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Improved Dynamic Surface Control for a Class of Nonlinear Systems

Zongcheng Liu, Qiuni Li, Yong Chen, Maolong Lv and Renwei Zuo

Abstract— It is well known that backstepping method suffer
from the problem of “explosion of terms”, which is solved by
dynamic surface control (DSC) method. This paper presents
an improved dynamic surface control (IDSC) method, which
constructs the state errors by directly using virtual control
signals, rather than using the signals produced by first-order
filters in DSC method. The signals produced by first-order
filters will only be used to construct the virtual control laws
and actual control law. This modification makes the state errors
to be more free from the influence of first-order filters. The
stability of systems controlled by the proposed IDSC method is
proved based on Lyapunov theorem. Finally, the advantage of
IDSC method has been shown by simulation results, and it can
be seen in the simulation results that IDSC method has better
tracking performance and is more stable than DSC method.

I. INTRODUCTION

As a very powerful control method for nonlinear systems,
backstepping method has been attracting more and more
attention in control area [1]. Too much remarkable results
have been obtained by combining backstepping method with
the universal approximations, such as neural networks and
logic fuzzy systems [2]-[6]. In these approaches, backstep-
ping method is used as the basic frame of control design, and
they can always achieve satisfactory control performances
and be robust for disturbances.

While the use of backstepping method becomes wide, a
critical drawback of backstepping method was first pointed
out and solved in [7]. It was stated in [7] that backstepping
method suffers from the problem of unacceptable increasing
complexity due to the “explosion of terms”, which results
from the repeated differentiations of some nonlinear func-
tions in the recursive control design process. Therefore, a
low pass filter was firstly introduced [7] in each design step
of backstepping method, and the semi-globally boundedness
of all the signals in the controlled system is proved. This
method is popular known as “DSC” method since dynamic
surfaces are introduced by using low pass filters in [7]. Based
on the DSC method, too many approximation-based adaptive
backstepping approaches have been presented because these
approaches are free from the problem of “explosion of terms”
from then on. A DSC-based robust adaptive neural control
approach has been proposed for strict-feedback nonlinear
systems in [8]. However, the bounds of control gain functions
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are always assumed to be constants while using DSC method.
This restrictive condition has been weakened that the control
gain functions can be unbounded functions in [9], where a
DSC-based adaptive neural control method is designed for a
class of non-strict-feedback nonlinear systems. Thus far, the
DSC method has already been successfully used for many
nonlinear systems by combining the universal approxima-
tions [10], [11], [12]. However, it should be noted that the
state errors and actual controller for the DSC method are
constructed based on the signals produced by passing virtual
control signals through first-order filters, which implies the
convergence of state errors heavily depends on the first-order
filters. This fact will result in the problem that the tracking
performance or even the stability of system may degrade
rapidly when the time constants of filters are changed.

Motivated by the above discussion, an improved dynamic
surface control (IDSC) method is firstly proposed in this
paper for a class of nonlinear systems. Though the basic idea
of DSC method is utilized, we directly use the original virtual
control signals to construct the state errors and actual con-
troller in this paper, which is very different from the standard
DSC method. Furthermore, the stability of the closed-loop
system controlled by IDSC method has been proved based
on Lyapunov theorem. Finally, simulation results are given
for the comparison of DSC and IDSC methods to show the
advantage of the method in our paper.

II. PROBLEM STATEMENT

Consider the nonlinear systems investigated in [7] as
follows ẋi = xi+1 + fi(x̄i) + ∆fi(x̄i), i = 1, 2..., n− 1

ẋn = u
y = x1

(1)
where x̄i = [x1, x2, ..., xi]

T ∈ Ri denotes the state vector of
the system; u ∈ R is system control input; y ∈ R is system
output; fi(·) are unknown continuous functions, i = 1, ..., n

We make the same assumptions as [7] as follows
Assumption 1: |∆fi(x̄i)| ≤ ρi(x̄i), where ρi is a contin-

uous differentiable function in its arguments. ∆fi(x̄i) is a
continuous function.

Assumption 2: fi is a smooth function in its arguments,
and fi(0, ..., 0) = 0.

The control objective is to design a controller such that
the system output y tracks the desired trajectory yd and
the resulting tracking error can converge to an arbitrary
small neighbourhood of the origin by appropriately choosing
design parameters.
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Assumption 3: The desired trajectory yd is sufficiently
smooth function of t, and yd, ẏd and ÿd are bounded, that
is, there exists a positive constant B0 such that Ω0 :={
(yd, ẏd, ÿd) : (yd)

2
+ (ẏd)

2
+ (ÿd)

2 ≤ B0

}
.

III. IMPROVED DYNAMIC SURFACE CONTROL DESIGN

Firstly, we show the standard DSC method for the ad-
dressed control problem. From the standard DSC method
proposed in [7], we can know that the stable tracking con-
troller for system (1) is shown as follows, for 1 ≤ i ≤ n− 1

Si = xi − xid (2)

αi = −fi(x̄i)−
Siρ

2
i

2σ
−KiSi + ẋid (3)

τi+1ẋi+1d + xi+1d = −fi(x̄i)−
Siρ

2
i

2σ
−KiSi + ẋid (4)

Sn = xn − xnd (5)

u = ẋnd −KnSn (6)

where x1d = yd, and σ, Ki and τi are design parameters.
From [7], it can be seen that the system stability can

be guaranteed and the tracking error are adjustable by the
above designed controller under the condition that the initial
values of Si and yi are within a bounded compact set, where
yi = xid − αi−1.

In view of the basic idea of DSC method, the controller
proposed by our method, which is so-called ‘IDSC’, is given
as follows

e1 = x1 − yd (7)

ei = xi − αi−1, for i = 2, ..., n (8)

αi = −fi(x̄i)−
eiρ

2
i

2σ
−Kiei+ẋid, for i = 1, ..., n−1 (9)

τi+1ẋi+1d + xi+1d = −fi(x̄i)−
eiρ

2
i

2σ
−Kiei + ẋid

for i = 1, ..., n− 1
(10)

u = ẋnd −Knen (11)

Comparing the controllers of DSC method with IDSC
method, it can be easily seen the main difference between
two methods is that we directly use αi to construct the state
error terms ei for IDSC method (see (8) and (9)), while
xi+1d, produced by passing αi through a first-order filter,
are used to construct the error terms Si for DSC method
(see (2) to (4)).

The reasons why we use αi to construct the state errors
are listed as follows.

1) The purposes of control designs are confining Si and
ei to zero. However, it should be known that actually the

idea values for xi is αi−1, rather than xid, since there will
be no residual terms in the dynamics of ei−1-subsystems.
The signals, αi−1, are called the “ideal control input” for
the dynamics of ei−1-subsystems with xi = αi−1.

2) . xid is a signal produced by passing αi−1 through a
first-order filter. Therefore, there must be an error for xid

and αi−1. This error is actually unnecessary for the control
design, and it is cancelled in IDSC method. This fact makes
the IDSC more efficiently to confine the state errors.

3) The error for xid and αi−1 may make the controlled
system unstable when τi+1 are chosen not small enough.
Therefore, we proposed IDSC method.

IV. STABILITY ANALYSIS FOR IDSC METHOD

As for the IDSC given in this paper, we will give the
main result in this section. Define the Lyapunov function as
follows

V =
n∑

i=1

Vi +
n∑

i=2

y2i
2

(12)

Vi =
e2i
2
, i = 1, 2, ..., n (13)

where yi = xid − αi−1.
We have the following theorem for system (1) with the

IDSC method.
Theorem 1: Consider the nonlinear system (1), and the

virtual controllers (9), the controller (11) and the first-order
filters (10). Given any p > 0, if V (0) < p, then there exist
σ, Ki and τi such that all of the signals in the closed-loop
system are bounded. Furthermore, the tracking error e1 =
x1 − yd converges to a small neighborhood of the origin by
appropriately choosing design parameters.

Proof: Firstly, we will analysis the stabilities of ei, respec-
tively, by consider the time derivative of Vi. Secondly, the
stability of the whole closed-control system will be analyzed
by using the analysis for each ei.

Noting (7) and (13), the time derivative of V1 is

V̇1 = e1ė1 = e1 (ẋ1 − ẏd) (14)

Substituting (1) into (15), and then using (9), we have, for
1 ≤ i ≤ n− 1

V̇1 = e1 (x2 + f1(x1) + ∆f1 − ẋ1d)
= e1 (e2 + α1 + f1(x1) + ∆fi − ẋ1d)

= e1

(
e2 −K1e1 +∆f1 − e1ρ

2
1

2σ

)
≤ e1e2 −K1e

2
1 +

σ
2

(15)

which implies that the boundedness of e1 depends on e2. In
the sequel, the boundedness of ei, (2 ≤ i ≤ n − 1) will be
investigated by consider Lyapunov candidate functions Vi.

The time derivative of Vi for 2 ≤ i ≤ n− 1 is

V̇i = eiėi = ei (ẋi − α̇i−1) , 2 ≤ i ≤ n− 1 (16)

Noting yi = xid − αi−1, i = 2, ..., n, then we have

V̇i = eiėi = ei (ẋi − ẋid + ẏi) , 2 ≤ i ≤ n− 1 (17)
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In view of (9) and (10), we have

ẋid =
1

τi
(αi − xid) = −yi

τi
(18)

ẏi = −yi
τi

− α̇i−1 (19)

By noting (9) and (19), we have, for i = 1, ..., n− 1

ẏi+1 = −yi+1

τi+1
−

i∑
j=1

∂fj
∂xj

ẋj−
ėiρ

2
i

2σ
−eiρi

2σ

i∑
j=1

∂ρj
∂xj

ẋj+
ẏi
τi
+Kiėi

(20)
Define
Bi+1(ē

T
i+1, ȳ

T
i+1, K̄

T
i , τ̄

T
i , yd, ẏd, ÿd)

= −
i∑

j=1

∂fj
∂xj

ẋj − ėiρ
2
i

2σ − eiρi

2σ

i∑
j=1

∂ρj

∂xj
ẋj +

ẏi

τi
+Kiėi

(21)
where ēi = [e1, ..., ei]

T , ȳi = [y2, ..., yi]
T , K̄i =

[K1, ...,Ki]
T and τ̄i = [τ2, ..., τi]

T .
It can be easily known from [7] that the arguments of

Bi+1(·) are the ones show in (21) and there exist unknown
continuous functions ηi+1, i = 1, ..., n− 1 satisfying∣∣∣ẏi+1 +

yi+1

τi+1

∣∣∣ = ∣∣Bi+1(ē
T
i+1, ȳ

T
i+1, K̄i, τ̄i, yd, ẏd, ÿd)

∣∣
≤ ηi+1(ē

T
i+1, ȳ

T
i+1, K̄i, τ̄i, yd, ẏd, ÿd)

(22)
Substituting (1) and (8) into (17), and then using (9), we

have, for 2 ≤ i ≤ n− 1

V̇i = ei (xi+1 + fi(x̄i) + ∆fi − ẋid + ẏi)
= ei (ei+1 + αi + fi(x̄i) + ∆fi − ẋid + ẏi)

= ei

(
ei+1 −Kiei +∆fi − eiρ

2
i

2σ + ẏi

)
≤ ei (ei+1 + ẏi)−Kie

2
i +

σ
2

(23)

And, similarly, we can obtain

V̇n = en (u− ẋnd + ẏn)
= −Kne

2
n + enẏn

(24)

By using (23) and (24), we can know that the time
derivative of V defined in (12) satisfies

V̇ ≤
n−1∑
i=1

eiei+1+
n∑

i=2

eiẏi−
n∑

i=1

Kie
2
i +

(n− 1)σ

2
+

n∑
i=2

yiẏi

(25)
From the definition of Bi+1(·) we have ẏi+1 =

−yi+1/τi+1+Bi+1(·). Therefore, (25) can be further rewrit-
ten as

V̇ ≤
n−1∑
i=1

eiei+1 +
n∑

i=2

ei

(
−yi
τi

+Bi(·)
)
−

n∑
i=1

Kie
2
i

+
(n− 1)σ

2
+

n∑
i=2

(
−y2i
τi

+ yiBi(·)
) (26)

Noting (22) and using Young’s inequality, one obtains

ei

(
−yi
τi

+Bi(·)
)

≤
(

1

2τi
+

η2i (·)
b

)
e2i +

1

2τi
y2i +

b

4
(27)

yiBi(·) ≤
y2i η

2
i (·)
b

+
b

4
(28)

eiei+1 ≤ e2i
2

+
e2i+1

2
(29)

where b is any positive constant.
Using (27), (28) and (29), we can rewrite (26) as

V̇ ≤ −
(
K1 − 1

2

)
e21 −

n∑
i=2

(
Ki − 1− 1

2τi
− η2

i (·)
b

)
e2i

−
n∑

i=2

(
1
2τi

− η2
i (·)
b

)
y2i + (n− 1)ε

(30)
where ε = (σ + b)/2.

Consider the sets

Ωi =
{
e21 + · · ·+ e2i + y22 + · · ·+ y2i ≤ 2p

}
(31)

It is obviously that Ωi and Ωi×Ω0 are compact sets. Notice
that ηi is a continuous function on Ωi×Ω0, therefore, ηi has
a maximum, say Mi on Ωi × Ω0. Select K1 = 0.5 + a0 ,
Ki = 1 + 1

2τi
+

M2
i

b + a1, where a0 > (n− 1)ε/2p and
a1 > (n− 1)ε/2p. Choose 1/τi = 2

(
M2

i

/
b+ a2

)
, where

a2 > (n− 1)ε/2p. Therefore

V̇ ≤ −2aminV +(n−1)ε−
n∑

i=2

(
1− η2i (·)

M2
i

)
M2

i

b

(
e2i + y2i

)
(32)

where amin = min{a0, a1, a2} and amin > (n− 1)ε/2p It is
easily known from (32) that on V (e1, ..., en, y2, ..., yn) = p,
ηi ≤ Mi. Therefore, V̇ ≤ −2aminV +(n−1)ε. Since amin >
(n− 1)ε/2p, it follows that V̇ ≤ 0 on V = p Therefore, V ≤
p is an invariant set, namely, if V (0) ≤ p, then V (t) ≤ p
for all t > 0 Thus, e1, ..., en, y2, ..., yn are bounded, and it is
easily to conclude that αi and u are bounded. Additionally,
From (32), it can be seen that

V̇ ≤ −2aminV + (n− 1)ε (33)

on Ωi × Ω0 This implies

V (t) ≤ (V (0)− C1) e
−2amint + C1 (34)

which yields

lim
t→+∞

|e1| ≤ lim
t→+∞

∣∣∣√2V (t)
∣∣∣ ≤ √

2C1 (35)

where C1 = (n− 1)ε/2amin Noticing that C1 can be ad-
justed to arbitrary small by increasing K1, Ki and 1/τi,
therefore, the tracking error can be confined to arbitrary
small. This completes the proof.

V. SIMULATION RESULTS

In this section, a simulation example is presented to
demonstrate the advantages of our method by comparing
DSC method. Consider the following nonlinear system: ẋ1 = 5x1 + x2 + x1 cos(x1)

ẋ2 = u
y = x1

(36)

In (36), f1(x1) = 5x1, ∆f1(x1) = x1 cos(x1), ρ1(x1) =
x1 tanh(x1) + 0.5. Therefore, based on the standard DSC
method in [7], the tracking controller is proposed as follows
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S1 = x1 − yd

α1 = −f1(x1)− S1ρ
2
1

0.2 − 4S1 + ẏd
τ2ẋ2d + x2d = α1

S2 = x2 − x2d

u = ẋ2d − 4S2

According the IDSC method in our paper and noting
Theorem 1, the controller of IDSC is proposed as follows

e1 = x1 − yd

α1 = −f1(x1)− e1ρ
2
1

0.2 − 4S1 + ẏd
τ2ẋ2d + x2d = α1

e2 = x2 − α1

u = ẋ2d − 4e2

The time constants in both methods are τ2 = 0.1. It can
be seen that, for the purpose of comparison, all the design
parameters of two method are the same. Moreover, we set
the initial conditions of two methods to be the same as well.
Specially, let the initial conditions of both methods to be
(x1(0), x2(0))

T = (0, 0)T and x2d(0) = 0 Let yd = sin t
Then, the simulation results are shown in Figs. 1-3.

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 1. System output y and desired signal yd with τ2 = 0.1

From Fig. 2, we can see that IDSC has smaller tracking
error than DSC under the same conditions. From Fig. 1-
3, it can be observed that both methods can achieve the
control objective, and the IDSC method has better tracking
performance than DSC under the same conditions.

To further show the advantage of IDSC method proposed
in this paper, we change the design parameter τ2 to be
τ2 = 0.2, and all the other design parameters and conditions
are still the same and not changed. The simulation results for
DSC method with τ2 = 0.2 are reported in Fig. 4-6. From
Fig. 4 and 5, it can be seen that system output y is unable to
track yd and the tracking error e1 is increasing more and
more larger under the control of DSC method. For DSC
method, system becomes unstable with only τ2 changed from
0.1 to 0.2.

0 5 10 15 20 25 30
-0.2

-0.15
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-0.05

0
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Fig. 2. Tracking errors with τ2 = 0.1
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Fig. 3. Control input u with τ2 = 0.1
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Fig. 4. System output y of DSC and desired signal yd with τ2 = 0.2
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Fig. 5. Tracking error of DSC with τ2 = 0.2
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Fig. 6. Control input u of DSC with τ2 = 0.2
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Fig. 7. System output y of IDSC and desired signal yd with τ2 = 0.2
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Fig. 8. Tracking error of IDSC with τ2 = 0.2
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Fig. 9. Control input u of IDSC with τ2 = 0.2

In the sequel, we use IDSC method for the condition
τ2 = 0.2. All the other design parameters and conditions are
not changed. The simulation results for IDSC method with
τ2 = 0.2 are reported in Fig. 7-9. From Fig. 7 and 8, it can be
observed that system output y still tracks yd very well with
τ2 = 0.2, and the tracking error is confined in a satisfactory
area as well. It can also be seen that all the signals of system
are stable under IDSC method with τ2 = 0.2.

From these simulation results, we can conclude that under
the same conditions, the IDSC method has better tracking
performance than the DSC method, and the IDSC-controlled
systems are more stable than the DSC-controlled systems
when the design parameters changed, such as τi changes
from 0.1 to 0.2. It should be noted that τi is a critical design
parameter for the DSC method, since it can always influence
the stability of controlled systems. For example, the stability
of the controlled systems is always becoming weaker while
τi are decreasing [7]. Therefore, we propose the IDSC
method so as to achieve better tracking performance and
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enhance the stability of controlled system.

VI. CONCLUSION

This paper proposes an IDSC method based on the idea of
DSC method. By constructing the state errors with the virtual
control signals, the proposed method avoids the unnecessary
error caused by the introduced first-order filters. The stability
of the closed-loop system controlled by IDSC method has
been proved based on Lyapunov theorem. Finally, simulation
results have been given for the proposed method. From these
simulation results, it can be concluded that IDSC method can
achieve more stable controlled systems than DSC method,
and the tracking performance are fairly good.
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