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summary

Transport infrastructure investments represent some of the largest and most long-lasting public ex-
penses, with the decisions that are made today influencing urban mobility for generations to follow.
As cities all over the world face growing populations, climate targets and thereby the requirement for
sustainable mobility solutions, accurate transport demand forecasts become increasingly important for
effective infrastructure planning, resource allocation and policy evaluation (de Vries & Willigers, 2011).
Otherwise this could lead to either insufficient capacity that constraints economic development or over-
investment that wastes public resources.

Despite their importance, transport demand forecasts are rarely subjected to systematic ex-post evalu-
ation, making it difficult to learn from past successes and failures, and to improve forecasting method-
ologies over time (Tempert et al., 2010). This represents a significant shortcoming in transport planning
practice, where accountability for forecast accuracy is limited and systematic biases in models may go
undetected across multiple projects (Flyvbjerg et al., 2005).

This thesis addresses this gap by using a systematic ex-post evaluation based on smart card data to
investigate the accuracy of multimodal transport demand forecasts, with a focus on the Hoekse Lijn
metro conversion project in the Rotterdam metropolitan area. The study provides a systematic, smart
card data-driven ex-post assessment that compares forecasted and realised public transport demand.
Using anonymised smart card transaction data from the OV-chipkaart system enables this research to
offer a scalable and replicable approach to validating and improving demand forecasting methodologies.
This contributes to a more accountable and data-informed planning process of transport projects. The
research is guided by the main question:

How can multimodal transport models be improved to enhance the accuracy of future public transport
demand forecasts?

A methodological framework was developed to guide the analysis, comprising four sequential steps: (1)
demand reconstruction and exploration using smart card data; (2) forecast comparison through tempo-
ral and spatial indicators; (3) diagnostic analysis to trace the origins of discrepancies; and (4) synthesis
of insights to inform model improvement. This framework was applied to the Hoekse Lijn case study, a
former heavy rail line converted to metro operation, supported by detailed transport forecasts from 2011
and 2015. The demand reconstruction was based on already aggregated smart card data, requiring
only limited preprocessing. The analysis involved applying correction factors to account for alternative
payment methods. Key demand indicators, such as boardings per station, segment occupancies and
total passenger kilometres, were derived. The latter two required additional processing using a sec-
ondary dataset. Forecast errors were assessed using quantitative metrics, including mean absolute
error (MAE) and weighted mean absolute percentage error (WMAPE). To account for the structural im-
pact of the COVID-19 pandemic, a correction factor was applied to adjust observed demand upwards
to a pre-pandemic baseline, ensuring comparability with the original forecasts.

The results show that demand forecasts significantly overestimated actual ridership. Relative to the
2015 forecasts, weekday boardings were on average 25-30% lower after applying the COVID-19 cor-
rection factor. Eight out of ten stations showed underperformance in total weekday boardings, ranging
from -9% to -40%. Westbound boardings were particularly overestimated, with most stations experi-
encing overestimates of more than 50%. In contrast, some stations performed near or above forecast
levels: Maassluis Steendijkpolder came close to the projected figures, while Hoek van Holland Strand
exceeded expectations, with an increase of 121% due to unexpectedly high levels of recreational travel.

While total station-level boardings were lower than forecasted, passenger kilometres were up by 18%,
indicating that the average trip length was longer than anticipated. This discrepancy is explained by the
high share of long-distance, non-commuting trips. For example, beach-related travel to Hoek van Hol-
land Strand generated up to 27 times the normal weekday boardings during peak summer days. This
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illustrates that the project’s broader objective of improving leisure accessibility was achieved despite
shortcomings in commuter demand projections.

Four systematic deviations were identified in the forecast:

» Spatial asymmetry: Easternmost stations showed the largest absolute errors in number of board-
ings.

» Directional bias: Westbound boardings were consistently overestimated across nearly all sta-
tions.

» Trip purpose misalignment: Commuter demand being overestimated and leisure travel being
underestimated.

+ Trip length distribution change: Average trip length were fundamentally underestimated, with a
higher proportion of longer-distance trips and integration into the bigger Rotterdam metro network
attracting travellers from outside the corridor.

These results point to a mixed outcome. Although the strategic target of a 52% uplift in weekday board-
ings was not achieved at most stations, the line did outperform on leisure travel and, as a result, total
passenger-kilometres. At the same time, percentage errors (especially westbound, where base vol-
umes are low) can exaggerate apparent deviations; for operational interpretation, absolute deviations
are more informative. Taken together, the findings underline the difficulty of forecasting for corridors
that must serve both regular commuters and irregular, weather-sensitive leisure users.

The systematic deviations also had implications that extended beyond the immediate outcomes of the
project. Spatial asymmetry and directional bias resulted in suboptimal resource allocation, with capac-
ity and service assumptions concentrated in areas that ultimately experienced lower-than-expected
demand. Meanwhile, trip-purpose misalignment and longer-than-assumed journey times shifted the
operational profile away from the anticipated commuter-oriented service towards longer recreational
journeys, thereby influencing urban mobility patterns in ways that were originally not planned for.

The observed inaccuracies in the forecast were due to a mix of limitations in the model and external
developments:

» Overestimated service levels: Forecasts included an additional peak-hour metro line that was
never implemented and assumed a dense feeder bus network, both of which inflated perceived
accessibility and demand.

» Misaligned cost assumptions: Outdated parameters related to value of time and distance costs
did not align with actual traveller behaviour, leading to misrepresentations of generalised travel
costs in the forecasts.

» Outdated demographic forecasts: Forecasts misjudged spatial patterns of population and em-
ployment growth, particularly outside Rotterdam.

» Post-2015 policy shifts: Parking fee increases and fare reforms influenced mode choice more
than anticipated, especially due the rising relative costs of public transport compared to other
modes.

* Pandemic effects: COVID-19 led to lasting reductions in commuting and a rise in long-distance
leisure trips, notably to Hoek van Holland Strand.

» E-bike adoption: Growth in e-bike use diverted medium-distance travellers from metro access
trips, impacting mode competition.

After applying the —12% structural correction for the effects of the pandemic, systematic attribution
analysis (see figure 5.8) shows that approximately 60% of the total residual deviation on an average
weekday can be explained by identifiable factors. These include network representation ( 30%), which
is driven by the assumed frequencies of Line A and a feeder bus network that is more extensive than
that delivered. Other factors include behavioural and economic parameter misalignment ( 20%), which
is due to time and distance cost factors that are anchored in 2010, despite the fact that public trans-
port costs have risen relative to car travel. There are also socioeconomic inputs ( 5%), which reflect
employment that is concentrated in Rotterdam rather than along the corridor. Finally, there is unmod-
elled competition from e-bikes ( 10%) for trips of between 5 and 15 km. These effects are partly offset
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by stronger-than-forecast leisure demand at Hoek van Holland Strand ( -7%). The remaining 40% is
best understood as interaction effects (factors reinforcing each other), normal post-opening ramp-up,
seasonality and data/measurement limitations, rather than a single missing cause.
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Figure 1: Waterfall graph showing attribution to the total residual forecast deviation.

Beyond the findings of the case study, the broader implication is that forecasts should treated as indica-
tive rather than as fixed targets as forecasts are inherently uncertain and prone to bias. Their primary
value is to indicate direction and scale and to support comparisons between alternatives, rather than pro-
viding guaranteed outcomes. Forecasts should therefore be communicated in outcome ranges linked
to specific scenarios and should reflect heterogeneous demand. On that basis, this study proposes
four concrete strategies:

+ Systematic ex-post validation: Establish standardised continuous ex-post validation schemes
using using automated data sources, such as smart card data, to create feedback loops between
forecasting practice and observed outcomes, going beyond traditional one-time evaluations.

+ Adaptive parameter calibration: Implement adaptive parameter management that regularly up-
dates behavioural and economic parameters using real-time data sources, addressing the sys-
tematic overestimations that caused by outdated assumptions in the model.

» Scenario-based uncertainty management: Adopt scenario-based forecasting methodologies
that systematically explore uncertainty across major assumptions, providing probability-based
outcome ranges rather than single-point estimates that are more vulnerable to external disruptions
like COVID-19.

* Integrated network planning: Implement network planning that evaluates how new infrastruc-
ture could reshape existing service networks and assesses financial sustainability of service as-
sumptions.

Implementing these changes requires a shift in institutional culture, moving from “predict-and-forget”
to “predict-and-learn”. Ex-post evaluations should be mandated and published as part of the funding
conditions, turning forecasting into a continuous cycle of planning, evaluation and improvement, helping
to mitigate the effects of optimism bias. Data management is fundamental in this process. Ideally, a
governmental-led database would provide open, aggregated indicators to support routine validation.
For each major project, the project owner, relevant operators and regional authorities should form a
small, temporary working group to agree on service scenarios and confirm matching budgets before
forecasts are finalised. Finally, roles must be clearly defined, such as who initiates evaluations, who
updates parameters and who coordinates across the different agencies. This ensures that continuous
learning becomes and integral part of forecasting practice, rather than being viewed as an occasional
activity.

This study underscores the value of smart card data as a tool for ex-post validation. The continuous,



system-wide nature of this dataset enables a granular understanding of temporal and spatial travel
patterns. However, several limitations persist: incomplete coverage of user segments due to alternative
payment methods, lack of direct insight into trip purpose or traveller demographics, and the challenge
of inferring demand indicators using a secondary model to evaluate the accuracy of the original forecast
outputs.

This research demonstrates that systematic ex-post evaluation using smart card data can significantly
enhance the accountability and accuracy of transport demand forecasting by revealing systematic bi-
ases that would otherwise remain hidden in planning practice. The Hoekse Lijn case study illustrates
how traditional forecasting approaches, while achieving some strategic objectives such as improved
leisure accessibility, can substantially overestimate commuter demand due to outdated model param-
eters, unrealistic service assumptions, and inability to anticipate external disruptions such as e-bike
adoption and pandemic-induced behavioural changes. The four-step methodological framework de-
veloped in this study provides transport planners with a replicable approach for continuous model
validation and improvement, while the proposed strategies offer concrete pathways toward more ro-
bust forecasting methodologies. As transport systems face increasing complexity from technological
innovation, changing mobility preferences, and unexpected societal disruptions, the integration of au-
tomated data sources with systematic evaluation frameworks becomes essential for evidence-based
infrastructure investment decisions. This study contributes to a more mature and accountable transport
planning discipline, where forecasting accuracy is continuously monitored, systematic biases are trans-
parently identified, and lessons learned are systematically incorporated into future practice, ultimately
supporting more informed and sustainable transport infrastructure development.
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Introduction

Transport demand forecasts play an important role in infrastructure planning, investment decisions, and
public transport operations (de Vries & Willigers, 2011). Multimodal transport models are widely used to
estimate ridership for new public transport connections. However, despite their importance, transport
demand forecasts are often subject to significant deviations, with actual ridership figures eventually
differing from projections (Flyvbjerg et al., 2005). Furthermore, ex-post evaluations of transport demand
forecasts remain uncommon, making it difficult to systematically assess their accuracy (Tempert et al.,
2010).

The need for reliable transport forecasts had become increasingly important as cities continue to expand
and prioritise sustainable mobility solutions. Overestimated demand can result in inefficient allocation of
resources and financial losses, while underestimation can lead to insufficient capacity and suboptimal
infrastructure planning. As a result, improving the accuracy of forecasting models is an important issue
in transport planning (Flyvbjerg et al., 2005; Tempert et al., 2010).

1.1. Research gaps

Despite the extensive use of transport demand forecasts in infrastructure planning, research has shown
that these forecasts frequently suffer from systematic inaccuracies, particularly in rail projects. Large-
scale studies such as those by Flyvbjerg et al. (2005) indicate that rail is demand is often overestimated,
with an average overestimation of 106%, leading to substantial financial and operational consequences.
Similarly, research on Dutch projects like RandstadRail and the Noord/Zuidlijn has found that forecast
models often rely on unrealistic socio-economic assumptions, contributing to deviations between pro-
jected and actual ridership (Bojada, 2014; Brands et al., 2020). These inaccuracies persist despite
advancements in forecasting methodologies, highlighting a need for more systematic validation.

A major limitation in forecasting research is the scarcity of systematic ex-post evaluations - assess-
ments that compare forecasted ridership with actual usage after project implementation. While some
retrospective studies exist, they rely heavily on manual passenger counts or survey data, which are
often expensive, time-consuming, and limited in scope (Brands et al., 2020; Hussain et al., 2021).

One of the most promising but underutilised resources for ex-post validation is smart card data, which
provides a continuous, large-scale record of real-world passenger movements (Dixit et al., 2024; Pel-
letier et al., 2011; Van Oort et al., 2015a). While smart card data has already been widely used for
OD estimation, route choice analysis, and operational planning, its application in long-term transport
forecasting validation remains largely unexplored (Dixit et al., 2024; Tempert et al., 2010). Additionally,
data accessibility issues, privacy concerns, and incomplete check-in/check-out data pose methodolog-
ical challenges that limit its full potential (Bakker, 2019; Vignetti et al., 2020).

Another significant limitation in forecasting accuracy stems from the difficulty of incorporating external
influences into demand models. Traditional models assume stable travel behaviour based on socio-
economic projections, yet real-world ridership is shaped by policy interventions, urban planning deci-
sions, and technological advancements. Research has shown that policies such as parking restrictions,
cycling infrastructure improvements, and congestion pricing can significantly impact public transport de-
mand, yet these effects are often not systematically accounted for in forecasting models (Kolkowski &
de Boer, 2023).
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The COVID-19 pandemic further exposed the rigidity of conventional models, as long-term shifts in
commuting patterns, remote work adoption, and modal preferences led to significant forecasting errors
(Gkiotsalitis & Cats, 2021). While some studies have explored post-pandemic mobility trends, there
is still limited research on how such disruptive events should be integrated into long-term forecasting
methodologies.

While forecasting inaccuracies have been documented in research, there is a lack of systematic, data-
driven ex-post evaluations that quantify and explain deviations between projected and actual ridership
using empirical smart card data.

1.2. Research objectives

To address the research gap as outlined in the previous section, this study aims to assess the accuracy
of past transport forecasts and identify factors contributing to deviations between projected and actual
ridership. Therefore, the primary objectives of this research are:

1. Evaluate the effectiveness of smart card data for ex-post validation.

2. Assess the forecast accuracy of existing the transport demand forecasts.
3. Investigate the causes of forecasting discrepancies.

4. Propose improvements for future multimodal forecasting methodologies.

To address the research objectives that are outlined above, this study uses the conversion of the Hoekse
Lijn as relevant case study to explore this gap in research, providing an opportunity to analyse how past
projections compare with observed passenger behaviour and to assess how external factors may have
influenced demand. Using OV-chipkaart smart card data, this research aims to bridge the gap by
introducing a systematic approach to validating forecast accuracy, distinguishing between model error
and external influences, and proposing improvements for future multimodal forecasting methodologies.

To support the decision to convert the Hoekse Lijn from a railway connection to part of the Rotterdam
metro network, transport demand forecasts were conducted in 2006, 2011, and 2015 (Goudappel Cof-
feng, 2011, 2015). Now that the metro has been operational for several years, it presents an opportunity
to assess how well these projections align with actual ridership levels. Studies on comparable projects,
such as RandstadRail, have revealed significant discrepancies between forecasted and observed de-
mand, raising the question whether similar deviations exist for the Hoekse Lijn. Indentifying these
discrepancies and understanding their causes can provide valuable insights for improving forecasting
models and supporting better-informed transport planning decisions.

1.3. Research questions

To reach the objectives of this research to systematically analyse the deviations in transport demand
models and propose improvements to forecasting methods, using the Hoekse Lijn as a case study, the
following research question will be answered:

How can multimodal transport models be improved to enhance the accuracy of future public transport
demand forecasts?

To answer the main research question, the following sub-questions are composed:

1. How can OV-chipkaart smart card data be used to evaluate the transport demand for the Hoekse
Lijn, and what are its limitations?

2. How does the actual transport demand on the Hoekse Lijn compare to the forecasted values from
2011 and 2015, and what systematic deviations can be identified?

3. To what extent do discrepancies between forecasted and observed demand stem from biases or
structural limitations within the transport models?

4. What external factors, such as socioeconomic developments, policy changes, and the COVID-19
pandemic, contributed to deviations between forecasted and actual transport demand?
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1.4. Research approach

This study will use a variety of methods to evaluate the accuracy of transport demand forecasts for the
Hoekse Lijn and determine the causes of any discrepancies. The methodology will integrate a literature
review, data-driven analysis and expert consultation in order to evaluate discrepancies in the forecasts.

First, a review of forecasting accuracy studies and best practices in smart card data analysis will es-
tablish the theoretical context. Exploratory data analysis (EDA) will then be conducted to assess data
quality and identify patterns or inconsistencies. Time-series visualisation and error metrics will then be
used to compare forecasted and observed ridership, highlighting any systematic biases.

Next, observed demand will be systematically compared to original forecasts using visual and statistical
techniques, with cluster analysis being applied to assess accuracy across different station typologies.
Any deviations will be explained through an analysis of the assumptions underlying the model, distin-
guishing between model limitations and external factors. This will be supported by a literature review
and expert consultation.

This research starts with a literature review on forecast accuracy evaluation, smart card applications
and external factors influencing transport demand in chapter 2. Chapter 3 describes the methodol-
ogy that is used to evaluate the forecast accuracy. Next, chapter 4 provides the empirical context of
the Hoekse Lijn and analyses observed ridership patterns, while chapter 5 presents the comparative
analysis of forecasted and observed demand and explores the causes of discrepancies. Chapter 6
concludes with a synthesis of findings, discussion and recommendations for improving transport fore-
casting practices.



Literature Review

This literature review examines the current state of knowledge regarding the accuracy of transport
demand forecasting, focusing particularly on the use of smart card data for systematic forecast evalua-
tion and on external factors that influence forecasting performance. It addresses three research areas
that are essential for improving transport forecasting practices: (1) Existing approaches to evaluating
forecast accuracy in transport models, including methodological frameworks and systematic biases
identified in previous studies; (2) the emerging role of smart card data as a tool for ex-post evaluation.
This section highlights the advantages of smart card data over traditional data collection methods, as
well as the methodological challenges it presents; and (3) the influence of external factors on public
transport demand, with particular attention to the COVID-19 pandemic and the emerging adoption of
electronic bicycles.

These three topics are included as they directly align with the research’s aim and research questions:
(1) defines how forecasts accuracy will be judged and where systematic bias typically arises; (2) as-
sesses the suitability of smart card data as the basis for ex-post evaluation and outlines the necessary
processing steps; and (3) identifies the external factors that could explain some of the difference be-
tween forecasts and actual outcomes, enabling the analysis to distinguish between errors in the model
and external effects.

For the literature research, Google Scholar, ScienceDirect, and the TU Delft Repository were used
to identify studies on transport demand forecasting accuracy, ex-post evaluations, smart card data
applications, and external effects. The following keywords were used in various combinations: smart
card/OV-chipkaart data, ex-post evaluation, transport/traffic forecast accuracy/reliability, RandstadRail,
OD matrix, effects COVID-19.

2.1. Evaluation of forecast accuracy of transport models

Despite their widespread use, transport demand forecasts are rarely subject to ex post evaluation,
making their actual accuracy often uncertain (Tempert et al., 2010). However, large-scale studies,
such as those by Flyvbjerg et al. (2005), have shown systematic overestimations, especially in rail
transport forecasts. Unlike weather forecasts, which can be quickly tested against real-world data,
transport forecasts often project demand 15 years or more in the future, making direct validation a long-
term challenge. This limitation means that the applicability and reliability of transport models are often
assumed rather than subjected to strict verification.

Statistical validation methods are used to quantify forecast accuracy. Common metrics include Mean
Absolute Percentage Error (MAPE) and Percent Root Mean Squared Error (PRMSE) to summarise
deviations between predicted and observed values. These range from simple ratio-based calculations,
such as computing the actual observed value as a proportion of the forecasted value and subtracting
one, to more complex statistical measures, each providing different insights into forecast deviations
between predicted and observed values (Macfarlane, 2024).

One of the most consistent findings in the evaluation of transport forecasts is the tendency to overes-
timate demand, particularly for new infrastructure projects. Tempert et al. (2010) analysed forecasts
made in the 1990s and found that, on average, transport models overestimated traffic intensities, with
discrepancies being much larger for inner-city roads than for main roads. The main cause of these in-
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accuracies was found to be overly ambitious socioeconomic development assumptions, such as over-
estimated new housing projects and employment growth.

Research by Flyvbjerg et al. (2005) provides a broader statistical analysis of the accuracy of transport
demand forecasts. Using a dataset of 210 major transport projects across 14 countries, the study
found:

+ Rail forecasts are particularly prone to overestimation: in 90% of rail projects passenger demand
was overestimated, with an average overestimation of 106%.

» Road forecasts show a more balanced distribution of discrepancies, with similar rates of over-
and underestimation. However, for 50% of all road projects, the difference between forecasted
and actual traffic was more than £20%.

» The accuracy of forecasts has not improved over the last 30 years, despite claims that forecasting
techniques have advanced.

These findings suggest that forecasting inaccuracies are not just the result of technical limitations, but
may also be the consequence of political and strategic biases. Many projects face political pressure
to justify investments, leading to systematically inflated demand estimates. This effect is especially
apparent in rail projects, where strong political or ideological motivations, such as encouraging a modal
shift from cars to public transport, can lead to deliberate overestimation of demand (Flyvbjerg et al.,
2005).

A KiM (Kennisinstituut voor Mobiliteitsbeleid) study strengthens this argument by analysing four ma-
jor Dutch urban transport projects, including RandstadRail and the Noord/Zuidlijn. The results show
that forecasting discrepancies did not consistently lead to over- or underestimations, but rather varied
depending on changes in project scope, economic conditions and model assumptions (Kolkowski &
de Boer, 2023). Interestingly, the study also highlights that while spatial development assumptions
were often too optimistic, other factors such as parking restrictions, improved cycling infrastructure and
policies to discourage car use played a larger than expected role in shaping actual ridership. This
suggests that transport models may not fully capture behavioural responses to urban policy changes,
leading to deviations between forecasts and reality.

In response to these systematic issues, several academics and practitioners advocate the use of band-
widths and scenario-based forecasting rather than single-point estimates. Both Tempert et al. (2010)
and Bojada and Clerx (2014) emphasise the importance of providing realistic ranges of high and low
demand to account for uncertainty in future developments. Furthermore, risk management approaches,
as suggested by Bojada and Clerx (2014), could improve the robustness of transport models by explic-
itly incorporating uncertainties related to spatial and economic development.

2.2. Smart card data as a tool for ex-post evaluation

Ex-post evaluations of transport forecasts are instrumental in assessing the accuracy of forecasting
models and improving their reliability for future transport planning. In recent years, smart card data,
such as the OV-chipkaart system in the Netherlands, has emerged as a valuable resource for conduct-
ing these evaluations, providing insights into travel behaviour that traditional survey-based methods
cannot match. Unlike manual passenger counts or surveys, smart card data enables large-scale vali-
dation by providing real-world passenger movements and multimodal travel patterns (Dixit et al., 2024;
Pelletier et al., 2011; Van Oort et al., 2015b). However, despite these advantages, the use of smart
card data in forecasting validation faces challenges related to data accessibility, trip interference, and
behavioural assumptions (Bakker, 2019; Vignetti et al., 2020).

One of the uses of smart card data is origin-destination (OD) matrix estimation. Hussain et al. (2021)
discusses recent advances and future challenges in OD matrix estimation, emphasising the importance
of data cleansing and transfer detection in ensuring accurate trip reconstruction. Data cleansing is
critical to correct for discrepancies caused by equipment failure and human error, which can affect up
to 2% of transactions (Translink, 2016). Besides filtering out missing or faulty records, setting upper
and lower limits for travel time and distance helps identify discrepancies caused by factors such as
unrealistic trip durations, fare evasion, or incorrect tap-ins (Hussain et al., 2021). The paper goes on
to describe the necessity of transfer detection in public transport systems where passengers tap in for
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each boarding, as it helps distinguish between single trips and multi-trip journeys. Effective transfer
detection algorithms distinguish between true intermodal transfers and activities that may indicate trip-
end locations.

Expanding on this, Fu and Gu (2018) illustrate how OD matrix estimation can also be used to as-
sess travel time changes following the introduction of a new metro line. Their study of the Nanjing
metro system shows how smart card data can be used to quantify the redistribution of passenger flows
across multiple stations and whether the new line has successfully reduced congestion on previously
congested corridors.

Other ex-post studies have demonstrated the value of smart card data in validating route choice models
and travel behaviour assumptions, particularly in assessing the impacts of service frequency changes
and network modifications through empirical scenario testing. For example, Van Oort et al. (2015a)
applied smart card data in The Hague to refine demand modelling and evaluate service adjustments,
demonstrating how data-driven simulations can support decision-making in public transport planning.
Similarly, Dixit et al. (2024) evaluated the predictive performance of a multimodal route choice model
in Amsterdam before and after the introduction of the Noord/Zuidlijn metro line. Their findings illustrate
the challenges of applying existing models to new conditions, showing that while smart card data can
validate general demand trends, deviations at the individual route level remain difficult to predict. This
suggests that ex-post validation should not only focus on aggregate demand levels but also assess
how travellers adapt their routes and transfer behaviour in response to new infrastructure, as existing
models may not fully account for these behavioural adjustments. By incorporating these individual-level
adaptations, model accuracy and applicability to future scenarios can be improved.

Building on these insights, Brands et al. (2020) contribute to the discussion by demonstrating how
smart card data can be used for ex-post evaluations of public transport network changes. Their study
on the introduction of the Noord/Zuidlijn in Amsterdam highlights how automated data sources enable
the quantification of ridership changes, modal shifts, and variations in travel times across the network.
By comparing smart card transactions before and after the metro line’s introduction, they reveal a 4%
increase in network-wide ridership, largely driven by shifts from tram and bus to metro. Moreover,
their findings underscore that besides a reduction in travel times and improved reliability for some
passengers, others were confronted with increased tranfers times or longer journeys due to network
restructuring. This is in line with Dixit et al. (2024), who found that while smart card data effectively cap-
tures aggregate demand trends, individual route choices remain difficult to predict due to behavioural
adaptations. The evaluation of the Hoekse Lijn can follow a similar approach, using smart card data to
assess whether expected demand shifts occur, how travel behaviour adapts, and how network-wide ef-
fects like induced demand or transfer penalties play out. Additionally, assessing changes in travel time
reliability, as seen with the Noord/Zuidlijn, is key to understanding the broader service quality impacts.

Fu and Gu (2018) further highlight the importance of travel time reliability as a metric in evaluating new
metro lines. Their study shows that, besides ridership fluctuations, the introduction of new infrastructure
can change the consistency of travel times across the network. Using smart card data, they quantified
how the opening of Line 4 of the Nanjing Metro reduced travel times for certain OD pairs, while increas-
ing variability for others. This could particularly be attributed to shifts in transfer locations and station
congestion. Such findings underscore the importance of assessing not only travel time variability but
also broader service quality factors that influence passenger behaviour.

In addition to travel time reliability, smart card data enables the ex-post analysis of service quality
impacts on the number of passengers. Van Oort et al. (2015b) examines how comfort and capacity
constraints affect travel behaviour, highlighting that traditional transport models often overlook comfort
effects, despite their influence on passenger choices. Their analysis shows that frequency increases
not only reduce waiting times, but also improve comfort, leading to 20-30% higher predicted passen-
ger growth than models without comfort effects predict. This suggests that fluctuations in travel time
consistency, as observed by Fu and Gu (2018), may be linked to broader service quality improvements
that shape passenger preferences and overall network demand. These findings emphasise the value
of smart card data in capturing both behavioural responses to service changes and deviations from
forecast demand estimates.

Furthermore, smart card data can also be used in assessment of the impact of policies. Wang et
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al. (2018) uses smart card data to analyse the effects of transit fare changes in the Beijing Metro,
showing how demand elasticities vary across different passenger groups and times of day. Comparing
the results to an ex-ante evaluation shows the significant exaggeration in passengers’ responses to
fare increases coming from a stated preference survey. Simirlarly, Bakker (2019) emphasises the
importance of smart card data for justifying investment decisions and ex-post evaluations. By providing
insights into actual travel behaviour, smart card data improves demand forecasting models and ensures
better project selection. It also enables a network-wide evaluation of new transit projects, distinguishing
between genuine ridership growth and demand shifts, which supports long-term policy assessments.

Finally, ex-post evaluations using smart card data can be integrated with cost-benefit analysis (CBA)
to assess long-term project impacts. Vignetti et al. (2020) proposes a methodology combining retro-
spective CBA with qualitative stakeholder analysis to provide more comprehensive evaluation of trans-
port investments. While traditional CBAs often rely on projected benefits, smart card data allows for
real-world validation of passenger growth and accessibility improvements. This approach aligns with a
broader goal of transport forecasting: not just to predict demand but to ensure that investments achieve
their intended societal benefits.

2.3. Smart card data compared to traditional methods

Smart card data offers several advantages over traditional data collection methods such as travel sur-
veys, manual counts, and GPS tracking, though it also has some limitations. Its broad coverage and
scale are key strengths: each fare transaction generates a data point, resulting in large sample sizes
across the entire system on a daily basis. This passive data collection occurs continuously and auto-
matically, in contrast to costly surveys that are conducted infrequently (sometimes only once every few
years) with limited sample sizes (Lee et al., 2014). Traditionally, data was limited to one-day manual
counts or small-scale surveys, but now system-wide, daily OD flows and trends can be continuously
monitored. Transport for London highlights that fare data, combined with inferred missing pieces, pro-
vides a comprehensive view of trips across the network, enabling effective planning and impact analysis
of service changes, insights that were previously only accessible through expensive manual surveys
(TfL, 2015).

However, traditional methods offer details that smart cards may lack. Travel surveys collect demograph-
ics (age, income, etc.) and trip purpose information, which smart card data do not contain inherently
(Bagchi & White, 2005). Also, surveys cover all travel modes (car, bike, on foot), providing a complete
picture of the entire journey, while smart card data only reflects the public transport leg of a journey.
Manual counts and automatic passenger counters on vehicles can sometimes record the total amount
of passengers, including those who might be missed by the smart card system, such as passengers
who try to evade paying or those who still use paper tickets (Hussain et al., 2021). GPS-based tracking
of volunteer participants (via smartphone apps or dedicated devices) can provide very high-resolution
trajectories and mode detection for all trips, but these tend to involve much smaller sample sizes and
participant burden (Marra et al., 2022).

2.4. Limitations and considerations of smart card data

As partially already shown in table 2.1 comparing smart card data to traditional methods, while smart
card data is extremely useful, it presents some major limitations and biases that must be considered.
Data privacy and accessibility issues are the primary concerns (Bakker, 2019). Because smart card
data can potentially trace and individual’s movements, data is often anonymised or aggregated before
analysis. Privacy principles (e.g., data minimisation and use limitations) often restrict using personally
identifiable trip sequences (Fan & Chen, 2018). Even anonymised data can raise concerns when
combined with other datasets, as noted by Dempsey (2015), ‘'The greater the data base, and the more
extensively it is correlated with other data bases, the less privacy the individual enjoys.’

Another limitation, that also followed from the comparison with traditional methods, is the absence of
trip purpose in smart card data. Knowing why people travel is important for policy decisions (e.g.,
commuting trips might respond differently to fare changes or service cuts than leisure trips). Without
purpose, forecasts can only be checked on volumes, not on whether the mix of trip types match the
expectations. Researchers are experimenting with machine learning methods to infer purposes, such
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Table 2.1: Advantages and disadvantages of smart card data compared to traditional methods

Advantages

Disadvantages

Large scale and frequency - continuous
data from virtually all users, enabling granular
temporal analysis (hourly, daily, seasonally)

Limited trip context - no direct information
on trip purpose or socio-demographics.

Spatial detail on transit network - precise
data on stations or routes used, facilitating ac-
curate OD matrices and transfer analysis that
surveys often approximate.

Partial journey visibility - only captures pub-
lic transport legs of the journey; first/last mile
and non-PT trips are unobserved.

Reduced respondent bias - automatically
collected data avoids issues of survey under-
reporting

Potential data gaps - missing records due
to technical failures, missed check-ins/check-
outs, or fare-evading passengers.

Cost efficiency - once the system is in place,
data is gathered as a by-product of opera-
tions, whereas surveys and counts require
dedicated effort and funding

User coverage bias - certain user groups
might be under-represented, e.g., tourists us-
ing single-use tickets, or very occasional rid-
ers.

as (Liu et al., 2018) who describe a method of using a naive Bayes probabilistic model, however, this
still seems to be an emerging field of research.

Representation biases in smart card data are also an important aspect to consider, meaning that data
may not perfectly represent all user segments or travel patterns. For instance, cash-paying passengers,
paper ticket users, tourists, and very occasional riders may be under-represented or absent in the
data. Mahajan et al. (2022) emphasise that smart card data "might not be fully representative of public
transport behaviour, since some users do not own or regularly use a smart card”. This can be minimised,
as many cities have done, by making smart cards nearly mandatory, but tourists and occasional users
might still use single-fare tickets. Even among smart card users there can be biases, for example, some
people may carry multiple cards or share the same card, which can confuse individual travel pattern
analysis. For example, a single person might own separate cards, one for private trips and one for
business trips. This illustrates the possible inability of smart cards to cleanly map unique persons. As
a result, any analysis at the individual level (e.g. inferring personal travel habits) can be distorted.

Because of these biases, analysts often strengthen smart card data with rider surveys or manual counts
(Mahajan et al., 2022). Surveys can capture those who pay by cash or rarely use public transport,
providing the extra context that automated fare data lacks. In The Netherlands, for example, the im-
portance of maintaining ticket alternatives alongside the OV-chipkaart has been highlighted to ensure
inclusivity (Durand & Zijlstra, 2020). So, while smart card data provide a lot of information in a quick
and cheap way, the limited picture of the passenger population must be acknowledged and the over
representation of frequent users smart card against ’invisible’ riders like tourists, occasional travellers,
or those sharing cards must be accounted for.

There is also the fact that smart card data only reflects actual transit usage; it does not capture latent
demand or people who did not travel because of inconvenience. If the forecasts considered some
car drivers would switch to using public transport, but they did not, the smart card data would not
give any insights about those missing passengers, as it only shows who did use public transport. The
Australian Transport Assessment guidelines point out that passive data sources like smart card counts
show "the actual behaviour that is occurring” but do not give any information about those unable or
unwilling to travel. If a bus is overcrowded and some riders are left behind, or if poor service quality
leads to someone to take a private mode of transport instead, the smart card data only record the
passengers who did board. To understand latent demand, additional data sources are required, such
as travel surveys, interviews, or stated preference studies that reach non-users (Australian Transport
Assessment and Planning, n.d.).
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2.5. Data processing and preparation steps

Before it can used for analysis or model validation, smart card data needs to be processed. The first
step is data cleaning and validation to ensure the accuracy of the data. The smart card data can contain
errors due to software bugs, hardware malfunctions, or user mistakes (e.g., missing check-ins/check-
outs, duplicate entries, or implausible timestamps). Different studies describe the causes of erroneous
records and developed filters to remove or correct flawed records (Fan & Chen, 2018).

Robinson et al. (2014) proposes a framework that outlines basic checks on raw data, identification of
bad check-in / check-out data, aggregation of rides into complete trips, and flagging of any remaining
faulty data. In practice, this might involve steps like: removing obviously invalid entries (e.g., negative
travel times, or duplicate check-ins), merging consecutive ride segments into a single journey, and
matching transaction timestamps with schedule data to identify inconsistencies.

Another important processing step is transfer detection. A single passenger journey may involve mul-
tiple check-ins and check-outs (for each vehicle or mode change), which need to be recognised as
a single journey. Typically, rules are applied such as: if the same card has another check-in within
e.g. 30 minutes of checking out, consider it a transfer rather than a new independent journey. These
rules can be refined with knowledge of fare policies (e.g., free transfer windows) and network topology
(to ensure that the second check-in is on a line reasonably connected to the first). The output of this
stage is a set of complete trips (origin and destination, with any intermediate transfers merged) for each
traveller (Hussain et al., 2021).

In addition, White et al. (2010) describes the importance of aggregating the data spatially and tempo-
rally to produce indicators that are needed for analysis. Depending on the application, trips might be
aggregated to the zone level or station level to compare with modal zones, and to time periods (peak
hours, daily totals, etc.). Common spatial-temporal aggregation products include: Origin-Destination
matrices, route load profiles, and hourly ridership profiles.

Several studies also demonstrate the use of interquartile range (IQR) filtering to remove outliers in
smart card data. For example, Tian et al. (n.d.) applied the standard 1.5xIQR rule to travel times in
the Singapore MRT dataset, filtering out extreme values likely caused by missed tap-outs or system
errors. This statistical filter removed approximately 5.3% of records, significantly improving data quality
for their metro crowding prediction model.

A related approach can be found in Wood (2015), which also applies IQR-based filtering to smart card—
derived journey times in the Hong Kong MTR. While Wood does not follow the conventional 1.5xIQR
rule, the study removes outliers by defining trip durations as outlier when they fall significantly outside
the interquartile range, within each OD pair and time interval. This approach is designed to reflect real-
istic passenger variability while excluding distortions that could bias reliability estimates. The cleaned
data are then used to compute the Individual Reliability Buffer Time (IRBT), a metric for passenger-
experienced travel time reliability.

Dixit et al. (2019) describes a more tailored and advanced cleaning methodology, focusing specifically
on metro journeys in multimodal networks. Theirs procedure addresses abnormal travel times caused
by odd passenger behaviour (e.g., taking the wrong train, extended platform waiting). They propose
a two-step method to remove extreme records while preserving genuine large disturbances. For each
OD pair, records are first flagged as outliers based on a threshold deviation value from the median,
whereafter, for each flagged record, overlapping journeys are checked to ensure that naturally long
journeys are not mistakenly removed.

2.6. External factors influencing public transport demand

Beyond model limitations, transport demand is significantly influenced by external factors that are often
not caputred in traditional forecasting mdoels. These factors can create substantial deviations beween
forecasted and observed ridership, particularly during periods of sudden societal change (ITF, 2021).

2.6.1. Impact of COVID-19 on transport forecasting
The COVID-19 pandemic disrupted transport forecasting as traditional models based on stable demand
patterns struggled to account for the sudden and unprecedented changes in mobility behaviour. De-
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mand for public transport fell sharply as a result of lockdowns, social distancing measures and the
widespread shift to remote working. These disruptions have created new challenges for forecasting
accuracy and ex-post evaluation of transport models (Gkiotsalitis & Cats, 2021).

The primary effect of the pandemic was a significant drop in public transport ridership, with 80-90%
declines in major cities during the lockdown periods (Marra et al., 2022). While demand has partially
recovered, long-term behavioural changes are still evident, particularly in the form of reduced commut-
ing and a shift towards private and active modes of transport. Data from the Netherlands show that
public transport ridership has not fully returned to pre-pandemic levels, partially due to the continued
popularity of remote and hybrid working (KiM, 2024).

Another challenge introduced by COVID-19 is the non-linear recovery of transport demand. Unlike
previous disruptions, where travel demand returned to predictable patterns, the pandemic has created
ongoing uncertainty in transport behaviour. Gkiotsalitis and Cats (2021) identify three major forecasting
difficulties in the post-pandemic context:

+ Shifts in demand fluctuations, where traditional peak hours have been weakened due to flexible
working arrangements.

» Changes in mode preferences, with increased reliance on cycling, walking and the use of private
vehicles.

* A reduced willingness to use public transport, due to continuing concerns about hygiene and
crowding.

The Kennisinstituut voor Mobiliteitsbeleid incorporates structural behavioural changes caused by the
COVID-19 pandemic into its transport forecasts using calculated adjustment ranges based on a model
that projects from a 2018 base year. These effects are integrated by adjusting the alternative-specific
constants within the model, which are used to account for shifts in traveller preferences across different
transportation modes.

The KiM Mobility Report 2023 highlights the structural nature of post-pandemic changes in travel be-
haviour. According to this report, nearly 20% of former public transport users expect to use it less
frequently than before the pandemic, while only 6—9% expect to use it more often. These shifts, driven
by increased homeworking, digital conferencing, home schooling, and modal shifts to alternative modes
of transport, have led to an estimated 7—-15% decline in bus, tram, and metro demand, with a baseline
scenario suggesting a permanent 12% reduction in distance travelled (KiM, 2023).

Additionaly, the model incorporates the constant travel time budget, which suggests that while working
from home reduces commuting trips, individuals may reallocate the saved time towards other travel
purposes, such as leisure activities or errands. This compensation effect could result in an overall
stable or even increased amount of travel times amongst all modalities, despite reductions in work-
related travel. Faber et al. (2023) support this approach by highlighting how post-pandemic structural
changes have led to significant decreases in commuting trips, particularly affecting public transport use.
Their research estimates a decrease in distances travelled by train (-3% to -9%) and by bus, tram, and
metro (-1% to -5%), with smaller effects on car travel (-1% to -5%) and potential increases for walking
and cycling due to compensatory leisure trips.

2.6.2. E-bike adoption and modal substitution

The widespread adoption of electric bicycles is another significant external factor influencing demand
for public transport. In the Netherlands, 20% of the population owned an e-bike by 2021, with 3%
purchasing one annually (Huang et al., 2024). This mode of transport directly competes with public
transport for medium-distance trips, as Huang et al. (2024) states that e-bikes are most competitive for
trips in the 5 to 15 kilometre range, with average e-bike journeys being 5.9 kilometres as compared to
3.6 kilometres for conventional bicycles.

The influence on public transport ridership has been researched by Sun et al. (2019) who found that it
leads to a clear decline in public transport use across most trip distances and purposes in the Nether-
lands. Following the adoption of an e-bike, the proportion of trips made by public transport compared
to other modes decreased from 10.8% to 2.0% for journeys of 5-10 km, and from 12.5% to 8.0% for
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journeys of 10—-15 km. Similarly, modal split data by trip purpose shows a substantial decline in pub-
lic transport use for commuting (from 14.7% to 11.4%), shopping (from 16.2% to 5.3%), and leisure
activities (from 19% to 15.0%) following the adoption of e-bikes. These results highlight the growing
tendency for e-bikes to substitute public transport, particularly for medium-distance trips and everyday
activities.

2.7. Conclusion

This literature review confirms that smart card data has become a valuable tool for ex-post evaluation,
providing detailed insights into actual passenger flows. The potential of smart card data to support the
systematic validation of transport demand forecasts is particularly relevant given the current lack of
such evaluations. However, the reviewed studies also highlight important methodological challenges,
including privacy constraints, incomplete transaction records and a lack of information on trip purpose
or traveller demographics.

These challenges directly informed the data processing strategy adopted in this thesis. Several safe-
guards were implemented in response, including outlier detection and correction factors for alterna-
tive payment methods, as well as validation using supplementary model outputs. The literature also
provided a theoretical basis for identifying and interpreting external explanatory factors, such as the
increase in e-bike usage and the ongoing effects of the pandemic, which are considered alongside
model-based explanations when analysing forecast deviations.

The methodological choices in the next chapter build on these insights, ensuring a rigorous use of smart
card data and a contextual understanding of potential demand shifts.



Methodology

The objective of this thesis is to present a replicable, modular framework for diagnosing discrepancies
in multimodal transport demand forecasts, identifying their causes, and proposing improvements for
future modelling practices for public transport projects. This methodology chapter outlines a case-
agnostic framework for conducting ex-post evaluations of multimodal transport demand forecasts using
smart card data. The aim of this approach is that it can be applied to any public transport project
with comparable data conditions. This chapter presents this methodology that consist of four main
stages: (1) demand reconstruction and exploration, (2) forecast comparison, (3) diagnostic analysis of
discrepancies and (4) model improvement. This approach is applied to the Hoekse Lijn case.

Raw smart card data

Step 1: Demand reconstruction and exploration

[ Data cleaning J { Apply corrections J Aggregate data J { Pattern analysis }

Processed demand indicators

Step 2: Forecast comparison

{ Visual comparison J { Statistical analysis J

Identified structural deviations

Step 3: Diagnostic analysis

limitations from
external factors

Literature-informed Cluster-based .
Pattern recognition

explanation analysis

Identified causes of deviations

Step 4: Model improvement

‘ Distinguish

development

Strategies to improve future transport demand
forecasts

Figure 3.1: Four-step methodological framework for evaluating and improving transport demand forecasts
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3.1. Data sources

Due to the high spatiotemporal granularity, scale and objectivity in capturing passenger behaviour,
smart card data was used as the empirical backbone for this evaluation. This data typically consist of
(anonymised) card IDs, timestamps, boarding and alighting locations, and transport modes.

However, smart card data lack key attributes that are commonly obtained through traditional data col-
lection methods such as household travel surveys. Specifically, they provide no direct information on
traveller demographics (e.g., age, income) or trip purposes (e.g., commuting, leisure). Additionally,
smart card systems only capture the public transport segment of multimodal journeys, neglecting walk-
ing, cycling, or private car trips. Gaps might also exist in the data for passengers that are missed by
the system, such as passengers with missed check-ins or check-outs (e.g., due to user error or fare
evaders) and passengers who still use paper tickets.

To account for these shortcomings, the analysis used additional data sources including monthly correc-
tion factors for the use of mobile/bank card payments and socioeconomic data.

3.2. Evaluation approach

A structured, four-step evaluation approach is applied to assess the accuracy of transport demand
forecasts and identify the causes of any discrepancies. Firstly, observed demand is reconstructed
and analysed using smart card data to establish a reliable empirical basis. Secondly, the observed
demand is compared with the forecasted figures using visual and statistical techniques across various
spatial and temporal aggregations. Thirdly, discrepancies are analysed to distinguish between model
limitations and external influences, providing insight into how forecasting practices can be improved.

3.2.1. Step 1. Demand reconstruction and exploration

Data processing steps

The first step involved importing and cleaning the data. Trips with invalid attributes should be removed,
including those with missing stop names or check-in/out times, negative travel times, and records where
check-in and check-out stops are identical.

Although the detailed data cleaning steps outlined below were not applied to the data used in this re-
search, as it was already aggregated upon delivery, they are included here to serve as a general guide-
line for comparable studies using disaggregated smart card records. This methodological overview
allows the study to be replicated in future and provides a basis for interpreting the reliability and limita-
tions of the observed demand patterns.

To clean the data of these anomalies, a two-step outlier detection method based on Dixit et al. (2019)
can be applied. This OD-specific approach is designed to preserve genuine service disruptions while
filtering out implausible journeys.

A more common method used to clean smart card data of anomalies is the interquartile range method
(IQR). Both the two-stage method described above and the IQR method were applied on a small dataset
of smart card data with metro trips in Rotterdam on one day in February 2019. Both methods produced
similar descriptive statistics after the filters, however the IQR approach flagged and removed a signifi-
cantly larger portion of the dataset (3.49%) compared to only 0.26% for the two-stage method. Given
the small relative difference in the resulting distributions and the risk that IQR filtering method might
remove valid but uncommon trips, the more conservative two-stage method is preferred.

The two-stage method is applied like this:

» Step 1: Duration based flagging — A journey is flagged as a potential outlier if its travel time
exceeds a context-specific threshold. For example, Dixit et al. (2019) apply a threshold of twice
the OD-specific median journey plus an additional 15 minutes. This step captures trips that are
clearly atypical compared to others on the same OD route.

» Step 2: Overlap verification — Each flagged trip is then assessed for the presence of overlapping
trips made by other passengers on the same OD pair. If another passenger made the same trip
within the time window of the long trip and their check-out time was more than 10 minutes before
the check-out of the flagged trip, the flagged trip is confirmed to be an outlier and removed. The



3.2. Evaluation approach 14

10-minute threshold is based on the typical headway of metro services and should be adjusted
accordingly.

Since not all public transport trips are captured in smart card data, increase factors were be applied to
correct for underreported trips, such as those made with paper tickets, alternative payment methods, or
unrecorded due to fare evasion. These factors can be based on administrative statistics, survey data,
or external counts.

Following cleaning and correction, the smart card data should be aggregated into forms that are suitable
for comparison with the forecast outputs. The specific form of aggregation depends on the structure
of the forecasts that are being evaluated. Where possible, aggregation should match the spatial and
temporal resolution of the original forecasts in order to be able to make a meaningful comparison. As
mentioned earlier, the data for this research was already aggregated, but if this is not the case the
following aggregation should be considered:

« If forecasts are provided at the station level (e.g., average daily boardings), observed data are
aggregated by stop and day type.

« If forecasts include OD matrices, smart cards trips are aggregated into origin-destination pairs
using inferred transfers.

+ If segment-level or vehicle load profiles are forecasted, smart card data must be aggregated to
estimate onboard occupancy across links and time periods.

« Ifforecasts are expressed in passenger-kilometres, OD flows are multiplied by segment distances
to compute comparable totals.

Demand pattern analysis
In this phase, descriptive statistics, distribution plots and trend analyses were used to gain initial in-
sights, detect anomalies and understand temporal usage patterns. The aim was to identify station
typologies and assess the completeness and usability of the dataset. This analysis established the
current demand levels by:

+ temporal usage pattern identification (hourly, daily, seasonal);

« station hierarchy and typology development based on usage characteristics.

» assessment of data quality and completeness.

+ special event analysis (particularly weather-dependent recreational travel).

3.2.2. Step 2: Forecast comparison

Once observed demand has been established, it was compared with forecasted figures through a
combination of visual and statistical techniques, structured around the indicators that are used in the
forecasts. Depending on the available aggregation level available in the forecasts, this comparison
was done on station, segment, or OD-pair level, and across different time horizons. Time-series visu-
alisations were used to evaluate daily and seasonal trends, and structural deviations.

To quantify deviations, standard error metrics were applied:
* Mean Absolute Error (MAE) for absolute discrepancy:
MAE — * Zn] 4]
~n £ Yi —Yi
where y; is the observed value, ; is the predicted value, and n is the total number of observations.
* Mean Absolute Percentage Error (MAPE) for relative accuracy:

Yi — Ui
Yi

100%
MAPE =
—>

=1

This metric expresses the error as a percentage of the observed value.
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» Percentage Error to assess direction and scale of deviations for individual observations:

Percentage Error; = YU 100%

Yi
Positive values indicate overestimation, negative values indicate underestimation.

The selection of which metric to use depends on its intended use: MAE is useful for operational im-
plications, as it expresses the average forecast error in actual units, making it intuitive for resource
planning. On the other hand, MAPE provides a scale-independent measure, useful for comparing rela-
tive errors across stations or segments with varying demand levels, but may become unreliable when
actual values are near zero (Kim & Kim, 2016).

In the Hoekse Lijn analysis, Weighted Mean Absolute Percentage Error (WMAPE) addresses the issue
where low-volume stations could disproportionately influence overall accuracy metrics. By weighting
errors according to actual ridership volumes, WMAPE provides a more meaningful assessment of fore-
cast performance for the cluster-based evaluation.

3.2.3. Step 3: Diagnostic analysis of discrepancies

The third step involves identifying and explaining the causes of observed discrepancies between fore-
casted and actual transport demand. These deviations may result from structural limitations in the
forecasting model or from external, unforeseen influences. This phase integrates a combination of
exploratory techniques and literature review to find plausible causes of the identified deviations.

Literature-informed attribution

Literature was used to contextualise deviations by comparing them with known systematic forecast-
ing issues in comparable projections. For example, studies have shown that demand models often
overestimate commuting flows due to idealised assumptions on socio-economic development, while
underestimating leisure-related or induced demand effects (Brands et al., 2020; Flyvbjerg et al., 2005).
Additionally, the literature was used to construct informed methods for quantifying external influences
and handling of data limitations. For example, it grounded the correction factor that was used to com-
pensate for structural effects of the pandemic and helped by contextualising modal shifts due to rising
e-bike demand in the Netherlands.

Cluster analysis

Clustering techniques are applied to group stations based on three specific behavioural characteristics
derived from smart card data to identify systematic patterns in forecast accuracy across different station
typologies. The clustering variables are defined as follows:

Peak-hour usage ratio (P;): The proportion of daily boardings at station i occurring during peak periods
(07:00-09:00 and 16:00-18:00), calculated as P; = gf’% where B,,.q ; represents boardings during

peak hours and B, ; represents total daily boardings.

Seasonality indicator (5;): The coefficient of variation of monthly average weekday boardings for
station i in 2024, calculated as S; = 222" 'where o,,0nh.; i the standard deviation and ii,onth i is

Hmonth,i
the mean of monthly boardings.

Daily variability indicator (D;): The coefficient of variation of hourly boardings at station ¢ on an
average weekday in February 2025, calculated as D; = :Zir where op,.,r; iS the standard deviation

and f0ur; is the mean of hourly boardings. o

These three variables create a feature vector x; = [P;, S;, D;] for each station i, enabling the identifi-
cation of stations with similar temporal usage patterns, seasonal variations, and daily demand distribu-
tions.

For this research, k-means clustering is used to partition the stations into k clusters by minimizing the
within-cluster sum of squares: min Ele inecj |x; — p;|?, where C; represents cluster j and p; is
the centroid of cluster j. This unsupervised algorithm is particularly effective for identifying repeated
spatial and temporal patterns in smart card data and distinguishing between frequent and infrequent
usage profiles, as demonstrated in several public transport studies using smart card data(Agard et al.,
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2006; Kieu et al., 2013). The algorithm iteratively assigns each station to the cluster with the nearest
centroid and updates centroids until convergence, enabling systematic grouping of stations with similar
behavioural characteristics for targeted forecast accuracy analysis.

3.2.4. Step 4: Model improvement

The final step of the approach focusses on translating the findings from the earlier steps into concrete
suggestions for improving future forecasting practices. This includes the integration of sensitivity anal-
ysis and expert consultation.

Model input analysis

A systematic evaluation of the original model inputs was conducted to assess their influence on demand
outcomes and identify potential sources of forecast deviations. This analysis was informed by the
findings from the earlier methodology steps, where systematic over- and underestimation patterns were
identified.

In this case, it turned out not to be feasible to re-run the original forecasting model with new data.
However, for models that can be accessed and updated, re-running them with corrected inputs can
provide insights into possible systematic biases or misestimations. Alternatively, as model access
is limited, a qualitative assessment of original assumptions was conducted. The sensitivity analysis
focused on three main areas:

» Transport network configuration: Evaluating whether the modelled transport network, including
service frequencies, network topology, and transfer connections, accurately reflected the system
post-implementation.

Behavioural parameters and policy settings: Parameters that influence travel choice behaviour
within the model - such as car ownership, monetary cost coefficients, value of time, and per-
ceived penalties such as transfer resistance and parking costs — are evaluated based on publicly
available data.

» Socioeconomic forecasts: Projected socioeconomic data within the model, such as number of
inhabitants, employment figures, number of students, and retail area, that are used to calculate
trip production/attraction between different zones, are reviewed against current data from public
sources.

The goal of this input evaluation method was to understand how outdated or inaccurate assumptions
may have affected forecast outcomes and identify which parameters have disproportionate effects
on the accuracy of projections. Using this systematic assessment of model inputs against empirical
evidence, areas where improved parameter estimation or calibration could help to enhance future fore-
casting reliability were highlighted.

Expert Consultation

To complement the technical assessment from the model input analysis, the research findings were
discussed with two experts in the field of transport modelling and operations. These consultations
were designed as semi-structured interviews but evolved into open conversations, allowing for in-depth
exploration of the identified deviations and their practical implications.

The goal of these expert consultations was primarily to validate the findings from the model input anal-
ysis. The experts were able to contextualise the observed deviations within the broader experience of
the industry, highlighting how factors such as service changes, evolving travel behaviour and external
shocks like the COVID-19 pandemic have influenced forecast accuracy. Additionally, their perspec-
tives helped identify further considerations, such as the impact of emerging mobility trends and the
importance of robust scenario planning, enriching the overall interpretation and recommendations of
the study.

The following experts were interviewed. The transcripts of the interviews can be found in appendix B.

Expert 1: Jeroen Henstra (RET)
Role: Operations and Planning, Rotterdam public transport operator
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Expertise: Operational experience with the Hoekse Lijn conversion and practical knowledge of rider-
ship patterns
Focus: Operational validation of findings and network-specific insights

Expert 2: Dr. ir. A.J. (Adam) Pel (TU Delft)

Role: Academic researcher in transport modelling

Expertise: Theoretical foundations of transport demand modelling and forecasting accuracy
Focus: Methodological validation and broader implications for transport forecasting practice

3.3. Application to the Hoekse Lijn case study

This methodological framework is applied to the Hoekse Lijn case study to evaluate the accuracy of
transport demand forecasts made in 2015 for the train-to-metro conversion project. Using OV-chipkaart
smart card data from 2020-2025, the four-step evaluation approach systematically compares observed
demand patterns with the original RVMK3.1 model projections, accounting for external disruptions in-
cluding COVID-19 impacts and evolving travel behaviour. The following chapters present the empirical
application of this methodology: Chapter 4 establishes the case study context and analyses observed
ridership patterns, while Chapter 5 presents the comparative analysis of forecasted versus actual de-
mand and explores the systematic causes of identified discrepancies.



Empirical context: understanding
demand on the Hoekse Lijn

This chapter establishes the empirical basis for assessing the accuracy of transport demand forecasts
for the Hoekse Lijn, which serves as a case study to find an answer on how transport forecast models
can be improved. First, it outlines the strategic objectives that motivated the line’s conversion from a
regional railway to a metro service. Then, it provides an overview of the corridor and its role within the
Rotterdam public transport network. Using smart card data, the chapter analyses observed ridership
patterns in spatial and temporal detail. This offers initial insights into how the line is used in practice, and
indicates to what extent it aligns with policy goals. These insights will form the basis for the comparative
analysis in the next chapter.

4.1. Strategic objectives of the Hoekse Lijn Conversion

The decision to convert the Hoekse Lijn from a regional rail line to a metro line was based on multiple
strategic objectives, including improving regional accessibility, increasing ridership, and optimising the
integration of the line within the Rotterdam metropolitan area (Gemeente Rotterdam, 2018). While
some of the set objectives are broad in scope, several of them were translated into explicit quantitive
expectations that will be evaluated in this case study.

One of the main objectives of the conversion was to increase public transport ridership by providing
a more frequent and reliable service that would seamlessly integrate into the RET network. Demand
forecasts estimated a 52% increase in average boardings on the Schiedam Nieuwland - Hoek van
Holland Strand section and a 28% increase in total passenger kilometres compared to a scenario
where the existing rail service is continued. These figures, derived from the last forecast using the
RVMK3.1 model (Goudappel Coffeng, 2015), will serve as the most important indicators for evaluating
the success of the project and its forecasts.

A second objective was to optimise the use of the line throughout the day and both directions, address-
ing the strong peak/off-peak imbalance and directional asymmetry that characterised the former rail
service (Gemeente Rotterdam, 2015). Before the conversion, passenger flows where concentrated in
the morning towards Rotterdam and in the evening in the opposite direction, while the rest of the day the
line saw only limited usage. By converting the Hoeke Lijn into a metro service with higher frequencies
and direct integration into the RET network, it was expected that the line would become more attrac-
tive for a wider range of journeys. This broader use was intended to make better use of the corridor’s
capacity and improve its financial performance. While broader spatial development goals were also
pursued by the addition of Maassluis Steendijkpolder, the primary focus of the project was enhancing
existing travel flows, improving the quality and safety of station facilities, and increasing accessibility to
make the service more appealing throughout the day.

Another objective was to improve access to Hoek van Holland Strand by extending the metro line to a
new station location directly at the beach. In the old situation, the terminus was located 1.2 kilometres
inland, meaning passengers had to walk the last part to reach the beach. The extension aimed to
reduce the total travel time from the centre of Rotterdam by 26% and increase the attractiveness of the
beach as a recreational destination (Gemeente Rotterdam, 2015). According to the 2015 projections,
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this improvement of accessibility was expected to lead to a 10-20% increase in beach visitors arriving
by public transport (Goudappel Coffeng, 2015). In addition, the extension was intended to contribute
to the long-term development of Hoek van Holland as a four-season destination, supporting tourism,
local economic activity, and housing development (Gemeente Rotterdam, 2015).

This case study assesses these objectives though an ex-post analysis of actual ridership figures using
smart card data. The evaluation focuses on three indicators that were also used in the 2015 forecasts
(Goudappel Coffeng, 2015):

» Occupancy at arrival: Assessing forecasted versus actual load factors at stations to determine if
passenger distribution was accurately predicted.

» Boarding passengers: ldentifying deviations in expected versus actual passenger entries per
station and analysing demand shifts over time.

+ Total passenger kilometres: Comparing projected and observed passenger travel distances to
evaluate network-wide demand accuracy.

By comparing these indicators to the original forecasts, this research aims to get a better understanding
of the degree to which the policy objectives were achieved and how accurately they were projected by
the forecasting models.

4.2. Forecasting history

Before the conversion of the Hoekse Lijn to a metro service, multiple forecast were made to support
planning and investment decisions. The intial forecasts were done in 2006 and later updated in 2011
and 2015 (Goudappel Coffeng, 2011, 2015). The 2015 update formed to basis for the eventual planning
of the project and is evaluated in this study.

The 2015 projection used the RVMK 3.1 model, which simulated multimodal demand across the Rot-
terdam region. This model estimated transport demand based on expected socio-economic develop-
ments, including population growth, employment levels, and educational enrolment across production
and attraction zones, combined with assumptions about the availability and attractiveness of various
transport modes.

Several alternative scenarios were evaluated with the model and formed the basis of the 2015 forecasts:

» Base year (2010): This scenario depicts the Hoekse Lijn as an NS train service in 2010, with the
existing spatial and transport infrastructure that was in place at that time. It served as a calibration
year to aligh the model with observed traffic counts and measured flows.

» Reference scenario (2025): This scenario projects ridership if nothing is changed on the Hoekse
Lijn, assuming that it continues as a regional train service without any operational changes. How-
ever, it does take into account broader regional developments and infrastructural changes.

» Conversion scenario (2025): In this alternative, the train service is replaced by a metro service
that connects Hoek van Holland Strand and Nesseland (Line B) with higher frequencies and full
integration into the RET network. THe existing Line A is extended eastward during peak hours.
A new station, Maassluis Steendijkpolder, is also added.

» Conversion + extension scenario (2025): This final alternative includes all elements of the
previous metro conversion scenario, plus an additional westward extension of the line with the
relocation of Hoek van Holland Strand next to the beach.

The model’s input assumptions included:

+ Service levels: Metro line B would run three times per hour, and during peak hours, an extended
metro line A would serve Vlaardingen West six times per hour.

» Modal split: The model predicted a shift from car and bicycle to metro, particularly in Maassluis
and Vlaardingen, with a 12.3% increase in public transport usage for inter-municipal trips.

+ Seasonal demand: Recreational travel to Hoek van Holland Strand was not included in the
model due to its irregular and weather-dependent nature. The alternative method used to include
this demand is explained in section 4.4.4.
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The model is described in more detail in section 5.3, where the exact model input and assumptions are
compared and evaluated.

4.3. Case study background: the Hoekse Lijn corridor

4.3.1. Rotterdam and its public transport network

Rotterdam and the surrounding areas are served by a public transport network of metro, tram and
bus lines operated by the RET. This network covers Rotterdam and neighbouring municipalities (e.g.,
Capelle aan den IJsel, Schiedam, Vlaardingen etc.). In total, RET operates 5 metro lines, 9 tram lines,
and around 58 bus lines. The metro system alone has 71 stations across the lines A to E.

RET operates under concessions that are granted by the Rotterdam-The Hague metropolitan transport
authority (Metropoolregio Rotterdam Den Haag - MRDH). Notably, there are two transit concessions:
”Rail Rotterdam” which encompasses the metro and tram services, and "Bus Rotterdam” which en-
compasses the bus services, both currently held by RET. The RET is owned by the municipality of
Rotterdam and the MRDH.

Metro regio Rotterdam
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Figure 4.1: Overview of the Rotterdam metro network

The RET follows the national OV-chipkaart smart card system, which uses a stored-value smart card for
all transit. Since 2023, passenger can also use their bank cards to check-in and out of public transport.
The fare is composed of a base boarding tariff plus a distance-based charge (€1.12 + €0.171/km). If
passengers transfer to another tram, bus or metro operated by RET within 35 minutes after checking
out, no new base fee is charged. RET also offers day passes and 2-hour passes. These can be loaded
on an OV-chipkaart or bought in the RET app.

The layout of the Rotterdam metro network is characterised by a radial structure, with all lines passing
through the city centre in east-west or north-south direction (specifically station Beurs), branching out
to urban areas surrounding the city (see figure 4.1). Line E (RandstadRail) connects Rotterdam with
the city of The Hague. The network is integrated with tram, bus and national rail services, serving as
the primary rapid transit backbone of the metropolitan region.

4.3.2. Description of the Hoekse Lijn corridor

The Hoekse Lijn is a former heavy railway line that has been transformed into a light rail/metro exten-
sion of the Rotterdam metro system which opened service in 2019. The 24-kilometre line runs from
Schiedam to the North Sea coast at Hoek van Holland, and was originally part of the Dutch national
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railway network, being served by trains from the Dutch National Railways (Nederlandse Spoorwegen -
NS). Itis now fully integrated as the western branch of metro line B, which runs from Nesselande in the
east to Hoek van Holland Strand in the west, following a one-kilometre extension completed in 2023.
As part of the conversion, a new station, Maassluis Steendijkpolder, was added to the line.
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Figure 4.2: Overview of the Hoekse Lijn: eastern section (Schiedam to Vlaardingen)

The ten stations that are part of the Hoekse Lijn are listed from east to west in table 4.1. These stations
serve a mix of urban centres, suburban neighbourhoods, as well as recreational areas. The land use
around each station can be described as follows:

» Schiedam Centrum - Located just outside of Rotterdam, this is an important interchange between
metro, tram, bus and national rail. The area features a mix of high-density housing, shopping
streets, museums, and restaurants in the historic centre. On the north side of the station are ed-
ucational institutions, offices, and industrial zones, along with various cultural and entertainment
venues.

» Schiedam Nieuwland - Situated in a residential area with bus and tram connections (about 200
metres away). The station also serves the Franciscus Vlietland Hospital and the newly developed
Park Harga neighbourhood (550 homes). The surrounding area includes several schools and
sports facilities.

Vlaardingen Oost - Serves the eastern part of Vlaardingen. This area is mainly residential, with
industry and businesses located near the port area on the southern side of the station.

Vlaardingen Centrum - Located near the historic town centre of Vlaardingen, with shops and
restaurants. The surrounding area has a mix of housing and commercial properties, with some
industry to the south.

Vlaardingen West - Serves the high-density Westwijk neighbourhoud of Vlaardingen, as well as
the industry and business parks located to the south of the station.
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Brielle

Figure 4.3: Overview of the Hoekse Lijn: central section (Maassluis area)

» Maassluis Centrum - Serves the historic centre of Maassluis, as well as a lot of residential areas
including the newly developed 'De Kade’ neighbourhood on the shore of the Maas (840 homes),
and some businesses to the west of the station.

» Maassluis West - Surrounded mainly by residential areas, including the newly developed ‘Het
Balkon van Maassluis’ (1,000 homes). The station also provides access to the large 'Koning-
shoek’ shopping mall and Maassluis’s municipal office.

» Maassluis Steendijkpolder - Newly built station that serves the neighbourhood with the same
name.

* Hoek van Holland Haven - Serves the Stena Line ferry to England, as well as the town centre
of Hoek van Holland with shops, restaurants and residential streets.

* Hoek van Holland Strand - Relocated station situated directly at the beach. It mainly serves
visitors to the beach, dunes, and surrounding hospitality venues. Due to the protected nature of
the dunes, there is little residential development in this area.
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Figure 4.4: Overview of the Hoekse Lijn: western section (Hoek van Holland)
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Table 4.1: Stations on the Hoekse Lijn and their surroundings

Station

Main Land Use

Transport Connections

Schiedam Centrum

Schiedam Nieuwland
Vlaardingen Oost

Vlaardingen Centrum
Vlaardingen West

Maassluis Centrum

Residential, commercial, institutional

Residential, institutional
Residential, industrial

Residential, commercial, industrial
Residential, industrial, institutional

Residential, commercial

Metro lines A, B, C (shared tracks);
NS trains to Rotterdam Central,
Amsterdam, The Hague, Dor-
drecht;

RET tram 1, 11; RET bus 38, 51,
52, 53, 54, 126;

EBS bus 102, 105, 456, 826

RET tram 1, 11; RET bus 51

RET bus 56, 126, 156; EBS bus
826

No additional connections
RET bus 56, 156
EBS bus 33, 34, 133

RET bus 126
No additional connections

EBS bus 31; Stena Line ferry to
Harwich (UK)

No additional connections

Maassluis West Residential, commercial, institutional

Steendijkpolder Residential

Hoek van Holland Haven Residential, commercial

Hoek van Holland Strand Recreational

4.4. Exploratory data analysis: observed ridership trends and data

considerations

The following sections present temporal and spatial patterns observed in the boarding data, which form
the empirical foundation for the comparison with forecasted demand in chapter 5.

4.4.1. Data sources and resolution

This section describes the available datasets used to analyse observed demand on the Hoekse Lijn.
While the original intention was to work with disaggregated, passenger-level smart card data, the
dataset ultimately provided by RET was more aggregated than anticipated. As a result, additional
modelling steps were required to infer certain demand indicators. The forecast data used for com-
parison — including assumptions, modelling approach, and scenario definitions — has already been
discussed in Section 4.1.1.

Smart card data (OV-chipkaart)

The dataset provided by RET consists of aggregated OV-chipkaart smart card data for all station on
the Hoekse Lijn (being Hoek van Holland Strand to Schiedam Centrum). Specifically, for the Hoekse
Lijn the following data was made available:

 Daily boardings per station: number of boardings per station for each day from 01-01-2020
until 31-03-2025.

» Averaged boardings per day type per month: precomputed average boardings for weekdays,
Saturdays, and Sundays for each month from 01-2020 until 03-2025.

* Hourly boardings for:

— Weekdays, Saturdays, and Sundays for all stations on the Hoekse Lijn, averaged over the
period from 01-02-2025 until 21-02-2025 (prior to the Dutch spring holiday).

— A full-day in- and outflow profile per station for Wednesday, June 26, 2024, representative
of a warm and sunny working day outside of the summer holiday.
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» One-directional eastbound OD-matrix: for weekdays in February 2025 passengers departing
from the Hoekse Lijn and aggregated at the station-to-station level. While only departure flows
are recorded, it can be considered symmetrical on daily basis.

Table 4.2: Monthly increase factors for OVpay (Jan 2023 — Mar 2025)

Month Factor Month Factor
January 2023 1.000 January 2024 1.110
February 2023 1.000 February 2024 1.117
March 2023 1.000 March 2024 1.125
April 2023 1.008 April 2024 1.148
May 2023 1.016 May 2024 1.155
June 2023 1.035 June 2024 1.164
July 2023 1.067 July 2024 1.192
August 2023 1.080 August 2024 1.201
September 2023 1.077 September 2024 1.167
October 2023 1.086 October 2024 1.166
November 2023  1.091 November 2024 1.176
December 2023 1.109 December 2024 1.194
January 2025 1.188
February 2025 1.199
March 2025 1.195

Since the dataset only includes OV-chipkaart data, increase factors were provided for each month in
which OVpay (a payment method using bank cards or mobile phones) was active. The hourly boardings
and one-directional OD-matrix have already been adjusted using these correction factors. No increase
factor was applied for passengers travelling with day tickets or fare evaders.

Table 4.3: Comparison between boardings for 26-06-2024 from the daily boardings and hourly boardings dataset

Boardings from data Total daily boardings

Stop aggregated per day, from the hourly data  Difference
including OVpay for 26-06-2024

Schiedam Nieuwland 2593 2836 9%
Vlaardingen Oost 2664 2907 9%
Vlaardingen Centrum 2209 2450 1%
Vlaardingen West 2123 2300 8%
Maassluis Centrum 1703 1842 8%
Maassluis West 1422 1601 13%
Steendijkpolder 1368 1513 1%
Hoek van Holland Haven 1198 1406 17%
Hoek van Holland Strand 8213 9728 18%

It is important to note that these correction factors are monthly averages. An analysis of the hourly
data (where the increase factor was already applied) for 26 June 2024 revealed that the total number
of boardings per station was between 9% and 18% higher compared to the daily boarding per station
data multiplied by the increase factor for June 2024 (see table 4.3). RET confirmed that it is expected
that OVpay usage is significantly higher on days that there are much more incidental travellers who
tend to use OVpay instead of personal smart cards, typically beachgoers, tourists and other occasional
users. As 26 June 2024 was a warm, sunny weekday outside school holidays, it likely attracted a
disproportionate number of such users, particularly to Hoek van Holland Strand. This explains the
difference between the two sets of data.

RET had indicated that no additional data cleaning was performed before aggregating the smart card
data into the available formats. As a results, certain transaction anomalies remain present in the dataset
and should be taken into account when interpreting the results:
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* Incomplete transactions (for example journeys without a check-out) are included in the one-
directional OD-matrix. These appear with destination station code [0]. This group is relatively
small as most trips take place between stations with gates.

» There are also journeys with the same origin and destination in the OD-matrix. These may reflect
activities by RET service or security staff, people dropping off or picking up someone from the
station, or possible data errors. This category is somewhat larger thane expected (according to
RET), but still represents a minor portion of the total dataset.

» Barcode tickets (such as group or event tickets) are not included in the data but RET estimates
that these count for less than 1% of the total usage.

Although the exclusion of barcode tickets introduces a small undercount, it is assumed that the overes-
timations caused the other categories may partially cancel this underestimation out, at least to remain
within the margin of error.

OV-Lite dataset

Due to the fact that the RET dataset does not contain any information about disembarking passengers
or on-board occupancy, it is not possible to directly compare the full set of demand indicators, such
as occupancy upon arrival or passenger kilometres, or to disinguish between travel directions on the
Hoekse Lijn. To overcome this limitation, a dataset extracted from the OV-Lite model was used.

OV-Lite is a model that uses elasticity based demand estimation to compute origin-destination matrices
specifically for public transport, and it is used to compute the effects of changes to the public transport
network or services. The base OD-matrix is constructed using OV-chipkaart data and assigned to
the network using a Zenith-algorithm (Goudappel, personal communication, April 2025). The OV-Lite
output that is used for this study contains the following data for all line B metro services that use the
Hoekse Lijn for the average weekday in 2023:

» The occupancy upon arrival for all stations on the Hoekse Lijn.
» The total number of boarding and alighting passengers per station.
» The distances between stations.

The following steps were followed to infer the other two demand indicators using the OV-Lite dataset:

1. The proportion of boardings per direction per station was derived from OV-Lite data. These propor-
tions were subsequently applied tot the total number of boardings from the RET data to estimate
direction-specific boardings.

2. For each direction, the ratio of alightings to boardings per station, as observed in the OV-Lite data,
was used to estimate alightings from the directional boardings.

3. The number of passengers entering or exiting the Hoekse Lijn network at Schiedam Nieuwland
and Schiedam Centrum was obtained from OV-Lite. These values were then scaled per month
based on the ratio between RET boardings and OV-Lite boardings over the corridor between
Schiedam Nieuwland and Hoek van Holland Strand.

: RET
ERET = EOV—Lite % Z BOa’I’d’L’I’LQSmOch
month >~ BoardingsOV-tite

4. Using the scaled entry point as an intitial condition, onboard occupancy at arrival was calculated
recursively. At the terminus (either Hoek van Holland Strand or Hoek van Holland Haven depend-
ing on the month), remaining passengers were assumed to all alight.

5. Passenger kilometres per segment were computed by multiplying occupancy by segment length
and then summed.

To verify the internal consistency and reliability of the approach, two validation checks were performed:

» The scaled exit estimate was compared to the cumulative onboard occupancy at the terminus that
was constructed recursively. Absolute and percentage differences were computed per month.

» The total number of boardings and alightings per month were compared.
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Figure 4.5: Internal consistency validation of the directional split and alighting estimation method

Figure 4.5 visualises the validation checks that were applied to the reconstructed demand indicators.

(a) shows the scaled exit estimate against the recursively reconstructed onboard occupancy when ar-
riving at Schiedam Centrum (end of the Hoekse Lijn system). The two time series closely align, with
percentage differences generally remaining below 2%. Notably, higher differences between recon-
structed occupancy and scaled estimates are observed during the summer months. This suggests that
the model-based scaling approach may slightly underestimate higher seasonal demands.

(b) displays the total number of boardings and alightings per month. The curves show strong similarities,
with percentage differences varying between 1.5% and 3.5%. This confirms that the alighting estimation
method does not introduce any significant bias.

To support these observations, statistical measures were also used. The MAPE for both (a) and (b)
were below 2% (1.35% and 1.96% respectively), indicating that the average deviation between the two
methods represents only a small fraction of total monthly demand. The Pearson correlation coefficients
of 0.998 (a) and 0.999 (b) confirms a strong linear relationships, meaning that the fluctuations in both
time-series follow the same pattern. However, both comparisons resulted in statistically significant
differences in the paired t-test (p<0.05) indicating that the mean difference is not zero, so there is a
slight systematic over- or underestimation.

4.4.2. Demand indicators directly derived from the smart card data

The first step consists of assessing the readily available station-level boardings over time in order to
reveal usage patterns, seasonal fluctuations, and possible anomalies. Hourly boarding distributions
help to be able to group station into categories based on their peak patterns.

To establish an initial picture of boarding patterns across all stations on the Hoekse Lijn, figure 4.6
displays the average weekday boardings per station in March and September 2024, compared to the
annual average. March and September were chosen as both are relatively stable months in terms of
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travel behaviour as they are not affected by extreme weather or major holidays, and they represent
different parts of the year with different weather patterns, while also avoiding seasonal extremes. Fur-
thermore, the American Public Transport Association (APTA) describes that ridership often increases
around September and October each year being the end of summer and the resumption of regular work
and school routines (APTA, 2024).
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Figure 4.6: Number of boardings per station for March 2024 and September 2024 compared to the 2024 yearly average

The graph in figure 4.6 shows a consistent station hierarchy with Vlaardingen Oost en Schiedam Nieuw-
land being the most used stations for all three time periods, with a declining trend in boardings the further
the line goes west. Maassluis and Hoek van Holland Haven are the only two stations with higher board-
ings in September than in March. A possible explanation for this might be touristic demand that is still
relatively high post-summer. On the other hand, Maassluis Steendijkpolder and Maassluis West show
relatively stable demand between March and September, reflecting their commuter-oriented function.
Furthermore, most stations show higher boardings in both March and September compared to the an-
nual average, except for Hoek van Holland Strand. This stations shows significantly lower boardings in
September, and especially March, confirming the seasonal, leisure-oriented usage with peaks during
summer.
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Figure 4.7: Monthly average weekday boardings per station in 2024, showing seasonal variation across the Hoekse Lijn

Figure 4.7 further illustrates the yearly trends per station. Most station follow the same yearly trends,
with a clearly visible dip in the summer and Christmas holiday periods, highlighting the predominant
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commuter-oriented nature of most stations. The passenger dips are especially apparent for Schiedam
Nieuwland, possibly explained by proximity of the station to several educational institutions, which
have pre-determined, fixed holidays, not only during summer and Christmas, but also in February,
multiple during spring, and one week during the end of October. Figure 4.7 also clearly indicates the
opposite trend of Hoek van Holland Strand, with peak usage occurring during the summer months,
and only a fraction of that the rest of the year. Table 4.4 supports these conclusions by quantifying
the monthly variability per stations, showing relatively low variations for commuter-oriented stations
and a remarkebly high variation for Hoek van Holland Strand. Interestingly, according to this table,
Vlaardingen Centrum seems to exhibit the most stable boarding trend throughout the year, indicating
that it is not solely commuter oriented. Notably, these monthly travel patterns confirm that overall
patterns are consistent across the line, but station specific variants emphasise the need to further
explore more disaggregated travel patterns to identify the different functions the stations fulfil.

Table 4.4: Monthly variation in boardings per station in 2024

Station Mean Standard Deviation Coefficient of Variation (%)
Schiedam Nieuwland 2289 400 17.47
Vlaardingen Oost 2435 296 12.16
Vlaardingen Centrum 1953 170 8.70
Vlaardingen West 1851 259 13.99
Maassluis 1461 197 13.48
Maassluis West 1179 138 11.70
Maassluis Steendijkpolder 803 125 15.57
Hoek van Holland Haven 981 97 9.89
Hoek van Holland Strand 738 695 94.17

Looking at the hourly patterns for weekdays, three types of stations can be identified: commuter ori-
ented stations with sharp morning peaks; stations with balanced and spread demand; and stations with
a clear afternoon peak. Vlaardingen Oost, Maasluis Centrum, Maassluis West, Steendijkpolder and
Hoek van Holland Haven display a clear peak between 07:00 and 09:00, consistent with commuters
heading towards work or school. Besides the morning peak, Vlaardingen Centrum also shows a slight
increase in boardings during the evening rush hour. This double-peaked profile is even more clearly
visible at Maassluis West, indicating the presence of places people work at. Schiedam Nieuwland and
Vlaardingen West exhibit an atypical, more spread out, double-peaked profile with the second peak be-
ing earlier in the afternoon between 14:00 and 16:00. This is possibly explained by the fact that there
are several educational facilities around these stations, which tend to finish their activities earlier and at
different times during the day. Finally, the solely leisure oriented function of Hoek van Holland Strand is
again confirmed with boardings peaking in the afternoon, an no distinct peaks during commuter travel
times.

Figure 4.9 presents the development of total daily boardings from January 2020 to March 2025, along-
side a yearly average. The sharp decline in March 2020 aligns with the COVID-19 outbreak and the
accompanying lockdowns and other measures, severely affecting public transport ridership. Recovery
only starts to set in at the end of 2021, and by March of 2022 all measures for public transport are lifted.
This resulted in substantial growth of passenger numbers during 2022, albeit not reaching the levels
of pre-COVID times. March 2023 marks another milestone that affected the total number of boardings
on the Hoekse Lijn, as the station of Hoek van Holland Strand, located right at the beach, was opened.
This is immediately reflected in passenger peaks during the summer of 2023 (outside of the summer
holiday), and another substantial increase of the yearly average over 2023.
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Figure 4.9: Number of boardings for all stations from 01-2020 to 03-2025, for the average weekday

4.4.3. Inferred indicators

To make some sort of comparison with the other two indicators that were used in the projections, oc-
cupancy at arrival and total passenger kilometres, these were inferred using a combination of the RET
aggregated data and the data extracted from the OV-Lite model. This process is described in section
441.
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Figure 4.10: Occupancy upon arrival at each station in both directions for the average weekday in 2024, as well as a
visualisation of the passengers boarding and alighting at each station

Figure 4.10 presents the average weekday boarding and alighting patterns along the Hoekse Lijn in
2024. The occupancy in westbound direction is slightly higher than the occupancy in eastbound direc-
tion. Occupancy is generally highest in the eastern part of the line and decreases towards the western
terminus at Hoek van Holland Strand. This spatial gradient reflects a dominant commuting pattern: in
the morning, passengers board in the west to travel to eastward towards work in Schiedam, Rotterdam,
or further into the Randstad. In the evening, this trend reverses, with higher westbound alightings as
passengers return home.
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Figure 4.11: Passenger kilometres for the average weekday for every month between 01-2020 to 03-2025

Figure 4.11 shows the development of passenger kilometres per average weekday for each month
since January 2020 on the Hoekse Lijn. A sharp decline as a result of the COVID-19 pandemic is
observable at the beginning of 2020. The passenger numbers gradually recover in the years that
follow and this incline more or less stabilises in 2024, with only a slight increase compared to 2023
but passenger kilometres exceeding the February 2020 levels. The passenger kilometres peak during
summer months that are not in the summer holiday, indicating that besides normal commuter traffic
there is a high recreational use of Hoek van Holland Strand that is furthest west on the line.
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4.4.4. Beach ridership

One of the objectives of converting the Hoekse Lijn into a metro service was to improve accessibility
to Hoek van Holland Strand and thereby increase the amount of people who choose to travel to the
beach using public transport (Gemeente Rotterdam, 2015). Due to its highly weather-dependent and
irregular demand, beach-bound travel was excluded from the multimodal transport model used in the
2015 forecasts. Instead, a separate estimation methodology was used to account for beach visitors in
the overall demand forecast (Goudappel Coffeng, 2015).

To evaluate the accuracy of these assumptions, observed beach-related ridership was analysed using
smart card data of the year 2024. Based on daily maximum temperatures obtained from the KNMI
(Royal Netherlands Meteorological Institute), beach days were identified and classified into three cate-
gories (similar to the forecast methodology):

» Top beach days with maximum temperatures higher than 30°C.
» Busy beach days with temperatures between 25°C and 30°C.
* Moderate beach days with temperatures between 20°C and 25°C.

Table 4.5 shows the average boardings at the stations by beach day category, compared to non-beach
weekdays during the same year. There are clear differences in average boardings across the four day
types at Hoek van Holland Strand. On the busiest beach days, over 10,000 boardings are recorded,
27 times as much as on regular non-beach weekdays. There are also substantial increases on busy
weekdays with over 3,000 boardings, while moderate beach days show a more modest increase in the
number of boardings.

Table 4.5: Average boardings by beach day category (weekdays only, 2024)

Station Top beach day Busy beach day Moderate beach day Non-beach day
Schiedam Nieuwland 1,693 1,980 1,800 2,417
Vlaardingen Oost 1,690 2,170 2,093 2,528
Vlaardingen Centrum 1,585 1,825 1,765 2,003
Vlaardingen West 1,476 1,651 1,555 1,929
Maassluis Centrum 1,228 1,334 1,271 1,510
Maassluis West 999 1,089 1,039 1,215
Steendijkpolder 609 801 689 826

Hoek van Holland Haven 1,301 1,021 982 943

Hoek van Holland Strand 10,068 3,667 1,157 364

This extreme variation confirms the recreational function of Hoek van Holland Strand and demonstrates
the weather-dependent nature of beach travel demand. The monthly average increase factors for
OVpay usage are applied to these boardings, though as explained in section 4.4.1, OVpay usage on
high recreational demand days can result in underestimation of up to 18%.

4.4.5. Other relevant data

The one-directional OD-matrix for weekdays in February 2025, provided by RET, was used to get an
overview of the most used destination station for passengers boarding on the Hoekse Lijn. The data
shows that there is a substantial share of passengers that use the Hoekse Lijn to reach one of the
stations in or near the city centre of Rotterdam. Some of the most popular destinations are:

» Schiedam Centrum - The nearest major interchange with possibilities to transfer to other metro
lines, various tram and bus services, and national rail services.

» Beurs - Major interchange that allows for transfer to other north-south and east-west metro lines
without the need to check-out and back in, but also centrally located near Rotterdam’s main
shopping and commercial district.

+ Dijkzicht, Coolhaven, Marconiplein, Eendrachtsplein and Blaak - All located within or on the edge
of the city centre. These stations provide access to important employment centres, educational
facilities, cultural institutions, and retail areas, making them important for both work and leisure
trips.
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Notably, three of the Hoekse Lijn stations are among the ten most used destinations highlighting that
intraline use of the Hoekse Lijn should not be disregarded. For example, for Schiedam Nieuwland,
Vlaardingen West, Vlaardingen Centrum, and Vlaardingen Oost take the third, fifth and sixth place
in most popular destinations for people departing from the station. These patterns suggest that the
lines also serves important local travel needs, such as connections for school, healthcare, or shorter
commutes.

4.5. Reflections on observed demand and data usability

The goal of this chapter was to provide the empirical basis for evaluating forecast accuracy, which is
presented in the next chapter. Three key elements were combined: (1) the strategic objectives that mo-
tivated the conversion of the Hoekse Lijn into a metro line; (2) the spatial and functional characteristics
of the line; and (3) the observed ridership patterns derived from the smart card data.

The ridership data confirms several spatial patterns that align with the functional roles of the station
as described earlier. Schiedam Nieuwland and Vlaardingen Oost are important stations on the line,
as both serve as origin station for commuters and as interchanges to other parts of the RET network,
confirmed by having the highest number of boardings. While both stations show a clear morning peak,
there is also a notable amount of boardings during the afternoon, which can partially be attributed to
the nearby educational facilities with a more varied schedule. Although less pronounces, Vlaardingen
Centrum and Maassluis West also show some afternoon usage. At the remaining commuter-oriented
stations, demand is clearly concentrated in the morning peak hours, suggesting a dominant commuter
function with limited off-peak usage.

These patterns offer mixed evidence for the objective of improving utilisation of the line throughout the
day and in both directions. While some stations do appear to support more varied travel purposes,
other remain highly peak-oriented. Whether this represents a meaningful improvement on the situation
before conversion, and whether this aligns with the modelled expectations, will be explored in the next
chapter through direct comparison with the 2015 demand forecasts.

One of the project’s most significant impacts in relation to its strategic objecitves is observed at Hoek
van Holland Strand, where beach-related travel causes exterme seasonal fluctuations. On peak beach
days, boardings can exceed 10,000, and the daily profile shows a clear pattern of afternoon arrivals
and early evening departures, confirming the station’s strong recreational function. While this suggests
that extending the line directly to the beach has made the service more appealing for leisure trips, as
intended, the next chapter will provide a full evaluation of whether this aligns with the projected increase
in beach ridership.

OV-chipkaart data proved to be useful in evaluating the development of passenger demand on the
Hoekse Lijn. Despite being aggregated, it enables the reconstruction of the boardings per station
and hourly flow patterns. With support from external model assumptions, it is also possible to infer
occupancy upon arrival and passenger kilometres, providing a strong empirical basis for assessing the
accuracy of the demand forecasts made in 2015.

However, the data also has important limitations. Check-out data is missing, so origin-destination flows
must be estimated using directional ratios from OV-Lite. The dataset also excludes barcode tickets
and fare evasions. While monthly correction factors for OVpay were applied, these may underestimate
usage on days with many incidental travellers, such as beach days. Furhermore, the dataset lack
any socio-demographic information or insights into user motivations, which limits the ability to explain
behaviour beyond the observed patterns.

Nevertheless, despite these limitations, the smart card data offers a sufficient basis for evaluating re-
alised demand on the Hoekse Lijn, enabling the reconstruction of key demand indicators that align with
those used in the 2015 forecasts. Building upon this, the next chapter assesses the extent to which
observed ridership matches forecasted expectations.
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5.1. Comparison of demand indicators

5.1.1. Boardings per station

Figure 5.1 illustrates the development of the average number of weekday boardings from 2020 to 2024,
alongside the original 2015 forecast and two projections for 2025, to enable a comparison between the
forecasts and the recent data. The first projection assumes yearly growth in passenger numbers of
3% from 2024 onwards, based on RET transport plans and transport committee meeting documents
from the Rotterdam council. The second projection corrects for the structural decline in public transport
demand following the pandemic. This correction is applied directly to the original 2025 forecast from the
2015 study, reflecting how projected demand would have evolved if the pandemic’s structural impacts
had been considered in the initial forecast.
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Figure 5.1: Observed boardings per station (2020-2024) and projected demand for 2025, including COVID-19 correction
(-12%) applied to the original 2015 forecast and baseline growth projection (+3%) based on 2024 data

To account for structural change in public transport usage following the COVID-19 pandemic, a correc-
tion factor of -12% was applied to the original forecasts for 2025. This factor was derived from the KiM
Mobility Report for 2023, which provides projections based on empirical evidence of continued declines
in public transport demand compared to pre-pandemic levels (KiM, 2023). Specifically, KiM estimates
that the total structural effects of the COVID-19 pandemic result in a decrease 6% to 16% of distance
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travelled in bus, tram, and metro, depending on the scenario. For the baseline scenario, this factor is
-12%.

The visual comparison reveals a structural overestimation of boardings in the 2015 forecast for most
stations on the Hoekse Lijn. While the observed data shows a steady recovery from the COVID-19
pandemic and further growth between 2023 and 2024, it remains significantly lower than the projected
values. The deviations are particularly high for the stations between Schiedam Nieuwland and Vlaardin-
gen West. In contrast, the newly built Maassluis Steendijkpolder station performs better than expected
when the COVID correction is taken into account, suggesting that the forecast may have underesti-
mated demand at this location. Hoek van Holland Strand even exceeds the projections, highlighting
the challenge of accurately modelling leisure travel, which is more sensitive to external factors such as
weather and changing recreational patterns

Table 5.1 presents both the absolute and percentage errors between forecasted and actual boardings
for 2025, shown separately for eastbound and westbound directions. The projections have been ad-
justed for the structural COVID-19 impact by applying the 12% reduction, that was described earlier, to
the original 2015 forecasts.

Table 5.1: Forecast error per station in 2025 (COVID-corrected projection). Positive percentage error indicates more actual
travellers than forecasted; negative error indicates overestimation.

Stop 2025 Observed 2025 Projection Absolute Error Percentage Error

East West East West East West East West
Schiedam Nieuwland 1605 753 2382 1265 -777 -512 -33% -40%
Vlaardingen Oost 2254 254 3142 1032 -888 -778 -28% -75%
Vlaardingen Centrum 1688 323 2096 459 -408 -136 -19% -30%
Vlaardingen West 1658 248 1798 878 -140 -630 -8% -72%
Maassluis 1416 89 1447 205 -31 -116 2% -57%
Maassluis West 1158 57 1246 215 -88 -158 7% -73%
Maassluis Steendijkpolder ~ 806 21 610 202 196 -181 +32% -90%
Hoek van Holland Haven 999 10 1437 31 -438 -21 -30% -68%
Hoek van Holland Strand 760 0 344 0 416 0 +121% -

Both the absolute and percentage errors are presented as they provide different insights into the fore-
cast accuracy. The percentage error provides a proportional understanding of the deviation relative to
the forecasted value, which is useful for comparing stations with different demand levels. However, it
can be misleading at stations with low projected boardings, where small absolute deviations result large
percentage values. That is why the absolute error is important for the understanding of the practical
impact of the forecast inaccuracies on operations.

The results show that the overestimation for the westbound trains is significantly higher than for the
eastbound trains, with deviations exceeding 100% on all stations apart from Vlaardingen Centrum.
However, due to boardings being higher in eastbound direction caused by a commuter morning peak
towards Rotterdam and the eastbound deviations being more manageable, the total percentage error
does not exceed 100% at any of the station. The smallest deviations can be observed at the newly
constructed Maassluis Steendijkpolder station, possibly explained by no accessible prior knowledge
of passenger number to compare with or an underestimation of people choosing for metro when it
became better accessible. The underestimation for Hoek van Holland Strand can be explained by the
more complicated modelling of leisure passenger flows as these are highly weather dependent.

On the other hand, the largest overestimations were observed at stations such as Vlaardingen Oost,
Vlaardingen West, Maassluis West, and Steendijkpolder, particularly for westbound trains. These sub-
stantial deviations suggest that fundamental assumptions in the original model may not have realised
as anticipated.

Analysing peak-hour travel provides further insight into the discrepancies between the predicted and
actual demand on the Hoekse Lijn. The visualisation of projected and observed boardings per station
for peak periods in figure 5.2 reveals that the overestimations identified in overall daily boardings are
largely concentrated during the peak periods. In particular, the morning peak shows significant dis-
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Figure 5.2: Forecasted and observed boardings during morning and evening peak periods (Feb 2025)

crepancies at stations such as Schiedam Nieuwland, Vlaardingen Oost and Vlaardingen West, where
forecasted peak demand is much higher than actual boardings. This is consistent with the findings of
overall boardings, in which these stations displayed the largest absolute and percentage errors in the
westbound direction, underscoring the overestimations of commuter flows in the original model.

Furthermore, the proportion of daily boardings during peak periods, as displayed in figure 5.3, provide
additional insights. While the model substantially overestimated afternoon peak travel demand for
almost all stations, the situation is more mixed for the morning peak. Stations such as Hoek van
Holland Haven, Maassluis Steendijkpolder, Maassluis and Vlaardingen Oost had a higher share of
daily boardings than projected during the morning peak. In contrast, Schiedam Nieuwland shows a
clear underperformance during the morning peak relative to the forecasts, consistent with its lower-
than-expected overall daily boardings. Similarly, Hoek van Holland Strand underperformed during the
morning peak despite performing better than expected on a daily basis. This highlights a strong leisure-
driven demand outside of traditional commuting hours, which the model did not correctly capture.
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Figure 5.3: Share of daily boardings during morning and afternoon peak periods by station, compared across forecast and
observed scenarios.

Interestingly, Maassluis West presents a different pattern: despite the general trend of overestimating
the afternoon peak, this station did not show a significant deviation in its afternoon peak share. This
suggests that the model accurately captured the commuting patterns of people working near the station,
with afternoon demand aligning more closely with the forecast.
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5.1.2. Occupancy upon arrival

Besides using boardings per station as an indication of demand mismatches, it is also important to
assess how well the model predicted load distribution along the Hoekse Lijn by looking at the occupancy
upon arrival at each station. Deviations between forecasted and actual occupancy between stations
may suggest incorrect assumptions about trip length, distribution of alightings, or route choice patterns.
Figure 5.4 presents the absolute error in occupancy upon arrival per station in both travel directions
for 2025, compared to the forecast. Here, negative values indicate fewer passengers on board than
predicted, while positive values indicate more passengers than forecasted.
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Figure 5.4: Absolute error between forecasted and observed occupancy upon arrival per station (2025)

In contrast to the boardings per station, deviations in occupancy mainly underestimate passenger on-
board, with most stations showing relatively higher passengers on board, especially in westbound trains.
The most significant underestimations occur at Hoek van Holland Haven and Hoek van Holland Strand
with the number of passenger onboard upon arrival being more than 40% higher than expected, which
is consistent with earlier findings that ridership to and from the beach was underpredicted.

On the other hand, Maassluis Steendijkpolder stands out with an overestimation in eastbound occu-
pancy, explained by the relatively high eastbound overestimation of boarders at Hoek van Holland
Haven (table 5.1). While the number of passengers boarding at Hoek van Holland Strand was signifi-
cantly higher than forecasted, did this not fully compensate for the overestimation this. Furthermore, in
eastbound direction occupancy upon arrival at stations up to Vlaardingen Oost remained higher than
forecast, likely due to underestimated boarding at Maassluis Steendijkpolder, and possibly due to more
passengers staying on board for longer than the model assumed. However, the substantial overesti-
mation of boardings at Vlaardingen Centrum and Vlaardingen Oost led to the actual occupancy falling
below the forecasted levels at these stations, as the earlier compensating effects were insufficient to
offset the overestimations of local boardings.

Overall, the analysis of the occupancy figueres reveals a notable trend: although boardings at most
stations were lower than predicted, occupancy upon arrival was often higher than forecasted. This
suggest that more passengers than expected travelled longer distances along the line, while the model
overestimated the number of shorter trips. The higher-than-expected recreational demand for Hoek
van Holland Strand was an important factor in this, as these longer leisure trips originating outside of
the Hoekse Lijn helped to maintain higher train occupancy levels along the route, compensating the
reduced commuter ridership.

5.1.3. Passenger kilometres

The number of passenger kilometres for the average weekday for 2024 was computed to be 197,809
kilometres. Applying the 3% growth to scale this to 2025 resulted in 203,743 kilometres per average
weekday. This is 18% higher then projected in 2015. This discrepancy is consistent with earlier findings
from the occupancy analysis, which pointed to higher-than-anticipated long-distance travel, particularly
toward Hoek van Holland Strand. These trips, typically spanning the entire corridor, contribute dispro-
portionately to total passenger kilometres.
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5.1.4. Beach ridership analysis

The analysis of beach ridership provides crucial insights into the accuracy of recreational demand
forecasting and helps explain the 121% overperformance of Hoek van Holland Strand compared to
original projections. This section examines the broader patterns of beach travel across the corridor
and compares observed demand with the original forecast assumptions.

In the original forecasts, beach-bound travel was added as an additional demand component outside
the multimodal model. The method estimated the average number of beach-related public transport
trips on a typical warm weekday. This estimate was based on historical ridership patterns for beach
visitis and adjusted for expected travel time improvements due to the metro extension. Specifically, it
was assumed that 850 public transport trips (in both directions) would be made to and from Hoek van
Holland Strand on an average beach day. Of these, 100 trips per day were attributed to the accessibility
improvements resulting from the metro extension. These values were integrated into the overall fore-
cast outcomes by distributing the estimated beach ridership accross three station: Maassluis Centrum,
Vlaardingen Centrum, and Schiedam Centrum. This was done in proportion to their original share of
boardings. This way the effect of beach travel and the metro extension is implemented in the reported
model results, even though the demand itself was not simulated within the model itself (Goudappel
Coffeng, 2015).

Notably, the data on one of the busier beach days in this dataset (26 June 2024) revealed an underes-
timation of 18% in boardings at Hoek van Holland Strand when the aggregated daily boarding figures
were corrected using the June OVpay factor, as opposed to the actual hourly boarding total. This sug-
gests that the values observed in table 4.5 may still underestimate the true demand on the busiest
beach days, particularly among incidental travellers, who are more likely to use OVpay than regular
commuters.

Other stations show more varied effects. While Hoek van Holland Haven also experiences higher rid-
ership on beach days, most of the more commuter-oriented stations record lower boardings on the top
beach days. This is not necessarily due to passengers changing their mode of transport or destination,
but is more likely to reflect a decline in commuter demand due to the summer holiday period, as it is
important to note that the busiest beach day in the analysis, and the only top beach day (12 August
2024), falls during the Dutch summer holidays. Therefore, the ridership figures at intermediate stations
should be interpreted cautiously.

To better understand how beach travel interacts with holidays and typical travel patterns, table 5.2
categorises average daily boardings into four scenarios: whether itis a beach day, and whether the days
falls inside or outside a holiday period. This disaggregation allows for a more nuanced interpretation of
the beach day effects. Again, the clearest effect is visible at Hoek van Holland Strand, where boardings
rise from 360 on non-beach days outside the holidays to 1,716 on comparable beach days, and even
further to 2,285 on beach days during the summer holidays.

Table 5.2: Average boardings by holiday and beach day condition (weekdays only, 2024)

No holiday No holiday Holiday Holiday

Station Avg 2024 no beach beach no beach beach
Schiedam Nieuwland 2,281 2,512 2,346 1,352 1,288
Vlaardingen Oost 2,429 2,603 2,515 1,669 1,655
Vlaardingen Centrum 1,950 2,045 2,003 1,509 1,523
Vlaardingen West 184 1,997 1,918 1,183 1,212
Maassluis Centrum 1,846 1,555 1,571 984 980
Maassluis West 1,176 1,252 1,245 866 833
Steendijkpolder 800 855 934 A77 475
Hoek van Holland Haven 979 1,009 1,087 806 845
Hoek van Holland Strand 739 360 1,716 996 2,285

At all other stations, the patterns are more varied and are likely to be driven by fluctuations in commuter
demand. All ridership figures decrease during the holidays, regardless of beach day status, indicating
that the effects of changes in work and school routines have dominate over incidental beach traffic
effects. Closer to the coast, Steendijkpolder and Hoek van Holland Haven show natable increases
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in boardings on beach days outside the holiday periods. This may suggest that some beach visitors
access the metro within the corridor itself. However, it cannot be firmly concluded whether these in-
creases reflect recreational travel or unrelated fluctuations in demand.

Furthermore, when comparing ridership patterns along the line, no significant increase in boardings is
evident at the other stations, either between beach and non-beach days outside the holiday periods or
during the holiday periods itself. This suggests that most beachgoers probably enter the metro network
upstream, outside of the Hoekse Lijn corridor. While the current dataset does not include upstream
stations or transfer flows, the absence of a measurable uplift at stations such as Schiedam Nieuwland,
Vlaardingen Centrum or Maassluis Centrum supports the interpretation that the Hoekse Lijn is primarily
used by beach visitors as the final leg of their journey rather than as their point of entry.

Figure 5.5 helps in getting a better understanding of the daily passenger dynamics of beach-related
travel, showing the hourly number of people boarding and alighting at Hoek van Holland Strand on 26
june 2024 - a sunny weekday with a maximum temperature of 25.6°C and outside the school holidays.
This day was classified as a busy beach day and serves as a representative example of incidental
recreational demand.
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Figure 5.5: Number of boardings and alightings for Hoek van Holland Strand on 26 June 2024

The figure clearly shows the temporal seperation between arrivals and departures, as alightings dom-
inate the morning and early afternoon, peaking around 13:00. Boardings increase steadulty from the
afternoon and peak between 17:00 and 20:00, reflecting the end-of-day return flow of passengers.
The volume of both alightings and boardings, each exceeding 1,000 passengers per hour during peak
periods, illustrates the significant scale of beach-related travel on warm, non-holiday weekdays.

The extreme weather-dependent variability observed at Hoek van Holland Strand, where peak beach
days generate 27 times normal weekday boardings, demonstrates the challenges of modeling irregular
recreational demand within traditional transport models. The original approach of handling beach travel
as a separate component outside the multimodal model proved inadequate for capturing both the mag-
nitude and temporal concentration of actual demand. The findings suggest that recreational demand
modeling requires more sophisticated approaches that can account for weather variability, seasonal
patterns, and the interaction between recreational and commuter travel patterns.

5.2. Cluster-based analysis of forecast accuracy

This section evaluates the accuracy of the forecasts by clustering the stations and comparing observed
and forecast ridership using the weighted mean absolute percentage error (MAPE), to reveal variations
in model performance across station types and passenger groups. The objective of clustering is to
group stations with similar demand profiles, enabling forecast performance to be assessed by type
rather than per station. Using scale-free features such as peak-hour share, seasonality, and intra-day
variability means the clusters describe how demand is distributed over time rather than how large it is.
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This makes it easier to identify whether errors are systematic, for instance, whether the model performs
differently at commuter-dominant, mixed-use, or leisure-oriented stations, and assists in interpreting the
MAPE results by cluster. It also provides targeted input for explaining deviations and refining the model
assumptions.

5.2.1. Station typologies from cluster analysis
Using k-means clustering, three station types are identified based on the following information from the
smart-card data:

» Peak-hour usage ratio - share of daily boardings between 07:00-09:00 and 16:00-18:00.

» Seasonality indicator - coefficient of variation between monthly average weekday boardings for
2024.

« Daily variability indicator - coefficient of variation of hourly boardings on an average weekday in
February 2025.

Based on the elbow test and the silhouette score shown in figure 5.6, it was concluded that three
clusters were the most appropriate solution. The elbow test shows that the reduction in variance within
clusters significantly levels off after three clusters, suggesting that there are fewer benefits to be gained
from adding more clusters. While the silhouette score reaches its maximum at two clusters, it remains
reasonably high at three, offering a good balance between cluster separation and interpretability.
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Figure 5.6: Elbow method showing within-cluster variance and silhouette score as a function of the number of clusters

The characteristics of the three clusters that were identified are summarised in table 5.3. Each clusters
groups stations that share similar patterns in terms of peak hour usage, seasonality, and daily variability.

Table 5.3: Cluster characteristics of stations on the Hoekse Lijn

Cluster Stations Description Statistics

C1 - Commuter Vlaardingen Centrum, Maass- Stations with relatively high peak hour Peak ratio ~0.42-0.47;

dominant stations luis Centrum, Maassluis West, usage, moderate seasonality, and high  seasonality ~9-16;
Steendijkpolder, Hoek van Hol- daily variability. Typical commuter sta- daily variability ~94—
land Haven tions with concentrated morning peaks. 112

C2 — Mixed-used ur-  Schiedam Nieuwland, Vlaardin- Stations with lower peak hour usage, Peak ratio ~0.32-0.43;

ban stations gen Oost, Vlaardingen West moderate seasonality, and lower daily seasonality ~12-17;

c3 - Leisure-
oriented and sea-
sonal stations

Hoek van Holland Strand

variability. Mixed-use stations with more
balanced ridership across the day.

Station with a distinct seasonal pattern,
very low peak ratio, and high seasonality
and daily variability. Strongly associated
with leisure trips.

daily variability ~70-80

Peak ratio ~0.21; sea-
sonality ~94; daily vari-
ability ~103

5.2.2. Forecast accuracy by station typology
Table 5.4 displays the weighted mean absolute percentage error (MAPE) of the ridership forecasts
for each station cluster. The results highlight clear differences in forecast accuracy across station
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typologies. Commuter-dominant stations (C1) achieved the lowest overall weighted MAPE (27.0%),
indicating that the forecasting model performed relatively well in capturing the stable and predictable
demand patterns typical of these stations. In contrast, mixed-use urban stations (C2) exhibit a signif-
icantly higher total MAPE of 55.0%. This suggests that the model struggles to account for the more
complex and diverse trip purposes, and temporal variations that characterise the urban environment
surrounding these stations. The leisure-oriented and seasonal stations (C3), only including Hoek van
Holland Strand, also demonstrate poor forecast accuracy, with a weighted MAPE of 54.7%. This em-
phasises the difficulty of predicting irregular, weather-dependent and highly seasonal travel demand.

Table 5.4: Forecast accuracy by cluster: Weighted Mean Absolute Percentage Error (MAPE)

Cluster Stations MAPE Total MAPE East- MAPE West-
bound bound

C1 — Commuter dom- Vlaardingen Centrum, Maass- 27.0% 19.1% 122.4%
inant stations luis Centrum, Maassluis West,

Steendijkpolder, Hoek van Hol-

land Haven
C2 — Mixed-used ur- Schiedam Nieuwland, Vlaardin- 55.0% 32.7% 152.9%
ban stations gen Oost, Vlaardingen West
C3 —Leisure-oriented  Hoek van Holland Strand 54.7% 54.7% -
and seasonal sta-
tions

The directional MAPE values emphasise the overestimation of demand for westbound commuting dur-
ing the evening peak hours, with westbound errors being particularly at the commuter-dominant and
mixed-use urban stations. Another factor that could explain this discrepancy is assumption of a greater
number of shorter westbound trips between station on the line than actually occurred. In reality, a larger
proportion of travellers travelled from station outside this line, or took alternative transportation.

5.3. Explaining forecast deviations through model input analysis
In order to understand the causes behind the discrepancies between forecasted and observed demand
on the Hoekse Lijn, this section evaluates whether the deviations can be explained by inaccuracies in
the original model imputs. A comparative analysis was conducted across three dimensions: transport
network configuration, behavioural parameters, and socioeconomic forecasts. This was done using by
analysing the inputs into the RVMK3.1 model in OmniTRANS.

5.3.1. Model description

The RVMKS3.1 model follows a four-step transport modelling framework implented in the OmniTRANS
software platform, using 2010 as its base year for calibration, which is desribed in the model documen-
tation (Goudappel Coffeng, 2013). The model begins with trip generation, computing the total number
of trips produced and attracted in each zone based on socioeconomic data such as number of inhabi-
tants, employment and land use. These trip generation rates are calibrated to known travel survey data.
Next, RVMKS.1 distributes the generated trips between originlIdestination (O[1D) zone pairs using a
gravityJtype distribution model. Specifically, the model uses a simultaneous gravity model (SGM): the
likelihood of trips between any two zones decreases with the generalised travel costs between them.
Crucially, the RVMK3.1 model treats trip distribution and mode choice as a single simultaneous step
rather than sequential processes, meaning destination and mode choices are solved simultaneously
for car, bicycle, and public transport options.

This simultaneous, multimodal, gravity-based approach sets RVMK apart from traditional, sequential,
four-step models, as it incorporates the accessibility of each destination via each mode directly into
the trip distribution calculation. Mode choice is determined by logit-type allocation rules that assign
trip proportions based on the relative generalised costs of each origin-destination pair. Finally, the
model allocates trips to network routes using standard static assignment for car traffic and the Zenith
algorithm for public transport. Rather than single shortest paths, Zenith enumerates multiple viable
routes between each origin-destination (OD) pair, assigning passengers across alternatives based on
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their relative attractiveness, vehicle capacity, and transfer possibilities up to specified cost thresholds.

5.3.2. Transport network assumptions

The inclusion of outdated assumptions concerning the configuration connecting public transport ser-
vices to the Hoekse Lijn could be contributing to the deviations in the forecasts. There are some major
changes to the transport network that was included in the 2025 model scenario as compared to the cur-
rent situation, possibly leading to an overestimation of station accessibility and therefore the number
of boardings.

An important difference in the representation of the Hoekse Lijn network concerns the inclusion of Metro
Line A. According to the forecast report, Line A was implemented as a peak-hour service between
Schiedam Centrum and Binnenhof, operating with a frequency of six trains per hour, and an off-peak
frequency of 4 trains per hour (Goudappel Coffeng, 2015). In the RVMK3.1 model a five-train-per-hour
service is included for the entire day to represent this service.

In reality, as mentioned before, this service has been terminated since October 2020 due to personnel
shortages. The inclusion of this service overstated the frequency and perceived reliability of the Hoekse
Lijn in the forecasts. Because waiting time in the model is inversely related to frequency, this led to an
underestimation of perceived travel cost for trips by metro. The model applies a wait time route factor of
1.25 to reflect passenger sensitivity to frequency, meaning that the attractiveness of frequent services
is disproportionally higher in the generalised cost calculation in the model. As a result, the forecast
assigned too many trips to the Hoekse Lijn both during peak and off-peak hours. This effect is also
visible in figure 5.1, which shows particularly large deviations between the observed and forecasted
number of boardings at the first four stations (Schiedam Nieuwland, Vlaardingen Oost, Vlaardingen
West and Vlaardingen Centrum) which would have been served by Metro Line A throughout the day
according to the model.

Another significant difference lies in the modelling of the bus network. A detailed comparison between
the model’s input and the services that are present in 2025 (see table 5.5) reveals several major differ-
ences.

Table 5.5: Differences in bus service assumptions per station (model vs. observed)

Station Lines in model Actual lines Differences
Hoek van Holland - - No bus connection
Strand
Hoek van Holland 31&35 31 Lines 35 and 31 combined, removal
Haven of loop through Hoek van Holland
Maassluis West 137, 30, 126 Only 126 (half 137 and 30 removed; 126 reduced in
frequency) frequency and coverage
Steendijkpolder 137,126 Only 126 (shortened + 137 discontinued before opening;
halved) 126 truncated
Maassluis Centrum  — 33, 34 (low frequency) Feeder services not included in
model
Vlaardingen 57 None Line 57 discontinued in 2019;
Centrum replaced by on-demand line 557
Vlaardingen West 56 56, 156 Line 156 not in model;
route/frequency changes
Vlaardingen Oost 56, 126 56, 126 Line 126 half frequency during peak
hours
Schiedam 1,11, 51,57 1, 11, 51 (half Line 57 removed; frequency of line 51
Nieuwland frequency) halved

While the model assumed a well-connected and frequent bus network, in the current situation the
bus network is more stripped down. According to RET, these changes were primarily motivated by
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cost-efficiency considerations and the aim of better aligning services with observed demand as it was
expected that the metro would absorb much of the demand that was previously carried by parallel bus
services (RET, 2019).

These changes directly imapact the ridership forecasts, as the RVMK3.1 model uses the Zenith multi-
routing method to allocate travellers across available routes based on total "impendance” (generalised
cost), which includes in-vehicle time, waiting time (derived from frequency), access time and transfer
time penalties (Goudappel Coffeng, 2018). A feeder bus link with short acces times and a high fre-
quency, as assumed at some stations in the model, results in a low impendance, making the metro
route choice more appealing and therefore attracting more demand. However, in case of the absence
of the feeder service or a reduced frequency of the service, the actual impendance is higher and fewer
travellers use the metro.

Conversely, the removal of parallel bus services at some stations may have resulted in additional pas-
sengers using the metro, since in the model these trips were divided between bus and metro. This
could explain the smaller forecast deviations at Steendijkpolder, where local buses were removed in
reality, but were included in the model predictions.

Overall these changes show that the accuracy of the forecasts is sensitive to assumptions about the
metro service frequency and the outdated bus network, which could explain part of the overestimations
in the model predictions for ridership on the Hoekse Lijn. In particular, the assignment of demand
in the model was heavily influenced by optimistic assumptions about feeder accessibility and service
frequency. Where these assumptions were not realised in practice, the perceived travel cost was un-
derestimated, resulting in inflated demand forecasts, particularly at stations that relied on these feeder
services or were expected to be served by higher metro frequencies.

These network representation errors directly explain the concentrated overestimations at the four east-
ernmost stations on the Hoekse Lijn. The inclusion of Metro Line A service in the model, with six trains
per hour during peak periods and five trains off-peak, made these stations appear significantly more
accessible than they actually became after the service termination in 2020. Since the model applies a
wait time route factor of 1.25, the projected high frequencies were disproportionally attractive in the gen-
eralised cost calculation, resulting in inflated demand forecasts for Schiedam Nieuwland, Vlaardingen
Oost, Vlaardingen Centrum, and Vlaardingen West.

The degraded bus network further reduced actual accessibility compared to the RVMK3.1 model as-
sumptions. Feeder services with short access times and high frequencies, as assumed at some stations
in the model, resulted in low impedance calculations that made the metro route choice appear more
appealing than it was in reality. Where these feeder services were discontinued, rerouted, or reduced
in frequency, the actual impedance was higher and fewer travellers used the metro than forecast.

5.3.3. Behavioural parameters and policy settings

The accuracy of transport demand forecasts is dependent on the behavioural parameters that that
determine how travellers make modal and route choices in the model. Analysis of the RVMK3.1 model
inputs reveals several parameters that may have contributed to the deviations in forecasted and realised
ridership.

Value of time

The model uses different cost coefficients for various trip purposes. This is apparent in the skim-building
process, where generalised costs for car and bicycle travel are calculated using the same structure
with gCost = (distance x distance_cost_factor) + (time x time_cost_factor) for each motif (commuting,
business, shopping, education, and other). The distance cost factors for cycling are substantially lower
though, with €0.025/km representing mainly wear and tear.

Public transport calculations are considerably more complex, including multiple cost components: gCostpt =
(in-vehicle timex time cost factor)4(wait timexwait cost factor)+(access/egress timextime cost factor)+
(transfer time X transfer penalty) + (fare x fare cost factor). Each component is again also differentiated

by the same trip purposes as for car and bicycle trips. This structure enables the model to distinguish,

for example, between a short metro journey with a long waiting time at the platform and a longer journey
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on a high-frequency tram service with no waiting time, as passengers generally perceive waiting time
as more burdensome than in-vehicle time, even when the total journey duration is the same.

While the framework used in the model in conceptually robust, the values of time (VoT) embedded in
RVMKS3.1 are based on CPB (Centraal Planbureau, Dutch Bureau for Economic Policy Analysis) 2006
estimates projected to 2010, meaning they no longer represent current user preferences (Goudappel
Coffeng, 2013). Recent national research commissioned by the Netherlands Institute for Transport
Policy Analysis (KiM) shows significantly higher and more differentiated valuations, even after these
values were converted to 2022 price levels using the same method as the KiM study: an inflation
correction (factor 1.3258) combined with a real income correction (factor 0.9771), yielding a combined
adjustment factor of 1.2953 (Kouwenhoven et al., 2023). Table 5.6 presents the original RVMK3.1
values, the adjusted RVMK3.1 values, and the KiM values from 2022.

Table 5.6: Comparison of value of time (VoT) by mode and purpose: RVMK3.1 (original and adjusted to 2022) vs. KiM (€/hour,

2022)
Mode Commute Business Other
RVMK Adj KiM Diff RVMK Adj KiM Diff RVMK Adj KiM Diff
(%) (%) (%)
Car €9.09 €11.77 €10.78 -8 €31.47 €40.76 €21.20 -48 €6.28 €8.13 €9.60 18
Train €9.13 €11.83 €12.05 2 €19.31 €25.01 €17.96 -28 €6.46 €8.37 €8.64 3
BTM €9.13 €11.83 €7.62 -36 €19.31 €25.01 €14.39 -42 €6.46 €8.37 €6.66 -20
Cycling | €9.09 €11.77 €10.17 -14 €31.47 €40.76 €11.20 -73 €6.28 €8.13 €10.43 28

The differences in assumptions of value of time, as summarised in Table 5.6, are likely to have had an
impact on how generalised costs are perceived in the model and on the projected modal split, as these
differences affect relative attractiveness between alternatives. When value of time parameters change
proportionally across alternatives, the relative attractiveness between modes remains the same, not
impacting the modal split. However, when VoT ratios between modes shift, as is the case in the compar-
ison between RVMK3.1 values and the 2022 benchmarks, the balance between transport alternatives
is fundamentally altered, directly influencing travellers’ choice behaviour. This can be attributed to the
logit-based modal choice formulations used in the model, in which the probability of selecting a particu-
lar mode depends on the difference in relative utility between alternatives rather than on absolute utility
(Train, 2009). Thereby, three systematic effects were identified.

First, for commuting trips, the model applied similar VoT values for car, train, and BTM, which reduced
the perceived differences in travel experience across these modes. The latest empirical values from
KiM research show that, for commuters, time savings in train travel are valued the most, followed
by car, and time savings in bus, tram, and metro are valued the least. According to the study, this
can be attributed partly to changes in the mix of travellers and trip types, such as a higher share
of higher-educated commuters, evolving comfort expectations, and self-selection effects of travellers.
Specifically, higher VoT commuters may have shifted to faster modes such as e-bikes, leaving a lower
VoT group within public transport, which reduces the average VoT for bus, tram and metro in reality.
(Kouwenhoven et al., 2023). This implies that the model overvalued BTM time, making it appear more
sensitive to travel time changes, compared to other modes, than it is in reality.

Second, for business travel, the model applied substantially higher VoTs across all modes than the
recent KiM benchmarks specified. In practice, business travellers appear to be less time-sensitive than
the model assumes. This difference is largely explained by methodological updates: the 2022 study
moved from productivity-based valuations to willingness-to-pay approaches and also reflects COVID-
19 effects such as more remote work and fewer in-person meetings, both of which reduced average
business VoTs (Kouwenhoven et al., 2023). This means that actual demand may be higher and more
evenly distributed across modes, including slower but cheaper alternatives such as BTM or cycling, as
the model overestimated time sensitivity for this group.

Third, for discretionary and educational trips, the model applied a higher VoT for BTM than the empirical
KiM benchmark, while simultaneously underestimating the value of time savings for car, train, and
especially cycling. This means that the model overstated the disutility of BTM time, making BTM appear
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less attractive than it actually is in reality for longer trips. However, for short, local trips, travellers’
preference for flexible, direct options, particularly due to the time savings by e-bikes, lead to greater
use of these modes in reality than the model predicts.

Distance cost factors

Besides the value of time, the RVMKS3.1 model also uses distance cost factors as part of the general
cost calculation. These cost factors have also become increasingly different with real-world transport
economics since 2010. These outdated assumptions could also have distorted the relative attractive-
ness of the different modes of transport included in the model.

The distance cost factors consist of fuel prices, parking costs, and public transport ticket prices (Goudap-
pel Coffeng, 2013). These factors are indexed for the different future scenarios that are included in the
model (2015, 2020 and 2030). To account for trends in fuel efficiency of cars, the model applied a sep-
arate efficiency index to the fuel price indices. For this analysis, the model values were compared with
realised consumer price indices from CBS (Dutch Central Statistical Office), which track actual price
developments for fuel and public transport (CBS, 2025a). A corresponding efficiency index was cre-
ated for the CBS price indices to allow for consistent comparison. This index was based on estimates
of the average fuel consumption of the car fleet and the emergence of electric vehicles.

Figure 5.7 shows the indices used in the model, as well as the realised indices for train and BTM tariffs
relative to fuel costs (2010 = 100). Although the model predicted that public transport would become
more expensive than fuel, the actual price developments show that public transport became even more
expensive: train fares increased by around 25% more than fuel costs, and BTM fares by around 46%
more, between 2010 and 2024.
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Figure 5.7: Public transport cost relative to fuel cost (2010 = 100). Observed data from CBS consumer price index (CBS,
2025a)

Unlike ticket prices and fuel prices, the model assumes no change in parking charges over time. In
practice, however, parking rates have risen considerably, with the highest rate increasing from €3.33 per
hour in 2015 to €6.18 in 2025, an increase of almost 100% (Gemeente Rotterdam, 2025). Additionally,
the paid parking zones have expanded more than anticipated in the model, particularly in areas in
Rotterdam South. This evolution has made car use to these areas significantly less attractive and has
increased the relative competitiveness of public transport. Around the Hoekse Lijn, paid parking now
applies in the city centres of Vlaardingen and Schiedam, as well as in almost all parts of Rotterdam.

These discrepancies between the model's assumptions and the actual developments mainly affected
the relative attractiveness of public transport compared to private transport modes. The model under-
estimated the increase in public transport fares compared to fuel costs. Consequently, the forecasts
overstated the appeal of public transport and understated the competitiveness of car use. For shorter
journeys, this made cycling also a more appealing alternative than predicted by the model. Although
higher parking costs dampened the shift towards car use to some extent, overall, the model overstated
the attractiveness of public transport.

Synthesis

These outdated behavioural and economic parameters systematically overestimated public transport
attractiveness relative to emerging alternatives, contributing to the overestimations ranging from 28%
to 75% across most stations. The frozen 2010-level value of time parameters, which applied similar
time sensitivities across car, train, and BTM for commuters, overstated BTM'’s sensitivity to travel time
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changes compared to recent empirical evidence showing lower valuations for bus, tram, and metro
travel.

The distance cost factor discrepancies further intensified these effects. Public transport fares increased
by 25-46% more than fuel costs between 2010 and 2024, making the metro less competitive than
projected in the model. While higher parking costs partially counteracted the shift away from public
transport, the combined effect of outdated parameters overstated the appeal of metro services and
understated the competitiveness of alternatives, particularly e-bikes for medium-distance trips.

5.3.4. Socioeconomic forecasts

An important element of the RVMK3.1 model is the use of socioeconomic data to calculate the number of
departing and arriving trips for each model zone (trip generation). Therefore, socioeconomic forecasts
are essential for the model to be able to estimate future transport demand. Discrepancies between
these forecasts and actual developments in population, housing or employment can therefore lead to
significant differences between predicted and observed travel patterns.

Population and housing growth

The socioeconomic forecasts in the model are made at the level of the former Stadsregio Rotterdam,
which comprises 15 municipalities. Between 2010 and 2020, the population of this region increased
by 7.26%, which is significantly higher than the 3.82% growth assumed by the (Goudappel Coffeng,
2013). A closer look at the municipalities served by the Hoekse Lijn reveals a similar pattern. Maassluis,
Vlaardingen and Schiedam each saw an increase in population of around 4—5%, while Rotterdam’s pop-
ulation grew by 10% (an increase of almost 60,000 inhabitants). This contrasts starkly with the model’s
socioeconomic forecasts, which predicted a 6% increase for Rotterdam and a population decline of
around 3—4% for Maassluis, Vlaardingen and Schiedam.

This stronger-than-expected population growth is reflected in the increase in the housing stock. Maass-
luis, Vlaardingen and Schiedam added 274, 3,083 and 2,084 homes respectively between 2010 and
2020 (CBS, 2025b), whereas the model assumed that the housing stock in these municipalities would
remain stable during this period. Several spatial developments have contributed to this growth, notably
projects such as Park Haga, Parkweg Noord, and Park Vijfsluizen in Schiedam and Vlaardingen. Fur-
thermore, ongoing development in Maassluis, including Wilgenrijk and De Kade, will add more than
2,000 additional homes in the coming years (Gemeente Maassluis, 2025; Limmen, 2017).

Employment trends

The model assumed an increase in employment in Vlaardingen, Schiedam and Maassluis between
2010 and 2020. However, according to CBS data, there was a net loss of around 4,000 jobs accross
there three municipalities, compared to the anticipated increase of 5,000 jobs (CBS, 2025b). Con-
versely, employment growth in Rotterdam was substantially higher than expected with 22,200 jobs
instead of 14,227. This discrepancy suggests a stronger concentration of employment in Rotterdam,
likely resulting in increased commuting to the city centre and fewer eastbound trips in the during the
afternoon peak on the Hoekse Lijn.

At Schiedam Nieuwland, the model correctly identified significant employment at the Franciscus Vli-
etland Hospital, however, it appears that the model assumed standard 09:00-17:00 working hours for
these jobs, neglecting the fact that the hospital operates day and night. This means that the actual travel
demand is likely to be more evenly distributed throughout the day and night, with less concentration
during peak periods than the model estimated.

Synthesis

The employment distribution errors particularly explain the systematic overestimation of westbound
demand, with deviations ranging from 57% to 90% at most stations. While the model predicted an
increase of 5,000 jobs in Schiedam, Vlaardingen, and Maassluis, actual employment in these areas
declined by 4,000. Conversely, Rotterdam gained 22,200 jobs versus the projected 14,227. This em-
ployment concentration in Rotterdam rather than dispersal along the corridor meant that the expected
reverse commuting flows during the afternoon peak did not materialise.

The population and housing growth errors, while initially appearing to support higher ridership, were
offset by fundamental changes in travel behaviour. Despite 4-5% population growth in corridor mu-
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nicipalities (versus projected 3-4% decline) and 10% growth in Rotterdam (versus projected 6%), the
expected ridership increases did not materialise. This indicates that the emergence of the e-bike as a
viable alternative played a decisive role in travel behaviour shifts. By 2021, 20% of the Dutch popula-
tion owned an e-bike, competing directly with metro services for the 5-15 kilometre trips typically served
by the Hoekse Lijn. Research shows e-bikes replaced around 12% of public transport trips, helping
explain why population growth did not translate to proportional ridership increases.

These socioeconomic forecasting errors interacted with the network and behavioural parameter errors
identified in the previous subsections. The inclusion of the terminated Metro Line A service made west-
bound travel appear disproportionally attractive for the anticipated (but unrealised) reverse commuter
flows, while outdated value of time parameters overestimated business and commuting travellers’ sen-
sitivity to travel time savings, further inflating the forecasted afternoon return flows.

5.4. Concluding synthesis

After applying the -12% structural correction for the impact of the COVID-19 pandemic, the remaining
deviations between forecasts and actual passenger figures can be attributed to the factors set out earlier
in this chapter. The figures below express shares of the total residual deviation and are intended as
educated estimates to support the waterfall chart in figure 5.8.

The first component that was identified are differences in network assumptions. The 2015 scenario
assumed an additional service by Metro Line A of 6 trains per hour during peak hours and 4 trains per
hour off-peak (modelled as 5 trains per hour during the entire day). In reality this service was not oper-
ating in 2025 and feeder bus links were also more limited than anticipated due to reduced frequencies
and line discontinuations. Furthermore, the 2015 forecasts were based on a fully integrated service
by 2025, however the conversion to a metro line was delayed by two years with the beach extension
only operational in 2023, giving less time for demand to build up. At the four eastern stations, which
account for roughly 70% of the forecasted boardings (the sum of the east and west projections from
table 5.1), the assumed service improvement implies an effective frequency change of approximately
70% across the day. Using a conservative service elasticity of 0.5 (Paulley et al., 2006), this results in
effects at station level of a 35% decrease in boardings. Translating this with the 70% share in boardings
suggests a corridor impact of 25%. Adding to that the effects of the alteration of the surrounding bus
network, plausibly brings the effects of the deviation in the transport network to around 30%.

Second, behavioural and economic parameter alignment was also identified as an important factor con-
tributing to the deviations between forecasted and realised passenger numbers. The key parameters
(value of time and distance cost factors) were calibrated on patterns and preferences from 2010 that
were assumed to remain stable, while costs for public transport rose faster that costs for the use of
private cars and commuting during peak hours weakened. In quantitive terms, the distance-cost as-
pect can be approximated by applying standard short-run public transport elasticities to the generalised
cost (approximately -0.4, (Paulley et al., 2006)) and the observed relative change in prices. With public
transport becoming approximately 25% to 46% more expensive then cars between 2010 and 2024 (see
figure 5.7, this implies a demand effect of around 10% to 18%. Regarding the value of time, the public
transport against car VoT ratio for commuting decreases from about 1.0 in RVMK3.1 to about 0.71 in
the KiM 2022 benchmarks (table 5.6; (Kouwenhoven et al., 2023)). If is assumed that time is roughly
half of generalised costs on an average trip, this 29% decrease in the weight of public transport time
savings equates to 15% less effective time weight. Taking the same price elasticity, this implies an ex-
tra 6% demand effect, bringing the overall attribution of the misalignment of behavioural and economic
parameters to approximately 20%.

Furthermore, the model over-allocated job growth to Schiedam, Vlaardingen en Maassluis (+5,000 fore-
casted versus -4,000 observed) and under-allocated to Rotterdam (+22,200 observed versus +14,227
forecasted), which weakened reverse-commuting flows and reduced westbound boardings. Using pub-
lished destination-employment elasticities for commuting of about 1.3 (Transport Scotland, 2015), and
applying them directionally to the observed reallocation of jobs (i.e., with a larger eastbound commute
share than westbound) yields an estimated corridor-level effect of 1% in absolute demand. Relative to
the total residual deviation, this equates to 5% attributable to socioeconomic inputs.

Additionally, e-bikes turned oud to compete directly with public transport for trips of 5 to 15 kilometres,
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which are common along the corridor, and where not represented in the original model. Using this
estimate, the implied replacement is around 2% of total PT demand (roughly a quarter of adults owning
an e-bike by 2024 (Huang et al., 2024)), with about a quarter to a third of e-bike trips drawn from public
transport and a significant proportion of corridor trips in the 5-15 km range (Sun et al., 2019)). Relative
to the total residual deviation, this corresponds to around 10% that can be attributed to unmodelled
e-bike competition. In this percentage, an overlap factor of 0.8 is taken into account, as some e-bike
shift is already explained by the other factors.

On the other hand, Hoek van Holland Strand significantly outperformed the forecast on an average
working day, with 760 eastbound boardings observed versus a forecast of 344 (+416, i.e. +121%). Set
against the corridor’s residual underperformance of 5,302 boardings, this surplus reduces the deficit
by 416/5,302, which is approximately 7.9%. As a cross-check, Strand accounts for around 5.4% of
corridor boardings (approximately 738 out of 13,690 on a monthly basis). Applying the 121% over-
performance to this proportion gives 5.4% x 121% = 6.5%. Taking this into account, a conservative
average attribution of 7% (range 6—8%) is used.

Taken together, the attributions suggest that approximately 60% of the residual deviation can be ex-
plained by differences in network representation (30%), misalignment of behavioural and economic
parameters (20%), socioeconomic inputs (5%) and unmodelled competition from e-bikes (10%). This
is partially counterbalanced by stronger leisure demand at Hoek van Holland Strand (-7%). The remain-
ing 40% represents as a combination of interaction effects and the inherent methodological limitations
of smart card data analysis, rather than a single missing cause.
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Figure 5.8: Waterfall graph showing attribution to the total residual forecast deviation.

Interaction effects occur when multiple factors reinforce each other (e.g., reduced service frequencies
combined with increased generalised costs and e-bike adoption), resulting in a combined impact that is
greater than the sum of the individual effects, which cannot be cleanly split (Koppelman & Bhat, 2006).
Ramp-up effects also play a role: ridership usually increases gradually in the first years after opening
(and after the beach extension in 2023), as passengers familiarise themselves with the service, feeder
links become established, and timetables stabilise (Shinn & Voulgaris, 2019). Therefore, early counts
tend to understate the eventual steady-state level. Further explanations could be seasonality and
weather not being captured by working-day averages, temporary timetable changes and disruptions,
and endogeneity, whereby service levels respond to observed demand, resulting in reductions that then
lead to further declines in demand (Rahman et al., 2019).

These do not only apply to the Hoekse Lijn. The next chapter will continue to translate these findings
into broader recommendations with the ultimate goal to reduce the unexplained gap in future projects
by minimising untested interactions and improving the evidence base used to calibrate and evaluate
models.



Implications and recommendations

The Hoekse Lijn case study revealed four systematic deviations that demonstrate structural limitations
in current modelling approaches rather that isolated forecasting errors. These deviations were spa-
tial asymmetry in forecast errors, consistent direcitonal bias overestimating westbound travel, system-
atic trip purpose misalignment that overestimated commuter demand while underestimating leisure
demand, and fundamental underestimation of trip length distributions. These patterns highlight the
broader challenges that are faced in transport planning influenced by technological advancement such
as e-bike adoption, change working patterns including remote or hybrid working, and external shocks
such as the COVID-19 pandemic.

In this chapter, the case-specific insights from the Hoekse Lijn evaluation are translated into actionable
strategies for planners and policymakers to improve the reliability and robustness of future transport
demand forecasting practices.

6.1. Implications for practice

The case study provides a broader insight into the challenges of transport demand forecasting and
highlights several implications for forecasting practice. The first important lesson is that the outputs of
forecasts are inherently uncertain and biased as even well-established models can deviate significantly
form real-world outcomes, as demonstrated by the the case study’s findings of systematic overestima-
tion of commuter demand and underestimation of leisure travel. These discrepancies are not just ran-
dom fluctuations, but reveal systematic biases, often leading towards optimistic future ridership figures.
This reinforces the established observation that inaccurate forecasts can have serious consequences
for infrastructure investment and policy decisions (Flyvbjerg et al., 2005). In other words, forecasts
should be used to indicate direction and scale, and support comparisons between alternatives and
they should not be interpreted as guaranteed outcomes or precise targets.

Another implication for those working with transport models is the need to critically examine the scope
of the model and its assumptions. As traditional transport models tend to focus on regular commuting
patterns, irregular travel demand may be poorly represented (Fulman et al., 2023). The findings from
the Hoekse Lijn case study illustrate this issue as recreational trips were affected by factors such as
the weather in ways that the model failed to predicts, resulting in peaks in demand that were far beyond
what was projected. Broadly speaking, the treatment of occasional leisure travel as an additional static
component outside of the core model is inadequate, as prior work shows that models tend to prioritise
commuting and underrepresent leisure or induced demand (Flyvbjerg et al., 2005). This pattern was
also evident in the case study, highlighting a broader limitation in current forecasting practice: the
assumption of stable, homogeneous travel behaviour while in reality different types of trips behave
fundamentally differently. Commuter travel follows predictable patterns while leisure trips are highly
dependent on weather, events or seasonal factors. When models treat everything the same using
average conditions without considering these extremes, they will systematically fail to predict certain
types of demand. Effective forecasting needs to be flexible enough to handle both the steady flow of
daily commuters as well as the unpredictable surges of recreational travellers.

The case study also shows how external factors can completely disrupt carefully planned forecasts.
Demand forecasts typically assume that historical patterns and current data can accurately predict
future usage. However, sudden societal changes and unexpected events often happen outside what
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models can capture. The COVID-19 pandemic perfectly illustrates this as it caused massive shifts in
how people travel that no traditional model could have predicted. Beyond pandemics, policy changes,
economic fluctuations and climate events can also create significant discrepancies between forecasts
and actual outcomes. This means that there is a need for forecasting approaches that are more resilient
and flexible. Rather than treating forecasts as fixed predictions, transport planners and policymakers
should incorporate scenario-based analysis and sensitivity testing to consider different possible future
scenarios, as earlier studies already suggested (Bojada, 2014; Tempert et al., 2010).

Finally, the Hoekse Lijn case study has demonstrated the value of systematic evaluation and data-
driven feedback for enhancing transport forecast accuracy. Smart card data enabled detailed compar-
isons to be made between predicted and observed ridership patterns that revealed systematic biases
that would otherwise remain undetected. The absence of standardised evaluation frameworks is a
critical gap that allows forecasting errors to persist and prevents institutional learning, as otherwise
model assumptions could be refines continuously as planners learn which predictions were accurate
and which were not. Regular evaluations should become standard practice in order to refine model
assumptions based on empirical outcomes. Integrating automated data sources with standardised
evaluation frameworks is necessary in order to develop more robust forecasting methodologies that
reflect the complexity of modern multimodal systems and support better informed decision-making.

6.2. Actionable recommendations

The detailed analysis of forecast deviations and model input shows that improving the accuracy of
multimodal transport forecasting requires changes across multiple interconnected dimensions. Rather
than addressing individual model components in isolation, the evidence from the Hoekse Lijn case
study shows that forecast inaccuracies stem from multiple, reinforcing sources that must be addressed
systematically. This section presents strategies for forecast improvement that build directly on the
findings presented in the case study.

Systematic ex-post validation

While a growing number of studies have begun to explore the ex-post evaluation of transport forecasts,
these analyses remain relatively scarce and are often limited in scope (Brands et al., 2020; Hussain
et al.,, 2021). The evaluation of ridership for the Hoekse Lijn showed that eight out of ten stations
underperformed the forecast with significant differences and clear directional biases. These findings
highlight the importance of routine ex-post evaluations in identifying structural issues in forecasting that
would otherwise remain hidden.

International experience demonstrates the value of systematic evaluation frameworks. The Post Open-
ing Project Evaluation (POPE) in the United Kingdom and Norway’s post-opening evaluations provide
include systematic transport demand validation as a core component of their transport project evalua-
tion schemes (Jong et al., 2019). However, there is still significant variation in the quality, consistency
and scope of these systems within individual countries. This lack of standardisation limits the compara-
bility of findings, reducing the potential for shared learning and continuous improvement in forecasting
practices (Nicolaisen & Driscoll, 2016).

Strategic approach:

* What: Implement standardised, continuous ex-post evaluation as a routine practice in transport
planning, rather than relying on one-time evaluations.

* How: Use automated and continuing data sources (e.g. smart card data, automated passen-
ger counts) to continuously compare forecasted demand with actual ridership. This creates a
standardised feedback loop in which discrepancies are regularly identified and used to improve
forecast models, with the goal to go beyond traditional one-time evaluations.

* Who: Transport authorities should implement and oversee these evaluation programs. They
can collaborate with transit operators (for data provision) and research institutions to analyse
the results. Additionally, the government must play a strong role to ensure data availability by
establishing a mandatory database that openly accessible to those who need it. This would force
transit operators to share ridership and operational data, which they might otherwise withhold due
to concerns about competition.
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Adaptive parameter calibration

The evaluation of the model’s input parameters revealed that outdated behavioural assumptions had led
to a systematic overestimation of demand forecasts for the Hoekse Lijn. More recent research shows
that travellers now prioritise time savings differently across modes and for different trip purposes than
was assumed in the original model. Additionally, the distance cost factors did not reflect the shift in
relative travel costs, particularly the disproportionate increase in public transport fares compared to car
travel. This further distorted the projections for mode choice.

Strategic approach:

* What: Develop adaptive parameter management systems that regularly update behavioural and
economic parameters using current data and evolving travel patterns, ensuring that the model’s
assumptions remain aligned with reality.

* How: Set up a schedule for periodically recalibrating important parameters, such as value of
time, fare elasticity, mode-specific constants and transfer penalties. This should be done using
up-to-date data sources, such as recent smart card travel data, travel survey results and macro-
economic indicators (e.g., fuel prices, transit fares and inflation rates). By continuously integrating
real-world data into the model, planners can adjust the parameters to reflect changing traveller
preferences and economic conditions.

* Who: The organisations that are responsible for transport models (e.g., transport authorities,
transport operators, consultancy firms) should be leading the adaptive calibration. Model devel-
opers and analysts must collaborate closely with providers of data, such as transport agencies
and operators, to gather up-to-date data.

Scenario based uncertainty management

The permanent reduction in public transport demand caused by the pandemic is the type of structural
change that traditional forecasting methods, which rely on fixed assumptions, cannot anticipate. Other
external factors, including the adoption of e-bikes and policy changes, also fundamentally altered the
competitiveness of different modes of transport after the original forecasts were done.

Decision Making under Deep Uncertainty (DMDU) approaches have emerged as a response to such
challenges. Rather than relying on a few sensitivity tests of individual parameters, DMDU frameworks
assess policies across a wide range of plausible future scenarios by systematically varying key input
parameters within defined ranges. This allows planners to identify robust strategies that can withstand
different assumptions about future conditions (Engholm & Kristoffersson, 2024).

As also noted in the literature review, several academics and practitioners advocate the use of band-
widths and scenario-based forecasting rather than single-point estimates, with emphasis on providing
realistic ranges of high and low demand to account for uncertainty in future developments (Bojada,
2014; Tempert et al., 2010).

Strategic approach:

» What: Adopt scenario-based forecasting methodologies that systematically explore future condi-
tions and provide probability-based outcome ranges for demand indicators.

* How: Integrate scenario analysis and DMDU techniques into forecasting processes. In practice,
this involves defining a range of potential future conditions, such as scenarios with higher or
lower economic growth, different rates of remote working adoption, technological changes like
increased e-bike usage and policy shifts in pricing or regulation. For each scenario, the model
outcomes should be communicated as bandwidths or confidence intervals for key indicators (such
as ridership, revenue or modal share) rather than as a single number.

* Who: Transport planning agencies and policymakers should require scenario-based uncertainty
analysis as part of model forecasting (and project evaluation). This process needs to be carried
out by analysts and modelling teams, who may require support from experts in scenario planning
or academic researchers familiar with DMDU methodologies. In the end, organisations that use
forecasts, such as governments and transport authorities, need to accept uncertainty. Rather
than expecting one exact prediction, they should get used to working with forecast ranges and
base their decisions on different possible outcomes.
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Integrated network planning

The exploration of transport network assumptions in the model identified substantial forecast deviations
at eastern Hoekse Lijn stations resulting from unrealistic service assumptions, including terminated
Metro Line A service and scaled-back feeder bus networks. These network representation errors
demonstrated how forecasting models failed to anticipate the systemic effects of new infrastructure
on existing transport networks and the vulnerability of service assumptions to policy and budgetary
changes.

Strategic approach:

» What: Adopt integrated network planning whenever new transport infrastructure is introduced.
This means planning the new line or service alongside the existing network rather than treating
it as an isolated addition, with the aim to ensure that the broader network’s effects and opera-
tional realities are considered. This includes anticipating different service scenarios, for instance,
planning not just for a best-case high-frequency service, but also for more constrained scenarios
where budget or policy might limit the service level.

* How: Systematically evaluate and adjust the surrounding network as part of the network planning
process, incorporating scenario planning into the forecasts. In practice, this involves coordinating
service plans. For example, when a new metro or rail line is introduced, determine how it will affect
other routes (e.g. metro lines and bus lines) and plan for those changes in advance. Furthermore,
the financial sustainability of assumed service levels under varying policy scenarios should also
be tested. Ultimately, iterate between infrastructure design, service scheduling and budget con-
straints to ensure that the modelled accessibility (frequency, coverage and connectivity) matches
what can actually be delivered.

* Who: Planning authorities and transport agencies should coordinate operators, municipalities,
and consultants, setting and enforcing integrated, cross-modal planning requirements. Consul-
tants and modellers embed network-wide effects and scenario-based service assumptions in fore-
casts, working with operators and authorities to test long-term affordability so proposed frequen-
cies and coverage remain sustainable under varying budget scenarios.

6.3. Implementation considerations

Implementing the four strategies does not only require technical adjustments, but also institutional and
governance changes. Firstly, these practices must be made routine rather than optional through clear
mandates. Transport authorities should incorporate ex-post validation into funding agreements and
project lifecycles, similar to the UK’s Post Opening Project Evaluation (POPE), which requires system-
atic reviews one and five years after opening (Jong et al., 2019). This would ensure that standardised
forecast evaluations become a condition of investment, with transparent reporting of results to project
funders and policymakers, transforming forecasting practices from a one-off deliverable into the begin-
ning of an institutional learning cycle.

Secondly, adaptive parameter calibration and integrated network planning are highly dependent on data
sharing and collaboration. Ideally, a government-led data bank should provide open aggregate figures
and controlled access to anonymised smart-card data to support this. Transport operators, (regional)
authorities and planning agencies should agree on clear data-sharing rules, including common formats,
timeliness and privacy guidelines, as well as who is responsible for managing the data. For each major
project, a small, temporary working group should be set up existing of parties like the project owner,
relevant transport operators and regional authorities. This group should agree on service scenarios to
be modelled, as well as confirming the matching budget and policy commitments, before the forecast
finalised. This keeps the process manageable and helps prevent unrealistic service assumptions from
being included in the assessment.

Finally, there must be a shift in organisational culture, moving from a "predict-and-forget” approach to
a "predict-and-learn” one. Leadership should encourage open discussion of forecast errors to improve
their credibility, rather than assigning blame. Clear lines of communication and defined roles are es-
sential, for example, designating who triggers ex-post evaluations, who oversees parameter updates,
and who ensures coordination across stakeholders. Without these foundations, even well-designed
strategies will fail to be embedded in everyday practice.



Conclusion and discussion

7.1. Conclusion

The aim of this research was to improve multimodal transport demand forecasts through an ex-post
analysis of the Hoekse Lijn train to metro conversion project, using OV-chipkaart smart card data as
the primary empirical basis. By systematically comparing ridership forecasts from 2015 with observed
passenger flows from 2020 to 2025, this study sought to identify systematic biases in transport models
and distinguish between model limitations and external influences, with the ultimate aim to propose
improvement for future forecasting practices.

In this conclusion, the research questions that structured this study will be addressed. Each sub-
question will be answered in turn, followed by an integrated synthesis that answers the main research
question.

How can OV-chipkaart smart card data be used to evaluate the transport demand for the Hoekse
Lijn, and what are its limitations?

The primary advantage of smart card data over traditional data collection methods is the enabling of
large-scale, continuous data collection (Lee et al., 2014). Unlike manual passenger counts or survey
data, which only provide snapshots of demand, the provided OV-chipkaart data for this research offered
daily boarding figures from 2020 to 2025, revealing temporal patterns that would be far more strenuous
to detect using conventional approaches, such as peak versus off-peak usage, seasonal variations
and irregular patterns such as beach travel. When the aggregated data lacked certain indicators, di-
rectional ratios from the OV-Lite model enabled reconstruction of complete trip patterns, load profiles,
and passenger kilometres for direct comparison with original forecasts.

In addition, standardising and making evaluations comparable builds accountability and helps counter-
act overly optimistic forecasts. As demonstrated in (Flyvbjerg et al., 2005), systematic overestimation
frequently results from optimism bias or strategic behaviour. Publishing comparable ex-post results for
each project and indicator increases the cost of unrealistic assumptions from the beginning and encour-
ages the provision of more balanced inputs and explicit uncertainty ranges. In settings without such
a system in place (including the Netherlands), the national government should make a standardised
evaluation framework a condition of funding to ensure that lessons are learned and to actively counter
optimism bias.

However, significant limitations emerged that must be considered in future applications. Missed check-
outs, barcode tickets, and OVpay adoption introduced systematic undercounting, with monthly correc-
tion factors underestimating ridership by up to 18% on leisure-heavy days. Additionally, the absence
of behavioural attributes and potential representation biases limit the explanatory power of smart card
data. Without trip-purpose or socio-demographic information, travel motivations and user profiles must
be inferred indirectly, restricting insight into why forecast discrepancies occur (Liu et al., 2018). Fur-
thermore, smart card data often under-represents certain user groups, such as tourists and occasional
riders, who use different payment methods, such as paper tickets or bank cards (Mahajan et al., 2022).

In summary, when properly processed, smart card data provides a robust, low cost foundation of ex-
post demand validation. The Hoekse Lijn case demonstrates how the systematic processing of tempo-
ral data can deliver valuable insights into demand patterns that would otherwise be difficult to obtain.
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However, incomplete transactions, payment heterogeneity and the absence of behavioural attributes
must be considered when interpreting the results. Therefore, to maximise the analytical value, smart
card data should be combined with other sources of information to provide context on trip purpose and
traveller motivations, providing a more complete and reliable evaluation of transport demand.

How does the actual transport demand on the Hoekse Lijn compare to the forecasted values from
2011 and 2015, and what systematic deviations can be identified?

The Hoekse Lijn conversion was designed to achieve several strategic objectives that formed the ba-
sis for the transport demand projections. The 2015 forecasts estimated a 52% increase in average
boardings on the section of the line between Schiedam Nieuwland and Hoek van Holland Strand, and
a 28% increase in total passenger kilometres compared to the scenario where the existing rail service
was continued. The project also aimed to optimise the utilisation of the line throughout the day and in
both directions, addressing the strong imbalance between peak and off-peak travel that characterised
the former rail service. Additionally, the extension to Hoek van Holland Strand was expected to reduce
the total travel time from the centre of Rotterdam by 26%, thereby increasing beach visitors arriving by
public transport with 10-20% (Gemeente Rotterdam, 2015; Goudappel Coffeng, 2015). These strategic
objectives provided clear performance indicators against which the accuracy of the forecasts could be
evaluated, particularly regarding ridership growth, improvements in temporal distribution, and enhance-
ment of recreational travel.

The comparison revealed substantial systematic deviations from the 2015 forecasts. Eight of ten sta-
tions experienced underperformance ranging from -9% to -40% for total weekday boardings relative
to COVID-corrected projections, with the largest errors concentrated at the four easternmost stations.
Westbound boardings fell more than 50% below forecasted levels at most stations, while exceptions
included Maassluis Steendijkpolder (+2%) and Hoek van Holland Strand (+121%). These percentage
deviations should be considered alongside absolute flows. Low forecast base figures, especially in
westbound direction, can result in significant percentage errors from modest absolute differences. For
operational purposes, the absolute gaps are the most important factor.

Despite lower station-level boardings, total passenger kilometres exceeded forecasts by 18% due to
longer trip lengths and unexpected recreational travel patterns. Beach-related travel generated up to
27 times normal boardings on peak days, demonstrating the project’'s success in enhancing leisure
accessibility.

These findings highlight the mixed performance of the Hoekse Lijn against its strategic objectives. While
the target of 52% ridership increase was not achieved at most stations, the project far exceeded its goals
for beach accessibility and total passenger kilometres as a result of strong long-distance, recreational
travel. Furthermore, the analysis revealed four systematic deviations in the forecasts:

» Spatial asymmetry: Easternmost stations showed the largest absolute errors in number of board-
ings.

* Directional bias: Westbound boardings were consistently overestimated across nearly all sta-
tions.

* Trip purpose misalignment: Commuter demand being overestimated and leisure travel being
underestimated.

 Trip length distribution change: Average trip length were fundamentally underestimated, with a
higher proportion of longer-distance trips and integration into the bigger Rotterdam metro network
attracting travellers from outside the corridor.

So while the project achieved mixed succes against its strategic objectives, the forecast deviations
demonstrated the systematic limitations in capturing the full complexity of demand patterns on the
Hoekse Lijn, particularly in the balance between regular commuter flows and irregular recreational
travel.

To what extent do discrepancies between forecasted and observed demand stem from biases or
structural limitations within the transport models?

Using a systematic analysis of the model inputs, it was revealed that the majority of the forecast devia-
tions is due to structural model errors, particularly unrealistic service supply and outdated behavioural
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and economic parameters, rather than random noise. Four categories of structural limitations that
distorted the forecast outcomes for the Hoekse Lijn in particular have been identified.

The first limitation was inaccurate service assumptions: the model included high service frequencies
for Metro Line A that were never realised, resulting in inflated demand forecasts for stations in the east
of the city. The second limitation was that the behavioural and cost parameters were outdated, such
as the value of time and fare sensitivity. These no longer aligned with current user preferences or the
shift in relative transport costs. Thirdly, errors in the network representation arose from the model’s
assumption of an extensive feeder bus network, despite this having already been scaled back by 2019,
which reduced actual accessibility. Finally, socioeconomic inaccuracies affected spatial and directional
demand estimates: the model overestimated job growth in Schiedam, Vlaardingen and Maassluis while
underestimating employment concentration in Rotterdam.

These structural limitations in the model input show that the forecast discrepancies did not arise from
random variation or minor calibration errors, but from a fundamental misalignment between the model’s
assumptions and the actual conditions. Together, these factors help explain why deviations were not
isolated or incidental, but mostly consistent across stations, directions and demand indicators.

What external factors, such as socioeconomic developments, policy changes, and the COVID-19
pandemic, contributed to deviations between forecasted and actual transport demand?

While structural model limitations explain a large part of the forecast deviations on the Hoekse Lijn,
several external factors that emerged after 2015 have also contributed significantly to the discrepancy
between the predicted and observed demand. These factors have altered travel behaviour and the
competitiveness of public transport in unforeseen ways.

Key external influences included the lasting behavioural shifts caused by the pandemic, such as in-
creased homeworking and reduced commuting, as well as a broader move towards private transport.
The adoption of e-bikes further disrupted traditional travel choices by competing directly with metro
services for medium-distance trips, which are typical of the Hoekse Lijn corridor. Meanwhile, pub-
lic transport fares increased considerably more than fuel prices, reducing competitiveness, even as
Rotterdam introduced stricter parking policies. Spatial developments also diverged from the model’s
assumptions: population and employment growth was concentrated in Rotterdam rather than in the sur-
rounding municipalities, which weakened the expected reverse commuting flows. On the other hand,
the 2023 extension of the line to Hoek van Holland Strand generated beach-related demand that far
exceeded expectations, with peak boardings reaching 27 times the weekday average.

These external factors did not operate in isolation, but rather reinforced each other to create a cumu-
lative effect that amplified their impact on demand for public transport. The shift to remote working
during the pandemic significantly reduced commuter travel. At the same time, the pandemic changed
people’s mode preferences, switching from public transport to private modes of transportation (Gkiot-
salitis & Cats, 2021). This decline in ridership happened at the same time as a rapid rise in e-bike
usage, as these offered a convenient and affordable alternative at a time when public transport fares
were rising. Although parking rates in central Rotterdam also rose during this period, potentially making
public transport more attractive, the combined effect of higher ticket prices and the growing appeal of
e-bikes meant that public transport usage did not increase substantially.

These exogenous shocks altered mode preferences and travel volumes in ways that the original 2015
forecasts could not have anticipated. The success of the beach extension partially compensated for
losses caused by the pandemic, but it also created new seasonal volatility that challenged traditional
demand modelling approaches. Together, these external factors demonstrate how vulnerable long-term
transport forecasts are to unforeseen technological, policy and societal disruptions that can reshape
travel behaviour within a short timeframe.

How can multimodal transport models be improved to enhance the accuracy of future public
transport demand forecasts?

To improve multimodal transport forecasting, four strategies were proposed to address the fundamental
limitations identified in the Hoekse Lijn case study.

+ Systematic ex-post validation: Establish standardised continuous ex-post validation schemes
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using using automated data sources, such as smart card data, to create feedback loops between
forecasting practice and observed outcomes, going beyond traditional one-time evaluations.

+ Adaptive parameter calibration: Implement adaptive parameter management that regularly up-
dates behavioural and economic parameters using real-time data sources, addressing the sys-
tematic overestimations that caused by outdated assumptions in the model.

» Scenario-based uncertainty management: Adopt scenario-based forecasting methodologies
that systematically explore uncertainty across major assumptions, providing probability-based
outcome ranges rather than single-point estimates that are more vulnerable to external disruptions
like COVID-19.

* Integrated network planning: Implement network planning that evaluates how new infrastruc-
ture could reshape existing service networks and assesses financial sustainability of service as-
sumptions.

The Hoekse Lijn case study shows that improving forecast accuracy means addressing multiple inter-
connected dimensions at the same time, rather than looking at individual model components separately.
The systematic nature of the identified deviations highlights significant opportunities to enhance current
forecasting practices and better capture the complexity of modern multimodal transport systems.

However, implementing these strategies requires fundamental institutional and governance changes,
rather than just technical adjustments. Most critically, these must be a shift in organisational culture,
moving from a "predict-and-forget” approach to a "predict-and-learn” methodology. Ex-post evaluations
should be mandated and published as part of funding conditions to turn forecasting in a continuous cycle
of planning, evaluation and improvement, which also helps to mitigate the effects of optimism bias.

Data management infrastructure is essential for this transformation. Ideally, a government-led database
would provide open, aggregated indicators and controlled access to anonymised smart card data to sup-
port routine validation. Transport operators, regional authorities, and planning agencies must agree on
clear data-sharing protocols, including common formats, timeliness requirements, and privacy guide-
lines. For each major project, temporary working groups comprising project owners, relevant transport
operators and regional authorities should agree on service scenarios and confirm matching budgets
before forecasts are finalised.

Leadership must encourage transparent discussion of forecast errors to improve institutional credibility,
rather than assigning blame. Clear roles must be defined regarding who initiates evaluations, who
updates parameters and who coordinates across agencies. Without these institutional foundations,
even well-designed technical strategies will fail to become embedded in everyday practice.

Transport planners can develop more robust forecasting frameworks that account for uncertainty, ex-
ternal disruptions and evolving travel behaviour by implementing these four strategies in combination
with the necessary institutional changes. Ultimately, this supports more informed infrastructure invest-
ment decisions, more effective transport planning and a more mature, accountable transport planning
discipline, where forecasting accuracy is continuously monitored, systematic biases are transparently
identified and lessons learned are incorporated into future practice.

7.2. Discussion

Although transport demand forecasting is a critical component of evidence-based infrastructure plan-
ning, systematic post-implementation evaluation is surprisingly scarce in the academic literature (Fly-
vbjerg et al., 2005; Tempert et al., 2010). This discussion examines the empirical findings from the
Hoekse Lijn case study within the broader theoretical framework of ex-post transport evaluation.

7.2.1. Limitations

Although this research was supported by an extensive dataset, several data-related constraints limited
the depth of the analysis and the conclusion that could be drawn. The primary limitation stemmed from
the smart card dataset provided by RET being aggregated, only containing boarding information at daily
and hourly levels per station rather than the disaggregated passenger-level check-in and check-out
transactions that were originally anticipated. This aggregation required adaptions to the methodology
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that was used, such as the development of a proportional scaling technique using the OV-Lite model
outputs to reconstruct directional flows, occupancy profiles and passenger kilometre estimates.

The absence of the alighting data posed a challenge as it prevents the direct measurement of origin-
destination flows, trip length distributions, and network-level movement patterns. While the proportional
reconstruction method proved statistically robust, it did introduce model-dependent assumptions into
the empirical validation process. This circular dependency, whereby model outputs are used to validate
the model itself, poses a fundamental challenge to the credibility of transport forecasting evaluations.

Limitations concerning data coverage further constrained the robustness of the findings. The exclusion
of barcode tickets and fare evasion resulted in a systematic undercount, with unknown temporal and
spatial variation. Most notably, the underestimation of 18% on leisure-heavy days demonstrated how
heterogeneity in payment methods can distort demand validation, particularly for travel patterns that
are irregular and deviate from traditional commuter flows. This finding suggest that conventional smart
card datasets may systematically under-represent precisely those user segments whose behavioural
responses most challenge traditional forecasting assumptions, namely tourists and occasional trav-
ellers (Fulman et al., 2023).

The complete absence of socio-demographic attributes and trip purpose information related to the
trips made by smart card users in the dataset is another significant analytical limitation. This caused
this research to only validate behaviour without giving precise explanations on why it occurred. This
prevented a more in-depth analysis of how different passenger groups responded to infrastructure
changes, economic conditions and other external disruptions.

7.2.2. Contributions to transport research

This research contributes to the growing academic literature on the structural impacts of the COVID-19
pandemic on transport system, building directly on the foundational review of pandemic adaptiations in
public transport planning by Gkiotsalitis and Cats (2021). Expanding on general ridership declines that
were researched by (KiM, 2023), the analysis of Hoekse Lijn demand reveals how the effects of the
pandemic unfold differently across different station types, trip directions and temporal patterns within a
single corridor. The application of -12% correction factor for structural effects of the pandemic, derived
from the KiM study, enabled systematic separation of pandemic-induced behavioural changes from
endogenous model errors

These findings demonstrate that the impacts of the pandemic goes beyond a simple reduction in de-
mand and also involve fundamental changes in travel distribution patterns. The continued recreational
demand for Hoek van Holland Strand, despite a decline in commuter demand, illustrated how leisure
travel has shown greater resilience than work-related travel patterns. This finding challenges conven-
tional assumptions about trip purpose hierarchies in crisis conditions that (Gkiotsalitis & Cats, 2021)
noted required empirical validation. Furthermore, the shift towards private and active modes during
the pandemic, coupled with parallel disruptions such as the increase in transit fares, has amplified fore-
casting deviations. This underscores the necessity of models to account for the cumulative impact of
these disruptions rather than treating them in isolation.

The extreme temporal variability that was observed at Hoek van Holland Strand, where beach ridership
on peak days was 27 times the amount of average weekday levels, contributes to the documentation
of weather-dependent recreational demand dynamics. This builds upon the research on weather ef-
fects on Dutch transport demand that was conducted by Sabir (2010). While this research already
demonstrated that recreational trips are more sensitive to weather changes than commuting and busi-
ness trips, the Hoekse Lijn analysis provides further evidence of the scale of these fluctuations and
their implications for the entire corridor. Most significantly, the research suggests that current transport
forecasting methodologies may inadequately capture recreational demand patterns. Even though the
2015 forecasts treated beach travel separately and estimated it using historical patterns rather than
integrated behavioural modelling, the still underestimated the magnitude and temporal concentration
of weather-dependent recreational demand.

This study also adds to the limited methodological literature on systematic forecast validation by demon-
stration how automated data sources can support comprehensive ex-post analysis, building directly on
the works of Brands et al. (2020) and Dixit et al. (2024) in smart card-based ex-post evaluation. While
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Brands et al. (2020) demonstrated the value of smart card data for evaluating the Noord/Zuidlijn intro-
duction and Dixit et al. (2024) validated multimodal route choice models using automated data sources,
the Hoekse Lijn study extends their methodological frameworks by developing a cluster-based accu-
racy assessment approach that provides a replicable method for identifying systematic biases across
different station typologies.

7.2.3. Recommendations for future research

Based on the findings and limitations of this research, several directions for future research emerged
that would advance both the theoretical understanding and practical application of transport forecast
validations.

First, the extreme weather-dependent variability observed at Hoek van Holland Strand, where peak
beach days generated 27 times normal weekday boardings, reveals a critical gap in current forecast-
ing methodologies. Future research should focus on developing advanced modelling approaches for
irregular recreational demand, taking into account weather variability, seasonal patterns and the tem-
poral concentration of leisure travel. This should include the development of probabilistic forecasting
models that incorporate meteorological forecasts and climate projections, as well as an understanding
of how recreational demand interacts with regular commuting patterns throughout transport networks.
Treating beach travel as a static add-on outside multimodal models has proved to be an inadequate
way of capturing the magnitude and operational implications of weather-sensitive demand.

Furthermore, future research should move beyond applying a flat correction factor to account for the
long-term impacts of societal disruptions like COVID-19, as the findings in this study reveal that such
events have far more complex and differentiated effects on travel behaviour. Instead, research should
focus on understanding how pandemic-induced changes, such as remote and hybrid work, evolving
preferences for private and active transport modes, and heightened sensitivity to crowding, work differ-
ently across trip purposes, locations and user groups. This calls for the development of methodologies
that can distinguish between temporary and permanent behavioural shifts, as well as the creation of
dynamic forecasting frameworks capable of anticipating and adapting to a range of hypothetical shock
scenarios.

The primary limitation encountered in this research was the reliance on aggregated smart card data.
This meant that reconstruction techniques had to be developed using external model outputs, creating a
circular dependency whereby the model outputs were used to validate the model itself. Future research
should not only focus on obtaining disaggregate passenger-level data, but should additionally try to
find techniques, such as machine learning approaches, that can automatically infer trip purposes from
individual travel patterns, possibly strengthening it with supplementary data, such as travel survey
data, mobile phone location data and land-use information. This would allow to capture the complete
multimodal journey patterns significantly more accurately.
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Appendix A: Overview of beach days

Table A.1: Top beach days in 2024 (= 30°C)

Date Max. temperature (°C) Day type
12-08-2024 33.1 Weekday
01-09-2024 30.5 Weekend

Table A.2: Busy beach days in 2024 (25-30°C)

Date Max. temperature (°C) Day type
12-05-2024 26.6 Weekend
14-05-2024 27.0 Weekday
26-06-2024 25.6 Weekday
27-06-2024 26.6 Weekday
09-07-2024 25.9 Weekday
15-07-2024 251 Weekday
19-07-2024 29.7 Weekday
20-07-2024 299 Weekend
29-07-2024 27.6 Weekday
30-07-2024 25.7 Weekday
31-07-2024 251 Weekday
06-08-2024  27.0 Weekday
11-08-2024 26.4 Weekend
13-08-2024 255 Weekday
24-08-2024 250 Weekend
27-08-2024 253 Weekday
28-08-2024 29.9 Weekday
02-09-2024 27.5 Weekday
05-09-2024 29.2 Weekday
06-09-2024 25.3 Weekday
07-09-2024 26.7 Weekend
21-09-2024  25.1 Weekend
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Table A.3: Moderate beach days in 2024 (20-25°C)

Date Max. temperature (°C)  Day type
06-04-2024  23.0 Weekend
13-04-2024  20.7 Weekend
30-04-2024 213 Weekday
02-05-2024  22.3 Weekday
06-05-2024  20.2 Weekday
11-05-2024  22.7 Weekend
13-05-2024 214 Weekday
21-05-2024 21.8 Weekday
26-05-2024 21.0 Weekend
04-06-2024 221 Weekday
23-06-2024 21.7 Weekend
24-06-2024  20.8 Weekday
25-06-2024  24.9 Weekday
29-06-2024 215 Weekend
30-06-2024  20.0 Weekend
08-07-2024  20.5 Weekday
10-07-2024 21.2 Weekday
11-07-2024  20.0 Weekday
14-07-2024  20.5 Weekend
17-07-2024 20.4 Weekday
18-07-2024 245 Weekday
21-07-2024 215 Weekend
22-07-2024 219 Weekday
23-07-2024  20.8 Weekday
24-07-2024  20.0 Weekday
25-07-2024 22.3 Weekday
26-07-2024  21.3 Weekday
27-07-2024  22.2 Weekend
28-07-2024 215 Weekend
01-08-2024 229 Weekday
02-08-2024  24.8 Weekday
03-08-2024  23.7 Weekend
04-08-2024  21.2 Weekend
05-08-2024 234 Weekday
07-08-2024  23.2 Weekday
08-08-2024  24.5 Weekday
09-08-2024  23.9 Weekday
10-08-2024 24.0 Weekend
14-08-2024 241 Weekday
15-08-2024 242 Weekday
16-08-2024 229 Weekday
17-08-2024 244 Weekend
18-08-2024 221 Weekend
19-08-2024 243 Weekday
20-08-2024 226 Weekday
21-08-2024  20.0 Weekday
22-08-2024 225 Weekday
23-08-2024 22.7 Weekday
25-08-2024 204 Weekend
26-08-2024  21.6 Weekday
29-08-2024 22.3 Weekday
30-08-2024 225 Weekday
31-08-2024  23.8 Weekend
03-09-2024 221 Weekday
04-09-2024  22.0 Weekday
08-09-2024  22.2 Weekend
09-09-2024  20.9 Weekday
16-09-2024  20.0 Weekday
17-09-2024 213 Weekday
18-09-2024 234 Weekday
19-09-2024  23.8 Weekday
20-09-2024  23.7 Weekday
22-09-2024 229 Weekend
23-09-2024 214 Weekday
16-10-2024 211 Weekday
26-10-2024  20.8 Weekend




Appendix B: Transcripts of expert
consultation

Interview 1: Jeroen Henstra

Date: June 18, 2025

Position: Operations and Planning, Rotterdam Public Transport (RET)
Format: Semi-structured interview (conversational format)

Q1:

Q2:

Q3:

Q4:

What is your general impression of the deviations between forecasts and realized demand
(boardings, occupancy, passenger kilometres)? What patterns do you notice?

Jeroen acknowledges that occupancy and boardings per station in practice can deviate from the
model, something that is also known from previous studies. Notably, Hoek van Holland Strand
performs better than predicted on average (higher occupancy), especially due to peak days in
summer. At the same time, the total number of boardings at many stations is lower than in the
forecast, with the exception of specific cases. The longer average travel distance appears to be
partly explained by beach travelers who travel the entire line.

Short trips (local traffic) have declined more strongly post-COVID than longer trips, but this plays
less of a role on the Hoekse Lijn than in urban areas.

How do you assess the role of model inputs and assumptions (e.g., Metro A daily service,
bus network changes, behavioral parameters) in these deviations?

» The excessive modeling of line A service during off-peak hours (5 instead of planned peak
frequency) has certainly influenced results, potentially explaining overly high forecasts dur-
ing off-peak hours and at western stations.

» The changes in bus supply (such as discontinued parallel lines) led to different passenger
flows than in the model, which included these lines.

» Overestimation of the evening peak direction toward Rotterdam likely results from overly
optimistic assumptions about commuting behavior from the west, whereas it is a more locally
oriented area in practice.

Which external influences (network changes, COVID, changing travel behavior) do you
see as the most important explanation for the found deviations?

+ COVID-19 is recognized as the dominant influence, structurally changing travel behavior
with fewer peak travelers and stronger recovery of recreational transport.

* The rise of the e-bike contributes to the decline in local public transport use.

» Operational changes (e.g., discontinuation of peak reinforcement on line A) and seasonal
influences (e.g., beach days) also impacted occupancy and passenger kilometres.

What lessons do you see for future modeling of such lines or comparable cases?

» Use more robust input and scenarios for service frequencies and network configuration, es-
pecially when plans are still flexible prior to commissioning.
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+ Improve modeling of post-COVID behavior, including altered peak structures and increased
recreational mobility.

 Explicitly include parallel network components (e.g., bus lines) that influence demand distri-
bution.

» Pay more attention to local factors (e.g., educational and hospital locations) in predicting
daily patterns and peak ratios.

» Monitor and recalibrate forecast models based on new empirical data as trends stabilize
post-COVID.

Interview 2: Adam Pel (TU Delft)

Date: June 19, 2025

Position: Academic Researcher in Transport Modelling, TU Delft
Format: Semi-structured interview (conversational format)

Q1:

Q2:

Q3:

Q4:

Q5:

Q6:

Q7:

How do you generally view the reliability of public transport passenger forecasts / multi-
modal transport models?

For new or strongly modified lines (like the Hoekse Lijn after COVID), it is relevant to examine
whether demand and supply equilibria have been established. Feedback loops (e.g., habituation,
chain behavior) affect the pace at which this happens.

Which factors, in your experience, usually cause predicted and actual passenger numbers
to differ?

In addition to network changes and policy assumptions, the rise of private alternatives (e.g., e-
bikes and micromobility) plays a major role—particularly for shorter trips.

To what extent do new transport models account for changes in passenger behavior in
recent years (post-COVID)?

It is not so much the value of time that has changed, but rather trip generation: simply fewer
work-related trips are made than before COVID. A relevant method is to determine what share of
original demand has structurally disappeared in the past six years.

Are trends such as working from home, the rise of new modalities (e-bike), or changing
preferences for public transport vs. car taken into account?

These trends—especially substitution by e-bike for short distances—are still only limitedly incorpo-
rated in models, despite their significant impact on metro networks with many suburban stations.

To what extent can the political/policy context at the time of the forecast influence the
forecast itself?

With prestige projects, forecasts are sometimes presented optimistically. Objectivity is preserved
through transparency of assumptions and use of sensitivity analysis.

It is sometimes suggested that for prestigious public transport projects, forecasts are
sometimes presented more optimistically to get them approved. Do you recognize this
mechanism?

See above—transparency and sensitivity analysis are key safeguards.

Where do you see the main opportunities to improve transport forecasts with current
knowledge and data?

» Use of dynamic, data-driven models that incorporate real-time data such as smart card trans-
actions.

 Improved modeling of latent demand.
+ Accounting for modal shifts toward emerging mobility forms.



Appendix C: Al acknowledgement

Artificial intelligence tools have been used to provide supplementary support for this thesis. The utilisa-
tion of ChatGPT was intended to enhance creativity, clarify concepts and improve the quality of written
language. Furthermore, Al was used for the assistance in programming and and creating visualisations

using Python. The analytical reasoning, methodological decisions and conclusions in this thesis are all
based on personal knowledge and critical judgment.
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