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1 Introduction

The Lovász theta number ϑ was originally defined in [14], where it was used as
an upper bound on the Shannon capacity of a graph. The Shannon capacity [20]
is important in coding theory, as it essentially dictates how efficient information
can be sent through a noisy channel, without the possibility of errors. Since
there is currently no algorithm known to determine the Shannon capacity of an
arbitrary graph, upper bounds, such as the Lovász theta number, are useful for
both finding bounds on the Shannon capacity in practical applications, and for
investigating properties of the Shannon capacity.

In a more general setting, ϑ is an upper bound on the independence number of
a graph. Since the independence number is hard to compute [11], and frequently
occurs in discrete optimization problems, upper bounds can, again, provide
useful information.

ϑ is not the only upper bound on the independence number of a graph.
Schrijver, for example, introduced a strengthening of this upper bound, ϑ−,
in [16]. On the other hand, Szegedy introduced a weakened version ϑ+ of the
theta number in [8]. In recent years, these three functions, especially ϑ−, have
been extremely useful in solving hard optimization problems. For example,
a similar bound was used to prove upper bounds on the kissing number [15].
Another application is the Cohn-Elkies bound on the sphere packing density
[2]. This upper bound shares a remarkable similarity with the bound ϑ− on the
independence number. In 2022, Viazovska was awarded the Fields medal for
her proof of the optimal sphere packing density in dimensions 8 and 24. Her
proofs [21], [4] made use of the Cohn-Elkies bound.

A reason for the widespread use of the functions ϑ, ϑ− and ϑ+, is that they
have several useful mathematical properties. In particular, their multiplicity
under graph products makes them useful for proving bounds on the indepen-
dence number for certain, large graphs. In [3], Cohn, de Laat and Salmon used
a procedure similar to the multiplicity of ϑ− under the disjunctive graph prod-
uct, among other changes, to improve the Cohn-Elkies bound for lattice sphere
packings.

Even though it is proven that ϑ− is multiplicative under the disjunctive graph
product, there currently exists no dual construction that attains the optimal
value of ϑ−(G ∗ H), given optimal solutions to ϑ−(G) and ϑ+(G). The goal
of this thesis is to present such a dual construction. Although the presented
construction does not work on all graphs, there is reason to believe that a
similar construction will work for the Cohn-Elkies bound.

In section 2, the background information needed to work with ϑ and its vari-
ants is given. Some basic concepts from semidefinite optimization are treated,
and definitions from graph theory are given that will be used in the rest of the
thesis.

After that, in section 3, the functions ϑ, ϑ− and ϑ+ will be defined, and
their relationship to the independence number and clique cover number is shown.
Then, some properties of ϑ, ϑ− and ϑ+ that hold for all vertex-transitive graphs
are proved. A new proof is provided for the equation ϑ−(G)ϑ+(G) = |VG|.
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Section 4 is dedicated to the multiplicity of ϑ, ϑ− and ϑ+. Firstly, some
proofs for the multiplicity of ϑ, ϑ− and ϑ+ are given. A construction is then
given, that under an additional assumption shows the multiplicity of ϑ− using a
minimization formulation. It will subsequently be shown that even though this
additional assumption does not hold for arbitrary graphs, all cyclic graphs have
solutions that satisfy this condition.

In section 5, it will be shown that for abelian graphs, the computation of
ϑ, ϑ− and ϑ+ reduces to solving a linear program. This linear program is used
to prove an upper bound on the spectral gap achievable by optimal solutions to
the dual semidefinite program for ϑ− using Fourier inversion. This lower This is
an indication that the construction for the multiplicity of ϑ− given in section 3
is likely to hold when graphs are sparse, and have abelian automorphism groups.

Lastly, in section 6, the Delsarte linear programming bound [7] is used to
show that generally the construction does not work for Hamming graphs, and a
conjecture is formulated that asymptotically the construction works if and only
if the Hamming graph is defined in a certain way.
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2 Background information

2.1 Linear and semidefinite programs

A linear program (LP) is an optimization problem with linear inequalities as
constraints.

Definition 1 (LP). A linear program is an optimization problem, that aims to
either maximize, or minimize a linear combination of some variables. These
variables have to satisfy some linear inequalities. For each primal maximization
LP, as given in equation (1), there is a dual minimization LP, given in equation
(2).

max z = cTx s.t.

Ajx = bj ∀j ∈ M

Ajx ≥ bj ∀j ∈ M

Ajx ≤ bj ∀j ∈ M̃

xk ≥ 0 ∀k ∈ N

xk ≤ 0 ∀k ∈ Ñ

xk ∈ R ∀k ∈ N

(1)

minw = bT y s.t.

yj ∈ R ∀j ∈ M

yj ≥ 0 ∀j ∈ M

yj ≤ 0 ∀j ∈ M̃

(AT )ky ≤ ck ∀k ∈ N

(AT )ky ≥ ck ∀k ∈ Ñ

(AT )ky = ck ∀k ∈ N

(2)

Usually, primal and dual LPs have the same value [1, p. 66]. This is called
strong duality.

Theorem 1 (LP duality). LPs (1) and (2) have the same optimal value, z = w,
if this value exists and is finite.

A way of generalizing LPs is to add constraints that variables have to lie
inside some convex cone. Surprisingly, it can be shown that for many such
problems duality still holds in a way. One particularly interesting class of convex
cones in combinatorial optimization are positive semidefinite (PSD) matrices of
a fixed dimension.

Definition 2 (PSD). Let Sn denote the set of symmetric n× n matrices. Let
Sn
+ denote the set of symmetric matrices A such that xTAx ≥ 0 for all x ∈ Rn.

Matrices A such that xTAx ≥ 0 for all vectors x are called positive semidefinite
(PSD).

Because of the spectral theorem, symmetric matrices are PSD if and only
if all eigenvalues are nonnegative. We are now able to define semidefinite pro-
grams.

Definition 3 (SDP). A semidefinite program (SDP) aims to either maximize,
or minimize a linear combination of the entries of a matrix A, provided that the
entries satisfy a set of linear equalities, and A ∈ Sn

+. Similar to LPs, for each
primal maximization SDP, as given in equation (3), a dual minimization SDP,
given by equation (4), can be defined.
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sup z = Tr(CA) s.t.

A ∈ K,

Tr(BiA) = bi ∀i ∈ M.

(3)

inf w = bT y s.t.

y ∈ RM ,∑
j∈M

yjBj − C ∈ Sn
+.

(4)

SDPs are a subclass of conic programs, a type of optimization problem.
Hence, several results from conic optimization can be used. Although a pair of
primal and dual SDPs do not have the same optimal value in general, Slater’s
criterion, as stated in [13, p. 40], gives a sufficient condition for when a pair of
primal and dual conic programs have the same optimal value. This theorem can
be applied to SDPs.

Theorem 2 (Slater’s criterion). Suppose we have a pair of primal and dual
conic program. Let z be the supremum of the primal, and w be the infimum of
the dual.

• If the dual conic program is bounded from below, and if it is strictly feasible,
then the primal conic program attains its supremum, and z = w.

• If the primal conic program is bounded from above, and if it is strictly
feasible, then the dual conic program attains its infimum, and z = w.

To show strict feasibility for primal SDPs, as given in (3), it must be shown
that a feasible solution A exists, that has strictly positive eigenvalues. Similarly,
to show strict feasibility for dual SDPs, as given in (4), it must be shown that
a feasible solution y exists, such that the matrix

∑
j∈M yjBj − C has strictly

positive eigenvalues.
Suppose all values on the i-th row and column of a matrix A, except the

value on the diagonal, are 0. Then the value on the diagonal is an eigenvalue,
and A ∈ Sn+1

+ ⇔ Aii ≥ 0 ∧ Aii ∈ Sn
+, where Aii is the matrix obtained

by removing the i-th row and column from A. Because of this, we can add
linear inequalities to an SDP by formally adding new variables to the diagonal,
and adding constraints to ensure this variable has the same value as the linear
combination of the variables in the inequality. It can furthermore be shown that
strict inequality in these linear inequalities is not required for Slater’s criterion
to show that there is no duality gap between the primal and dual SDPs.

There exist algorithms to solve SDPs with polynomial time complexity in
both the input size, and the logarithm of the precision. The first of these
algorithms was the ellipsoid method [9], but nowadays, much faster algorithms
exist, using interior point methods.

2.2 Graph theory preliminaries

We will consider finite, simple graphs G = (VG, EG), where VG is the vertex set,
and EG the edge set. EG is the set of simple edges that are not in EG. The
complement graph of G is defined as G = (VG, EG). A graph automorphism is
defined as follows.
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Definition 4 (Graph automorphisms). A graph automorphism ρ is a permu-
tation of the vertices VG such that (i, j) ∈ EG ⇔ (ρ(i), ρ(j)) ∈ EG. The set of
automorphisms of G is denoted Aut(G).

Figure 1: An example of an automorphism ρ, that swaps the vertices A and B.

A special set of graphs are graphs in which for each pair of vertices i, j,
there exists an automorphism that maps i onto j. These graphs are called
vertex-transitive.

Definition 5 (Vertex-transitive graphs). A graph G is called vertex-transitive,
if for all i, j ∈ VG there is a ρ ∈ Aut(G) such that ρ(i) = j.

In many optimization problems, the independence number α or the clique
cover number χ of a graph are important. These functions α(G) and χ(G) can
give meaningful insight into the structure of a graph.

(a) The Petersen graph has independence
number 4

(b) The Petersen graph has clique cover
number 5

Definition 6 (Independence number). Let G be a graph. An independent set S
of G is a subset of VG, such that for every pair i, j ∈ S, it holds that (i, j) /∈ EG.
The independence number α(G) is the maximum cardinality among independent
sets of G.

Definition 7 (Clique cover number). Let G be a graph. A clique S of G is a
subset of VG, such that for every disjoint pair i, j ∈ S, it holds that (i, j) ∈ EG.
The clique cover number χ(G) is the smallest cardinality of subsets of the cliques
of G such that each element of VG is in precisely one of the selected cliques.

Computing the independence number of arbitrary graphs, and computing
the clique cover number of arbitrary graphs are NP-complete problems, and are
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thus not practically computable for large graphs [11]. To still get an insight into
the structure of large graphs, heuristic algorithms, or approximation algorithms
can be used. A mathematically particularly interesting technique for this prob-
lem are SDP-based relaxations of the independence number and clique cover
number. Since SDPs are continuous optimization problems, instead of discrete
optimization problems, and have well-known properties, these relaxations can
be useful in mathematical proofs.
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3 The Lovász theta function, and its variants

3.1 Definition of ϑ, ϑ− and ϑ+

In [14], Lovász introduced the SDP-based function ϑ as an upper bound on the
independence number of a graph. He proceeds to show that, due to a remarkable
property of this function, ϑ is also an upper bound on the Shannon capacity of
a graph. For some graphs, such as the 5-cycle C5, this bound is equal to the
Shannon capacity. Although ϑ is generally not equal to the Shannon capacity,
it can be very hard to show that a lower bound on the Shannon capacity exists
for an arbitrary graph. Such graphs, for which equality does not hold, were first
discovered by Haemers, in [10]. He showed that there exists a graph with 84
vertices, for which the rank-based Haemers bound on the Shannon capacity is
lower than the Lovász theta function ϑ. However, the Haemers bound is hard to
compute for arbitrary graphs, and does not have some of the useful properties
of ϑ.
The Lovász theta function ϑ is defined as follows.

Definition 8. Suppose G is a (finite) graph. Let MG be the set of |VG| × |VG|
matrices A satisfying

Ai,j = 0 ∀(i, j) ∈ EG,

Tr(A) = 1.
(5)

Then ϑ(G) is defined as

ϑ(G) := sup
A∈S

VG
+ ∩MG

Tr(JA). (6)

The Lovász theta function ϑ can be strengthened by adding additional con-
straints. This way, better upper bounds on the independence number of a graph
can be obtained. In [16], Schrijver introduced such a strengthening ϑ− of ϑ.

Definition 9. Suppose G is a (finite) graph. Let M−
G be the set of |VG| × |VG|

matrices A that satisfy

Ai,j = 0 ∀(i, j) ∈ EG,

Ai,j ≥ 0 ∀(i, j) ∈ V 2
G,

Tr(A) = 1.

(7)

Then ϑ−(G) is defined as

ϑ−(G) := sup
A∈S

VG
+ ∩M−

G

Tr(JA). (8)

This strengthened function ϑ− is still an upper bound on the independence
number, but not on the Shannon capacity. On the other hand, the constraints
in (5) can also be weakened. To this end, Szegedy introduced the relaxation ϑ+

of ϑ. While ϑ+ is a worse upper bound on the independence number, it will
prove to be a better bound on the clique cover number. Define ϑ+ as follows.
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Definition 10. Suppose G is a finite graph. Let M+
G be the set of |VG| × |VG|

matrices A that satisfy

Aij ≤ 0 ∀(i, j) ∈ EG,

Tr(A) = 1.
(9)

Then ϑ+(G) is defined as

ϑ+(G) := sup
A∈S

VG
+ ∩M+

G

Tr(JA). (10)

The following theorem shows that ϑ−, ϑ and ϑ+ are indeed bounds on the
independence number and the clique covering number.

Theorem 3 (Sandwich theorem). Suppose G is a finite graph. Then the fol-
lowing inequalities hold.

α(G) ≤ ϑ−(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ(G) (11)

Proof. To prove that α(G) ≤ ϑ(G), let S ⊂ VG be an arbitrary maximum
independent set of G. Let the vector 1S have values 1 for all indices that are
in S, and 0 for all other indices. Then since the matrix 1

|S|1S1
T
S is PSD, and

satisfies all the properties of M−
G, we have α(G) = Tr(J 1

|S|1S1
T
S ) ≤ ϑ−(G).

The second and third inequality follow directly from M−
G ⊂ MG ⊂ M+

G. To
prove the last inequality, we use a slightly modified version of Schrijvers proof
that ϑ ≤ χ∗ in [17, p. 1153]. Let A achieve the optimal objective value in SDP
(10). Let S = {c1, . . . , ck} be a set of cliques covering VG, that has the smallest
possible cardinality. Let 1cj be the vector with value 1 for all indices in cj , and
0 for all other indices. Then since A is PSD, we have

0 ≤
k∑

j=1

(
χ(G)1cj − 1

)T
A
(
χ(G)1cj − 1

)
= χ(G)2

k∑
j=1

1T
cjA1cj − 2χ(G)

k∑
j=1

1T
cjA1+ χ(G)1TA1. (12)

Now per definition we have 1TA1 = Tr(JA) = ϑ+(G). Furthermore,
∑k

j=1 1
T
cj =

1T follows from the fact that S covers G. Also, if u ̸= v, and u, v ∈ Cj , then u
and v are connected, so Auv ≤ 0. Therefore, (12) is less than or equal to

χ(G)2Tr(A)− 2χ(G)1TA1+ χ(G)1TA1 = χ(G)2 − χ(G)ϑ+(G). (13)

Since now we have proven that 0 ≤ χ(G)2−χ(G)ϑ+(G), it follows that ϑ+(G) ≤
χ(G).
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3.2 Duality of ϑ, ϑ− and ϑ+

Since the functions ϑ, ϑ− and ϑ+ are SDPs, they have dual SDPs. Since there
are multiple equivalent ways to write the same SDP, due to substitutions, the
notation used in existing literature varies. In this thesis, we will use the notation
used in lemma 1 to express the dual SDP of (6).

Lemma 1. The dual formulation of ϑ(G) is equivalent to

inf
A∈LG

Λ(J +A), (14)

where Λ(J +A) denotes the largest eigenvalue of J +A, and LG denotes the set
of symmetric |VG| × |VG| matrices A satisfying the constraints

Ai,j = 0 ∀i, j : (i, j) ∈ EG ∨ i = j. (15)

Proof. The dual SDP of ϑ is given by definition 3:

inf t

s.t. y ∈ REG ,

tI +
∑

(i,j)∈EG

yijeij − J ∈ SVG
+ ,

(16)

where eij is the matrix with value 1 at index i, j, and 0 at all other indices.
We can thus view −

∑
(i,j)∈EG

yijeij as a (symmetric) matrix A, with Aij = 0

whenever (i, j) is not in EG. Since for symmetric n×n matrices X, Λ(X) ≤ t is
equivalent to tI−X ∈ Sn

+, minimizing t is equivalent to minimizing Λ(J+A).

We can also find similar expressions for the dual SDPs of ϑ− and ϑ+. These
are given without proof in lemmas 2 and 3.

Lemma 2. The dual formulation of ϑ−(G) is equivalent to

inf
A∈L−

G

Λ(J +A), (17)

where L−
G is the set of symmetric |VG| × |VG| matrices A that satisfy the con-

straints
Ai,j ≥ 0 ∀i, j : (i, j) ∈ EG ∨ i = j. (18)

Lemma 3. The dual formulation of ϑ+(G) is equivalent to

inf
A∈L+

G

Λ(J +A), (19)

Where L+
G is the set of symmetric |VG| × |VG| matrices A such that

Aij = 0 ∀i, j : (i, j) ∈ EG ∨ i = j,

Aij ≤ 0 ∀(i, j) ∈ EG.
(20)
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The matrix 1
|VG|I is a feasible solution of the primal SDPs of ϑ, ϑ− as well as

ϑ+, and has strictly positive eigenvalues. Furthermore, t = |VG|+ 1 and y = 0
is a feasible solution of the dual SDPs of ϑ, ϑ− and ϑ+, and the eigenvalues of
(|VG|+1)I −J are strictly positive. Therefore, we know that the primal formu-
lations of ϑ, ϑ− and ϑ+ have the same optimal value as their dual formulations,
respectively, and this optimal value is attained in both the primal and dual SDP
formulations.

Slater’s criterion is a rather deep result. Schrijver gives an alternative proof
in theorem 67.7 of [17], that does not rely on Slater’s criterion. However, an
important part of this proof is missing from the book, and the proof is thus not
correct. Therefore, a corrected version of this proof is included in theorem 18
of appendix A.

Feasible solutions
minimisation problem

Feasible solutions
maximisation problem

Optimal solution

Figure 3: The values of ϑ−, ϑ and ϑ+ can be proven, by finding feasible solution
to both the primal and dual problem that have the same objective value.

Even though the values of ϑ−, ϑ and ϑ+ can be approximated arbitrarily well
in polynomial time of the problem size, as well as the logarithm of the accuracy,
it can still be hard to prove these values analytically for specific graphs. One
way to do this, is by giving a feasible solution for both the primal and dual SDPs
that achieve the same objective value λ. Because of strong duality, the optimal
objective value of both the maximization and minimization problem have to be
λ.

Since often, there is not one single optimal solution to SDPs (14), (17) and
(19), not much can be said in general about the entries of optimal solutions
to these SDPs. The following result, however, guarantees that there exists a
matrix A minimizing (17), of which the values on the diagonal are all 0.

Lemma 4. Decreasing values on the diagonal of a symmetric matrix A does
not increase its largest eigenvalue.

Proof. Let D be a diagonal matrix with nonnegative entries. Let v ∈ RVG be
an arbitrary vector. Then since D is PSD, it follows that

vT (A−D)v = vTAv − vTDv ≤ vTAv, (21)

and hence the largest eigenvalue of A can not increase when decreasing values
on the diagonal.

Note that it is in general not required for a matrix A minimizing (17) to
have only zeroes on the diagonal, since it might happen that the entries at some
indices i of the eigenvector belonging to the largest eigenvalue of A are zero, in
which case that eigenvalue does not depend on Aii.
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3.3 Vertex-transitive graphs, and some properties of ϑ, ϑ−

and ϑ+

More can be said about the solutions for ϑ−, ϑ and ϑ+ when the graph has a lot
of symmetries. For example, in theorem 8 of [14] Lovász proved the following
result for vertex-transitive graphs.

Theorem 4. Suppose G is vertex-transitive, then the following holds:

ϑ(G)ϑ(G) = |VG|. (22)

This identity in general not true, so the assumption thatG is vertex-transitive
is necessary. However, Lovász proved in corollary 2 of [14] that

ϑ(G)ϑ(G) ≥ |VG|. (23)

ı́s always true. Remarkably, a similar identity as (22) also holds for ϑ−(G) and
ϑ+(G) whenever G is vertex-transitive. To arrive at the result, we will first
need to make some observations about these functions. Firstly, we can show
that restricting to solutions A of the primal and dual formulations of ϑ, ϑ− and
ϑ+ does not affect the optimal value of these SDPs.

Lemma 5 (Automorphism invariant solutions of ϑ, ϑ−, ϑ+). Let S ⊂ Aut(G)
be a subgroup consisting of automorphisms of G. We can assert that matrices
A optimizing SDPs (6), (8), (10), (14), (17) and (19) are invariant under S
without lowering the optimal value.

Proof. Suppose A is a matrix optimizing either one of these SDPs. Then, by
relabeling the vertices using automorphisms, we get other optimal solutions.
Because these SDPs are convex optimization problems, the following is also a
solution:

B :=
1

|S|
∑
ρ∈S

ρ(A). (24)

Suppose A maximizes one of the primal SDPs. Then

Tr

 1

|S|
∑
ρ∈S

ρ(A)

 =
1

|S|
∑
ρ∈S

Tr(ρ(A)) = Tr(A), (25)

so the objective value of B is the same as that of A. On the other hand, if A
minimizes one of the dual SDPs, then let v be an eigenvector belonging to the
largest eigenvalue of J +B. Then it follows from the Rayleigh quotient that

Λ (J +B) =
vT (J +B) v

vT v
=

1

|S|
∑
ρ∈S

vT (J + ρ(A))v

vT v
≤ Λ(J +A). (26)

Therefore, in either case, B is also an optimal solution. Furthermore, B is
invariant under the automorphisms in S, since∑

ρ∈S

ρ(A)


ij

=

∑
ρ∈S

qρ(A)


q(i)q(j)

=

∑
ρ∈S

ρ(A)


q(i)q(j)

(27)
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for all automorphisms q ∈ S.

Since the automorphism group of vertex-invariant graphs is in a sense large
enough, the following result shows that the eigenvector belonging to the largest
eigenvalue of J + A for any automorphism invariant solution A is the all-ones
vector eG.

Lemma 6. Let G be a vertex-transitive graph. Suppose A is an automorphism
invariant, optimal solution of (14), (17) or (19). Then the objective value of A
is equal to |VG|+

∑
a∈VG

Aba.

Proof. The proofs for ϑ, ϑ− and ϑ+ are the same. Therefore, let A, w.l.o.g,
minimize (14). We first show that eG is indeed an eigenvalue of A. Let a, b ∈ VG

be arbitrary. Let ρ ∈ Aut(G) be such that ρ(a) = b. Then we have

(AeG)b =
∑
c∈VG

Abc =
∑
c∈VG

Aρ(a)ρ(ρ−1(c)) =
∑
c∈VG

Aac = (AeG)a. (28)

Therefore eG is an eigenvector of A. Since it is also an eigenvector of J , it is
an eigenvector of J + A, and all other eigenvectors of J + A are orthogonal to
eG. Now suppose eG is not one of the eigenvectors belonging to the largest
eigenvalue of J + A. Then let v ̸= eG be an eigenvector of J + A. Let us now
consider positive scalar multiples of A. Let 0 ≤ λ < 1 be arbitrary. We then
have

(J + λA)v = λAv

(J + λA)eG = |VG|+ λAeG
(29)

We see that the eigenvalues change linearly with λ. Let w be an eigenvector
belonging to the largest eigenvector λw of A, and λeG be the eigenvalue of A

belonging to eG. Then, if we let λ := |VG|
λw−λeG

. Now since λw > |VG| + λeG ,

it follows that 0 ≤ λ < 1. Suppose v ̸= eG is an eigenvector of J + A, with
eigenvalue λv. Then λv ≤ λλw = |VG|+ λλeG . Hence, we get a solution with a
lower objective value. This is a contradiction. Therefore, eG is an eigenvector
belonging to the largest eigenvalue of J +A.

Lemma 6 can be used to prove a relation between ϑ− and ϑ+ similar to theo-
rem 4. This relation was first proven in [8]. We, however, propose an alternative
proof using substitutions to show equality of |VG|ϑ−(G)−1 and ϑ+(G).

Theorem 5. Suppose G is vertex-transitive. Then the following equality holds:

ϑ−(G)ϑ+(G) = |VG|. (30)

Proof. As a result of lemma 6, we get the following equivalent formulation of ϑ−,
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by enforcing that the eigenvalue belonging to eG must be the largest eigenvalue:

ϑ−(G) = min
A∈SVG

|VG|+
1

|VG|
Tr(JA)

s.t. ρ(A) = A ∀ρ ∈ Aut(G),(
|VG|+

1

|VG|
Tr(JA)

)
I −A ∈ SVG

+ ,

Aij ≥ 0 ∀(i, j) :∈ EG ∨ i = j.

(31)

Define C :=
(
|VG|+ 1

|VG|Tr(JA)
)
I − A. Because of lemma 4, we can assume

that the sum of the values on the diagonal of A is 0. Therefore Tr(C) =
|VG|2 + Tr(JA). Furthermore, we must have Tr(C) = |VG|2. We hence get the
following, equivalent LP:

ϑ−(G) = min
C∈SVG

1

|VG|
Tr(C)

s.t. Ci,j ≤ 0 ∀(i, j) ∈ EG,

ρ(C)− C = 0 ∀ρ ∈ Aut(G),

C ∈ SVG
+ ,

Tr(JC) = |VG|2.

(32)

Now, we must notice that Tr(JC) = |V G|2 is the only constraint with a nonzero
factor. Therefore, by scaling the solutions, we get the following equivalent SDP:

|VG|ϑ−(G)−1 = max
C∈SVG

Tr(JC)

s.t. Ci,j ≤ 0 ∀(i, j) ∈ EG,

ρ(C)− C = 0 ∀ρ ∈ Aut(G),

C ∈ SVG
+ ,

Tr(C) = 1.

(33)

Notice that lemma 5 guarantees that this is the same as ϑ+(G).

Corollary 1. Suppose G is vertex-transitive. Then

ϑ−(G)

ϑ(G)
=

ϑ(G)

ϑ+(G)
. (34)

Proof. This follows from combining theorem 4 and theorem 5.
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4 Multiplicity of ϑ, ϑ− and ϑ+ under the strong
and disjunctive graph product

In many applications, the independence number of larger graphs is needed.
One example of such a problem is the Shannon capacity of a graph [20], which
considers graphs obtained by taking the strong product of a graph arbitrarily
many times. Another application is sphere packings, where recently Cohn, de
Laat and Salmon used an extension of the sphere packing graph, to improve the
Cohn-Elkies bound for the lattice sphere packing problem in [3]. Even though
the Cohn-Elkies bound and ϑ− are not the same function, there is plenty of
correspondence between the two.

Hence, it is natural to ask ourselves what happens to the functions ϑ−, ϑ
and ϑ+ when we combine two graphs G,H. We are particularly interested in
the strong graph product G⊠H and the disjunctive graph product G ∗H.

(a) G (b) H (c) G⊠H (d) G ∗H

Figure 4: Strong and disjunctive graph products for two arbitrary graphs G,H.

Definition 11 (Strong graph product). Suppose G,H are two graphs. Then
G⊠H is the graph with vertex set VG × VH , and

((iG, iH), (jG, jH)) ∈ EG⊠H ⇔iG = jG ∧ (iH , jH) ∈ EH

∨(iG, jG) ∈ EG ∧ (iH , jH) ∈ EH

∨(iG, jG) ∈ EG ∧ iH = jH .

(35)

Similarly, we can define the disjunctive graph product.

Definition 12 (Disjunctive graph product). Suppose G,H are two graphs.
Then G ∗H is the graph with vertex set VG × VH , and

((iG, iH), (jG, jH)) ∈ EG∗H ⇔ (iG, jG) ∈ EG ∨ (iH , jH) ∈ EH . (36)

The identity G ∗H = G⊠H relates these graph products. Now it turns out
that ϑ is multiplicative under both these graph products.

Theorem 6 (Multiplicity of ϑ). Let G and H be two arbitrary graphs. Then,

ϑ(G⊠H) = ϑ(G)ϑ(H), (37)
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as well as
ϑ(G ∗H) = ϑ(G)ϑ(H). (38)

Proof. For a proof of (37) refer to theorem 7 of [14]. For a proof of (38), first
note that if AG maximizes (6) for the graph G, and if AH maximizes (6) for
the graph H, then AG ⊗ AH is a feasible solution of (6) for the graph G ∗H,
so ϑ(G)ϑ(H) ≤ ϑ(G ∗ H). Furthermore, since LG⊠H ⊂ LG∗H , it follows that
ϑ(G ∗H) ≤ ϑ(G⊠H) = ϑ(G)ϑ(H).

It turns out that ϑ− is not multiplicative under the strong graph product,
like ϑ. However, ϑ− is multiplicative under the disjunctive graph product. This
was first proved by Cubitt et al. in theorem 25 of [5].

Theorem 7 (Multiplicity of ϑ−). Let G and H be two arbitrary graphs. Then

ϑ−(G ∗H) = ϑ−(G)ϑ−(H). (39)

Proof. To show that ϑ−(G ∗H) ≥ ϑ−(G)ϑ−(H), note that if AG maximizes (8)
for G, and AH maximizes (8) for H, then AG ⊗AH is a feasible solution of (8)
for the graph G ∗H, and hence ϑ−(G ∗H) ≥ ϑ−(G)ϑ−(H).

To show that ϑ−(G ∗H) ≤ ϑ−(G)ϑ−(H), let A maximize (8) for the graph
G ∗H. For every g ∈ VG, define the |VH | × |VH | matrix Ag as

Ag := (eg ⊗ IH)TA(eg ⊗ IH), (40)

where eg⊗IH is a |VG∗H |×|VH |matrix. Then for every choice of g, we have Ag ∈
SVH
+ , and for all (i, j) ∈ EH we have Ag

ij = 0, since in that case A(ig,i;jgj) = 0 for

all ig, jg ∈ VG. Furthermore Ag
ij ≥ 0 ∀i, j ∈ VH . Therefore Ag

Tr(Ag) is a feasible

solution for (8), for the graph H, and hence Tr(JHAg) ≤ ϑ−(H)Tr(Ag)∀g ∈ VG.
Now define the matrix AH as

AH := (IG × 1)TA(IG × 1), (41)

where IG × 1 is a |VG∗H | × |VG| matrix. Then AH
ij = 0 ∀(i, j) ∈ EG. Fur-

thermore, for all i, j ∈ VG we have AH
ij ≥ 0. Therefore we have Tr(JGA

H) ≤
ϑ−(G)Tr(AH). We now have the inequalities

ϑ−(G ∗H) = Tr ((JG × JH)A) = Tr(JGA
H)

≤ ϑ−(G)Tr(AH) = ϑ−(G)
∑
g∈VG

Tr(JGA
g)

≤ ϑ−(G)ϑ−(H)
∑
g∈VG

Tr(Ag)

= ϑ−(G)ϑ−(H)Tr(A) = ϑ−(G)ϑ−(H). (42)
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Given theorem 6 and 7, one wound expect ϑ+ to also be multiplicative under
the strong graph product. Even though numerical results indicate that this is
true, it is still an unsolved problem to prove this for all graphs G. However,
using theorem 5 it is relatively easy to show that ϑ+ is multiplicative under
strong graph products for vertex-transitive graphs.

Theorem 8 (Multiplicity of ϑ+). Let G and H be two arbitrary vertex-transitive
graphs. Then

ϑ+(G⊠H) = ϑ+(G)ϑ+(H). (43)

Proof. By theorem 7 and 5, we have

ϑ+(G)ϑ+(H) =
|VG||VH |

ϑ−(G)ϑ−(H)
=

|VG⊠H |
ϑ−(G ∗H)

= ϑ+
(
G ∗H

)
= ϑ+(G⊠H).

(44)

Even though theorem 7 is proven, current proofs do not reveal what the
optimal solutions of the dual formulation (17) of ϑ− look like for G ∗ H. In
fact, there are currently no constructions known that give an answer to this
question. A computation of ϑ−(G ∗H) for small graphs G,H however suggests
that for some graphs, there can be a neat relationship between the solutions of
ϑ−(G), ϑ−(g) and ϑ−(G∗H). This construction is given in the next subsection.

4.1 A dual construction for the multiplicity of ϑ−

Theorem 9. Suppose A is a matrix that minimizes (17) for the graph G, and
B is a matrix that minimizes the same SDP for the graph H, and suppose

Spec(J +A) ⊂ [−ϑ−(G), ϑ−(G)], (45)

and Spec(J +B) ⊂ [−ϑ−(H), ϑ−(H)]. Then the matrix

C := A⊗B + JG ⊗B +A⊗ JH (46)

minimizes (17) for the graph G ∗H.

Proof. We have (g1, h1; g2, h2) /∈ EG∗H precisely when (g1, g2) /∈ EG and (h1, h2) /∈
EH . Let (g1, h1; g2, h2) /∈ EG∗H be arbitrary. Then

Cg1,h1;g2,h2
= Ag1,g2Bh1,h2

+Ag1,g2 +Bh1,h2
≥ 0. (47)

Furthermore, C is symmetric, since A,B, JG, JH are all symmetric. Since

Spec (JG∗H + C) = Spec (JG∗H +A⊗B + JG ⊗B +A⊗ JH)

= Spec ((JG +A)⊗ (JH +B))

= {λGλH : λG ∈ Spec(JG +A), λH ∈ Spec(JH +B)} (48)
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and Spec(J +A) ⊂ [−ϑ−(G), ϑ−(G)], and Spec(J +B) ⊂ [−ϑ−(H), ϑ−(H)], we
have

Λ (JG∗H + C) = ϑ−(G)ϑ−(H). (49)

We know from theorem 7 that this is optimal.

Now the question becomes how general this construction is. Note that as
a direct consequence of the above construction, if G and H both have optimal
solutions to (17) that satisfy (45), then G∗H also has such a solution. However,
the construction (46) may not work for all possible optimal solutions of two given
graphs G,H. Therefore, we have to ask the question

Question 1. Which graphs have an optimal solution A that satisfies (45)?

4.2 An SDP formulation for validity of the construction

We can numerically check if graphs have a solution that satisfies (45), by adding
the additional constraint to (17) that the smallest eigenvalue of J+A is at least
as large as −Λ(J +A). Hence, we define

Definition 13. The function tmax(G) is defined as

tmax(G) = min
A∈L−

G

t

s.t. tI − J −A ∈ SVG
+ ,

tI + J +A ∈ SVG
+ .

(50)

Now feasible solutions to (50) are also feasible solutions to (17), and since
tmax imposes additional constraints on (17), the inequality tmax(G) ≥ ϑ−(G)
holds. Therefore, we have the following result.

Lemma 7. tmax(G) = ϑ−(G) if and only if G permits a solution to SDP 17
that satisfies (45).

A program was used to check for all possible graphs on n ≤ 7 vertices if they
have solutions that satisfy the condition of lemma 7. This program is listed in
appendix B.1, and was cross-verified with known values of ϑ− for small graphs.
For graphs on 1−4 vertices, it is always the case that ϑ− = tmax. For graphs on
5 vertices, there are only 6 graphs, up to isomorphisms, for which this condition
does not hold.
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(a) (b) (c)

(d) (e) (f)

Figure 5: All graphs, up to isomorphisms, on 5 vertices that do not satisfy the
conditions of lemma 7.

The number of graphs, up to isomorphisms, for which ϑ− ̸= tmax is listed in
table 1.

n #Graphs #Graphs that fail
1 1 0
2 2 0
3 4 0
4 11 0
5 34 6
6 156 33
7 1044 380

Table 1: Number of graphs that fail tmax = ϑ−, up to isomorphisms.

While it still remains an open question for which graphs in general the
construction works, it is possible to find analytic solutions that satisfy (45) for
specific sets of graphs. In the next subsection, solutions for cyclic graphs of an
arbitrary size are given that satisfy (45).

4.3 ϑ− for cyclic graphs

The theta number of cyclic graphs is well known. In corollary 5 of [14], Lovász

proves that ϑ(Cn) =
n cos(π

n )
1+cos(π

n )
whenever n is odd. Whenever n is even, this value

is n
2 . It turns out that the value of ϑ−(Cn) is the same as ϑ(Cn) for all n. In
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theorem 10 and 11, we will prove that this is the case, by giving feasible solutions
for both the maximization formulation (8) and the minimization formulation
(17) of ϑ−, that have the same value. Furthermore, the solutions given for the
minimisation problems satisfy (45), proving all cyclic graphs have solutions to
(17) for which the construction given in theorem (9) works.

Since the automorphism group of a cyclic graph on n vertices contains a
cyclic subgroup of size n, we can rearrange the vertices of cyclic graphs in such
a way that lemma 5 guarantees that there is an optimal solution A to (17) that
is circulant. The following lemma implicates that by restricting the solutions to
circulant matrices, the eigenvalues are easier to compute.

Lemma 8. Suppose an n × n matrix A is circulant. Then its eigenvalues are
equal to the discrete Fourier transform Â1 of its first row.

Proof. Define vk =
(
1 e

2πki
n e

4πki
n . . . e

2(n−1)πki
n

)T
. Then vk is an eigen-

vector of A, since

[Avk]j =

n∑
l=1

Ajle
2(l−1)πki

n = e
2(j−1)πki

n

n∑
l=1

Ajle
2(l−j)πki

n

= e
2(j−1)πki

n

n∑
l=1

A1 l−j+1e
2(l−j)πki

n = e
2(j−1)πki

n [Avk]1 . (51)

Therefore, Avk = [Avk]1 vk, and the eigenvalues of A are Â1(0), . . . , Â1(n −
1).

Using this lemma, we can calculate ϑ− of all cyclic graphs on an even number
of nodes. It turns out that we can find a solution of the dual program that
satisfies (45).

Theorem 10. For all even n, ϑ−(Cn) =
n
2 and there is an optimal solution to

(2) that satisfies (45).

Proof. To show that ϑ−(Cn) ≥ n
2 , consider SDP (8). Define the circulant matrix

A by

A1,j :=

{
1
n if j is odd

0 if j is even.
(52)

Let eodd be the vector with values 1 for all odd indices, and 0 for all odd indices,
and let eeven = 1− eodd. Then it is clear that A ∈ Sn

+, because A = eodde
T
odd +

eevene
T
even. A also satisfies all other constraints of (8), so ϑ−(Cn) ≥ Tr(JA) = n

2 .
To show that ϑ−(Cn) ≤ n

2 , consider the SDP (17). Define the circulant matrix
B by

B1,j :=

{
−n

4 if j ∈ {2, n}
0 otherwise.

(53)
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Then B satisfies all the constraints, so

ϑ−(Cn) ≤ Λ(J +B) = max
s∈{0,...,n−1}

Ĵ +B(s)

= max

[
n

2
, max
s∈{1,...,n−1}

−n

2
cos

(
2πs

n

)]
=

n

2
, (54)

and B satisfies (45).

Similarly, can also prove the value of ϑ− for cyclic graphs on an odd number
of vertices, that is at least 3. Again, there is a solution of the dual SDP that
satisfies (45). However, this solution is a bit more tricky than that for even n.

Theorem 11. For all odd n ≥ 3, ϑ−(Cn) =
n cos(π

n )
1+cos(π

n )
and there is an optimal

solution to (2) that satisfies (45).

Proof. To show that ϑ−(Cn) ≥ n cos(π
n )

1+cos(π
n )

, consider the SDP (8). Define the

circulant matrix A by

A1,j :=
cos
(
π
n

)
+ cos

(
π(j−1)(n−1)

n

)
n cos

(
π
n

)
+ n

(55)

Then by filling in j = 2, n we verify that Aj,k = 0 whenever (j, k) ∈ ECn
, and

furthermore cos
(
π
n

)
+ cos

(
π(j−1)(n−1)

n

)
≥ 0 for all j, since n is odd. It is easy

to verify that A is symmetric. Since A is circulant, the eigenvalues of A are
given by Â1, by lemma 8. Let s ∈ {0, . . . , n− 1}. Then

Â1(s) =


cos(π

n )
1+cos(π

n )
if s = 0,

1

2+2 cos(π
n )

if s = n±1
2 ,

0 otherwise.

(56)

From this it follows that A ∈ Sn
+, and furthermore

Tr(JA) = nÂ1(0) =
n cos

(
π
n

)
1 + cos

(
π
n

) . (57)

Therefore ϑ−(Cn) ≥
n cos(π

n )
1+cos(π

n )
. To show that ϑ−(Cn) ≤

n cos(π
n )

1+cos(π
n )

, consider the

SDP (17). Define the circulant matrix B by

B1,j =

{ −n

2+2 cos(π
n )

if j ∈ {2, n},

0 otherwise.
(58)
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Then B is symmetric, and satisfies all other constraints. Furthermore, by lemma

8, the eigenvalues of J +B are given by ê+B1. We find

ê+B1(s) =


n cos(π

n )
1+cos(π

n )
if s = 0,

−n cos( 2πs
n )

1+cos(π
n )

otherwise.
(59)

Therefore, we have proven that ϑ−(Cn) =
n cos(π

n )
1+cos(π

n )
for odd n ≥ 3, and B

satisfies (45).

Corollary 2. All cyclic graphs Cn have a solution to (17) that satisfies (45).

Coincidentally, it turns out that ϑ−(Cn) = ϑ(Cn) for all n ∈ N. However,
lemma 8 is not a coincidence, as we will see in the next section that something
similar to happens in general for abelian Cayley graphs.
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5 Abelian Cayley graphs

Cayley graphs are defined with group elements as vertices. Therefore, G will
from now on denote a group, and Cay(G,S) will denote a Cayley graph. Simi-
larly to lemma (5), it can be shown that restricting to matrices that are invariant
under subgroups of the automorphism group of a graph does not affect the value
of tmax.

Lemma 9. Let H be a graph. Let S ⊂ Aut(H) be a subgroup. Then there exists
an optimal solution of (50) that is invariant under S.

Proof. Let t, A be an optimal solution of (50). Then let

B =
1

|S|
∑
ρ∈S

ρ(A). (60)

In lemma (5) it was shown that this matrix B is invariant under S. Since SDPs
are convex optimization problems, t, B is also a feasible solution of (50), and it
is also optimal, since it has objective value t.

Because of lemmas 5 and 9 the complexity of finding ϑ−, ϑ and ϑ+ can be
greatly reduced for abelian Cayley graphs, by taking advantage of the group
structure.

5.1 Eigenvalues of G-invariant matrices

Definition 14 (Cayley graphs). For a group G, and a set S ∈ G, the Cayley
graph Cay(G,S) is defined to be graph with elements of G as its vertex set, and
the edge set consists of all pairs x, y such that yx−1 ∈ S.

Since the functions ϑ−, ϑ and ϑ+ are defined for undirected graphs, we must
have g−1 ∈ S whenever g ∈ S. This is equivalent to having a symmetric
adjacency matrix. Since G ⊂ Aut(Cay(G,S)), we may assume that the solution
matrices A to both the primal and dual SDPs of ϑ are invariant underG, because
of lemma 5. Furthermore, we may assume that the solution matrices A to the
SDP (50) are G-invariant, because of lemma 9.

Since the map f → A, defined by Aij = f(ji−) is an isomorphism between
G-invariant, symmetric matrices, and functions f : G → R that satisfy f(g) =
f(g−1) for all g ∈ G, there is a one-to-one correspondence between G-invariant,
symmetric matrices A, and functions f : G → R, for which f(g) = f(g−1),
for all g ∈ G. This one-to-one correspondence greatly reduces the number of
variables in the optimization problems. With some additional algebra, we will
be able to further simplify the SDPs belonging to ϑ− and tmax.

Since Cayley graphs are defined on groups, it makes sense to analyze prop-
erties of these groups. One way to do this, is to look at group representations.
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Figure 6: A set of 5 rotation matrices that form a group representation of C5,
acting on the point 1 + 0i.

These encode the group structure with matrices, which enables us to use
tools from linear algebra to study ϑ− and tmax.

Definition 15 (Matrix representations). A group representation of G is a group
homomorphism π : G → GL(V ), where GL(V ) is the group of invertible linear
maps on a C-vector space V . Two representations are equivalent if there exists
an isomorphism T : GL(V1) → GL(V2) such that for all g ∈ G we have

π1(g)T = Tπ2(g). (61)

Recall that the trace of an operator is the sum of its eigenvalues, counting
multiplicity. If dim(V ) = n, we can furthermore identify V with Cn by choosing
a basis. Let us now define the character of a representation.

Definition 16 (Characters). The character of a representation π is the map
χπ : G → C given by

χπ(g) = Tr(π(g)). (62)

For example, the representation in figure 6 is the map π(x) :=
(
e

2πix
5

)
. Its

character is trivially χπ = e
2πix

5 .
It turns out that characters are invariant under the choice of representation:

if two representations are equivalent, then their characters are the same. This
follows from the fact that Tr(AB) = Tr(BA) for all matrices A,B. Suppose
π1 and π2 are two equivalent representations, and the linear isomorphism T
satisfies π1T = Tπ2. Then

χπ1
(g) = Tr (π1(g)) = Tr

(
Tπ2(g)T

−1
)

= Tr
(
Tπ2(g)T

−1
)
= Tr

(
π2(g)T

−1T
)
= Tr (π2(g)) = χπ2

(g). (63)

Therefore, if π1 and π2 are equivalent, their characters are the same. When
investigating characters of a representation, we can therefore try to find equiv-
alent representations for which we know more. One of the defining properties
of a character is its degree.

For a group G, suppose π : G → GL(V ) is a representation. Let Id ∈ G
be the identity element. Then since π(Id) has to be an idempotent, invertible
matrix, all of its eigenvalues are 1, and hence χπ(Id) = dim(V ). This is called
the degree of χπ. Note that the degree must always be a positive integer.
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Definition 17. The degree of a character χπ : G → C, belonging to a represen-
tation π is defined as

deg (χπ) := χ(Id) =: deg(π). (64)

Since the characters of representations are the same for equivalent represen-
tations, we will from now on look at the equivalence classes of representations.
This way, it will be possible to decompose some representations into factors.
Denote equivalence of representations by ∼.

Definition 18 (Reducible representations). We call a representation π re-
ducible, if there exist representations π1, π2, such that

π ∼ π1 ⊕ π2, (65)

where ⊕ denotes the direct sum. If such representations do not exist, then we
call π irreducible.

From this definition, it is immediately clear that if π ∼ π1 ⊕ πw, then
deg(π) = deg(π1) + deg(π2). Hence, if a representation has degree 1, then
it must be irreducible. An example of this is the trivial representation.

Example 1. Each group G has a trivial representation, given by πtriv(g) =
[
1
]
.

Its character, χtriv = 1 is called the trivial character. Since deg(χtriv) = 1, the
trivial representation is irreducible.

For some groups, the reverse implication also holds. If a representation of
an abelian group is irreducible, it must have degree 1. To show this, we will use
a different, but equivalent way of describing (ir)reducible representations.

Definition 19 (Subrepresentations). Suppose π : G → V is a representation of
G, and π|W : G → W is another representation, such that

π(g)|W = π|w(g) ∀g ∈ G (66)

if the restriction to W , for some linear, proper subspace W ⊊ V , Then π|W is
called a subrepresentation.

Finding subrepresentations might at first seem more restrictive than finding
two representations π1 and π2 such that π ∼ π1 ⊕ π2. However, in this case
there is a T such that πT = T (π1 ⊕ π2), and hence w.l.o.g. T |V1

π1T |−1
V1

is
a subrepresentation of π, where V1 is the domain of π1. Therefore, reducible
representations have subrepresentations.

This also works the other way around. The following theorem shows that if
π has a subrepresentation, then π is reducible. This is useful, as it implies that
reducing representations is the same as finding subrepresentations.

Theorem 12. Suppose π|W : G → W is a subrepresentation of π : G → V .
Then there exists a subrepresentation π|U : G → U of π such that V = W ⊕ U .
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Proof. Let πW : V → W be the projection onto W . Then define

p(x) :=
1

#G

∑
g∈G

[
π|W (g)πWπ(g−1)

]
(x). (67)

Now suppose w′ ∈ ker(p), and let h ∈ G be arbitrary. Then since π(a−1) =
π(a)−1, we have

p(π(h)w′) = π(h)π(h−1)
1

#G

∑
g∈G

[
π|W (g)πWπ(g−1)

]
(π(h)w′)

= π(h)
1

#G

∑
g∈G

[
π|W (h−1g)πWπ(g−1h)

]
(w′)

= π(h)
1

#G

∑
g∈G

[
π|W (g)πWπ(g−1)

]
(w′) = π(h)p(w′) = 0, (68)

so if w′ ∈ ker(p), then π(h)w′ ∈ ker(p), for all h ∈ G. Now the restriction of
π to ker(p) is a representation, too. This follows since π(b) maps ker(p) onto
ker(p), and thus

π(ab)|ker(p) = π(a)π(b)|ker(p) = π(a)|ker(p)π(b)|ker(p). (69)

Furthermore, if w ∈ W , then p(w) = w, so W ⊥ ker(p). Since p is a projection,
p2(x) = x ∀x ∈ V , so x− p(x) ∈ ker(p) ∀x ∈ V . This implies that

x = p(x) + b ∀x ∈ V, (70)

where b ∈ ker(p), and trivially p(x) ∈ W . Therefore, the identity

V = W ⊕ ker(p) (71)

holds.

Now it follows that any representation of G can be decomposed into irre-
ducible representations, and that those are exactly the representations that have
no subrepresentations. Schur’s lemma [19, p. 13] gives us information about G-
linear maps between different irreducible representations:

Lemma 10 (Schur’s lemma). Let πV : G → V , and πW : G → W be two
irreducible representations of G. Let f : V → W be a G-linear map. That is,
f ◦ πV (g) = πW (g) ◦ f for all g ∈ G. Then the following hold:

1. Suppose V,W are not isomorphic. Then f ≡ 0.

2. Suppose V = W , and πV = πW . Then f is a scalar multiple of the
identity.

This yields an important result in the case where G is abelian.
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Corollary 3 (Irreducible representations of abelian groups). Suppose G is
abelian, and π is an irreducible representation. Then deg(π) = 1.

Proof. Let x ∈ G be arbitrary. Since G is abelian, we have

π(x)π(g)v = π(xg)v = π(gx)v = π(g)π(x)v ∀v ∈ V, g ∈ G. (72)

This means that v → π(x)v is a G-linear map. By Schur’s lemma, π(x)v = λxv
for some scalar λx. Therefore, the restriction of π to any subspace of V is a
subrepresentation of π. Since π is irreducible, this implies that the only subspace
of V is {0}, so deg(π) = 1.

Therefore, every irreducible representation of an abelian group G is isomor-
phic to a homomorphism π : G → C∗, and every irreducible character of an
abelian group is a homomorphism χ : G → C∗. Subsequently, all possible repre-
sentations of abelian groups are equivalent to the direct sum of homomorphisms
from G to C∗, and all possible characters are the sum of some number of those
homomorphisms.

A consequence of the fact that the irreducible representations π of abelian
groups have degree 1, is that the characters χπ of the irreducible representations
are multiplicative: χπ(gh) = χπ(g)χπ(h). This would not necessarily be true if
the degree were larger than 1. One of the consequences of this property is that
the irreducible characters of abelian groups are closely related to the eigenvalues
of matrices that are invariant under the group action.

Theorem 13 (Eigenvalues of invariant matrices). Suppose G is abelian, and
the function f : G → R defines the matrix A by Aij = f(ji−1), and χ is an
irreducible character of G. Then the vector v ∈ CG, defined by vg = χ(g) is an
eigenvector of A, and the corresponding eigenvalue is

λχ :=
∑
g∈G

f(g)χ(g). (73)

Proof. Since deg(χ) = 1 by corollary 3, we have

(Av)i =
∑
j∈G

f(ji−1)χ(j) =
∑
j∈G

f(j)χ(ji) =
∑
j∈G

f(j)χ(j)χ(i) = λχvi, (74)

for all i ∈ G. Therefore, v is an eigenvector of A, and λχ is its eigenvalue.

This result is already interesting, but what makes it more interesting, is that
we can show that there exist precisely |G| independent eigenvectors of this form.
For that, the fundamental theorem of finite abelian groups [12], which classifies
all finite, abelian groups, is useful.

Theorem 14 (Fundamental theorem of finite abelian groups). Let G be an
abelian group. Then G is isomorphic to the direct product of cyclic groups

(Z/n1Z)× . . .× (Z/nkZ) , (75)

where n1, . . . , nk are powers of prime numbers.
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This theorem helps us construct |G| different eigenvectors of the G-invariant
matrix A.

Corollary 4 (Classification of irreducible characters of abelian groups). Let G
be an abelian group, and

G
φ∼= (Z/n1Z)× . . .× (Z/nkZ) . (76)

Then for all elements r ∈ G, the following is an irreducible character of G:

χr(g) :=

k∏
j=1

e
2πφ(r)jφ(g)ji

nj . (77)

Furthermore, all irreducible characters are of this form.

Proof. Let πr :=
(
χr

)
be a one-dimensional matrix. Since deg(π) = 1, the

following holds:

πr(gh) =

 k∏
j=1

e
2πφ(r)jφ(gh)ji

nj


=

 k∏
j=1

e
2πφ(r)jφ(g)ji

nj

 k∏
j=1

e
2πφ(r)jφ(h)ji

nj


= πr(g)πr(h). (78)

Therefore, πr is a one-dimensional matrix representation of G, and is hence
irreducible. From Fourier analysis it follows that all πr defined this way are
linearly independent.

We can now combine the above theorems to determine the eigenvalues of
G-invariant matrices A, for abelian groups G.

Corollary 5. Suppose G is abelian, and f : G → R is a function that defines
A by Aij = f(ji−1). By the fundamental theorem of finite abelian groups, there
exist prime powers n1, . . . , nk, and a function φ such that

G
φ∼= (Z/n1Z)× . . .× (Z/nkZ) . (79)

Now all eigenvalues of A are of the form

λg :=
∑
h∈G

f(h)

k∏
j=1

e
2πφ(g)jφ(h)ji

nj , (80)

where g ∈ G. Denote the linear map A →
(
λg

)
g∈G

as Â, or f̂ .

This result is very important, as it shows that the eigenvalues of the G-
invariant matrices optimizing the primal and dual formulations of ϑ−, as well
as those optimizing the SDP belonging to tmax depend linearly on the values of
the first row of this matrix.
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5.2 LP formulation of ϑ− for abelian Cayley graphs

Since the spectral theorem from linear algebra guarantees that all eigenvalues
of symmetric matrices are real, we may take the real part of equation (80).
Therefore, if A is symmetric,

Â(g) =
∑
h∈G

f(h) cos

 k∑
j=1

2πφ(g)jφ(h)ji

nj

 . (81)

By plugging in g = Id, we see that Â(Id) =
∑

h∈G f(h). Because of lemma 6,
we thus know the eigenvalue belonging to Id is the largest eigenvalue of J +A,
whenever A is G-invariant and minimizes (17). We thus can write both the
primal and dual formulations of ϑ− as the linear programs given in lemma 11.
It must be noted that an expression similar to (82) was derived in [6, p. 4] by
DeCorte, de Laat and Vallentin, although obtained by different means.

Lemma 11. Let Cay(G,S) be an undirected, abelian graph. Then the primal
formulation of ϑ− is equivalent to

ϑ−(Cay(G,S)) = max f̂(Id)

s.t. f(g) = f(g−1) ∀g ∈ G,

f(Id) = 1,

f(g) = 0 ∀g ∈ S,

f(g) ≥ 0 ∀g /∈ S,

f̂(g) ≥ 0 ∀g ∈ G.

(82)

The dual formulation of ϑ− is equivalent to

ϑ−(Cay(G,S)) = min v̂(Id)

s.t. v(g) = v(g−1) ∀g ∈ G,

v(g) ≥ 1 ∀g /∈ S,

v̂(g)− v̂(Id) ≤ 0 ∀g ∈ G.

(83)

Proof. The first equality follows from (8), and the fact that Tr(JA) = |G|f̂(Id),
and Aii = f(0) for all i ∈ G. By both rescaling the objective with a factor 1

|G| ,

and rescaling the constraints with a factor |G|, equality (82) is obtained.
The second equality follows from (31), by substituting v(g) = AIdg + 1.

Similar to lemma 11, we can express tmax as an LP.

Lemma 12. Let Cay(G,S) be an undirected, abelian graph. Then the following
equation holds.
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tmax(Cay(G,S)) = min v̂(Id)

s.t. v(g) = v(g−1) ∀g ∈ G,

v(g) ≥ 1 ∀g /∈ S,

v̂(g)− v̂(Id) ≤ 0 ∀g ∈ G,

v̂(g) + v̂(Id) ≥ 0 ∀g ∈ G.

(84)

A program, which was cross-verified with the program in B.1, and is included
in appendix B.2, was used to check for all abelian Cayley graphs on at most 31
vertices whether they satisfy tmax = ϑ−. This was done by calculation LPs (82)
and (84) for all symmetric subsets S of G, for all groups G of size n ≤ 31, that
are of the form given in theorem 14. If we let

G = (Z/n1Z)× (Z/n1Z)× . . .× (Z/nkZ),

then the cardinality of G is |G| =
∏k

j=1 nj . Because of this, we can generate all
possible abelian groups G of size n from the prime factorization of n. Suppose

n = 2a13a25a3 . . . p
al−1

l−1 pal

l

is the prime factorization of n. We may assume that whenever ni = pbxx , and

nj = p
by
y , and p < q are both primes, then i < j, so that the values of n1, . . . , nk

are sorted by prime base. We may furthermore assume that whenever ni = pbx ,
and nj = pby , and bx < by, then i < j. Therefore, it suffices to look at
all partitions of a1, a2, . . . , al. For example, all possible abelian groups with
cardinality 36 are isomorphic to either one of the following:

1. (Z/4Z)× (Z/9Z),

2. (Z/2Z)× (Z/2Z)× (Z/9Z),

3. (Z/4Z)× (Z/3Z)× (Z/3Z),

4. (Z/2Z)× (Z/2Z)× (Z/3Z)× (Z/3Z).

It turns out that for n ∈ {1, 2, 3, 4, 5, 7}, there are no abelian Cayley graphs
for which tmax ̸= ϑ−. For n = 6, there are exactly two abelian Cayley graphs
for which this is the case. These are shown in figure 7.
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(a) (b)

Figure 7: All abelian Cayley graphs on 6 vertices, for which there exists no
optimal solution A to (17) that satisfies (45).

While it is therefore impossible to prove that for all Cayley graphs there
exists an optimal solution to (17) that satisfies (45), it is possible to show that
an optimal solution must exist for which the smallest eigenvalue of J + A is
bounded from below by some number, using Fourier inversion.

Theorem 15. Let Cay(G,S) be an arbitrary abelian Cayley graph. Then there
exists an optimal solution A to (17) such that all eigenvalues of J + A are at
least ϑ− − |G|.

Proof. We can make a LP to maximize the smallest eigenvalue, provided that
the largest eigenvalue is equal to ϑ−. This value will be called λmin.

λmin := max t

s.t. vg = vg−1 ∀g ∈ G,

v̂(Id) = ϑ− − |G|,
v̂(g) ≤ ϑ− ∀g ∈ G\{Id},
v̂(g) ≥ t ∀g ∈ G\{Id},
vg ≥ 0 ∀g /∈ S,

vg ∈ R ∀g ∈ S.

(85)

Now substitute w = v̂. Fourier inversion gives us
∑

g∈G\{Id} wg ≥ |G| − ϑ−,

since wId = ϑ− − |G|, and vId ≥ 0. This way, we can eliminate the variable wId

from the LP.

λmin = max t

s.t. wg = wg−1 ∀g ∈ G\{Id},
wg ≤ ϑ− ∀g ∈ G\{Id},
wg ≥ t ∀g ∈ G\{Id},
wId = 0,

ŵ(g) ≥ |G| − ϑ− ∀g /∈ S.

(86)
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We now take the dual LP of this LP.

λmin = min ϑ−ĉ1(Id) + (|G| − ϑ−)ĉ3(Id)

s.t. cg1 = cg
−1

1 ∀g ∈ G\{Id},

cg2 = cg
−1

2 ∀g ∈ G\{Id},

cg3 = cg
−1

3 ∀g ∈ G\S,
cg1 ≥ 0 ∀g ∈ G\{Id},
cg2 ≤ 0 ∀g ∈ G\{Id},
cg3 ≤ 0 ∀g /∈ S,

cId1 =cId2 = 0,

cg3 = 0 ∀g ∈ S,

ĉ2(Id) = −1,

cg1 + cg2 + ĉ3(g) = 0 ∀g ∈ G\{Id}.

(87)

Since this is a minimisation problem, we get a lower bound by relaxing the
constraints. To this end, substitute Rg = 1 + cg1 + cg2. Then it follows that
Rg ≥ 0 ∀g ∈ G\{Id}. Furthermore,

∑
g∈G\{Id} Rg = |G| − 2 +

∑
g∈G\{Id} c

g
1.

Therefore,

λmin ≥ ϑ−(2− |G|) + minϑ−R̂(Id) + (|G| − ϑ−)ĉ3(g)

s.t. Rg = Rg−1 ∀g ∈ G\{Id},

cg3 = cg
−1

3 ∀g ∈ G\S,
Rg ≥ 0 ∀g ∈ G\{Id},
cg3 ≤ 0 ∀g ∈ G\S,
cg3 = 0 ∀G ∈ S,

RId = 0,

R̂(Id) ≥ |G| − 2,

Rg + ĉ3(g) = 1 ∀g ∈ G\{Id}.

(88)

Now since summing the last equation yields R̂(Id)− ĉ3(Id) = |G|− 1, by the
fourier inversion theorem, inequality (88) reduces to
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λmin ≥ ϑ−(2− |G|) + (|G| − ϑ−)(1− |G|) + |G|min R̂(Id)

s.t. Rg = Rg−1 ∀g ∈ G\{Id},

cg3 = cg
−1

3 ∀g ∈ G\S,
Rg ≥ 0 ∀g ∈ G\{Id},
cg3 ≤ 0 ∀g ∈ G\S,
cg3 = 0 ∀G ∈ S,

RId = 0,

R̂(Id) ≥ |G| − 2,

Rg + ĉ3(g) = 1 ∀g ∈ G\{Id}.

(89)

From this, it immediately follows that

λmin ≥ ϑ−(2− |G|) + (|G| − ϑ−)(1− |G|) + |G|(|G| − 2) = ϑ− − |G|. (90)

We have thus proven that for abelian Cayley graphs, there always exists
an optimal solution to (17) for which the gap between the largest and least
eigenvalue of J + A is at most |G|. This is an indication that when |S| is
smaller, (17) is more likely to have solutions that satisfy (45), since ϑ− is larger
for those graphs, and the bound proven in theorem 15 is hence closer to −ϑ−.

This observation is reflected by numerical results, obtained by partitioning
the pairs (G,S) consisting of abelian groups of cardinality n and symmetric
sets S by the cardinality of S, and counting what fraction of such pairs sat-
isfy ϑ−(Cay(G,S)) = tmax(Cay(G,S)). Bar plots showing these fractions are
depicted in figures
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(a) n = 30 (b) n = 33

(c) n = 31 (d) n = 16

Figure 8: Some representative bar plots for the fraction of pairs (G,S) for which
ϑ−(Cay(G,S)) = tmax(Cay(G,S)), split by |S|. The gray bars represent those
values of |S|, for which no abelian Cayley graph exists on n vertices.

In figure 8a, the blue bar at |S| = 0 is the empty graph. The bar at |S| = 1
are graphs that are the disjoint union of 2-cycles C2. The bar at |S| = 28 are
the complements of graphs that are the disjoint union of 2-cycles. Finally, the
bar at |S| = 29 represents the complete graph K30. These four bars occur for all
even n. In figure 8b, n is odd, so all group elements g ̸= Id of G are not equal
to their own inverse: g ̸= g−1. For this reason, there are no graphs which |S| is
odd, when n is odd. Figure 8c is indicative of what happens if n is prime. In this
case, all graphs for which |N | = 2 are cyclic, and we know by corollary 2 that
ϑ− = tmax. It is now clear that this is generally not true for the complement
of a cyclic graph. Lastly, figure 8d is indicative of what happens when n has
many divisors. Since whenever two smaller graphs G1, G2 both have an optimal
solution to (17) that satisfies (45), G1 ∗G2 also has such a solution, as discussed
in section 4.1. In each case, a significant portion of the sparse graphs has a
solution to (8) that satisfies (45), as predicted by theorem 15.
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6 Association schemes and Hamming graphs

While the complexity of the problem is already greatly reduced for abelian
Cayley graphs, it might happen that the automorphism group of a graph gives
even more information, and the complexity of calculating ϑ− can be reduced
even further. One way to obtain such graphs, is through association schemes.
These, for example, play a role in determining upper bounds on how efficiently
messages can be transmitted in coding theory. The first person to use association
schemes to this end was Delsarte, in [7]. Symmetric association schemes are
defined as follows [7, p. 8]:

Definition 20 (Symmetric association schemes). A symmetric association scheme
consists of a finite set X and a partition R = {R0, . . . , Rn} of X×X, such that
the following properties hold:

• R0 = {(x, x) : x ∈ X},

• (x, y) ∈ Ri =⇒ (y, x) ∈ Ri for all i ∈ {0, . . . , n},

• For all 0 ≤ i, j, h ≤ n there is a number phij such that the number of

elements x of X that satisfy (y, x) ∈ Ri and (x, z) ∈ Rj is phij, for all
choices of (y, z) ∈ Rh.

One example of a symmetric association schemes are Hamming schemes.
Consider an alphabet consisting of q letters. The Hamming distance dH(x, y)
between two words x and y of equal length is the number of characters in which
the word differs. This allows us to define the Hamming scheme.

Definition 21 (Hamming scheme). For positive integers n, q, let X = q×n be
the set of words of length n, with an alphabet consisting of q symbols. Further-
more, for i = 0, . . . , n, define the set Ri as

Ri = {(x, y) ∈ X ×X : dH(x, y) = i}, (91)

and R = {R0, . . . , Rn}. The graphs with edge set ∪i∈MRi, for M ⊂ {1, . . . , n}
are called Hamming graphs.

It is easily verifiable that Hamming schemes are indeed symmetric associa-
tion schemes.

Given a symmetric association scheme, we can define associate matrices,
which encode information about the scheme.

Definition 22 (Associate matrices). Suppose (X,R) is a symmetric associa-
tion scheme, and R = {R0, . . . , Rn}. Then we define its associate matrices
D0, . . . , Dn as follows:

[Di]xy =

{
1 if (i, j) ∈ Ri,

0 otherwise.
(92)
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These associate matrices are clearly all symmetric. Hence they commute:
DiDj = (DiDj)

T = DT
j D

T
i = DjDi. Therefore, the span S of all these matrices

is a vector space of dimension n + 1. Furthermore, we have D0 = I, and from
the definition of (symmetric) association schemes it follows that

DiDj =

n∑
h=0

phijDh. (93)

Therefore, all linear combinations of the Di are linear operators. Since a set of
diagonisable matrices commute if and only if they are simultaneously diagonis-
able, and the n+1 operators Di commute, There are n+1 common orthogonal
unit eigenvectors v0, . . . vn of D0, . . . , Dn in S. Therefore S has an orthogonal,
idempotent and symmetric basis Ei := viv

T
i , where i ranges over {0, . . . , n}.

Now define the unique n+ 1× n+ 1 matrix P by

Di =

n∑
j=0

PjiEj , (94)

and the unique n+ 1× n+ 1 matrix Q by

|X|Ei =

n∑
j=0

QjiDj . (95)

It hence follows that Pij : j = 0, . . . , n are the eigenvalues of the |X|×|X|matrix
Di, and each such eigenvalue has multiplicity Tr(Ej), since the eigenvalues of
Ej are all either 0 or 1. We furthermore know that

∑n
i=0 Ei = I, since

M =

n∑
i=0

MEi = M

n∑
i=0

Ei (96)

Delsarte found a way of using these matrices to bound the size of independent
sets of graphs obtained from association schemes. Suppose Y ⊂ X. Then we
define the inner distribution of Y as

Definition 23 (Inner distribution). The inner distribution (a0, . . . , an) of Y is
defined as

ai =
|Ri ∩ (Y × Y )|

|Y |
. (97)

It is clear that
∑n

i=0 ai = |Y |. Delsarte used the inner distribution to bound
the independence number of graphs with edge set ∪i∈MRi, for some subset
M ⊂ {1, . . . , n}, in [7, p. 27].

Theorem 16 (Delsarte bound). Let M ⊂ {1, . . . n}. Suppose Y ⊂ X satisfies

37



(x, y) /∈ Ri ∀i ∈ M , for all x, y ∈ Y . Then the following inequality holds.

|Y | ≤ L(X,R,M) := max
a∈Rn+1

n∑
i=0

ai

s.t. a ≥ 0,

ai = 0 ∀i ∈ M,

a0 = 1,

aQ ≥ 0.

(98)

Proof. The inner distribution a of Y is nonnegative, and is 0 for all Rmi
. Fur-

thermore, a0 = |Y |
|Y | = 1. Lastly, since all Ei are idempotent and symmetric,

their eigenvalues are a subset of {0, 1}, and thus nonnegative. Let eY be the
vector with values 1 for all indices in Y , and 0 for all other indices. We have

0 ≤ eTY EieY = eTY
1

|X|

n∑
j=0

QjiDjeY

=
|Y |
|X|

n∑
j=0

Qji
eTY DjeY

|Y |
=

|Y |
|X|

n∑
j=0

Qjiaj , (99)

and hence aQ ≥ 0. a thus satisfies all constraints. Therefore the maximum
objective value is at least as large as |Y |.

It turns out that for a hamming scheme, the graph with edge set
⋃

i∈M Ri

is an abelian Cayley graph.

Lemma 13. The graph ({1, . . . , q}×d,
⋃

i∈M Ri) is an abelian Cayley graph on

the group (Z/qZ)×d
.

Proof. Let ρ ∈ (Z/qZ)×d
be arbitrary. Suppose dH(x, y) = r. Then dH(ρ(x), ρ(y)) =

dH(x, y), since the number of characters that differ remains the same after ap-
plying ρ.

In [16], Schrijver discovered that this upper bound on the independence
number of the graph with edge set Rm1 ∪ . . . Rmr has the same value as ϑ− has.
To show this, we need the dual LP formulation of Delsarte’s bound.

Lemma 14 (Dual Delsarte bound). The LP dual of the Delsarte bound is

L(X,R,M) = min

n∑
i=0

bi

s.t. b ≥ 0,

b0 = 1,
n∑

j=0

bjPij ≤ 0 ∀i ∈ {1, . . . , n}\M.

(100)
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It can be shown that Tr(Ei)Pij = p0jjQji [18]. With this, Schrijver con-
structed an optimal solution of (17) in theorem 3 of [16], using the dual Delsarte
bound.

Theorem 17. Suppose b attains the minimum in (100) with objective value λ.
Then the matrix

A := λI −
n∑

k=0

(
n∑

u=0

bu
Tr(Eu)

Qku

)
Dk (101)

attains the minimum of the dual formulation of ϑ−, and ϑ− = λ.

The eigenvalues of the matrix A can be easily computed since we know the
eigenvalues of each Dk. They hence are

λ−
n∑

k=0

(
n∑

u=0

bu
Tr(Eu)

Qku

)
Pik = λ− bi

Tr(Ei)
|X| (102)

for i = 0, . . . , n. Since we know that
∑n

i=0 Ei = I = D0, the trivial eigenvalue
corresponds to i = 0.

We are interested in finding a solution such that all eigenvalues of J +A are
bounded between λ and −λ. To this end, we can add the constraint that for all

i ̸= 0 it must hold that bi ≤ 2Tr(Ei)λ
|X| . Thus, we define the following LP:

Lemma 15. Define tLmin as

tLmin(X,R,M) := min
b∈Rn+1

n∑
i=0

bi

s.t. b ≥ 0,

b0 = 1,
n∑

j=0

bjPij ≤ 0 ∀i ∈ {1, . . . , n}\M

bi −
2Tr(Ei)

|X|

n∑
j=0

bj ≤ 0 ∀i ∈ {1, . . . , n}.

(103)

Suppose tLmin(X,R,M) = L(X,R,M), then the graph with vertex set X, and
edge set

⋃
i∈M Ri has an optimal solution to (17) that satisfies (45).

For Hamming schemes, the matrices P and Q are known, and determined
by the Krawtchouk polynomials of degree n, as proven in theorem 4.2 of [7]:

Pku =

k∑
j=0

(
n− j

k − j

)(
u

j

)
(−q)j(q − 1)k−j , (104)

and

Tr(Ei) =

(
n

i

)
(q − 1)i. (105)
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Using these polynomials, lemma 15 was checked numerically using the pro-
gram listed in appendix B.3, for several Hamming graphs. The values of L(n, q,M)
were cross-verified with some known values of the Delsarte bound. It turns out
that not all Hamming graphs satisfy the conditions of lemma 15. For exam-
ple, when n = 2, q = 5 and M = {1} it follows that L(n, q,M) = 5, but
tLmin(n, q,M) ≈ 6.82.

A count of several small Hamming graphs suggest that when either n or
q becomes large, the proportion of all possible M ⊂ {1, . . . , n} such that
tLmin(n, q,M) = L(n, q,M) approaches 0.

q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9
n=1 1 1 1 1 1 1 1 1
n=2 3 3 3 2 2 2 2 2
n=3 5 5 5 3 3 3 3 3
n=4 11 5 6 5 4 4 4 4
n=5 14 8 8 6 5 5 5 5
n=6 22 11 11 7 10 6 6 6
n=7 40 17 12 8 9 8 10 6

Table 2: Number of sets M such that tLmin(n, q,M) = L(n, q,M)

Furthermore, when q → ∞, this seems to only holds for n + 1 different,
specific sets M , although this is not yet proven.

Conjecture 1. For Hamming schemes, for any n, there exists a number N
such that for all q ≥ N , only the sets M = ∅, {n}, {n − 1, n}, . . . , {1, 2, . . . , n}
satisfy tLmin(n, q,M) = L(n, q,M).

Since the Hamming distance between two words is preserved under both
the permutations of an arbitrary letter in the words, and the permutations of
the letters in the words, it follows that for every two pairs of words with the
same Hamming distance i there is an automorphism of the graph induced by
Ri that maps the first pair onto the second pair. Therefore, lemmas 5 and 9
guarantee that checking if tLmin(n, q,M) = L(n, q,M) is sufficient for checking if
there exists an optimal solution to (17) for the induced graph that satisfies (45).
Generally, the construction given in section 4.1 does not work for Hamming
graphs.
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7 Conclusion

In this thesis, the multiplicity of Schrijvers variant ϑ− of the Lovász theta
number ϑ under the disjunctive graph product was investigated. Firstly, a few
key properties of the functions ϑ, ϑ− and ϑ+ were proven, and a new proof
of the equation ϑ−(G)ϑ+(G) = |VG| for vertex-transitive graphs was given.
Then a novel construction of an optimal dual solution for ϑ−(G ∗ H), given
optimal dual solutions of ϑ−(G) and ϑ−(H) was presented, which makes use of
an additional assumption on the spectrum of these optimal solutions. After that,
it was investigated for which graphs there are solutions to the dual formulation
of ϑ−, that satisfy this additional assumption. It is proven that this holds
for all cyclic graphs, and an upper bound on the minimal gap between the
eigenvalues belonging to optimal solutions of the dual formulation of ϑ− was
proven for abelian Cayley graphs. Lastly, it was shown that the complexity of
the problem is greatly reduced for abelian Cayley graphs, and in particular for
graphs induced by Association schemes.

While the construction presented in this thesis does not work in general, it
does work for many sparse, abelian Cayley graphs. These frequently occur in
problems, such as the optimal sphere packing density.

Future research into the dual multiplicity of ϑ− can focus on finding more
general constructions than the one presented in this thesis. Furthermore, a
continuous extension of this construction should be investigated for infinite ex-
tensions of ϑ−, such as the Cohn-Elkies bound. Lastly, asymptotic properties
of the eigenmatrices P and Q of Hamming schemes might be used to prove
conjecture 1.
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A Duality of ϑ, without use of Slater’s criterion

Lemma 16. Suppose m ∈ Rn maximizes ⟨l, ·⟩ over all values in A ∩ C ⊂ Rn,
where A is affine, and C convex. Then there exist c, d ∈ Rn, and γ, δ ∈ R such
that the following hold.

⟨c, A⟩ ⊂ (−∞, γ]

⟨d,C⟩ ⊂ (−∞, δ]

⟨c,m⟩ = γ

⟨d,m⟩ = δ

c+ d = l

(106)

Proof. Since we can shift all variables by a factor m, assume that m = 0, and A
is linear. Define n := πAl. Since 0 maximizes ⟨l, ·⟩ on A ∩ C, 0 also maximizes
⟨n, ·⟩ on A ∩ C, so ⟨n,A⟩ ⊂ (−∞, 0]. Let TA := A ∩ n⊥. Since C is convex,
πT⊥

A
C ⊂ T⊥

A is also convex. Furthermore, 0 lies on the boundary of πT⊥
A
C inside

T⊥
A . Hence, there is a vector p ∈ T⊥

A such that ⟨p, πT⊥
A
C⟩ ⊂ (−∞, 0], and since

p ∈ T⊥
A we have ⟨p, C⟩ = ⟨p, πT⊥

A
C⟩ ⊂ (−∞, 0]. Since p ∈ T⊥

A , it follows that

there is a λ > 0 such that πAp = λn. Therefore, we have p = ∥πAp∥
∥n∥ n + πA⊥p,

and hence n = ∥n∥
∥πAp∥p−

∥n∥
∥πAp∥πA⊥p. Consequently, the identity

l =

[
l − n− ∥n∥

∥πAp∥
πA⊥p

]
+

[
∥n∥

∥πAp∥
p

]
(107)

holds. As l−n ⊥ A, c := l−n− ∥n∥
∥πAp∥πA⊥p ⊥ A, and hence ⟨c, A⟩ = 0 ⊂ (−∞, 0].

Since furthermore ⟨ ∥n∥
∥πAp∥p, C⟩ ⊂ (−∞, 0], the values c and d := ∥n∥

∥πAp∥p satisfy

the conditions in (106). By taking the original, non-zero value of m, we obtain
the values γ := ⟨c,m⟩ and δ := ⟨d,m⟩.

Using the results from lemma 16, Schrijver gives an alternative proof of
duality of ϑ in theorem 67.7 of [17].

Theorem 18. The optimal values in (6) and (14) are the same.

Proof. Let the matrix M maximize (6), and m = Tr(JM). Let the matrix A
minimize (14), and a = Λ(J + A). To prove that m ≤ a, consider the matrix
Y := aI − J −A. Since Y is PSD, it follows that

0 ≤ Tr(YM) = Tr ((aI − J −A)M) = aTr(M)− Tr(JM), (108)

since For all (i, j), eitherMij = 0 or Aij = 0, and hence Tr(AM) = 0. Therefore,

0 ≤ a−m. (109)

Proving a ≤ m is a bit more tricky. Since SVG
+ is convex, and MG is affine,

there are C,D ∈ RV 2
G and γ, δ ∈ R such that Tr(CX) ≤ γ for all X ∈ MG,
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and Tr(DX) ≤ δ for all X ∈ SVG
+ , with equality for X = M , and C +D = J .

Assume C,D are symmetric, by replacing them with 1
2 (C+CT ) and 1

2 (D+DT ).

This works, since SVG
+ and MG consist of symmetric matrices. Since SVG

+ is a

cone, δ = 0. Now −D ∈ SVG
+ , since xxT ∈ SVG

+ for all x ∈ RVG , and hence
xTDx = Tr(xxtD) ≤ 0. Since MG ⊂ {X|Tr(CX) = γ}, there is a matrix
B ∈ LG such that C = γI − B. Therefore, since −D ∈ SVG

+ , it follows that

γI − J − B ∈ SVG
+ . Therefore, a = Λ(j + A) ≤ Λ(J + B) ≤ γ = Tr(CM) = m.

By combining both inequalities, we have shown that a = m.

B Code

B.1 Program for checking which graphs satisfy ϑ− = tmax

The following Julia code was used to determine which graphs satisfy the condi-
tion of lemma 7, for all graphs with n = 1− 7 vertices.

1 using LinearAlgebra, COSMO, JuMP, Plots, GraphRecipes, Distributions,

Combinatorics

2 max_err = 1e-3

3 iter=1

4

5 function theta_prime(G)

6 n = size(G)[1]

7 model = JuMP.Model(COSMO.Optimizer)

8 set_silent(model)

9 @variable(model, X[1:n, 1:n], PSD)

10 @objective(model, Max, sum(X))

11 @constraint(model, tr(X)==1)

12 for i in 1:n

13 for j in 1:n

14 if (G[i,j]==1)

15 @constraint(model, X[i,j] == 0)

16 else

17 @constraint(model, X[i,j] >= 0)

18 end

19 end

20 end

21 JuMP.optimize!(model)

22 return JuMP.objective_value(model)

23 end

24

25 function theta_prime_dual_conjecture(G)

26 n = size(G)[1]

27 Ig = Matrix(1I, n, n)

28 Jg = ones(n,n)

29 model = JuMP.Model(COSMO.Optimizer)

30 set_silent(model)

31 @variable(model, l)

32 @variable(model, X[1:n, 1:n])

33 @objective(model, Min, l)

34 @constraint(model, (l*Ig - Jg - X) in PSDCone())

35 @constraint(model, (l*Ig + Jg + X) in PSDCone())

36 for i in 1:n
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37 for j in 1:n

38 if (G[i,j]==0)

39 @constraint(model, X[i,j] >= 0)

40 end

41 end

42 end

43 JuMP.optimize!(model)

44 return JuMP.objective_value(model)

45 end

46

47 function validate_conjecture(G)

48 t = theta_prime(G)

49 c = theta_prime_dual_conjecture(G)

50 return (abs(t-c)<max_err)

51 end

52

53 function check_if_done(R,S)

54 return in(R,S)

55 end

56

57 function add_to_done(R,S,n)

58 R2 = copy(R)

59 perms = permutations(collect(1:n))

60 for p in perms

61 for i in 1:n

62 for j in 1:n

63 R2[p[i],p[j]] = R[i,j]

64 end

65 end

66 push!(S,copy(R2))

67 end

68 end

69

70 function validate_all_m(n,m,from,fixedset,S,iter,coll)

71 r = length(fixedset)

72 if (m==0)

73 R = zeros(n,n)

74 cnt=0

75 pos=1

76 i=2

77 while pos<=r

78 if (fixedset[pos]-cnt<=i-1)

79 R[i,fixedset[pos]-cnt] = 1

80 R[fixedset[pos]-cnt,i] = 1

81 pos+=1

82 else

83 cnt+=i-1

84 i+=1

85 end

86 end

87 if check_if_done(R,S)

88 return

89 end

90 good = validate_conjecture(R)

91 if (!good)

92 push!(coll,R)

93 end
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94 add_to_done(R,S,n)

95 return

96 end

97 for i in from:trunc(Int,(n*(n-1)/2 -m + 1))

98 push!(fixedset,i)

99 validate_all_m(n,m-1,i+1,fixedset,S,iter,coll)

100 pop!(fixedset)

101 end

102 end

103

104 function get_fails_size_n(n)

105 S = Set()

106 iter=[1,1]

107 coll = []

108 for m in 0:trunc(Int,n*(n-1)/2)

109 L=[]

110 iter[2]=1

111 validate_all_m(n,m,1,L,S,iter,coll)

112 end

113 return coll

114 end

B.2 Program for comparing ϑ− and tmax for abelian Cayley
graphs

The following Python code was used to check which of the abelian Cayley graphs
on n vertices satisfy the conditions of lemma 7, for n = 1− 31, 33.

1 from scipy.optimize import linprog

2 from math import *

3 import numpy as np

4

5 eps = 1e-6

6 partitions = [[], [[1]], [[2],[1,1]], [[3],[2,1],[1,1,1]],

[[4],[3,1],[2,2],[2,1,1],[1,1,1,1]],

[[5],[4,1],[3,2],[3,1,1],[2,2,1],[2,1,1,1],[1,1,1,1,1]]]

7

8 def solve_Cayley_2(S, A, b, obj_func):

9 var_bounds = [(None,None) if p else (1,None) for p in S]

10 res = linprog(obj_func, A_ub = A, b_ub = b, bounds = var_bounds)

11 return res.fun

12

13 def solve_Cayley_conjecture_2(S, A_conj, b_conj, obj_func):

14 var_bounds = [(None,None) if p else (1,None) for p in S]

15 res = linprog(obj_func, A_ub = A_conj, b_ub = b_conj, bounds = var_bounds)

16 return res.fun

17

18 def prime_decomposition(n):

19 m = n

20 pfact = []

21 curp = 2

22 while (m>1):

23 if (m%curp==0):

24 pfact.append([curp,0])

25 while (m%curp==0):

26 pfact[-1][1] += 1
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27 m//=curp

28 curp+=1

29 return pfact

30

31 def advance_partition_set(numbers, current):

32 for i in range(len(numbers)):

33 current[i] += 1

34 if current[i] == numbers[i]:

35 current[i] = 0

36 else: break

37

38 def get_pairs(n, cycles, rs):

39 pairs = []

40 id_seen = [True for i in range(n)]

41 for p in range(n):

42 if (id_seen[p]):

43 id_seen[p] = False

44 p_inv, tmp = 0, 1

45 for perm in range(len(cycles)):

46 p_inv += tmp*(cycles[perm] - rs[p][perm]) if rs[p][perm]>0 else 0

47 tmp *= cycles[perm]

48 if (p == p_inv):

49 pairs.append([p])

50 else:

51 id_seen[p_inv] = False

52 pairs.append([p,p_inv])

53 return pairs

54

55 def verify_conjecture_size(n):

56 numgood, numbad, numnone, numerror = 0, 0, 0, 0

57 pfact = prime_decomposition(n)

58 number_parts = [len(partitions[p[1]]) for p in pfact]

59 current_partition_set = [0 for p in pfact]

60 times = np.prod(number_parts)

61

62 for _ in range(times):

63 cycles = [pfact[i][0]**c for i in range(len(pfact)) for c in partitions[

pfact[i][1]][current_partition_set[i]]]

64 rs = [[0 for i in range(len(cycles))]]

65 for c in range(len(cycles)):

66 curlen = len(rs)

67 for j in range(1,cycles[c]):

68 for perm in range(curlen):

69 rs.append([rs[perm][i] if i!= c else j for i in range(len(

cycles))])

70

71 pairs = get_pairs(n, cycles, rs)

72

73 A = [[(cos(sum(2*pi*rs[perm][j]*rs[p[0]][j]/cycles[j] for j in range(len(

cycles))))-1)*len(p) for p in pairs] for perm in range(1,n)]

74 b = [0 for perm in range(1,n)]

75

76 A_conj = [[(cos(sum(2*pi*rs[perm][j]*rs[p[0]][j]/cycles[j] for j in range

(len(cycles))))-1)*len(p) for p in pairs] for perm in range(1,n)] + [[-(cos(

sum(2*pi*rs[perm][j]*rs[p[0]][j]/cycles[j] for j in range(len(cycles))))+1)*

len(p) for p in pairs] for perm in range(1,n)]

77 b_conj = [0 for perm in range(1,n)] + [0 for perm in range(1,n)]
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78

79 obj_func = [len(p) for p in pairs]

80

81 numgood += 1

82

83 for S_bitmask in range(1,1<<(len(pairs)-1)):

84 S = [True if (((S_bitmask<<1)>>j)&1)==1 else False for j in range(len

(pairs))]

85 theta = solve_Cayley_2(S,A,b,obj_func)

86 t_{\mathrm{max}} = solve_Cayley_conjecture_2(S,A_conj,b_conj,obj_func

)

87 if (theta == None):

88 numerror += 1

89 elif (t_{\mathrm{max}} == None):

90 numnone += 1

91 elif (abs(theta-t_{\mathrm{max}}) < eps):

92 numgood += 1

93 else:

94 numbad += 1

95

96 advance_partition_set(number_parts, current_partition_set)

97

98 return [numgood, numbad, numnone, numerror]

B.3 Program for comparing ϑ− and tmax for Hamming graphs

The following code was used to check which Hamming graphs satisfy the condi-
tions of lemma 7, for several small values of n, q, and all subsets M ⊂ {1, . . . , n}.

1 from scipy.optimize import linprog

2 from math import *

3 import numpy as np

4

5 facts = [1]

6 for i in range(1,30): facts.append(facts[-1]*i)

7 print(facts)

8

9 def binom(a,b):

10 return (facts[a])//(facts[b]*facts[a-b])

11

12 def getKrawchouk(d,q):

13 pow_min_q = [1]

14 pow_q_min_1 = [1]

15 for i in range(1,d+1): pow_min_q.append(-pow_min_q[-1]*q)

16 for i in range(1,d+1): pow_q_min_1.append(pow_q_min_1[-1]*(q-1))

17 return [[sum(binom(d-j,k-j)*binom(u,j)*pow_min_q[j]*pow_q_min_1[k-j] for j in

range(d+1)) for k in range(d+1)] for u in range(d+1)]

18

19 def getTracesE(d,q):

20 pow_q_min_1 = [1]

21 for i in range(1,d+1): pow_q_min_1.append(pow_q_min_1[-1]*(q-1))

22 return [binom(d,u)*pow_q_min_1[u] for u in range(d+1)]

23

24 def Delsarte_dual_ordinary(d,q,M):

25 P = getKrawchouk(d,q)

26 obj_fun = [1 for i in range(d+1)]
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27 var_bounds = [(1,1)] + [(0,None) for i in range(d)]

28 A = [[P[j][i] for j in range(d+1)] for i in range(1,d+1) if M[i]==1]

29 b = [0 for i in range(1,d+1) if M[i]==1]

30 res = linprog(obj_fun, A_ub = A, b_ub = b, bounds = var_bounds)

31 return res.fun

32

33 def Delsarte_dual_test(d,q,M):

34 P = getKrawchouk(d,q)

35 mu = getTracesE(d,q)

36 q_pow_d = q**d

37 obj_fun = [1 for i in range(d+1)]

38 var_bounds = [(1,1)] + [(0,None) for i in range(d)]

39 A = [[P[j][i] for j in range(d+1)] for i in range(1,d+1) if M[i]==1] + [[(i==

j) - 2*mu[i]/q_pow_d for j in range(d+1)] for i in range(1,d+1)]

40 b = [0 for i in range(1,d+1) if M[i]==1] + [0 for i in range(1,d+1)]

41 res = linprog(obj_fun, A_ub = A, b_ub = b, bounds = var_bounds)

42 return res.fun

43

44 for d in range(1,8):

45 for q in range(2,10):

46 cnt = 0

47 cnt2 = 0

48 for m in range((1<<d)+1, (1<<(d+1))):

49 M = [(m>>i)&1 for i in range(d,-1,-1)]

50 reg = Delsarte_dual_ordinary(d,q,M)

51 test = Delsarte_dual_test(d,q,M)

52 if (abs(reg-test) > 0.00001):

53 # print(d,q,M,reg,test)

54 cnt += 1

55 else:

56 cnt2 += 1

57 print(cnt2, end=" & ")

58 print("\n \\hline \\\\")
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