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Abstract

Compared to traditional public transport, ride-hailing makes it possible for people to get a more comfortable
and faster riding experience with a higher fare. Ride-sharing fall in between the two, offering a discount at the
price level of ride-hailing, yet operates with more detours and less comfortable experience. In this study, with
different price levels for ride-hailing and discount rates for ride-sharing, we would like to examine the system
performance of co-existence of ride-hailing, ride-sharing and public transport services. We would also like to
search for an optimal solution for the ride-hailing & ride-sharing company to maximize its profit. We apply
ExMAS, an open-source agent-based model for ride-sharing simulation, to simulate passengers’ and vehicles’
behavior on a microscopic level, and acquire numbers of results. Based on our model, in the case of Amsterdam,
when price level is 1.1 euro/km and discount rate is 0.4, the company could enjoy maximum profit and market
share. It is also found that, when price level gets higher more people opt for the competitive mode instead,
resulting in the overall profit falling significantly.
Keywords: ride-sharing, ride-hailing, Agent-based model, On demand mobility

1 Introduction

1.1 Background

Digital technologies have enabled the emergence of
on-demand ride services, such as Uber, Didi and Lyft.
In comparison to traditional cruising taxis, ride-hailing
services have become more dominant in the market
(J.Zhong, 2022), with a 55% revenue growth from
2020 to 2021 (Inc., 2022).

Ride-hailing is meant to not only provide a more
comfortable and convenient solution for traffic users,
but also to further help reduce emission and conges-
tion. In addition, it plays an essential role in low
density areas, reducing their waiting and transfer
time (M.D. Dean, 2021). However, it is found that
this emerging mode mostly attracts previous public
transport users, instead of private vehicle drivers,
and therefore has negligible or even negative influ-
ences on alleviating road congestion and emission
(E. A. Haddad, 2019). Also, in peak hours, supply
usually cannot meet the demand in high density
areas (X. Zhan, 2021). Ride-pooling, or ride-sharing,
could be a possible solution for the problems proposed.

Ride-pooling, in contrast, simultaneously serves
several passengers with different departure and ar-
rival locations in a single vehicle, while reducing
consumers’ riding fare. Based on surveys, it is found
that consumers usually stress most on reliability and
security while considering usage of pooling service.
(A. Kumar, 2022) Delays, discomfort and discount
make the most difference between shared rides and
private rides (R. Kucharski, 2020). In addition, on
the current stage, ride-sharing performs poorly in low
density areas(I. Kaddoura, 2021).

Ride-pooling has already come into practice yet was
suspended during the COVID period. In February
2022, at the end of the COVID pandemic, Uber has
announced its restart in UberXShare services. On
company’s perspective, it is necessary to come up

with a best pricing strategy to find a balance between
maximizing its profit and increasing patronage. Thus,
the price cannot be too low, yet should be attractive
enough to ensure a high market share.

1.2 Literature Review

ABM complies agent decision rules during iteration,
thus being able to model heterogeneity in the pop-
ulation. The ride-hailing and ride-pooling system is
a complex system with agents with different tastes,
and discrepancy among travel distances, waiting time,
detouring distance and value of time of passengers
could significantly impact their choices of mode. Thus,
we adopt the ABM model in this research.

In ride-sharing and ride-hailing problems, ABM
has already been widely applied. An agent-based
stochastic user equilibrium (SUE) model is success-
fully adopted to analyze the first/last mile ride-hailing
problem in Oakville (S. Djavadian, 2017). Zha et
al. (2016) also applied an ABM on service analysis.
Andres (A. Fielbaum, 2022) applies game theory
and a dynamic model on cost-sharing problems in
ride-pooling systems, and succeeded in reaching equi-
librium. Although Xingbin (X. Zhan, 2021) proposed
a dynamic model, yet it consists of static models of
consecutive time steps, and each step being a ABM.
Rong (R. Fan, 2022) proposed a commuter service
platform, and analyzed the monopoly and duopoly
scenarios using ABM. Moreover, the model was further
extended to analyze the pros and cons of worksite and
home locations.

In this project, we would like to focus on the sys-
tem performance of a ride-hailing corporation operat-
ing within different scenarios, based on different price
levels for non-shared options and different discount
rates for shared options. We would also like to research
on the best pricing strategy for a company to maxi-
mize its profits or attractiveness. In the next section,
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a literature review will be given. Then, based on the
identified research gap, a main research question and
several sub-questions will be listed. To answer them,
the expected research approaches will also be analyzed
and selected. Afterwards, in the fourth section, a time
plan will be proposed. Finally, organization and risks
will be evaluated.

2 Research Questions
The main research question (RQ) would be:

How is the system performance when private and
shared ride-hailing services are operated under differ-
ent price levels and discount rates?

In order to answer the main research question, the
following sub-questions will be sequentially answered:

• What would the system performance be like under
different pricing strategies and discount schemes if
ride-hailing and ride-sharing service given a fixed
demand?

• What would the system performance be like under
different pricing strategies and discount schemes
if ride-hailing and ride-sharing service given a un-
fixed demand.

• What would be an profit maximizing pricing strat-
egy to maximize the market share of ride-hailing/
sharing services?

3 Model and Simulation

3.1 Assumptions

• The demand generated do not own private vehicles
and are already possess membership of ride-hailing
services, including both non-shared and shared op-
tions.

• Drivers always choose the nearest route from ori-
gins to destinations, and the delay due to signal
lights and congestion is not considered.

• The pick-up and drop-off point of passengers are
all accessible by ride-hailing vehicles, thus the ac-
cess and egress time of ride-hailing services is omit-
ted.

• Walking time and waiting time for public trans-
port rides is set as averagely 5 minutes.

• Value of Time (VoT) follows exponential distribu-
tion.

• Due to model limitations, the highest discount
rate cannot exceed 0.4.

• The highest capacity per vehicle is set as 8 pas-
sengers, excluding the driver.

3.2 Model

3.2.1 Mode Choice

A utility model is applied to simulate the decision
process of passengers while selecting an alternative. In
our model, we consider three modes, including public
transport (PT), shared ride-hailing vehicles (SH) and
non-shared ride-hailing vehicles (NS). are the utility
functions for three alternatives.

U(PT) = Tin_veh × V oT × βin_veh + Twalk

×V oT × βwalk + Strav × βPT_fare × FarePT

(1)

U(NS) = Tin_veh × βin_veh × VoT
+Strav × βNS_fare × FareNS

(2)

U(SH) = (Tin_veh ××V oTβin_veh + TDelay × V oT

×βDelay) + Strav × βNS_fare × FareNS ×Disc

(3)

where Tin_veh stands for in-vehicle time, and the
coefficient of this attribute for three modes are iden-
tical. Twalk and Tdelay represents the walking time
to PT stops, and delay of detouring during shared
rides, respectively. V oT denotes the value of time,
and is set as 0.0035 euro/second in this model. Strav

stands for the in-vehicle travel distance, and FarePT

and FareNS denotes price per kilometer for PT
rides and non-shared rides respectively. In addition,
there is a discount rate set for shared-rides, which is
represented as Disc in equation (3). Thus, the pricing
for shared-rides is based on both non-shared pricing
strategies and the shared-ride discount rates.

3.2.2 Ride-hailing Service Operation

We apply ExMAS and MaaSSim to simulate the
shared and non-shared hailing rides. ExMAS is an
open-source agent-based simulator for ride-sharing
problems and provides attractive sharing solutions for
passengers. By matching attractive shared rides only,
this algorithm effectively reduces the computation
task.(R. Kucharski, 2020). With the open-source
simulator MaaSSim, the interaction between vehicles
and passengers could also be modelled(R. Kucharski,
2022). Eventually, the system performance on both
sides, namely vehicles’ and passengers’ side, could
both be acquired.

The cost of vehicles should be the product of total
travel distance during the simulation period and cost
per kilometer(CPK). In Amsterdam, the operational
cost is defined as 0.5 euro per km (NIBUD, 2022).
From the simulator we are able to acquire the total
travel time, hence the distance is defined as the average
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speed times overall travel time, including Non-shared-
rides distance (SNS), shared-rides distance (SSH) and
cruising distance (SCR). With the total income and
costs per vehicle, we could acquire the profits during
the simulation period. This profit includes the income
for drivers (PDriv) and commission fee collected by the
platform(PPlatf ).∑

PDriv +
∑

PPlatf =
∑

Fare−
∑

Cost

=
∑

(SNS × FareNS + SSH × FareNS ×Disc)

−
∑

((SNS + SSH + SCR)× CPK)

(4)

3.3 Simulation
The model simulation is applied to city Amsterdam.
Demands, including origins and destinations, shown in
figure 1 imply that the central part in Amsterdam has
a higher travel demand, while demand in the suburban
area is sparsely distributed. Travellers in Amsterdam
may choose among alternative modes including shared
or non-shared ride-hailing vehicles, or public transport.
Considering that purpose of trip, personalities and ur-
gency of travelling could vary a lot among travellers, we
apply an exponential distribution when defining V oT .

Figure 1: Demand Distribution

Scenarios will be established according to five pric-
ing levels of non-shared rides and five discount rates
of shared-rides. Thus, a 5 × 5 grid (Table 1) is cre-
ated to examine the system performances under the 25
different scenarios. The horizontal axis presents the
five discount rates while the vertical axis presents the
price levels (euro/km). It could also be interpreted as,
private riding services is responsible for setting a price
level per kilometer, while sharing service is in charge
of selecting a discount rate. Each of them determines
an alternative among an axis, thus the system perfor-
mance is a consequence of the decision from both ser-
vices.

0.20 0.25 0.30 0.35 0.40
1.1 (1.1,0.2) (1.1,0.25) (1.1,0.3) (1.1,0.35) (1.1,0.4)
1.3 (1.3,0.2) (1.3,0.25) (1.3,0.3) (1.3,0.35) (1.3,0.4)
1.5 (1.5,0.2) (1.5,0.25) (1.5,0.3) (1.5,0.35) (1.5,0.4)
1.7 (1.7,0.2) (1.7,0.25) (1.7,0.3) (1.7,0.35) (1.7,0.4)
1.9 (1.9,0.2) (1.9,0.25) (1.9,0.3) (1.9,0.35) (1.9,0.4)

Table 1: Scenario Grid

Other fixed parameter values are defined as in table
2. The βcost is defined as utility per euro (N. Gerzinic,
2022), while the in-vehicle, fare, walk and delay beta
are defined by the product of multipliers and βcost

(N. Gerzinic, 2022).

Parameter Value
Start Time 17:00

Duration Time 4 hours
Average Vehicle Speed 8 m/s

Average PT Speed 4 m/s
βCost -0.1592

βIn−vehicle 1× βCost

βFare 1× βCost

βWalk 4× βCost

βDelay 2× βCost

V oT Mean 12.6 €/h
PT Fare 0.2 €/km
Request 1000
Supply 100

Table 2: Parameters in Simulation

4 Simulation Results

4.1 Fixed Demand

Figure 2: Population Choosing Single Rides when De-
mand is Fixed
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Figure 3: Income when Demand is 1000 (€)

Under a fixed demand, we mainly regard the modal
split among the two services, and the total income. As
the price and discount rate get higher, more people
opt their choices to shared vehicles, and the patronage
of private rides keep descending. The high riding
fare prompts people to choose a less comfortable but
cheaper deal. It may not be a satisfying option, but a
better one among the two.

The income grid suggests that a higher price with
higher discounts could help achieve higher income. The
company would gain the most benefit when pricing
level is 1.9 while the discount rate for shared vehicles
is 0.4. Thus, if we regard this as a monopolistic mar-
ket without restrictions, which only one company is
operating to fulfill the travel demand of a region, so-
cial welfare could easily be damaged, since companies
would always try to seek the greatest benefits and peo-
ple need to pay for it.

4.2 Dynamic Demand

4.2.1 Modal Split

Three alternatives are regarded in this model, consist-
ing of public transport (PT), single rides and shared
rides of ride-hailing. As figure 4 suggests, as pric-
ing per kilometer gets lower and discount rate grows
higher, the attractiveness of shared rides keeps ascend-
ing. Single Rides are only considered appealing when
the pricing per kilometer and discount rate for shared
rides are both in a low level. Regarding the share of
public transport, people may have a stronger bias to
opt out ride-hailing services as the pricing per kilome-
ter gets higher, and the discount rate gets lower.

Figure 4: Modal Split under Different Scenarios

4.2.2 Waiting Time

Although waiting time is not considered in our util-
ity functions, it could negatively effect decisions over
day-to-day process when the waiting time is too long.
It is an essential factor that increases the disutility of
one mode. Figure 5 implies that non-shared rides are
likely to result in longer waiting times in comparison
to that of shared rides. The pricing strategy does not
have significant correlation with the waiting time of
private rides, yet when the discount rate and pricing
gets higher the waiting time for shared rides would fall
even lower. High discount rates prompts more people
to choose shared rides, and higher pricing levels make
public transport more attractive, both resulting in loss
of private ride users. Thus, when more people opt out
from private rides, passengers are likely to wait shorter,
and the system is likely to result in higher efficiency.
On the other hand, it is obvious that on the same price
level, waiting time of of the overall ride-hailing service
initially increases as the discount rate increases. Yet,
at higher price levels it no longer complies with the
trend, and changes to descend. This indicates that,
the increase of discount rates has a positive effect on
attracting potential customers, thus the system could
be too busy to handle with the requests, yet when
discounts rate get more higher, the increasing waiting
time would be offset by the reduction caused by higher
sharing rate.

Figure 6(a) and 6(b) also intuitively presents the
characteristics of vehicle routes as discount rate grows
higher. Green lines stand for the shared rides, and blue
lines denote the non-shared rides, while black lines rep-
resent trips without passengers, or cruising. In com-
parison, the discount rate has a significant effect in
increasing the weight of shared trips, since there would
be more attractive shared rides (R. Kucharski, 2022).
Attractive shared rides aim at minimizing detour of ve-
hicles when picking up customers (R. Kucharski, 2022),
thus waiting time of passengers would never be too
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(a) Average Waiting Time for Shared
Rides (s)

(b) Average Waiting Time for Non-
shared Rides (s)

(c) Average Waiting Time (s)

Figure 5: Average Waiting Time for Passengers under Different Scenarios

long. For private rides, however, customers must wait
for the nearest idle vehicle after requesting, and some-
times at remote or busy areas an idle vehicle could be
far away, leading to longer waiting time.

(a) discount rate = 0.20

(b) discount rate = 0.40

Figure 6: Route of Vehicle 19 when Price is 1.3
euro/km

This could be further verified by the grid of occu-
pancy rate. Occupancy rate is defined as the ratio of
total passenger kilometer and total travel distance.
As figure 7 suggests, the occupancy rate is higher in
high discount rates. This is because more passengers
opt for shared rides as the discount rate gets higher,
and so the driver is able to carry more passengers
simultaneously, resulting in higher efficiency.

Figure 7: Occupancy Rate

4.2.3 Vehicle Cost

On drivers’ perspective, passengers’ waiting time is
highly related to the cruising distance without pas-
sengers. Drivers and platforms incline to reduce the
cruising distance, since no passengers would be paying
for the operational costs while cruising. If we examine
figure 8, it is clear that the trend accords with that
of overall waiting time, which there is a peak at each
price level, and the peak lags as discount rates gets
higher. This is because at higher prices and low dis-
count rates, people opt for public transport mode and
vehicles keep idle. The peak always happens when the
shared services start to become dominant.

Figure 8: Average Cost per Vehicle (€)
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4.2.4 Travel Distance

The average travel distance of private rides reduces sig-
nificantly in the direction of two axes. Higher price lev-
els could lead to higher fares, increasing its disutility,
while higher discount rates decreases the total fare for
shared rides and increases its utility, thus also making
longer private rides less attractive.

Figure 9: Average Trip Distance of Non-Shared Rides

The average distance of shared rides, in contrast, in-
creases as the discount rate rises higher. When the dis-
count rate is sufficiently high, the savings of fare cost
is able to compensate the time cost of detour delay,
thus becoming appealing for travellers on long jour-
neys. This also counts for the descending trend among
the price level axis at high price levels. However, at
low price levels there is not a significant correlation
between price and travel distance. This could be ex-
plained as insufficiency of samples, since the demand of
shared rides are quite low, and the randomness of VoT,
as assumed, renders some people with long travel dis-
tances to choose the shared mode, which helps increase
the average travel distance significantly.

Figure 10: Average Trip Distance of Shared Rides

The theory we mentioned above could be further ver-
ified by figure 11. As discount rates grow higher, from
0.2 to 0.3, the maximum travel distance of shared rides
grow higher, and so does the 25% quantile and medium
value. More people with longer distances are willing to

travel with this mode. Besides, Even if randomness of
VoT is assumed in the model, the maximum distance
of non-shared rides still not comparable that of shared
rides. Thus, it is also obvious that the discrepancy of
target customers of two services is always huge, which
private rides are always more appealing to customers
on short tours.

Figure 11: Distribution of Ride Distance when pricing
level is 1.1 euro/km

The characteristics of travel distances could account
for the variation in fares. For single rides, the rid-
ing fare decreases as the price level and discount rate
increases, since the number of rides keeps reducing.
As price levels become higher, people travelling longer
distances may opt out from this mode, resulting in re-
duction of fare income. However, for shared rides, the
overall trend is adverse. Higher discount rates could
attract substantial PT and NS users, bringing a huge
income. Based on this, we discover a rise-and-fall trend
in the total fare income of each price level. In each
level, there is a peak among the total fares, at a spe-
cific discount rate. As the price level grows higher,
the peak lags. Similar trends could also be discovered
when examining among the discount rate axes.

4.2.5 Income

For companies, they regard most on the income, since
the commission fee is a direct prorated deduction from
the drivers’ income. The operational cost, including
gasoline fee and maintenance cost, should be paid by
the platform.

Figure 13 suggests that an optimal solution for
drivers is pricing at 1.1 euro/km, while sticking to the
maximum discount rate 0.4. To better determine the
optimal price level, we also simulated scenarios when
the price is lower than 1.1 euro/km, and the results
show that there is a peak among price levels on the
same discount rate, which the income of 0.9 euros per
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(a) Shared Ride Fares (Euro) (b) Non-shared Ride Fares (Euro) (c) Total Fare (Euro)

Figure 12: Total Fares for Passengers under Different Scenarios

km and 0.4 discount rate falls to 17.9 euros averagely.
Yet, on a same price level, the income keeps ascend-
ing as discount rates increase. As discount rates grow
higher, vehicles become busier and drivers have less
time idle, enjoying greater income. As price levels get
higher, drivers initially enjoy the benefits of higher unit
prices, but then have more idle time and passengers
with shorter rider distances due to lower patronage.

Figure 13: Income per Vehicle

Figure 14 also suggests that corporations have the
highest market share at 1.1 euro/km and 0.4 discount
rate.

Figure 14: Market Share

5 Conclusion

5.1 Findings and Implication

In this study we examined two basic scenarios, which
the demand for ride-hailing services is either fixed or
dynamic. In each scenario we examine the operation
under a grid of different pricing levels per kilometer,
and different discount rates. When the demand is
fixed, we regard the market as monopolistic, and the
optimal pricing strategy for the ride-hailing company
should be tuning the pricing level higher, and offering
more discounts.

However, if we add a competing mode into the
market, which here we adopted the public transport
mode, the company could experience loss of customers
if prices are unreasonable. The most optimal strategy
would still be ensuring a higher discount rate, yet
selecting a price level that balances patronage and
income. In our scenario, the value should be 1.1
euro/km.
For passengers, It is found that waiting time could
be four times negative than that of in-vehicle times
for its utility, thus it is an essential for companies
to minimize it. The formation of attractive shared
rides greatly helps improve the problem of wait-
ing too long, thus it is wise to choose a pricing
strategy that encourage more people using shared
options, which discount rates should be relatively high.

Finally, the distribution of travel distances also sug-
gest that people travelling long journeys would be less
willing to take private rides, and the target customers
of private rides may be people travelling not very long.

5.2 Implications

The results above suggest that shared rides would
help increase the overall efficiency of a system, by
reducing passengers’ waiting time and saving their
money, while also increasing the income of drivers
and the platform, and also increasing the turnover
efficiency and occupancy rate. As we have mentioned,
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ride-hailing services currently could drive the road
congestion level even severe, and by increasing the
occupancy rate and decreasing the total operated
distance of a vehicle, this problem could be alleviated.
It is also obvious that modal split of consumers (figure
4) are sensitive to the changing of pricing strategies,
thus not only discount rates could be elevated, but also
some other bundles beneficial for promoting shared
rides could be launched.

On the other hand, it is essential for public trans-
port companies to enhance their competitiveness and
improve passengers’ travel experience, thus avoiding
too much customers opting out. As the monopolistic
scenario suggests, without an efficient public transport
network, the ride-hailing company could make more
profits by tuning the price level per kilometer higher,
which damages the social welfare.

5.3 Limitations and Future Research
For the model itself, in our study the highest discount
rate could only be tuned to 0.4, yet in reality it could
be tuned even higher, and we stress the necessity to
know if the income would continue to rise when higher
than 0.4. In addition, the utility functions could be
optimized by adding the utility of waiting times, and
the comfort of in-vehicle could also be quantified.

For further research, in this study we focus mainly
on the competition between public transport and ride-
hailing companies, and more other modes could be
added to the scenarios, such as bikes and e-scooters.
Also, we regarded the ride-hailing services as an inte-
grated company, yet this model could also be developed
further to examine a scenario of two companies operat-
ing private and shared riding services separately. Since
the non-shared riding service controls over the pricing
level, while the shared riding service tunes the discount
rate, it requires an additional model to help determine
the most possible income for two companies on the
price grid, such as by applying game theory.
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