-
enabled caches? How to ensure consistency model con-
straints when computation is spread between cores and
caches? Soft errors are a significant concern in modern
processors. Can ECC be used for Compute Caches? When
not possible, what are the alternative solutions? We discuss
relatively simple solutions to address these problems.

Compute Caches support several in-place vector opera-
tions: copy, search, compare and logical operations (and,
or, xor, and not) which can accelerate a wide variety
of applications. We study two text processing applications
(word count, string matching), database query processing
with bitmap indexing, copy-on-write checkpointing in OS,
and bit matrix multiplication (BMM); a critical primitive
used in cryptography, bioinformatics, and image processing.
We re-designed these applications to efficiently represent
their computation in terms of Compute Cache supported
vector operations. Section V identifies a number of addi-
tional domains that can benefit from Compute Caches: data
analytics, search, network processing etc.

We evaluate the merits of Compute Caches for a multi-
core processor modeled after Intel’s SandyBridge [9] proces-
sor with eight cores, three levels of caches, and a ring inter-
connect. For the applications we study, on average, Compute
Caches improve performance by 1.9× and reduce energy
by 2.4× compared to a conventional processor with 32-byte
wide vector units. Applications with a higher fraction of
Compute Cache operations can benefit significantly more.
Through micro-benchmarks that manipulate 4KB operands,
we show that Compute Caches provide 9× dynamic energy
savings over a baseline using 32-byte SIMD units while
providing 54× better throughput on average.

In summary, this paper makes the following contributions:

• We make a case for caches that can compute. Using bit-
line computing, our Compute Caches naturally support
vector processing over large data operands (several KBs).
This dramatically reduces overhead due to data move-
ment between caches and cores. Furthermore, in-place
computing even avoids data transfer between a cache’s
sub-array and its controller.

• We present the Compute Cache architecture that ad-
dresses various architectural problems: operand locality,
managing parallelism across various cache levels and
banks, coherency, consistency, and reliability.
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Figure 1: Compute Cache overview. (a) Cache hierarchy. (b)
Cache Geometry (c) In-place compute in a sub-array.

• To support Compute Cache operations without operand
locality, we study near-place processing in cache.

• We re-designed several important applications (text pro-
cessing, databases, checkpointing) to utilize Compute
Cache operations. We demonstrate significant speedup
(1.9×) and energy savings (2.4×) compared to proces-
sors with conventional SIMD units. While our savings
for applications are limited by the fraction of their com-
putation that can be accelerated using Compute Caches
(Amdahl’s law), our micro-benchmarks demonstrate that
applications with larger fraction of Compute Cache op-
erations could benefit even more (54× throughput, 9×
dynamic energy savings).

II. BACKGROUND

This section provides a brief background of cache hierar-
chy, cache geometry, and bit-line computing in SRAM.

A. Cache Hierarchy and Geometry

Figure 1 (a) illustrates a multi-core processor modeled
loosely after Intel’s Sandybridge [9]. It has a three-level
cache hierarchy comprising of private L1 and L2, and a
shared L3. The shared L3 cache is distributed into slices
which are connected to the cores via a shared ring intercon-
nect. A cache consists of a cache controller and several banks
((Figure 1 (b)). Each bank has several sub-arrays connected
by a H-Tree interconnect. For example, a 2 MB L3 cache
slice has a total of 64 sub-arrays distributed across 16 banks.

A sub-array in a cache bank is organized into multiple
rows of data-storing bit-cells. The bit-cells in the same row
are connected to a word-line. The bit-cells along a column
share the same bit-line. Typically, in any cycle, one word-
line is activated, from where a data block is either read from,
or written to, through the column bit-lines.

B. Bit-line Computing

Compute Caches use emerging bit-line computing tech-
nology in SRAMs [2], [3] (Figure 2) which observes that,
when multiple word-lines are activated simultaneously, the

482

Fig. 23: Compute$ overview [101]

cache controller to manage the parallel executions of mul-
tiple instructions in multiple banks. The cache controller
also determine which cache level to execute a function to
ensure the data locality. Computations are performed by
enabling two rows of a subarrays simultaneously and activ-
ing the functions of a sense amplifier. The sense amplifiers
are designed to execute AND, NOR, XOR, copy, search,
comparision and carryless multiplication [101].

In addition to the general advantages of CIM-P architec-
tures, Compute$ has the following advantages:

• The data transfer may include both direct and indi-
rect schemes.

• The architecture uses SRAM technology, which has
several benefits such as maturity, high endurance,
no sneak path currents, and may benefit for the the
existing optimizing techniques and tools.

• As an SRAM cell is relatively large as compared to a
memristor/DRAM cell, it is easier to fit the modified
sense amplifiers in the peripheral circuit.

However, it also has the following limitations:
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Figure 4: Addition operation
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Figure 5: Reduction Operation

A and B, each with four 4-bit elements. Four word lines
are necessary to store all bit-slices of 4-bit elements.

We use the addition of two vectors of 4-bit numbers to
explain how addition works in the SRAM. The 2 words
that are going to be added together have to be put in the
same bit line. The vectors A and B should be aligned in the
array like Figure 4. Vector A occupies the first 4 rows of
the SRAM array and vector B the next 4 rows. Another 4
empty rows of storage are reserved for the results. There
is a row of latches inside the column peripheral for the
carry storage. The addition algorithm is carried out bit-by-bit
starting from the least significant bit (LSB) of the two words.
There are two phases in a single operation cycle. In the first
half of the cycle, two read word lines (RWL) are activated to

simultaneously sense and wire-and the value in cells on the
same bit line. To prevent the value in the bit cell from being
disturbed by the sensing phase, the RWL voltage should be
lower than the normal VDD. The sense amps and logic gates
in the column peripheral (Section III-E) use the 2 bit cells
as operands and carry latch as carry-in to generate sum and
carry-out. In the second half of the cycle, a write word line
(WWL) is activated to store back the sum bit. The carry-out
bit overwrites the data in the carry latch and becomes the
carry-in of the next cycle. As demonstrated in Figure 4, in
cycles 2, 3, and 4, we repeat the first cycle to add the second,
third, and fourth bit respectively. Addition takes n + 1, to
complete with the additional cycle to write a carry at the end.

Fig. 24: Neural$ overview [103]

• As the peripheral circuits are complex, a trade-off
between area and bandwidth has to be made.

• The architecture uses SRAM technology which suf-
fers from high energy consumption, low scalability
and large footprint.

The architecture is simulated using SniperSim [89] and
evaluated using multiple benchmarks including Word-
Count, StringMatch, DB-BitMap, BMM, and checkpoint-
ing [101].

4.14 Neural$: Bit-serial in-cache acceleration of deep
neural networks

Neural$ was proposed in 2018 by C. Eckert, et al., from
University of Michigan and Intel Corporation [103]. It is a
SRAM based architecture that exploits data parallelism by
performing computations for neural network using modi-
fied peripheral circuits. The architecture includes a multi-
core processor with multiple cache slices as shown in the
leftmost part of Fig. 24. Each cache slide contains multiple
banks controlled by a CBOX. Each bank comprised of mul-
tiple subarrays with their own peripheral circuits to support
in-memory computation.

The subarrays stores data inside the SRAM cells and
performs computations using two conventional sense am-
plifiers and logic gates. The sense amplifiers read out two
rows of data simultaneously and feed the results to a set
of logic gates. With these logic units, the architecture is
capable of performing complex function such as addition,
multiplication and reduction.

In addition to the general advantages of CIM-P architec-
tures, Neural$ has the following advantages:

• The data transfer may include both direct and indi-
rect schemes.
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• The architecture uses SRAM technology, which has
several benefits such as maturity, high endurance,
no sneak path currents, and may benefit for the the
existing optimizing techniques and tools.

• As an SRAM cell is relatively large as compared to a
memristor/DRAM cell, it is easier to fit the modified
sense amplifiers in the peripheral circuit.

However, it also has the following limitations:

• As the peripheral circuits are complex, a trade-off
between area and bandwidth has to be made.

• The architecture uses SRAM technology which suf-
fers from high energy consumption, low scalability
and large footprint.

• In case general purpose computing is desired, the ar-
chitecture requires additional compiling techniques
and tools to perform conventional Boolean logic
functions using neural network computations.

The architecture is demonstrated as a prototype and
evaluated against multicore CPU Xeon E5 [104] and GPU
Titan Xp [68] for the Inception v3 model [105].

5 DISCUSSION

In this section, we try to analytically evaluate all archi-
tectures in four aspects: memory array, peripheral circuits,
controllers, interconnect network, and applications. For the
prior four aspects, we consider its usage, complexity and
performance impact as they are components of the architec-
ture. For the application, we evaluate the potential ranges of
application for each group of architectures.

In terms of memory array, we first consider how the
memory array is used in each category. CIM-A and CIM-
P use memory array as temporary and long-term storage,
and computing unit, while COM-N and COM-P use mem-
ory array only for storage. In general, CIM-A and CIM-
P architectures exploit more functionality of the memory
array. Therefore, more requirements are applied for mem-
ory array such as higher endurance, lower write voltage
and energy, and isolation among computing unit to ensure
robustness and parallelism. Meanwhile, COM-N and COM-
P architectures requires less from memory array which are
specifically designed to optimize capacity and read speed.
Second, we consider how much complexity is required to
adapt the memory array to the new method to perform
computation. In general, only the architectures in CIM-A
category require modifications inside the memory array.
CIM-P class might require some modification in cell pitch
to fit their peripheral circuit, however, these changes are
considered as a performance trade-off rather than in the case
of CIM-A category. COM-N and COM-F requires no change
in the memory array, however, using emerging memory
such as RRAM for storage might suffer from low endurance,
and high write latency and energy; this will impact the per-
formance of the architectures. In particular, CRS and MPU
require more modification than other CIM-A architectures
due to the change in their cell structure; note that CRS
requires a cell that combines two memristors while MPU
requires a cell that has asymmetric voltages to switch from
high to low resistance and vice versa. Third, we consider the
performance impact of the memory array. As the memory

array is used as multiple purposes for CIM-A and CIM-P
architectures, it increases overall performance as a results of
no memory bottleneck, reduced idle time and reduced static
power consumption. This is not the case for COM-N and
COM-P architectures where memory bottleneck exists and
reduces the overall performance and energy.

In terms of peripheral circuits, we first consider the
peripheral circuit usage in each category. Except for CIM-
P where peripheral circuit plays an crucial role in com-
putation, other classes uses peripheral circuits mainly for
reading/writing data from/to memory. In general, CIM-
P architectures perform part of computation using their
peripheral circuit, hence it requires a more functionality
from the peripheral circuit than the architectures in other
classes. For example. the peripheral circuit is required to
perform also parts of logical or arithmetic operations, as
in the case of most CIM-P architectures such as Pinatubo,
STT-CiM, DPP. For other architectures, the peripheral circuit
performs conventional memory operations, which do not
require more functionality. Second, we consider the com-
plexity of the peripheral circuit. In general, CIM-P class
requires more complex peripheral circuit while other classes
require conventional peripheral circuit. Complex peripheral
circuit can be either (i) modifying the peripheral circuit
itself (i.e., row decoder or sense amplifiers), or (ii) adding
more logic gates after the peripheral circuit to perform
complex functions. The first options include modifications
that enables multiple rows concurrently, reads multiple-
level values at the sense amplifiers, and combines the afore-
mentioned. In particular, all architectures in CIM-P class
requires concurrent multiple row enabling; some require
only limited number of rows enabling to perform logical
operations such as Ambit, Pinatubo, CIMA, STT-CiM, and
DPP while others require all the rows of a crossbar enabled
to perform matrix multiplication operations. In addition,
PRIME, ISAAC, and DPP demand also a read circuit that can
differentiate multiple levels (i.e., ADC) while other architec-
tures in CIM-P class only requires read circuit to differenti-
ate between 0 and 1; note that the presence of ADC increases
dramatically the complexity of the peripheral circuit. Third,
we consider the performance impact of peripheral circuit to
overall architecture performance. As most architectures in
CIM-P class depends on their peripheral circuit to perform
computation, the number of peripheral circuit elements
determines the maximum parallelism that can be obtained.
However, as the peripheral circuit of some architectures are
more complex than other, there is a performance-area trade-
off in locating appropriate amount of peripheral circuit.
Therefore, CIM-P class architectures such as PRIME, ISAAC,
and DPP achieves lower parallelism than other CIM-P class
architectures. In addition, the architectures which use non-
volatile memory can fit fewer of these complex peripheral
circuits than the architectures which use conventional larger
foot-print memory technology (i.e., DRAM); hence, Ambit
has positive impact on performance than other CIM-P ar-
chitectures. For other classes, as peripheral circuit play less
important role, it does not impact their parallelism.

In terms of controller, we first consider the controller
usage in each architecture; note that controller here are
considered as in-memory computation controller. In gen-
eral, COM-N and COM-F architectures do not require this
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controller as a conventional memory controller is sufficient.
CIM-A and CIM-P architectures which perform (parts of)
computation require a controller as memory is a passive
device while performing computation requires multiple
activating signals at different timing; hence the controller
for these architectures controls both memory operations,
computations and possibly communication [50]; therefore,
more bottleneck are expected for the controller of CIM-A
and CIM-P architectures. Second, we consider the controller
complexity for each architecture. In general, the controller
for CIM-A architectures is more complex than that of CIM-
P architectures as computation in CIM-A architectures nor-
mally requires multiple steps with various control signals;
whereas CIM-P class requires normally a single step and
fixed control (read) signals. In addition, some architectures
require also communication happening within controllers;
this increases the complexity of the controller. For example,
CRS architecture has a relatively more complex controller
than other CIM-A architecture because of its communication
can only carried out using controller [48]. Furthermore,
architectures using DRAM technology has a more mature,
optimized controller than emerging memory such as STT-
MRAM or RRAM; hence, Ambit’s controller is less complex
than other CIM-P architecture. Third, we consider the per-
formance impact of the controller. In general, a complex
controller reduces overall performance as it increases the
length of the critical path, which reduces architecture’s
frequency. Therefore, CIM-A architecture’s controller is less
efficient than that of CIM-P architecture. In particular, CRS’s
controller is considered as negative impact on overall per-
formance while Ambit’s controller is considered as positive
impact on overall performance.

In terms of interconnect network, we first consider the
interconnect network usage in each architecture. In general,
conventional interconnect network can be used for COM-N
and COM-F architectures, while novel interconnect network
schemes still need to be explored for CIM-A and CIM-P ar-
chitectures [50], [51]. These novel schemes currently include
(1) only using memristor crossbar, (2) using CMOS circuits
(controller and peripheral circuits) , and (3) using both
memristor crossbar and CMOS circuits. Most architectures
in CIM-A and CIM-P class can use all three schemes, except
some architectures with unconventional memory cell usage
such as CRS and ReAP. Second, we consider the interconnect
network complexity for each architecture. In general, the
interconnect network for CIM-A architectures is more com-
plicated, as it happens inside the memory crossbar together
with computations, which might suffer from controller com-
plexity and lack of isolation. Interconnect network of CIM-
P architectures are more flexible as results are produced
outside the memory crossbar, and can be communicated
outside of memory crossbar using conventional mature
interconnect network. Third, we consider the impact of
the interconnect network on the architecture’s performance.
In general, reducing communication can increase overall
performance, especially when (i) interconnect network basic
operation is not efficient, and (ii) the number of required
communication is huge. Therefore, interconnect network in
CIM-A architectures have higher impact on overall perfor-
mance than on CIM-P architectures. Furthermore, flexibility
to use multiple schemes can help reduce the negative impact

on system performance; hence, CRS and ReAP have higher
negative impact on performance than other architectures.

In terms of application, we look at the range of applica-
tions that can be used for each architecture. In general, CIM
architectures can be more efficient than COM architectures
for data intensive applications due to their capabilities in
reducing memory bottleneck. For CIM-A architectures and
some CIM-P architectures (e.g., Pinatubo, CIMA, STT-CiM),
there are currently limited types of operations can be ef-
ficiently performed on these architectures; hence, limited
range of applications can be mapped on these architectures;
this includes bulk bitwise applications such as database
processing, graph processing, image processing, security
and biosequencing application [20], [82], [106], [107], [108],
[109]. In addition, only several architectures are considered
as general purpose computers such as ReAP, DPP, FlexRAM,
SM, COM-F architectures, etc. Other architectures targets
specific applications such as vector processing (e.g., PLiM,
ReVAMP, VIRAM, DIVA, AMC, etc.), automata processing
(S-AP, D-AP, and R-AP), and neural computation (PRIME
and ISAAC).

6 CONCLUSION

In this paper, we have proposed a classification including
four groups of computer architectures. Moreover, nearly 30
selected architectures were presented and evaluated quanti-
tatively. The work shows that a potential architecture does
not only require to be memory bottleneck free, but also
energy and area efficient. In order to accomplish that, it
is the joint effort of both architectural improvement and
technology development. The relationship between the two
are closer and closer in later proposed architectures. This
work also shows that architectures are not changing dra-
matically, but gradually with small changes and technology
developments. Indeed, technology enables the feasibility
and potential of the same architecture in the past. In gen-
eral, the classification does not only present an overview
of existing architectures, but also predicts the potential of
future architecture variants.
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APPENDIX A
COMPUTATION-OUT-MEMORY - NEAR (COM-N)
The COM-N class consists of architectures that perform
computation using additional logic units outside the mem-
ory core but inside the memory SiP. These architectures were
proposed in the past and evolved through different memory
technologies ranging from conventional DRAM, embedded
DRAM to emerging memory technologies such as RRAM.
A large number of architectures have been proposed in
this category. Table 3 shows a brief comparison among the
architectures which will be explained in each subsection.

On one hand, these architectures have several common
advantages:

• Reduced memory bottleneck compared to COM-F as
the computations take place close to the memory core
and therefore can benefit from the on-chip memory
bandwidth.

• A wide variety of high performance functions can
be implemented as the computing takes place with
mature CMOS technology.

• These architectures do not suffer from endurance
requirements, especially as traditional mature mem-
ories can be used.

On the other hand, they all share the following limita-
tions:

• The amount of parallelism is either limited by the
bandwidth or the available resources, which puts
much more bandwidth restrictions than what can be
achieved in the CIM-A/-P class. An area trade-off
has to be made between registers and the type and
amount of computing resources.

• There is an additional write overhead when the re-
sults have to be stored back in to the memory. Note
that the outputs are produced outside the memory
core, and therefore, extra write operations would be
necessary in such cases.

• Relative complex memory controllers are needed as
these architectures have to support COM-N instruc-
tions within the memory SiP and maintain the mem-
ory coherency with the rest of the memory hierarchy.

• Efforts are still required to modify instruction sets,
compilers and tools to support in-memory instruc-
tions.

The following subsections discuss the details of each
architecture.

A.1 VIRAM: Vector Intelligent RAM
VIRAM [11], [110], [111], [112] was proposed in 1997 by
J. Gebis, et al., from University of California. VIRAM is
an embedded DRAM based architecture that exploits data
parallelism by performing computations using a vector pro-
cessor near the embedded DRAM. The architecture consists
of a host processor and its caches, a floating point unit
(FPU), a DMA, and an embedded DRAM memory with a
vector processor as a co-processor, as shown in Fig. 25. A
specialized compiler generates two instruction sequences,
one for the memory-intensive and one for the non memory-
intensive part [110]. The memory-intensive part is executed
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registers. There is no need for extended precision registers or accumulators, and
this simplifies the use of these instructions. The maximum precision of calcula-
tions can be set by selecting the proper virtual processor width.

To enable efficient vectorization of conditional statements, the ISA includes
a vector flag register file with 32 registers. Each register consists of a bit vector
with one bit per vector element, which may be applied as a mask to the majority
of vector operations. The same flag registers are used to support arithmetic
exceptions, as well as software-controlled speculation of both load and arithmetic
operations.

2.2 The VIRAM Processor
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Fig. 1. The Block Diagram of the VIRAM Processor.

The VIRAM processor chip is an implementation of the VIRAM architecture
designed at U.C. Berkeley [KGM+00]. Its block diagram is presented in Figure
1. It includes a simple in-order (scalar) MIPS processor with first level caches
and floating-point unit, a DMA engine for off-chip access, an embedded DRAM
memory system, and a vector unit which is managed as a co-processor. Both the
vector and scalar processors are designed to run at 200 MHz using a 1.2V power
supply, with a power target of 2 Watts [Koz99].

The vector unit of the VIRAM processor includes one floating-point and
two integer arithmetic units. Each arithmetic unit contains a 256-bit datapath,
which can be used to execute 4 64-bit operations, 8 32-bit operations, or 16 16-bit
operations simultaneously. Thus, the virtual processors that one may imagine

Fig. 25: Vector Intelligent RAM (VIRAM) [110]

on the vector processor with a fast on-chip bandwidth
connection to the embedded DRAM. The non-memory in-
tensive part is executed on the host processor with a slow
off-chip bandwidth connection to the embedded DRAM.
Note that for the non-memory intensive part the embedded
DRAM plays the role of a conventional memory.

The vector processor contains multiple arithmetic units,
flag register files, a vector register file with 8 KB capacity
and a memory control unit. All these components are used
during the execution of multiple instructions. Synchroniza-
tion is carried out using the flag register file that maintains
the status of each arithmetic unit.

In addition to the general advantages of COM-N archi-
tectures, VIRAM comes with the following advantages:

• High parallelism due to vector processing on 8KB of
data.

• The architecture uses embedded DRAM which is
mature and has some advantages such as high per-
formance, high bandwidth, low power [12], [14].

However, it also has the following limitations:

• The embedded DRAM has some limitations such as
a high fabrication cost, low scalability, and trade-off
between performance and capacity [12], [13], [14].

The architecture was demonstrated as a prototype
and evaluated against the superscalar processor PowerPC
MPC7455 and the VLIW processor VelociTI TMS320C6203
using EEMBC media benchmarks [113].

A.2 A-page: Active pages

A-page [114] was proposed in 1998 by M. Oskin, et al., from
University of California. A-page is an DRAM based archi-
tecture that exploits data parallelism by performing com-
putations using a reconfigurable processor near the DRAM
sub-arrays. The architecture consists of a host processor and
a DRAM memory with reconfigurable logic embedded in
each subarray (so-called RADram), as shown in Fig. 26. To
use A-page, computations of an application is partitioned
to be executed on the host processor or memory. The host
processor dispatches the instructions executed on memory
to RADram. The RADram locks the data used by the in-
structions and performs the computations. Thereafter, the
results is returned to the host processor. Multiple RADram
subarrays and the host processor communicates through an
inter-page scheme to ensure the synchronization.
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Hierarchy
level

Computations Memory
Technol-

ogy

Overheads Sneak
path

current
Destructive

read

Required
read-out*

Copy
scheme

Evaluation

Logic
style

Processor
type

Cells Periphery Controller Simulator App.

VIRAM Main memory Bool. Vector eDRAM - Conv. Medium No No No Indirect Prototype EEMBC
A-page Main memory Bool. ReconfigurableRADRAM - Conv. Medium No No No Indirect SimpleScalar (1)

FlexRAM Main memory Bool. CPU eDRAM - Conv. Medium No No No Indirect Prototype (2)
S-Mem Main memory Bool. Flexible eDRAM - Conv. Medium No No No Indirect Imagine (3)
DIVA Main memory Bool. Vector eDRAM - Conv. Medium No No No Indirect Prototype (4)
AMC Main memory Bool. Vector HMC - Conv. Complex No No No Indirect Mambo DGEMM,

DAXPY
HIVE Main memory Bool. Vector HMC - Conv. Complex No No No Indirect SiNUCA (5)

DaDianNao Accelerator NN. NFU eDRAM - Conv. Simple No No No Indirect Booksim2.0 CNN, DNN
DRAMA Main memory Bool. CGRA 3D-DRAM - Conv. Complex No No No Indirect Gem5 San Diego

Vision, Par-
boil

HBM Main memory Bool. - 3D-DRAM - Conv. Complex No No No Indirect Product No
ProPRAM Main memory Bool. Logical,+,

*
NVM PCM,

STT-
MRAM

Modif. Medium No No No Indirect Multi2Sim,
NVSIM

PUMA

ProPRAM Main memory Bool. Logical,+,
*

NVM memristor Modif. Medium No No No Indirect Analytical MM.

+: n-bit addition Conv.: Conventional (*): Required read-out during computations
x: n-bit multiplication Modif.: Modified App.: Applications and benchmarks
NVM: Non-volatile memory Bool.: Boolean MM.: Matrix multiplication benchmarks
NN.: Neural network NFU: Neural Functional Unit
(1): C++ STL array template, database query, image processing, largest common subsequence algorithm, MMX primitives, and sparse-matrix multiply
(2): data mining, protein pattern matching, TCP-D, MPEG-2 motion estimation
(3): 1024-point FFT, a 13-tap FIR filter, a 7x7 convolution, and an 8x8 DCT
(4): scientific computing, databases and image processing
(5): vector search, memory reset/set operations, vector sum,matrix stencil, matrix multiplication kernels
(6): vector search, memory reset/set operations, vector sum,matrix stencil, matrix multiplication kernels

TABLE 3: Comparison among Architectures of COM-N Classes

of a system using a conventional memory system divided the 
performance of a system Using Active Pages. Non-Overlap 
Time is the time the processor spends waiting for Active Page 
computation which is not overlapped with processor compu- 
tation. This is indicative of the quality of partitioning. As 
illustrated in Figure 1, we expect three regions of speedup as 
problem sizes scale: 

The sub-page region: For very small problem sizes, ap- 
plications use a small number of Active Pages and utilization 
of those pages is poor. Activation time dominates the compu- 
tation and speedups do not scale until the Active Page func- 
tion offloads sufficient work from the processor. 

The scalable region: Once the problem is larger, the 
number of Active Pages involved increases linearly. The cor- 
responding increase in computational power results in linear 
speed-ups. 

The saturated region: Although the number of Active 
Pages grows with data size, the number of processors in a 
system does not. Consequently, we expect speedups to even- 
tually level off as the processor-component of the application 
saturates constant processor resources. This leveling off can 
also produce a degradation in performance as an increased 
number of Active Pages can increase the synchronization and 
communication overhead. 

Ideally, we want speedups which are in the rightmost por- 
tion of the scalable region. Fortunately, partitions can be 
tuned to shift this scalable region towards specific problem 
sizes. 

Data Manipulation In addition to providing scalable 
computation, Active Pages allow programmers to optimize for 
density and indexing rather than data manipulation. Cur- 
rently, programmers have a wealth of data structures they 
can choose to use for any given problem. However, these data 
structures each have advantages and disadvantages. For in- 
stance, doubly-linked lists provide fast insertion and deletion 
of elements, but poor random access. On the other hand, 
arrays provide fast random access, but poor performance on 
insertions and deletions. 

To some extent, Active Pages remove the burden of com- 
promise when choosing a data structure. For example, our 
implementation of the STL array class uses dense arrays, but 
exploits Active Page functions to provide fast insertion and 
deletion. 

3 Implementation: RADram 

In this section. we describe the Reconfigurable Architecture 
DRAM (RADram) system, shown in Figure 2. RADram is an 
architecture baaed upon the integration of the next generation 
of FPGA (Field-Programmable Gate Array) and DRAM tech- 
nology. To minimize latency and reduce power consumption, 
large DRAMS are divided into subarrays, each with its own 
subset of address bits and decoders [1+97]. RADram exploits 
this structure by associating a block of reconfigurable logic 
with each subarray. 

RADram Architecture For gigabit DRAMS, a good 
sub-array size to minimize power and latency is 512 Kbytes 
[1+97]. The RADram system associates 256 LEs (Logic El- 
ements, a standard block of logic in FPGXs which is based 
upon a 4-element Look Up Table or 4-LUT) to each of these 
sub-arrays. This allows efficient support for Active-Page sizes 
which are multiples of 512 kbytes. 

Figure 2: The RADram System 

Parameter Reference Variation 
CPU Clock 1 GHz - 
Ll I-Cache 64K 
Ll D-Cache 64K 32K-256K L 
L2 Cache 1M 256K-4M 
Reconf Logic 100 MHz lo-500 MHz 
Cache Miss 50 ns O-600 ns , 

Table 1: Summarv of RADram parameters 

Each LE requires about 1K transistors of area on a logic 
chip. The Semiconductor Industry Association (SW) roadmap 
[Sem94] projects mass production of l-gigabit DRAM chips by 
the year 2001. If we devote half of the area of such a chip to 
logic, we expect the DRAM process to support approximately 
32M transistors, which is enough to provide 256 LEs to each 
512K sub-array of the remaining 0.5-gigabits of memory on 
the chip. DeHon [DeH96b] gives several estimates of FPGX 
area. 

We adopt a processor-mediated approach to inter-page com- 
munication which assumes infrequent communication. When 
an Active-Page function reaches a memory reference that can 
not be satisfied by its local page, it blocks and raises a proces- 
sor interrupt. The processor satisfies the request by reading 
and writing to the appropriate pages. Once an interrupt is 
raised, the processor generally satisfies many requests from 
different pages in the system. Future work will evaluate hard- 
ware mechanisms for in-chip communication, increasing the 
number of outstanding references per page, and processor- 
polling for requests. The processor-mediated methodology, 
however, functions well for our applications and will greatly 
simplify future work in paging and virtual memory. 

Table 1 lists the parameters of our reference RADram im- 
plementation. Several parameters were also individually var- 
ied in our experiments with respect to the reference imple- 
mentation. The range of variation for these parameters is also 
given in Table 1. Additionally, a memory bus capable of trans- 
ferring 32 bits of data between memory and cache every 10 ns 
is assumed. 

Why Reconfigurable Logic? The potential of gi- 
gabit densities in DRAM has prompted research and devel- 
opment in a variety of implementation options for intelligent 
memory. IRAM [Pat95], an integration of processor core and 
DRAM, is a well-known option studied at Berkeley. RXDram, 
however, is likely to have better yield, higher parallelism, and 
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Fig. 26: Active pages (A-page) [114]

The RADram includes multiple subarrays. Each sub-
array has its own array, address decoders and 256 logic
elements which is reconfigurable logic based on FPGAs.

In addition to the general advantages of COM-N archi-
tectures, VIRAM comes with the following advantages:

• Reconfigurability due to the reconfigurable logic.
• High parallelism due to the presence of logic in each

subarray.

However, it also has the following limitations:

• The architecture uses DRAM technology which suf-
fers from a low performance, high energy consump-
tion, large footprint and is difficult to scale down.

The architecture concept was simulated using cycle-
accurate simulator (SimpleScalar v2.0 [115]). The reconfig-
urable logic are implemented using FPGA. The performance
of A-page was evaluated using multiple processor and
memory-centric applications such as C++ STL array tem-
plate, database query, image processing, largest common
subsequence algorithm, MMX primitives, and sparse-matrix
multiply [114].

A.3 FlexRAM: Advance Intelligent Memory System
FlexRAM was proposed in 1999 by Y. Kang, et al., from
University of Illinois Urbana-Champaign [9]. FlexRAM is

an embedded DRAM based architecture that exploits task
level parallelism by performing computations on simplified
conventional processors near the main memory. The archi-
tecture consists of a host processor (P.Host), L1/L2 caches,
multiple FlexRAMs and plain DRAM, as shown in Fig.27.
It works in two modes: as a conventional computer and
as a near-memory computer. In the conventional mode, the
FlexRAM is transparent and its memory can be accessed by
P.Host as conventional DRAM. In the PIM mode, the P.Host
can benefit from the FlexRAM by distributing instructions
to multiple FlexRAMs. FlexRAMs are used as accelerators
that execute multiple instructions on multiple data. After a
FlexRAM finishes a task, it signals P.Host through a polling
scheme.

A FlexRAM contains a P.Mem processor, its caches and
64 P.Array cores interleaved with 64 MByte DRAM mem-
ory. The P.Mem processor is a superscalar processor with
floating-point support, with its own instruction and data
cache. The P.Array core is a simple RISC processor equipped
with 1 MByte DRAM memory. P.Array cores can also access
the 1 MByte DRAM memory of its left and right neighbour.
The instructions are stored on an instruction cache with four
input ports which is shared among every 4 P.Array cores. A
P.Mem communicates with P.Array cores through reserved
registers. P.Mem can also broadcast a 32-bit word to all
P.Arrays by setting a broadcast flag in all P.Arrays. In ad-
dition, it controls the communication between two P.arrays.
After completing a task, a P.Array sends a notification to
P.Mem through a P.Mem’s Notify register.

In addition to the general advantages of COM-N archi-
tectures, FlexRAM comes with the following advantages:

• The architecture uses embedded DRAM which is
mature and has some advantages such as high per-
formance, high bandwidth, low power [12], [14].

However, it also has the following limitations:

• The parallelism is limited due to the complex hierar-
chy of logic units within the memory SiP.
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Fig. 27: Advance Intelligent Memory System (FlexRAM) [9]

• The data transfer within and among FlexRAM still
requires improvements as it is complex to synchro-
nized among multiple computation units, and a lot
of traffic among computation units can limit its scal-
ability and performance.

• The architecture uses embedded DRAM which has
some limitations such as penalty trade-offs between
performance and capacity, high fabrication cost, low
scalability [12], [13], [14].

An architecture prototype was fabricated in a 505 mm2

chip in 0.18um MLD technology running at a frequency
of 400MHz. Its performance was measured by executing
various algorithms (data mining, protein pattern matching,
TCP-D, MPEG-2 motion estimation [9]) on two modes: the
conventional and PIM-based computer.

A.4 S-Mem: Modular Reconfigurable Smart Memories
S-Mem [116] was proposed by K. Mai, et al., from Stan-
ford University in 2000. SM is an embedded DRAM based
architecture which has the capability of being reconfigured
into various architectures; hence it can exploit various levels
of parallelism such as instruction or data level parallelism
based on the configuration. The architecture can be con-
figured into different types of architectures ranging from
application-specific to general purposed architectures. The
architecture consists of quads connected with a mesh; each
quad consists of 4 tiles. The interconnection inside and out-
side a quad consists of a high-speed interconnect network
based on crossbars (as shown in Fig. 28). Depending on the
target architecture, the tiles and their interconnect networks
are configured accordingly.

Each tile in SM contains either a processor or memory.
A processor tile consists of a processor engine, crossbar
interconnect, quad interface and 16 8KB SRAMs (as shown
in Fig. 29). A memory tile consist of a 2-4MB embedded
DRAM, which has the same dimensions as a processor
tile. Both the processor and memory tiles have some con-
figuration flexibility. A processor tile can be configured
for different architectures with a reconfigurable instruction
format. A processor engine also contains multiple floating
point and integer units. The SRAMs can be configured either
as caches, scratpad memories or register files.

In addition to the general advantages of COM-N archi-
tectures, SM comes with the following advantages:

• The architecture is reconfigurable, which is flexible
for application-specific application.

tions is very difficult. Rather than trying to find a general solution
for all applications, we tailor the appearance of the on-chip mem-
ory, interconnection network, and processing elements to better
match the application requirements. We leverage the fact that long
wires in current (and future) VLSI chips require active repeater
insertion for minimum delay. The presence of repeaters means that
adding some reconfigurable logic to these wires will only modestly
impact their performance. Reconfiguration at this level leads to
coarser-grained configurability than previous reconfigurable archi-
tectures, most of which were at least in part based on FPGA imple-
mentations [11-18]. Compared to these systems, Smart Memories
trades away some flexibility for lower overheads, more familiar
programming models, and higher efficiency.

Section 2 and Section 3 describe the Smart Memories architecture.
To test the flexibility of the architecture, we mapped onto the Smart
Memories substrate two machines at different ends of the architec-
tural spectrum: a dedicated streaming processor and a speculative
multiprocessor. Section 4 discusses the mapping of these two
widely disparate architectures onto one hardware substrate and the
simulated relative performance. Section 5 draws conclusions from
the architectural proposal and mapping studies.

2. Smart Memories Overview

At the highest level, a Smart Memories chip is a modular computer.
It contains an array of processor tiles and on-die DRAM memories
connected by a packet-based, dynamically-routed network
(Figure 1). The network also connects to high-speed links on the
pins of the chip to allow for the construction of multi-chip systems.
Most of the initial hardware design work in the Smart Memories
project has been on the processor tile design and evaluation, so this
paper focuses on these aspects.

Figure 1. A Smart Memories chip

The organization of a processor tile is a compromise between VLSI
wire constraints and computational efficiency. Our initial goal was
to make each processor tile small enough so the delay of a repeated
wire around the semi-perimeter of the tile would be less then a
clock cycle. This leads to a tile edge of around 2.5mm in a 0.1µm
technology [7]. This sized tile can contain a processor equivalent to
a MIPS R5000 [19], a 64-bit, 2-issue, in-order machine with 64KB
of on-die cache. Alternately, this area can contain 2-4MB of
embedded DRAM depending on the assumed cell size. A 400mm2

die would then hold about 64 processor tiles, or a lesser number of
processor tiles and some DRAM tiles.

Since large-scale computations may require more computation
power than what is contained in a single processing tile, we cluster
four processor tiles together into a “quad” and provide a low-over-
head, intra-quad, interconnection network. Grouping the tiles into
quads also makes the global interconnection network more efficient
by reducing the number of global network interfaces and thus the
number of hops between processors.

Our goal in the tile design is to create a set of components that will
span as wide an application set as possible. In current architectures,
computational elements are somewhat standardized; today, most
processors have multiple segmented functional units to increase
efficiency when working on limited precision numbers [20-24].
Since much work has already been done on optimizing the mix of
functional units for a wide application class [2,3,4,25], we instead
focused our efforts on creating the flexibility needed to efficiently
support different computational models. This requires creating a
flexible memory system, flexible interconnection between the pro-
cessing node and the memory, and flexible instruction decode.

3. Tile Architecture

A Smart Memories tile consists of a reconfigurable memory sys-
tem; a crossbar interconnection network; a processor core; and a
quad network interface (Figure 2). To balance computation, com-
munication, and storage, we allocated equal portions of the tile to
the processor, interconnect, and memory.

Figure 2. Tile floorplan

3.1  Memory System

The memory system is of growing importance in processor design
[26]. Different applications have different memory access patterns
and thus require different memory configurations to optimize per-
formance. Often these different memory structures require different
control logic and status bits. Therefore, a memory system that can
be configured to closely match the application demands is desirable
[27].

A recent study of SRAM design [28] shows that the optimal block
size for building large SRAMs is small, around a few KB. Large

Processing tile

Quad networks

A quad

or DRAM block

Memory

Crossbar interconnect

. . .
Quad

Processor

.... . . interface

system of
16 8KB
SRAMs

Fig. 28: Modular Reconfigurable Smart Memories (SM) [116]

tions is very difficult. Rather than trying to find a general solution
for all applications, we tailor the appearance of the on-chip mem-
ory, interconnection network, and processing elements to better
match the application requirements. We leverage the fact that long
wires in current (and future) VLSI chips require active repeater
insertion for minimum delay. The presence of repeaters means that
adding some reconfigurable logic to these wires will only modestly
impact their performance. Reconfiguration at this level leads to
coarser-grained configurability than previous reconfigurable archi-
tectures, most of which were at least in part based on FPGA imple-
mentations [11-18]. Compared to these systems, Smart Memories
trades away some flexibility for lower overheads, more familiar
programming models, and higher efficiency.

Section 2 and Section 3 describe the Smart Memories architecture.
To test the flexibility of the architecture, we mapped onto the Smart
Memories substrate two machines at different ends of the architec-
tural spectrum: a dedicated streaming processor and a speculative
multiprocessor. Section 4 discusses the mapping of these two
widely disparate architectures onto one hardware substrate and the
simulated relative performance. Section 5 draws conclusions from
the architectural proposal and mapping studies.

2. Smart Memories Overview

At the highest level, a Smart Memories chip is a modular computer.
It contains an array of processor tiles and on-die DRAM memories
connected by a packet-based, dynamically-routed network
(Figure 1). The network also connects to high-speed links on the
pins of the chip to allow for the construction of multi-chip systems.
Most of the initial hardware design work in the Smart Memories
project has been on the processor tile design and evaluation, so this
paper focuses on these aspects.

Figure 1. A Smart Memories chip

The organization of a processor tile is a compromise between VLSI
wire constraints and computational efficiency. Our initial goal was
to make each processor tile small enough so the delay of a repeated
wire around the semi-perimeter of the tile would be less then a
clock cycle. This leads to a tile edge of around 2.5mm in a 0.1µm
technology [7]. This sized tile can contain a processor equivalent to
a MIPS R5000 [19], a 64-bit, 2-issue, in-order machine with 64KB
of on-die cache. Alternately, this area can contain 2-4MB of
embedded DRAM depending on the assumed cell size. A 400mm2

die would then hold about 64 processor tiles, or a lesser number of
processor tiles and some DRAM tiles.

Since large-scale computations may require more computation
power than what is contained in a single processing tile, we cluster
four processor tiles together into a “quad” and provide a low-over-
head, intra-quad, interconnection network. Grouping the tiles into
quads also makes the global interconnection network more efficient
by reducing the number of global network interfaces and thus the
number of hops between processors.

Our goal in the tile design is to create a set of components that will
span as wide an application set as possible. In current architectures,
computational elements are somewhat standardized; today, most
processors have multiple segmented functional units to increase
efficiency when working on limited precision numbers [20-24].
Since much work has already been done on optimizing the mix of
functional units for a wide application class [2,3,4,25], we instead
focused our efforts on creating the flexibility needed to efficiently
support different computational models. This requires creating a
flexible memory system, flexible interconnection between the pro-
cessing node and the memory, and flexible instruction decode.

3. Tile Architecture

A Smart Memories tile consists of a reconfigurable memory sys-
tem; a crossbar interconnection network; a processor core; and a
quad network interface (Figure 2). To balance computation, com-
munication, and storage, we allocated equal portions of the tile to
the processor, interconnect, and memory.

Figure 2. Tile floorplan

3.1  Memory System

The memory system is of growing importance in processor design
[26]. Different applications have different memory access patterns
and thus require different memory configurations to optimize per-
formance. Often these different memory structures require different
control logic and status bits. Therefore, a memory system that can
be configured to closely match the application demands is desirable
[27].

A recent study of SRAM design [28] shows that the optimal block
size for building large SRAMs is small, around a few KB. Large
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• The architecture uses embedded DRAM which is
mature and has some advantages such as high per-
formance, high bandwidth, low power [12], [14].

However, it also has the following limitations:

• The parallelism is limited due to the complex hierar-
chy of logic units within the memory SiP.

• Data transfer within and between process engines
still requires further improvements, as it is complex
to synchronize multiple computation units. In ad-
dition, a lot of traffic between them can limit its
scalability and performance.

• The architecture uses embedded DRAM which has
some limitations such as penalty trade-offs between
performance and capacity, high fabrication cost, low
scalability [12], [13], [14].

Two processors are mapped, implemented and evalu-
ated using this architecture: the Imagine streaming proces-
sor [117] and Hydra multiprocessor [118]. They are simu-
lated using Imagine simulator [117] and evaluated based on
the set of applications including 1024-point FFT, a 13-tap FIR
filter, a 7x7 convolution, and an 8x8 DCT [116].

A.5 DIVA: Data-intensive Architecture

DIVA was proposed in 2002 by J. Draper, et al., from USC
Information Sciences Institute [10], [119] The architecture is
based on a intelligent RAM [111], computational RAM [120]
or embedded DRAM [14] and exploits data level parallelism
by performing computations using vector processors. The
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architecture consists of a host processor, host memory in-
terface and multiple in-memory computing blocks as co-
processors (as shown in Fig. 30); the set of in-memory com-
puting blocks (denoted as PIMs) can be accessed as a con-
ventional memory or smart-memory co-processor. Through
the host memory interface, the host processor is responsible
for distributing workloads to PIMs, managing memory and
switching context between different user programs; a PIM-
to-PIM interconnect provides high bandwidth links among
PIMs.

A PIM architecture contains a host interface, a PIM Rout-
ing Component (PiRC) and several PIM nodes. Through the
host interface, memory accesses and computation packed
parcels are transferred to PIMs. The PiRC routes parcels
among PIM nodes. A PIM consists of processing logic units,
several megabytes of memory, PBUF and a memory port.
The processing unit in a PIM includes a scalar processor and
a special unit called At-the-Sense-Amps Processor (ASAP).
The scalar processor is a single-issue, in-order execution, 32-
bit processor with a floating-point unit. ASAP, also referred
to as Wide World Unit is used for 256-bit wide operations
on data objects stored in a local memory row. PBUF in each
PIM is served as local memory.

In addition to the general advantages of COM-N archi-
tectures, DIVA comes with the following advantages:

• The parallelism is high due to vector processing of
multiple 256-bit operations concurrently.

• The architecture uses embedded DRAM which is
mature and has some advantages such as high per-
formance, high bandwidth, low power [12], [14].

However, it also has the following limitations:

• The architecture has a complex processor design
which requires overhead in controlling, communica-
tion and programming.

• The architecture uses embedded DRAM which has
some limitations such as penalty trade-offs between
performance and capacity, high fabrication cost, low
scalability [12], [13], [14].

A DIVA chip prototype was fabricated in TSMC 0.18um
technology. Its performance was measured using a set of
benchmark applications that includes scientific computing,
databases and image processing.

A.6 HMC: Hybrid Memory Cube
HMC was introduced in 2012 by J. Jeddeloh, et al., from
Micron [121], [122]. HMC is a 3D DRAM based architecture

7© 2011 Micron Technology, Inc.     |
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that exploits data level parallelism by performing near
memory computations inside the additional logic layer of
the memory SiP. The architecture consists of a host CPU, a
DRAM chip that contains a logic chip and multiple stacked
DRAM dies based on TSVs, and a high-speed link between
CPU and DRAM (as shown in Fig. 31). The logic layer con-
trols the DRAM as its slaves, communicates with the host
CPU and is able to perform near memory computations.
There are two architectures that are based on HMC. They
are explained next.

A.6.1 AMC: Active Memory Cube
AMC was introduced in 2015 by R. Nair, et al., from
IMB [123]. AMC is an HMC based architecture that performs
vector instructions in the logic die of the HMC. The archi-
tecture consists of a host processor, system network and
multiple AMCs that contain a base logic layer and multiple
DRAM layers (as shown in Fig. 32). The host processor
communicates to AMCs using the system network that is
capable of transferring data with a bandwidth of 256GB/s
for read and write operations. This bandwidth is split in
8 lanes (i.e., 32 GB/s) where each lane is connected to
an AMC. Each AMC has an 8GB capacity with an inter-
nal bandwidth of 320GB/s. The architecture comes with a
compiler that analyzes applications, prepares sets of code
that are distributed to the AMCs and also generates code
for the interaction and communication between AMCs. The
host processor handles the interaction code while each AMC
executes the code containing useful computations.

Each AMC contains multiple AMC lanes, vault con-
trollers and an interconnect network. Each AMC lane in-
cludes an instruction buffer, registers, control units, a load-
store unit to perform conventional memory operations, and
arithmetic units to perform either vector operations or long-
instruction-word operations. The vault controller stores data
that is loaded from DRAM layers and performs automic
operations on the data before moving it forward to the host
processor or AMC lanes. Furthermore, the vault controller
is also responsible for maintaining the coherence between
AMC lanes.

In addition to the general advantages of COM-N archi-
tectures, AMC comes with the following advantages:

• The parallelism is high due to multiple and concur-
rent processing lanes.

• The architecture uses HMC which is mature and
already commercialized and in addition has some
advantages such as a high performance, high band-
width, low power, and high density [121], [122].

However, it also has the following limitation:

• The architecture has a complex processor design
which has a control, communication and program-
ming overhead.

OVERVIEW AND CLASSIFICATION
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caches are incorporated within the AMC, smaller widths can
be requested by lanes. In order to save power and reduce
the latency of access for requests smaller than 32 bytes,
the vault controller delivers the needed 8- or 16-byte part
requested but saves the entire 32-byte packet coming down
the TSVs in a vault buffer capable of holding 256 such
packets. A hit in the vault buffer avoids the need to send
the request up to the DRAM layers.
Maintaining an entire host processor cache line of

128 bytes along with its metadata bits in a single DRAM
page avoids the bandwidth and power overhead of splitting
a line among multiple pages. However, in order to support
small granularity requests from lanes to the same cache lines,
the default policy for DRAM access was changed from
the closed-page mode of the HMC [12], where the page is
closed immediately after one access, to an open-page mode,
where the page is closed only if subsequent access is to a
different page on the same layer of the vault.
The vault controller is an ideal place to perform atomic

operations, which are variants of read-modify-write
operations typically supported by memory controllers.
Atomic operations usually read data from a memory location,

manipulate the data by performing logical or arithmetic
operations with other data, and then write the results back
to memory. If return data is warranted, the old data, the
modified data, or an indication of success/failure is returned
back to the requestor depending on the atomic operation type.
The AMC supports a notably rich set of atomic operations
including fetch-and-op, compare-and-swap, and even an
atomic floating-point add operation. Combining atomic
operations over a 32-byte block results in significant reduction
of interconnect traffic for several vector applications.

Interconnect structure
The vaults and lanes are organized in four quadrants, each
having eight vaults and eight lanes. Two sets of networks
connect the links, lanes, and vaultsVone for the request
traffic going from links and lanes to the vaults, and another
for response traffic from the vaults to the links and lanes.
Each quadrant implements an internal local request and
response crossbar. The quadrants themselves are fully
interconnected with 20 GB/s point-to-point links. Requests
from the links/lanes can be directed to vaults in the given
local quadrant or to vaults in other quadrants. Local quadrant

Figure 1

System node incorporating Active Memory Cube.
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Fig. 32: Active Memory Cube (AMC) [123]

The architecture was simulated using Mambo simula-
tor [124] and evaluated using two computation kernels for
supercomputers: DGEMM [125] and DAXPY [126].

A.6.2 HIVE: HMC Instruction Large Vector Extensions
HIVE was proposed in 2016 by M. Alves, et al., from Federal
University of Rio Grande do Sul [127]. HIVE is a Hybrid
Memory Cube (HMC) [121], [122] based architecture that
performs large vector operations inside the logic die of a
HMC. The architecture consists of a host processor and
a HMC module that is extended with a HIVE, as shown
in Fig. 33. The host processor, not shown in the figure,
is a pipelined-like architecture with six stages; it fetches,
decodes, renames, dispatches, executes and commits a se-
quence of instruction. If an instruction fragment has to
be executed using in-memory instructions, the processor
diverts the instruction fragment to the HMC module. HMC
module executes the fragment and returns the result back to
the processor.

HMC module consists of multiple DRAM layers, logic
vaults, HIVE controller, a crossbar switch and multiple-
lane links to host processor (as shown in the left side of
Fig. 33). The data is stored in multiple DRAM layers and
retrieved by the HIVE. The HIVE controller contains a
register bank, functional units and a HIVE sequencer (as
shown in the bottom right of Fig. 33). The logic vaults
contains a vault controller, write and read buffer, and a
DRAM sequencer (as shown in the top right of Fig. 33).
Once the HIVE sequencer receives an instruction, it locks
the involved memory address space; if the memory has
already been locked, the requested instruction returns a fail
status to processor; otherwise, a memory synchronization
occurs by flushing related cache data into DRAM. The logic
vaults and HIVE subsequently execute the instructions by
reading data to read buffers and register bank, performing
operations using functional units, and (optional) storing into
memory using write buffers. The operations in HIVE are
based on vector operations that operate on 8KB of data at
a time executed by the 32 logic vaults and HIVE functional
units. As the amount of data is large, a DRAM sequencer
and HIVE sequencer schedule these operation accordingly.
The results can be collected in register banks and sent back
to the host processor through the crossbar switch and links.

register bank inside the HMC to perform operations. The
HIVE instructions pass through the pipeline in the same way
as a memory load operation. HIVE instructions that do not
require memory addresses, such as HIVE lock and unlock,
will bypass the Address Generation Unit (AGU) and wait to
be transmitted inside the Memory Order Buffer (MOB). All
HIVE instructions are placed inside the MOB to be delivered
to the memory subsystem. These instructions wait inside the
MOB for an answer from the HMC, which returns the status of
the operation as successful or raises exceptions. The processor
uses these instructions’ status to control execution flags, such
as overflow and not-a-number, among others.

HIVE instructions that perform loads and stores work
with virtual addresses. Therefore, the addresses have to be
translated by the Translation Look-aside Buffer (TLB) and
checked for correct permissions to access the given address
range. After passing through the TLB, the requests follow the
cache memory hierarchy, bypassing the memory caches. The
cache directory needs to be changed as well, to ensure a write-
back of all the modified data in the range at which the specific
HIVE instruction will operate. Although we implement HIVE
in an out-of-order processor, in-order processors could also be
modified to work with the HIVE instructions. It is important
to note that all modifications inside the processor are also
required to make use of the new ISA present in the HMC
specification. Thus, we expect that only minor changes inside
the processor are required to support the HIVE instructions.

D. HMC Modifications

When HIVE receives a HIVE lock instruction, it has to lock
the mechanism to operate only for the thread that requested the
lock. In case the memory is already locked, the lock instruction
is sent back to the requester with a fail status. When a lock
is granted, the HIVE instructions are able to perform their
operations. Locking the mechanisms avoids that one thread
modifies the content of registers that are being used by a
different thread. This locking system can also be used to power
gate or clock gate all HIVE resources after a certain period of
time, reducing the energy overhead during idle periods. Normal
memory access requests (both reads and writes) can still be
serviced while HIVE is locked, such that other threads that do
not use HIVE can continue to execute.

To perform vector instructions inside the DRAM, we
require three main logic additions to the HMC, a HIVE
sequencer, a register bank, and the vector functional units.
Figure 2 illustrates HIVE inside an HMC 2.0 module, with
32 vaults and 8 banks per vault. HIVE can be easily adapted
to different HMC layouts (such as different numbers of banks
per vault or row buffer sizes). In our mechanism, the HIVE
sequencer handles the instructions in-order until they can
be executed and sends the status after the instructions are
executed. During HIVE load/store operations, the sequencer
is also responsible for broadcasting the 8 KB request split
into 128 sub-requests of cache line size (64 bytes). Each sub-
request is sent to its respective vault controller.

The additional register bank inside HIVE is used to store
the sub-requests coming from any vault/bank inside the HMC.
Each register can handle 128 positions of 64 bytes each (8,192
bytes in total). Thus, sub-requests can be issued to different
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Fig. 2: HMC module with our mechanism architecture.

vaults/banks to increase performance. HIVE interacts with
the DRAM devices only during load and store operations by
copying data to and from the HIVE registers. Therefore, our
mechanism does not require new DRAM signals.

HIVE executes instructions in-order, but its functional units
act as a restricted data-flow processor. A given operation can
start as soon as the registers are ready. To support this data-
flow, we use a flag associated with each register that indicates
if the operand is ready. Each HIVE instruction needs to erase
this flag for its destination register, and re-enables it whenever
the instruction becomes ready. This system allows the DRAM
to open rows from different banks in parallel, and also ensures
that once a HIVE instruction requires operands that are not
ready yet, execution will stall. When registers are ready, the
functional units operate in several steps (HIVE cycles) to
process the entire register. The number of steps depends on
the number of functional units. We explore the performance
trade-offs of the number of functional units in Section IV.

All functional units operate at the frequency of the HMC
vault controller. After completion, each HIVE instruction sends
a status to the processor, such that our instructions behave
similarly to a normal memory request. These acknowledgment
signals provide important information for the processor regard-
ing the status of each operation, such as overflow, division-by-
zero and other exceptions. For instance, in the Intel AVX-512
instruction set, 17 bits are enough to provide the information
regarding the operation status [24]. For the evaluation of our
mechanism, we consider an acknowledgment of 64 bits in
order to correctly simulate the impact of the transmission of
the status bits on the final performance. Note that the number
of status bits does not increase linearly with the operation size.
For example, between AVX-128 and AVX-512, only two bits
were added, because only a single flag is raised if one or more
sub-operations cause an exception.

IV. EXPERIMENTAL EVALUATION OF HIVE

This section presents the simulation environment, the appli-
cation kernels and the evaluation results of HIVE. To simplify
the explanations, we refer to SSE+DDR and SSE+HMC when
executing an application that uses SSE instructions in a system
with DDR or HMC memory modules respectively. We refer to

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1251

Fig. 33: HMC Instruction Large Vector Extensions
(HIVE) [127]

In addition to the general advantages of COM-N archi-
tectures, HIVE comes with the following advantages:

• The parallelism is high due to vector processing on
8KB of data.

• The architecture uses HMC which is mature, com-
mercialized and has some advantages such as high
performance, high bandwidth, low power, high den-
sity [121], [122].

However, it also has the following limitation:

• The architecture has a complex HMC module which
has a control, communication and programming
overhead.

The architecture is simulated using SiNUCA [128] and
evaluated using some integer (vector search and mem-
ory reset/set operations) and floating-point (vector sum,
matrix stencil, and matrix multiplication) kernels against
three baseline platforms; both HIVE and baseline plat-
forms are based on the Intel Atom processor. Like HIVE,
the three baseline platforms have also additional process-
ing capacities; for the baseline platforms they are as fol-
lows: 1) HMC instructions using HMC 2.0 memory [86]
(HMC+HMC), 2) 128-bit SSE instructions with DDR-3 1333
modules (SSE+DDR) and 3) 128-bit SSE instructions with
HMC 2.0 (SSE+HMC).

A.7 D-AP: Micron Automata Processor

D-AP was proposed in 2013 by P. Dlugosch, et al., from
Micron Technology [129]. D-AP is an automata processor
that exploits instruction level parallelism based on the same
concept as mentioned in Section 4.8. D-AP consists of mul-
tiple STEs and a routing matrix (as shown in Fig. 34).
The STEs are implemented using DRAM technology. The
routing matrix contains multiple programmable switches,
buffers, routing lines and cross-point connections.

Each DRAM column corresponds to an STE which stores
for each state the input symbols it accepts. One input symbol
is fed each cycle to all the DRAM columns simultaneously
and as a result possible next states based on the current
input symbol are returned. Simultaneously, the routing
matrix is used to calculate the possible next states from
the current active states. By AND-ing the resuls of both
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One benefit of the lookup method above is that it in-
herently supports character classes. The bit-parallel execu-
tion model for an input string S is shown below.

1: 2C ¼ 2I

2: if 2F & 0� 1 6¼ 0 then

3: match the empty string

4: end if

5: for each input character � in S do

6: 2T ¼ 2C & symbols½��
7: if 2T 2F 6¼ 0 then

8: we have a match

9: end if

10: Set 2C ¼ 0; 8q 2 T; 2C ¼ 2C jfollow½q�
11: if 2C ¼ 0 then

12: stop processing S

13: end if

14: end for

Line 2 tests if the start state 20 is a member of the final
states 2F . We include this to provide a direct comparison
with the traditional NFA; however, we do not do this in
hardware since it has no practical value. Lines 6-9 can be
executed in (m/w) time, where w is the machine word size
implementing the execution model above. Navarro and
Raffinot [22] describe a method, using k tables, to im-
plement line 6 in (mk/w) time. The size of k, in Navarro’s
algorithm, depends on the space complexity of the equiv-
alent DFA, since each table must store Oð2mþ1=kÞ entries, in
the worst case. We have developed, to our knowledge, the
first practical method implementing the bit-parallel execu-

tion model described above for large m ¼ 48 k. The prac-
tical method used to achieve this is described in the next
section on the Architectural Design.

3 ARCHITECTURAL DESIGN

3.1 A Memory-Derived Architecture
The automata processor is based on an adaptation of memory
array architecture, exploiting the inherent bit-parallelism of
traditional SDRAM. Conventional SDRAM, organized into a
two-dimensional array of rows and columns, accesses a
memory cell for any read or write operation using both a row
address and a column address. The ‘‘row address’’, for the
automata processor, is the input symbol. The 8-bit input
symbol is decoded (8-to-256 decode) and then provided to
the memory array. In place of memory’s column address and
decode operation, the automata processor invokes automata
operations through its routing matrix structure. The memory
array portion of the architecture is illustrated in Fig. 1.

The architecture provides the ability to program inde-
pendent automata into a single silicon device. Each au-
tomaton and all automata routing matrix paths run in
parallel, operating on the same input symbol simulta-
neously. Memory arrays are distributed throughout the
silicon, providing O(1) lookup for a m ¼ 48 K bit memory
word. This first implementation, derived from Microns
DDR3 SDRAM memory array technology, has an 8-bit
DDR3 bus interface. It is capable of processing 8-bit input
symbols at 1 Gbps, per chip.

3.2 The Routing Matrix
The routing matrix controls the distribution of signals to
and from the automata elements, as programmed by the

Fig. 1. Memory array.
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Fig. 34: DRAM Automata Processor (D-AP) [129]

operations, the actual next states can be determined. The
program terminates when all input symbols are processed.

In addition to the general advantages of COM-N archi-
tectures, D-AP has the following advantages:

• The architecture uses DRAM technology, which has
several benefits such as a high maturity, high en-
durance, no sneak path currents, and may benefit
from existing optimizing techniques and tools.

• The automata processing techniques are quite mature
and several tools exist already [130], [131], [132],
hence it is feasible to explore many applications
using automata processing.

However, it also has the following limitations:

• The architecture uses DRAM technology which suf-
fers from a low performance, high energy consump-
tion, low scalability and large footprint.

• The architecture requires additional compiling tech-
niques and tools to perform conventional Boolean
logic functions as they will have to be mapped to
automata’s.

The architecture is fabricated and evaluated and com-
pared against hardware implementations of automata pro-
cessing [133], [134], [135], [136], [137].

A.8 DaDianNao: A Machine-Learning Supercomputer

DaDianNao was proposed in 2014 by Y. Chen, et al., from
Chinese Academy of Sciences [138]. DaDianNao is eDRAM
based architecture that exploits instruction level parallelism
by performing neural computations using a Neural Func-
tional Unit (NFU). The architecture consists of multiple
nodes; each node has its own interconnection to other nodes,
multiple tiles and eDRAM router that connects these tiles (as
shown in the left part of Fig. 35). DaDianNao is an improved
version of DianNao; it exploits the interconnect network to
reduce data movements.

A DaDianNao tile contains four eDRAM banks and an
NFU which can perform multiplications, additions, and
transfer functions of linear interpolation depending on the

move only neurons and to keep synapses in a fixed storage
location. This serves two purposes.
First, the architecture is targeted for both inference and
training. In inference, the neurons of the previous layer
are the inputs of the computation; in training, the neurons
are forward-propagated (so neurons of the previous layer
are the inputs) and then backward-propagated (so neurons
of the next layer are now the inputs). As a result, de-
pending on how data (neurons and synapses) are allocated
to nodes, they need to be moved between the forward
and backward phases. Since there are many more synapses
than neurons (e.g., O(N2) vs. O(N) for classifier layers,
K ×K × Nif × Nof × Nx × Ny vs. Nif × Nx × Ny for
convolutional layers with private kernels, see Section II), it
is only logical to move neuron outputs instead of synapses.
Second, having all synapses (most of the computation input-
s) next to computational operators provides low-energy/low-
latency data (synapses) transfers and high internal band-
width.
As shown in Table I, layer sizes can range from less than

1MB to about 1GB, most of them ranging in the tens of MB.
While SRAMs are appropriate for caching purposes, they
are not dense enough for such large-scale storage. However,
eDRAMs are known to have a higher storage density. For
instance, a 10MB SRAM memory requires 20.73mm2 at
28nm [36], while an eDRAM memory of the same size and
at the same technology node requires 7.27mm2 [50], i.e., a
2.85x higher storage density.
Moreover, providing sufficient eDRAM capacity to hold

all synapses on the combined eDRAM of all chips will
save on off-chip DRAM accesses, which are particularly
costly energy-wise. For instance, a read access to a 256-
bit wide eDRAM array at 28nm consumes 0.0192nJ (50μA,
0.9V, 606 MHz) [25], while a 256-bit read access to a
Micron DDR3 DRAM consumes 6.18nJ at 28nm [40], i.e.,
an energy ratio of 321x. The ratio is largely due to the
memory controller, the DDR3 physical-level interface, on-
chip bus access, page activation, etc.
If the NFU is no longer limited by the memory bandwidth,

it is possible to scale up its size in order to process more
output neurons (No) and more inputs per output neuron
(Ni) simultaneously, and thus, to improve the overall node
throughput. For instance, to scale up by 16x the number of
operations performed every cycle compared to the acceler-
ator mentioned in Section IV, we need to have Ni = 64
(instead of 16) and No = 64 (instead of 16). In order to
achieve maximal throughput, we must fetch Ni × No 16-
bit values from the eDRAM to the NFU every cycle, i.e.,
64× 64× 16 = 65536 bits in this case.
However eDRAM has three well-known drawbacks: high-

er latency than SRAM, destructive reads and periodic refresh
[38], as in traditional DRAMs. In order to compensate for
the eDRAM drawbacks and still feed the NFU every cycle,
we split the eDRAM into four banks (65536-bit wide in the
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Figure 4: Simplified floorplan with a single central NFU showing
wire congestion.
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Figure 5: Tile-based organization of a node (left) and tile archi-
tecture (right). A node contains 16 tiles, two central eDRAM banks
and fat tree interconnect; a tile has an NFU, four eDRAM banks
and input/output interfaces to/from the central eDRAM banks.

above example), and we interleave the synapses rows among
the four banks.
We placed and routed this design at 28nm (ST technology,

LP), and we obtained the floorplan of Figure 4. The NFU
footprint is very small at 0.78mm2 (0.88mm×0.88mm), but
the process imposes an average spacing of 0.2μm between
wires, and provides only 4 horizontal metal layers. As a
result, the 65536 wires connecting the NFU to the eDRAM
require a width of 65536×0.2

4 = 3.2768mm, see Figure 4.
Consequently, wires occupy 4× 3.2768× 3.2768− 0.88×
0.88 = 42.18mm2, which is almost equal to the combined
area of all eDRAM banks, all NFUs and the I/O.

2) High Internal Bandwidth: In order to avoid this con-
gestion, we adopt a tile-based design, as shown in Figure 5.
The output neurons are spread out in the different tiles, so
that each NFU can simultaneously process 16 input neurons
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Figure 6: The different (parallel) operators of an NFU: multipliers,
adders, max, transfer function.
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Fig. 35: A Machine-learning Supercomputer (DaDian-
Nao) [138]

type of the neural network. The eDRAM banks store input
neurons which are broadcasted through a fat tree inter-
connect network and output neurons which are computed
using NFU. After computation, the values of the output
neurons are collected by the center eDRAM bank of Da-
DianNao.

In addition to the general advantages of COM-N archi-
tectures, DaDianNao has the following advantages:

• Computations for neural networks are quite mature
and they do not require a high precision (therefore,
they are resilient against device variation), and can
benefit from existing neural network techniques and
tools.

• The architecture uses embedded DRAM which is
mature and has some advantages such as a high
performance, high bandwidth, low power [12], [14].

However, it also has the following limitation:

• The architecture uses embedded DRAM which has
some limitations such as penalty trade-offs between
performance and capacity, high fabrication cost, low
scalability [12], [13], [14].

• The architecture requires additional compiling tech-
niques and tools to perform conventional Boolean
logic functions as they have to be mapped to neural
networks.

The architecture is simulated using Booksim2.0 [139],
[140] and evaluated by implementing state-of-the-art
machine-learning algorithms (CNNs and DNNs) and is
compared against GPU NVIDIA K20 [141].

A.9 DRAMA: DRAM-Accelerator
DRAMA was proposed in 2014 by A. Farmahini-Farahania,
et al., from University of Wisconsin-Madison [142]. DRAMA
is based on 3D-stacked DRAM technology that exploits task
level parallelism by computating with coarse-grain recon-
figurable accelerators (CGRAs). The architecture includes a
host processor, an accelerator-enabled DRAM rank (AEDR),
and a DRAM DIMM interface (as shown in Fig. 36). The host
processor sends the configuration data, address generation
parameters for the data to be processed, and other kernel
parameters to AEDR before triggering the kernel execution
on AEDR. The host processor communicates with the AEDR
through DRAM DIMM.

An AEDR includes CGRAs stacked on top of DRAM
devices. The CGRAs operate on data stored in the DRAM,
communicate with the DRAM through TSVs and exe-
cute kernels. A CGRA contains a grid of 32-bit functional
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logic operations, which are connected by a configurable 
interconnect fabric (Figure 2). CGRAs generally also in-
clude some amount of storage near each FU for intermediate 
results. A dataflow graph of a compute-intensive application 
kernel, containing nodes (operations) and edges (data com-
munication), is mapped to the CGRA’s FUs and interconnect 
either manually or using automated techniques [24]. The 
processor triggers CGRA reconfiguration at runtime to im-
plement different kernels at different times, overwriting con-
figuration memory with the new dataflow graph’s configura-
tion data. This allows the CGRA to act as “virtual hardware” 
[25]. Configuration data for the various dataflow graphs can 
be retained in main memory until it is needed, and is often 
cached in configuration memory local to the CGRA. 

Exploiting spatial data parallelism in application kernels 
and efficiently processing kernel’s dataflow graphs [26–30], 
CGRAs, such as those used in DySER [28] and SGMF [29], 
considerably improve performance and energy consumption 
compared to conventional processors; in particular, CGRAs 
can practically eliminate the large energy overheads of 
fetching and scheduling instructions in conventional out-of-
order processors. Compared to fine-grain reconfigurable 
accelerators (e.g., FPGAs), CGRAs are less flexible, but this 
specialization results in higher performance, lower energy 
consumption, and much smaller configuration data (shorter 
configuration time) [26, 31, 32]. With recent advances in 
their compilers and architectures [30, 33–35], CGRAs are 
gaining momentum in various applications. 

3. NDA Hardware Architecture 
The NDA architecture is not dependent on a specific type of 
accelerator logic; the accelerators could be CGRAs as dis-
cussed in this paper, or could be SIMD/GPU/FPGA engines 
or even low-power cores. This paper focuses on CGRAs due 
to their improved performance and energy consumption ver-
sus SIMD and GPU engines for most parallel workloads 
[23]. Low energy is important since near-memory architec-
tures have more stringent power/thermal constraints. 

In order to facilitate energy-efficient near-memory pro-
cessing, NDA stacks a CGRA on top of each DRAM device. 
The CGRA is connected to the internal DRAM I/O lines 
using TSVs. A conceptual view of the NDA architecture is 
illustrated in Figure 3. Each CGRA is connected only to its 
associated DRAM device and operates on data stored in that 

device independently of (and in parallel with) the CGRAs 
on the other DRAM devices on the DIMM(s).  

NDA is architected such that it does not require changes 
to the processor or DIMM interface, and only minimal 
changes to the underlying DRAM design. Thus, NDA can be 
used with existing systems to accelerate NDA-enhanced 
applications. Furthermore, this architecture allows existing 
un-accelerated applications to run on NDA-equipped plat-
forms without incurring any performance penalty [6].  

Conventional processors can offload kernels to CGRAs. 
NDA transfers data through high-bandwidth and low-energy 
3D interconnects between DRAM devices and their corre-
sponding CGRAs without the processor’s intervention and 
processes the data using the CGRAs. This minimizes data 
transfers through low-bandwidth and high-energy off-chip 
interconnects between the processor and DRAM devices. To 
maximize acceleration, the kernel data processed by CGRAs 
must be distributed evenly across DRAM devices to balance 
the computations across CGRAs.  
3.1 Connection between Accelerator and DRAM 
We propose three microarchitectures to connect a CGRA 
and a DRAM device using TSVs. In all the microarchitec-
tures, we assume the TSV I/O energy is 4 pJ/b, which is 
80% lower than the off-chip I/O energy of a DDR3 interface 
(Table 1). 
Microarchitecture 1 (Connecting TSVs to existing GIO 
lines – NDA-1): A CGRA simply reads or writes data 
through the TSVs connected to the existing DRAM GIO 
lines without changing the underlying DRAM device de-
sign. TSVs are connected to the GIO lines between GIO 
multiplexers and data serializer/deserializer (cf. Figure 4). 
DRAM devices with ×8 and ×16 interfaces use 64 and 128 
TSVs to transfer data between a DRAM device and its 
CGRA, respectively. This microarchitecture is similar to one 
developed for stacking a wide-I/O DRAM device atop a 
processor die [36]. As depicted in Figure 4, the same steer-
ing logic that directs data to/from the left or right set of 
banks also directs data through the TSVs to the CGRA. 
Hence, this microarchitecture has no area overhead apart 
from inserted TSVs (cf. Table 2). A CGRA transferring data 
through 3D interconnects is provided the same peak band-
width per device as a processor transferring data through the 
off-chip interconnects because both the processor and the 
CGRA use the same mechanism to transfer data. However, 
the former consumes 51% lower energy per 8-byte 
read/write data transfer than the latter (cf. Table 2). The 

Figure 3. NDA organization. 

Figure 4. Accelerator-DRAM connection by connecting 
TSVs to existing GIO lines (Microarchitecture 1).  
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Fig. 36: An Architecture for Accelerated Processing Near
Memory (DRAMA) [142]

units (FUs), small distributed storages, configurable routing
switches and a memory controller. The FUs perform com-
putational operations. The distributed storages are used to
store immediate results. The configurable routing switches
set the connections up between FUs and storages. They are
configured at run-time by the configuration from the host
processor. The memory controller is used to issue memory
requests to a DRAM devices.

In addition to the general advantages of COM-N archi-
tectures, DRAMA comes with the following advantages:

• The parallelism is high due to multiple parallel cores.
• The architecture uses 3D-stacked DRAM which has

some advantages such as a high performance, high
bandwidth, and high scalability [143], [144].

However, it also has the following limitations:

• The architecture has a complex accelerator design
which has control, communication and program-
ming overhead.

• The architecture uses 3D-stacked DRAM which has
a high fabrication cost and high power consump-
tion [145].

The architecture is simulated with gem5 simulator using
San Diego Vision suite and Parboil benchmarks suites [146],
[147] to verify its functional timing and execution. The
power is estimated by McPAT model. Components in the
architecture such as 3D stacking DRAM with TSVs and
CGRAs are synthesized with 32 and 40nm to estimate their
area.

A.10 HBM: High-Bandwidth Memory

HBM was proposed in 2015 by H. Jun, et al., from SK
Hynix [148], [149], [150], [151]. HBM is a heterogeneous 3D
stacked DRAM platform that exploits data level parallelism
by performing near-memory computations using additional
logic circuits in the memory SiP. The architecture consists of
one logic die and multiple DRAM dies which are connected
through TSVs and microbumps (as shown in Fig. 37). The
logic die performs computations on the data that is stored
in the DRAM dies and tries to avoid data movements to the
host processors.

In addition to the general advantages of COM-N archi-
tectures, HBM comes with the following advantages:

• The parallelism is high due to multiple parallel cores.
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Abstract— HBM (High Bandwidth Memory) is an emerging 
standard DRAM solution that can achieve breakthrough 
bandwidth of higher than 256GBps while reducing the power 
consumption as well. It has stacked DRAM architecture with 
core DRAM dies on top of a base logic die, based on the TSV and 
die stacking technologies. In this paper, the HBM architecture is 
introduced and a comparison of its generations is provided. Also, 
the packaging technology and challenges to address reliability, 
thermal dissipation capability, maximum allowable package sizes, 
and high throughput stacking solutions are described. Test 
technology and testability features are discussed for KGSD and 
2.5D SiP. 

Index Terms—HBM, Stacked DRAM, TSV, Micro-bump, 2.5D 
SiP, 3D IC, High bandwidth DRAM, Low Power DRAM, 1500 

I. INTRODUCTION 

As processor performance increases  through the use of 
additional cores and higher clock frequencies, external DRAM 
performance becomes a bottleneck for the system performance. 
It has been a very difficult challenge to develop a memory 
solution that can remove the gaps between processor memory 
bandwidth requirements and actual bandwidth performance 
with only commodity DRAM solutions. These days, not only 
CPU cores but also other types of computing resources such as 
GPUs and specialized accelerators are increasingly being used 
for more parallel computations and better power efficiency. 
Other system requirements such as lower power, smaller form 
factor, higher speed, higher density also drive the development 
of new DRAM solutions. 

The industry has requested JEDEC, the leading 
standardization organization for semiconductor memories, to 
develop a high-bandwidth memory (HBM) solution [1], 
utilizing the latest advancements in IC packaging technologies 
which are Through Silicon Via (TSV) and die stacking. The 
main goal is to provide enough bandwidth to meet their 
performance targets for their high-performance computing 
(HPC), networking, and graphics applications. In response, 
DRAM vendors and SoC makers have collaborated to produce 
a standardized HBM in the form of a known-good stacked die 
(KGSD) which is a 3D IC using TSV technology. 

The HBM is a very attractive solution for high performance 
system designers because it can provide a scalability of 
memory capacity, smaller footprints, lower power consumption. 
In the following sections, HBM architectures is introduced and 

its generations are compared. Its packaging technology and 
challenges are discussed. Furthermore, test technology 
challenges and testability features for KGSD and 2.5D SiP are 
elaborated.  

 

 
Fig. 1.  HBM Stacked-DRAM Architecture 

II. HIGH-BANDWIDTH MEMORY (HBM) ARCHITECTURE 

The fundamental structure of HBM is composed of a base 
logic die at the bottom and stacked core DRAM dies, which are 
interconnected by TSVs as shown in Fig. 1 [2][3]. The power 
and ground have common planes to support all of the eight 
channels. In the heterogeneous HBM structure, the core dies 
have a conventional DRAM architecture with TSV interfaces. 
The base die has I/O buffers and inevitable test logic. By using 
stacked-DRAM, TSV, micro-bump, and 2.5D package 
technologies, HBM offers improved capacity, bandwidth, and 
power efficiency compared with conventional DRAMs. 

 

 
(a)                                                        (b) 

Fig. 2.  Die photos of HBM2: (a) core, (b) base 
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Fig. 37: High Bandwidth Memory (HBM) [151]

• The architecture uses 3D-stacked DRAM which has
some advantages such as a high performance, high
bandwidth, high scalability, and low power con-
sumption [143], [144], [150].

However, it also has the following limitations:

• The architecture has a complex 3D stacked DRAM
module which has a control, communication and
programming overhead.

• The architecture uses 3D-stacked DRAM which has
a high fabrication cost and high power consump-
tion [145].

The first generation of HBM increases the memory band-
width dramatically up to 100GB/s per stack and reduces
the power consumption up to 60% [150]. Later generations
of HBM such as HBM2 and HBM3 realize even bandwidth
improvements up to 400GB/s using new error correction
techniques [151].

A.11 ProPRAM: A Near Data Computing Architecture
based on Non-Volatile Memory
ProPRAM was proposed in 2015 by Y. Wang, et al., from
Chinese Academy of Sciences [152]. ProPRAM is a non-
volatile memory (i.e., PCM) based architecture that exploits
data level parallelism by performing computations using
computational resources in the peripheral circuitry. The
architecture consists of a host processor with a modified
instruction set and a non-volatile memory module with
its peripheral circuits transparent to the host processor.
The host processor sends instructions to the non-volatile
memory module in a similar manner as normal read/write
instruction but with a modified instruction set. The non-
volatile memory receives these instructions and reuses the
computational resources in the memory module to perform
the computations on the data stored in the non-volatile
memory.

The non-volatile memory module contains a matrix of
memory cells, a conventional peripheral circuit consisting
of sense amplifiers, word drivers, row buffers, col decoders,
and a specific peripheral circuit consisting of components
related to non-volatile memory instructions such as Data-
comparison Write (DCW), DCW Inversion (DCWI) and Flip-
n-Write (as shown in Fig. 38). The non-volatile memory
related peripheral circuit is capable of performing compar-
isons, additions, and logic operations. Therefore, an appro-
priate addressable scheme can be used to direct operands

2

72 PAPER 2.3



MANUSCRIPT 31

 

set and avoid the impractical ambitious of combining the 
general purpose computation with commercial memory product. 
In conclusion, with the reusable resources, compatible process 

technology and clarified killer applications, our proposed 
ProPRAM is able to resolve the two dilemmas faced by classic 
PIM designs by offering a lightweight in-memory SIMD-like unit. 
In this work, we aim to expose the special logic components inside 
NVM devices to application and reuse them for in-memory bulk 
data processing. First, the Data Comparison Write (DCW) unit in 
NVM is reshaped with logic gate sharing and cooperates with 
memory row-buffer to form a simple SIMD-like data engine. 
Second, ProPRAM features a set of memory instructions that are 
translated into memory bus commands for workload mapping. In 
evaluation, we assume the baseline PCM devices from Samsung 
[14], and model PCM-based ProPRAM in a full system simulator 
to demonstrate the concept of Active NVM. We also study a group 
of applications and map them onto the heterogeneous platform 
with ProPRAM for system-level evaluation. 

2. MOTIVATION AND BACKGROUND 

Different from DRAM, NVM mainly relies on state change 
instead of charge to represent values. Thus, write-induced state 
programming is mostly expensive in terms of bandwidth, power 
and endurance. There is a lot of optimization techniques proposed 
to address the write issue. Specifically, Data-comparison Write 
(DCW), DCW Inversion (DCWI) and Flip-n-Write are proposed 
and implemented in the PCM or STT-RAM prototypes [11] [9] [14] 
[10]. DCW unit in memory compares the dirty data and the state of 
cells to mask off the unchanged bits in write. Based on DCW, Flip-
n-Write or DCWI further decreases the number of reset/set 
operations because it inverts all the written words if more than half 
of the bits in that block have to be flipped. Comparators are also 
adopted for other purpose. For example, iterative writing is 
adopted in prior work to deal with the write reliability induced by 
severe process variation in PCM especially in MLC PCM [11]. We 
conduct an experiment with the PCM [14] and STT-RAM model 
[21] to show the significance of such peripheral logics. We 
randomly mixed SPEC2006 or SPLASH-2 benchmarks to test the 
effectiveness of DCW and Flip-n-Write. Fig. 1 shows, DCW 
decreases 67% of write power in PCM main memory and 55% of 
that in STT-RAM cache, while Flip-n-Write can reduce another 
~20%. At the same time, the reduced write operations also 
contribute to dramatic memory bandwidth improvement [9]. 
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Fig. 1. The effectiveness of logic units in NVMs 

In conclusion, the in-memory logic components are indispensible 
to high performance and low power NVM designs. However, we 
are the first to reuse them for Near Data Computing (NDC). 

3.   RELATED WORK 

PIM In the past several decades, a lot of researchers built 
their defined PIM designs and prototypes equipped with general 
purpose cores, vector processors or accelerators close to the 
memory arrays [3] [4] [12]. However, the prior work did not 
exploit NVM or scarcely examined the emerging workloads like 

in-memory database or data query that demands less computation 
strength. The development of emerging memory, 3D stacked 
technologies and emerging highly-parallel and big data 
applications make us to revisit the topic in the compelling trend. 

NDC The recently proposed Near Data Computing (NDC) 
seeks to minimize data movement by computing at the most 
appropriate location in the hierarchy, like cache, main memory or 
even disk. Kim et al. build 3D-stacked devices that put many cores 
on the bottom die and connect them with SRAM caches on the top 
die [13]. Similarly, Nanostore bonds a non-volatile memory to a 
CPU through 3D TSVs. NDC design also leverage customization 
to pursue domain-specific acceleration. Lim et al. [43] customize 
the core and NIC to accelerate Memcached execution. Pugsley et al. 
propose to put small cores inside the logic base of 3D stacked 
memory to accelerate Mapreduce functions. Guo et al. [31, 30] use 
resistive TCAM devices to reduce data movement in applications 
developed by associative computing model. In contrast, ProPRAM 
does not rely on 3D stacking technology or customized storage 
cells for Near Data Computing. 

4.   ARCHITECTURE OF PROPRAM 

4.1 Reusing the Available Resources inside NVM 

Fig. 2 depicts the organization of recently released PCM 
prototype populated by Samsung [14]. As depicted in Fig. 2, DCW 
unit are organized as distributed SIMD comparators connected to 
arrays for DCW and DCWI operation. Within the peripheral 
modules outside the core arrays, there are plenty of logic resources 
that we can use for other purpose.  

 
Fig. 2. The overview of ProPRAM hardware and DCW unit 

Wide Comparator Data Comparison Write (DCW) uses 
comparators to mark the cells that do not need to be flipped. DCW 
compares two memory blocks at one time, so there must be 512-bit 
or 256-bit XOR gates in DCW unit, so the first function that can be 
migrated from processor to memory is supposed to be search or 
match operation. The input size of DCW can provide high 
parallelism to process the potential data sets.  

Accumulators/Adders DCW needs to calculate the number of 
bits to be set and reset, so that it can adaptively flip the block bits to 
support flip-n-write. To sum up the set/reset bits, XOR gates are 
connected to counters and adders in a tree structure, and they are 
divided into multiple lanes to support sub-block or even word-level 
flip-n-write. 

Weighter and Inverters Inverters produce inversion bits for 
flip-n-write. The weighters are used to multiply the set/reset count 
bits by a constant (∝) because SET operation induces different cost 
from RESET operation due to write asymmetry (i.e, SET consumes 
∝ times more energy). The weighted sum is used by DCW unit to 
make flip-n-write decision. 

Abundant Internal Bandwidth Compared to the pin-
constrained off-chip bandwidth, the internal bandwidth inside PCM 
device is in surplus. For illustration, the data throughput of 

processor is calculated as ���� =
��	


��
∙���
∙ � , where IPB is the 

Fig. 38: A Near Data Computing Architecture based on Non-
Volatile Memory (ProPRAM) [152]

(data from non-volatile memory) to these computational
units. For example, the DCW unit in Fig. 38 is able to
compute different operations using the first input from the
row buffer and the second input from the sense amplifiers;
the output is stored back into the memory.

In addition to the general advantages of COM-N archi-
tectures, ProPRAM comes with the following advantages:

• The parallelism is high due to multiple parallel pro-
cessing units.

• The architecture exploits existing computational re-
sources which reduces area and power consumption.

• The architecture uses non-volatile memory, hence
consumes low energy and has a small footprint.

However, it also has the following limitations:

• The parallelism is low due to limited available com-
puting resources in the memory peripheral circuitry.

• The architecture has programming and compiling
overhead to make the computation units transparent
to the host processor.

The architecture is simulated using Multi2Sim [153]
and NVSIM [154]; it is evaluated using PUMA benchmark
suite [155], [156], [157], [158], [159] and has been compared
against a multicore computing system.

A.12 ReGP: Resistive GP-SIMD

ReGP was proposed in 2016 by A. Morad, et al., from
Technion-Israel Institute of Technology [160]. ReGP is a
RRAM memory based architecture that exploits data par-
allelism by attaching a SIMD-like processing unit to the
resistive memory, as shown in Figure 39. The architecture
consists of a sequential or conventional processor, its L1 and
LLC cache, shared memory array and SIMD processor. The
sequential processor executes traditional code and controls
the SIMD processor in a master-slave mode. The SIMD
processor executes parallel instructions on the data stored
in the shared memory array.

The SIMD processor contains multiple processing units
(PUs), a sequencer and a Network on Chip (NoC) with
reduction tree. Each PU contains registers, a single bit full-
adder and a function generator to perform arithmetic and
logical operations. The sequencer receives instructions from
the sequential processor and assigns them to PUs. The PUs
load data from the shared memory array and perform the
requested operations. If required, the NoC and reduction
trees are used to perform more complex functions.
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Fig. 39: Resistive GP-SIMD (ReGP) [160]

In addition to the general advantages of COM-N archi-
tectures, ReGP comes with the following advantages:

• The parallelism is high due to multiple parallel pro-
cessing units.

• The architecture uses non-volatile memory, hence
consumes low amount of energy and small footprint.

• The architecture can reuse compilers, programming
languages and tools from SIMD architectures.

However, it also has the following limitation:

• The operations within the processing units are sim-
ple; complex functions such as floating point opera-
tions can cause a high overhead.

The architecture is evaluated analytically against CMOS
GP-SIMD [161] using the dense matrix multiplication bench-
mark [162].

APPENDIX B
COMPUTATION-OUT-MEMORY - FAR (COM-F)
COM-F class includes all conventional architectures which
perform computations based on a processor-centric model.
The architectures in this class consists of one or multiple
computational cores, possibly with caches (including L1,
L2 and L3) or other small storage units (e.g., register files)
and a separate main memory (normally DRAM). These
architectures typically have a lot of data movements from
the main memory to the computational cores and vice versa.
In addition, a complex coherence scheme is required to
keep the coherency among different levels of caches and
main memory, especially when each processor comes with
its own cache. These architectures have several common
advantages:

• High potential parallelism due to the possibility of
performing multiple concurrent operations. Archi-
tectures in this category could exploit instruction,
data and task level parallelism and hybrid com-
binations of them. However, this potential is only
reachable when the number of data accesses is low
compared to the number of computations, i.e., when
the memory bandwidth is high enough.
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• A wide variety of high performance functions can
be implemented as the computing takes place with
mature CMOS technology.

• Applications, compiling, programming languages
and tools are very mature and a lot of commercial
products exist.

• These architectures do not suffer from endurance
requirements, especially as traditional mature mem-
ories can be used.

On the other hand, they all share the following limita-
tions:

• High memory bottleneck as data has to travel
through a long memory hierarchy and the results are
produced far from the memory core. Moreover, its
hard to hide the main memory latency.

• The maximum amount of parallelism is either lim-
ited by the bandwidth or the available resources.
An area trade-off has to be made between registers,
caches and computing resources.

• Additional write overhead when the results have
to be stored back in to the memory. Note that the
outputs are produced outside the memory core, and
therefore, extra write operations would be necessary
in such cases.

• Relatively complex memory controllers are needed to
maintain data coherency, especially for multicores.

• High power consumption of SRAM based caches and
cores leads to dark silicon. This limits the amount of
concurrent operations that can take place [163], [164].

In this class, multiple architectures have been proposed.
In the most basic form (i.e., a single or scalar processor),
such architectures typically include one or more arithmetic
logic units (ALUs, floating point units, etc.), register files
and controlling units (program counters, muxes, etc.) [3].
Later on, these scalar processes have been improved by
including multiple pipeline stages referred to as pipelined
processor [3], [42]. The datapath of a pipelined processor
is split into multiple stages; each stage executes a part of
the instruction such as instruction fetch, decode, execution,
write-back etc. [3]. Thereafter, multiple methods were intro-
duced to improve the parallelism further. First, each stage
of a pipelined processor is duplicated to form a superscalar
processor. Such processors could execute multiple instruc-
tions simultaneously [6], [165], [166]. Second, ALUs can be
duplicated to deal with multiple data streams, the so called
vector processor [38], [40], [167]. Third, the ALUs can be
duplicated and integrated with other functional units to
perform multiple different instructions concurrently on a
large data stream; such a processors is called Very Long
Instruction Word (VLIW) processor [43], [168]. Finally, mul-
tiple single-core processors are integrated together in multi-
core processors; they can perform multiple independent
tasks simultaneously [7].

2
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This chapter presents two architectures: Computation-in-Memory (CIM) and Computation-
in-Memory Accelerator (CIMX). The CIM architecture represents a CIM-A class which pro-
duces computation results inside the memory array. First, it motivates the proposed ar-
chitecture to address the challenges of computer architectures in big data era. Thereafter,
it shows how to map a parallel adder into the memory array, and demonstrates the fea-
sibility of the above parallel adder in terms of memory array mapping, controller and
interconnect network using two different memristive logic designs. The CIMX architecture
represents a CIM-P class which produces computation results using the peripheral circuits.
First, it discusses the proposed architecture, where the CIM core is used as an accelerator
as it relatively needs a lower endurance and has a reasonable operation diversity. Sub-
sequently, it proposes an analytical model and a simulation framework to estimates the
performance of both CIMX architecture and a conventional architecture (i.e., multicore
architecture) for several applications.

The content of this chapter is based on the following research articles:

1. S. Hamdioui, L. Xie, H.A. Du Nguyen, M. Taouil, K.L.M. Bertels, "Memristor based computation-in-
memory architecture for data-intensive applications." Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015.

2. H. A. Du Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui and K. Bertels, "Computation-in-memory
based parallel adder," Proceedings of the 2015 IEEEACM International Symposium on Nanoscale Ar-
chitectures (NANOARCH), Boston, USA, 2015.

3. H. A. Du Nguyen; L. Xie; M. Taouil; R. Nane; S. Hamdioui; K. Bertels, "On the Implementation of
Computation-in-Memory Parallel Adder," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems , vol.25, no.8.

4. J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, "Memristive devices for computation-in-memory,"
Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2018.

5. H. A. Du Nguyen, J. Yu, M. Abu Lebdeh, I. Ashraf, M. Taouil, S. Hamdioui, "A Computation-In-Memory
Accelerator based on Resistive Devices," The international symposium on Memory Systems (MEMSYS),
Washington DC, USA, 2019.
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3.1. PROBLEM STATEMENT
Based on the classification proposed in Chapter 2, two architectures belongs to CIM-A
and CIM-P class were investigated. Due to the novelty of these architectures, there are
still many questions to be investigated. For CIM-A architectures which employ memris-
tor crossbar to perform computations, it is essential to investigate the following aspects:
(1) the mapping of a complex function on memristor crossbar, (2) the performance im-
provements of this computing scheme, and (3) the overhead of controller, interconnect
network, etc. For CIM-P architectures which employ peripheral circuits to perform com-
putations, it is essential to investigate the following aspects: (1) the appropriate architec-
ture and memory level (of the memory hierarchy) to implement this computing scheme,
(2) the methods to evaluate and simulate this computing scheme, (3) the performance
improvements of this computing scheme. This chapter focuses on these issues.

CIM-A architectures: First, a CIM-A architecture performing computation within the
memory array is proposed. In addition, the potentials of this architecture for big data
applications is investigated using two study cases of health care and mathematics ap-
plications. Thereafter, a more detailed CIM architecture is studied with a mapping of
a complex function (i.e., parallel addition) on the memristor crossbar. Finally, it is es-
sential to investigate the performance improvements and overheads of this computing
scheme using the parallel addition as a study case.

CIM-P architectures: First, one or more computing core are proposed to employ the
CIM-P computing method of performing computations using the peripheral circuits. In
addition, an interesting question is whether the CIM-P cores should be used as a mem-
ory hierarchy (i.e., caches, main memory) or accelerator. Finally, it is essential to build
an analytical model and simulation platform to explore the potentials of the proposed
architectures based on the CIM-P computing cores.

3.2. MAIN CONTRIBUTIONS
The main contributions in the above aspects are as follows.
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Figure 3.1: CIM Architecture

CIM-A architectures [20, 72, 73]: We first introduce memristor background and its po-
tential applications; thereafter we propose the Computation-in-Memory architecture as
a CIM-A architecture (as shown in Fig. 3.1). The Computation-in-Memory architecture
is proposed as an integration of computation and storage in the same physical location;
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this architecture offers an opportunities to solve big data applications efficiently. The
architecture is realized using non-volatile memristive devices, instead of CMOS devices.
Therefore, it has the potentials to reduce both memory wall and energy consumption
with orders of magnitude.
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Figure 3.2: Delay and Area Analysis of Memristor Implementation’s Components
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Figure 3.3: Performance Results of CRS, FBLC and Multicore Implementation

We further investigate the details of CIM architecture by mapping a parallel addi-
tion on the memristor crossbar. Thereafter, we study the performance and overheads
of the parallel addition mapping. Two implementations, one based on Boolean logic
(FBLC implementation) and the other on implication logic (CRS implementation), are
investigated in terms of their impact on the total cost. This cost includes the the delay,
energy and area of the crossbar (xbar), interconnect network (interconnect), peripheral
circuit (peri) and CMOS controller (ctrl). The results show that the implementation of
both designs is feasible. In fact, the area of the CRS implementation is dominated by the
controller; hence, it is less scalable as shown in Fig. 3.2(a). On the other hand, the FBLC
implementation is more scalable as the crossbar and peripheral circuits dominate the
overall cost, as shown in Fig. 3.2(b). In comparison with conventional architectures, the
memristor implementations outperform a similar multicore implementation by nearly
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two orders of magnitude in terms of Energy Delay Efficiency, Energy Efficiency and Area
Efficiency, as shown in Fig. 3.3.
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CIM-P architectures [76, 88]: We first propose two CIM-P cores which are Automata
Processor and Memristive Vector Processor (MVP). In this content, I mainly contribute
to the MVP as shown in Fig. 3.4(a). The MVP is based on the scouting logic that is capa-
ble of performing logical operations while reading two memory rows simultaneously (as
shown in Fig. 3.5) [75]. The MVP is beneficial in a program illustrated in Fig. 2.1(b). The
program consists of multiple loops processing a dataset that is preloaded and mapped
on MVP. Each time a loop is called, the processor sends a (macro)-instruction to MVP;
the instruction is locally decoded and executed. The result is returned to the processor.
This feature occurs in multiple applications such as database management [89], DNA
sequencing [90–92], and graph processing [93].
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We propose four architectures that are feasible to employ this MVP which is also
called as Computation-in-Memory (CIM) core. The four architectures use CIM core
either in the memory hierarchy (i.e., caches, main memory), as an accelerator, or as a
universal memory (as shown in Fig. 3.6b, 3.6c, 3.6d, 3.6e, respectively). The architec-
ture with CIM core as accelerator (so-called CIMX) is selected due to its requirements
of relatively a lower endurance and reasonable operation diversity. Thereafter, we also
build an analytical model and simulation platform to investigate the potentials of this
accelerator. The architecture shows that CIMX architecture outperforms conventional
architectures with at least one order of magnitude improvements in terms of delay and
energy while consuming less chip area (as shown in Fig. 3.7). In addition, three bench-
marks were selected to execute on the simulation platforms. CIMX achieves nearly one
order of magnitude improvement in delay and energy with a smaller footprint for the
three simulated benchmarks. These improvements are mainly due to reduction in data
movement and use of non-volatile technology.0
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Figure 3.7: Analytical results of the performance energy, energy, and performance area efficiency metrics
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Abstract—One of the most critical challenges for today’s and 

future data-intensive and big-data problems is  data storage and 
analysis.  This paper first highlights some challenges of the new 
born Big Data paradigm and shows that the increase of the data 
size has already surpassed the capabilities of today’s computation 
architectures suffering from the limited bandwidth, 
programmability overhead, energy inefficiency, and limited 
scalability. Thereafter, the paper introduces a new memristor-
based architecture for data-intensive applications. The potential 
of such an architecture in solving data-intensive problems is 
illustrated by showing its capability to increase the computation 
efficiency, solving the communication bottleneck, reducing the 
leakage currents, etc. Finally, the paper discusses why memristor 
technology is very suitable for the realization of such an 
architecture; using memristors to implement dual functions 
(storage and logic) is illustrated.   

I. INTRODUCTION 
Today’s applications are becoming extremely data intensive; 
healthcare, social media, large scientific/engineering 
experiments, and security are just couple of examples. As the 
speed of information growth exceeds Moore’s Law, since the 
beginning of this new century, excessive data is posing major 
challenges [1] and a new scientific paradigm is born: data-
intensive scientific discovery, also known as Big Data 
problems. The primary goal is to analyse and increase the 
understanding of both data and processes in order to extract 
the highly useful information hidden in the huge volume of 
data, which in turn can be used to increase e.g., the 
productivity. Storing and analysing such data is posing major 
challenges as the data volume already surpassed the capability 
of today’s computers which suffer from e.g., communication 
and memory-access bottlenecks due to limited bandwidth [2-
lahiri, 3-somavat]. For instance, a transfer of 1 petabyes data 
at a rate of 1000MB/second will take 12.5 days! Memory size 
and memory access do not only kill the performance, but also 
severely impact energy/power consumption   [2, 3 ,4]. In 
addition, CMOS technology used to implement today’s 
architectures contributes to such consumption due to high 
leakage currents; not to mention other challenges the 
technology is facing such as limited scalability, reduced 

reliability [30-34], etc. In conclusion, today’s CMOS based 
architectures are not able to provide the computation 
capability needed for data-intensive applications. New 
architectures based on new technologies are urgently required. 
 

This paper discusses a new architecture, Computation-In-
Memory (CIM Architecture), for specific data-intensive 
applications; it is based on the integration of storage and 
computation  in the same physical location (crossbar topology) 
and the use of non-volatile resistive-switching technology 
(memristive devices or memristors in short) [30, 38, 39, 94] 
instead of CMOS technology. 
 

The rest of the paper is organized as follows. Section II 
highlights the Big Data problem and shows how the 
conventional computers based on CMOS technology are 
incapable to deal with such problems; and motivates the need 
for a new architecture. Section III discusses CIM architecture, 
including its concept and its potential; the section puts that in 
perspective by taking couple of application examples and 
comparing  the performance of CIM architecture with the 
state-of-the-art. Section III shows why memristor is the key 
enabler for CIM architecture by illustrating how the device, in 
crossbar architecture, can perform a dual function (storage and 
computation). Section IV concludes the paper.  

II. DATA-INTENSIVE APPLICATIONS VS CMOS COMPUTERS  

A. Big Data and Data Intensive Applications  
No one can deny the fact that a large number of fields and 
sectors, ranging from economics and business activities to 
public administration, from national security to many 
scientific research areas, involve data-intensive applications, 
hence, dealing with Big Data problems. Big Data is extremely 
valuable to generate productivity in businesses and 
evolutionary breakthroughs in scientific disciplines, which 
give us a lot of opportunities to make great progress in many 
fields [1]. The primary goal is to increase the understanding of 
processes in order to extract so much potential and highly 
useful values hidden in the huge volumes of data, and 
therefore, it comes with many challenges, such as data 
capture, data storage, data analysis, and data visualization. 
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Performing data analysis within economically affordable time 
and energy is the pillar to solve big data problems 
 

B. Today’s Computers  
The computing systems, developed since the introduction of 
stored program computers by John von Neumann in the forties 
[5], can be classified based on the location of the so-called 
“working set” (loosely defined as the collection of information 
referenced by a program during its execution) into four classes 
(a) to (d) as shown in Figure 1. In the early computers 
(typically before the 80s), the working set was contained in 
main memory. Due to the gap between the core (CPU) speed 
and the memory, caches were introduced to reduce the gap 
and increase the overall performance, where the caches have 
become the location of the working set. Today’s computing 
systems for data-intensive applications are still based on Von 
Neumann (VN) architectures and still rely on many parallel 
(mini-)cores with a shared SRAM cache (parallel CPUs, 
GPUs, SIMD-VLIWs, vector processors); see Figure 1(c). 
Clusters of cores can be replicated many times, each having 
their own L1 cache, but it is far from realistic to assume a 
distributed reasonable sized L1 cache in every mini-core; too 
much area and leakage power overhead is incurred in that 
case.  Such solutions suffer from major limitations such as a 
decreased performance acceleration per core [6], increased 
power consumption [7, 8], and limited system scalability [6, 
9]. These are mainly caused by the processor-memory 
bottleneck [10, 11].  As current data-intensive applications 
require huge data transfers back and forth between processors 
and memories through load/store instructions [12], the 
maximal performance cannot be extracted as the processors 
will have many idle moments while waiting for data [10-14].  
Computation, which is the main activity of a system, by far 
consumes less energy and chip area, and has lower execution 
time compared to communication and memory access (e.g., 
L1 cache), especially for data intensive applications [15].  The 
energy consumption of the cache accesses and communication 
makes up easily 70% to 90% [2,3,4]; not to mention the rest of 
the memory hierarchy. In addition, programmability in 
conventional processors also comes at a substantial energy 
cost: for example, [4] reports that executing a multiply 
instruction on a simple in-order core in 45nm technology 
consumes about 70 pJ, whereas the actual operation itself 

consumes less than 4 pJ. The overhead is due to instruction 
fetching and decoding and other control. 
 
Triggered by these issues, the design of high-performance 
computing systems is starting to move away from a 
conventional computation-centric model towards a more data-
centric approach. The latter concept intends to improve 
performance and power efficiency through reduction of data 
movement by performing the actual processing closer to 
where the data resides in the memory system. Several 
alternative architectures are proposed that fall into this 
category. One alternative  is called “Processor-in-memory” as 
shown in Figure 1(d); additional processing units 
(accelerators) are put around one or more  memories which are  
the working set location; examples are  FlexRAM [16], DIVA 
[17], TeraSys [18], EXECUBE [19], HTMT [20], 
Computational RAM [21], DSP-RAM [22], Smart memories-
based architecture [23],  Gilgamesh [24], Continuum 
computer architecture [24], and MICRON's architecture for 
automata processing [26]. The second  alternative architecture 
is called “Memory-in-processor”, which is an extension of 
what is shown in Figure 1(c), where  extra addressable 
memories are put close to the cores; examples are Data 
Arithmetic SRAM [27] and Connection machine [28]. The 
third is called “In memory computing/database” (mainly for 
database management), which primarily relies on the storage 
of the complete database working set in the main memory of 
dedicated servers rather than relying on complicated relational 
databases operating on comparatively slow disk drives [29]. 

C. CMOS Technology  
Today’s computers are manufactured using the traditional 
CMOS technology, which is reaching the inherent physical 
limits due to down-scaling. Technology nodes far below 20nm 
are presumably only practical for limited applications due to 
multiple challenges [30-34,], such as high static power 
consumption, reduced performance gain,  reduced reliability, 
complex manufacturing process leading to low yield and 
complex testing process, and extremely costly masks.  
Many novel nano-devices and materials are under 
investigation to replace the CMOS technology in next IC 
generations. Among the emerging devices, such as graphene 
transistor [35], nanotube [36], tunnel field-effect transistor 
(TFET) [37], etc., memristor [38, 39] is a promising candidate. 

Figure 1: Classification of computing systems based on working set location 
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Its advantages are CMOS process compatibility [40], lower 
cost, zero standby power [41], nanosecond switching speed 
[42], great scalability and high density [43], and non-volatile 
nature [44, 45]. It offers a high OFF/ON resistance ratio [46] 
and it is promising to have a good endurance and retention 
time [47]. More importantly, the memristor is a two-terminal 
resistive-switching device that can be used to build both 
storage and information processing units [48, 49, 50].  
 

D. The Need of New Architecture  
The speed at which data is growing has already surpassed the 
capabilities of today’s computation architectures suffering 
from communication bottleneck (due to limited bandwidth), 
energy inefficiency (due to CMOS technology), and 
programmability overhead. Therefore, there is a need for a 
new architecture using new device technology, being able to 
(a) eliminate the communication bottleneck and support 
massive parallelism to increase the overall performance, (b) 
reduce the energy inefficiency to improve the computation 
efficiency. This can be done by taking the data-centric 
computing concept much further by integrating the processing 
units and the memory in the same physical location and 
therefore moving the working set into the core as shown in 
Figure 1 (e). 

III. CIM ARCHITECTURE- BEYOND VON NEUMANN  
This section presents first the concept of the CIM architecture 
as an alternative of today’s architectures. Thereafter the 
potential of the architecture will be illustrated by selecting 
couple of data-intensive applications and making an analysis 
of different performance metrics and comparing the results 
with the state-of-the art. Finally, major open questions related 
to the implementation of the CIM architectures will be 
highlighted.  

A. CIM Architecture Concept   
To tackle the big data computation problems and solve the 
todays computers bottlenecks, we propose a memristor-based 
architecture paradigm where both the computation and the 
storage take place at the same physical location (the crossbar 
array). The approach intends to provide solutions based 
computing-in-memory architectures using non-volatile 
devices. Figure 2 shows the traditional versus the proposed 
CIM architecture; note that in CIM architecture the storage 
and computation are integrated together in a very dense 
crossbar array where memristors are injected at each junction 
of the crossbar (top electrode and bottom electrode). The 
communication and control from/to the crossbar can be 
realized using CMOS technology. CIM architecture addresses 
important challenges and has huge potentials which go 
substantially beyond the current state-of-the-art. 
• Tightly integrated computation-in-memory crossbar 

architecture supporting massive parallelism: as the 
storage and computation are integrated together, the 
communication bottleneck is significantly reduced.  In 
addition, because the memristor technology is highly 

scalable (~5nm [30]), huge crossbar architectures 
allowing massive parallelism are feasible.  

• An architecture with practically zero leakage: Today’s 
architectures heavily rely on SRAMs as caches. These are 
required to have a very fast R/W access, leading to 
increasingly high leakage with technology scaling. Hence, 
the memristor crossbar architecture solves also the 
leakage bottleneck, at least in the memory. 

• Significant performance improvement at lower energy 
and area: Given the nature of the architecture (supporting 
massive parallelism), the non-volatile technology in the 
crossbar, and the small feature size of the memristor, the 
architecture has the potential of improving the overall 
performance at extremely low power consumption  and 
smaller area. The next section illustrates this potential for 
two different applications. 

B. CIM Architecture Potential  
To illustrate how CIM architecture significantly advances the 
state-of-the-art, the performance of CIM and the conventional 
architectures for two applications will be estimated. 

1) Healthcare: using genomics in diagnosing/treating 
diseases:  the continuously dropping price of DNA sequencing 
has shifted the challenge from acquiring genetic information 
to the actual processing and analysis of this information [51]. 
Despite its computational simplicity, the huge amount of 
genetic data (hundreds of GBs per experiment) that needs to 
be processed makes the analysis rather time consuming and 
even not practical due to communication/memory access 
bottleneck. A practical solution used today for comparing two 
DNA sequences is based on the creation of a sorted index of 
the reference DNA that can be used to identify the location of 
matches and mismatches in another sequence rapidly. This 
approach, however, results in eliminating available data 
locality in the reference and causing huge number of cache 
misses with high memory access penalty and high energy cost.  
To quantify this effect, we assume we have 200 GB of DNA 
data to be compared to a healthy reference of 3GB for 50% 
coverages [51] and evaluate the DNA sorted-index sequencing 
algorithm on both the conventional architecture and CIM 
architecture; see Figure 2. The conventional architecture is 
assumed to scalable multi-core architecture, consisting of a 
number of clusters, each with 32 cores.  Table 1 presents 
further made assumptions for both architectures. Three metrics 
are used for the evaluation:  (a) the energy-delay product per 
operations, (b) the computation efficiency defined as the 
number (#) of operations per required energy, and (c) 
performance (#operations) per area;  

Figure 2: Traditional versus proposed architecture 
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2) Mathematics: Here we assume 106 parallel addition 
operations and make similar assumptions for the two 
architectures as those done in the previous example; see Table 
1 for the details.  

 
Table 2 shows the obtained results for the two applications for 
conventional (Conv.) and CIM architectures; both applications 
clearly show that the improvements are orders of magnitude.  
Reducing/eliminating memory accesses, the non-volatile 
technology, and the high parallelism are enabling these 
improvements.  

C. CIM Architecture Challenges   
Although we mentioned that CIM architecture targets data-
intensive applications, especially applications that require 
massive parallelism and huge data working sets to be 
continuously kept in the memory, the proposed concepts can 
be adapted to any computation-in-memory (CIM) architecture 
for high computation efficiency. This architecture paradigm 
shift, based on memristor technology, changes the traditional 
system design, compiler tools, manufacturing processes, etc., 
to facilitate its “industrialization”. In fact, it is well recognized 
that memristor technologies are very promising. Although 
understanding of its capabilities and limitations is still 
evolving, the technology is expected to rule the computer 
world, from material science (understanding and proving the 
properties of the materials and assuring reliability), to design 
methods, tools, operating systems and its potential 
applications. Examples of  its use are replacement of RAM, 
flash and even disk drives, complex self-learning neural 
networks, advanced artificial neural brains, and many more 
[61]. It may play a significant role in advancing Exascale 

Table 1: Assumptions made  for conventional and CIM architectures 
Assumption for conventional architecture   Assumptions for CIM architecture 
Generic assumptions 
• FinFET 22nm multi-core implementation 
o Gate delay = 14 ps [53, 54] 
o Area per gate: 0.248 m2 [30]  
o Power consumption per gate: 175 nW [54] 
o Leakage power: (a) Leakage power consumption per gate:  42,83 

nW [30], (b) Leakage duration: cycle time – delay per gate 
o Operating frequency: 1 GHz 

• The architecture consist of a certain  number of clusters of 
processing units, each cluster shares an 8kB  L1 cache. 

For Healthcare example  
• Typically, the DNA reference sequence must be covered 50 times by 

short reads. The length of the short reads are assumed to be 100 
characters.  

• 200GB of DNA data is  compared to a healthy reference of 3GB.  
• Number of short reads no_short_reads =  coverage * 3 * giga/ 

short_read_len; coverage=50, short_read_len=100 
• Number of comparisons no_comparsions = 4*no_short_reads, for 

each A, C, G, T  nucleotides 
• Number of clusters is 18750, each  contains 32 comparators. 
o Limited with the state-of-the-art chip area 

• Each cluster shares 8 kB Cache (per cluster) 
o Area: 0.0092 mm2 [57] 
o Hit ratio = 50%; Hit cycle time = 1 cycle 
o Miss penalty = 165 cycle [55];  
o Write cycle time = 1 cycle;  
o Static power: 1/64 Watt [56] 

For Mathematics example  
• Fully scalable reusing clusters; each has 8 kB shared cache.  
• Additions are performed by 32 adders per cluster:  
o Adder architecture: Carry Look Ahead (CLA) 
o Number of gates per adder: 208 [52]  
o Number of gate delay: 18; 
o Adder latency: 252ps = 18*14ps 
o Energy per 32-bit adder 

• Shared 8 kB Cache (per cluster):  the same as for healthcare except 
with 98% hit rate, 

Generic assumptions 
• Memristor 5nm crossbar implementation [30] 
o Memristor write time: 200 ps [60] 
o Area per memristor: 1x10-4 um2 [30]  
o Dynamic energy per write operation: 1 fJ [30] 

• The memory capacity of the CIM architectures is assumed to be 
equal to the sum of all caches for the CMOS based computer.  

For Healthcare example  
• Each comparison is performed by a comparator 
o Comparator:  2 XOR and a NAND implemented by implication 

logic [58] 
o Number of memristors per comparator: 13 (XOR: 5, NAND: 3) 
o Area per comparator: 1.3 * 10-3 um2  [58] 
o Number of steps per comparator: 16 steps (Two XOR works in 

parallel, an XOR takes 13 steps, and an NAND takes 3 steps, 
step takes a memristor write  time). [58]  

o Comparator latency: 3.2 ns  
o Dynamic energy per comparator: 45fJ   [58] 
o Static energy per comparator: 0 fJ [30] 

• The crossbar size equals to total cache size of CMOS computer 
o Size= 18750*8kB = 1.536*10^8  memristors 
o Date hit rate = 50%, Hit cycle time = 1 cycle 
o Miss penalty = 165 cycle 

For Mathematics example  
• The crossbar is scalable to support the 106 adders 
• Additions are performed by memristors 
o Adder architecture: TC-adder [59] 
o Number of memristors per adder: 34 (N+2, N=32)  [59]  
o Area per adder: 3.4x10-3 um2 
o Number of steps per 32-bit addition: 133 (4N+5, N=32, each 

step takes a memristor write time). [59]  
o Adder latency: 16600 ps (133 * 200 ps) 
o Dynamic energy per 32-bit adder: 246 fJ ( 8 (operations per bit) 

*32 (bits) * 1 fJ  [59]) 
o Static energy per 32-bit adder: 0 fJ [30] 

• The memory hit rate is assumed to be 98%, remaining parameters 
are the same as for the healthcare example.  

 

Table 2: Huge potential of CIM architecture 
Metric Archit. DNA Sequencing 106 additions 
Energy-delay/ 
operations 

Conv. 2.0210e-06 1.5043e-18 
CIM 2.3382e-09 9.2570e-21 

Computing 
efficiency 

Conv. 4.1097e+04 6.5226e+09 
CIM 3.7037e+07 3.9063e+12 

Performance 
area 

Conv. 5.7312e+09 5.1118e+09 
CIM 5.1118e+09 4.9164e+12 
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computing, ‘computer on a chip’ capabilities, as well as 
driving developments in neural and analogue computing. Next 
section will elaborate more on memristor technology.  

IV. MEMRISTOR - THE KEY ENABLER FOR CIM 
ARCHITECTURE IMPLEMENTATION 

This section reviews first the memristor technology. 
Thereafter its suitability for the realization of both storage and 
logic functions is discussed and illustrated.  

A. Memristor Technology  
Memristors or memristive devices, also referred to as resistive 
memory devices, are very broad groups of memory 
technologies; they can be classified based on their dominant 
physical operating mechanism into three classes [30]: Phase 
Change Memories, Electrostatic/ Electronic Effects Memories, 
and Redox memories. The redox-based resistive switching 
devices (ReRAMs) are attracting most attention due to their 
excellent scaling, endurance, and retention properties [30, 95]; 
their physical mechanism for switching is based on 
reduction/oxidation (Redox)-related chemical effects. The 
category of “Redox RAM” encompasses a wide variety of 
Metal-Insulator-Metal (MIM) structures; the electrochemical 
mechanisms driving the resistance state (from high to low or 
vice versa) can operate in the bulk I-layer, along conducting 
filaments in the I-layer, and/or at the I- layer/metal contact 
interfaces in the MIM structure. The ReRAMs consist of three 
types, two bipolar and one unipolar [30,50,61]; the rest of the 
section will focus on the two bipolar devices and show the 
best available properties for both device types; these are the 
Valence Change Memory (VCM) and the Electrochemical 
metallization (ECM) devices. 
 
For both VCM (HfOx) and ECM (Ag-chalcogenide) devices a 
feature size of F = 10 nm was reported [62, 63]. A minimum 
switching time of < 200 ps was shown for TaOx-based VCM 
devices [42], whereas for ECM devices (Ag-MSQ) switching 
times below 10 ns were realized [64]. In terms of endurance, 
more than 1012 cycles are feasible for TaOx-based VCM cells 
and more than 1010 for Ag-GeSe ECM cells [65]. Extrapolated 
retention of > 10 years was, for example, shown in [66] 
(TaOx-based VCM cells) and [67] (Ag-chalcogenide). 
 
In ECM devices a conductive metallic filament (Cu or Ag) is 
established during switching, thus, the filament length can be 
considered the state variable [68]. For a memristive ECM 
model, both electronic and ionic currents must be considered, 
and the strong non-linearity of the switching kinetics must be 
reflected by the model. VCM modelling is even more 
challenging due to the versatile device physics [69]. Since 
simple memristor models fail to predict the correct device 
behaviour [39, 70], more complex empirical and physics-
based models were developed recently [71, 72]. 

B.  Memristor for Crossbar Memories  
The primary driver for ReRAM research is the semiconductor 
industry seeking for novel energy-efficient non-volatile and 

highly scalable memory elements [30]. A straightforward  
implementation of the ReRAM array is realised using a 
passive crossbar architecture, resulting in the highest density 
[73, 74]. However, this architecture suffers from undesired 
paths for current called sneak paths [75]; due to the low 
resistive current paths, the maximum array is limited to small 
arrays [76]. To overcome this issue, three classes of solutions 
are proposed:  
 Selector devices, which are separate devices in connection 

with the RRAM cell such as a diode or a transistor (1S1R) 
[77, 78].  

 Switching device modification, where the resistive devices 
is modified; E.g., serially connecting of two anti-serial 
memristive devices (bipolar switches) resulting into a 
“complementary resistive switcher” (CRS) being able to 
block the current at low voltage irrespective of the state of 
the device [78], or the deployment of a high nonlinear 
memristive device (due to current-controlled negative 
differential resistance) to overcome sneak path [79]. 

 Bias schemes, where the voltage bias applied to non-
accessed wordlines and bitlines are set to values different 
from those applied to accessed wordline and bitlines in 
order to minimize the sneak path current; examples are 
multistage reading [80] and use of AC signal instead of 
DC for sensing the data stored in the desired cell [81]. 
 

Figure 3 sketches the concept of the the crossbar array and 
some junction options to deal with sneak paths, while Figure 4  
illustrates  the I-V characteristic of a CRS cell which consists 
of two memristive ECM devices A and B. The states '0' and '1' 
are the logical storage states and the state 'LRS/LRS’ occurs 
only when reading the memory state. The internal memory 
states '0 'and '1' of a CRS cell are indistinguishable at low 
voltages because state ‘0’ as well as state ‘1’ show a high 
resistance. Therefore, no parasitic current sneak paths can 
arise. To read the stored information of a single CRS cell, a 
read voltage must be applied to the cell. If the CRS cell is in 
state '0', then it switches to state ‘ON’; if the cell is in state '1' 
then it remains in its state. In case conventional crossbar (with  
resistive current paths), reading ON state is a destructive 
operation, therefore, it is necessary to write back the previous 
state of the cell after reading it. In general, the writing of state 
‘0’ requires a negative voltage (V < Vth,4) and for writing '1' a 
positive voltage V > Vth,2 is required. 

Figure 3:  Illustration of  complementary resistive switch 
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C. Memristor for Logic Functions   
Memristive devices are well suited for the implementation of 
logic functions including: (a) programmable interconnects 
[82], (b) look-up tables (LUTs) [83] or content addressable 
memories (CAMs) [84], and (c) sequential ‘stateful’ logic 
operations [49, 58, 85].  
 
Programmable logic arrays based on resistive switching 
junctions were suggested first in [82] and later also applied to 
FPGAs [86]. Typically, the CMOS overhead is relatively large 
since the array size is small. A next step was the CMOL 
FPGA concept [87], where a sea of elementary CMOS cells is 
connected to a small crossbar part-array. In this approach the 
elementary CMOS cells are connected via resistive switches 
(1S1R) enabling wired-or functionality. In general, 
reconfigurable on-chip wiring enables new options for 
memristive chip design and can also be combined with the 
functionalities as those described next . 
 
Resistive memories can be either used to implement small 
LUTs for FPGAs (as suggested in [83]) or LUTs can be 
mapped to large-scale crossbar arrays [88, 89] to reduce the 
crossbar array overhead. Moreover, CAMs based on 
memristors are feasible with different flavors [90, 91]; e.g., a 
CRS-based CAM is recently demonstrated [84].  
 
Memristors are also used to design (sequential) logic 
operations based on Boolean functions [92] or (material) 
implication logic (IMP) [49, 58, 85]; the latter seems to be 
more popular. Figure 5 uses two examples to illustrate the 
concept of IMP. Figure 5(a) gives a basic logic function using 
two memristors. Together with a load resistor RG, the 
operation p IMP q is conducted as follows [49]: 
    1. Set device p to p (VP = ±VWrite) 
    2. Set device Q to q (VQ = ±VWrite) 
    3. q’ = p IMP q (VP = VCOND and VQ = Vwrite) 
    4. Read q’  

An alternative approach to implement p IMP q, with superior 
performance, is suggested in [93], as shown in Figure 5(b).  
The input signals Vp = ±½VWrite and Vq = ±½VWrite are 
applied at the terminals T1 and T2 of the memristor. The final 
result is stored as resistive state Z. For Z = p IMP q the 
following steps are performed: 
    1. Init device Z to ‘1’ (VT1 = +½VWrite, VT2 = -½VWrite) 
    2. Z’ = p IMP q (VT1 = Vq, VT2 = Vp) 
    3. Read Z’  
 

IMP can be used to design arithmetic operations such as 
adders [58, 56]; hence, it paves the path to more complex 
memristive in-memory-computing architectures. 

V. CONCLUSION 
This paper discusses data storage and analysis as one of the 
most critical challenges for today’s and future data-intensive 
and big-data problems. It shows how the increase of the data 
size has already surpassed the capabilities of today’s 
computation architectures suffering from the limited 
bandwidth, energy inefficiency and limited scalability. 
Thereafter, the paper proposes a new architecture based on the 
integration of the storage and computation in the same 
physical location (using a crossbar topology); the architecture 
is driven by non-volatile resistive-switching technology 
(memristors) instead of traditional CMOS technology. 
Therefore, it has the potential to reduce both the memory wall 
and energy consumption with orders of magnitude, and 
enables massive parallelism. Hence, significantly improving 
the performance and enabling the solution of big-data 
problems. The details and many aspects of the architecture 
still need to be worked out. 

Figure 4: Left: Zoom in a passive nano-crossbar array.    
                 Right: possible cross point junctions 

Figure 5: Two ways to implement IMP.  Blue cube represents 
                  state ‘0’ and the red cube state ‘1’ 
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Abstract—Today’s computing systems suffer from mem-
ory/communication bottleneck, resulting in energy and perfor-
mance inefficiency. This makes them incapable to solve data-
intensive applications within economically acceptable limits.
Computation-In-Memory (CIM) architecture, based on the in-
tegration of storage and computation in the same physical loca-
tion using non-volatile memristor technology offers a potential
solution for the memory bottleneck. This paper presents a CIM
based parallel adder, and shows its potentials and superiority
for intensive computing and massive parallelism by comparing it
with state-of-the art computing systems including multicore, GPU
and FPGA architecture. The results show that CIM based parallel
adder can achieve at least two orders of magnitude improvement
in computational efficiency, energy efficiency and area efficiency.

I. INTRODUCTION

In the last several decades, CMOS down-scaling has been the
primary driver behind computer performance improvement
[1]. However, CMOS technology is reaching its physical -if
not economical- limits [2]. Down-scaling devices has led to
many challenges such as leakage power [2], reliability [3],
fabrication process and turnaround time [4], test complexity
[4], cost for mask and design [5], and yield [6]. Furthermore,
the performance gain by increasing clock speed has saturated
since early 2000 [7]; today, speed-up is no longer the result
of a faster clock, but rather a result of parallelization on
multi-core and many-core systems. However, the number of
parallel cores that can be programed and the computation
efficiency that can be extracted are tending to saturate as well
[8]. Obviously, all today’s computing systems are mainly built
on John von Neumann stored-program computer concept [9].
A major drawback of this computer design is the gap between
the processing units and the main memory, the so-called
memory bottleneck [7,10]. For data-intensive applications,
the memory bottleneck is becoming even more severe and
is putting major limitations both on performance and energy
consumption. All of these motivate the need for a new
architecture being able to (a) eliminate the communication
bottleneck and support massive parallelism to increase the
overall performance, (b) reduce the energy inefficiency to
improve the computation efficiency.
Getting the memory closer the processing unit and reducing
the memory bottleneck has attracted a lot of attention. In
1969, Logic-In-Memory (LIM) was originally introduced as
a memory accelerator [11]; i.e., add some processing units
close to main memory. In 1992, LIM concept re-appeared
and named computational RAM, and typically uses the same
accelerator concept where these are supposed to perform
operations needed by the memory such as address translations
[12]. In the late 1990s and early 2000s, Processor-In-Memory
(PIM) was proposed [13] and manufactured [14]. PIM is
based on splitting the main memory in different parts, each
with surrounded computing units to bring the computation

near to the memory; the architecture has a master CPU that
takes care of the overall control. PIM concept was later
used and refined for different applications; examples are
EXECUBE [15], IRAM [16], FlexRAM [17], DIVA [18],
Gilgamesh [19]. In 2004, Memory-In-Logic (MIL), which
provides massive addressable memory on the processor, was
proposed for supercomputer systems [20]. All mentioned
above efforts have tried to close the gap between processor
and memory speed [21]. However, as the computation and
the storage are kept separately, they fundamentally use von
Neumann stored-program computer concept and therefore
suffer from memory bottleneck, which negatively impacts the
performance [7].
This paper uses Computation-In-Memory (CIM) concept, that
we have recently developed [22], to design a parallel adder
and illustrate the huge potential of such an architecture for a
simple case study: intensive arithmetic operations (additions).
The architecture uses a revolutionary approach based on
(a) the integration of storage and computation in the same
physical location, and (b) non-volatile memristor technology
[23]. It is worth noting that adding multiple numbers is a
basic yet very representative operation in big data applications
[24]. In existing architectures (e.g., multicore, GPU, and
FPGA), simple operations such as adding multiple numbers
already face the memory bottleneck. As the processors have
to fetch huge amounts of data from memory, the intrinsic
parallelism cannot be exploited fully in such architectures.
The main contributions of this paper are:

• A CIM based parallel adder for intensive computing.
• The evaluation of the proposed adder and comparison

of its performance with traditional architectures
including multicore, GPU and FPGA.

The proposed design achieves at least two orders of
magnitudes improvements for big problems!
The rest of this paper is structured as follows. Section II briefly
describes the concept of CIM architecture, and presents the
CIM parallel adder. Section III provides estimations of CIM
parallel adder’s performance and compares it with other tra-
ditional architectures. Section IV shows our evaluation results
and analysis. Finally, section V concludes this paper.

II. CIM PARALLEL ADDER

This section briefly first describes the CIM architecture. There-
after, it presents the concept of the parallel adder. Finally,
it demonstrates how to map these adders efficiently on the
crossbar architecture.

A. Generic CIM Computer Architecture

The main advantage of CIM architecture over von-Neumann
architectures is the tight integration of both computing
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and storing operations using the same physical crossbar.
Hence, massive parallelism is achieved with minimized
communication.
Fig. 1a shows the main three CIM architecture components:
crossbar, communication network and controller. The crossbar
consists of memristors that are used to implement logic
functions and/or storage. The communication network is
either implemented within the crossbar or by using separate
metal layers. A controller that is implemented by CMOS
devices handles auxiliary operations such as distributing data
and controlling signals to the crossbar.
The crossbar is specialized to perform computation and
storage operations in cells organized in rows and columns.
Each cell can be a computational unit (such as an adder
or multiplier) or storage location (such as a memory cell).
The cells in a row or column can be configured with the
same or different functionality. The communication in CIM
architecture has maximum flexibility. The architecture allows
bi-directional communication in both horizontal and vertical
direction. The controller contains a router and a finite
state machine (FSM). The router provides the FSM with a
communication scheme for data distribution and movements.
The FSM fetches instructions from an instruction memory
(e.g. hard disk), converts fetched instructions to controlling
signals for the row/column voltage controller.
In this paper, our focus is to investigate the effectiveness of the
crossbar with respect to computation and storage. Details on
controller and communication are under further investigation.

B. A CIM-based Adder Tree

Fig. 1b shows a single CIM adder. The basic computational
unit is an n-bit adder [25,26], which is surrounded by a
number of memory cells (latches). An n-bit adder contains
three n-bit latches (two for the inputs and one for the sum), a
1-bit carry-in and a 1-bit carry-out latch.
The CIM parallel adder arranges multiple CIM adders in
a binary tree network. The carry-in and carry-out registers
of an adder are connected properly to generate correct
addition results. The binary tree network is ineffective using
traditional platforms due to the difference between processor
and memory fabrication. A processor coupled with a large

amount of memory is unrealistic with traditional CMOS
technology. Using the new features of the CIM architecture
and its underlying memristor technology, the adder tree can
be effectively mapped to reduce addition latency and increase
resource utilization.
Fig. 1d shows a mapped binary adder tree with 16 inputs
(see Fig. 1c for an 8 input example) on the CIM architecture.
Each CIM adder corresponds to the adder presented in Fig
1b. Note that the output latches sum at each adder are reused
as input latches in the next adder stage. The first column of
the crossbar gets the first half of the inputs L i. Add units
in the second column add every two corresponding input
latches L i and store results in corresponding output latches
L s in the third column. The fourth column adds up results
from output latches of the third column. Another direction
of computation happens from the final column backwards to
utilize as many resources as possible. In other words, a cell
in CIM architecture is configured to an add unit or a latch.
The interconnects (dotted lines) between multiple rows and
columns represent communication channels among cells.

The crossbar array for N additions contains at least
N

2
×

(log2(N)) CIM adders. Due to the multi-directional char-
acteristic of the CIM-based adder, additions can operate in
two direction flows (from left to right and vice versa) of the
array (as shown in Fig. 1d). These bi-directional operations
efficiently exploit resources in the architecture. Therefore, the
architecture is designed with one additional column and half
number of rows in comparison with the above-mentioned
size. Hence, for N inputs the delay and array size equals

log2(N)+1 and
N

4
× (2log2(N)+1) cells, respectively (each

adder processes two inputs). With this design, every operation
is performed on a distinct operational and storage unit; hence,
there is no operation overlapping at a particular location.
In addition, maximum number of adders in the architecture
are used to avoid idle adders. With smart communication
schemes, the architecture can be pipelined to increase overall
performance.

III. ARCHITECTURAL CONSIDERATIONS

To illustrate how the CIM architecture improves the state-of-
the-art, the performance of CIM is evaluated and compared
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Fig. 2: Multicore vs GPU vs FPGA vs CIM parallel adders

against modern computer architectures using the addition test
case. The binary tree addition algorithm (as shown in Fig.
1c) was mapped on four architectures. The following section
describes the architecture models and performance metrics.

A. Architecture Models

For this estimation, we build simplified models that embed the
basic characteristics of multicore, GPU and FPGA platforms.
These models are referred to as multicore, GPU and FPGA
architecture. To prevent an unfair comparison between the
different architectures, optimistic assumptions are being
made for the modern architectures (multicore, GPU and
FPGA architecture) while pessimistic ones for CIM. For the
multicore, GPU and FPGA architecture, an architecture with
only parallel adder (not a complete processor) is used. For
the CIM architecture, we use the dedicated adder tree of Fig.
1d. We assume that all modern architectures have processing
units, working data sets, a proper controller and memories.
Fig. 2 depicts assumed architecture for the multicore, GPU
and FPGA. The CIM architecture, in contrast to the other
architectures, only requires an instruction memory as the data
is stored inside the crossbar. For the other architectures, a data
memory is required. As this paper focuses on the computation
and storage only, the cost for initial data load, controller and
memories are not considered for all evaluated platforms.
The main assumptions for all the architectures are described
in Table I. All of them are evaluated assuming 22 to 221

inputs using 32-bit adders. For each architecture, the most
optimistic available technology data is used. That is, multicore
and GPU are based on data from 22nm technology, while
the adder tree in the FPGA architecture was simulated
with Virtex-7 (FFG1157 FPGA) using the 28nm technology
library. For CIM architecture, assumptions are based on the
ITRS 5nm memristors [28]. Though the physical memristor
size has an order of magnitude benefit in comparison with
other architectures, the estimation aims to show architectural
impact more than technology dependence. In addition, worst-
case assumptions are made for CIM architecture while the
best-case for the other architectures. It is important to note
that the comparison is one-by-one between CIM and other
architectures. Indirect comparisons among multicore, GPU
and FPGA are not relevant in this paper due to the optimistic
assumptions made for each architecture.
Each processing unit is an adder that is organized depending
on the architecture’s characteristics. For the multicore
architecture, 32 adders are grouped in a cluster (mimicking
a 32-core system). Multiple clusters together form the

architecture. Each adder gets its inputs from a cache. For
the GPU architecture, each GPU core contains only a single
adder. Hence, the GPU architecture has a large number of
adders. The adders in multicore and GPU architecture are
assumed to execute as many parallel tasks as possible. For
FPGA architecture, the adders are connected in a binary tree
network, the same one used in Fig 1c for CIM. The difference
between multicore or GPU architecture versus FPGA or
CIM architecture is whether the adders are organized in
a binary tree network or not. Adders in FPGA and CIM
architecture are organized using a binary tree addition
network, while multicore and GPU architecture use as many
adders as possible at every stage of computation. Note that
the logarithmic addition algorithm is also used in these cases.
However, the organization of adders impacts the area and
power metrics of each architecture.

The working data set (WDS) differs for each architecture.
Data is loaded initially from a data or program memory
(e.g. hard disk, etc.) to this WDS. For multicore architecture,
the WDS is an 8KB cache for each cluster. For GPU
architecture, the WDS includes a 6GB GPU global memory
and a 64KB global cache for the whole architecture. As
data is loaded from memories, a particular hit rate, hit delay,
miss rate, and miss penalty are assumed for multicore and
GPU architecture. These memory characteristics are based
on optimistic estimations on existing multicore and GPU
architectures. In particular, the area and power data for cache
is derived from data of 512KB-cache. The area and power
of GPU global memory are provided by NVIDIA GPU
datasheets [37]. As hit delay for a cache in multicore and
GPU is assumed as fast as 1 cycle (with 1GHz clock rate),
the register file is not considered in these architectures. For
FPGA architecture, the WDS consists of a big register file.
For CIM architecture, the WDS consists of interleaved latches
with adders as described in Section II-B. Four architectures
with different configurations of processing units and working
data sets show the diversity of computer architectures in this
estimation.

For multicore, GPU and CIM architecture, estimations were
performed on assumptions listed in Table I. The FPGA
implementation is generated by Vivado HLS tool [27]
to ensure a good FPGA design and simulated by Xilinx
ISE [27]. Due to large simulation time and limited FPGA
chip area, measurements from a small-scale implementation
simulation are scaled up for large-scale FGPA implementation.
The calculations and measurements include only evaluated
architecture components such as memory and adders.
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TABLE I: Assumptions for each architecture

Arch. Multicore GPU FPGA CIM
Technology 22nm 28nm 5nm

Adder design Rippled eight 4-bit Carry-look-ahead adder auto-mapped on FPGA Aachen Toggle-Cell-Adder

Area-parameter
208 CMOS gates [24]

1.47mm2/adder [27]
34 memristors [25]

0.248um2/gate [28] 100nm2

51.6um2/adder 3400nm2

Delay-parameter
18 gates [24]

7.17ns/adder [27]
133 steps [25]

9ps/gate [29,30] 200ps/step [31]
162ps/adder 26600ps/adder

Energy-parameter Static power + Dynamic power

0.0173W/adder [27]

Dynamic power
Leakage power consumption Ileakage ∗ Vdd 0

6.15pA [28] * 0.86V
Dynamic power consumption 67mW/gate [29,32] 246fJ [28]

Memory design 8KB cache/cluster 64KB cache 6GB GPU global memory Register file Scalable memristor-based memory
Memory operating frequency 1GHz

No cache miss No cache miss

Hit rate 0.95 0.90 0.995
Load delay on hit 1 cycle 1 cycle 96 cycles [33,34]

Missed penalty 165 cycles [35] 96 cycles [33,34] 165 cycles [35]
Area 0.0092mm2/cache [36] 0.0737mm2/cache [36] 529mm2/memory [37]

Static power 0.0156W/cache [38] 0.125W/cache [38] 68W/memory [37]
Dynamic power 25% static power 25% static power 25% static power

Adders are designed specifically for their target architecture.
Multicore and GPU architecture use a ripple carry adder with
eight 4-bit Carry-Look-Ahead adders. The delay of an adder
is calculated based on the gate delay and the number of
required gates per adder in the longest path. Area is calculated
based on the required number of CMOS gates per adder. The
characteristics of a FPGA adder are extracted from ISE and
shown in Table I. However, as the FPGA implementation
is generated and mapped automatically by synthesis tools,
the measurements of a large scale implementation are not
scaled up using a single FPGA adder characteristics. Instead,
an FPGA implementation of 256 adders is used to estimate
larger implementations. CIM architecture uses a 32-bit
Carry-Ripple-Adder based on memristor [25]. The delay of
an adder is calculated by the number of steps to perform an
addition. Each step corresponds to one memristor delay, which
is the worst-case estimated as 200ps [31]. Area is calculated
based on the required number of memristors per adder [25].
The above memristor-based adder is the fastest memristor-
based adder available in literature. Meanwhile, other adder
designs (multicore and GPU) are optimized for delay and area.

In order to make a realistic estimation, we investigated two
cases: infinite resources and limited resources. In the first case,
we assume architectures’ resources is infinitely scalable. In
the second case, we assume a maximum amount of resources
based on existing devices that implement each architecture.
In particular, the most recent finfet chip of 22nm data is
used for multicore and GPU architecture while Virtex-7 chip
data is used for FPGA architecture. When required resources
cannot fit on a chip, we assumed multiple chips are used for
multicore, GPU and FPGA architecture, respectively. Hence,
extra area was counted for extra chips, which made delay
and energy increase accordingly. We ignored additional delay
and energy for transferring data among chips/GPUs/FPGAs.
This makes their delay/area estimation optimistic. Memristor
device currently has no implementation, hence we assumed
maximum size of a memristor chip was 0.7mm2, in which
30% extra area is assumed for inter-chip communication. The
chip area defined the limit of multicore architecture’s area.
Similar numbers for GPU and FPGA were chosen.

B. Performance Metrics

The estimation was performed and verified in Matlab. We
consider three metrics: total delay (D), total energy (E),
and total area (A) described by Equation 1. Each parameter
consists of two components: computation made by adders
and communication made by local data memory access. The
interconnection and controller are not considered in this es-
timation. Energy is calculated by delay and power. Both
static power and dynamic power are considered for energy
estimation. Static power is mainly caused by leakage current
while dynamic power is consumed by switching activities.
Computational activities related to working adders consume
dynamic power while idle adders and WDS consumes mostly
static power. CIM architecture is based on memristor; hence,
it is claimed to consume no static power [39]. From the
three above metrics, we derived three performance metrics:
computation efficiency (ηC), energy efficiency (ηE) and area
efficiency (ηA). Equations for these parameters are described
in Equation 2.

D = Dcomp +Dcomm

E = Ecomp + Emem (1)
A = Acomp +Acomm

ηC =
D ∗ E
#ops

ηE =
#ops
E

(2)

ηA =
#ops
A

IV. RESULTS

A. Infinite Resources

Fig. 3 shows the performance of the four architectures when
resources are assumed to scale up infinitely.
With respect to delay, Fig. 3 shows that CIM architecture
performs slowest among four architecture. As all four
architectures perform the same n-additions using binary tree
algorithm, the delay for computation is log(n) stages. The
differences among four architectures are memory access delay
and the amount of time to perform a single addition. As
architectures with adders organized in a binary tree network
(FPGA and CIM architecture) benefit from fewer data loads
and stores, they have lower delay in memory accessing. In
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Fig. 3: Multicore vs GPU vs FPGA vs CIM parallel adders without resource constraints (intrinsic parameters)
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Fig. 4: Multicore vs GPU vs FPGA vs CIM parallel adders without resource constraints (derived parameters)
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Fig. 5: Multicore vs GPU vs FPGA vs CIM parallel adders with resource constraints (intrinsic parameters)
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Fig. 6: Multicore vs GPU vs FPGA vs CIM parallel adders with resource constraints (derived parameters)

addition, the FPGA architecture has no cache and data is
loaded from registers, while multicore architecture has the
highest miss rate in comparison with other architectures with
cache. However, memristor has slower switching speed [28]
and large number of addition steps [25]. Hence, an addition
using CIM takes much more time than FPGA, multicore and
GPU architecture. CIM performs nearly four times slower
than FPGA architecture while GPU and multicore architecture
perform twice faster than CIM architecture.
For energy and area, CIM architecture consumes the least
while GPU and multicore architecture consume much more
in energy and area (as shown in Fig. 3). The high energy
and area consumption was caused mostly by the cache and
memory. As unlimited available resources are assumed,
area and energy scale up with the input size. For multicore
architecture, only a small cache (8kB) was included in each
cluster. However, as the number of inputs scales up, the
amount of caches in the whole architecture increases. For
GPU architecture, the WDS contain 6GB of global memory

and 64kB of cache in a default configuration. However, this
increased amount of memories does not scale up linearly as
in multicore architecture. The default amount of GPU WDS
corresponds to 1536 adders. When the number of inputs
requires more adders, a scale-up-ratio is applied on the default
WDS size. This practically means more GPU platforms have
to be used, hence more energy and area are consumed. For
FPGA architecture, the same principle applies as if resources
are required more than a single platform (default size is
taken from Virtex-7 platform) can support, multiple platforms
are used. CIM architecture has an advantage of low power
consumption, no static power, and small area. The advantage
reflects clearly in the results as CIM architecture achieve
low energy consumption and area cost. GPU architecture
consumes energy linearly with the input size while other
architectures’ energy scales up 2 to 4 order magnitude less
than GPU architecture. GPU and FPGA architecture also
consume more area in comparison with multicore and CIM a
factor of five and ten order of magnitude, respectively.
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Using performance metrics (ηC , ηE and ηA), we observed
that although CIM architecture has the highest delay metric
in comparison with other architectures (as shown in Fig. 4),
it performs the best with respect to the three performance
metrics. Note that for computation efficiency, the lower values
are better.

B. Limited Resources

Fig. 5 shows the performance of four architectures when
resources are assumed to be limited. The maximum resources
are dependent on the latest available chip size for each
architecture. For multicore architecture, a chip size of
700mm2 is used for 22nm technology. For GPU architecture,
a chip size of 300mm2 is used with 1536 adders. For FPGA
architecture, a chip size of 400mm2 is used corresponding to
Virtex-7 platform. For CIM architecture, no fabrication data
is available yet; hence we assume the area constraint for a
memristor chip around 0.7mm2 (1000 times smaller than the
multicore architecture as memristor has advantage of physical
size). With these resource constraints, area constantly stays at
a particular input size. If the required resources are larger than
the provided resources, the architecture has to reuse resources
several times to perform the same amount of additions.
Hence, the delay increases, which leads to increasing static
power consumption of local memories and dynamic power
consumption of adders.
Fig. 6 shows that CIM performs better than other architectures
in all performance metrics. There is a large gap among CIM
and other architectures. For computational performance, CIM
architecture performs three order magnitude better than FPGA
and seven order magnitude than multicore and GPU archi-
tecture. Indeed, CIM architecture achieves even lower delay
in the case of limited resources. This gain comes from the
advantage of smaller devices and lower energy consumption.
Even though, the delay of a single memristor and memristor-
based adder are high, an efficient architecture without the WDS
(e.g. caches) shows significant performance improvement.

V. CONCLUSION

In this paper, we have presented a CIM-based parallel adder
and estimated its performance. Despite the simplicity of the
case study, the results clearly show that CIM architecture
has a huge potential and orders of magnitude improvements.
This is mainly due to reducing/eliminating memory accesses,
using the non-volatile technology, and exploiting the high level
of parallelism. CIM architecture seems to be very promising
and could enable computation of current infeasible big data
applications, fuelling important societal changes.
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Abstract— Today’s computer architectures suffer from many
challenges, such as the near end of CMOS downscaling,
the memory/communication bottleneck, the power wall, and the
programming complexity. As a consequence, these architectures
become inefficient in solving big data problems or general
data intensive applications. Computation-in-memory (CIM) is
a novel architecture that tries to solve/alleviate the impact of
these challenges using the same device (i.e., the memristor)
to implement the processor and memory in the same physical
crossbar. In order to analyze its feasibility in depth, this paper
proposes two memristor implementations of a data intensive
arithmetic application (i.e., parallel addition). To the best of
our knowledge, this is the first paper that considers the cost of
the entire architecture including both crossbar and its CMOS
controller. The results show that CIM architecture in gen-
eral and the CIM parallel adder in particular have a high
scalability. CIM parallel adder achieves at least two orders
of magnitude improvement in energy and area in comparison
with a multicore-based parallel adder. Moreover, due to a wide
variety of memristor design methods (such as Boolean logic),
tradeoffs can be made between the area, delay, and energy
consumption.

Index Terms— Boolean logic, computation-in-memory (CIM),
implication logic, parallel adder.

I. INTRODUCTION

COMPUTER performance improvement has in the pre-
vious decades mostly been the result of CMOS down-

scaling [1]. In recent years, CMOS downscaling is reaching
its end [2], [3] due to many challenges such as leakage
power consumption [4], reliability [5], fabrication process and
turnaround time [6], test complexity [6], cost for mask and
design [4], and yield [7]. As a result, increasing the clock
frequency is no longer possible; performance gain has to
be achieved through parallelism using multicore/many cores
architectures. However, these architectures suffer from an inef-
ficient programmability and high energy consumption [1], [8]
due to a gap between memory and processing unit speed,
the so-called memory bottleneck [2], [9], [10]. This is the
core problem of the von Neumann store-program computer
concept [11] used in today’s computing systems, which leads
to performance and energy inefficiency, especially for data
intensive applications. Note that today supercomputers are
used to deal with very limited number of data intensive (or
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compute intensive) applications; they are expensive, power
hungry, and area inefficient [12]–[14]. Hence, there is a
need for a novel architecture that significantly reduces the
memory bottleneck, massively supports parallelism, and is
energy efficient.

To alleviate the memory bottleneck and provide practical
and efficient solutions for data intensive applications, many
architectural solutions have been proposed. They can be clas-
sified into three categories. First, processor-in-memory (PIM)
was introduced as an architecture that consists of a host
CPU, main memory, and a number of accelerators close to
the main memory to prevent intensive communication with
the CPU [15]–[18]. Many implementations of this architec-
ture have been proposed, e.g., EXECUBE [19], IRAM [20],
FlexRAM [21], DIVA [22], and Gilgamesh [23]. However,
the effectiveness of this architecture strongly depends on the
technology to fabricate the accelerators and main memories,
which is called merged-logic DRAM [24], [25]. Unfortunately,
this merged technology still suffers from a high cost and low
density [24], [25]. Second, near data architectures [26], [27]
were proposed as a PIM architecture but using the emerg-
ing nonvolatile memory technology, either using traditional
processor approach [28] or using novel neural computing
approach [29]. Note that all aforementioned efforts, both
at architectural and technology level, tried to close the gap
between processor and memory speed [18]. However, as all of
these architectures use stored-program/von Neumann concept,
the computation is still carried out in a separate physical
unit. Therefore, the memory bottleneck is still affecting the
computer performance and energy [2], [3], [9], [10], [30]–[32].
Third, as a result of this, resistive computing architectures
were introduced to alleviate the memory bottleneck using
memristor technology. Although the memristor technology is
not mature yet, several publications focused on the design
of circuits and architectures such as programmable logic-in-
memory architecture [33], resistive GP-SIMD processing-in-
memory architecture [34], and computation-in-memory (CIM)
computing paradigm [35]. However, these works mostly focus
on the memristor part. They ignore the controlling and periph-
eral circuit overheads. Du Nguyen et al. [36] have analyzed
the performance of a parallel memristor adder based on the
crossbar (i.e., an adder that takes the sum of multiple inputs
and produces a single output) using the CIM computing para-
digm. They have shown for different metrics that such an adder
outperforms state-of-the-art multicore, GPUs, and memristor
implementations with two orders of magnitude. All the adder
implementations were based on high-level assumptions. In this
paper, we show the feasibility of implementing two different

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. CIM parallel adder. (a) Binary tree addition algorithm with eight
inputs. (b) CIM architecture.

parallel adders in the memristor crossbar, i.e., one based on
implication logic and one on Boolean logic.

To the best of our knowledge, this is the first publication
that considers the cost of the entire system (i.e., the crossbar
and CMOS controller). The delay, area and energy costs of
the CMOS controller, peripheral circuits (required to read and
write to the crossbar), and the crossbar itself are analyzed.
In addition, we evaluate the scalability of the parallel adder
for both implementations.

The rest of this paper is structured as follows. Section II
briefly describes the parallel addition algorithm, CIM archi-
tecture, and how the parallel adder algorithm is mapped
on the crossbar. Section III presents the state-of-the-art of
memristor adders and selects the two best memristor adders.
These two adders are used in Section IV to build the
memristor-based parallel adder. In this section, we discuss all
implementation aspects (i.e., memristor crossbar, interconnect
network, peripheral, and CMOS controller). Section V first
provides a performance comparison between the two mem-
ristor implementations and subsequently compares them with
a multicore-based implementation; thereafter, it discusses the
memristor implementation’s advantages and disadvantages.
Finally, Section VII concludes this paper.

II. COMPUTATION-IN-MEMORY PARALLEL ADDER

In this section, we describe the parallel addition algorithm
and the CIM computing paradigm. Thereafter, we map the
algorithm on CIM. Finally, we conclude with the potentials of
the CIM parallel adder.

A. Parallel Addition Algorithm

Fig. 1(a) shows the parallel addition that is based on a
reduction tree that computes the sum of multiple numbers.
All the inputs n1–nN are added in the first stage in pairs,
where N is the number of inputs. Subsequently, the obtained
partial results are added in successive stages until the final
result (sum) is obtained. The parallel addition algorithm is
based on the binary reduction tree and has a log2(N) lower
bound time complexity. This complexity is realized when
enough available resources are available (e.g., adders) to
perform all additions in each stage concurrently.

B. Computation-In-Memory Architecture

The CIM architecture consists of three components [also
see Fig. 1(b)].

1) A memristor crossbar, which consists of interweaved
computation and storage units mapped on the grid
where memristors are placed at horizontal and vertical
nanowire junctions.

2) A control and communication unit, which applies con-
trol signals to the memristor crossbar; memristors are
passive devices, and as such, they need to be controlled
with conventional CMOS logic. Furthermore, this block
enables communication within the memristor crossbar
using nanowires and/or metal wires.

3) A peripheral circuit is required to interface between
the controller and memristor crossbar. It consists of
voltage drivers, sense amplifiers, and so on. Note that
the peripheral circuit is not depicted in Fig. 1(b).

CIM architecture has the following major advantages:
1) Memory bottleneck reduction: The computation occurs

directly inside the nonvolatile memory where data are
stored; hence, the data movement between processors
and memories is minimized. This alleviates or eliminates
the memory bottleneck depending on applications.

2) Flexibility: The placement of computation and storage
units is flexible and optimized based on application-
specific requirements to enable local communication;
this leads to low latency.

3) Massive parallelism: As computation and storage units
are tightly coupled in the same physical memristor cross-
bar, the memory bottleneck is reduced. Hence, a huge
amount of operations can be performed in parallel. Due
to the memristor’s hysteresis curve, they can be used
both for logic and memory [35], [37].

4) Low area: Due to its small feature size of 4F2, the mem-
ristor crossbar requires a low area.

5) Low energy: As memristors have zero leakage, only
dynamic energy has to be considered [38].

C. Parallel Adder

Du Nguyen et al. [36] mapped the parallel addition algo-
rithm on the memristor crossbar referred to as CIM paral-
lel adder. Due to a flexible placement, the communication
between memory and logic units can be optimized by exploit-
ing application-specific computational and storage patterns.
For example, an h-tree layout is considered in the CIM matrix
multiplier presented in [39]. Fig. 2 shows the organization
of the parallel adder; this layout is selected due to its area
efficiency.

The parallel addition algorithm based on the binary reduc-
tion tree [Fig. 1(a)] is split into two parts. The lower part
of the tree with corresponding inputs ni (1 ≤ i ≤ N/2) is
used to add the first half of the inputs; their correspond-
ing adders are mapped from left to right on the memris-
tor crossbar [see Fig. 2]. To optimize the area and keep
a regular structure, the upper part of the tree is mapped
from right to left. The results of these two parts are finally
added together in the middle of the memristor crossbar
(see sum in Fig. 2). This mapping minimizes the communica-
tion between the adders and storage units, simplifies the inter-
connect network, and reduces the required area. Section IV
provides more implementation details.
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Fig. 2. CIM parallel adder with N = 16 inputs.

Previous results showed that the above CIM parallel adder
significantly outperforms equivalent multicore, GPU, and
FPGA implementations by at least two orders of magni-
tude in energy–delay product, energy efficiency, and area
efficiency [36]. The improvement is the result of a novel
architecture based on nonvolatile technology that reduces
memory accesses and exploits application-specific parallelism
and communication patterns.

III. MEMRISTOR ADDER: THE BASIC BLOCK

In this section, we present one of the main components of
the parallel adder, i.e., the adder. Several memristor crossbar
adders have been proposed in the literature. Table I summa-
rizes their characteristics (i.e., logic and cell type; the cell
is the repetitive structure found between the cross section
of horizontal and vertical nanowires) and performance (i.e.,
delay and area). First, we discuss the working principle of the
logic and cell types. Thereafter, we present the state-of-the-art
adders. Finally, we select and discuss the two fastest adders
in more detail for the parallel CIM adder implementation.

A. Working Principle

The adders of Table I are based on either implica-
tion [40] or Boolean logic. In implication logic, the logic
operation “pIMPq” (“p implies q” or “if p, then q”) and
FALSE operation (always yields the logic value 0) form
the computational basis of the complete logic space [41].
In Boolean logic, Boolean gates (e.g., NAND, NOR) form the
computational basis of the complete logic space [37].

As the logic values are represented by resistances, resistive
switching is required to perform logic operations. In Table I,
two types of crossbar cells can be used: the bipolar resis-
tive switch (BRS) cell [42] and the complementary resistive
switch (CRS) cell [43]. The BRS cell consists of one mem-
ristor in which its state is represented by the resistance; the
high and low resistances correspond to logic value 0 and 1,
respectively. The CRS cell is composed of two stacked
memristors (referred to as upper and lower memristors) with
an equivalent resistance that is always equal to the high
resistance of a BRS cell; the 0 (1) logic state is represented
by a high (low) resistance state in the upper memristor and
a low (high) resistance in the lower memristor. This avoids
sneak path currents in the crossbar.

The major difference between BRS and CRS cells leads
to different requirements in the interconnect network, con-
trollers, and peripheral circuit, and therefore impact the adder
performance. In case BRS cells are used, the communication

TABLE I

STATE-OF-THE-ART MEMRISTOR ADDERS

between two cells may be carried out by applying appropriate
voltages to nano-wires, the so-called copy operation [44].
The CMOS controller is responsible for the communica-
tion and also makes sure that the logic (whether implica-
tion or Boolean) is properly being executed. The peripheral
circuit includes voltage drivers and sense amplifiers to read
out the logic states out. For CRS cells, the copy operation
cannot be used to transfer the logic state between two CRS
memristors, as the equivalent resistance value is the same for
logic 0 and 1. Instead, the controller reads first a value from
a source cell, and subsequently writes this into the destination
cell. The read-out and write-in operations are performed by
applying appropriate voltages to the nanowires. The read-out
operation generates a current spike only for read 0 that can
be detected by a current sense amplifier. Note that this adder
needs a more complex sense amplifier as it must detect a
current spike [45]. The crossbar based on CRS cells also
requires a controller to control read operations and perform
the logic operations. The controller consists of more states as
it first has to perform read-out operations before calculations
can be made. Next, we describe the adder’s features.

B. State-of-the Art Memristor Adders

Lehtonen’s adder [40] is based on implication logic using
BRS cells. This is the first published memristor adder based
on implication logic; hence, it has a lower performance than
the other adders. In addition, the adder may suffer from sneak
path currents and destructive operations (i.e., operations that
destroy the values stored in the memristors). As only a 1-bit
adder was proposed in [40], an m-bit ripple-carry adder can
be formed using m 1-bit adders.

Kvatinsky’s adder [46] is based on implication logic
using BRS cells. In [46], two multibit adders are proposed:
a sequential and a fast adder. Note that Table I only mentions
the fast adder. Both adders suffer from destructive operations
as the implication logic affects the data stored in the cells. The
fast adder also suffers from sneak path currents. In comparison
with Lehtonen’s adder, Kvatinsky’s adder is optimized for
multibit additions; hence, it is faster and smaller.

Siemon’s adder [45] is based on implication logic using
CRS cells. In [45], two multibit adder designs were pro-
posed: precalculation (PC) and toggle-cell (TC) adder; Table I
mentions only the TC adder. The TC adder is a parallelized
version of the PC adder. Hence, the PC adder requires fewer
memristors, but needs more execution steps than the TC
adder. Both adders require fewer steps and memristors than
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Fig. 3. Multibit memristor adders. (a) CRS adder. (b) FBLC adder.

Kvatinsky’s multibit adder. The TC adder does theoretically
not suffer from sneak paths as it employs CRS cells; however,
due to the manufacturing process, resistance variations could
lead to different cell resistances [48]. The drawback of this
adder is that it suffers from destructive read-out operations.
In addition, communication between memristors is devious
as the controller first needs to read the cells’ resistance state
and subsequently, determine the next set of voltages. As CRS
cells are employed, this adder needs relatively more complex
controllers and sense amplifiers.

Snider’s adder [37] is based on Boolean logic using BRS
cells. The author proposed only a half adder that can be
intuitively extended to a 1-bit adder. Subsequently, an m-bit
ripple-carry adder can be formed by cascading multiple 1-bit
adders. This is the first Boolean memristor adder; hence, its
execution steps and memristors is not optimized. Furthermore,
the adder may also suffer from sneak path currents.

Xie’s adder [47] is based on Boolean logic using BRS cells.
In [47], a 1-bit, a 2-bit, and a 4-bit adder were proposed using
fast Boolean logic circuit (FBLC). These adders were based
on lookup tables. To build an m-bit adder, a ripple-carry adder
can be formed using the smaller adders. In Table I, the m-bit
adder is formed from m/2 2-bit adders. The 2-bit adder has
been selected as the basic block due to its delay and area
efficiency. This adder is the fastest among all listed adders.
However, the adder requires a large number of memristors
and additionally may suffer from sneak path currents.

C. Selected Adders

In this section, we select the two fastest multibit memristor
adders (i.e., Siemon’s and Xie’s adder) as basic blocks for
the CIM parallel adder. We refer to these basic blocks as
CRS adder and FBLC adder, respectively. The FBLC adder is
slightly faster, but requires a much larger area. The crossbar
implementations of both adder are shown in Fig. 3 where the
cells are represented by arrows; both adders are described next.

CRS adder is m-bit wide and needs (m+2) memristors [as
shown in Fig. 3(a)]. The inputs are represented by voltages
and are applied by the controller. Note that the inputs can

TABLE II

CRS ADDER CONTROL VOLTAGES

be stored within the crossbar as well; this requires, however,
extra memristors and an additional read-out operation before
the normal operation can start. Depending on the required
function, the input voltages are applied to the crossbar in a
particular sequence, and finally, the outputs are represented
by the resistance of the output memristors.

The crossbar is controlled by a sequence of operations
including: write-in (WI), read-out (RO), write-back (WB),
and compute (CP). Before the operations can be applied,
the crossbar is once entirely reset to a high resistance. The
WI operation writes a logic value into a memristor. The RO
operation reads a logic value from a cell; the logic value
is determined by the sense amplifier. The RO operation is
destructive and changes the value of the memristor to logic
value 1. The task of the WB operation is to recover the
destroyed value. Finally, the CP instruction uses implication
logic [45], [49] and existing memristor logic values to update
the value of the current computation step in the crossbar.

The number of execution steps depends on the adder
data-width and takes place as shown in Fig. 4(b) and (c).
In Fig. 4(b), c0 represents the carry-in, ci the carry at bit
i , and si the calculated sum at bit i . As the sum is calculated
in two steps, the intermediate value of sum is denoted by
s′

i [45]. The operations are executed by applying appropriate
voltages on the horizontal and vertical nanowires. Table II
shows these voltages (i.e., Vhigh, Vlow) for each state. In case
the control voltage is dependent on intermediate results,
the voltage Vhigh/low is used. We apply the half-select voltage
to the nonactive nanowires, to reduce and prevent sneak path
currents. The exact control values are described in [49].

FBLC adder is composed of m/2 2-bit adders. Fig. 3(b)
depicts a single m-bit adder; the 2-bit adder is obtained for
m = 2. As the inputs/outputs are stored as resistances, dedi-
cated areas need to be reserved for them; they are represented
by the rectangles in the figure. Depending on the required
function (e.g., copy or compute), the controller applies a
sequence of control voltages to the crossbar nanowires.

The FBLC adder is controlled by a sequence of operations
including: configure all minterms, evaluate all minterms, eval-
uate results, invert results, and send outputs (SO) [as shown
in Fig. 4(c)] . We slightly optimize the state machine published
in [50] by combining the receive inputs and SO states to a
single SO state. Also for this adder, the memristors in the
crossbar must be first initialized to a high resistance state
during the start state. Note that the m-bit adder consists of
m/2 2-bit adders. Therefore, the above operations are repeated
m/2 times (denoted by i ). During each operation, control
voltages are applied; they are write voltage (Vw), half-select
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Fig. 4. CIM parallel adder. (a) Implementation. (b) CRS adder state machine.
(c) FBLC adder state machine.

voltage (Vhw), and ground (GND). To communicate between
two BRS cells, the controller performs a copy operation by
applying appropriate voltages to the rows and columns of the
crossbar [44]. The exact control voltage values are described
in [47].

IV. CIM PARALLEL ADDER IMPLEMENTATION

In this section, we describe the CIM parallel adder imple-
mentations based on CRS and FBLC adders. Fig. 4(a) shows
its four main components: the memristor crossbar (the pink
part), interconnect network (the red part), controller (the blue
part), and peripheral circuit (the green part). These components
are explained further in the following sections.

A. Memristor Crossbars

The first step to implement the memristor crossbar consists
in replacing the adders in Fig. 2 with the CRS or FBLC mem-
ristor adders. However, the memristors in the crossbar might
interfere with each other as all memristors in a row or column
receive the same control voltage at each step. Therefore,
we need to satisfy the following design requirements to
guarantee functional correctness.

1) Per crossbar, only one row or column can be accessed
at a time.

2) It is not allowed to control two memristors with different
resistances that are located in the same row or column
with the same voltage, as sneak path currents might
impact the correctness.

Taking these restrictions into consideration, we propose
a strategy to do the adder replacement. This strategy must
ensure parallelism in each addition stage and consists of two
steps. The first step places adders that execute in parallel
in different subcrossbars. This resolves two issues: 1) the
adders may operate independently without having conflicts
in the control voltages and 2) it avoids sneak path currents.
The second step aligns the adders within a crossbar. This
optimizes both the controller and crossbar area. Note that the
adders of the later stages require more bits than the adders of
the first stage to prevent overflows. However, to make a perfect
alignment, only m-bit wide adders are considered, regardless
at which stage the adder is used. As a result of the replacement

strategy, the adders in the same column of Fig. 2 will be
placed in different subcrossbars. Each subcrossbar has its own
controller and peripheral circuit. The above applies to both
implementations. Next, more details of each implementation
are given.

1) CRS Implementation: The pink area of Fig. 5(a) shows
the crossbar of the CRS parallel adder implementation. As the
read operation is destructive, the inputs (e.g., n1–n16 in Fig. 2)
can be either stored in the crossbar using additional mem-
ristors or in the CMOS layer using registers. For simplicity,
we assume that the inputs are stored in registers in the CMOS
layer; hence, the inputs are not shown in Fig. 5(a). The cross-
bar consists only of CRS adders organized in subcrossbars;
each subcrossbar corresponds to a row in Fig. 2.

Only one adder can be active at a time in each subcrossbar.
However, to optimize for area, we have placed in Fig. 5(a)
the adders of the first addition stage (which includes the first
and the last column of Fig. 2) in the first and last rows
of each subcrossbar; therefore, the first stage requires two
computational stages due to sequential execution. However,
as a result, a much better area efficiency is obtained.

In total, N/4 subcrossbars are required each with four
adders. One subcrossbar will have only three adders
and thus an empty spot. Therefore, using this place-
ment, a total area consisting of N/4 (subcrossbars) · 4
(adders per subcrossbars) = N adders is required. Note that
the binary implementation of Fig. 2 requires N − 1 adders,
and therefore a very efficient implementation is obtained.

2) FBLC Implementation: The pink area of Fig. 5(b) shows
the crossbar of the FBLC parallel adder implementation.
To ensure parallelism, the same adder placement topology
has been used as for the CRS implementation. All FBLC
adders are represented by multiple rectangles; each presents
a 2-bit FBLC adder with inputs represented by the long
dark bars and outputs by the dark squares. The b inside
each 2-bit adder represents the bit index. For example,
b 3–4 represents the second 2-bit adder that has bit indexes 3
and 4 of the input data and the carry out of the adder b1 − 2
as inputs. As the control voltages for the FBLC adder are
independent on the data, the controller can be shared among
the subcrossbars. Also in this implementation, adders of the
first and last column (see Fig. 2) are placed in the same
crossbar. Theoretically, as the control voltages are independent
of the data, both adders of the first and last column can execute
simultaneously even if they are located in the same crossbar.
However, they facilitate sneak paths currents, and therefore,
we assume sequential execution.

B. Interconnect Network and Communication Scheme

The interconnect network is strictly speaking part of the
peripheral circuit and is discussed here separately due to
its importance. It is used to enable the data communication
between two memristor adders efficiently. Note that the inter-
connect network is not shown in Fig. 5(a) and (b) in order
to keep the figures simple. The communication in the CRS
implementation is realized by the read and write control
operations; hence, it requires no extra interconnect network.
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Fig. 5. Detailed implementations. (a) CRS parallel adder. (b) FBLC parallel adder. (c) FBLC interconnect network.

The FBLC implementation communicates through memristor
copy operations. However, as a single copy operation can only
be performed horizontally or vertically in the crossbar [44],
we propose to add an interconnect network in the CMOS
layer. It reduces the copying time between memristors that
are not located on the same row or column memristors that
are located in different subcrossbars; the interconnect network
uses transistor switches to connect/disconnect two nanowires
and thus is able to create a direct path between any two
memristors in the crossbar. Further details are explained next.

1) CRS Implementation: In the CRS parallel adder imple-
mentation, both the logic 0 and logic 1 are represented by
cells with an equivalent high resistance [50]; hence, copying
the memristor resistance cannot be used for communication.
To move data between two cells, the controller first has to
read the value from the source cell (RO operation), and then
forward this value to the destination cell (WI operation). As the
read-out operation destroys the value stored in the source cell
[50], the value is also rewritten into the source cell (write-back
operation) in parallel with the write-in. Therefore, the com-
munication needs two steps. Depending on the bandwidth,
multiple communications can be performed in parallel. In this
paper, we assume no limitations on the bandwidth. In case

the communication takes place between subcrossbars (each
with its own controller), an additional interconnect network
infrastructure is added between the controllers. This part of
the interconnect network will not be discussed in this paper
due to space limitations.

2) FBLC Implementation: The FBLC parallel adder imple-
mentation uses BRS cells in which logic 0 and 1 are repre-
sented as high and low resistances, respectively. Hence, we can
directly transfer a logic value between two cells using a copy
operation. To implement the communication efficiently, we use
a transistor switch [51] to create a direct path between two
memristors that are not in the same row/column. Thereafter,
a copy operation can be used to transfer a data bit in a single
time step. An example of the solution is shown in Fig. 5(c).
Communication between two bits within an adder (carry
propagation) is represented by the blue lines (e.g., the carry
result of the first 2-bit adder is copied to the input of the second
2-bit adder that is represented by the orange blocks). The
communication between two adders located in the same and
different subcrossbars is represented by red and green lines,
respectively. Each communication wire can be implemented by
a pass gate or pass transistor without creating conflicts with
other wires as shown in the top part of Fig. 5(c). For example,
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the transistor controlled by ctrlcomm is used to create a direct
path between any two nanowires. On the left and right sides
of this transistor reside the voltage drivers of the nanowires
that are connected by the switch. The voltage drivers are part
of the peripheral circuit, which is described next.

C. Peripheral Circuit

The peripheral circuits [the green parts in Fig. 5(a) and (b)]
include the interconnect network, voltage drivers, multiplexers,
and sense amplifiers and are used to gain access to the cross-
bar. As the peripheral circuits are placed in the CMOS layer,
it is crucial to balance the area of the peripheral circuits and the
memristor crossbar that is stacked on top of it. In Section VI,
we will present the area analysis used for both components.
The voltage drivers form the interface between the controllers
and memristor crossbar; each memristor row/column requires
one. The size of a voltage driver, which impacts its drive
strength, depends on the memristor load. An example of a
possible implementation of a voltage driver is shown in the
top part of Fig. 5(c) for the FBLC parallel adder. It consists
of three voltage sources (Vw, Vgnd, and Vhw) and three pass
transistors; each transistor is used to select the desired control
voltage (e.g., ctrl_Vw is used to activate Vw). The remaining
components depend on implementation.

1) CRS Implementation: In the CRS parallel adder imple-
mentation, a single sense-amplifier is connected to each sub-
crossbar [see Fig. 5(a)]. In this paper, we use the sense
amplifier published in [52]. Only a single sense amplifier is
needed, as each adder operate sequentially bit by bit. This
requires, however, multiplexers to determine which bit of the
word is read out. The multiplexers can be implemented with
pass transistors; each vertical nanowire will be connected
to such a pass transistor and the controller decides which
nanowire (or bit) will be connected to the sense amplifier.

2) FBLC Implementation: As shown in Fig. 5(b), the FBLC
parallel adder implementation does not require sense ampli-
fiers as the resistively stored data do not have to be transferred
from the memristor crossbar to the controller. A sense ampli-
fier may be required to read the final sum from the crossbar.
However, the area of this sense amplifier is negligible. As the
FBLC implementation requires more rows and columns than
the CRS implementation, it needs more voltage drivers and
voltage drivers with larger driving strength.

D. Controllers

The controller controls the memristor crossbar through
the interconnect network and peripheral circuits [blue part
in Fig. 5(a) and (b)]. The controller includes three levels:
macro, micro, and nano. Each level consists of a state machine.
The macrocontroller determines which addition stage (of the
log2(n) stages) is being executed and therefore which adders
are active over time; this controller is the same for both adder
implementations. The microcontroller executes the operations
required to complete a single bit addition as shown in Fig. 4.
The microinstructions are subsequently translated into nanoin-
structions; the nanoinstructions consist of the control voltages.

1) CRS Implementation: The microcontroller of the CRS
parallel adder implementation consists of a state machine that
requires five states to complete the addition of the first bit
and four states for each successive bit [as shown in Fig. 4(a)].
As the controller depends on the data input and as it embeds
communication, a separate controller is required for each
subcrossbar to ensure their concurrent operations. In addition,
buffers are required to store data during communication (after
the read-out operations). Hence, its controller is more complex
in comparison with the controller of FBLC implementation.

2) FBLC Implementation: The microcontroller of FBLC
parallel adder implementation is a state machine that consists
of five states for each 2-bit addition [as shown in Fig. 4(b)].
As the controller provides the same control voltages for all the
active adders, one controller is shared among all subcrossbars;
this significantly reduces the controller’s energy and area.

V. EVALUATION MODELS AND METRICS

This section first presents the evaluation models of the two
parallel adder implementations. Thereafter, it shows the model
of the multicore-based parallel adder implementation. Finally,
it discusses the evaluation metrics.

A. Memristor Implementation Models

For evaluation, we build separate models for each imple-
mentation. The models consist of the four main compo-
nents: the memristor crossbar, interconnect network, peripheral
circuit (including voltage drivers, sense amplifiers, and multi-
plexers), and controller. The models are based on the analysis
mentioned in Section IV with the following assumptions.

1) There are unlimited resources available, i.e., no resource
sharing is applied. Note that the number of required
adders increases with the problem size.

2) There are no costs attributed to the initialization of
the inputs as this cost is negligible compared with the
total computational time. The inputs are assumed to be
stored in registers residing in the CMOS layer for the
CRS parallel adder implementation and in the memristor
crossbar for FBLC implementation.

3) The cost (i.e., energy, delay, and area) to move data
between the four main components is ignored. However,
the communication within the main components is con-
sidered. This includes, for example, the communication
between adders located in different subcrossbars.

The parameters of both models are explained next. Table III
contains the delay, area, and energy cost of the basic units
of the main components. The top part of Table III shows
the general device technology parameters that are used for
the memristor crossbar and CMOS layer, while the bottom
part of Table III shows the cost of the basic units such as
the controller, voltage drivers, and so on. The crossbar is
assumed to be implemented with a memristor feature size
equal to Fm = 5 nm [53]. For this feature size, the memristor
write delay equals Dm = 200 ps, the energy consumption per
write operation Em = 1 f J , and the area Am = 4 · F2

m =
100 nm2 [53]. The CMOS part is based on Fc = 40-nm
technology. The metrics are described next.
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TABLE III

BASIC MODEL PARAMETERS

The three basic units of the peripheral circuit (i.e.,
the voltage driver, sense amplifier, and multiplexers) are dis-
cussed first. The voltage driver consists of the control voltage
sources and three pass transistors [see Fig. 5(c)]. The task of
the voltage driver is to gain access to the crossbar by either
performing read or write operations. During such operations,
only one of the three pass transistors is active at a time.
Therefore, the delay and energy consumption of the voltage
driver are equal to those of a single pass transistor, while the
area equals the area of three pass transistors. In this paper,
we do not consider the exact size of the pass transistors,
as detailed analysis is required to estimate this cost accurately.
Nevertheless, our estimation (with a transistor width/length
ratio of two) is sufficient to depict the trends. The delay and the
energy consumption are obtained from HSPICE simulations
using the PTM library [58]. The area of each pass transistor
is assumed to be 2 · F2

c .
The current sense amplifier is used only in the CRS parallel

adder, and its delay and energy have been taken from [52] and
scaled down to 40-nm technology node. The area is estimated
by the total number of transistors.

The multiplexers can be realized by parallel pass transistors,
similarly as they have been applied for column multiplexing
in memories. The delay and energy consumption of the
multiplexers equals the delay and energy consumption of a
single pass transistor, as only one pass transistor is active
at a time. The number of multiplexers that are required per
subcrossbar equals m + 2, the number of vertical nanowires.
Therefore, the total area of the multiplexers in a single crossbar
equals (m + 2) times the area of a single pass transistor (Apt).

The next component in Table III is the controller. The
controllers for both implementations are written in VHDL
and synthesized with Cadence RC compiler using the TSMC

40-nm library [59]. The synthesis results (delay, energy (power
x delay), and area) have been reported for the parallel adder
with N = 8 number of inputs and data-width m = 32.

The next component in Table III is the interconnect network.
The interconnect network has active parts both in the crossbar
and CMOS layer; therefore, the delay, energy, and area are
reported for both parts separately. The communication in the
CRS parallel adder implementation is handled by the CMOS
controller. Therefore, there are no costs attributed separately
to the CMOS part. For the crossbar, costs are attributed only
to the delay and energy as there is no dedicated interconnect
network within the crossbar. A CRS adder requires two cycles
to complete a single write operation (one for a read operation
and one for the write-in/-back operations), where each cycle
lasts Dm . We assume that the energy consumption equals
2 · Em . This is based on the fact that at least one and possibly
three memristors undergo a value change during a single bit
transfer; the destructive read operation might alter the value
of a single memristor, the write-in operation will update the
value of the target memristor, and the write-back will restore
the value of the source memristor if it got corrupted during
the read-out. As the read-out and write-back operations are
value dependent, we assume that two memristors will be
written on average. For the FBLC implementation, the CMOS
part of the interconnect network consists of pass transistors
that connect/disconnect different nanowires. The delay of the
pass transistor is masked by the delay of the voltage driver,
as the controller activates the voltage driver and pass transistor
simultaneously. The area and the energy of the CMOS part
in the interconnect network consist of the cost attributed to
a single pass transistor (Ept and Apt). With respect to the
crossbar, communication (i.e., a single copy operation) takes
one memristor write delay Dm . As only one target memristor
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TABLE IV

SCALING MODEL PARAMETERS

will be written, the energy equals Em . Note that there is no
cost attributed to the area in the crossbar.

The final entry of Table III mentions the delay, energy, and
area of a single crossbar adder with m = 32. The CRS adders
requires 133 steps [45] to complete a single addition, while
the FBLC adder requires 81 steps [47]. Note that each step
takes a memristor write operation Dm . The energy required to
complete a single addition is calculated by the total number
of average switching memristors per addition. For the CRS
adder, we created a MATLAB script to determine the average
number of changing memristors for 32-bit additions based
on 1000 random input numbers. For FBLC adder, we take
these data from [47]. The area of the crossbar area equals
(m + 2) · Am = 34 · 100 = 3400 nm2 for the CRS implemen-
tation, while 27 (rows) · 16 (columns) · Am = 43 200 nm2

per 2-bit FBLC adder [47]. The area for an m-bit FBLC
adder is subsequently obtained by multiplying this number
with m/2.

Table IV shows how the cost of each basic unit scales with
the problem size N (i.e., the number of inputs). By combining
the information presented in Tables III and IV, the total cost
can be derived for the entire implementation. The top part
of Table IV shows the general architecture parameters of the
parallel adder implementations. The architecture is designed
to complete the parallel addition in a total number execution
stages (Ns ) equal to log2N + 1. Note that the first stage
consumes two execution steps. The implementation consists
of N/4 subcrossbars in which each subcrossbar contains four
adders. Hence, the size of each subcrossbar is obtained by
multiplying the number of rows of a single adder by four.
This results in a size of 4 by (m + 2) for CRS and 108

by 8 m for FBLC. The numbers of rows and columns of
each subcrossbar are denoted by Nr and Nc , respectively. The
bottom part of Table IV shows the detailed cost per basic
unit. Each component contributes to the total delay, energy,
and area. The total delay of each unit is calculated based
on its number of execution steps (see Table III) and their
occurrence frequency (see Table IV). A similar methodology
can be applied for the area and energy.

First, the basic units of the peripheral circuit are discussed.
Voltage drivers are required for each row and column of
the crossbar. The total delay of the voltage driver equals
the delay per voltage driver Dvd multiplied by the total
number of execution steps Ns · Nas. The total energy is the
product of the total number of execution steps Ns · Nas,
the number of sub-crossbars Nx , the number of required
voltage drivers per subcrossbar equal to Nr + Nc , and the
energy consumption for each voltage driver Evd. The total
area equals the product of the total number of crossbars Nx ,
the number of rows and columns per crossbar Nr +Nc , and the
area per voltage driver. The sense amplifiers and multiplexers
are required only for the CRS implementation. One sense
amplifier is required per subcrossbar, and it is activated only
during (RO) operations; each addition requires m+1 RO
operations. The total delay of the sense amplifiers equals the
product of the number of stages Ns , the number of times a
sense amplifier is active per addition equal to m + 1, and
the delay to complete one sense operation Dsa. Similarly,
the total energy consumption equals the product of the number
of additions equal to N − 1, the number of times the sense
amplifier is active per addition equal to m + 1, and the energy
per single sense operation Esa. The total required number
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of sense amplifiers equals Nx ; therefore, the area can be
obtained by multiplying this number with the area per sense
amplifier Asa. The multiplexers are activated at the same time
as the sense amplifier, as they determine which bit is read
by the sense amplifier. Hence, the delay, energy, and area are
calculated in a similar way as the sense amplifier. The only
difference is the cost of each basic unit.

Next, the controller is discussed. The total controller delay
depends on the number of execution steps Ns · Nas and the
delay Dcont of the controller. The energy and area of the
controller are taken from the RTL synthesis reports.

The interconnect network is discussed next. Each adder,
except for the last one, transfers its m-bit result to the next
adder leading to a total of N−2 word transfers. We assume that
the m bits are transferred simultaneously. Hence, it requires
one delay step that takes Dicx (for the crossbar) + Dicc (for
the CMOS layer) time to transfer a single m-bit number. In an
addition stage, each data transfer is assumed to be executed
sequentially as conflicts might rise at the destination adders as
two inputs are required for each addition. Hence, the number
of communication steps equals N − 2. With respect to the
CMOS part, the delay, energy, and area of the interconnect
network of the CRS implementation are embedded in the con-
troller. For the FBLC implementation, the delay is masked by
the voltage driver delay, and hence, the delay cost is zero. The
energy equals the product of the number of communication
steps N − 2, the number of active pass transistors (one per
bit), and the energy of each connection Eicc. The area equals
the product of the number of communication steps N − 2,
the number of connections per word (one per bit), and the
area required per connection Aicc. Next, we describe the cost
of the crossbar part. For the CRS implementation, the delay
equals the product of the number of word transfers equal
to N − 2 and the delay of each word transfer in crossbar
Dicx. For the FBLC implementation, the communication delay
is handled by the SO state of microcontroller. Therefore,
the cost is embedded in the delay of the adder Dadd. For both
implementations, the energy equals the product of the number
of communications steps N − 2, the number of transferred
bits (m), and the energy cost per bit transfer Eicx; note that
Eicx is implementation dependent. For both implementations,
no extra memristors are required for interconnect network;
hence, the area equals zero.

Finally, the delay, energy, and area of the crossbar are
obtained in the same way for both implementations. The delay
is derived from the number of execution steps Ns · Nas and
the delay per addition Dadd. The energy is calculated from
the number of additions N − 1 and the energy consumption
per addition Eadd. Finally, the area is based on the number of
subcrossbars equal to N/4, the number of adders per crossbar
equal to 4, and the area Aadd per adder.

B. Multicore Implementation Model

To compare the two memristor implementations with
a CMOS implementation, we build a traditional multicore
model with the same functionality. This model consists of
clusters; each cluster includes 32 adders, 512-kB cache, and
1-GB DRAM memory; each is based on 32-nm technology.

The assumptions used for memristor implementation model
are also applied for multicore implementation model.

1) The number of required cluster increases with the prob-
lem size similarly as in [36].

2) We assume at startup a warm cache with an ideal cache
coherency policy.

3) We consider only the cost to move data between the
main components, i.e., among clusters, among adders,
between adders and caches, and between caches and
DRAM memory.

The parameters of each component are explained next. The
adders are ripple-carry adders with the same delay, energy, and
area as specified in [36] using 32-nm technology. The delay,
energy, and area of the cache and DRAM memory were model
using CACTI 5.3 [60] using 32-nm technology.

C. Metrics

To evaluate the models of the previous section, six metrics
are used for each component: total delay (D), total energy (E),
total area (A), energy delay efficiency (ηED), energy effi-
ciency (ηE), and area efficiency (ηA). The latter three metrics
are derived from the former three and number of operations
(#ops). Their equations are shown in the following:

ηED = #ops

D · E
; ηE = #ops

E
ηA = #ops

A
. (1)

Although the energy and area of the components and
basic units can be summed up to obtain the total energy
consumption and area, this is not applicable for the total
delay. Instead, the total delay is calculated from the cycle
time (which depends on the critical path) and the total number
of cycles (execution steps Ns · Nas). For CRS implementation,
the critical path includes the delay of the controller, voltage
driver, memristor, sense amplifier, and multiplexer. For FBLC
implementation, the critical path contains fewer basic units
and includes only the delay of controller, voltage driver,
and memristor. For multicore implementation, the total delay,
energy, and area sum up that of the components.

VI. RESULTS AND DISCUSSION

In this section, we first analyze the implementation feasi-
bility of the CIM parallel adder and compare the results of
the metrics for the two implementations. Thereafter, we com-
pare them with the multicore-based implementation. Finally,
we evaluate them and discuss their advantages and limitations.

A. CRS and FBLC Performance Results

Fig. 6 shows the six metrics for both implementations
evaluated for different N . The cost includes all components.
In Fig. 6, the graphs are normalized to the CRS implemen-
tation with N = 8. Fig. 6 shows the scaling trends of both
implementations. The delay grows as expected proportionally
to the logarithm of the number of inputs, thus confirming the
scalability. The FBLC implementation has a slightly lower
execution delay mainly due to the absence of multiplexers
and sense amplifiers in its critical path. In terms of energy,
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Fig. 6. Performance results of CRS, FBLC, and multicore implementation.

the FBLC implementation consumes nearly twice more energy
than the CRS implementation due to the larger crossbar; the
larger crossbar has a higher switching activity and consumes
more power in the voltage drivers and in the pass transistors of
interconnect network. Nevertheless, the area of the CRS imple-
mentation is larger than the FBLC implementation. In fact,
the controller is responsible for this high area consumption.
We will show the details in the component analysis later.

In terms of the derived metrics, the CRS implementation
achieves a better EDP mainly due to its lower energy consump-
tion. In terms of energy efficiency, the CRS implementation
performs better due to its lower energy consumption. In terms
of area efficiency, the FBLC implementation performs better
due to its lower area. Note that the energy consumption and
area of both implementations depend on the area of the con-
troller. This explains the outliers at smaller input sizes. Overall,
we observe that the area efficiency of both implementations
becomes stable at the large input sizes. This shows that the
scalability of both implementations is feasible.

Fig. 7(a) and (b) shows the cycle time and area breakdown
of both implementations at the component granularity (i.e.,
at the level of memristor crossbar, interconnect network,
controllers, and peripheral circuits). For both implementations,
the cycle time is mostly determined by the delay of the
controller followed by the memristor crossbar. For the CRS
implementation, the peripheral circuit also contributes to the
delay, while this is not the case for the FBLC implementation.
From this cost-break down, we observe that both implemen-
tations are scalable as: 1) the relative percentage of each
component changes minimally when the input size increases;
this denotes that there is no critical component for larger n
and 2) the absolute value (which is not shown in Fig. 7) of
the cycle time increases marginally for larger N .

With respect to the area consumption, we observe for the
CRS implementation that the largest fraction of the area comes
from the controller [see Fig. 7(a)]. This can be explained by
the fact that in CRS, the memristor crossbar and the peripheral
circuits are relatively small due to the usage of implication
logic. However, the area penalty is paid mostly in the controller
as its size linearly increases with the input size. Note that every

subcrossbar needs its own nanocontroller that is proportional
to the input size. Therefore, the controller always consumes
the largest fraction of the total area.

The largest fraction of the area also comes from the
controller for the FBLC implementation, for small values of
N . Furthermore, it reduces for increasing N [see Fig. 7(b)].
The relative contribution of each component stabilizes for the
FBLC implementation. The largest part of the area comes
from the crossbar and peripheral circuit. The above behav-
ior can be explained by the fact that both the crossbar
and peripheral circuit increase with larger size, while the
size of the controller is nearly constant as it is shared
between subcrossbars. Note that only one additional state is
required in the macrocontroller when the input size doubles;
this area is negligible. The area of the interconnect net-
work increases marginally and its fraction remains stable for
larger N .

Overall, FBLC implementation achieves a better scalability
at larger input sizes even though it requires a larger crossbar.
This is mainly due to its efficient controller. As the memristor
layer is stacked on the CMOS layer, the FBLC implementation
may be a candidate for actual implementation.

B. Comparison With Multicore-Based Parallel Adder

Fig. 6 also shows the comparison between the two memris-
tor implementations and the multicore-based implementation.
In terms of delay, the multicore implementation achieves
nearly one order of magnitude better performance than CRS
and FBLC implementation. This can be explained by the
fact that the delay of a memristor adder is much slower
than a CMOS adder. In addition, we ignore the impact
of the cache coherence policy leading to optimistic results.
Hence, the advantage in delay performance is explainable.
In terms of energy, the multicore implementation loses by
two orders of magnitude in comparison with both CRS and
FBLC implementation. The reason behind this is mainly from
the cache and DRAM energy consumption. In terms of area,
the multicore implementation has nearly five orders of mag-
nitude larger area than the other two implementations. This is
again caused by the large area consumption of the caches and
DRAM. In terms of the three combined metrics, the memristor
implementations have an improvement of at least two orders
of magnitude for each of the combined metrics.

C. Discussion and Limitations

The two memristor implementations show different results
for the measured metrics, and therefore tradeoffs can be
made. The CRS implementation requires a larger control state
machine, needs more buffers to store the intermediate results,
and requires current sense amplifiers. The FBLC implementa-
tion has relatively a larger crossbar and requires less CMOS
support. In addition, FBLC is based on Boolean logic that
may take advantage of today’s existing synthesis tools. In this
paper, we investigated only the impact of two logic designs,
i.e., Boolean and implication logic. However, note that there
are many more memristor designs that can be used to perform
computation in the crossbar, as summarized in [61].
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Fig. 7. Delay and area analysis of memristor implementation’s components. (a) CRS implementation. (b) FBLC implementation.

The CIM architecture has the potential to deal with big data
problems in general as both implementations show a good
scalability with respect to the delay. Although we used only
the parallel adder as a case study, the scaling trends are also
valid for a wide range of applications. The reason for this is
that the CRS parallel adder implementation already utilizes
unique controller for each subcrossbar. Therefore, it will not
affect the performance of other designs significantly in case
different types of controllers are required. For the FBLC
implementation, the microstate machine can be used to imple-
ment any look-up table, as the state machine is independent
of the data and the functionality. Therefore, the controller
can also be shared among the subcrossbars for more complex
functions.

Despite their huge potential as alternative computing
devices, memristors are still in their infancy stage and are
facing many challenges. First, the integration of memristos
with CMOS is still an open research question. To the best
of our knowledge, this is the first paper that investigates
the impact of the CMOS controller on an entire memristor
design. The controllers were designed using TSMC 40-nm
technology. Based on this preliminary work, the CMOS
part might be a concern. Further investigation requires
not only the optimization of the CMOS part but also
its efficient use to control the crossbars (e.g., shared by
different stacked crossbars). Note that in our work we assumed
40-nm CMOS technology (as it is the smallest node we
have access to) and 5-nm memristor feature size; it seems
that this integration is possible as presented in [62] where
demonstrated prototypes showed the stacking of 100-nm
memristors on top of 500-nm CMOS. In addition, Cheng and
Strukov [63] also believe that stacking with different feature
sizes is possible.

Second, memristor technology suffers from limited
endurance, today typically around (1012) [64]. This is insuffi-
cient for general purpose computing. Nevertheless, this could
still be sufficient enough for specific applications such as those
that are mostly in power-off state (e.g., wearable or monitoring
devices) [65], [66]. In addition, researchers strongly believe
that the endurance will reach 1016 [65].

Third, more research is required to isolate nanowires in the
crossbar; isolation is needed to create multiple subcrossbars.
One possible implementation is to use isolation material
between them, similarly as proposed in [67].

Finally, there is a lack of libraries with well-optimized
memristor designs. Currently, only a limited number of
computational units (such as adder and multiplier) and
communication schemes have been proposed. For example,
with respect to this paper, the area of the m-bit FBLC adder
can be significantly reduced if only one single 2-bit adder is
used m/2 times sequentially over time. As a direct conse-
quence, the number of required voltage drivers also reduces.
In addition, other optimizations can be made, such as in the
controller. By pipelining the controller, the clock frequency
can be significantly reduced, leading to much lower execution
times, especially for the FBLC implementation. The FBLC
implementation does not require read-out operations, and
therefore, a pipelined controller can be efficiently executed.
Finally, in the current state of the art, no efficient solutions
have been presented for the communication between basic
units. Therefore, we used a simplistic evaluation for the com-
munication between the memristor crossbar and CMOS layer.
Research on efficient and appropriate communication and
routing scheme between the CMOS and crossbar layers is still
on-going.

VII. CONCLUSION

In this paper, we showed two memristor crossbar imple-
mentations of CIM parallel adder. CIM alleviates the memory
bottleneck by utilizing the memristor devices in the crossbar
for both computation and storage. We analyzed for both
implementations (one based on Boolean logic and the other
on implication logic) their impact on the total cost. This
cost includes the delay, energy, and area of the crossbar,
interconnect network, peripheral circuit, and CMOS controller.
Our results show that the implementation of both designs is
feasible. In fact, a tradeoff can be made between the perfor-
mance and resource usage. Finally, the results also show that
CIM architecture efficiently deals with large-scale problems.
In comparison, the memristor implementation outperforms a
similar multicore implementation by at least two orders of
magnitude in terms of energy delay efficiency, energy effi-
ciency, and area efficiency. In short, CIM is a viable candidate
for next generation computers.
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Abstract—CMOS technology and its continuous scaling have
made electronics and computers accessible and affordable for
almost everyone on the globe; in addition, they have enabled
the solutions of a wide range of societal problems and applica-
tions. Today, however, both the technology and the computer
architectures are facing severe challenges/walls making them
incapable of providing the demanded computing power with
tight constraints. This motivates the need for the exploration
of novel architectures based on new device technologies; not
only to sustain the financial benefit of technology scaling, but
also to develop solutions for extremely demanding emerging
applications. This paper presents two computation-in-memory
based accelerators making use of emerging memristive devices;
they are Memristive Vector Processor and RRAM Automata
Processor. The preliminary results of these two accelerators show
significant improvement in terms of latency, energy and area as
compared to today’s architectures and design.

I. INTRODUCTION

Today’s and new emerging applications, such as data-
intensive/big-data applications (e.g., DNA sequencing) and
internet-of-things (IoT), are extremely demanding with respect
to computing power, energy consumption, and storage. These
applications will not only strongly shape our near future,
but also impact the semiconductor and computer industry.
However, their requirements are difficult to fulfill with today’s
CMOS based computer architectures, as they face sever chal-
lenges both at architectural and device level. Current computer
architectures face three walls [1]: (1) the memory wall due to
the growing gap between processor and memory speed and
the the limited memory bandwidth; (2) the power wall as
the practical power budget for cooling has been reached; (3)
the instruction-level parallelism (ILP) wall due to the growing
difficulties in extracting enough parallelism in software/code
that can run on the mainstream parallel hardware today. The
CMOS devices also face three walls [2]: (1) the leakage wall
as the static power is becoming dominant at small technology
nodes (due to volatile technology and low Vdd) and it may
even be higher than the dynamic power, (2) the reliability wall
as technology scaling leads to reduced device lifetime and
higher failure rate; (3) the cost wall as the cost per device
from a pure geometric scaling of technology point of view
is plateauing. Both architecture and device walls have slowed
down the performance gains of CMOS-based architectures. All
these motivate the need to look for alternative architectures
while considering emerging device technologies.

Many alternatives architectures are under investigations. Re-
sistive computing [3–5] and neuromorphic computing architec-
tures [6,7] using memristive devices, and quantum computing

using quantum dots [8] are couple of examples. Resistive
computing architectures based on memristive devices are at-
tractive, as they enable in-memory computing (reducing the
memory wall) [2,9]. In addition, the memristive devices have
zero standby power [6] (helps reducing both the leakage and
power wall), great scalability (reduces the cost wall), high
density (reduces the cost wall), and they are CMOS compatible
(reduces the cost wall).

This paper discusses two memristive device based accelera-
tors to demonstrate how computation-in-memory architectures
can realize significant improvements, due both to the archi-
tecture itself as well as to the used technology to implement
them. First, a memristive based vector processor, referred to
as Memristive Vector Processor (MVP), is presented; MVP
can be used as an accelerator for conventional machines and
shows approximately one order of magnitude improvement in
performance and energy efficiency. Thereafter, a general model
for hardware-based automata processing is introduced and
implemented with memristive devices. This implementation
is referred to as RRAM-AP; RRAM-AP’s key kernel (i.e., the
vector dot product operator) outperforms the state-of-the-art
SRAM-based implementation by 40% less delay and 27% less
energy, at even smaller chip area.

The reminder of this paper is organized as follows. Sec-
tion II describes briefly the fundamentals of memristive
devices. Section III and IV present MVP and RRAM-AP,
respectively. Finally, Section V concludes the paper.

II. BASICS OF MEMRISTIVE DEVICES

The memristive device, or memristor for short, is the fourth
type of fundamental two-terminal electrical components, next
to the resistor, capacitor, and inductor. It was initially predicted
in 1971 by the circuit theorist Leon Chua [10]. He observed
a missing element that can be described as a function of flux
φ and charge q, as shown (with the dashed line) in Fig. 1a.
In theory, a memristive device is a passive element that can
be described by the current integral (charge q) through or
voltage integral (flux φ) across its two terminals; The beauty
of the memristive device is its ability to memorize the history
(i.e., the internal state). The essential fingerprint of memristive
devices is the pinched current-voltage hysteresis loop, as
illustrated in Fig. 1b. When a memristive device is floating
or when the voltage v(t) across it equals zero, the current
i(t) is also zero. Therefore, based on its hysteresis curve, the
memristor has at least two distinctive states: a high (RH )
and low (RL) resistive state. A memristive device switches
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Fig. 1. Main characteristics of a memristive device.

from high (low) to low (high) state by applying a voltage
VSET (VRESET) with an absolute value larger than its threshold
voltage Vth. Another signature of the memristive devices is that
the pinched hysteresis loop shrinks with a higher excitation
frequency f as shown in Fig. 1b. Fig. 1c shows the two typical
symbols used to denote memristive devices; the black square
represents the positive terminal.

After a silent period for more than thirty years, a practical
memristive device was fabricated and demonstrated by HP
in 2008 [11]. HP built a metal-insulator-metal device using
titanium oxide as an insulator and identified the memristive be-
haviour over its two-terminal node as described by Leon Chua;
as shown in Fig. 1d. The device resistance is modulated by
controlling positive charged oxygen vacancies in the insulator
layer using different voltages. After the first memristive device
was fabricated, several memristor devices based on different
types of materials have been proposed such as spintronic,
amorphous silicon, and ferroelectric memristors [6].

III. MEMRISTIVE DEVICES FOR VECTOR PROCESSING

Memristor-based Computation-In-Memory (CIM) concept
was proposed to eliminate the communication between the
CPU and memory by leveraging memristors for both storage
and computation in the same physical crossbar [3,12,13]. Here,
we use the CIM to realize an accelerator we refer to as
Memristive Vector Processor (MVP). The rest of this section
will describe the working principle of MVP, the targeted
applications and some analytical evaluation results to show
the potential of such an architecture.

A. Working principle

MVP is proposed to accelerate applications with a huge
number of vector operations. It can be used as an accelerator
for a conventional processor, as shown in Fig. 2a. Similarly as
in conventional architectures, the processor fetches, decodes
and executes a program using a memory hierarchy consisting
of cache(s), DRAM, and external memory. The part of the
program which is memory intensive will be offloaded to

CPU

DRAM

External Memory

MVP

Program

loop1:

loop2:

loop3:

MVP

(a) Architecture (b) Expected Application 

Cache

Fig. 2. Memristive Vector Processor architecture.
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MVP. The distinct feature of MVP is its crossbar memory
implementation using memristive devices, which enables not
the storage of huge amount of data (due to its nano scale size),
but also the processing of operations within the memory (i.e.,
no need for data movement).

The processing in MVP is performed based on scouting
logic operations [5,14] ; they transform memory read opera-
tions into logical operations. Normally, when a memory cell
is being read, a read voltage Vr is applied to the activated
row as shown in Fig. 3a. Subsequently, a current will flow
through the bit line to the input of the sense amplifier (SA)
where it is compared to a reference current. Depending on
the cell value (either low (RL) or high (RH ) resistance), the
output of the SA will produce either logic 1 or 0. Inspired by
this read operation, scouting logic is able to implement OR,
AND and XOR gates. Instead of reading a single memristor
at a time, scouting logic activates two (or more) memory rows
simultaneously. As a result, the input current to the sense
amplifiers is determined by the equivalent input resistance of
the activated rows. This resistance results in three possible
values: RH , RH //RL ≈ RL, or RL/2; by changing the
reference current of the SA, different gates can be realized (as
shown in Fig. 3b). Therefore, using this scheme allows MVP to
perform logical operations by just a small modification of the
peripheral circuit of the crossbar mememory. It eliminates the
necessity of temporary registers, loading latency and energy
to move data from memory to registers. It also increases the
parallelism of the architecture and does not impact the the
endurance of the memristive devices.

B. Potential targeted applications

With its unique capability, MVP is able to accelerate data
intensive applications. These applications consist of inten-
sive memory accesses that consume an enormous amount
of energy and degrade the overall performance due to data
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Fig. 4. Evaluation results for MVP and multicore architectures.

movements through the memory hierarchy; note that loading
a word from the on-chip SRAM or off-chip DRAM costs
much more energy (50x and 6400x, respectively) as compared
with an ALU operation [15,16]. Therefore, eliminating data
movements/ communication significantly improves the overall
performance.

An example of a program that could benefit from MVP is
illustrated in Fig. 2b. The program consists of multiple loops
processing a dataset that is preloaded and mapped on MVP.
Each time a loop is called, the processor sends a (macro)-
instruction to MVP; the instruction is locally decoded and
executed. The result is returned to the processor. This feature
occurs in multiple applications such as database management
[17], DNA sequencing [18–20], and graph processing [21].

C. Evaluation Results

To evaluate MVP architecture, its estimated performance
is compared to a multicore architecture. The models and as-
sumptions for the multicore architecture and MVP are similar
to those in [3,9]; e.g., the multicore architecture consists of 4
cores (ALU only), two levels of caches (32 KB L1 and 256
KB L2) and 4 GB DRAM. The MVP architecture consists of
one core (ALU only), two levels of caches (32 KB L1 and
256 KB L2), 2 GB DRAM, and a MVP with a 2 GB non-
volatile crossbar memory with a modified read-out circuity (as
explained in [14]) in order to enable computation-in-memory.
Three metrics are used for the evaluation: (1) performance
energy efficiency ηPE (defined by MOPs/mW), (2) energy
efficiency ηE (defined by pJ/op), and (3) performance area
efficiency ηPA (defined by MOPs/mm2).

Fig. 4 shows the results of the evaluation metrics for both
architectures for different L1 and L2 cache misses (up to
60%)and by assuming that 70% of the program instructions
can be accelerated on MVP (%Acc=0,7); i.e., the 30% non-
accelerated instructions is executed by the conventional pro-
cessor and the 70% accelerated part by MVP; see Fig. 2.
As MVP architecture contains a conventional part (i.e., CPU,
caches, DRAM and external memory), only 10x improvement
is obtained with respect to the performance-energy efficiency.
MVP architecture also achieves one order of magnitude energy
efficiency improvement in comparison with the multicore
architecture, and has a higher performance area efficiency.
Therefore, the MVP architecture has the potential of realizing

(a) NFA (b) Homogeneous automata

Fig. 5. Example notations for NFAs and homogeneous automata.

significant improvements, despite the high switching latency
and low endurance of memristor devices. The improvements
are the result of a significant reduction of cache and DRAM
accesses, and the usage of non-volatile memory. The reduction
of memory accesses leads to a lower latency and lower energy
consumption, while the non-volatile memory reduces the static
power practically to zero.

IV. MEMRISTIVE DEVICES FOR AUTOMATA PROCESSING

Automata-based processing is widely used in diverse fields,
including network security [22], computational biology [23],
and data mining [24]. Its hardware implementation, referred
to as automata processors (APs), has significant advantages
over von Neumann architectures regarding throughput and
energy efficiency as they enable computation-in-memory [25–
27]. Memristive devices, which are the enablers of Resis-
tive Random-Access Memories (RRAM) and computation-in-
memory, are potential candidates for implementing the APs
as it will be shown in this section. We will refer to this
implementation as RRAM-AP. Moreover, it will be shown that
RRAM-AP outperforms the two known hardware implementa-
tions of APs, being the Micron Automata Processor [25] which
is based on SDRAM, and the Cache Automation [27] which
is based on SRAM; we will refer to them by SDRAM-AP
and SRAM-AP, respectively, to maintain the naming consistent
with RRAM-AP. Next, we will first introduce basic knowledge
and notations of automata. Subsequently, we propose a generic
model for automata processors. Thereafter, we present RRAM-
AP implementation, and show its superiority.

A. Automata Basics

A Non-deterministic Finite Automata (NFA) can be rep-
resented by a 5-tuple: (Q,Σ, δ, q0, C). Q represents a finite
set of states (which are denoted with circles in the illustrative
example of Fig. 5a), Σ is a finite set of possible input symbols
(that can be used to generate an input sequence), δ is the
transition function describing the set of possible transitions
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Fig. 6. General architecture for automata processors.

among the states, q0 is one of the states from Q and presents
the start state, C is a subset of Q and contains the final states
or accepting states; they are denoted with a double circle in
the state diagram af Fig. 5a as shown for the final state S3.

During operation (i.e., execution of an input sequence),
some states can be active; they are denoted by P . Initially,
P equals to q0. At each processing step, the NFA consumes
one symbol I from the input sequence. Based on I and δ, P is
updated. Once all symbols of the input sequence are processed,
the NFA output is determined by P and C. If P ∩C �= ∅, then
we say that the NFA accepts the input sequence; otherwise,
the sequence is rejected. The acceptance of the input sequence
can be represented by a Boolean value A.

Homogeneous automaton is a special type of NFA that is
relatively easy to implement by APs [25]. It requires that a
state can only be reached by transitions with the same input
symbol(s). These input symbols belong to the symbol class of
this state. For example, in the NFA shown in Fig. 5b, S3 can
be reached by two transitions (from S1 and S2, respectively)
both with the same symbol b; b belongs to the symbol class
of S3. Here, the NFA shown in Fig. 5a is a homogeneous
automaton and can be therefore redrawn as depicted in Fig. 5b.
Note that the input symbols are only related to the states
in homogeneous automata and not the state transitions as is
the case for normal NFAs; e.g., the symbol b is not on the
incoming edges/transition of the state S3 (see Fig. 5a) but
rather within the node representing S3 (see Fig. 5b). Any NFA
can be translated into its equivalent homogeneous automaton
and therefore implemented using APs [25].

B. Generic Automata Processor Model

Before implementing RRAM-AP, we need to understand the
key operations conducted by an AP. Therefore, we next present
a generic model for APs to identify these operations. This
generic model is shown in Fig. 6 and consists of three major
processing steps:

1) Input symbol processing: It decodes each symbol I (pre-
sented with W bits) of the input sequence by activating
only one of the 2W wordlines, and identifies all states
that have an incoming transition occurring on I . These
states and the remaining sates are presented by column
vectors called State Transition Elements (STEs), and
are pre-configured based on Q and the corresponding
symbols (symbol class). Each STE presents one state of

the N states of Q. The result of this step is mapped to
a vector called Symbol Vector s.

2) Active state processing: It generates: (1) all the possible
states that can be reached from the current active states
P (stored in a vector called Active Vector a) based
on these states and the transition function δ (stored in
the routing matrix), and stores the result in the Follow
Vector f ; (2) the next active states (i.e., Active Vector)
by bit-wise ANDing s and f .

3) Output identification: In order to decide about the value
of A (i.e., whether the input sequence is accepted or
not), the intersection of a and the Accept Vector c (pre-
configured based on C) is checked. That is, if P∩C �= ∅,
then A = 1 (accept), otherwise A = 0 (reject).

Next we will elaborate the above three processing steps.
1) Input symbol processing: As mentioned, the purpose of

this is to calculate the Symbol Vector s for each input symbol.
This is done based on the selected row (from the 2W rows)
and the configuration of STEs. Let’s assume that for each
input symbol, an Input Vector i of 2W elements is generated
where only one element is high (corresponding to the selected
wordline); the remaining elements are 0. In addition, assume
that the configuration of STEs can be presented by a matrix
V where each column Vn presents the STE of the state n.
Then the nth element of the Symbol Vector s corresponding
to Vn can be calculated as:

s[n] = i ·Vn =
2W∑

k=0

i[k]vn[k], ∀n ∈ [1, N ] (1)

In this equation, the addition and the multiplication repre-
sent the Logic OR and AND, respectively. For the example of
Fig. 5b, if we assume Σ = {a, b, c, d}, then,

V =
[
V1 V2 V3

]
=

⎡
⎢⎢⎣

1 0 0
1 0 1
1 1 0
0 0 0

⎤
⎥⎥⎦ .

This means that S1’s symbol class is {a, b, c}, S2’s is {b},
and S3’s is {c}. If we further assume that the current input
symbol is b, then i = [0 1 0 0], and s = [1 0 1]. This means
that b is in the symbol classes of S1 and S3.

2) Active states processing: This step calculates the Follow
Vector f which presents the possible states that can be reached
from the current active states stored in the Active Vector a.
The transition function is implemented by the routing matrix
as shown in Fig. 6, and can be conceptually presented as a
two-dimensional vector R. Hence, the nth element of Follow
Vector f can be calculated as:

f [n] = a ·Rn =

N−1∑

i=0

a[i]Rn[i], ∀n ∈ [1, N ]. (2)

The interpretation of the addition and the multiplication in
this equation is the same as in Equation (1). The next active
states (to be also stored in the Active Vector a) are easily
calculated by using bitwise AND operation.
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(a) Used as STEs (b) Used as routers

Fig. 7. Vector dot product operator used as switches and STEs.

a[n] = f [n] & s[n], ∀n ∈ [1, N ]. (3)

For the example of Fig. 5b, the matrix R that belongs to
the transit function is

R =
[
R1 R2 R3

]
=

⎡
⎣
0 1 1
0 0 1
0 0 0

⎤
⎦ .

This means that S1 cannot be reached from all the states (R1),
S2 can only be reached from S1 (R2), and S3 from both
S1 and S2 (R3). For a = [1 0 0] (only S1 is active), f =
[0 1 1] according to Equation (2). This means S2 and S3 are
reachable states from the active states. If we assume the next
input symbol is b, which leads to s = [1 0 1] as discussed
above, then the new active vector a = [0 0 1] according to
Equation (3). This means that S3 becomes the next active state.

3) Output identification: The output value A of NFA is
easily calculated using the Active Vector a and the Accept
Vector c. The former stores the active states generated by the
input sequence while the later stores the defined accepting
states of NFA.

A = a · c� =
N−1∑

n=0

a[n]c[n]. (4)

A = 1 means that the input symbol sequence is accepted
by the NFA; otherwise, the string is rejected. For the example
of Fig. 5b, c = [0 0 1]. This means only S3 is an accepting
state. If we assume the same example as above (a = [0 0 1]),
then A = 1.

C. RRAM-AP Implementation

The automata processing model described above contains
only two types of logic operations, which are vector dot
product (Equation 1, 2, and 4) and vector bit-wise AND
(Equation 3). In practice, we cannot implement the complete
routing matrix of Equation 2, as it requires too much resource.
SDRAM-AP and SRAM-AP both use hierarchical routers to
implement the routing matrix. Their implementations do not
support all NFA transitions; nevertheless, there is enough
flexibility to route all possible transitions of typical appli-
cations [25,27]. While SDRAM-AP does not reveal many
implementation details, SRAM-AP uses a two-level structure
that consists of global and local switches [27]. These global
and local switches also conduct vector dot product operations.

For our implementation, we adopt SRAM-AP’s for the
routing matrix, use the hardware structure shown in Fig. 7a for
STEs, and the one in Fig. 7b both for global and local switches.

(a) Program circuit (b) RRAM cell (c) SRAM cell [27]

Fig. 8. Different implementations of a configurable bit.

The black and white boxes represent different configuration
bits. Each column generates the vector dot product of the input
vector and the configuration bits of this column.

An NFA is configured to RRAM-AP by programming
RRAM devices to either low or high resistance. We use one
transistor and one RRAM device (1T1R) to implement a
configurable bit as shown in Fig. 8b. During the configuration,
the word line WL selects the row to be programmed, and the
programming voltage is applied to the bit line BL as shown
in Fig. 8a. The programming voltage can be either SET or
RESET voltage. Logic 1 corresponds to the memristor’s low
resistance, and logic 0 to high resistance. The bit line is pre-
charged before evaluation, and the word lines are selected,
e.g., by the input symbols. Note that for the routing matrix,
multiple word lines can be activated in parallel. The vector
dot product is calculated when all the word lines are set; if
all the corresponding selected cells contain a high resistance
(i.e., logic 0), then the pre-charged bit line remains high, and
the sense amplifier (SA) will read a logic 0 (inverted output).
Similarly, if at least one of the cells contains a low resistance
(i.e., logic 1), then BL will be discharged. The SA’s output
will subsequently be a logic 1.

The characteristics of memristors provide opportunities for
RRAM-AP to outperform previous designs. For example,
SRAM-AP uses eight transistors to implement the configurable
bit as shown in Fig. 8c [27], whose area is much larger than
the 1T1R structure. In addition, the SRAM cells also suffers
from leakage power. As memristors are non-volatile devices,
RRAM-AP can resume the last configured NFA after shut
down and reboot without reprogramming it. On the other hand,
RRAM-AP also inherits some drawbacks, such as the longer
and power-hungry programming phase, and lower endurance,
in comparison with SDRAM and SRAM.

D. Preliminary Results

The APs can be built by using only vector dot product and
bit-wise AND operators. Except for the vector dot product
operator, we assume that the remaining part of RRAM-AP is
implemented in a similar way as SRAM-AP (incl. bit-wise
AND, wiring, and sense amplifiers). Hence, we compare only
the dot product operator. Note that SRAM-AP outperforms
SDRAM-AP regarding the throughput and energy consump-
tion; therefore, we limit our comparison to SRAM-AP.

The simulated circuit consists of a single vector dot product
operator with a length of 256 as shown in Fig. 9a. We use
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(a) Simulated circuit (b) SPICE simulation result

Fig. 9. SPICE simulation results of a vector dot product operator.

32 nm PTM model for CMOS transistors and ASU model [28]
for RRAM. We configure RRAM’s parameters based on a two-
state device, similarly as presented in [29], e.g., the RRAM’s
high and low resistances are approximately 100MΩ and 1 kΩ
respectively; the SET and RESET threshold voltages are 1.3V
and 0.5V. To simulate the slowest discharge process, only the
first cell is configured to logic 1 (indicated by the black box),
and the remaining 255 cells are configured to be 0 (indicated
by white boxes). The bit line BL is pre-chared to 0.4V (lower
than RRAM’s threshold voltages). When BL is discharged to
0.1V, the sense amplifier (not included in the circuit) will read
a 1. The reference voltage of the SA is set to 0.25V.

The HSPICE simulation results are shown in Fig. 9b.
The word line WL is enabled at 1 ns, and then BL starts
discharging. BL’s voltages in SRAM and RRAM-based de-
signs are illustrated with solid blue line and dashed red line,
respectively. The discharge time through RRAM (104 ps) is
35% less than the SRAM-based implementation (161 ps). This
is mainly because transistors have relatively large intrinsic
capacitance. During bit-line discharge, the RRAM cell of
Fig. 8b has only one transistor in its path while the SRAM-
based design has two (See Fig. 8c). The energy consumed
during the charge and discharge processes is 2.09 fJ for the
RRAM-based design and 5.16 fJ for the SRAM-based design.
The former is 59% less than the latter. Considering that the
remainder part of RRAM-AP is implemented in a similar way
as SRAM-AP, RRAM-AP outperforms SRAM-AP at the chip
level regarding latency, energy, and area.

V. CONCLUSION

In this work, we have discussed two potential applications of
memristive devices and computation-in-memory, i.e., Memris-
tive Vector Processor and RRAM Automata Processor. Mem-
ristors’ unique properties provide us an important opportunity
to improve conventional designs at both architectural and de-
vice level. However, the drawbacks of memristor technology,
such as the impact of endurance, require further research.
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ABSTRACT
Today’s computing architectures suffer from the three well-known
bottlenecks, which are the memory, the power and the instruction-
level parallelism walls. Emerging non-volatile technologies, such
as memristor, enable new resistive architectures that alleviate at
least two of such bottlenecks, as they can process data within the
memory with almost no leakage. In this paper, we propose a novel
resistive computing architecture by extending a conventional archi-
tecture with a resistive based Computation-In-Memory accelerator
(CIMX). We evaluate the delay, energy and area of the conventional
and CIMX architecture using an analytical model and a simulation
framework. The results (both based on the analytical model and sim-
ulation framework) show that the proposed architecture achieves at
least one order of magnitude improvement in terms of performance,
area, and energy efficiency for the considered benchmarks.
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1 INTRODUCTION
Performance improvement of current computing architectures is
gradually saturating due to three well-known bottlenecks: memory
wall, power wall and instruction-level parallelism (ILP) wall [1].
These bottlenecks are direct consequences of the von Neumann
load/store architecture, speed gap between processor and memory,
and the difficulty of exploiting the maximum parallelism, respec-
tively. In order to address these walls, novel architectures using
emerging technologies are under research as an alternative for
future computing systems [2].

Memristor is one of the promising technologies to enable new
architectures [3, 4, 5, 6] due to its great scalability, high integration
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density, and its near-zero standby power, etc. [2, 7, 8]. Based on such
devices, several potential resistive computing architectures (e.g.,
Computation-In-Memory (CIM) [3, 9, 10], Resistive Associate Pro-
cessor [11, 5], Programmable Logic-in-Memory (PLiM) [4], Pinatubo
[6] etc.) have been proposed as an alternative to today’s load/store
architectures. The preliminary results of these resistive architec-
tures show several orders of magnitude improvement for different
metrics such as energy and area efficiency [3, 9]. However, most
of the proposed memristor logic designs (such as threshold/major-
ity logic [12, 13], implication logic [14, 15] and Boolean logic [16,
17, 18]) to build such architectures require multiple accesses of
the memristor devices in order to perform a single logic opera-
tion; these do not only impact the latency, but more important,
they significantly reduce the lifetime of the devices (due to limited
endurance) and increases the overall write energy. In [6, 19], the
authors partially addressed these problems by performing logic
operations, while reading the memory, but then using customized
read circuitry (e.g., sense amplifiers). During these read operations,
the memristors do not switch and hence, the device lifetime is
not affected and the overall energy is reduced. Nevertheless, the
authors require multiple steps to perform XOR operations. More
importantly, as the nonvolatile memory is deployed as the main
memory, it does not entirely solve the endurance problem due to
frequent write operations. In addition, the authors did not consider
communication infrastructure between the processor and memory
(i.e., maintainingmemory coherencywhen parts of the computation
occur in memory).

In this work, we propose a novel Computation-in-Memory (CIM)
core based on scouting logic. In our previous work [20], we explored
the possibility of performing logic operations within non-volatile
memories by sensing (and scouting) the data stored in the mem-
ory, similarly as in [6]. Hence, a memory access provides by itself
the result of a pre-defined logic operation. ‘Scouting’ the current
or voltage drop while accessing two (or more) operands at the
same time can be used to perform a logic function (e.g., by using a
modified sense amplifier). Different from [6], the non-volatile CIM
memory is used as an accelerator with infrequent writes (thereby
addressing the endurance) and moreover, scouting logic is able to
execute all logic operations within a single cycle (thereby address-
ing the performance) rather than multiple cycles. The contributions
of this paper are the following: (1) a novel computation-in-memory
core that utilizes scouting logic; we refer to this accelerator as CIM
core; (2) an extension of the conventional instruction set with in-
memory instructions that supports code execution of kernels on
CIM core; (3) an analytical evaluation model of the conventional
and CIM-based architectures; it can be used for fast design space
exploration; (4) a simulation framework that is able to evaluate both
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the conventional architecture and CIM-based architecture. Three
kernels of different applications are used as case studies.

The remainder of this paper is organized as follows. Section 2
presents the state-of-the-art in memristor logic design, the working
principle of scouting logic, and its potential. Section 3 presents
potential resistive architectures and the CIM accelerator. Section 4
provides an analytical evaluation model, and design exploration of
the conventional and proposed architecture. Section 5 presents a
simulation framework and evaluates several benchmarks. Section 6
subsequently evaluates the results, discusses the potential of CIM-
based architecture based on the analytical and simulation results.
Finally, Section 7 concludes this paper.

2 SCOUTING LOGIC AND ITS POTENTIALS
This section first describes the state-of-the-art in memristor based
logic design. Thereafter, it explains the working principle of scout-
ing logic. Finally, it discusses its performance, pros and cons.

2.1 State-of-the-art on Memristor-Based Logic
Several memristor-based logic designs have been proposed [13,
12, 14, 15, 16, 18, 17, 21]. The most popular design suitable for
computation-in-memory are Snider logic [18, 16], implication logic [15,
14] and Memristor-aided (MAGIC) logic [22]. They are briefly dis-
cussed next.

Snider logic provides two primitive gates: NOT and NAND [16].
It uses high resistance RH and low resistance RL to represent a
logic 1 and 0, respectively. The two-input NAND gate of Fig. 1(a)
is used as an example to explain the working principle of Snider
logic. We assume that the inputs are stored in memristor M1 and
M2, while the output is produced in Mo. The gate requires an ex-
tra resistor Rs (RL≪Rs≪RH ). To perform NAND, two steps are
needed. First, Mo should be RESET to RH . Next, control voltages
Vh (half-select voltage) and Vw (write voltage) are applied to the
input and output memristors, respectively; Vh and Vw need to sat-
isfy the following constraint: Vw>Vr eset>Vh=Vw2 , where Vr eset is
the minimum voltage to switch a memristor from RL to RH [23,
18]. In case one of the inputs is 0, the equivalent resistance of M1
and M2 is around RL (see e.g. Fig. 1(a) where M1=RL and M2=RH ).
Therefore, the voltage Vx across the resistor Rs is around Vh as
RL≪Rs≪RH . As a result, the voltage across the output memristor
Mo is Vw−Vx≈Vw−Vh=Vw2 <Vreset, and therefore Mo stays at RH
(logic 1).

Implication logic provides only a single primitive gate, which
is material implication (IMP) [15]. Opposite to Snider logic, IMP
uses RH and RL to represent logic 0 and 1, respectively. IMP gate
uses two memristors M1 and M2 to store the inputs; the output is
overwritten into memristor M2. The working principle of IMP is
similar to Snider logic. Multiple sequential IMP gates can be used
to realize AND, OR, or XOR gates.

MAGIC logic provides two primitive gates: NOR and NOT [22],
where the NOT gate is constructed in a similar way as the NOR gate
but without the second input. Similar to implication logic, MAGIC
uses RH and RL to represent logic 0 and 1, respectively. Fig. 1(b)
shows a NOR gate; memristors M1 and M2 store the inputs, while
the output is produced inMo. To performNOR, two steps are needed.
First, Mo is SET to RL . Next, control voltages Vw (write voltage)

M2

Vh Vw

Vx≈Vw

Rs 

(a) NAND of Snider logic

MoM1

Vh

RL RH RH→ RH

M2

Vw GND

Vx≈Vw

(b) NOR of MAGIC logic

MoM1

Vw

RL RH RL→ RH

Figure 1: Logic designs suitable for resistive computing

andGND (Ground) are applied to the input and output memristors,
respectively. Note that the value of Vw must satisfy the following
constraints: 2Vr eset<Vw<Vset , whereVset is the minimum voltage
required to switch a memristor from RH to RL . In case one of the
inputs are 1, the equivalent resistance of M1 and M2 is around RL .
Therefore, the voltage across Mo is Vx≈Vw

2 >Vreset and the output
memristor switches to RH (logic 0).

The three previous discussed designs suffer from major con-
cerns. First, the limited memristor endurance puts a constraint
on using these designs, as they require multiple write steps/ac-
cesses to execute a single operation. In addition, the multiple write
steps also affect the performance. Second, processing a logic op-
eration requires several control voltages (e.g., Vw ) that have to
drive memristor devices, therefore, higher power requirement. All
of these indicate the severe limitation of such designs in realiz-
ing computation-in-memory architectures. One alternative design
to solve these limitations is to perform the operation within the
peripheral circuits of the memory, as will show next.

2.2 Scouting Logic
Scouting logic executes logic operations by modifying the read
circuitry [20]. Fig. 2(a) shows a resistive memory with two cells
based on 1T1R cells. Normally when a cell is read, (e.g., memristor
M1), a read voltageVr is applied to its row and switch S1 is activated.
Subsequently, a current Iin will flow through the bit line to the
input of the sense amplifier (SA). This current is compared to the
reference current Iref. If Iin is greater than Iref (i.e., when R1 has
a low resistance RL), the output of the SA changes to Vdd (logic
1). Similarly, Iin<Iref (i.e., when R1 has a high resistance RH ), the
output changes to logic 0. For proper operations, Iref should be fixed
between the high and low current as depicted in the top left part of
Fig. 2(b).

Inspired by this read operation, we demonstrate how to imple-
ment OR, AND and XOR scouting logic gates, which are frequently
used bitwise logic operations [24, 25]. Instead of reading a single
memristor at a time, scouting logic activates two (or more) inputs of
the gate simultaneously (e.g., M1 andM2 in Fig. 2(a)). As a result, the
input current to the sense amplifier is determined by the equivalent
input resistance (R1//R2). This resistance results in three possible
values: RL2 , RH2 and (RL//RH )≈RL . Hence, the input current Iin also
can have only three values. By changing the value of Iref, different
gates can be realized. To implement an OR gate, Iref should be set
between 2Vr

RH and Vr
RL as depicted in the left bottom part of Fig. 2(b)).

As a result, the output is 0 only when R1//R2=RH2 . Similarly, to
implement an AND operation, Iref should be set between 2Vr

RL and
Vr
RL . The XOR operation needs two references and the output is
logic 1 only when R1//R2≈RL .
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Figure 2: Scouting logic [20]

Table 1: Parameters

Parameter Description Value
Technology

Memristor (TaOx) [27, 2]
F (nm) Feature size 90
RL (kΩ) Low resistance 200
RH (MΩ) High resistance 10
Acell (µm2) Area of a 1T1R cell 0.0486
Tsw(ns) Switching time (max of SET and RESET) 1.71
Vr (V) Read voltage 0.9

CMOS
UMC 90nm Library

Table 2: Different operation performance

Delay (ns)
Power (uW)

Area (um2)OR AND XOR
CSA 2.73 15.99 17.19 17.59 29.7216
VCA 9.31 8.65 6.00 11.01 22.324

The above implies two requirements for the SA. First, it should
be operational with both a single and two references. Second, it
must support a re-configurable reference. Two SA designs including
a current-based SA (CSA) and voltage-based SA (VSA) that satisfy
both requirements are described in [20]; in addition, scouting logic
is verified using Cadence Spectre simulations. The simulationmodel
consists of the 1T1R array of Fig. 2(a) connected to one of the SA
designs; both SAs have been verified. The 1T1R array and SAs
are described by a SPICE netlist, while the memristor model [26],
CMOS controller and voltage drivers by Verilog-A modules. The
simulation parameters are extracted from [27] and summarized in
Table 1. The SA designs are simulated with the PTM 90nm [28]
library. The functionality of scouting logic has been verified, and
the delay, power and area of the OR, AND and XOR operation for
both SA designs (including the cost of their controllers) have been
reported; see Table 2 [20]. The CSA design is much faster (3.4x),
but has a higher area overhead (1.5x) and consumes more power
(1.6-2.8x). In this paper, we select VSA design for the following
section due to its favourably lower power consumption.

As a relatively old technology is used, the read voltages men-
tioned are typically a bit higher than reported [7]. To predict the
performance for a 5nm memristor [2] design, we scaled these num-
bers down. It is worth mentioning that lowering the read voltage
might impact the correctness of the scouting logic, as it is strongly
dependent on the development of both memristor technology and
the modified sense amplifier design.

2.3 Potentials of Scouting Logic
Compared to the state-of-the-art resistive logic designs, scouting
logic executes the logic operations during a read operation. There-
fore, scouting logic comes with the following advantages:

• Scouting logic executes a logic operation within a single
access (i.e., read operation), and hence it improves the per-
formance.

• Scouting logic requires lower control voltages (i.e., Vr is
lower than the write voltage Vw ), and hence it reduces the
power and energy consumption together with better perfor-
mance.

• Scouting logic only reads the resistance values of memristors
instead of writing them. As a result, it has a lower endurance
requirement, which is currently a significant challenge for
memristor technology [29].

• Scouting logic requires simple control logic, as it does not
need to control the sequential steps required by other resis-
tive logic designs, such as implication logic.

3 RESISTIVE COMPUTING ARCHITECTURE
In this section, we first describe potential Computation-in-Memory
(CIM) architectures that can utilize scouting logic. Thereafter, we
select and explain themost suitable one together with its instruction
set in more detail.

3.1 Potential Architectures
With scouting logic, it is feasible to implement a non-volatile mem-
ory that supports CIM. In other words, the memristor-based mem-
ory module is equipped with one or more scouting logic units.
Fig. 3b, 3c, 3d, and 3e show four possible ways to embed a CIM
core into the conventional computer architecture of Fig. 3a; they
are respectively CIM used as cache, as main memory, as complete
memory hierarchy, and as accelerator. Next, we discuss the pros
and cons of each of these architectures.

Fig. 3b shows the CIM cache (CIMC) architecture where CIM
replaces one or more cache levels. Here, CIM operates in a similar
way as conventional caches by storing temporary data that will
likely be reused. However, besides the normal cache functionality,
CIM can be used to perform in-memory operations. With respect
to the normal cache functionality, no modifications are required to
the processor, as these internal cache functionality is transparent to
processor. The in-memory operations are performed in the cache
and prevent moving data towards processors. Hence, it reduces the
cost (i.e., latency and power) of moving data between caches and
processors, and vice-versa. In addition, CIM provides larger cache
size due to small footprint of resistive devices [30, 31, 32]. However,
as parts of the instructions are executed in caches, the processors
must be made aware of these operations. Therefore, some modi-
fications are required for both the cache controller and processor
instruction set to handle coherency. They impact the instruction
set, compiler and cache controller. Moreover, as cache is more fre-
quently accessed than main memory, the limited endurance and
high read/write latency of resistive devices are the main bottlenecks
of this approach [31]. Hence, this architecture makes sense only if
the endurance is high enough (>1016).

3

116 PAPER 3.5



MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Hoang Anh Du Nguyen, Jintao Yu, Muath Abu Lebdeh, Mottaqiallah Taouil, Said Hamdioui

CPU

DRAM

External Memory

CPU

L1 L1

Last-level caches

(a)

CPU

DRAM

External Memory

CPU

CIM

(b)

CPU

CIM

External Memory

CPU

L1 L1

Last-level caches

(c)

CIM

External Memory

CPU CPU

(d)

DRAM

External Memory

CIMCPU

L1

LLC

(e)

Figure 3: Conventional (a) and potential resistive architectures: CIMC (b), CIMM (c), CIMU (d), CIMX (e)

Fig. 3c shows the “CIM main" (CIMM) where CIM replaces the
main memory. Here, CIM operates similarly as a conventional
DRAM memory. The scouting logic operations can be used in ad-
dition to normal read operations to perform bit operations in the
memory; a similar approach has been evaluated for DRAM in [33].
The trade-off between capacity and performance is similar as in the
approach where CIM is used to replace the cache. In fact, resistive
devices in general are often used as non-volatile memory devices.
Several prototypes of up to 32GB memory have been reported re-
cently [34, 35, 36]. These prototypes show a lot of advantages in
using resistive devices in main memory such as high density, non-
volatility, nano scale devices [37]; these advantages enable high
storage volume and low start-up time [37, 38, 39, 40]. However,
a lot of efforts are still required to use non-volatile memories in
conventional architectures due to some challenges such as high
manufacturing cost, high write latency, endurance limitation, and
memory coherence management and complexity [41, 40, 42].

Fig. 3d shows the CIM universal (CIMU) where CIM replaces the
entire memory hierarchy. One or multiple processors are used to
execute the conventional instructions and fetch data directly from
CIM; in-memory instructions can be still used to accelerate memory-
intensive parts of an application. This reduces the pressure on the
registers. However, to be competitive in terms of performance, the
memory must have a low write and read latency. In addition, as a
lot of write operations are expected also the endurance needs to be
high. Despite possible performance issues, this architecture could
have a huge potential in terms of energy and area efficiency.

Fig. 3e shows the CIM accelerator (CIMX) where CIM is used
as an on-chip data-centric accelerator. CIM executes parts of the
instructions that cannot be efficiently handled by conventional
processors; for example, a loop that consists of simple operations on
a huge data set. As accelerators are often read-favored, the impact on
endurance is expected to be minimal. The data-centric accelerator
differs from a traditional accelerator such as an FPGA or GPU in the
amount of data that can be stored in the accelerator; this huge data
storage alleviates the latency and energy cost required to move data
back and forth from memory in traditional accelerators. However,
it also has commonalities with the traditional accelerators. First, the
performance gain is proportionally dependent on the number of
parallel operations that can be performed simultaneously. Second,
the memory coherence management is managed in a similar way,
i.e., the accelerator can be seen from the processor as an extended

memory space, similarly as for FPGA accelerators [43, 44]. Third,
the accelerators can be executed in parallel with the host processor
in case no data dependencies occur.

All the four discussed CIM-based architectures have both pros
and cons. In this paper, we evaluate the resistive architecture de-
picted in Fig. 3e, as it is the only case where CIM can be used as
an accelerator and thus has a lower requirement on the endurance.
Currently, an endurance of 106 to 1012 are reported [7, 29]; this
is neither sufficient for general purpose computing nor conven-
tional memory. However, it is strongly believed that memristor
endurance will increase and reach 1016 in the future [29]. In the
next sub-section, we will present the CIMX architecture in detail.

3.2 Resistive Computing Architecture
The CIMX architecture of Fig. 3e consists of a conventional pro-
cessor with cache, main DRAM memory, novel data-centric CIM
core and an external memory. CIMX consists of a large non-volatile
memory equipped with scouting logic. Both main memory and
CIM core can fetch data from the external memory. CIM core is
addressable from the processor and uses an extended address space.
In this paper, we assume that the data that is stored in the CIM
core is not duplicated on the main DRAM memory [45, 46]; hence,
no memory coherency schemes are required. The CIM core is ini-
tialized with data from the external memory, e.g., database(s); this
initialization needs to be performed only once. Note that infrequent
modifications are required when read-dominant applications are
executed on CIM core.

Similarly as for the FPGA based accelerators [43, 44], pragma
insertions are used to denote that particular functions will be ex-
ecuted on CIM core. The pragma insertions are translated into a
sequence of in-memory instructions; these are executed in CIM core.
The instruction format for an in-memory instruction is constructed
in a similar manner as for conventional processor instructions. It
includes an opcode to denote the in-memory instruction type and
the addresses to operate on. To signal that this operation should
not be executed on the conventional processor, a specific opcode
is used for the instruction. As a result, the instruction is directly
forwarded to the memory controller for further processing.

Fig. 4 presents the internal details of CIM core. The accelerator
consists of a memory controller, configuration registers, address
decoder, non-volatile memory cell arrays, and a read/write circuitry.
The controller receives in-memory instructions from the processor;
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each instruction specifies the operation type (read, write, logic
or, etc.) and addresses to operate on. The configuration registers
are used to decode the instructions and configure the data path.
Once the operation finishes, the final result is sent back to the
processor in case applicable. The control and peripheral circuitry
specify which rows are activated and performs a read (including
a logical operation) or write operation. The non-volatile memory
consists of multiple arrays where each array consists of a 1T1R
crossbar array (i.e., each cell consists of a transistor and memristor).

It is worth noting that the CIM core considered here can only
execute logical operations. More research is required to extend
the instruction set with arithmetic operations. Due to this current
limitation, the next section will only consider logical operations in
CIM core.

3.3 CIM Instruction Set Architecture
In order to support the execution of instructions in CIM core, we
create an CIM instruction set based on scouting logic operations.
The CIM instruction set includes two types of instructions related
to memory and processing. Memory related instructions are typical
load/store instructions used to retrieve/save data from/into memory.
Processing related instructions consist of logical operations that
are executed by scouting logic as mentioned in section 2.

Here we consider the logic instructions CIM_AND, CIM_OR,
CIM_XOR representing the and, or, and xor instructions as ex-
plained in section 2, respectively. We add an additional compare
instruction denoted by CIM_CMP; this instruction will be needed
for one of the benchmarks that will be simulated in section 5.2
(i.e., bitmap indexing [33, 47]). The CIM_CMP is composed of a
CIM_XOR instruction followed by a bit-wise OR operation; the later
operation is executed within the CMOS peripheral circuitry. The
instruction set can be easily extended with arithmetic operations
when their implementations are available.

4 ANALYTICAL EVALUATION RESULTS
In this section, we first present an analytical evaluation model
for both the conventional and CIMX architecture. Thereafter, we
evaluate the performance of both architectures using these models.
Finally, we describe their shortcomings and limitations.

4.1 Analytical Evaluation Model
In order to evaluate CIMX, we would like to compare its perfor-
mance, energy consumption and area with a conventional architec-
ture. To be able to realize this, we create two models one for the
conventional and one for CIMX architecture. The models can be
used to evaluate different applications.

We characterize an application based on its problem size and per-
centage of logical instructions. The problem size species the amount
of program instructions. The percentage of logical instructions is
the amount of accelerated instructions (X) that can be offloaded to
CIM core. We denote the percentage of logical instructions by nl ,
remaining instructions by nr (arithmetic, conditional, etc.) and the
percentage of their corresponding memory accesses byml , andmr ,
respectively. Note that nl+nr=1.

For the conventional architecture, we use the Intel Xeon E5-
2680 [48] multicore as a baseline. We assume the following:

• The number of cores is np=4, each with a frequency of
2.5GHz.

• Each core contains (i) an ALU that is capable of executing
non-memory instructions (logical, arithmetic, conditional in-
structions) in one cycle, (ii) a two level cache (L1 of 32KB and
L2 of 256KB) with access latencies of one and two cycles [49],
and a miss rate ofmrL1 andmrL2, respectively. Note that the
actual miss rates are application dependent.

• The cores share a main DRAM memory of 4GB with an
access latency of 175 cycles (165 cycles for communication
and 10 cycles for retrieving the results) [49]. The page fault
rate of the main DRAMmemory is p fdr=0.1% with a penalty
of 800 cycles [50].

For the CIMX architecture, we assume the following:

• It contains a single host processor with the same character-
istics as an individual core in the conventional architecture.
It contains the following:
(i) an ALU that executes non-logical instructions in one cycle.
(ii) 32KB L1 cache and 256KB L2 cache. As parts of the ap-

plication are offloaded to CIM core, the miss rates of
the part of the application that are executed on CPU
changes. To model this change, we use the square root
rule of miss rate [51, 52]. This rule says how the cache
miss rate changes for different cache sizes. However, in
our models we keep the cache sizes between both architec-
ture the same. Instead, we assume that the same relation
holds for different problem sizes (due to offloading parts
of the application to CIM core). Note that when the prob-
lem sizes decreases, it has a similar effect of increasing
the cache. Specifically, the miss rates for CIMX (due to
accelerated parts) are modeled by (1 − X )(−0.3) in which
X represents the accelerated ratio and -0.3 the minimum
coefficient in the square root rule, i.e., the most pessimistic
value.

• 1GB DRAM.
• a CIM core with na=1, 048, 576 parallel memory arrays (each
with a size of 512 columns x 512 rows) with a total capacity
equal to 32GB and an area of nearly equal to 3GB DRAM.

3

118 PAPER 3.5



MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Hoang Anh Du Nguyen, Jintao Yu, Muath Abu Lebdeh, Mottaqiallah Taouil, Said Hamdioui

• Unidirectional communication between the processor and
CIM core is assumed to be equal to L1 access latency (i.e., 1
cycle). Note that both L1, L2 cache and CIM core are on-chip.

• A logical instruction takes 9.3 ns on CIM core based on the
VSA (see Table 2); this is equivalent to 20 CPU cycles.

Definingm =ml+mr andmp =
m
np , the CPI of both architectures

is modeled as below:

CPICONV =




(nl + nr ) · 1
np

+ ... tcomp

mp · (1 −mrl1) + ... tL1
mp ·mrl1 · (1 −mrl2) · 2 + ... tL2
m ·mrl1 ·mrl2 · (1 − p fdr ) · 175 + ... tDRAM−hit
m ·mrl1 ·mrl2 · p fdr · 800 tDRAM−pf

(1)

CPICIMX =




nr · 1 + ... tcomp−others
nl
na

· 4 + ... tcomp−bw
1 + ... tCPU−CIM
nl
na

· 4 tCIM−write

mr · (1 −mrl1) + ... tL1
mr ·mrl1 · (1 −mrl2) · 2 + ... tL2
mr ·mrl1 ·mrl2 · 175 tDRAM−hit

(2)

The CPI of the conventional architecture (see Eq. 1) consists of
the sum of the CPU computing latency tcomp , the L1 cache access-
ing latency tL1, the L2 cache accessing latency tL2, the DRAMmem-
ory accessing latency assuming a main memory hit tDRAM−hit ,
and the DRAM page fault accessing latency tDRAM−pf . Note that
for the conventional architecture, there is no differentiation be-
tween logical and non-logical instructions and their corresponding
memory accesses (i.e.,m=ml+mr ).

The CPI model of CIMX (see Eq. 2) consists of the sum of the non-
logical instruction latency tcomp−others executed by the processor,
the logical instruction compute latency tcomp−bw executed by the
CIM core, the on-chip communication latency between CPU and
CIM core tCPU−CIM estimated by 1 cycle, the non-volatile write
latency tCIM−write , the L1 cache accessing latency tL1, the L2
cache accessing latency tL2, the DRAM memory accessing latency
for a hit rate tDRAM−hit . Note that it is assumed that CIM core is
large enough to store all the data needed for the accelerator.

Table 3 summarizes the technology parameters. The table con-
tains the delay, area, and power consumption of the conventional
CPU (i.e., the logic operations, caches (L1, L2) and DRAM) and of
CIM core (i.e., crossbar array and scouting logic). Note that the
scouting logic related parameters were already provided in Table
2. Here, we assume the VSA implementation due to its favourably
lower power consumption. The data provided in Table 3 is used
to evaluate the delay, energy, and area of each architecture. The
delay is calculated from the CPI models and the problem size. The
energy is computed from the delay, and dynamic and static power.
The area is obtained by summing up the areas of all individual
components. Note that the controllers of both the conventional and
CIMX architectures are not included in the estimation.

For the evaluation, we use the following metrics:
• Performance: defined by the delay (in s).

Table 3: Evaluation parameters

Component Parameters
CMOS Technology

32-bit logic gate

Delay (cycles) 1
Dynamic power (uW) 33.69 [53, 54, 55]
Static power (uW) 7.09

Area (um2) 32.65 [53, 54]

32KB L1 cache

Delay (cycles) 1
Dynamic power (W) 0.24 [56]
Static power (W) 0.012 [56]

Area (mm2) 14.2 [56]

256KB L2 cache

Delay (cycles) 2
Dynamic power (W) 0.63 [56]
Static power (W) 0.108 [56]

Area (mm2) 75 [56]

1GB DRAM

Delay (cycles) 175
Dynamic power (W) 12.86 [56]
Static power (W) 12 [56]

Area (mm2) 88.98 [56]

4GB DRAM

Delay (cycles) 175
Dynamic power (W) 51.4 [56]
Static power (W) 48 [56]

Area (mm2) 355 [56]
Memristor Technology

Scouting logic operation

Delay (cycles) 4

Power (W) see Table 2
Area (mm2)

Memristor

Write Delay (cycles) 1
Write energy (fJ) 1 [2]
Static energy (J) 0 [2]

Area (nm2) 6F 2=150 [2]

Non volatile memory
#col_per_row 512
#row_per_array 512

#array 1,048,576

• Energy: defined by energy (in J).
• Performance energy efficiency: defined by the number of
million operations per second divided by the power con-
sumption (in MOPs/mW).

• Energy efficiency: defined by the energy in pJ divided by the
number of operations (in pJ/op).

• Performance area efficiency: defined by the number of mil-
lion operations per second divided by the total area (in
MOPs/mm2).

4.2 Analytical Results
Based on the models developed in the previous section, we will
evaluate the performance of the conventional and CIMX architec-
tures for the 32GB problem size (PS); as this equals the CIM core
capacity, we assume that initial data related to the accelerated part
is stored in CIM core and does not required to be reloaded. We
investigate the impact of two aspects on the performance of both
architectures: (i) the L1 and L2 cache miss rates (ranging from 0%
to 90%), and (ii) the percentage of logical instructions accelerated
by CIM core %Acc. (including 30%, 60%, and 90% as the authors
in [6] showed that at least 30% of a database application could
be accelerated using in-memory computing). Using this analytical
evaluation, we can quickly perform a design space exploration. Fig.
5 shows the performance metric of the conventional architecture
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Figure 5: Analytical results of the performance (delay) metric for the conventional and CIMX architectures
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Figure 6: Analytical results of the energy metric for the conventional and CIMX architectures

(red planes) with respect to CIMX architecture (green planes). The
results of the conventional architecture are normalized to those
of the CIMX; note that the results of the CIMX architecture are
presented by the green unit planes. The blue areas on the red planes
are explained later. Overall, the performance speed-up of CIMX
architecture increases for larger percentages of the instructions
executed on CIM core (maximum 1.5x for 30% to more than 35x
for 90%). This can be clearly observed as the gap between the red
and green planes increases. CIMX architecture outperforms the
conventional architecture for most of the L1 and L2 miss rates.
High cache miss rates result in a longer memory access latency in
the conventional architecture while CIMX architecture does not
suffer much from this as computing takes place within the memory
(i.e., CIM core). However, CIMX architecture may not achieve a
speed-up for low miss rates (e.g., less than 20%). For example, when
the miss rates of L1 and L2 are around 10%, a specific amount of
instructions (e.g., more than 60%) have to be accelerated to realize a
higher performance on CIMX architecture. Note that the miss rate
of some big data applications is reported around 6-15% [57, 58, 59].
However, most big data applications such as database application
have a much higher miss rates; this will be discussed further later in
this sub-section. Moreover, the figure shows that the performance
increase saturates for higher L1 and L2 miss rates. The reason for
this is that the program executed on the conventional part of CIMX

starts to dominate and that therefore the accelerated percentage is
bounded by Amdahl’s law.

Similarly, Fig. 6 shows the energy metrics for both architectures.
Overall, similar trends are observed with respect to the percentage
of accelerated instructions. However, the energy consumption of
CIMX architecture is always lower, irrespective of the cache miss
rates. In case 30% of the instructions are accelerated on CIM core,
the conventional architecture consumes 1.5x to 7x less energy. This
grows up to 140x in case 90% of the instructions are accelerated
on CIM core. The high energy consumption of the conventional
architecture can be partly attributed to the data movement back
and forth between the CPU and the memory hierarchy. In addition,
both cache and DRAM suffer from a much higher leakage current
as compared with the non-volatile technology used in CIM core.

Fig. 7 shows the analytic results of the remaining metrics for
the 90% acceleration ratio case; note that the results of CIMX are
normalized to those of the conventional architecture in the perfor-
mance energy efficiency and performance area efficiency. CIMX
architecture achieves an improvement of two orders of magnitude
in terms of performance energy efficiency, energy efficiency, and
one order of magnitude in terms of performance area efficiency,
mostly due to a higher performance (see Fig. 5c) and lower energy
consumption (see Fig. 6c). To the best of our knowledge, CIMX
architecture is the first architecture that integrates a conventional

3

120 PAPER 3.5



MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Hoang Anh Du Nguyen, Jintao Yu, Muath Abu Lebdeh, Mottaqiallah Taouil, Said Hamdioui

architecture with a scouting logic based accelerator. In comparison
to the state-of-the-art, the proposed architecture realizes significant
improvements, despite the low performance of individual memris-
tors. The improvement could be much higher if more instructions
can be accelerated, and/or if the CIM core performance can be
improved. Furthermore, applications with a bad data locality and
high data volume can be significantly benefit from the proposed
architecture.

We also explore database applications which have an L1 and L2
miss rate ranging from 2 to 4%, and 40 to 90%, respectively [57]. The
performance of CIMX in these ranges are marked in blue in Figs. 5,
6, and 7. For these particular miss rates, database applications can
be executed up to 15x faster on CIMX architecture depending on the
accelerated percentages. Meanwhile, CIMX architecture consumes
5x to 60x less energy than conventional architecture. This results
in one order of magnitude improvement in terms of performance
energy efficiency, energy efficiency, and performance area efficiency.
This exploration quickly shows that database applications are a
suitable candidate to be accelerated on CIMX architecture.

The proposed architecture also shows more than 150x improve-
ment in energy efficiency. Therefore, it can be considered as a
potential platform for low-power or portable embedded applica-
tions. To make CIMX architecture better suitable for low power/
portable embedded applications, the complex memory hierarchy
has to be removed (i.e., no L2 cache and DRAM). We evaluated
the impact of the L1 cache miss rate (ranging from 0% to 70%) and
percentage of accelerated instructions (ranging from 30% to 90%)
for the gigabyte (GB) problem size. Fig. 8 shows the evaluation met-
rics of such modified architecture. We observe that the modified
architecture achieves a performance energy efficiency higher than
100 MOPs/mW, which is much better than most application-specific
designs [60]. In addition, the energy efficiency is reaching the re-
quirement of 1pJ/op for embedded applications [60] as shown in
Fig. 8(b). This shows the necessity of integrating resistive devices
in embedded systems to realize energy and area efficiency.

4.3 Limitations of Analytical Model
The analytical model assumes a uniform profile of the application
(e.g., the same L1 miss rate throughout the entire application). How-
ever, an application consists normally of multiple parts with differ-
ent behavior, such as memory-intensive, computation-intensive or
bandwidth-intensive parts. In addition, modeling the communica-
tion between the kernel is not trivial. Furthermore, both architec-
tures do not consider the cost of the memory controller due to their
modeling complexity. For these reasons, a simulation framework
is necessary. Nevertheless, the analytical approach can be used for
quick insights and to perform a fast exploration. In the next section,
we propose a simulation framework that can be used to simulate
both conventional architectures (Fig. 3a) and CIMX architecture
(Fig. 3e).

5 SIMULATION FRAMEWORK AND RESULTS
In this section, we first explain the simulation framework. There-
after, we discuss the simulation setup and applied benchmarks.
Finally, we present the simulation results for both the conventional
and CIMX architectures.

5.1 Simulation Framework
Fig. 9 shows the simulation framework (SiCIM) used to simulate
the two architectures. The inputs of the framework consist of three
components: application, architecture and technology parameters.
The application is a program or benchmark (written in C/C++ lan-
guage) possibly annotated to specify the parts that must be executed
on the CIM core. The architecture parameters specify the simulated
architecture such as instruction sets, cache size, cycles per instruc-
tion, etc. The technology parameters contain technology related
info such as technology node, frequency and power consumption.
Although there is a strong dependency between the technology and
architectural parameters, this dependency is not shown in the sim-
ulation framework. Instead, we have simulated this dependency for
the kernels outside this framework using HSpice by involving both
the technological and architectural parameters. The outputs of the
framework consist of the delay, energy and area of the simulated
application.

The core of the framework consists of three phases as shown
in Fig. 9, and explained next. Note that in order to support CIMX
simulation, multiple existing tools are used and possibly modified,
such as Intel Pin [61], MCProf [62], SiNUCA [63], mcPAT [64],
NVSIM [65], Cacti [66].

Pre-processing phase: in the pre-processing phase, a profiling
tool (i.e., MCProf [62]) is used to extract the memory-intensive parts
of the application. Code 1 illustrates an example where the memory
intensive part consists of a "for loop". To force the execution of this
part in CIM core, pragma’s are added (as of now manually) to the
code as shown in Code 2 (lines 6 and 10). After profiling, SiNUCA
trace generator [63], which uses Intel Pin [61], generates three
types of traces: (i) static traces containing all instructions that have
to be executed (ALU, memory, branch instructions), (ii) dynamic
traces containing information related to the control flow such as
branch instructions (i.e., taken or not taken), (iii) memory traces
containing the memory addresses of read and write instructions.
Note that the use of pragma’s for CIM core instructions will result in
updated traces. To realize this, we have extended the trace generator
with the new CIM instructions, similarly as performed in [67]. For
example, the OR operation of line 8 in Code 1 is replaced by an OR
operation on CIM core (_cim_btw_or) in Code 2; the _cim_btw_or
instruction is defined in the library of the trace generator and used
to generate the updated traces for CIMX, similarly as performed
for HMC instructions in [67].

Processing phase: in the processing phase, the SiCIM engine
simulates the generated traces by executing them on the specified
architecture (i.e. the processor type, cache size, DRAM size, CIM
core configuration, etc.). For CIMX architecture, the non-accelerated
part of the program is executed on the host processor, while the
CIM core instructions are dispatched from the host processor to the
CIM core. The SiCIM engine is based on the SiNUCA simulator [63]
which we extended with CIM instructions. The SiCIM engine gen-
erates execution statistics of the simulation, which includes the
number of cycles to execute the program, the number of memory
accesses (cache and main memory), and the number of CIM instruc-
tions. The CIM core instructions are executed under a lock/unlock
scheme to maintain data coherency similarly as in HIVE [63, 68];
this scheme ensures that data-dependent instructions are executed
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Figure 7: Analytical results of the performance energy, energy, and performance area efficiency metrics
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Figure 8: Analytical results for modified CIMX architecture
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Figure 9: Simulation framework

1 . . .
2 in t main ( in t argc , char ∗ argv [ ] ) {
3 . . .
4 for ( s i z e _ t i = 0 ; i < 1000 ; i ++) {
5 c [ i ] = a [ i ] | b [ i ] ;
6 }
7 . . .
8 }

Code 1: Source Code for Conventional Architecture

in the correct order, while data-independent instructions can be
executed in parallel between the host and accelerator.

Post-processing phase: in the post-processing phase, the out-
put statistics of the processing phase are used to calculate the delay,
energy and area metrics using a combination of three tools: (i) mc-
PAT, a processor simulator [64], (ii) NVSIM, a non-volatile memory
simulator [65], and (iii) Cacti, a cache and main memory (DRAM)
simulator [66].

1 . . .
2 # include " . . / hmc . hpp "
3 . . .
4 in t main ( in t argc , char ∗ argv [ ] ) {
5 . . .
6 MCPROF_START ( ) ;
7 for ( s i z e _ t i = 0 ; i < 1000 ; i ++) {
8 c [ i ] = _cim_btw_or (&a [ i ] , b [ i ] ) ;
9 }
10 MCPROF_STOP ( ) ;
11 . . .
12 }

Code 2: Source Code for CIMX Architecture

5.2 Simulation Setup and Benchmarks
The simulation parameters of both architectures are summarized
in Table 4. The conventional architecture is based on an Intel Xeon
CPU E5-2650 that consists of a single 64-bit core, 32KB L1, 256KB
L2 and 1GB DRAM. CIMX architecture has a similar build up, but
instead has 500MB DRAM memory and a CIM core with a capac-
ity of 500MB; note that data is assumed to be initialized in the
DRAM and CIM core; hence, the cost of data initialization is not
considered in the simulation time as it is not the focus of this work.
This configuration is selected to maintain a reasonable simulation
time and capability (i.e., Cacti, NVSIM, SiNUCA) for both architec-
tures. The processor operates in both architectures on 64-bit data
widths, while CIM core operates on 1024-Byte data widths, which
is equivalent to the execution of 1024*8/64=128 CPU instructions
in parallel.
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Figure 10: Performance comparison for vector OR kernel

Table 4: Architecture configuration

Configuration Conventional Arch. CIMX Arch.
Processor 1 core @ 2GHz 1 core @ 2GHz

Caches 32KB L1 32KB L1
256KB L2 256KB L2

Main memory 1GB DRAM 500MB DRAM
500MB CIM

In this paper, we simulate three frequently-used application
kernels on both the conventional and CIMX architecture, with-
out modifying the underlying algorithms. They are the vector OR,
XOR encryption, and QUERY SELECT database kernel. They are the
memory-intensive parts of vector processing [69], encryption [70]
and database applications [71], respectively. They contain bulk bit-
wise operations that perform poorly on conventional architectures
due to high cache miss rates [58, 72, 57, 73]. The three kernels are
further described next.

• The vector OR kernel performs an OR operation of two vec-
tors. The size of the vectors represents the simulated problem
size. In case the vector size is larger than the data-width of
a single OR instruction (64-bit for CPU and 1024-byte for
CIMX), multiple OR instructions are executed using full loop
unrolling.

• The XOR encryption kernel performs an XOR operation of
a string sequence and a predefined (secret) key. It is used
for one-time-pad cryptography [70]. The size of the string
sequence represents the problem size. In case the string se-
quence size is larger than the data-width of a single XOR

instruction (64-bit for CPU and 1024-byte for CIMX), multi-
ple XOR instructions are executed using a loop with multiple
iterations.

• The QUERY SELECT database kernel performs the query-06
of the TPC-H benchmark [74], which includes 22 queries
written in SQL language. In order to simulate these queries,
the queries need to be converted to C/C++ language (to be
fed into the simulation framework). As this process is not
trivial, themanually created trace for query-06 selectionwith
a 1GB database size presented in [75] is used. The query-06
performs compare instructions (as mentioned in Section 3.3)
and checks if the requested data is available in the database
or not; this includes conjunctions and disjunctions in large
volume tables without join operations between tables. Note
that a complete query execution may require other opera-
tions (e.g., min, max, etc.) that must be performed on the
host processor side. However, in this work, we only focus
on the kernel that performs bitwise operations.

5.3 Simulation Results
Fig. 10 shows the simulation results of the delay and energy con-
sumption of both architectures for the vector OR kernel, respec-
tively. The results clearly show that CIMX architecture outperforms
the conventional architecture by 6x and 7x in terms of delay, and
by 10x and 16x in terms of energy consumption. The benefits are
mainly due to computation-in-memory (reduction in data transfer)
and use of non-volatile technology. Moreover, the obtained delay
and energy improvements strongly depend on the amount of sup-
ported parallelism; note that the more instructions can be executed
in parallel, the higher the advantage of using CIMX. For example,
with a larger problem size, the delay speed-up increases from 6.1x
to 7.3x.

COMPUTATION-IN-MEMORY ACCELERATOR (CIMX)

3

123



A Computation-In-Memory Accelerator
Based on Resistive Devices MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB

106

108

1010

Problem size

D
el

ay
 (

n
s)

1.0x 1.0x 1.0x 1.3x 1.8x 2.7x
4.2x

6.2x
8.4x

10.2x
11.5x

12.4x
12.7x

13.0x
13.2x

13.0x
13.0x

13.3x
13.3x

conventional 
CIMX

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB

108

1010

1012

Problem size

E
n

er
g

y 
(n

J)

1.0x 1.0x 1.0x 1.5x 2.2x
3.6x

5.7x
8.5x

11.4x
13.9x

15.5x
16.5x

17.0x
17.4x

17.6x
17.6x

17.6x
18.0x

18.2x

conventional
CIMA

(a) Delay

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB

106

108

1010

Problem size

D
el

ay
 (

n
s)

1.0x 1.0x 1.0x 1.3x 1.8x 2.7x
4.2x

6.2x
8.4x

10.2x
11.5x

12.4x
12.7x

13.0x
13.2x

13.0x
13.0x

13.3x
13.3x

conventional
CIMA

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB

108

1010

1012

Problem size

E
n

er
g

y 
(n

J)

1.0x 1.0x 1.0x 1.5x 2.2x
3.6x

5.7x
8.5x

11.4x
13.9x

15.5x
16.5x

17.0x
17.4x

17.6x
17.6x

17.6x
18.0x

18.2x

conventional 
CIMX

(b) Energy

Figure 11: Performance comparison for XOR encryption kernel

Similarly, Fig. 11 shows the results of the XOR encryption kernel.
For small problem sizes (less than 4KB), CIMX has no delay and
energy improvement due to the overhead of non-accelerated part.
However, the improvement is nearly 2x when the problem size is
doubled. The XOR encryption is more complex than the vector OR
kernel, as the non-accelerated part (i.e. the part that executes on
the host CPU) consists of a much larger fraction of the total execu-
tion code. In case of large problem sizes, (i.e, larger than 512KB),
CIMX architecture achieves more than one order of magnitude
improvement both in terms of delay and energy in comparison
with the conventional architecture. The speed-up results from two
factors: (i) the exploited parallelism similarly as in the case of vector
OR kernel, and (ii) the cache misses due to inefficient conditional
instructions created by the loop.

Fig. 12a shows the results of the QUERY SELECT database ker-
nel and in particular the compare instructions of query-06 from
the TCP-H benchmark [74]. CIMX architecture achieves 4x higher
performance as compared to the conventional architecture while
consuming 6x less energy. The area of both architectures is shown
in Fig. 12b. The improvement results from also the exploited paral-
lelism similarly as in the case of vector OR kernel; however, as the
database size does not fit within the CIM core, the speed-up is not
as optimistic as the one obtained from the analytical model. With
the use of non-volatile memory, the area of CIMX architecture is
approximately 23% lower than that of the conventional architecture,
resulting in a smaller footprint.

Overall, CIMX achieves nearly one order of magnitude improve-
ment in delay and energy with a smaller footprint for the three
simulated benchmarks. These improvements are mainly due to
reduction in data movement and use of non-volatile technology.

6 DISCUSSION
In this section, we first compare the analytical model and simulation
framework. Thereafter, we address the limitations of this work and
suggest possible solutions.

6.1 Comparison of Analytical and Simulation
Results

The comparison is based on two aspects, i.e., the accuracy and
required evaluation effort.

Accuracy:The analytical and simulation results show that CIMX
architecture achieves significant improvements in terms of perfor-
mance/delay, energy and area. The analytical results are generally
more optimistic as they assume an ideal application with a uniform
profile, where consecutive kernels can be accelerated without con-
sidering the communication between them. However, typically, a
program contains various kernels, and hence, the improvements
depend on the accelerated parts. For example, the XOR encryption
kernel achieves no speed-up in case of small problem sizes (smaller
than 32KB), but the speed-up increases to more than 13x in the case
of a relatively larger problem size (256MB). In addition, the improve-
ments of the simulator are limited due to the limited parallelism
of CIM core; in the analytical model, the number of parallel CIM
instructions can be easily modified, while this is harder to realize in
the simulator. Another difference is the configuration of the number
of cores between the model and the simulation framework. In the
analytical model, we assumed that the conventional architecture
consists of several cores. However, the three kernels we explored
with the simulation framework were run on a single core; note
that a lot of efforts are needed to parallelize them. Nevertheless,
the results of both the analytical model and simulation framework
show similar trends and the CIMX architecture achieves nearly one
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Figure 12: Delay, energy and area comparison of conventional and CIMX architecture

order of magnitude improvement in terms of speed up and energy
reduction.

Evaluation effort: Even though the simulation framework pro-
vides more realistic results than the analytical model, it is time-
consuming to port and execute an application on the simulation
framework. First, it requires (as of now)manual insertions of pragma’s
and the user has to specify the CIM instructions. Second, as the
simulation framework is based on a cycle-accurate simulator, even
relative simple programs containing less than a hundred lines of
code are transformed to traces with thousands/millions of instruc-
tions, which take hours if not days to simulate. In contrast, the
analytical model provides a quick design exploration and gives
a quick insight where the highest improvements can be obtained.
Hence, as a lot of effort is required to run the application on the sim-
ulation platform, the analytical evaluation can be used to quickly
analyze the performance estimation. This requires however accu-
rate inputs to the model such as L1 and L2 cache miss rates. They
can be retrieved for example by performing a workload characteri-
zation by for example using the Linux tool perf [76] or Intel emon
that has been used to characterize database applications [57].

6.2 Limitations and Future Work
The proposed architecture is still an on-going research. Therefore,
there are still a lot of issues to be addressed as explained next.

Mapping of complex functions on CIM core:More research
is required to map complex functions on the CIM core. First, it
would be ideal if arithmetic operations could be executed on CIM
core. This reduces the communication between processor and main
memory even further. Moreover, for database applications, opera-
tions such as AVERAGE, MIN, and MAX can also be performed on
CIM core when these arithmetic operations are integrated; this will
subsequently improve the overall performance. In case, a query has
a complex operation that cannot be performed by CIM core, the
results of the compare instructions have to be transferred back to
the host processor to perform this complex operation; it impacts

the performance if this operation happens frequently. Therefore,
it is essential to implement essential complex operations on CIM
core. Third, to increase the performance even more, the instruc-
tion set can be extended with macro instructions [77] such as dot
product or matrix multiplication [78]. Another approach is to in-
tegrate the arithmetic units in the CMOS layer near the memory
controller, similarly as carried out in near-data computing [71].
Current prototypes have already demonstrated this approach by
stacking memristors on top of a CMOS layer [79, 80]. Moreover, fu-
ture work should also focus on the instruction set, as the overhead
to implement and execute the in-memory instructions are often
overlooked in current designs.

Memory controller and communication: The memory con-
troller and the communication between processor and accelera-
tor should be investigated more accurately. Optimizing the inter-
communication (i.e., between processor and CIM core) and intra-
communication (i.e., within CIM core) is of great importance. Simi-
lar work in the field has provided solutions to intra-communication
among banks and arrays [81, 6]. However, design exploration and
optimization of such components still needs further investigation
and could significantly improve the overall performance and ro-
bustness [82, 77, 83, 84, 85].

CIMX architecture improvements: CIMX was designed with
the intention to minimize the required number of modifications to
conventional architectures. It is worth noticing that much higher
performance and energy improvements can be achieved in case
more radical architectures are considered, such as the one in Fig.
3d. As the CIM core stores a huge amount of data, the main DRAM
might become superfluous. This will eliminate the expensive off-
chip communication and enable higher performance and energy
improvements. With expected technology developments, it may
become feasible to allocate more and more data on the same chip.
Current prototypes have demonstrated resistivememories with GBs
of data [36, 86, 87]. In addition, CIMX in general and scouting logic
in particular are feasible to be implemented using other memory
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technologies such as SRAM and DRAM [81, 88]. Note that CIMX
is based on resistive memories which generally have a low power
consumption and small footprint. In order to implement CIMXusing
other memristor devices such as phase change memory (PCM) [89],
a thorough investigation is required to estimate CIMX performance.
A benefit of using PCM is that it is more robust with multi-bit
cells. [90].

Application exploration and simulator automation:Although
we considered three kernels, more applications have to be explored
for CIMX architecture. Note that the considered CIMA architec-
ture contains an accelerator that can only perform logical oper-
ations. Hence, it is worth exploring various applications with a
high percentage of logical operations. In fact, some previous work
has proposed quite a lot of applications with these characteristics
such as database processing, graph processing, security encryption,
and bio-sequencing [6, 81, 33, 45, 47, 91]. In this paper, we have
shown potential examples such as QUERY SELECT kernel (database
applications) and XOR encryption kernel (security encryption). Due
to some manual processes in the simulation, it is currently not
straightforward to map more potential applications. Nevertheless,
exploring potential applications is essential once the simulation
framework is further automated.

7 CONCLUSION
In this paper, we proposed a Computation-In-Memory Accelerator
architecture that uses scouting logic to perform in-memory logical
operations. Our analytical and simulation results show that CIMX
architecture outperforms conventional architectures with at least
one order of magnitude improvements in terms of delay and energy
while consuming less chip area. These improvements can be realized
for big data applications (such as those with a low data locality,
large bulk bitwise operations), which perform poorly on the general
purpose computers. Therefore, the proposed architecture is a viable
candidate for high performance application-specific computers,
embedded and/or low power system.
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4
CIRCUIT LEVEL

This chapter presents a logic automation tool and interconnect network schemes. In terms
of logic automation tool, it proposes a generic synthesis framework which can utilizes var-
ious logic design methods to generate memristor circuits from hardware description lan-
guage (HDL) of a function. Subsequently, it shows two case studies of 2-bit counter and
8-bit adder to illustrate the framework. In terms of interconnect network, it proposes three
schemes: direct (using only copy operation within memristor crossbar), indirect (using
CMOS circuits outside of memristor crossbar), and hybrid (using the combination of di-
rect and indirect method). Thereafter, it uses parallel addition as a case study to describe
an interconnect network for in-memory computing architectures. All three proposed in-
terconnect network schemes are evaluated and discussed.

The content of this chapter is based on the following research article:

1. H. A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui and K. Bertels, "Synthesizing HDL to memristor tech-
nology: A generic framework," 2016 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), Beijing, 2016, pp.43-48.

2. H. A. Du Nguyen, L. Xie, J. Yu, M. Taouil and S. Hamdioui, "Interconnect networks for resistive comput-
ing architectures," 2017 12th International Conference on Design & Technology of Integrated Systems
In Nanoscale Era (DTIS), Palma de Mallorca, Spain, 2017, pp. 1-6.
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4.1. PROBLEM STATEMENT
As memristive devices are still immature, there are still open questions on circuit synthe-
sis flow and interconnect network. First, the circuit synthesis flow is essential to provide
basic components for architectures. Second, it is essential to find the best method to im-
plement interconnect network between the basic components. This chapter will explore
these aspects.

Circuit Synthesis Flow: Many memristive logic designs have been proposed to pro-
vide manual designs of basic components. However, these manual designs are limited
in terms of functionality and performance. In fact, it is difficult to tune those basic com-
ponents for an architecture targeting a specific application. Hence, a generic synthesis
tool that is not limited to a logic design methodologies is required for architects to ex-
plore various basic components easily.

Interconnect Network: Several existing work has implemented basic operations for
the interconnect network. However, large scale interconnect networks among basic com-
ponents have not been explored. Therefore, it is essential to explore different possible
interconnect networks for large scale circuits.

4.2. MAIN CONTRIBUTIONS
The main contributions in the above aspects are as follows.

Circuit Synthesis Flow [77]: We propose a generic synthesis framework that generates
memristor circuits and its controllers from a hardware description language (HDL) file,
as shown in Fig. 4.1. As HDL files are frequently used in FPGA, there are a large exist-
ing library of these basic components for exploration. In addition, the framework can
be incorporated with various memristive logic design methods; hence, it can generate a
wide range of components that are flexible enough to be explored and tuned for specific
applications. In this work, two case studies of a 2-bit counter and 2-bit adder are used to
illustrated the framework.

Netlist generation Netlist partition and mapping Netlist placement and routing

Memristor-
compatible netlist

Memristor tiles and 
control flow graphs

HDL 
description

Memristor and CMOS 
controller circuit

AST generation

HDL description

IP extraction and replacement
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Netlist-to-memristor preparation

Memristor-compatible 
netlist

Memristor- compatible 
netlist

Memristor tiles and 
Control flow graphs

Memristor and CMOS-
controller circuit

Memristor tiles and 
Control flow graphs

(a) Netlist generation (b) Netlist partition and mapping (c) Netlist placement and routing

Memristor PAR
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Memristor and CMOS circuit integration

Netlist partition

Memristor tile mapping

Figure 4.1: Proposed synthesis framework

Interconnect Network [78]: We propose three interconnect network schemes that use
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only memristors, only CMOS circuits or both. The memristor interconnect network is
based on the basic operation copy proposed in the previous work [79]. The CMOS in-
terconnect network utilizes the CMOS circuits (i.e., controllers) to read from the source
memristor and write to the destination memristor. The hybrid interconnect network
use memristors for direct copy between two memristors on the same row or column,
and CMOS transmission gates to connect between two memristors located on differ-
ent rows and/or columns. A parallel adder is used as case study to illustrate the three
proposed interconnect network schemes. The results show that a hybrid interconnect
network scheme has the highest efficiency in terms of delay, energy and area, as shown
in Fig. 4.2. Hence, it is essential to utilize both memristor operations and CMOS devices
to build an effective interconnect network scheme for resistive computing architectures.
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ABSTRACT
Memristors are emerging devices with huge potentials. It
has been shown that they can be used not only to design
non-volatile memories, but also logic circuits. In the lat-
ter, memristor devices are stacked on a CMOS circuit which
generates the required control signals needed by the mem-
ristors to perform the required functionality. This paper
sets a step towards automating this process; it proposes a
generic synthesis framework to map logic circuits on mem-
ristor crossbar. The framework takes HDL descriptions as
input and generates both its memristor circuitry and its as-
sociated CMOS control. The framework consists of three
phases: (i) netlist generation, (ii) partition and mapping,
and (iii) placement and routing. To illustrate the frame-
work, a combinational and a sequential circuit are investi-
gated. The results are validated using HSPICE simulations.

1. INTRODUCTION
As CMOS technology is reaching the inherent physical

limits of down-scaling, sub-20nm technology nodes suffer
from significant challenges [1–4], such as saturated perfor-
mance gain, increased static power consumption, decreased
reliability, complicated fabrication process, and increased
manufacturing and testing cost. These issues have led to a
research growth on emerging technologies as an alternative
or a complementary one to CMOS. Memristor technology is
one of the promising candidates due to its high scalability,
zero static energy and CMOS compatibility [5,6]. Further-
more, memristors can be used to implement both process-
ing and storage elements [7]. Since the memristor device was
demonstrated by HP in 2008 [7], a lot of research on memris-
tor based logic designs using Boolean logic [8,9], implication
logic [10,11], threshold logic [12] etc. have been proposed. In
addition, various computing architectures based on memris-
tors [13–16] have been reported. Although there are many
challenges still to be solved, memristor crossbars have shown
to have huge potentials for large scale designs thanks to their
high density [14,17,18]. However, hand-made designs will
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not allow the exploration of such potentials for large-scale
circuits and architectures. In addition, existing CMOS syn-
thesis tools cannot be used for memristor crossbar designs; a
memristor is a passive device that uses resistance (instead of
voltage) to represent data, and memristor crossbar designs
need to be configured through control signals generated by
CMOS circuitry. Therefore, there is a need of automation
tools for memristor circuits in order to fully explore their po-
tentials. The framework should support various memristor
logic design methods, and must be as intuitive as a CMOS
synthesis framework, i.e. it must start with a hardware de-
scription (in Verilog or VHDL).

Currently, only limited work has been reported about the
automation of the memristor-based designs such as implica-
tion logic [19], threshold logic [20], Boolean logic [21] used for
arithmetic circuits, or neuromorphic computing circuits [22].
In [19], the authors proposed a method to map Boolean func-
tions on implication logic based memristor circuits and to re-
duce the number of computation steps. In [20], the authors
proposed an algorithm to map Boolean functions on thresh-
old based memristor circuits with the target to reduce energy
consumption in comparison with LUT-based FPGA thresh-
old logic. In [21], the authors proposed a formal method
to map Boolean functions on Boolean logic based memris-
tor circuits while reducing sneak path currents. These work
focus mostly on the mapping of small Boolean functions on
a memristor circuit. In addition, each of them targets a
specific logic type only. Another major limitation is that
CMOS controllers are typically ignored, while they are fun-
damental for the place-and-route phase as they impact the
interconnection, power, area, delay, etc. In [22], the authors
proposed an efficient partitioning, placement and routing of
memristor crossbars used for neuromorphic computing sys-
tems. However, this work only takes neural network models
as input, hence, it is not flexible for all computational prob-
lems. In conclusion, exploring large design based on mem-
ristor technology needs automation tools.

This paper sets a step towards the automation of logic syn-
thesis for memristor circuits. It proposes a generic synthe-
sis framework, which may target all memristor logic types,
memristor circuit design methods and memristor circuit struc-
tures (discrete memristors and memristor crossbars [18]).
The framework uses a Hardware Description Language (HDL)
file as input and synthesizes it to a memristor circuit with
its corresponding CMOS control circuits. To verify the gen-
erated circuits, the framework produces additional HSPICE
simulation files and also reports several performance metrics
such as delay, area, energy. To the best of our knowledge,
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Figure 1: Proposed synthesis framework

our work is the first to present a complete synthesis frame-
work for memristor circuits. The main contributions are:

• a generic memristor synthesis framework from HDL to
memristor circuits.

• validation of the entire framework using two case stud-
ies: a 2-bit counter and 8-bit adder.

The rest of this paper is structured as follows. Section 2
briefly describes the proposed synthesis framework. Section
3, 4, and 5 present the three main phases of the frame-
work: netlist generation, netlist partition and netlist place-
ment and routing. Section 6 provides a case study of an
8-bit adder, and its verification using HSPICE simulation.
Section 7 discusses the framework’s opportunities and chal-
lenges. Finally, Section 8 concludes this paper.

2. PROPOSED SYNTHESIS FRAMEWORK
The framework synthesizes a HDL file (Verilog, VHDL,

etc.) and generates a placed and routed memristor cir-
cuit, and its corresponding CMOS controller. In this paper,
we will focus on the memristor crossbar; nevertheless, the
framework is also applicable to discrete memristors [18].

Fig. 1 shows the main components of the framework con-
sisting of three phases: (i) netlist generation, (ii) netlist par-
tition and mapping, and (iii) netlist placement and routing.

The netlist generation phase translates a HDL file to a memr-
istor-compatible netlist, which contains conventional logic
gates with predefined memristor-based IPs.

During the netlist partition and mapping (PAM) phase, the
memristor-compatible netlist is first partitioned. Subsequent-
ly, each partition is translated to a memristor circuit. Along
this process, a control flow graph (CFG) is generated to keep
track of the execution order of the partitioned netlist.

In the last phase, the netlist placement and routing (PAR),
first all the memristor partitions are placed on the crossbar.
Then, CMOS controllers are generated based on the CFG
of the previous phase. Thereafter, the CMOS controllers
are placed in such a way that the crossbar is stacked on
the CMOS part, and the overall communication and area
are optimized. Finally, the placed memristor partitions are
routed and connected to the CMOS controllers.

In the next section, the three phases will be elaborated.
We will do that while using an example in order to pro-
vide more insights in the framework. The example is a 2-bit
counter, which is a sequential circuit. The HDL description
of this counter is shown in Fig. 2. The 2-bit counter has a

1. module counter (clk, rst, D, Q);
2. input clk, rst;
3. input [1:0] D;
4. output [1:0] Q;
5. reg [1:0] tmp;
6. always @(posedge clk)
7. begin
8. if (rst)
9. tmp = D;

10. else
11. tmp = tmp + 1’b1;
12. end
13. assign Q = tmp;
14. endmodule

Figure 2: Verilog description of a 2-bit counter

2-bit initial value (D), clock (clk), and reset (rst) as inputs
and 2-bit output (Q).

3. NETLIST GENERATION
The netlist generation starts with a HDL file and pro-

duces a memristor-compatible netlist with gates and mem-
ristor IPs. Fig. 1a shows the four main steps of the netlist
generation: (i) Abstract Syntax Tree (AST) generation, (ii)
IP extraction and replacement, (iii) gate netlist generation,
and (iv) netlist-to-memristor preparation.

In step 1, inspired by CMOS circuit synthesis, i.e., the
Yosys synthesis framework [23], the netlist generation starts
with AST generation. The AST is a tree representation of
the source code, and includes operations (addition, subtrac-
tion, division, etc.) and processes (sequential and combina-
tional). Fig. 3 shows a graphic representation of the 2-bit
counter AST (its Verilog description in Fig. 2). The AST
consists of five declarations (WIRE nodes), one process (AL-
WAYS node) and one assignment (ASSIGN node). In each
node, there are corresponding children nodes depending on
the statement in the Verilog description. For example, the
statement assign Q = tmp; (line 13 of Fig. 2) is converted
to an ASSIGN node with two children nodes with identifiers
ID:Q and ID:tmp (see top-right part of Fig. 3).

In step 2, IP extraction and replacement, specific nodes
in the AST (e.g., ADD, SUB) are identified and may be
replaced by predefined memristor IPs. This is analogue to
CMOS circuit synthesis where a node in the AST may be
implemented by specific library components (e.g., low-power
adders or fast multipliers). A memristor IP has a similar to
function as a regular IP, but is implemented by memris-
tor circuits. For example, the node ADD shown in Fig. 3
is identified and replaced by a memristor design of a 1-bit
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MODULE:
counter

WIRE:
rst

WIRE:
clk

WIRE:
D

RANGE:
[1:0]

CONST: 
1

CONST:
0

WIRE:
Q

WIRE:
tmp

RANGE:
[1:0]

CONST:
1

CONST:
0

RANGE:
[1:0]

CONST:
1

CONST:
0

ALWAYS

POSEDGE

ID: clk

BLOCK

CASE

REDUCE
_BOOL

CONDCOND

ID: rst CONST: 
1

BLOCK

ASSIGN

ID: tmp ID: D

DEFAULT

BLOCK

ID: tmp
ADD

ASSIGN

ID: tmp CONST:
1

ASSIGN

ID: Q ID: tmp

Figure 3: Abstract syntax tree with IP replacement

adder (an available library component). This prevents such
nodes from being further processed and transformed into
gates which may lead to a sub-optimal memristor circuit.

In step 3, the gate netlist generation, a gate netlist is cre-
ated from the AST representation in a similar way to the
CMOS circuit synthesis flow. In this step, multiple synthe-
sis optimization techniques such as constant reduction [23],
logic optimization [24], etc. can be reused. Fig. 4a shows
the 2-bit counter gate netlist. Notice that the node ADD
has been replaced with a memristor design “IP:ADD”. In
case the node ADD is not replaced with the memristor IP,
the gate netlist shown in Fig. 4b would have been generated.
We discuss the rest of the framework using the gate netlist
of Fig. 4b, which is without the memristor IPs.

The final step modifies the gate netlist into a memristor-
compatible netlist; a memristor-compatible netlist is a cir-
cuit described by logic gates and predefined memristor-based
IPs that can be mapped directly to a memristor circuit
(more details in Section 4). As memristors are residing in
the crossbar, they are directly controlled from the CMOS
controller. Therefore, there is no need for a control-related
circuit such as a clock tree in the crossbar. Hence, the
netlist-to-memristor preparation step handles these signals
by moving them to CMOS controllers and removing related
clock logic out of the netlist. As the clock logic is removed
from the crossbar, synchronization is carried out by CMOS
controller. This ensures the functionality of the circuit. Note
that the synthesis framework should support both sequen-
tial and combinational circuits. A possible solution to main-
tain the synchronization is to reorganize the logic inside the
netlist based on the pipelines in the design. The logic be-
tween two pipeline stages is grouped into a memristor logic
island and the flip-flops into memristor-based registers. All
logic islands are synchronized, execute in parallel, and up-
date their results to the corresponding registers simultane-
ously to ensure the robustness of the circuit. All inputs,
outputs and temporary values are stored in memristor-based
registers. The constant values are integrated into logic is-
lands, which will be optimized further in the mapping phase.
Fig. 4c shows the memristor-compatible netlist of the 2-bit
counter. In this netlist, the logic blocks are separated into
two logic islands. As memristors are non-volatile devices,
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Figure 4: Processed netlist step by step

all the memristor-based registers can be embedded into the
logic islands; for example, inputs/outputs (D0, D1, $66,
$69) and temporary values ($64, $65) are shifted into Logic
Island 1 and Logic Island 2, respectively. Hence, we have
to only deal with logic islands. Note that this optimization
may not be feasible for non-resistance based logic types.

4. NETLIST PARTITION AND MAPPING
Netlist partition and mapping (PAM) starts with the memr-

istor-compatible netlist and produces multiple partitions ma-
pped on memristor crossbar with their corresponding CFGs.
Fig. 1b shows the two steps: (i) netlist partition and (ii)
memristor tile mapping.

In step 1, the netlist partition, the netlist is partitioned
into multiple smaller fragments. This step is required as the
maximal affordable memristor circuit size (referred to as a
tile) may be limited due to various constraints such as sneak
path currents, high programming power, signal degradation
etc. [25]. Depending on the selected design method (e.g.,
Boolean logic in Crossbar (BL) [8,9], Complementary Re-
sistive Switch-Based (CRS) logic [11], memristor material
implication logic (IMPLY) [10] etc.), the partition is per-
formed using pre-defined constraints such as area, power,
number of inputs/outputs, number of partitions, etc. A re-
view of existing partition algorithms is presented in [26];
any of these algorithms can be used in this framework. To
illustrate this step, we consider the two logic islands of the
memristor-compatible netlist shown in Fig. 4c and select
the BL design method [8] as it provides a simple implemen-
tation. This method is based on Boolean logic truth tables
and poses some constraints. For instance, the size of the tile
depends on the number of inputs, outputs and truth table’s
minterms. The number of minterms is determined by the
number of inputs and the functionality of the block. Hence,
the number of input is one of the partition constraints. If
we assume that the selected design method allows maximum
three inputs per partition, then Logic Island 1 (LI1), which
consists of five inputs, needs to be partitioned. After par-
titioning LI1, we achieve the two sub-partitions I1.P1 and
I1.P2 as shown in Fig. 5a and 5b. Logic Islands 2 (LI2)
already satisfies the 3-input constraint as shown in Fig. 5c.

45

4

134 PAPER 4.1



(a)

(b)

(c)

$66 $66

IL

V1 V2 V3 V4 V5 V6 V7 V8

D1 D1 rst $65rst $65

OL

M1
M2

LI1.P1

(d)

IL

OL

M1
M2

$69 $69 D0 D0 rst $64rst $64

LI1.P2 V1 V2 V3 V4 V5 V6 V7 V8

(e)

$64 $64

IL
$65$65 $66 $66$69 $69

OL
OL

M1
M2
M3

LI2 V1 V2 V3 V4 V5 V6 V7 V8

(f)

Figure 5: (a),(b),(c) Partitioned logic islands
(d),(e),(f) Memristor crossbar layouts

In step 2, the memristor tile mapping, the partitioned
netlist is mapped on the crossbar. The mapping method de-
pends on the selected design method, which can be Boolean
logic, implication logic, majority logic, etc. Hence, the pro-
posed framework is generic in the sense that it can sup-
port any logic design method. Also here, we use BL to get
more insights in this step. BL converts a single truth table
to a memristor crossbar layout. The layout includes place-
ment and routing of active and disabled memristors in a tile.
When control voltages are applied to certain memristors, a
predefined procedure is performed to calculate the outputs
from inputs based on minterms evaluation.

For instance, consider the partition 1 of Logic Island 1 (LI1.P1);
it only contains a MUX which can be described with the
Boolean equation: $65 = D1.rst+ $66.rst, or $65 = D1.rst

. $66.rst. A truth table is created and mapped to memristor
tile as shown in Fig. 5d. In the crossbar, diagonal lines with
a head present active memristors, while ones without a head
are disabled memristors. The tile includes the input latch
(IL) on the first row which is used to capture the inputs
and their complementary values; two minterm rows which

implements M1 = D1.rst and M2 = $66.rst, respectively;
and an output latch (OL) which computes the AND of the
two minterms and inverts the result to get the final result
$65. In Fig. 5d, H# and V# are used to denote the hori-
zontal and vertical nanowires, respectively. We will use the
notation (H#, V#) to present the position of a memristor
at a junction formed by the horizontal H# and vertical V#
nanowires. The IL is mapped in memristors located at (H1,
V1-V4); the remaining two memristors in H1 are disabled.
The two minterms M1 and M2 are located at H2 and H3;
each minterm is implemented by placing active memristors
at junctions formed by the horizontal nanowire presenting
the minterm and the vertical nanowires associated with (a)
the minterm’s inputs, and (b) the output. For example, for
M1, the junctions at (H2, V3)=D1, (H2, V5)=rst, and (H2,

V7)=$65 consist of active memristors, while the remaining
junctions are disabled. The two minterms are ANDed in
parallel by column V7=$65. The OL is realized by H4; the
result of the AND is stored at (H4,V7), which is thereafter
inverted and stored at (H4,V8).

$66
$66

D1 D1 rst rst

$65$65

$69
D0 D0 rst rst

$64 $64

$69

$64

$66 $69

$64

$65
$65

$66 $69

A

Figure 6: Placed and routed memristor tiles

Fig. 5e and 5f show the final results of the implementation
of Logic Island 1 - partition 2 (LI1.P2) and Logic Island 2
(LI2), respectively on the crossbar using BL design method.
A similar mapping as that used for Logic Island 1 - partition
1 (LI1.I1) is applied here.

Along with above steps, a control flow graph (CFG) is
recorded based on the execution order of the partitioned
netlists. Currently, this step is carried out manually. The
possibility to automate this process is under investigation.
This CFG is used in the next phase to create the CMOS
controller. Fig. 7a shows the CFG of the 2-bit counter.
The CFG includes four stages: external input capture, logic
island execution, synchronization and register update.

5. NETLIST PLACEMENT AND ROUTING
The netlist placement and routing (PAR) places the mem-

ristor tiles in the memristor crossbar stacked on their corre-
sponding CMOS controllers, and constructs interconnection
among them. The objective of this phase is to optimize the
inter-tile communication and minimize the area consump-
tion. Fig. 1c shows the three steps of the netlist PAR:
(i) memristor PAR, (ii) CMOS controller circuit generation
and PAR, and (iii) memristor and CMOS circuit integration.

In step 1, the memristor PAR, multiple memristor tiles
generated in the previous phase are first placed. The imple-
mentation of PAR scheme depends on the area constraints
and technology feasibility such as the possibility to isolate
tiles, etc. For illustrative purposes, we use a simple PAR
scheme; note that any available PAR scheme can be used.
For the PAR scheme used in this paper, memristor tiles are
merged into a crossbar and organized diagonally; the result
is shown in Fig. 6.

Note that diagonal scheme under-utilizes the resources, and
therefore other PAR schemes can be applied for efficient de-
sign. For example, an optimal PAR scheme will require the
use of isolation of the different tiles; this could be realized
by breaking the nanowires between the tiles, and inserting
voltage drivers to control the isolated tile [9]. In this case,
the tiles can be placed horizontally, vertically or in different
memristor layers (3D configuration).

After the placement, the memristor tiles are routed using an
interconnect network. Very limited work has been published
about interconnects and communication for memristor cross-
bar stacked on CMOS. Three interconnect network options
are possible for memristor circuits: using metal wires out-
side the crossbar, using memristors for copy operations, or
combining both options. In the first option, metal wires are
used for the communication between the memristors. Pass-
transistors may be required as switches to control the com-
munication. In the second option, using memristor-based
copy operations, active memristors are placed at specific lo-
cations in the crossbar [27]. These active memristors per-
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Figure 7: CFG and state machine of CMOS controller

form copy operations when appropriate control voltages are
applied. For this work, we illustrate routing by using mem-
ristor based copy operation; obviously, these memristors re-
quire an appropriate CMOS control circuit. Fig. 6 shows
the placed and routed memristor tiles of the 2-bit counter.
In this figure, active memristors used for interconnection are
depicted with gray boxes. The inputs $64, $65, $66, $69 and
their complementary are organized in a diagonal style to re-
ceive updates from the other tiles in parallel. Consider the
output $65, it is copied vertically to memristor A, then hori-
zontally to input $65. Similarly, all tiles’ outputs are copied
to corresponding tiles’ inputs when applicable. Note that
the interconnect network also guarantees the synchroniza-
tion. In the 2-bit counter (as shown in Fig. 4c), results $66
and $69 need to be transferred backward to partition LI1.P1
and LI1.P2, while results $65 and $64 of partition LI1.P1
and LI1.P2 need to be transferred forward to LI2. Hence,
a loop is formed in this circuit. With the preparation step
in netlist generation phase (phase 1), the synchronization is
carried out by executing logic islands, copying results and
updating register islands simultaneously. The loop is syn-
chronized without additional control effort.

In step 2, the CMOS controller generation and PAR, firstly
the CMOS controller is generated from the CFGs. The
CFGs are used to construct a HDL description state machine
of the CMOS controller. The state machine is synthesized
by CMOS synthesis flow while minimizing the interconnect
network with the stacked crossbar. The CMOS controller of
the 2-bit counter is shown Fig. 7b; it is constructed from
the CFGs from the Fig. 7a. The capture inputs block is
converted to state 1-2. At power-on, the state machine ini-
tializes the whole crossbar to high resistance (initial state)
and reads all inputs. The I1.P1, I1.P2, P2 blocks are con-
verted into states 3-6. They calculate results in all logic is-
lands. The synchronization and update blocks are converted
to states 7-9; they communicate by transferring results from
one logic island to another logic island. Finally, the capture
inputs block is converted to state 10; This state updates the
primary inputs. At this state, new inputs can be fed into
the circuit or previous register values remain in the circuit
to continue counting up.

Finally, the memristor and CMOS controller circuit have
to be (stacked and) integrated by creating the interconnects
between them. During this last step, the physical layout is
generated. This step still requires further investigation.

6. CASE STUDY
6.1 Simulation setup

To verify the framework, the generated memristor cross-

Table 1: Simulation parameters [8,9,28]
Parameters Value Parameters Value Parameters Value

RL 200KΩ RS 2MΩ Vw 2.9V
RH 4GΩ Vth 2V Vhw 1.45V

Table 2: Specifications of 8-bit adder partitions

Partition Inputs Outputs Tile size
(rows×cols)

P1 a0, b0, a1, b1 y0, y1, $1 15×14
P2 a2, b2, a4, b4, $1 y2, $2, $3 15×16
P3 a3, b3, $2, $3 y3, y4, $4 21×14
P4 a7, b7, $4 $5, $6, $7 11×16
P5 a5, b5, $7 y5, $8 18×12
P6 a6, b6, $8 y6, y7 17×12

bar are validated with HSPICE simulations using the ideal
memristor model described in Verilog A [9,28]. The mem-
ristor crossbar is described in an HSPICE netlist, while the
CMOS control state machine and its corresponding voltage
drivers are described in Verilog A. The simulation param-
eters are defined as shown in Table 1 [9,28], which targets
Boolean logic designs [8]; the RH , RL, and RS represent the
high resistance, low resistance, and reference resistor of the
memristor crossbar, respectively. Vth, Vw, and Vhw represent
the memristor threshold voltage, write voltage, and half-
select voltage, respectively. The simulation is performed us-
ing a Linux server machine with 8 cores (at 2.66 GHz) and
32 GB memory.

6.2 Memristor-based 8-bit adder verification
In addition to the sequential 2-bit counter that we used

through the paper to illustrate the framework, we present
here an 8-bit combinational adder as a study case. Similar
to the 2-bit counter, we start with the Verilog design of an
8-bit adder (with two 8-bit inputs and an 8-bit output, no
carry-in and carry-out). Next, we briefly describe the result
of the three phases of the synthesis framework:

• In phase 1, netlist generation creates a memristor-
compatible netlist of 8-bit adder. As the adder is an
sequential circuit, the result consists of one logic island
and no register island. Due to the relative large design,
the obtained netlist is not shown here.

• In phase 2, netlist partition and mapping first par-
titions the memristor-compatible netlist generated in
phase 1. For illustrative purposes, we set a constraint
of maximum five inputs per partition. This results in
six partitions mapped on memristor tiles as shown in
Table 2; each tile has a number of inputs, outputs and
consumes a particular number of memristors. For in-
stance, tile P1 has four primary inputs (a0, b0, a1, b1 )
and three outputs; i.e., y0 and y1 are primary outputs,
and $1 is fed to tile P2. Similar specifications are ap-
plicable for other partitions.

• In phase 3, netlist placement and routing, the above
tiles are placed on the crossbar using the same PAR
scheme as that applied to the 2-bit counter. It is worth
mentioning that the 8-bit adder design is used to illus-
trate the feasibility of the proposed synthesis frame-
work rather than to obtain an optimal design.

Fig. 8 shows the simulation result of the 8-bit adder in 55
steps. As the carry is rippled through memristor tiles, the
lower bit results (e.g. y0, y1) are ready after several steps,
while the higher bit results (e.g. y6, y7) are only available
near the end. The two case studies showed that our approach
can generate the memristor circuits and CMOS controllers
for both combinational and sequential circuit.
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Figure 8: Results of adding ‘00111111’ and ‘10000011’

7. DISCUSSION AND FUTURE WORK
The proposed framework sets a step towards the synthe-

sis automation of memristor-based circuit design. It has
many advantages and features. First, it is generic as its
input are just HDL files; this enables a wide range of ex-
isting applications to be mapped on memristor technology
for exploration. In addition, this enables the framework to
utilize basic CMOS synthesis flows that include many ma-
ture techniques and tools. Second, the framework is flexible
as it poses no constraints on HDL input size, is applica-
ble to all existing/possible memristor logic design methods,
and supports both memristor implementations (i.e., cross-
bar or discrete memristors). Third, the framework is scal-
able as its flow is independent of the complexity and the
size of the circuit. Last, the framework provides a complete
memristor-based circuit design in the sense that both mem-
ristor circuits and their corresponding CMOS controllers are
generated and integrated together.

Nevertheless, many challenges need to be solved to get the
framework close to full automation.

• Managing the complexity: The partition and map-
ping phase is strongly related to memristor logic de-
sign methods, the possibility to stack multiple mem-
ristor layers, the maximum tile size, etc. Research on
these topics are getting more attention. In addition,
the placement and routing phase has to handle the
complexity of the interconnect and communication be-
tween memristor layers, as well as between memristor
circuits and their CMOS controllers; optimal methods
still need to be investigated.

• Efficiency of the solution: The efficiency is strongly
dependent on memristor-based technology (switching
speed, area, etc.), circuit (logic design methods) and
architecture (e.g., crossbar with or without selector,
crossbar with isolation, etc.).

• Efficient PAR scheme on the crossbar to minimize the
use of area.

• Scalability and complexity of CMOS control circuits
with increase of the crossbar size.

8. CONCLUSION
In this paper, we have presented a generic synthesis frame-

work for memristor circuits. The framework creates mem-
ristor circuit and their controller for HDL-based designs.
Without the loss of generality, the framework feasibility was
validated by two study cases: 2-bit counter and 8-bit adder.
At the current state of memristor technology, a feasible syn-
thesis framework is necessary to investigate the possibility

and efficiency of a memristor circuit further. As there is no
existing generic synthesis framework, the work is a step to-
wards the exploration of large-scale memristor circuits.
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Abstract-Today's computing systems suffer from a mem­
ory/communication bottleneck, resulting in high energy con­
sumption and saturated performance. This makes them ineffi­
cient in solving data-intensive applications at reasonable cost. 
Computation-In-Memory (CIM) architecture, based on the in­
tegration of storage and computation in the same physical 
location using non-volatile memristor crossbar technology, offers 
a potential solution to the memory bottleneck. An efficient 
interconnect network is essential to maximize CIM's architectural 
performance. This paper presents three interconnect network 
schemes for CIM architecture; these are (1) CMOS-based, (2) 
memristor-based and (3) hybrid cmos/memristor interconnect 
network scheme. To illustrate the feasibility of such schemes, 
a CIM parallel adder is used as a case study. The results 
show that the hybrid interconnect network scheme achieves a 
higher performance in comparison with the CMOS-based and 
memristor-based interconnect scheme in terms of delay, energy 
and area. 

I. INTRODUCTION 

Classical Von Neumann computer architectures are unable 
to deal with big data problems efficiently due to the mem­
ory bottleneck [1], high energy consumption [2] and ineffi­
cient programming methodology [3]. Architectures based on 
resistive computing [4-6], such as Computation-in-Memory 
(CIM) architecture [6], are emerging and try to address 
the aforementioned problems [71. CIM architecture alleviates 
the memory bottleneck by using the same physical devices 
to implement both logic and storage units. However, such 
computing architectures require efficient interconnect network 
scheme to explore their potential. The interconnect network 
and communication schemes applied in CMOS technology are 
not applicable to memristor crossbar due to fundamental differ­
ences in their working principle. In CMOS technology, logic 
signals are represented by voltages that propagate through 
wires. In CIM, logic signals are represented by resistances that 
are programmed by control voltages. Therefore, it requires a 
distinct interconnect network. 

Recent research in the field has been focusing on imple­
menting logic inside the memristor crossbar [8-11]. However, 
limited work has investigated possible interconnect network 
and communication schemes; so far only a single publication 
has addressed this topic. In previous work [12], the authors 
have proposed different communication schemes (i.e., unicast, 
multicast, and broadcast) using an interconnect network fully 
integrated in the memristor crossbar. The scheme has a high 
area overhead and the communication cost depends on the 
relative positions between the source and target memristor. 
This complicates the place-and-route phases [13]. Therefore, 
there is a need to explore different possible interconnect 
network schemes in order to optimize overall performance. 

In this paper, we develop and investigate the potential 
of different interconnect network schemes and use the CIM 
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(a) Single copy operation (b) Diagonal scheme 
Fig. 1: Interconnect Network Proposed in [12] 

parallel adder [141 as a case study. Note that the proposed 
interconnect network schemes can be applied to any crossbar­
based resistive computing architecture. The contributions of 
this paper are the following: 

• We propose two new interconnect networks for CIM 
architecture. 

• We compare them with the previously interconnect
network proposed in [12]; the CIM parallel adder is
used as a case study.

• We evaluate the overhead of the three interconnect
network schemes in terms of delay, energy and area.

The rest of this paper is organized as follows. Section 
II briefly describes the state-of-the-art and the CIM parallel 
adder implementation. Section III presents the interconnect 
network schemes. Section IV discusses the evaluation model 
and results. Finally, Section V concludes this paper. 

II. BACKGROUND 

This section first presents the state-of-the-art in memristor 
crossbar based interconnect networks. Thereafter, it discusses 
the CIM parallel adder and its crossbar implementation [10]. 

A. State-of-the-Art Interconnect Network Schemes 

In [12l, the authors proposed a complete interconnect network 
for the memristor crossbar. Copy operations are used to move 
data between two memristors. A copy operation is carried out 
by applying appropriate control voltages to the source and 
target memristor nanowires. A direct copy operation takes one 
memristor write cycle and occurs when both memristors share 
the same horizontal or vertical nanowire. 

To perform a copy operation between two metmistors re­
siding on different rows and columns, an extra copy operation 
is required as shown in Fig. la. Here, an additional memristor 
located at one of its two intersection points referred to as 
diagonal scheme. In the figure, 5 presents the source memristor
and T the target memristor, while I is used as intermediate
memristor. As a result, the communication cost doubles, i.e., 
two metmistor write cycles. In order to transfer multiple 
bits simultaneously, the diagonal scheme can be extended (as 
shown in Fig. lb); it performs the data transfers (i.e., from 51 
to Tl and 52 to T2) in two cycles.
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Fig. 2: CIM-based Parallel Adder (16 inputs) 

In [8], the authors present a memristor adder based on Com­
plementary Resistive Switches (CRS). As both high and low 
resistance have the same equivalent resistance, copy opera­
tions cannot be used. Instead, the authors propose a CMOS 
interconnect network consisting of a controller with additional 
logic (such as sense amplifier, write driver) to read from the 
source mernristor and write to the destination. However, no 
implementation details were reported. 

B. elM Parallel Adder 

The lower part of Fig. 2 shows a parallel adder (based on the 
binary tree) implemented using the CIM concept, referred to 
as CIM parallel adder [14]. It consists of two components: (i) 
the computation and storage part which reside in the memristor 
crossbar, and (ii) the CMOS controlling part. 

The melmistor crossbar has two purposes, i.e., it perfonns 
computations (additions) and it is used as a storage (memory) 
device. In Fig. 2, the adders are indexed by axy where x 
presents the addition stage and y the adder index within a 
stage. The adders in this architecture are not reused as they 
relatively do not impact the interconnect network schemes. 
Dedicated storage cells for the inputs are presented by ni, 
where i the index of the ith input. Each storage cell consists 
of a memristor that is able to store a single bit. The placement 
of the adders and memory is flexible as both are implemented 
using memristors. To utilize the area of the binary tree imple­
mentation efficiently, half of the inputs are mapped from left 
side, while the other half from right side. 

The upper part of Fig. 2 shows the CIM parallel adder 
implementation using the Fast Boolean Logic Circuit (FBLC) 
style [10]. Each adder aery is replaced by an FBLC 32-bit ripple 
carry adder that is composed of 16 two-bit adders; the two-bit 
adders are selected for their area efficiency [10]. Each two-bit 
adder is represented by a rectangle with two dark areas in the 
upper part of Fig. 2; the longer dark areas present the input 
area, while the smaller dark areas the outputs. The crossbar, 
the controller, and the peripheral circuit are marked in pink, 
blue and green area, respectively. 
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Fig. 3: State Machine for Micro Controller 
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(a) CMOS (b) Memristor (c) Hybrid 
Fig. 4: Proposed Interconnect Network 

The CMOS part consists of the controller and peripheral 
circuit. The controller is hierarchically divided in three layers, 
i.e., macro, micro and nano controller. The macro-controller 
controls the addition stage of the binary tree. The micro­
controller executes a single addition. Each two-bit addition 
has four states as shown in Fig. 3; these states are repeated 
16 times to complete a 32-bit addition. The nano-controller 
translates the macro- and micro-controller instructions to ap­
propriate control voltages which are subsequently applied to 
the appropriate nanowires of the crossbar. Each controller is 
implemented with a state machine. More details of the nano­
controller can be found in [10,12]. 

The crossbar implementation requires a peripheral circuit 
to support the memristor crossbar operations. For example, 
the peripheral circuit includes voltage drivers to control the 
nanowires, sense amplifiers to read out memristor states, and 
multiplexers accompanied with the sense amplifiers to select 
which nanowires are accessed, and logic circuitry to create 
connections between different crossbar nanowires. 

III. INTERCONNECT NETWORK SCHEMES 

This section describes the overview of interconnect net­
work schemes. Thereafter, it integrates them in the CIM 
parallel adder. Note that the CIM parallel adder is only used for 
illustrative purposes. The proposed interconnect networks can 
be applied in general to any resistive computing architectures. 

A. Overview 

Fig. 4 shows the three proposed interconnect networks. They 
are referred to as: (1) CMOS, (2) memristor, and (3) hybrid 
scheme. Each scheme impacts the crossbar and CMOS logic 
differently, as explained next. 

Fig. 4a shows the CMOS interconnect network scheme. In 
this scheme, data movements in the crossbar transit through 
registers in the CMOS layer and consist of two memristor 
operations (i.e., a read and write operation). First, the controller 
reads the value from a source memristor. It stores the value 
temporarily in a CMOS register. Second, it writes the register 
value into the target mernristor. This interconnect network 
scheme requires sense amplifiers, multiplexers, registers and 
a controller that applies appropriate control voltages. The 
communication requires two cycles with a the cycle time 
equal to the maximum delay of the read and write operation. 
The delay of the read operation consists of the delay of the 
controller, sense amplifiers, multiplexers and the time to write 
the CMOS registers. The write path delay consists of the 
controller delay and the write time of the target melmistor. 

Fig. 4b shows the memristor interconnect network scheme. 
In this scheme (based on the work published in [12]), the 

RESISTIVE INTERCONNECT NETWORK

4

139



Fig. 5: CMOS-based Interconnect Network 

controllers need one or two steps to transfer data from the 
source to target memristor. Each step consist of a memristor 
copy operation. This scheme requires an extra intermediate 
memristor at the intersection points between the source and 
target memristors. In case multiple bits are transferred simulta­
neously, the diagonal scheme may be used [12]. The maximum 
delay of the scheme is two memristor write cycles in case there 
are no conflicts between intermediate and reserved (for logic 
or storage) memristors. In case of a conflict, more than two 
copy operations are required. 

Fig. 4c shows the hybrid interconnect network scheme. 
This scheme also uses a copy operation to transfer data from 
source to target memristor. It performs this operation in a 
single cycle by creating a direct path between source and 
destination using a CMOS switch as depicted in the bottom 
part of Fig. 4c. This switch can be implemented by a pass­
gate. The transfer delay equals the delay of the controller to 
perform the copy operation and to activate the pass transistor. 

As described above, the three proposed schemes are ca­
pable of transferring data between any two memristors, and 
support parallel communication. However, they impact the 
delay, energy and area consumption of the memristor crossbar 
and CMOS control differently. Note that the above concept 
applies to data transfers between adders within the same sub­
crossbar (intra-crossbar) and two different sub-crossbars (inter­
crossbar). In the following sections, the three schemes are 
applied to the CIM parallel adder as a case study. 

B. CMOS Interconnect Network 

Fig. 5 shows the CIM parallel adder based on the CMOS inter­
connect network scheme. Each sub-crossbar has its own nano­
controller. Therefore, communication within a sub-crossbar 
is handled by a single controller while two controllers are 
involved in the communication between different crossbars. 

In intra-crossbar communication, (e.g., between adders all 
and a21), the controller reads out the value from the source 
adder (all), stores it in a register, and writes the value in 
the target adder (a21). In inter-crossbar communication, (e.g., 
between adders a12 and a21), the communication is handled 
by two controllers and may be implemented in two ways. The 
first method adds an additional network on the CMOS side 
to move data between the controllers. For example, a source 
controller (e.g., nano-controller 2 in Fig. 5) reads out the value 
of adder a12, transmits the value via the interconnect network 
(which is also implemented by CMOS devices) to the target 
controller nano-controller 1; the target controller writes the 
received values into the inputs of the target memristors (i.e., 
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Fig. 6: Memristor-based Interconnect Network 

inputs of a21). The second method is through a register file. 
In this case, the source controller writes the read-out value to 
a predefined register; thereafter, the target controller reads the 
value from the predefined register. Note that, the register file 
may become large when there are a lot of data transfers. In 
case the size is too big, a memory can be used. 

A read-out operation might destroy the value stored in the 
source adder [8]. Hence, a write-back (restore) operation is 
also required. The read-out, write-in and write back operations 
are carried out by applying appropriate control voltages to the 
nanowires and are required for each data transfer. 

Due to the synchronization between two controllers, the 
read-out and write-in operations executed sequentially using 
two different steps, while the write-back operation is executed 
simultaneously with the write-in operation. Therefore, with 
respect to the crossbar, the delay equals two memristor write 
operations, the energy three memristor write operations per bit 
(including the write-in, write-back operation and the possible 
destructive read of the source memristor), and the area is 
zero (as no extra memristors are required). With respect to 
the controller, each crossbar needs its own nano-controller. In 
addition, two states are required for the two communication 
steps in the micro controller in comparison with the original 
design [12]. With respect to the peripheral circuit, a 2-bit adder 
has three values to be read out (one carry bit and two sum 
bits) simultaneously; hence three sense amplifiers are required 
per adder. As only one 2-bit adder is active at a time in a sub­
crossbar, the sense amplifiers can be shared, while multiplexers 
are used to forward the data from the currently working adders. 
In short, only three sense amplifiers are required per sub­
crossbar. Note that the sense amplifier may be a current [15] or 
voltage sense amplifier [16] depending on the adder logic type. 
In the CIM parallel adder implementation using FBLC style, 
a voltage sense amplifier is preferred [16]. Finally, a register 
file is required to store temporary read values. 

C. Memristor Interconnect Network 

Fig. 6 shows the CIM parallel adder based on the memristor­
based interconnect network scheme. In this scheme, we use the 
state-of-the-art interconnect network proposed in [12]. As the 
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Fig. 7: Hybrid Interconnect Network 

FBLC adder is used, the nano-controller can be shared among 
the sub-crossbars as they require the same control voltages at 
each time step. 

Note that each adder is built from multiple two-bit adders 
that are placed on the same adder row. To simplify the state 
machines, communication takes directly place after partial 
results are obtained. Consider for example the output of adder 
all which will be transferred to the input of adder a21. The 
target adder a21 is located in a different row. As soon as the 
first two-bit adder of adder all produces its outputs, they will 
be moved to the proper locations. More precisely, the carry 
output (in orange in Fig. 6) of this adder needs to be transferred 
to the second two-bit adder of all, while the sum output (in 
blue in Fig 6) is needed at the first two-bit adder of a21 (for the 
addition in the next stage). As the source and target memristors 
are on different rows, additional intermediate memristors (see 
Fig. 1) are required to create a path between them. The red 
dotted arrow lines present the communication paths between 
source and destination adder. 

As multiple bits need to be transferred simultaneously, the 
diagonal scheme of Fig. Ib is used as shown in the upper 
part of Fig. 6; denoted by Interconnect Network (IN). In this 
scheme, all communications from one adder stage to the next 
one can be performed simultaneously with a latency of three 
cycles due to two intermediate hops. Note that only one IN 
block is needed per sub-crossbar as one adder is active at the 
time. 

Next, we discuss the delay and area cost. With respect 
to the crossbar, the communication delay between source 
and destination equals 3 write operations for each n=2-bit 
addition, the energy equals 3 memristor write operations per 
data transfer (as 3 writes are required due to the need of two 
intermediate memristors). Each sub-crossbar needs 2· (n + I) 
additional rows for the IN block as an n-bit adder has n­
sum bits and one carry bit and their complementary values 
as outputs. With respect to the CMOS part, three additional 
states are required for the micro-controller to perform the 
communication steps. With respect to the peripheral circuit, 
six additional voltage drivers are required per sub-crossbar to 
drive the rows of the IN block. 

TABLE I: Simulation Parameters [9,18] 

Fig. 8: HSPICE verification of hybrid communication scheme 

D. Hybrid Interconnect Network 

Fig. 7 shows the CIM parallel adder based on the hybrid inter­
connect network scheme which consists of both CMOS devices 
and memristors. This scheme also utilizes the memristor copy 
operation as mentioned in [12]. However, instead of using 
additional intennediate memristors, CMOS switches are used 
to create direct paths between source and target memristors. 
For instance, in the upper part of Fig. 7 two nanowires are 
connected by a transmission-gate [17], which is controlled 
by the CMOS controller. When the switch is open, the two 
nanowires are disconnected and normal computations can be 
performed. As the switch closes, the memristors on the two 
different nanowires are directly connected. Therefore, a single 
copy operation [12] can be used to transfer data within and 
between sub-crossbars. As the inputs of the target adder and 
the outputs of the source adder are both effectively located in 
the same row, multiple bits can be copied simultaneously. 

We discuss the cost of the scheme next. With respect to 
the crossbar, the delay of a copy operation equals one write 
operation, the energy consists of writing the target memristor 
(per single copy operation [12]), and the area is zero (as no 
extra memristors are required). With respect to the CMOS 
part, additional logic is required to control and implement 
the switches [17]. The micro controller requires one additional 
state to perform the communication step. No sense amplifiers 
and multiplexers are required for the peripheral circuit. 

IV. RESULTS 

This section first verifies the proposed interconnect network 
schemes. Thereafter, we present a model to evaluate them. 
Last, we discuss the performance results. 

A. HSPICE Verification 

We verify the proposed interconnect network schemes in 
HSPICE simulations using the ideal melmistor model [9,18] 
using the same simulation approach as in [12]. The memristor 
parameters are shown in Table I; the low resistance RL = 
IOOkll represents a logic 0, the high resistance RH = IGIl 
represents a logic I, the memristor threshold voltage Vih equals 
I Y, the memristor write voltage 11,,, 1.4 Y, and the half-select 
voltage Vh", 0.7Y. Due to space limitations, only the results of 
the hybrid scheme are included. Fig. 8 shows the data transfer 
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TABLE II: Basic Model Parameters 

Component Basic Unit Parameter CMOS-based I Mernristor-based Hybrid 
Device Technology 

F m - Feature size (nm) 5 [19] 

Memristor Technology 
lJm - Delay (ps) 200 l19J 
Ern - Energy (fJ) 1 [19] 

j1m - Area (nrn� ) 100 (4F� ) [19] 
CMOS Technology Fe - Feature size (nrn) 40 

CIM Parallel Adder Interconnect Network Schemes 

Voltage driver 

Peripheral Circuit 

Sense Amplifier [16] 

Multiplexer l20 J 

Controller 

(Synthesized for 16 inputs. 32-bit input) 

Diee - Delay 
EVd - Energy (pJ) 

AVd - Area (urn" ) 
Dsa - Delay (ps) 
Esa - Energy (pJ) 

Asa - Area (urn" ) 
Dmux - Delay (ps) 
i'Jmux - Energy (pJ) 

Amux - Area (urn" ) 
D con t - Delay (ps) 
Eeont - Energy (pJ) 

Aeont - Area (,urn- ) 
Dicx - Delay (ps) 

masked by adder voltage driver 
not applicable Ept Ept 

3· Apt Apt 
20 

3.69 
OJJl7 not applicable 
Dpt 
i'Jpt 

16·4· Apt 
825 825 825 

0.115 O. !O3 O. !O() 
2234 1869 1147 

400 (2 cycles . D m) 600 (3 cycles . D m) 200 (l cycle· Dm) 
Memri stor Crossbar Eiex - Energy (fJ) 2 (2 memristors . Em) 3 (3 memristors . Em) I (I memristors . Em) 

j1iex - Area (urn" ) 

from source memristors (first row) to the target memristor 
(second row); in the y-axis, Sand T represent the source and 
target memristor, x the crossbar index, c and r the column and 
row index; the x-axis shows the time steps. The data values 
are selected randomly. The first two plots of both the source 
and target memristors present simultaneous copy operation that 
occurs in one single sub-crossbar from different source rows 
(rIO and r9) to one target row (rl) (see orange blocks in 
Fig. 7). The next two plots present similar copy operations 
which take place between two different sub-crossbars (from 
the output rows of sub-crossbar xl to the input row of sub­
crossbar x2, e.g., as shown by the blue blocks in Fig. 7). The 
last four plots shows that simultaneous copy operations can 
occur within the same or between different sub-crossbars. 

B. Evaluation Model 
The interconnect network schemes are evaluated using the CIM 
parallel adder model. The model includes four components: 
memristor adders, peripheral circuit (voltage drivers, sense 
amplifiers, multiplexers), controller (including register file). 
The basic adder implementation is the same for the three 
interconnect schemes. Table II shows the basic parameters 
of the model. The top part of the table shows the mernristor 
and CMOS technology parameters. The memristor device has 
a feature size Fm of 5nm, delay Dm of 200ps, energy 
consumption Ern of If J per transition, and area Am of 
100nm2. The CMOS device has a feature size Fe of 40nm. 
This technology node is also used to synthesize the controller. 
The lower part of Table II shows the basic parameters of the 
peripheral circuits, controller. 

The above basic model parameters are used to estimated the 
performance of the proposed interconnect network schemes. 
The delay per cycle is calculated by the sum of the components 
that are part of the critical path. The total delay is calculated 
by taking the product of the delay per cycle and the number 
of cycles. The total energy and area are obtained by summing 
up the energy and area cost of all the sub-components. 

C. Results 
Fig. 9 shows the total delay, energy and area of the CIM 
parallel adder implementation with the three proposed inter-

() 200 (2 memristors . Am) 0 

connect network schemes, while Fig. 10 shows the cost break­
down per component. Fig. 10 contains six plots related to the 
energy and area of each component (i.e., crossbar, controller 
and peripheral circuit). The delay is not considered here due to 
space limitations; in addition, the delay is based on the critical 
path and not on the total sum of the individual components. 
The results of each metric are described next. 

Delay: In terms of delay, the hybrid scheme outperforms 
marginally the other two schemes as it (i) does not have a sense 
amplifier and multiplexer delay in its critical path, (ii) requires 
fewer controller states, and (iii) needs fewer mernristor writes 
operations for communication. 

Energy: In terms of energy consumption, the memristor­
based scheme performs the worst due to the additional writes 
required for the intermediate memristor and control states. In 
comparison with the CMOS-based scheme, the hybrid scheme 
has a lower energy, as it requires fewer CMOS devices and 
has a lower delay. 

The energy breakdown for each component is shown in 
the top part of Fig. 10. Note that the interconnect network is 
only a small part of the FBLC based CIM parallel adder, and 
therefore, nearly the same energy results are observed for the 
crossbar part. Nevertheless, the memristor-based scheme has 
the highest crossbar energy consumption due to the writing of 
the intermediate melmistors. In comparison with the CMOS­
based scheme, the hybrid scheme has slightly a lower energy 
consumption as each data transfer requires a single write. 
With respect to the controller, the CMOS-based scheme has 
the highest energy consumption due to the additional control 
logic and register file. In the CMOS-based scheme, read-out 
operations may be destructive and write-back operations are 
required to preserve the value of the source mernristor, hence 
the additional states also cost more energy. Note that the hybrid 
scheme's controller requires only one additional state for 
the micro-controller, while the CMOS- and memrisor- based 
schemes need two and three additional states, respectively. 
With respect to the peripheral circuit, the CMOS-based scheme 
also has the highest energy consumption, due to the presence 
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of additional voltage drivers. 

Area: In terms of area, the CMOS-based scheme has 
the highest area overhead due to the presence of additional 
peripheral circuits, a register file and a larger controller. The 
other two schemes have nearly the same area overhead. We 
will discuss the cost breakdown next. 

Each component's area is shown in the lower part of Fig. 
10. With respect to the crossbar, the melmistor-based scheme 
consumes slightly more area than the other two schemes as 
additional memristors are required to perfonn the commu­
nication. With respect to the controller, the hybrid scheme 
has the smallest area overhead as only one additional state 
is required for the micro-controller. The controller of the 
memristor-based scheme has slightly a smaller area than the 
CMOS-based scheme, as the CMOS-based scheme needs a 
register file and additional logic to address the register file. 
With respect to the peripheral circuit, the memristor-based 
scheme has slightly a higher area overhead as compared to 
the other two schemes due to the presence of voltage drivers. 
The peripheral circuits of the hybrid scheme requires less area 
than the CMOS-based scheme due to the presence of sense 
amplifiers and multiplexers. 

In summary, the hybrid communication scheme shows 
benefits in terms of delay, energy and area due to fewer 
control states, less peripheral circuits and no need of additional 
memristors are required for the interconnect network. The 
results of this paper are useful for memristor designers, as it is 
essential to select appropriate interconnect schemes to improve 
the overall performance. 

V. CONCLUSION 

In this paper, we showed three feasible interconnect net­
work schemes for resistive computing architectures in general, 
and for CIM architecture in particular. The result showed that a 
hybrid interconnect network scheme has the highest efficiency 
in terms of delay, energy and area. This shows that an 
interconnect network fully integrated in the memristor crossbar 
is not efficient enough, and can lead to vast performance 
reduction. Similarly, an interconnection network solely based 
on CMOS devices also showed to be inefficient. In conclusion, 
it is essential to utilize both memristor operations and CMOS 
devices to build an effective interconnect network scheme for 
resistive computing architectures. 

Fig. 10: Performance Breakdown of Each Component 
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5
CONCLUSION

This chapter summarizes the overall achievements of this dissertation and highlights some
future research directions. Section 5.1 presents a summary of the main conclusions of this
dissertation. Thereafter, Section 5.2 discusses possible future research directions.
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5.1. SUMMARY
Chapter 1, "Introduction", briefly introduced in-memory computing and the research
focus of this dissertation. It first described the motivation of this dissertation. Thereafter,
it showed the state-of-the-art of in-memory computing with respect to the following as-
pects: device, logic, architecture, compiler and application; it also discussed the oppor-
tunities and challenges of each aspect. Finally, it proposed the contributions of this dis-
sertation which addresses some circuit and architecture challenges for in-memory com-
puting.

Chapter 2, "Overview and Classification", first introduced the potential of memristive
devices for multiple applications such as memory, logic, and architectures (e.g., neuro-
morphic and computation-in-memory). Thereafter, it proposes a classification that is
based on three metrics: computation location, memory technology and computation
parallelism. The classification is comprehensive and complete; it covers both existing
and potential architectures that are grouped into four classes: CIM-A, CIM-P, COM-N
and COM-F. They perform computations using the memory array, the peripheral cir-
cuits, extra logic within the memory System-in-Package but outside the memory core
and logic circuits that are located off-chip, respectively. Finally, the existing architec-
tures, as well as their pros and cons, are discussed and evaluated quantitatively.

Chapter 3, "Architecture Level", introduced two novel in-computing architectures; each
represents CIM-A and CIM-P class. Computation-in-Memory (CIM) Architecture is a
novel computing paradigm that tightly integrates computation and storage into the same
physical devices. The computations are performed using the memory array; hence, this
architecture belongs to CIM-A class. This work proposed a CIM-based architecture that
performs parallel addition using the memristor crossbar. Thereafter, we described two
implementations of the CIM-based parallel adder using two distinct logic design styles
(e.g., Boolean logic using conventional memristive devices, and implication logic us-
ing complementary resistive switch CRS devices). The two implementations are dis-
cussed intensively, in particular their controller, interconnect network, and communica-
tion schemes. Their performance, energy and area are also compared with a multicore
architecture using an analytical model. Computation-in-Memory Accelerator (CIMX)
proposed a CIM core (i.e., a memristor crossbar with computation capability) and sev-
eral architectures that integrate CIM core into different memory hierarchies of a con-
ventional architecture (e.g., cache, main memory) and as an accelerator. The CIM core
performs computations using peripheral circuits; hence, the architecture is classified as
a CIM-P architecture. This work described a selected architecture that uses CIM as an ac-
celerator. Subsequently, an analytical model and simulation framework were proposed
to evaluate and compare the proposed architecture with a conventional architecture.

Chapter 4, "Circuit Level", proposed a logic synthesis automation tool and intercon-
nect network schemes. First, a logic synthesis framework is proposed to map a circuit
described in hardware-description-language (HDL) into memristor circuit. The generic
framework is illustrated using two case studies which include a 2-bit comparator and a 8-
bit adder. Thereafter, three interconnect network schemes are proposed using primitive
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copy, read, write operations [79]. They are applicable to in-memory computing archi-
tectures based on resistive devices; they are (1) only using memristor crossbar, (2) using
CMOS circuits (controller and peripheral circuits) , and (3) using both memristor cross-
bar and CMOS circuits. Thereafter, a case study, CIM parallel adder is used to illustrate
these three schemes and evaluate their performance, energy and area.

5.2. FUTURE RESEARCH DIRECTIONS
Several recommendations are suggested to improve the state-of-the-art further. They
are organized by the different research topics as listed below.

ARCHITECTURE LEVEL
1. Computation-in-Memory (CIM) Architectures

• Investigate the integration of memristor crossbars with CMOS controllers. To
the best of our knowledge, our work is the first to investigate the impact of the
CMOS controller on an entire memristor design. Based on this preliminary
work, the CMOS part might be a concern. Further investigation requires not
only the optimization of the CMOS part, but also its efficient use to control
the crossbars (e.g., sharing them by different crossbars, pipelining the con-
troller to reduce the clock frequency).

• Develop libraries with well-optimized memristor designs. Currently, only
limited number of computational units (such as adder, multiplier) and com-
munication schemes have been proposed. Therefore, libraries with opti-
mized memristor designs are essential to further explore the potential of CIM
architectures.

2. Computation-in-Memory Accelerator (CIMX)

• Improve CIMX architecture. CIMX was designed with the intention to mini-
mize the required number of modifications to conventional architectures. It
is worth noticing that much higher performance and energy improvements
can be achieved in case more radical architectures are considered (e.g., using
CIM core to replace the whole memory hierarchy). As CIM core stores a huge
amount of data, the main DRAM might become superfluous. This will elimi-
nate the expensive off-chip communication and enable higher performance
and energy improvements.

• Investigate memory controller and communication. The memory controller
and the communication between processor and accelerator should be inves-
tigated more accurately. Optimizing the inter-communication (i.e.,between
processor and CIM core) and intra-communication (i.e., within CIM core) is
of great importance. Design exploration and optimization of such compo-
nents could significantly improve the overall performance and robustness.

• Explore potential applications. Although we considered several kernels, more
applications have to be explored for CIMX architecture. Note that the consid-
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ered CIMX architecture contains an accelerator that can only perform logi-
cal operations. Hence, it is worth to explore various applications which in-
cludes high percentage of logical operations. In fact, some previous work has
proposed quite a lot applications with these characteristics such as database
processing, graph processing, security encryption, and bio-sequencing [64–
69]. In this dissertation, we have shown potential examples such as QUERY
SELECT kernel (database applications) and XOR encryption kernel (security
encryption). However, more potential applications can be explored using the
proposed analytical and simulation framework, in order to further exploit the
potentials of CIMX architecture in particular and CIM core based architec-
tures in general.

• Automate the simulation framework. Due to some manual processes in the
simulation, it is currently not straightforward to map more potential applica-
tions. Nevertheless, exploring potential applications requires the simulation
framework to be fully automated.

CIRCUIT LEVEL
1. Logic Synthesis Framework

• Map complex functions on CIM core. More research is required to map com-
plex functions on the CIM core. Currently, there are only a limited number of
operations that can be executed on CIM core. It would be ideal if arithmetic
operations could be executed on CIM core. This reduces the communication
between processor and main memory even further. Moreover, to increase the
performance even more, the instruction set can be extended with macro in-
structions [73] such as dot product or matrix multiplication [88]. Another ap-
proach is to integrate the arithmetic units in the CMOS layer near the mem-
ory controller, similarly as carried out in near-data computing [94]. Current
prototypes have already demonstrated this approach by stacking memristors
on top of a CMOS layer [95, 96].

• Automate the framework. The proposed framework can be used to gener-
ate a lot of conventional circuits that is described HDL to memristor circuits;
this can help accelerate the implementing arithmetic circuits and provide in-
puts for architecture exploration. Therefore, effort is required to automate
the proposed framework. In order to do that, it is essential to investigate the
technology feasibility (e.g., crossbar isolation, switching latency, endurance,
etc.) as well as the complexity and scalability of CMOS control circuit.

2. Interconnect Network Schemes

• Improve large-scale interconnect network. For large CMOS circuits, the in-
terconnect network typically becomes the bottleneck in terms of performance
and power consumption. Therefore, for large memristive circuits, this prob-
lem might exist as well. Currently, only small scale memristive circuits are
explored, however, it is essential to investigate the scalability of the proposed
interconnect network in large-scale memristive circuits.
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EPILOGUE

Being a PhD student for five years, I have spent probably half of my time preparing pa-
pers (including writing a draft, revising that draft multiple times, and even rewriting a
section or the whole paper). Therefore, this book to show my PhD work would be incom-
plete without a chapter telling my experiences in writing papers and articles (referred to
as paper in the rest of this epilogue). Unlike many courses and books that I had a chance
to attend and read, I would not consider writing a paper as a practise-based process,
that you cannot learn without actually doing it. I would not either agree that writing
a paper is an abstract process which is based on the feeling of the authors. Instead, I
think that writing a paper consists of several unspoken rules. If the rules are explained
well enough, PhD students can spend less time and avoid hurtful experiences in dealing
with this matter. The following sections try to explain these rules in a systematic and
the simplest way. Note that the following principles can be regarded as the obvious to
lots of experienced researchers, however, to my experience, they are vague to new PhD
students.

COMPONENTS OF A PAPER
The component of a paper varies depending on its content, however, these following
general rules are applied:

• A paper has five mandatory components: abstract, introduction, main contribu-
tions (i.e., methodology, implementation, theory), results, and conclusion.

• In addition, there are various optional components such as related work, discus-
sion, future work.

• These components can be organized into one component per section, or more
than one component per section. For example, introduction and related work,
results and discussion, or discussion and future work are often merged.

Several crucial points are required in each of the mandatory components, which will
be explained in the following sections.

ABSTRACT
An abstract is a summary of the paper; it rephrases each section in the paper in one
sentence:

• It starts with a motivation in the introduction, summarizes the contributions, states
the results, and concludes with the main message of the paper.
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• It is normally the most read section in the paper; hence, a key, strong, and neces-
sary message should be stated clearly here.

• The terms that can only be defined later in the paper, and very specific context-
based vocabularies should be avoided in the abstract.

INTRODUCTION
Introduction includes three parts; each part comprises of one paragraph:

• Problem statement: this explains the problem and motivates why the work is es-
sential (i.e., to provide the missing solution for a problem).

• State-of-the-art: this explains what has been done to solve the problem so far, why
there are still missing solutions, and what makes the work different/outstanding
from current published work. This paragraph first lists generic points from pub-
lished work, compares it with the proposed work, and states that the proposed
work can solve partly/entirely the problem.

• Contributions: this first states the main contributions of the paper/articles, then
lists all the detailed points of the paper’s contributions. This paragraph can also
be linked to the related sections in the paper, unless another paragraph is used to
lists the organization of the rest of the paper.

MAIN CONTRIBUTIONS
Main contributions present the idea, implementation, and theory that are proposed in
the paper; they are the most important body of the paper:

• The main contributions include one or more sections; each normally links with a
contribution mentioned in the introduction.

• The main contributions should be presented from the context of the big picture
(i.e., system architecture, general concept) to details (component implementation,
proof of concept).

• In articles that are based on a previous published papers, a section to summarize
the main ideas and results from the published paper is also required.

PRESENTING RESULTS
Presenting results are normally the key to determine the acceptance of the paper. Hence,
an effective presentation should directly reflex the main message from the results:

• There are multiple ways to present results; the most effective way is using visual-
izations such as graph. Note that there are many types of graphs, therefore, it is
essential to choose the right type. For example, if the results focus on presenting
percentage of a component, a pie graph should be used; if the results focus on the
improvements based on increase data sizes, a bar or lines graph should be used.
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• Each number/data used in the graph always has a meaning, and focuses on the
message of the result. For example, if the difference is the main message, a number
showing the difference between two measurements presents effectively the result.

• Each result/graph always needs description and explanation. The results are first
described (i.e., the trend of increasing, decreasing), thereafter, explained (i.e., why
such results are obtained).

CONCLUSION
A conclusion is the last message of a paper:

• A conclusion concisely summarizes the contributions of the paper, states the ob-
tained results, and relates to the societal/communal impact of the results.

• Lengthy discussions, new insights, and new terminologies should be avoided in
the conclusion.

SECTION, PARAGRAPH, AND SENTENCES
There are multiple ways to write; one way is using the top-down model (i.e., first topic
sentence, then details) while the other way follows the bottom-up model (i.e., first details
explained, then conclusion sentence). However, several common rules still apply:

• Each section should start with a brief introduction of its main idea and compo-
nents.

• Each paragraph and sentence only focus on one idea.

• Each paragraph and sentence start with a part related to the previous paragraph/sentence,
then introduce new content. That creates a flow in the paper.

WORDING AND FORMATTING
Choosing the language style and words to use in a paper is a personal choice, however,
several rules are required to avoid confusion:

• Be simple. Complex and rarely used vocabulary should be avoided in scientific
writing.

• Defined before used. Unless the abbreviation is widely understood (i.e., UNESCO),
it must be defined at least one time before being used in the paper.

• Introduced when required. Whenever the terms, concepts, or ideas are necessarily
used, the author should introduce them, not too early (far before from where it is
first used) or too late (after it is being used).

Except for special formatting that is required for each conference paper or article,
simple formatting rules always apply:
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• Be consistent. For example, if a term is used in the introduction, it must be used
throughout the paper; once another term is used, either the new term contains a
different meaning and needs redefined, or the new term refers to another concept.
Another example is about the section titles or figure captions, some authors use
all capitalized letters, or capitalized first letters, or no capitalized letter; they are all
correct as long as they are consistently used in the paper.

• All figures, tables, and equations are referenced and explained either briefly or in
details.

• Citations are required at any statement that is not derived logically from the cur-
rent text.

DEALING WITH REVIEWERS
There comes a time when the paper is finished, and sent out to reviewers. After a while,
that piece of work that every author is proud of comes back, under the eyes of the re-
viewers with full of questions, doubts, and mistakes. Here comes a time when you have
to deal with reviewers in a professional manner. I quote here the tips from IEEE [Au-
thors@IEEE Newsletter: Volume 3, Issue 10, October 2018] that I totally agree with:

• Appreciate the opportunity to improve. It’s very easy to feel defensive or discour-
aged when you receive a long list of suggested edits from reviewers. View the sug-
gestions in a positive light instead by seeing them as opportunities to improve your
article before publication. The reviewers and the editor have invested significant
time in your article to help you improve it for the scientific community.

• Respond to every comment. Copy all of the reviewers’ suggestions from the deci-
sion letter into a new file and separate them into individual suggestions. This is the
basis for your response to reviewers, which will be submitted with your revised ar-
ticle. Read each suggestion carefully, implement the appropriate changes in your
article, and then explain each change in the response to reviewers document just
below the original suggestion. Keep your responses professional, factual, and con-
cise. If you disagree with a reviewer’s suggestion, state that you have not imple-
mented the suggestion and provide your reasons for not doing so in the response
to reviewers document. The editor may accept your explanation.

• Read it again before resubmitting. Set aside the revised article and the response
to reviewers and then return and fully read them both again. You may find addi-
tional edits when reading through the documents with fresh eyes. Resubmit to the
journal once you are satisfied with the revised article and the response to review-
ers.

Preparing papers is an essential process of being a researcher. Writing papers is not only
a way to convey the idea to the community, but also a way to shape authors’ thoughts
and organize the work in a better setting. A set of rules is necessary to create a standard
format of the writing process, and to save time and energy of researchers, especially PhD
students who are always under stress of publications. I hope they are useful.
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