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Abstract
Within the framework of the European Union Horizon 2020 project HOMER (Holistic Optical Metrology for Aero-Elastic 
Research), data assimilation (DA) algorithms for dense flow field reconstructions developed by different research teams, 
hereafter referred to as the participants, were comparatively assessed. The assessment is performed using a synthetic database 
that reproduces the turbulent flow in the wake of a cylinder in ground effect, placed at the distance of one diameter from 
a lower wall. Downstream of the cylinder, this wall continues either in the form of a flat steady wall, or of a flexible panel 
undergoing periodic oscillations; these two situations correspond to two different test cases, the latter being introduced to 
extend the evaluation to fluid–structure interaction problems. The input data for the data assimilation algorithms were datasets 
containing the particle locations and their trajectories identification numbers, at increasing tracer concentrations from 0.04 
to 1.4 particles/mm3 (equivalent image density values between 0.005 and 0.16 particles per pixel, ppp). The outputs of the 
DA algorithms considered for the assessment were the three components of the velocity, the nine components of the velocity 
gradient tensor and the static pressure, defined in the flow field on a Cartesian grid, as well as the static pressure on the wall 
surface, and its position in the deformable wall case. The results were analysed in terms of errors of the output quantities 
with respect to the ground-truth values and their distributions. Additionally, the performances of the different DA algorithms 
were compared with that of a standard linear interpolation approach. The velocity errors were found in the range between 
3 and 11% of the bulk velocity; furthermore, the use of the DA algorithms enabled an increase of the measurement spatial 
resolution by a factor between 3 and 4. The errors of the velocity gradients were of the order of 10–15% of the peak vorticity 
magnitude. Accurate pressure reconstruction was achieved in the flow field, whereas the evaluation of the surface pressure 
revealed more challenging. As expected, lower errors were obtained for increasing seeding concentration. The difference of 
accuracy among the results of the different data assimilation algorithms was noticeable especially for the pressure field and 
the compliance with governing equations of fluid motion, and in particular mass conservation. The analysis of the flexible 
panel test case showed that the panel position could be reconstructed with micrometric accuracy, rather independently of 
the data assimilation algorithm and the seeding concentration. The accurate evaluation of the static pressure field and of 
the surface pressure proved to be a challenge, with typical errors between 3 and 20% of the free-stream dynamic pressure.

1 Introduction

In the recent years, three-dimensional velocity measure-
ments by Particle Image Velocimetry (PIV) have evolved 
from cross-correlation-based volume analysis (Elsinga et al. 
2006; Scarano 2012) to tracking of individual particles (Par-
ticle Tracking Velocimetry, PTV, Malik et al. 1993; Lagran-
gian Particle Tracking, LPT, Schanz et al. 2016, Schröder 
& Schanz 2023). One of the main advantages of the particle 
tracking approaches lies in the increased measurement spa-
tial resolution, because a velocity (and acceleration) vector is 
determined along each and every reconstructed particle tra-
jectory, without averaging such information within a spatial 
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sub-domain. However, the particle tracking approaches 
return velocity vectors at the scattered locations where the 
tracer particles are present. For data reduction purposes, it 
is often convenient to map such information onto a regular 
(Cartesian) grid, to facilitate the operations required for the 
computation of relevant flow properties such as the vorticity, 
the Q- or λ2-criteria for vortex identification and the shear 
rate, among others. Additionally, the evaluation of the pres-
sure field via the direct integration of the pressure gradient 
or the solution of the Poisson equation for pressure (van 
Oudheusden 2013) is typically performed on a regular grid, 
although grid-less approaches for the solution of the Pois-
son equation have also been proposed. Conventional tech-
niques to map scattered flow information onto a regular grid 
involve the use of interpolation (usually linear or cubic inter-
polation) or spatial averaging of the particle velocities and 
accelerations over sub-domains or bins (e.g. adaptive Gauss-
ian windowing technique, AGW, Agüí and Jimenez 1987). 
However, these approaches suffer from low spatial resolu-
tion, because they are incapable to resolve flow wavelengths 
smaller than the inter-particle distance or the bin linear size. 
As a result, they lead to spatial modulation of the flow field 
and unresolved or under-resolved length scales, especially 
for the study of turbulent flows where a wide range of length 
scales is present. The use of prior information on the flow 
physics, e.g. by imposing the conservation of mass for 
incompressible flows via application of a solenoidal filter to 
the retrieved velocity field (Schiavazzi et al. 2014; Azijli and 
Dwight 2015), has been shown as a viable methodology to 
attenuate the measurement noise and enhance the accuracy 
of the measured flow field. More advanced data assimila-
tion approaches have been recently proposed to enforce the 
compliance of the resulting flow field with the governing 
equations of fluid motion, aiming at increasing the range of 
length scales resolved, possibly beyond the limit of Nyquist 
criterion. In the FlowFit algorithm introduced by Gesemann 
et al. (2016) for example, the velocity field is divided into 
cubic volumes, where it is represented as a weighted sum of 
3rd-order 3D base splines. The spline functions are evalu-
ated by solving an optimization problem, where a cost func-
tion is minimized that imposes physical constraints such as 
the conservation of mass and momentum for incompressible 
flows (Ehlers et al. 2020). In the SPICY algorithm (Sperotto 
et al. 2024), an analytical representation of the velocity and 
pressure fields is computed using penalized and constrained 
Radial Basis Functions (RBFs), which allow enforcing phys-
ical constraints as well as boundary conditions. Alternative 
approaches involve the use of vortex methods (Christiansen 
1973), which make use of the vorticity transport equation at 
one time instant (Schneiders et al., 2016, Cakir et al. 2022) 
or during a short time sequence (Jeon et al. 2018; Scarano 
et al. 2022; Jeon 2021) to retrieve a vorticity field compat-
ible with the measured particle velocities and accelerations. 

Variational methods involving the velocity–pressure formu-
lation of the incompressible Navier–Stokes equations, and 
stemming from the domain of computational fluid dynamics, 
have also been proposed to achieve four-dimensional data 
assimilation accounting for experimental and model errors 
(Chandramouli et al. 2020) or to reconstruct a full instan-
taneous flow field, including acceleration data, from a sin-
gle PTV snapshot (Mons et al. 2022). A recent comparison 
between 4D-VAR and Physics-Informed Neural Networks 
(PINNs, Cai et al., 2021) has been conducted by Du et al. 
(2023), showing that the former exhibit higher accuracy in 
the assimilation of under-resolved turbulent data, whereas 
the latter feature higher robustness to measurement noise.

The discussion above highlights the presence of a multi-
tude of approaches aiming at combining flow measurements 
by LPT and background information on the flow physics to 
accurately reconstruct the flow field on a regular grid. The 
aim of this work is to comparatively assess different data 
assimilation approaches using a database from a simulated 
experiment, so as to shed light on the capabilities of these 
approaches and on which parameters and error sources have 
the largest influence on their performance.

The present work is structured as follows. Section 2 
describes the database used for the assessment of the DA 
algorithms, discussing the physical problem under investiga-
tion, the details of how such physical problem was simulated 
and how the synthetic experiment was set up, and the outputs 
requested to the participants. In Sect. 3, we describe the 
different DA algorithms employed by the research groups 
who analysed the database. The results of the assessment 
are presented in Sect. 4, first focusing on the rigid wall case 
(Sect. 4.1) and then on the flexible panel case (Sect. 4.2). 
For both cases, the results are presented in terms of error 
statistics of the estimated velocity, velocity gradients and 
static pressure. Finally, the main conclusions of this work 
are summarized in Sect. 5.

2  Database description

2.1  Physical problem

A synthetic database was generated that reproduces the 
experimental parameters encountered in a typical LPT 
experiment. The turbulent wall-bounded flow in the wake 
of a cylinder was chosen because of the large turbulent 
fluctuations, both in velocity and static pressure, associ-
ated with the vortex shedding mechanisms. The cylinder 
diameter D = 0.01 m, the distance between cylinder and wall 
G = 0.01 m, as well as the location of the synthetic flow 
domain used (extent and streamwise position with respect 
to the cylinder) were selected to ensure conventional vor-
tex shedding behaviour while maintaining large enough 
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wall pressure fluctuations, both in the flow and on the 
lower wall; these parameters have been chosen in particu-
lar based on the experimental works of Choi & Lee (2000) 
and Wang & Tan (2008). Numerical simulations were per-
formed using air as working fluid, at a free-stream velocity 
of 10 m/s, density of ρ = 1.22 kg/m3 and kinematic viscosity 
of ν = 1.503·10–5  m2/s. The free-stream Reynolds number per 
unit length was set to Re∞,x = 665,000 , leading to a turbu-
lent boundary layer upstream of the cylinder with a momen-
tum thickness Reynolds number of  Reθ ≈ 4,150, measured 
100 mm (ten diameters) upstream of the cylinder centre, and 
a thickness δ ≈ 60 mm. Two different configurations were 
considered for the wall downstream of the cylinder. In the 
first configuration, the wall is a flat rigid wall. An illustra-
tion of the flow field for the rigid wall case, along with the 
reference system of axes, is shown in Fig. 1. The origin of 
the axes is located at the centre of the wall, and the systems 
of axes are defined such that X is the streamwise direction, Y 
the lateral direction and Z the wall-normal direction. In the 
second configuration the wall is composed of a flexible panel 
with clamped edges, whose upstream edge is 15 mm down-
stream of the cylinder. The flexible panel test case was intro-
duced to assess the DA algorithms for unsteady fluid–struc-
ture interaction problems, whereby the motion of a solid 
surface affects the flow field. The panel has dimensions of 
100 mm × 100 mm and spans the entire width of the compu-
tational domain; it is actuated at its midpoint via a periodic 
sinusoidal excitation of amplitude A = 5 mm and frequency 
fpanel = 100 Hz. Two materials are considered for the panel, 
namely metal (more precisely aluminium, Young's modulus 
E = 70 GPa, density ρmetal = 2700 kg/m3) and rubber (hyper-
elastic material with ρrubber = 950 kg/m3, C10 = 1.3333 MPa 
and D1 =  10–9  Pa−1), both of thickness t = 0.5 mm. Because 
the frequency of the vortex shedding from the cylinder is 
fShedding = 200Hz , the panel motion frequency is in the same 

order of the vortex shedding frequency; hence, the panel 
motion is expected to affect the fluctuations in the flow field. 
The presence of a curved wall introduces new challenges to 
the DA algorithms in terms of the application of boundary 
conditions, which are usually enforced only on a Cartesian 
grid. Additionally, with the flexible panel test case we want 
to assess how accurately the different DA algorithms are 
capable of evaluating the position of a relatively complex 
geometry and in turn the surface distribution of the static 
pressure. The latter is a crucial parameter in fluid–structure 
interaction problems, whereby the aerodynamic loads are 
dominated by the static pressure distribution on solid sur-
faces and drive the structural motion.

2.2  Details of the flow simulation

Monotone Integrated Large Eddy Simulations (MILES) 
were performed with the ONERA HPC multi-block struc-
tured aerodynamic solver FASTS (see, e.g. Dandois et al. 
2018, for an example of application), using second-order 
finite volume spatial discretization and second-order 
implicit time integration. The computational domain size 
is of 1.8m × 0.1m × 1.0m in the streamwise ( X ), spanwise 
( Y  ) and wall-normal ( Z ) directions, with mesh cell num-
ber of 1367 × 500 × 247 = 168,824,500 cells. The cell size 
in the flow region was ΔX = 0.4mm , ΔY = 0.2mm and 
0.0165mm ≤ ΔZ ≤ 0.47mm . Simulations were run at free-
stream Reynolds per unit length and Mach numbers equal 
to Rex,∞ = 665,000 and M∞ = 0.07 , respectively. The latter 
value of the Mach number was chosen so as to stay within 
the accuracy range of the compressible solver, while target-
ing a nearly incompressible flow. Periodicity was imposed 
in the spanwise direction, and the method of Lund et al. 
(1998) was used to obtain a developed turbulent boundary 
layer. Time- and span-averaged velocity profiles of the flow 

Fig. 1  Side view (left) and top view (right) of the flow domain. The 
dash-dot rectangle depicts the domain used for the data assimilation 
analysis for the rigid wall case, whereas the dashed rectangle illus-
trates the domain for the flexible wall case. Contours of the instan-

taneous streamwise velocity component are shown; the flow is in the 
positive X direction. The origin of the system of axes used is indi-
cated with O 
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observed 100 mm upstream of the cylinder have confirmed 
the canonical character of the turbulent boundary layer, 
whose profiles have been found to be in excellent agreement 
with the literature (LES simulations of Schlatter et al. 2010, 
corresponding to similar values of the momentum Reyn-
olds thickness Re� ). Figure 2 shows a sample flow snapshot 
in the rigid wall case, where the large-scale vortices shed 
from the cylinder, the secondary vortex structures and their 

interactions with the wall are visible. Figure 3 presents the 
corresponding time- and span-averaged mean and fluctuat-
ing streamwise velocity components: the flow experiences 
large velocity fluctuations exceeding 20% of the free-stream 
velocity, mainly due to the shed vortices and their second-
ary structures; also, a progressive wake recovery takes place 
for increasing distances from the cylinder. Although physi-
cal conditions differ slightly in terms of the bulk Reynolds 

Fig. 2  Sample flow snapshot from the LES simulation (rigid wall case), including Q-criterion iso-surfaces colour-coded by streamwise velocity 
VX , and iso-contours of static pressure p at the lower and side walls

Fig. 3  Left: Streamwise time-average (top) and fluctuations root-
mean-square (bottom) velocity components from the LES simulation 
(rigid wall case), averaged along the span of the simulation domain. 
The dash-dot rectangle indicates the extent of the flow used for the 

datasets. Right: profiles of the mean and fluctuating streamwise 
velocity component, extracted at the locations indicated with vertical 
dashed lines in the left figures
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number, mean velocity profiles such as presented in Fig. 3 
agree to a very good extent with the experimental results of 
Choi & Lee (2000). In the flexible panel cases, the simula-
tion was performed using the Arbitrary Lagrangian Eulerian 
(ALE) framework (Noh, 1964). Figure 4 illustrates a sam-
ple flow snapshot of one of the flexible panel cases (rubber 
panel), showing the typical values and spatial organization 
of panel deformation and vertical velocity VZ , together with 
cuts of flow streamwise velocity VX.  

Propagation of synthetic pointwise tracer particles, whose 
positions were initially chosen randomly, was embedded in 
the simulation using interpolation of the velocity field and 
a 3rd-order Adams–Bashforth time scheme. Analysis of 
the trajectories (not shown here) indicated that significant 
curvatures and accelerations logically coincided mostly 
with shed vortices, and in a lesser extent with near-wall 
turbulent structures. While the flow physical configura-
tion was kept for the moving panel cases (air flow with 
�air = 1.22kg∕m3 , �air = 1.503 ⋅ 10−5m2∕s at V∞ = 10m∕s ), 
for the rigid wall case flow similarity was used to transpose 
the situation towards a water flow ( �water = 998.2kg∕m3 , 
�water = 9.991 ⋅ 10−7m2∕s ) with similar dimensions, thereby 
leading to free-stream velocityV∞ = 0.667m∕s.

2.3  Setup of the synthetic experiments

Synthetic data of the tracer particles were generated based 
on a hypothetical experimental setup. In particular, virtual 
multi-camera systems were set up to mimic typical LPT 
experiments. Following the best practices for three-dimen-
sional flow measurements based on tomographic-PIV and 
3D-LPT (Scarano, 2012; Schröder and Schanz 2023), four 
cameras were simulated for both the rigid and the flexible 

panel test cases. In the flat rigid wall case, the four cameras 
were placed along an arc of circle at a radial distance of 
R = 0.6m from the centre of the data assimilation domain 
(see Fig. 5). In the flexible panel cases, in order to allow 
full visualization of the domain (in the spanwise direction), 
i.e. enclosing all of the panel surface, this distance was 
increased to R = 0.9m.

All virtual cameras had identical properties, namely pixel 
size of 10 μm, sensor size of 1920 × 1200 pixels and lens 
focal length f = 100 mm, independently of the panel case. 
As a result, the difference in their positions leads to slightly 
different values of the size of a back-projected pixel, here-
after noted as px , namely px = 60�m in the rigid wall case, 
and px = 86.7�m in the flexible panel cases. This similarly 
leads to differences in the relationship between the parti-
cle image density (counted in particles per pixel, ppp ) and 
the volumetric concentration, as seen in Table 1. Overall, 
image densities ranging from 0.005 to 0.16 ppp have been 
targeted, with three densities for each panel type, with thus 

Fig. 4  Sample flow snapshot 
from the LES simulation (flex-
ible rubber panel case), includ-
ing iso-contours of flow stream-
wise velocity VX in longitudinal 
and transverse cuts, and of the 
panel vertical velocity VZ

Fig. 5  Sketch of the virtual camera setup
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lower maximal particles concentrations (and thus higher 
inter-particle distances) for the flexible panels than for the 
rigid cases. These values aim at reflecting experiments rang-
ing from very low to very high seeding densities, compared 
to the present state-of-the-art of LPT experiments and pro-
cessing algorithms. In the flexible panel cases, these values 
correspond to the image densities obtained at the beginning 
of an oscillating cycle, when the panel is still undeformed. 
Because the evaluation instant corresponds to a later time, 
at which the panel exhibits a significant deformation in the 
vertical downwards ( Z ) direction, the actual densities in the 
flexible cases are slightly higher than the targeted values, 
and slightly different depending on the panel, due to dif-
ferent deformation shapes. Overall, as shown in Table 1, 
the volumetric particle concentrations range from 0.0428 
to 1.36 particles/mm3, resulting in mean inter-particle dis-
tances from 0.5 to 1.58 mm based on Poisson point process 
theory (Last and Penrose 2017). In the flexible panel cases, 
markers were placed on the panel at two different densities, 
namely low density (LD, ppp = 0.001) and medium density 
(MD, ppp = 0.01). Due to the different camera arrangement, 
maximal particles concentrations are lower (inter-particle 
distances are higher) for the flexible panels than for the rigid 
cases.

The particle (and marker) positions in 3D space and their 
trajectories identification numbers were provided to the par-
ticipants. The particle positions were affected by random 
Gaussian noise with standard deviation of 0.1 px , thus cor-
responding either to 6�m (rigid wall) or to 8.67�m (flexible 
panels); the presence and magnitude of the random noise 
were not disclosed to the participants. For the rigid wall 
configuration, the virtual setup was chosen with water as a 
fluid, with a sequence of 50 equally spaced time instants at 
time separation Δt = 600 μs was provided to the participants. 
For the flexible panel case, coinciding with the original air 
flow of the simulation, the database contained sequences of 

501 evenly spaced time instants at constant time separation 
Δt = 40 μs, corresponding to a full period of oscillation. In 
the metal panel case, both the first and last instants corre-
spond to a flat (undeformed) panel profile coinciding with 
the Z = 0 plane; in the rubber case, the panel is flat at the 
first instant only, due to the more complex deformation pat-
terns and waves obtained by actuation at the centre point. In 
both the fixed and moving cases, the time separation leads 
to a displacement associated with the bulk velocity V∞ equal 
to 0.4 mm, i.e. to 6–7 pixels (resp. 4–5 pixels) in the images 
for the rigid (resp. flexible) cases.

2.4  Requested output

The participants were requested to provide output quanti-
ties on a Cartesian grid of spacing h = 0.4 mm; details of 
the Cartesian grids depending on the wall configuration are 
reported in Table 2.

A total of 13 output quantities were requested, all at the 
time instant 25 for the rigid wall case and 175 for the flexible 
panel case; these output quantities were:

• The three components of the velocity vector ( VX , VY , VZ ), 
in m/s;

• The nine components of the velocity gradient ten-
sor ( �VX∕�X  , �VX∕�Y  , �VX∕�Z  , �VY∕�X  , �VY∕�Y  , 
�VY∕�Z, �VZ∕�X , �VZ∕�Y  , �VZ∕�Z ) in  s–1;

• The static pressure p in Pa, relative to the points ( X , Y  , Z
) = (0, 0.2, 0.01) mm for the rigid wall case, (0, 0, 0.01) 
mm for the metal panel case and (0, 0, 0.41) mm for the 
rubber panel case.

Additionally, for the flexible panel case, the Z-position 
of the panel markers and the static surface pressure were 
requested. The data were analysed in terms of errors of the 
output quantities (viz. difference from the actual value from 

Table 1  Main parameters of the datasets composing the DA database. Notice that for the flexible wall case, each dataset is repeated for the two 
panel materials, namely metal (M) and rubber (R)

Wall ppp wall markers ppp flow tracers # of particles in the 
fluid domain

Particles concentration
C [particles/mm3]

Average 
inter-particle 
spacing
λ [mm]

Rigid 0 0.005 6,422 0.0428 1.58
Rigid 0 0.025 31,847 0.212 0.929
Rigid 0 0.160 204,280 1.36 0.500
Flexible, LD (M/R) 0.001 0.022/0.021 23,333/23,268 0.0778/0.0776 1.30
Flexible, LD (M/R) 0.001 0.086/0.081 93,168/92,498 0.310/0.308 0.818/0.820
Flexible, LD (M/R) 0.001 0.171/0.162 185,940/184,058 0.620/0.613 0.650/0.652
Flexible, MD (M/R) 0.01 0.022/0.021 23,295/23,223 0.0777/0.0774 1.30
Flexible, MD (M/R) 0.01 0.085/0.081 92,608/91,941 0.309/0.306 0.820/0.822
Flexible, MD (M/R) 0.01 0.172/0.163 185,903/184,556 0.620/0.615 0.650/0.651
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the LES simulation at each grid location), their distributions 
and spectral content.

3  Participants and approaches

3.1   Rigid wall case

The data of the rigid wall test case were presented and ana-
lysed within the first Data Assimilation challenge (Sciac-
chitano et al. 2021), conducted within the framework of the 
European Union Horizon 2020 project HOMER (Holistic 
Optical Metrology for Aero-Elastic Research), grant agree-
ment number 769237.

Three research groups analysed the data of the rigid wall 
case, namely the German Aerospace Centre from Göttingen 
(DLR), Delft University of Technology in the Netherlands 
(TU Delft, shortly TUD) and the German instrumentation 
company LaVision GmbH. The approaches employed by 
these groups are briefly summarized hereafter. As reported 
in Table 3, differences among the algorithms are already 
present in the way the particle locations are fitted to retrieve 
the positions, velocities and accelerations at time instant 
t = 25, which constitute the inputs for the considered DA 
approaches.

3.1.1  DLR: FlowFit2

The approach employed by the DLR group is based on the 
TrackFit and FlowFit2 algorithms, which are described in 
detail in Gesemann et al. (2016) and in Ehlers et al. (2020). 
The main processing steps are the following:

(a) Determination of the particle trajectories according to 
the provided locations and track-ID data;

(b) Spectral analysis of the location-over-time signals to 
estimate the optimal TrackFit parameters;

(c) TrackFit: estimation of the particle trajectories as uni-
form cubic B-spline curves;

(d) Sampling of the particle track B-spline functions at the 
specified time step (namely 25), including first and sec-
ond derivatives (velocity and acceleration), as input to 
FlowFit;

(e) FlowFit2: nonlinear estimation of velocity and pres-
sure fields as 3D uniform cubic B-splines based on a 
weighted least-square optimization that minimizes the 
sum of several squared errors. Those include: the diver-
gence of the velocity field, the gradient of the diver-
gence of the velocity field, deviations between meas-
ured and fitted velocities and accelerations, deviations 
from the pressure Poisson equation, velocity vector 
Laplacian.

Before the FlowFit2 step, additional virtual particles 
with zero velocity and acceleration are generated at the wall 
(Z = 0 m) to comply with the no-slip boundary condition.

3.1.2  TUD: VIC + and TSA

The TU Delft team made use of two approaches, both based 
on the Vortex-in-Cell framework (Christiansen 1973). 
The first approach, named VIC + (Schneiders and Scarano 
2016), seeks a vorticity field defined at the output Carte-
sian grid such that a cost function is minimized. The lat-
ter depends on the difference between the measured and 
reconstructed velocities and Lagrangian accelerations at the 
particle locations. The velocity field is then obtained from 

Table 2  Number of grid points along the different directions and limits of the data assimilation domains for the three wall configurations

Number of grid points Limits of the data assimilation domains

X Y Z Total Xmin (mm) Xmax (mm) Ymin (mm) Ymax (mm) Zmin (mm) Zmax (mm)

Rigid wall 251 126 76 2,403,576 –50  + 50 –25  + 25  + 0.01  + 30.01
Metal panel 251 251 76 4,788,576 –50  + 50 –50  + 50  + 0.01  + 30.01
Rubber panel 251 251 75 4,725,075 –50  + 50 –50  + 50  + 0.41  + 30.01

Table 3  Types and temporal 
kernel sizes of the fit used to 
determine the particle positions, 
velocities and accelerations

Participant (approach) Track fit type Track fit temporal kernel size

DLR Cubic B-spline Adaptive, based on the spectral 
analysis of the particle tracks

LaVision (VIC#-3D) 2nd-order polynomial 7/7/9 at ppp = 0.005/0.025/0.160
LaVision (VIC#-4D) 2nd-order polynomial 7/7/9 at ppp = 0.005/0.025/0.160
TUD (VIC +) 2nd-order polynomial, 3 iterations 9
TUD (TSA) 2nd-order polynomial, 3 iterations 9
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the reconstructed vorticity field via the solution of the Pois-
son equation. The second approach, named Time-Segment 
Assimilation (TSA, Scarano et al. 2022), is an evolution of 
the VIC + concept which exploits the temporal information 
from time-resolved measurements. In this case, the vorticity 
dynamics equation is used to march forward and backward 
for a finite number of exposures (in total 31 at ppp = 0.005 
and 21 at ppp = 0.025) the first guess of the vorticity field 
at time t = 0. The cost function is built as the difference 
between the measured and the reconstructed velocity at the 
particle locations along the entire time segment. It should 
be noted that, due to the high computational cost, the TSA 
results were only produced for ppp = 0.005 and 0.025, and 
not for ppp = 0.160. Additionally, the pressure field was 
evaluated only for the VIC + analysis (and not for the TSA 
analysis), by solving the Poisson equation for pressure (van 
Oudheusden 2013), using Neumann boundary conditions at 
all boundary points.

3.1.3  LaVision: 3D and 4D VIC#

LaVision GmbH made use of two approaches, one rely-
ing only on instantaneous data (3D) and one exploiting 
the information on the time evolution from time-resolved 
measurements (4D). In the latter case, the time integration 
length was selected as ± 6Δt, resulting in the simultaneous 
velocity reconstruction over 13 time steps. The approaches, 
indicated with VIC#-3D and VIC#-4D, respectively, are 
based on an evolution of the VIC + algorithm (Schneiders 
and Scarano 2016) where additional physical constraints on 
the divergence of velocity, vorticity, Eulerian acceleration, 
Lagrangian acceleration and on the momentum equation are 
imposed (Jeon et al. 2018, 2022; Jeon 2021). A multi-grid 
approximation was performed to decrease the computational 
cost due to large number of elements in the output Cartesian 
grid.

3.2  Flexible panel case

The flexible panel data were analysed by the German Aero-
space Centre from Göttingen (DLR) and the German instru-
mentation company LaVision GmbH.

3.2.1  DLR: FlowFit2

As for the rigid wall case, the DLR group made use of the 
FlowFit2 algorithm (Gesemann et al. 2016; Ehlers et al. 
2020), which involved the following steps:

• Spectral analysis of particle and marker trajectories to 
determine good temporal fitting parameters.

• The particle and marker trajectories were filtered using 
TrackFit with a cut-off of 0.25 and 0.03 times the Nyquist 

frequency, respectively. TrackFit behaves like a low-pass 
filter with a flat passband and an 18 dB/oct slope after 
the cut-off frequency. For the marker tracks, the filter 
was slightly modified so that the pass-band response at 
fpanel = 100 Hz was exactly 1.0, so as not to suppress any 
fluctuations at the frequency of oscillation of the panel.

• The cubic B-splines for the particle and marker trajec-
tories were evaluated at the requested time step, namely 
time step 175.

• For the velocities and accelerations of the panel mark-
ers, a 2D curve over x, y was fitted using uniform cubic 
B-splines and smoothing by penalizing the Laplacian. 
These fitted 2D functions were evaluated twice, once on 
the requested x, y grid for the panel and once for the 
internal reconstruction grid of the FlowFit as “wall con-
ditions”.

• FlowFit2 then used the particle data and spatially inter-
polated marker data (wall conditions) as input. The inter-
nal reconstruction grid was chosen to have about 25 grid 
points per particle.

3.2.2  LaVision: 3D and 4D VIC#‑FSI

LaVision made use of an adaptation of VIC# (Jeon et al. 
2018, 2022; Jeon 2021) that accounts for the presence of 
solid objects in the flow domain, named VIC#-FSI. VIC#-
FSI considers a moving boundary through artificial surface 
vectors interpolated from the surface markers. Its compu-
tation domain is a rectangular parallelepiped, identical to 
VIC#. However, the additional constraints of VIC#, includ-
ing pressure field, are only considered for the fluid region. 
The surface pressure is afterwards obtained from a least-
square optimization of pressure changes between the surface 
grid points and the surface-facing flow grid points.

As for the rigid wall case, also for the flexible panel case 
two algorithms where employed: a 3D algorithm, which 
only accounts for the instantaneous information on the 
flow and the structural markers, and a 4D algorithm that 
exploits time information over 13 time steps at ppp = 0.020 
and 0.080, and 7 time steps at ppp = 0.160. Future and past 
time steps are included in the analysis using a Eulerian time-
marching scheme with the 4th-order Runge–Kutta temporal 
discretization.

3.3  Computational cost

A dedicated analysis has been conducted to assess the 
computational cost of the different DA approaches. Notice 
that, despite the participants processed the data on differ-
ent machines, the computational cost analysis has been 
performed using the same computer architecture, which 
featured high-end consumer GPUs (RTX 4090), after the 
participants had submitted their results. The analysis has 
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been performed on the data of the rigid wall test case, 
obtaining the following computational times per computed 
flow field (see Table 4):

The results of Table 4 show clearly that the computational 
cost varies by up to three orders of magnitude depending on 
the DA approach. Several factors influence the computa-
tional cost. First, the computational domain size affects the 
number of operations for both the numerical integration and 
the minimization of the cost function: although the original 
domain size is composed of 251 × 126 × 76 = 2,403,576 grid 
points, different algorithms use different extensions of the 
domain to avoid erroneous velocity reconstructions close 
to the edges. In particular, the FlowFit 2 algorithm only 
requires two additional grid points at each edge, thus limit-
ing the size of the computational domain. Conversely, in 
the case of VIC + and VIC-TSA, the computational domain 
size is more than three times larger than the original domain 
size, while for VIC# the increase of domain size is about 
15% (6 padding grid points at each edge, Jeon et al. 2022). 
Second, each method solves a different number of Poisson 
equations: for FlowFit 2, only one Poisson equation per 
iteration is solved for the evaluation of the pressure field 
from the measured velocity data (Ehlers et al. 2020); instead, 
VIC + requires solving 12 Poisson equations per iteration, 
namely two per each component of the velocity and of the 
local Eulerian acceleration. In the case of VIC-TSA, to 
reduce the computational burden which is already very large, 
only the velocity components are employed in the defini-
tion of the cost function, and not the acceleration; for this 
reason, only 6 Poisson equations (namely two per velocity 
component) need to be solved per iteration. Both the three-
dimensional and four-dimensional versions of VIC# require 
solving 13 Poisson equations (Jeon et al. 2022), namely the 
12 equations needed for VIC + , plus an additional equation 
for the static pressure.

Additionally, the computational cost of each method 
scales proportionally to the number of the limited-memory 
BFGS iterations (Liu and Nocedal 1989) required for the 

minimization of the cost function, where the limit is set 
to 125 for FlowFit 2 and 400 for the other algorithms. It 
is also worth mentioning that, with respect to their three-
dimensional counterparts (VIC#-3D and VIC +), the com-
putational cost of four-dimensional methods (VIC#-4D 
and VIC-TSA, respectively) increases proportionally to the 
number of time steps considered. For the reasons above, the 
FlowFit 2 algorithm is orders of magnitude faster (only a few 
seconds per flow field) than the other approaches, whereas 
the methods that employ information from multiple time 
steps (namely VIC#-4D and VIC-TSA) are the slowest, with 
a computational cost of O(1000) seconds per reconstructed 
flow field.

4  Results

4.1  Rigid wall case

4.1.1  Velocity components

The results of the data assimilation algorithms are expected 
to exhibit an increasing error for decreasing seeding concen-
tration, as a consequence of the larger inter-particle distance 
and therefore lower spatial resolution. For the intermediate 
seeding concentration case (ppp = 0.025), Fig. 6 compares 
the streamwise velocity component along several planes 
in the measurement domain, as well as an iso-surface of 
the Q-criterion (Q = 80,000  s−2) among ground-truth (top-
left), participants’ results, and linear interpolation of the 
particle velocities (bottom right). Note that in the sequel, 
we will preferentially single out this concentration value 
(ppp = 0.025) for presenting spatial fields of reconstructed 
quantities and errors, as, out of the values tested, it is the one 
most typical of common LPT experiments. We recall that 
the free-stream velocity is equal to V∞ = 0.667m∕s in the 
present rigid wall case, as the medium for this case has been 
chosen to be water (see Sect. 2.2). From the ground-truth 

Table 4  Computational cost of 
the different DA approaches, per 
flow field

Method # Time steps Original 
domain size
(grid points)

Computational 
domain size
(grid points)

# Poisson 
equations

# L-BFGS 
iterations

Computational 
time (seconds)

X Y Z X Y Z

FlowFit 2 1 251 126 76 255 130 80 1 125 4
VIC + 1 251 126 76 401 202 98 12 400 474
VIC-TSA 21 251 126 76 401 202 98 6 400 4979
VIC-TSA 31 251 126 76 401 202 98 6 400 7349
3D VIC# 1 251 126 76 257 132 82 13 400 180
4D VIC# 3 251 126 76 257 132 82 13 400 540
4D VIC# 5 251 126 76 257 132 82 13 400 900
4D VIC# 13 251 126 76 257 132 82 13 400 2340
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flow field, the decrease of the velocity towards the wall 
(Z = 0) due to the presence of the boundary layer is evident. 
The flow field is clearly turbulent, featuring many small 
coherent vortical structures visualized via the Q-criterion. 
The results of the different algorithms are overall similar 
to the ground truth, in that they correctly reproduce the 
turbulent nature of the boundary layer and velocity values 
diminishing towards the wall. The result from TUD TSA 
exhibits more edge effects especially towards the lower limit 
of Y, where the streamwise velocity component decreases 
to unphysical values close to zero. The linear interpolation 
result correctly reproduces the main characteristics of the 
flow field, although with a larger spatial modulation, thus 
resulting in coarser and smoother velocity contours. How-
ever, when the small vortical structures are compared in 
terms of iso-surfaces of Q-criterion, it is clear that none of 
the data assimilation algorithms (nor the linear interpola-
tion) is able to correctly capture those due to the limited 
spatial resolution of the measurement.

A more detailed analysis of the estimated velocity and 
the error relative to the ground truth is reported in Fig. 7 for 
the plane Y = –0.2 mm, close to the centreline. It is evident 
that all data assimilation algorithms are capable of repro-
ducing the largest scales of the ground-truth velocity field. 
Even when linear interpolation of the particle velocities is 
performed (bottom row), the resulting velocity field shows 
clear similarity with the ground-truth one, although spatial 
modulation occurs, which has the effect of smoothening out 
the small-scale structures. For instance, the positive and neg-
ative velocity peaks at X = –0.01 m are significantly attenu-
ated. The absolute errors on the streamwise velocity com-
ponent, illustrated on the right column of Fig. 7, are mostly 
below 0.1 m/s (15% of the bulk velocity Vꝏ), with only a 
few peaks exceeding 0.15 m/s; their values and distributions 
are rather independent of the algorithm employed. All of the 
data assimilation algorithms use physical constraints derived 
from the equations of motion to reconstruct the flow from 
the data; the present observations thus indicate that the input 
data are still not enough resolved for these constraints to 
reconstruct accurately the finest scales.

A quantitative analysis of the bias and random errors of 
the velocity magnitude as a function of the seeding con-
centration is conducted in the entire measurement domain 
excluding 4 mm (ten grid points) from all the outer edges to 
avoid edge effects. Such analysis is presented in Fig. 8. The 
local error is defined as the difference between the velocity 
estimated by the DA algorithms and the ground-truth value 

at each grid point; the bias error is the spatial average of the 
local error, whereas the random error is the spatial stand-
ard deviation of the local error. The bias error (Fig. 8-left) 
exhibits little dependence on the ppp, and it typically attains 
values within 0.5% of the fluid bulk velocity Vꝏ; such errors 
increase slightly at the lowest ppp, reaching values of 2% 
of Vꝏ. The highest errors are encountered with the TUD 
TSA algorithm, attaining values of up to 4% of Vꝏ. Also, 
it is remarked that the linear interpolation algorithm yields 
similar but slightly larger bias errors to most data assimila-
tion algorithms. The random error, illustrated in Fig. 8-left, 
shows the expected decrease with increasing seeding con-
centration. At the lowest ppp, the random error is between 
0.06 and 0.075 m/s (or 9% and 11% of Vꝏ) and decreases to 
about 0.02 m/s (roughly 3% of Vꝏ) at ppp = 0.16. At each 
seeding concentration, small but systematic differences of 
about 0.01–0.02 m/s among the different algorithms are 
recorded. It is noticed that the linear interpolation approach 
yields random error values of the same order as those of the 
data assimilation algorithms with the lowest performance. 
As the following analysis will show, this is due to the fact 
that the remaining scales, below those reconstructed by lin-
ear interpolation, represent only a limited fraction of the 
flow kinetic energy.

To indeed further assess the capabilities of the data 
assimilation approaches to resolve small scales in the flow 
field, a spectral analysis is conducted in a region of the flow 
domain away from the wall, namely for 20 mm ≤ Z ≤ 30 mm. 
The spectral analysis is performed by taking the velocity 
distribution along a line at a fixed Y and Z location and 
then computing the spatial spectrum of that velocity dis-
tribution using Welch’s power spectral density method 
(Welch 1967). The results from all the spectra obtained in 
the domain 20mm ≤ Z ≤ 30mm and −21mm ≤ Y ≤ 21mm 
are then spatially averaged. The average power spectral den-
sity in such region of the wall-normal velocity component VZ 
is illustrated in Fig. 9 for the three ppp values. As expected, 
the different algorithms agree well with the ground-truth 
results (thick grey lines) at the lower wavenumbers k (larger 
wavelengths λ), whereas the agreement worsens for increas-
ing wavenumbers. Also expected is the improved agreement 
with increasing seeding concentration. At the lowest ppp 
of 0.005 (Fig. 9-left), the linear interpolation result departs 
from the ground truth already at a wavenumber of 50  m−1 
(or wavelength of 20 mm, that is more than 12 times larger 
than the average inter-particle distance). In contrast, the data 
assimilation algorithms follow the ground-truth result up 
to k ≈ 200  m–1 (λ ≈ 5mm), thus yielding an increase of the 
range of resolved length scales by a factor 4 with respect to 
the linear interpolation. Similar trends are retrieved also at 
the higher seeding concentrations (Fig. 9-middle and -right), 
with improved agreement with the ground-truth result. In 
particular, at the highest ppp of 0.16, most data assimilation 

Fig. 6  Slices of the streamwise velocity component and of iso-sur-
faces of Q-criterion (Q = 80,000   s–2) for the ppp = 0.025 case. The 
ground-truth flow field from the numerical simulations is shown on 
the top. The result from the linear interpolation of the particles veloc-
ities onto the Cartesian grid is shown on the bottom right

◂
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algorithms capture correctly the power spectrum up to k ≈ 
300  m−1 (λ ≈ 3mm), whereas the linear interpolation result 
starts departing from the ground truth already around k ≈ 
100  m−1 (λ ≈ 10mm). Hence, based on this spectral analysis, 
it can be concluded that the data assimilation algorithms 
increase the range of resolvable length scales by a factor 3 
to 4 with respect to the standard interpolation, and that the 
smallest fluctuations correctly captured occur at a length 

scale that is 3 to 6 times larger than the average inter-particle 
distance.

4.1.2  Velocity gradient components

The evaluation of the components of the velocity gradient is 
notoriously more challenging than that of the velocity itself 
for two main reasons: first, under-resolved or unresolved 

Fig. 7  Streamwise velocity component at mid-span, i.e. here Y = –0.2  mm (left) and corresponding absolute error (right) for the ppp = 0.025 
case. The colorbars at the bottom represent m/s and apply to all contours of the same column
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length scales result in the underestimation of the spatial 
derivatives of the velocity; second, the spatial derivative 
operator acts as a high-pass filter onto the velocity field, 
thus yielding a decrease of the measurement signal-to-noise 
ratio in presence of uncorrelated noise. The accuracy of the 
evaluation of the velocity gradient components is assessed 
in Fig. 10 via the analysis of the vorticity magnitude and the 
related error for the case ppp = 0.025. The ground-truth vor-
ticity field presents vorticity peaks up to 1000 Hz attributed 
to small-scale vortical structures especially in the region 
closer to the cylinder (X < 0). Additionally, a large-scale 
vortical structure, ascribed to the vortex shedding from the 
cylinder, with peak vorticity approaching 800 Hz is found 
around X = –0.1 m. All considered algorithms exhibit a sig-
nificant modulation of the vorticity field, yielding vorticity 
peak values seldom exceeding 500 Hz. From the vorticity 
errors contours presented in the right column of Fig. 10, it 
can be seen that the vorticity errors exceed 100 Hz in a large 
portion of the measurement domain, with peaks even above 

700 Hz. The largest errors, mainly ascribed to spatial modu-
lation, occur when using the linear interpolation approach.

The vorticity magnitude along a vertical profile extracted 
at X = –11.2 mm and Y = –0.2 mm is shown in Fig. 11. This 
profile has been selected because of the presence of a vor-
tex at about Z = 18 mm from the wall, resulting in a peak 
vorticity of about 750 Hz. All the data assimilation algo-
rithms correctly reproduce the presence of the vortex and 
the corresponding peak of vorticity. However, the actual 
value of the peak vorticity is strongly modulated, with a 
reduction between 21% (LaVision 4D algorithm) and 40% 
(TUD TSA algorithm). Instead, the different data assimila-
tion algorithms fail to reproduce correctly a second vorticity 
peak (500 Hz) at 14 mm ≤ Z ≤ 16 mm, yielding a measured 
vorticity peak between 200 (TUD TSA algorithm) and 
300 Hz (LaVision 4D algorithm). This result is ascribed 
to the smaller size of the vortical structure. It is interesting 
to notice that all the algorithms predict a lower location of 
the vorticity peak (Z = 14.4 mm, rather than Z = 15.6 mm), 

Fig. 8  Bias (left) and random (left) error of the velocity magnitude as a function of the ppp. The symbol keys apply to both plots

Fig. 9  Power spectral density of the wall-normal velocity component 
VZ, averaged in the region 20  mm ≤ Z ≤ 30  mm. Left: ppp = 0.005; 
middle: ppp = 0.025; right: ppp = 0.16. The bottom horizontal axis 
represents the wavenumber, while the top horizontal axis represents 

the corresponding wavelength. The dashed vertical line, when pre-
sent, corresponds to the wavenumber (or wavelength) associated with 
the average inter-particle spacing. The symbol keys apply to all plots
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which is probably caused by the presence of a tracer particle 
closer to that location.

Similar to the velocity, a quantitative analysis of the 
vorticity magnitude error is conducted in terms of mean 

bias and random components in the entire measurement 
domain, excluding a region of 4 mm thickness at the outer 
edges. The results of this analysis are shown in Fig. 12. As 
expected, there is a clear trend of increasing performance 

Fig. 10  Vorticity magnitude in Hz at Y = –0.2  mm (left) and corre-
sponding absolute error (right) for the ppp = 0.025 case. The white 
dashed vertical line in the top-left contour corresponds to the location 

of the profile shown in the next figure. The colorbars at the bottom 
represent Hz and apply to all the contours of the same column
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when increasing the seeding concentration. As discussed 
above, the mean bias errors (Fig. 12-left) are negative as 
a consequence of the spatial modulation of the velocity 
field that yields underestimated vorticity values. The DLR 
algorithm exhibits the best performance in terms of mean 
bias errors, with error values between  −80 Hz at the low-
est ppp and  −20 Hz at the highest ppp. Similar values 
are retrieved also with the LaVision algorithms and the 
TU Delft VIC + approach. In contrast, the linear interpo-
lation approach returns bias error values between  −130 
and  −80 Hz. The random error component, illustrated 
in Fig.  12-right, exhibits values of around 150  Hz at 
ppp = 0.005, with small differences among the different 
algorithms. At higher seeding concentrations, a signifi-
cant error reduction is retrieved down to 80 Hz and 90 Hz 
with the DLR and LaVision algorithms, respectively; in 
contrast, for the other algorithms the random errors remain 

above 130 Hz (TU Delft VIC + , TSA and linear interpola-
tion approaches). Considering that the ground-truth peak 
vorticity attains values of about 1000 Hz, it can be con-
cluded that, using the best data assimilation algorithms at 
the highest ppp level of 0.160, the vorticity error values 
are of the order of 2% and 8% for the bias and random 
components, respectively. However, these errors increase 
to 4% and 13%, respectively, when less performing data 
assimilation algorithms are employed. At the lowest seed-
ing density of ppp = 0.005, the bias and random errors 
can be as large as 8% and 17%, respectively, of the peak 
vorticity values.

For sake of completeness, the contours of the diver-
gence of the velocity at Y = –0.2 mm are shown in Fig. 13 
for the case ppp = 0.025. It should be noticed that, because 
of the low but finite Mach number of the flow cases con-
sidered ( M∞ = 0.07 , this value being nonzero due to the 
use of a compressible flow solver), based on the conserva-
tion of mass for incompressible flows, the divergence of 
the velocity is expected to be finite as well, but of very 
small magnitude. In fact, the ground-truth result (Fig. 13 
top) exhibits divergence values typically below 0.2 Hz. 
The results of the different data assimilation algorithms 
exhibit large differences. The DLR algorithm does not 
impose zero divergence in the measured flow field; as a 
result, the measured divergence is nonzero, but mostly 
bounded to below 1 Hz. Instead, the LaVision algorithms, 
both 3D and 4D, evaluate a solenoidal (hence divergence-
free) flow field, with nonzero divergence values only close 
to the boundaries. A similar result is obtained with the 
TU Delft VIC + and TSA algorithms, although a more 
complex pattern is obtained, with zero divergence only 
sufficiently away from the boundaries. Instead, the result 
from linear interpolation yields velocity divergence values 
well above 1 Hz (median value of |∇ ∙ V| equal to 21 Hz), 
indicating that the velocity field does not satisfy the con-
servation of mass.

Fig. 11  Vertical profiles of vorticity magnitude at X = –11.2 mm and 
Y = –0.2 mm, for the ppp = 0.025 case

Fig. 12  Bias (left) and random (left) error of the vorticity magnitude as a function of the ppp. The symbol keys apply to both plots
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4.1.3  Static pressure

4.1.3.1 Static pressure in the flow field The pressure gradi-
ent is related to the Lagrangian acceleration via the Navier–
Stokes equations; evaluation of the pressure field is typi-
cally conducted either via direct integration of the pressure 
gradient or by solving the Poisson equation for pressure 
(van Oudheusden 2013). Hence, errors in the Lagrangian 
acceleration propagate to the pressure, although the integra-
tion operator is expected to attenuate the contribution of the 
random errors. Figure 14 illustrates the static pressure field 
in a plane close to the centreline (Y = –0.2 mm) for the inter-
mediate seeding density case (ppp = 0.025), along with the 
corresponding error fields (right column). The ground-truth 
field shows the presence of three large low-pressure regions 
at X = –0.04 m, –0.01 m and + 0.026 m, respectively, associ-
ated with vortices shed by the cylinder. The minimum pres-
sure values within these regions are about –180 Pa, –220 Pa 
and –60 Pa, respectively, corresponding to 80%, 100% and 

30% of the free-stream dynamic pressure ( q∞ = 221.8 Pa). 
Additionally, smaller flow features with low pressure are pre-
sent near X = –0.03 m. All algorithms are capable to repro-
duce the large low-pressure structures, although not always 
with the correct pressure magnitude. Most algorithms return 
correct values of the pressure peak typically within 10%; 
however, the linear interpolation result1 overestimates the 
pressure peak at the upstream edge of the domain by 30% 
and underestimates the pressure peak at X =  + 0.026 m by 
50%. The error fields, presented in the second column of 
Fig. 14, show that the errors are mainly random, although 
some peaks as high as 50 Pa (or over 20% of the free-stream 
dynamic pressure) occur at the locations of the low-pressure 

Fig. 13  Absolute value of the divergence of the velocity in Hz at Y = –0.2 mm for the ppp = 0.025 case. The colorbar at the bottom applies to all 
contours

1 The linear interpolation result is obtained by first computing the 
velocity and Lagrangian acceleration fields based on linear interpola-
tion of the particle information, then computing the pressure gradient 
as ∇p = −�DV∕Dt , and finally solving the Poisson equation for pres-
sure with Neumann boundary conditions.
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structures at X = –0.03 m and X = –0.01 m. In the result of 
the linear interpolation algorithm, the pressure error shows 
a clear gradient in the horizontal direction, which is attrib-
uted to an erroneous estimation of the data at the location 
where boundary conditions are imposed.

The quantitative analysis of the errors, illustrated in 
Fig. 15, confirms that the random errors dominate over the 
bias errors. The latter are typically in the range [–5, 5] Pa, 
except for the linear interpolation approach. As expected, 
the accuracy of the pressure reconstruction increases 
with the seeding density, thus yielding a reduction of the 

random error component (Fig. 15-middle). However, the 
random errors curves decrease rapidly up to ppp = 0.025, 
whereas they flatten for higher seeding concentrations. 
At ppp = 0.16, the random errors from the different algo-
rithms range between 4 Pa (less than 2% of q∞ , achieved 
with the DLR algorithm) and 18 Pa (8% of q∞ , obtained 
with the linear interpolation approach). Also, it is noticed 
that the use of temporal information in the data assimila-
tion algorithm slightly improves the pressure reconstruction 
(see comparison between LaVision 3D and LaVision 4D 
results, where the latter always yields lower random errors). 

Fig. 14  Static pressure field (left column) and error of the static 
pressure (right column) at the plane Y = –0.2  mm, for the case 
ppp = 0.025. First row: ground-truth result. The values in the color-

bars are in Pascal. The colorbars at the bottom apply to all the con-
tours of the same column. The free-stream dynamic pressure is equal 
to q

∞
= 221.8 Pa
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The cross-correlation coefficients between the participants’ 
results and the ground-truth pressure field (Fig. 15-right) 
confirm the capability of the data assimilation algorithm to 
accurately reconstruct the larger-scale features in the pres-
sure field. For the two higher seeding concentrations, the 
cross-correlation coefficient is close to or above 0.8, with 
values even exceeding 0.95 especially at ppp = 0.160. As 
anticipated, the pressure reconstruction is more challenging 
at the lowest seeding concentration due to the low measure-
ment spatial resolution; in these conditions, the cross-corre-
lation coefficients range between 0.81 (TU Delft VIC + algo-
rithm) and 0.93 (LaVision 4D algorithm).

4.1.3.2 Surface static pressure The evaluation of the static 
pressure on the surface of solid objects is of great relevance 
in aerodynamics and fluid–structure interaction problems 
because it enables to characterize the spatial distribution of 
the aerodynamic loads. Unfortunately, computing the sur-
face pressure often involves even more challenges than eval-
uating the static pressure in the flow field, because of the 
small magnitude of the wall pressure fluctuations, the large 
velocity gradients in the boundary layer and the presence of 
unwanted light reflections. The ground-truth pressure field 
in close proximity of the rigid wall (Z = 0.01  mm), illus-
trated in Fig. 16-top for the intermediate seeding concentra-
tion case (ppp = 0.025), confirms that indeed the pressure 
variations on the surface are a small fraction of those in the 
flow field; a high-pressure region (pressure values exceed-
ing 10  Pa) is visible in the upstream half of the domain, 
with an inclination of about 45° with respect to the free-
stream direction. Additionally, small-scale flow structures 
are visible, with pressure values varying between –30 and 
30 Pa. The results of the different participants, shown in the 
first column of Fig. 16, confirm the complexity of the sur-
face pressure reconstruction problem. The result from DLR 
shows a clear similarity to the ground-truth surface pres-
sure field, especially for what concerns the high-pressure 
region in the upstream half of the domain. However, spatial 

modulation effects are present which attenuate the pres-
sure peaks; also, most of the small-scale pressure fluctua-
tions are not resolved. The pressure results from LaVision 
(both 3D and 4D) and TU Delft VIC + exhibit some similar-
ity to ground-truth result, although they fail to reproduce 
correctly the high-pressure region. The magnitudes of the 
errors on the estimated pressure, illustrated in the second 
column of Fig. 16, are of the same order as the actual pres-
sure fluctuations. Finally, the surface pressure fields from 
linear interpolation exhibit the largest differences from the 
ground-truth results. In this case, the errors on the estimated 
pressure even exceed the actual pressure fluctuations, indi-
cating that the approach is unsuited for the evaluation of the 
surface pressure.

The quantitative analysis of the mean bias error, random 
error and cross-correlation coefficient with the ground-truth 
surface pressure field is presented in Fig. 17. The surface 
pressure errors are in a similar range as the errors in the rest 
of the flow field shown in Fig. 15 (bias errors: between –10 
and 10 Pa; random errors: between 5 and 20 Pa). However, 
because of the smaller magnitude of the surface pressure 
fluctuations, the cross-correlation coefficient drops signifi-
cantly to values below 0.8. The largest cross-correlation 
coefficient (0.8) is obtained with the DLR algorithm and is 
rather independent of the seeding density; in contrast, the 
other approaches return cross-correlation coefficient values 
below 0.6, which further drop to even negative values (TUD 
VIC + algorithm) at the lowest seeding concentration, con-
firming the poor surface pressure reconstruction accuracy 
in this condition.

Finally, the results of the spectral analysis on the surface 
pressure are illustrated in Fig. 18 for the three ppp levels. 
A clear trend is visible of increasing agreement between 
ground-truth and participants’ results at increasing seeding 
concentration. However, some algorithms (DLR, LaVision 
3D and LaVision 4D) underestimate the pressure fluctua-
tions at all wave numbers, whereas the linear interpola-
tion approach tends to overestimate them, thus resulting 

Fig. 15  Mean bias error (left), random error (middle) and cross-
correlation coefficient with respect to the ground truth (right) of the 
static pressure, evaluated at plane Y = –0.2 mm, as a function of the 

ppp. The errors and cross-correlation coefficient are evaluated over 
the entire measurement domain, excluding a border of 4 mm (10 grid 
points) at the outer edges. The symbol keys apply to all plots
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in noisier pressure fields. The pressure spectrum of the 
TUD VIC + algorithm agrees well with the ground-truth 
result at the two larger seeding concentrations, whereas at 

ppp = 0.005 it overestimates the pressure fluctuations at the 
lower wave numbers (k < 20  m−1) and underestimates them 
at the higher wave numbers.

Fig. 16  Surface static pressure field (left column) and error of the 
static pressure (right column), evaluated at Z = 0.01  mm from the 
wall, for the case ppp = 0.025. First row: ground-truth result. The val-

ues in the colorbars are in Pascal. The colorbars at the bottom apply 
to all the contours of the same column
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4.2  Flexible panel case (metal plate)

The data assimilation results of the metal plate, with low 
marker concentration on the plate (LD case), are discussed 
here, for the three ppp values of 0.02, 0.08 and 0.16 of the 
flow seeding density. In Fig. 19, we illustrate the stream-
wise velocity component in the spanwise median plane 
(Y = 0 mm), for the lowest (left column) and the highest 
(right column) flow seeding concentrations. We recall that, 
for the present flexible panel case, it has been chosen to 
consider a virtual setup with air as the working fluid, with a 
free-stream velocity U∞ = 10m∕s , as in the numerical sim-
ulation. Also, as mentioned in Sect. 2.4, even though the 
lower wall has a curvilinear shape at the considered instant, 
for simplicity of the post-processing, the requested output 
has also been chosen on a parallelepipedal domain, similar 
to the fixed panel case. Therefore, contrary to the preced-
ing case, a part of the near-wall region is not included in 
the analysis here. The presence of a vertical (wall-normal) 
velocity gradient is evident, where the higher velocities 
above the free-stream value are found in the top of the meas-
urement domain, whereas the velocity decreases to zero at 

the wall. The flow is clearly turbulent, with large fluctuations 
attributed not only to the turbulent boundary layer, but also 
to the Kármán vortex street in the wake of the cylinder. The 
results from all the data assimilation algorithms reproduce 
correctly the main flow feature of the ground-truth velocity 
field; however, as expected and similar to the fixed panel 
case, the results obtained at the lowest seeding concentra-
tion (left column) exhibit larger spatial modulation effects 
and therefore underestimate the velocity fluctuations in the 
flow field.

When looking at the static pressure contour at the median 
plane (Fig. 20), relatively high pressure is found at the loca-
tion of the panel centre (X = 0), from which the pressure 
decreases radially. Such high static pressure is ascribed 
to the downward deflection of the panel at the considered 
time instant, which induces a local deceleration of the flow. 
Additionally, a low-pressure structure is located at about 
–0.04 m < X < –0.03 m, which is caused by a vortex shed 
by the cylinder. All data assimilation algorithms correctly 
reproduce both the high-pressure region induced by the 
panel deflection and the low-pressure region in the vortex 
core, although, as expected, the pressure peak in the latter 

Fig. 17  Mean bias error (left), random error (middle) and cross-correlation coefficient with respect to the ground truth of the surface pressure, 
evaluated in the plane Z = 0.01 mm, as a function of the ppp. The symbol keys apply to all plots

Fig. 18  Power spectral density of the surface static pressure, 
evaluated in the plane Z = 0.01  mm. Left: ppp = 0.005; middle: 
ppp = 0.025; right: ppp = 0.16. The bottom horizontal axis represents 
the wavenumber, while the top horizontal axis represents the corre-

sponding wavelength. The dashed vertical line, when present, corre-
sponds to the wavenumber (or wavelength) associated with the aver-
age inter-particle spacing. The symbol keys apply to all plots
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is attenuated, especially at the lowest seeding concentration. 
To quantify the errors of the estimated velocity and static 
pressure, a vertical profile passing through the vortex core 
(X = –0.34 mm) is extracted; the velocity and static pres-
sure along this profile are shown in Fig. 21. The velocity 
results, illustrated in Fig. 21-left, show a good agreement 
between the ground-truth velocity and those estimated by 
the different data assimilation algorithms, with the peak 
velocity values correctly reproduced; however, at the low-
est seeding concentration ppp = 0.02, the estimated veloci-
ties exhibit unphysical oscillations in the flow zone above 
the vortex (Z > 20 mm), similar to Gibbs phenomenon for 
Fourier analysis (Helmberg 1994). The pressure results, 
shown in Fig. 21-right, illustrate the effect of spatial mod-
ulation in the computed pressure fields: although the two 

low-pressure peaks at Z = 16 mm and Z = 10 mm are cor-
rectly reproduced, their actual values are underestimated by 
up to 20% at ppp = 0.16 and 30% at ppp = 0.02. Small differ-
ences among the data assimilation algorithms are noticed, 
with the highest accuracy achieved via the use of temporal 
information (LaVision 4D algorithm), and higher modula-
tion effects obtained with the DLR algorithm.

Figure 22 summarizes the mean bias and random errors 
of the velocity magnitude (left) and static pressure (right) 
for the three algorithms at the three ppp values. As expected, 
the errors decrease with increasing ppp, which is ascribed to 
the ability to resolve smaller length scales in the flow when 
the seeding concentration is higher. Also, especially at the 
higher ppp, the use of the temporal information in the data 
assimilation algorithm (LaVision 4D) enhances the accuracy 

Fig. 19  Comparison of contours of the streamwise velocity compo-
nent in m/s at the median plane Y = 0  mm. Top row: ground-truth 
flow field (velocity field only showed in the domain where the partici-
pants’ outputs were requested); second row: LaVision 3D evaluation; 
third row: LaVision 4D evaluation; fourth row: DLR evaluation. Left: 

results at ppp = 0.02; right: results at ppp = 0.16. The position of the 
deformed panel is shown as a continuous black line in the ground-
truth result. The vertical dashed line indicates the location of the 
profile where velocity values are extracted for the analysis in Fig. 21. 
The colorbar applies to all contours
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of the results, leading to smaller errors with respect to the 
LaVision 3D and DLR algorithms. For the velocity, the 
mean bias errors are within 0.1 m/s or 1% of the free-stream 
velocity, whereas the random errors decrease from about 
1 m/s (10% Vꝏ) at the lowest ppp to below 0.5 m/s (5% Vꝏ) 
at the highest ppp. For the static pressure, instead, larger dif-
ferences among the data assimilation algorithms are noticed: 
the DLR algorithm yields the largest mean bias errors (12 
to 9 Pa, or 20% to 15% of the free-stream dynamic pressure 
q∞ = 61 Pa), whereas lower mean bias errors (4 to 8 Pa, 6.6% 
and 13% of qꝏ) are achieved with the LaVision 3D and 4D 
algorithms. The bias errors are larger than the random errors, 
which remain between 3 and 6 Pa for the DLR algorithm, 
and between 2 and 5 Pa for the LaVision algorithms. It is 
noticed that the latter result is opposite to that discussed for 

the static panel case discussed in Sect. 4.1.3, whereby the 
random errors were larger than the systematic errors. In this 
case, the downward deflection of the panel causes a decel-
eration of the flow and therefore a pressure increase above 
the panel, whose magnitude is underestimated by the differ-
ent DA algorithms, thus yielding large systematic errors of 
the static pressure.

From the analysis of the power spectra of the wall-normal 
velocity component  VZ, illustrated in Fig. 23, the different 
accuracies of the velocity reconstructions at different ppp 
values emerge. As expected, the power spectra from data 
assimilation algorithms agree with the ground-truth spec-
trum at the lowest wave numbers (larger wave lengths λ). 
Instead, at higher wave numbers, the reconstructed flow 
fields strongly modulate the velocity fluctuations, resulting 

Fig. 20  Comparisons of contours of the static pressure in Pa at the 
median plane Y = 0  mm. Top row: ground-truth flow field (pres-
sure field only showed in the domain where the participants’ outputs 
were requested); second row: LaVision 3D evaluation; third row: 
LaVision 4D evaluation; fourth row: DLR evaluation. Left: results at 

ppp = 0.02; right: results at ppp = 0.16. The position of the panel is 
shown as a continuous black line in the ground-truth result. The ver-
tical dashed line indicates the location of the profile where pressure 
values are extracted for the analysis in Fig. 21. The colorbar applies 
to all contours
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in lower values of the power spectra. In particular, at the 
lowest ppp of 0.02, the measured spectra start departing 
from the ground-truth one already at k ~ 160  m−1 (λ ~ 6 mm) 
(DLR algorithm) or around k ~ 200  m−1 (λ ~ 5 mm) (LaVi-
sion 3D or LaVision 4D). Instead, at the higher ppp val-
ues, the measured spectra follow the ground-truth one up 
to k ~ 300  m−1 (λ ~ 3 mm) at ppp = 0.08 and k ~ 360  m−1 
(λ ~ 2.8 mm) at ppp = 0.16, hence enabling to resolve accu-
rately flow length scales as small as 1/3 of the cylinder 
diameter or four times the inter-particle distance. For this 
spectral analysis, only minor differences are noticed when 

making use of the temporal information in the data assimila-
tion approach (LaVision 4D vs LaVision 3D approaches).

Figure 24 shows the ground-truth panel position (left 
column) and surface pressure (right column) for the ground 
truth (top row) and the different data assimilation algo-
rithms. The considered seeding density is ppp = 0.02. It 
is remarked here that the indicated seeding density corre-
sponds to the concentration of tracer particles in the flow 
(not on the panel surface); hence, its variation is expected 
to have negligible effect on the accuracy of the reconstruc-
tion of the panel position. At the considered time instant, 

Fig. 21  Vertical profiles of instantaneous streamwise velocity (left) and static pressure (right) at X = –34 mm and Y = 0 mm. The symbol keys 
apply to both plots

Fig. 22  Mean bias and random (std) error of the velocity magnitude (left) and of the static pressure (right) in the flow field, as a function of the 
ppp. The symbol keys apply to both plots
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the panel is deflected downwards reaching Z = –4.75 mm 
at its centre. The panel position is reconstructed with very 
high accuracy by all data assimilation algorithms, with only 
minor differences with respect to the true position, mainly at 
the panel edges; this indicates that the number of markers on 
the panel is large enough compared to the shape complexity 
of the panel, that is indeed characterized by only large-scale 
variations. The surface pressure is the minimum towards 
the upstream edge the panel (X < –40 mm) and reaches its 
maximum value pmax = 23 Pa at the panel centre due to the 
flow deceleration caused by the panel deflection. The recon-
structed surface pressure field (Fig. 24 right) reproduces cor-
rectly the trend of the ground-truth surface pressure, and 
in particular the low pressure at the upstream edge of the 
domain and the high pressure at the centre of the panel; how-
ever, the magnitudes of both the minimum and the maximum 
pressure values are clearly underestimated.

To quantify the accuracy of the data assimilation algo-
rithm, profiles of the panel position and surface static pres-
sure are extracted along X = 0 mm and presented in Fig. 24. 
The deflection of the panel, shown in Fig. 24-left, is cor-
rectly captured by all algorithms with an accuracy within 
10 μm, which is only slightly higher than the noise added to 
the marker positions, equal to 0.1 px = 8.67�m . It should be 
noticed that, in Fig. 24-left, the results of the LaVision 3D 
algorithm are not visible because, due to the slow motion of 
the panel, they coincide with those of the LaVision 4D algo-
rithm. Larger discrepancies are instead encountered in the 
static pressure result illustrated in Fig. 24-right: the ground-
truth pressure field exhibits a pressure peak of 24 Pa at Y = 0. 
Although the presence of the pressure peak is retrieved by all 
the data assimilation algorithms, its value is underestimated 
by 45% to 65% depending on the seeding concentration and 

the algorithm employed. As expected, the largest modulation 
occurs at the lowest seeding density of ppp = 0.02. Among 
the different algorithms, the highest accuracy is achieved via 
the LaVision 3D and 4D evaluations (Fig. 25).

A quantitative analysis of the mean bias and random 
errors of the panel position and surface pressure are reported 
in Fig. 26, considering the DLR, LaVision 3D and LaVision 
4D algorithms and the three ppp values. The position errors 
(Fig. 26-left) are independent of the ppp and the data assimi-
lation algorithm, and attain values of –5 μm and 5 μm for 
the mean bias and random components, respectively, which 
correspond to 0.1% of the panel maximum deflection or 
less than 60% of the random noise of the markers (equal to 
0.1 px = 8.67�m ). Such a behaviour is quite logical as the 
marker density is the same throughout, but also indicates 
that the accuracy of marker detection was not affected by 
the increase in particle density. Also for the surface pressure 
(Fig. 26-right), the results obtained with the three algorithms 
show similar trends. The increase of ppp yields a decrease 
of the random errors in the range 8 Pa to 3 Pa (16% to 5% of 
q∞). The DLR algorithm exhibits mean bias errors between 
12 and 9 Pa decreasing with the seeding concentration, 
whereas for the LaVision algorithms the mean bias error 
slightly increases in magnitude, especially for the LaVision 
4D algorithm, reaching –4 Pa at the highest ppp.

5  Conclusions

This work presents an assessment of the accuracy of data 
assimilation algorithms for the dense reconstruction of flow 
fields, conducted within the framework of the European 
Union Horizon 2020 project HOMER (Holistic Optical 

Fig. 23  Power spectra of the wall-normal velocity component  VZ. 
Left: entire spectra; right: detail for wave numbers between 100 and 
410  m−1. The symbol keys apply to both plots. It is reminded that the 

average inter-particle distances for cases ppp = 0.02, 0.08 and 0.16 
are λ = 1.3 mm, 0.82 mm and 0.65 mm, respectively, corresponding 
to wave numbers k = 769  m−1, 1220  m−1 and 1538  m−1, respectively
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Fig. 24  Panel Z-position in mm (left) and surface pressure in Pa 
(right). First row: ground-truth result; second row: LaVision 3D 
evaluation; third row: LaVision 4D evaluation; fourth column: DLR 
evaluation. All evaluations are conducted at ppp = 0.02. The dashed 

vertical line represents the location of the profile extracted for the 
analysis presented in Fig. 25. The colorbars at the bottom apply to all 
the contours of the same column
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Metrology for Aero-Elastic Research). The assessment made 
use of a synthetic experiment reproducing the wall-bounded 
flow in the wake of a cylinder, considering both the cases of 
rigid wall and flexible panel, with the latter oscillating at a 
frequency comparable to frequency of the vortex shedding 
from the cylinder. The particle positions along their trajecto-
ries were provided to the research groups participating in the 
flow field reconstructions. For the rigid wall case, three data-
sets were considered, representative of experiments from 
very low (ppp = 0.005) to very high (ppp = 0.16) seeding 
concentration. For the flexible panel case, the seeding den-
sity was varied in the range of ppp values between 0.02 and 
0.16; the case analysed consisted of a metal plate with low 

density of surface markers. The requested output quantities 
were the three velocity components, the nine components 
of the velocity gradient tensor and the static pressure, all 
defined in a Cartesian grid of h = 0.4 mm grid spacing.

Three research groups took part to the analysis of the data 
of the rigid wall case, namely DLR, LaVision GmbH and 
TU Delft. The latter two groups submitted results with two 
algorithms each, which make use of instantaneous informa-
tion only (LaVision 3D and TUD VIC + algorithms) or also 
of information from previous and successive time instants 
(LaVision 4D and TUD TSA algorithms). The velocity 
fields estimated by the different data assimilation algorithms 
showed good agreement with the ground-truth velocity field, 

Fig. 25  Left: Detail of the panel Z-deflection along a vertical profile (only -8 mm ≤ Y ≤ 8 mm shown for sake of clarity) at X = 0 mm. Right: sur-
face pressure on the panel along a vertical profile at X = 0 mm

Fig. 26  Mean bias and random (std) error of the reconstructed Z-position of the panel (left) and of the surface static pressure on the panel 
(right), as a function of the ppp. The symbol keys apply to both plots
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with errors between 3 and 11% of the bulk velocity Vꝏ, 
depending on the seeding concentration and the data assimi-
lation algorithm. Overall, the difference in velocity errors 
among the different DA algorithms was mostly with 2% of 
V∞ , indicating that no algorithm exhibited clearly superior 
accuracy to the others. As the flow kinetic energy is mainly 
contained in the larger flow structures, these errors are of 
similar magnitude as those achieved when using the con-
ventional linear interpolation of the particle velocities onto 
the output Cartesian grid. Hence, in the present quite ideal 
case where position noise is low and no outliers are pre-
sent, it can be concluded that, because of its simplicity and 
negligible computational cost compared to the DA method, 
and depending on the particle density in the input data, lin-
ear interpolation can be considered a valid alternative when 
lower accuracy of the reconstructed flow fields is considered 
acceptable. However, the spectral analysis revealed that the 
use of the data assimilation algorithms enables to increase 
the range of resolved length scales by factors 3 to 4 with 
respect to the linear interpolation approach. The analysis 
of the velocity gradients highlighted the presence of bias 
and random errors of 100–150 Hz or 10–15% of the typical 
vorticity magnitude peaks. As expected, both error compo-
nents decrease with increasing seeding concentration; how-
ever, even at the highest ppp of 0.16, bias and random errors 
exceeding 20 Hz and 80 Hz, respectively, are obtained. As 
expected, the linear interpolation of the particle velocities 
yielded the largest modulation of the velocity gradients, 
with peak vorticity values underestimated by over 25% 
with respect to the better-performing DA algorithm (in the 
specific case, LaVision 4D). Finally, the evaluated pressure 
featured bias errors within ± 5 Pa and random errors between 
5 and 15 Pa. A better agreement with the actual pressure 
field was achieved away from the wall, whereas on the solid 
surface the agreement decreased due to the lower magnitude 
of the pressure fluctuations. In this case, the FlowFit2 algo-
rithm from DLR exhibited the best performances, yielding a 
cross-correlation coefficient with the ground-truth pressure 
result exceeding 0.9 away from the wall, and of about 0.8 on 
the rigid wall. For the other DA algorithms, the accuracy of 
the surface pressure reconstruction was significantly lower, 
with cross-correlation coefficient values between 0 and 0.6.

The data of the datasets with a flexible panel on the 
ground were analysed by the LaVision and DLR research 
groups. Also in this case, LaVision proposed two data 
assimilation algorithms, without (LaVision 3D) and with 
(LaVision 4D) the use of information from previous and 
successive time instants. The analysis of the results showed 
that the evaluated velocity suffered from errors of up 10% of 
Vꝏ, whereas the pressure errors were up to 20% of qꝏ. These 
errors decrease with increasing seeding concentration, with 
minimum errors of 5% of Vꝏ for the velocity and 7% of qꝏ 
for the static pressure. The use of the temporal information 

in the data assimilation algorithm (LaVision 4D vs LaVision 
3D) yielded a slight increase in the measurement accuracy 
especially for the velocity, quantified in a reduction of the 
measurement error between 5 and 10% of V∞ . When look-
ing at the spatial power spectra of the velocity fluctuations, 
it was noticed that the higher ppp enabled to resolve accu-
rately smaller turbulent structures in the flow. Flow scales 
of at least four times the inter-particle distance were cor-
rectly reconstructed with the DA algorithms. The panel posi-
tion could be reconstructed within 10 μm accuracy (0.2% 
of the peak displacement) with all algorithms at the three 
ppp values, close to the value of the random noise added 
to the marker positions. The reconstructed surface pressure 
followed closely the trend of the ground-truth value, but 
exhibited both bias and random errors of the order of 10% 
 qꝏ, with clear modulation of the pressure peak value at the 
centre of the panel.

The data presented here as well as the additional datasets 
for the flexible panel test case (e.g. rubber panel, other val-
ues of markers densities, separate imaging systems for flow 
tracers and particle markers) will be made available online 
for download at https:// www. onera. fr/ flow- bench marks; 
in this dedicated online portal, the users can upload their 
flow results to obtain an automatic assessment of their data 
assimilation algorithms in terms of errors of the estimated 
velocity, pressure and panel position; the online portal also 
provides test cases with automatic evaluation for particle 
tracking algorithms (Leclaire et al. 2022).
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