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Abstract:

Wave energy is a promising source of clean and renewable energy. In order
to tap this energy various designs for wave-energy converters are currently
under development. One of these devices is the Archimedes Wave Swing.
It is basically a submerged air vessel consisting of a floater and a stator.
The floater is free to move vertically under varying wave pressure, while
the stator is anchored to the sea bed. Energy is extracted from the relative
motion of the two parts.

The control objective is to optimize the power produced while ensuring
that the motion of the floater remains within certain prescribed limits. The
main difficulty is due to the high degree of irregularity of ocean waves.
Two consecutive waves can have significantly different heights and peri-
ods, and the controller should be able to deal with that.

The controllers are designed based on two different principles. The first
method controls the trajectory so that the velocity of the floater remains in
phase with the excitation force. Model predictive control is used in order to
be able to eact to the constraints ahead of time. The second method makes
use of a prediction of the excitation force in order to calculate the control
force which maximizes the energy produced.
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Chapter 1

Introduction

A rapidly increasing oil price and increased awareness of global climate
change have led to a search for clean and renewable energy. One option
is harnessing the energy in ocean waves. A number of wave energy con-
verters (WECs) are currently being developed and have reached the pre-
commercial stage of development. One of these is the Archimedes Wave
Swing (AWS). The AWS is a cylindrical underwater air-reservoir consisting
of a floater which is free to move vertically, and a stator which is anchored
to the sea bed. The position of the floater varies with the changing hydro-
dynamic pressure and energy is extracted from the motion.

The AWS is subject to some constraints: the maximum floater position
and velocity are constrained and the generator force is limited to 1 MN. Fur-
thermore, ocean waves are highly irregular, meaning that there is a large
variation in the wave periods and wave heights for the same sea condi-
tions. The motion of the floater must be controlled in order to optimize the
wave energy converted while satisfying the given constraints.

The combination of the irregularity of the waves and the importance of the
constraints obedience makes a predictive control strategy a suitable candi-
date. Predictive control can react in advance to the incoming waves, allow-
ing it to safely operate closer to the constraints. For example, the controller
provides an extra braking force only for particularly large waves where the
constraints are endangered.

The report is structured as follows. Chapter 2 describes the control prob-
lem in more detail. Chapter 3 describes the modelling done to design and
evaluate the controllers. It includes models of the system as well as models
used to estimate and predict the wave force. Chapter 4 describes the con-
troller design. Chapter 5 evaluates the controllers. Finally, chapters 6 and 7
contain the conclusions and recomendations respectively.
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Chapter 2

Control Problem Description

This chapter briefly describes the control problem. First the AWS is intro-
duced in section 2.1. A more complete overview of the system is given in
chapter 2 of the literature study report. Section 2.2 briefly describes the
wave profiles used to generate the results presented in this report. Next
the basics of the control problem are described in section 2.3. Finally the
control strategy to be used is introduced in section 2.4.

2.1 The AWS Design

Figure 2.1 shows the working principle of the AWS. The AWS is a sub-
merged air-vessel consisting of two parts. The top part (the floater) is free
to move vertically while the bottom part (the stator) is anchored to the sea
bed. When the trough of the wave passes over the AWS the water pres-
sure acting on it is especially low and the air inside expands, pushing the
floater upwards. When the peak of the wave passes over the AWS the wa-
ter pressure acting on it is especially high, pushing the floater downwards.
A generator extracts energy from the relative motion of the two parts.

Figure 2.2 shows a simple schematic of the AWS. The motion of the
AWS is constrained. If the vertical displacement floater exceeds a certain
limit a set of water brakes will activate providing an extra damping force.
Additionally, there are rubber end stops at the furthest allowable limit. The
velocity of the floater is also be limited because large velocities induce large
electrical currents.

The design also incorporates a pump which can pump water into and
out of the AWS, changing the air pressure. This is done in order to tune
the natural frequency of the AWS to match it with the average excitation
period at that time.

The generator is an experimental permanent magnet linear generator.
The main difference to a conventional generator is that the motion of the
rotor is linear. The generator provides a damping force to the floater when
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Figure 2.1: Working Principle of the AWS

Figure 2.2: Schematic of the AWS
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it extracts energy from the motion. It is also capable extracting energy from
the electrical grid to providing a control force in the same direction as the
velocity.

There may be a floating buoy present in the neighbourhood of the de-
vice. If so measurements of the surface waves are also available to the con-
troller.

In 2004 a prototype of the AWS was implemented off of the coast of
Portugal. The floater has a diameter of 9.5 m and weighs 0.4·106 kg. The
total height with the floater at mid position is 38 m, with an air volume of
3000 m3. A total of 1500 m3 of water can be pumped into the AWS allowing
it to be tuned to between 7 and 13 second wave periods.

2.2 Ocean waves

Ocean waves are irregular on the short term but vary on the long term as
well depending on weather conditions. The average characteristics of the
waves over intervals of 30 minutes is refered to as the sea state.

In this report sea states are characterized by the significant wave height
(Hs) and the average upwards zero-crossing period (Tz). The significant
wave height is defined as the average of the one third highest waves. The
average upwards zero-crossing period is defined as the average interval
between upwards crossings of the mean water level.

This report makes use of synthetically generated waves. The wave pro-
files are generated by filtering white noise such that the resulting signal
has the desired power spectrum. The desired power spectrum is based on
the JONSWAP power spectrum. The spectrum is modified to resemble the
spectra attained from the measurements at the test site. The measurements
were taken at the AWS prototype test site, off of the coast of Portugal. The
JONSWAP spectrum is given as:

J(H,T, γ, ω) =
5.23π3H2

s

T 4ω5
exp

[

−32.39
π3

T 4ω4

]

· γp, (2.1)

where

p = exp

(

−
(

0.191ωT − 1√
2σ

)

2

)

,

σ = 0.07 for ω ≤ 5.24/T (2.2)

σ = 0.09 for ω > 5.24/T

The following spectrum is used to generate the wave data:

Jmod = 4J(H, 0.9Tz , 2.8, ω) (2.3)

Chapter 3.1 of the literature study discusses ocean waves more deeply. Ref-
erences [11] and [12] and chapter 3.1.4 of the literature study report describe
the procedure for generating the wave profiles.
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Parameter Value

c1 250 kW
c2 20 kW
c3 10 kW
Frated 1 MN
vrated 2.2 m/s

Table 2.1: Generator parameters

2.3 Control Problem

The AWS prototype made use to an experimental linear generator. The
generator is capable of producing a 1 MN control force (Fgen) parallel to
the floater motion. The generator force is a result of extracting energy from
the motion and can also be used to control the motion of the floater.

The power produced by the generator is given by the following equa-
tion:

P = −Fgenż − c1

(

Fgen

Frated

)2

− c2

∣

∣

∣

∣

ż

vrated

∣

∣

∣

∣

− c3 (2.4)

The first term expresses the power extracted by the generator from the mo-
tion. Note that when the control force and the velocity are the same sign,
the power produced is negative, i.e. it costs energy to increase the speed
of the floater. The second term represents the resistive losses, also known
as copper losses, and is approximated as proportional to the square of the
generator force. The third term represents the iron losses and is approxi-
mated as proportional to the speed of the floater. The final term represents
the power used by the AWS for miscellaneous functions such as, for exam-
ple, cooling the converter. Table 2.3 lists the values for the parameter given
in equation 2.4. Reference [4] gives a description of the generator.

The control objective is to maximize the energy produced while satis-
fying the constraints on the motion as well as the limitations of the control
force. Note that maximizing the energy output is not equivalent to max-
imizing the power produced at every point in time. The generator can
extract power from the grid to facilitate the motion of the AWS, thereby
increasing the overall amount of energy produced.

The control problem is made more challenging by the nature of ocean
waves. The surface waves are highly irregular, meaning that there is a sig-
nificant difference between the periods and heights of consecutive waves,
which the system must be able to handle. References [2], [3], [8], [9] and [10]
discuss various manners of using control to deal with the wave irregularity.
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2.4 Control Strategy

The significance of the constraints in combination with the irregularity of
the excitation force make model predictive control a promising control method-
ology. For example, if an unexpectedly large wave approaches the AWS,
endangering the constraints, a predictive controller can react to it in ad-
vance, thereby allowing it to safely operate close to the constraints. An
example of a model predictive control technique used to handle irregular
waves is discussed in reference [3], where a prediction is used to calculate
the optimal latching relase time.

Basically, two kinds of controllers are designed:

• Trajectory control: A controller of this kind controls the velocity of
the floater to ensure that it is in phase with the excitation force. The
magnitude is defined as a constant scaling of the excitation force. The
scaling factor is based on an equation for the optimal velocity tra-
jectory, as derived in chapter 4.3.2 of the literature study report and
chapter 6 of Ocean Waves and Oscillating Systems [6]. The expression
is only valid when the generator losses and constraints are neglected
and the motion is unconstrained. The true optimal trajectory is very
difficult to calculate.

• Energy maximization: An alternative is to design a controller which
attempts to optimize the energy produced directly. The difficulty
with this kind of controller is in formulating an optimization prob-
lem which accurately describes the energy produced as a function of
the predicted excitation force, the initial state and the future control
force.

In addition, two other possibilities are suggested. The possibility of
switching between the reference tracking and energy maximizing controllers
is discussed. Also a method for expressing the electrical energy produced
by the generator approximately in order to allow the optimization problem
to be solved with less calculations is discussed.

In order to design the controllers it is necessary to have an estimate of
the future excitation force. The excitation force can be predicted by extrap-
olating it from past values. This is be done using an autoregressive (AR)
model, as is discussed in section 3.3.

To predict the excitation force past values are needed. These can be
provided by use of a pressure sensor. Including a pressure sensor however,
would influence the overall cost and reliability of the system. In case there
excitation force cannot be measured, the excitation force can be estimated
from the motion of the AWS. This is discussed in section 3.4.

In order to investigate the effects of the prediction and estimation on the
performance, the code is written to be able to handle the following three
cases:
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• The excitation force is known a priori. This is an ideal case. Un-
less otherwise stated the results presented in this report make use of
knowledge of the future excitation force.

• The excitation force is known for past and present, and the future
excitation force must be predicted. In this case it is assumed that the
AWS is equipped with an ideal pressure sensor.

• The excitation force is not known at all. It must first be estimated and
then extrapolated.

By comparing the performance for each of the above cases the need for
improved estimation or prediction can be evaluated.

7



Chapter 3

Modelling

This chapter discusses the models used to design and evaluate the con-
troller. Section 3.1 describes the non-linear model of the AWS. This model
is used to evaluate the closed loop performance, and to estimate a linear
model. Section 3.2 describes the linearization of the model. Section 3.4
describes a model which is used to estimate the excitation force. Finally,
section 3.3 describes the model used to make a prediction of the excitation
force.

3.1 AWS model

The AWS is a system with one degree of freedom: the floater is free to move
vertically only. The motion of the floater is thus determined by the sum of
the vertical forces. By Newton’s second law the acceleration of the floater
is equal to the sum of the forces divided by the mass of the floater.

mf z̈ = Fbear +Fdrag +Fgrav +Fhs +Frad+Fsp+Fwb+Fgen+Fend+Fe (3.1)

The forces are each described below including the equations used to
model them. Chapter 2.3 of the literature study report and reference [4]
give more information. Table 3.1 gives the values for the parameters used.
Figure 3.1 shows a schematic illustrating the dimensions involved. Ap-
pendix B.1 contains the code used to implement the model.

Fbear is the force due to friction in the bearings. It depends on the nor-
mal force felt by the top (FNtop) and bottom (FNbot) bearings, and the bear-
ing friction coefficient (µ).

Fbear = −µ · sign(ż) · (|FNtop| + |FNbot|) (3.2)

FNtop and FNbot depend on the position of the bearings and the horizontal
load profile of the floater. The horizontal load profile can be calculated

8



Symbol Description Value

CDDW drag coefficient for downwards velocities 0.4
CDUP drag coefficient for upwards velocities 0.2
dbot0 distance from floater bottom to bottom bearing at mid-position 10 m
dtop0

distance from floater bottom to top bearing at mid-position 19 m
df depth to the floater top at mid-position 11 m
g acceleration due to gravity 9.8 m/s2

hf floater height 28.5 m
madd added mass 3.55 · 105 kg
mf floater mass 4 · 105 kg
pamb ambient pressure 1 · 105 N/m2

Sf inner cross-sectional area of the floater 79 m2

SF outer cross-sectional area of the floater 95 m2

βwb water brake coefficient 1.5 · 106 kg/m
γ heat capacity ratio 1.4
θ end stop position 4.5 m
κ water brake limit 4 m
µ bearing friction coefficient 0.1
ηT tide level 0 m
ρ water density 1.025 · 103 kg/m3

Table 3.1: Simulation parameters

Figure 3.1: AWS dimensions
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from the sea surface elevation using linear wave theory. For an overview
of the linear wave theory used, see chapter 3.2 of the literature study report
and reference [6]. The hydrodynamic loads are calculated as the resulting
horizontal force (Fx) and horizontal moment (Mx) relative to the bottom of
the floater at midposition. Appendix B.3 gives the code used to calculate
the horizontal loads. The normal forces acting on the bearings can then be
calculated using classical mechanics.

Fdrag is the drag force of the water acting on the floater, and is ex-
pressed in terms of the upwards and downwards drag coefficients (CDUP

and CDDW ), the outer cross-sectional area of the floater (SF ), the water
density (ρ) and the floater velocity (ż):

Fdrag =







−1
2ρSF ż|ż|CDUP , ż ≥ 0

+1
2ρSF ż|ż|CDDW , ż < 0

(3.3)

Fgen is the force applied by the generator and can be considered the
control input. The force is used to control the motion and to extract energy.
The power produced by the generator is given as the product of the velocity
and the generator force minus the generator losses. The losses are given in
terms of 3 constants (c1, c2 and c3), the designed maximum generator force
(Frated) and the designed maximum floater velocity (vrated).

P = −Fgen · ż − c1

(

Fgen

Frated

)2

− c2

∣

∣

∣

∣

ż

vrated

∣

∣

∣

∣

− c3 (3.4)

Fgrav is the weight of the floater, and is given as the product of the
floater mass (mf ) and the acceleration due to gravity (g).

Fgrav = −mfg (3.5)

Fhs is the force due to the hydrostatic pressure acting on the AWS. It
varies with the depth (df ), tide-level (ηT ) and the floater position (z). It
is parameterized by the outer (SF ) and inner (Sf ) floater cross-sectional
areas, the floater height (hf ), the water density (ρ) and the ambient pressure
(pamb).

Fhs(z) = −SF (ρg(df + ηT − z) + pamb)+

+ (SF − Sf )(ρg(df + ηT + hf − z) + pamb (3.6)

Frad is a force acting on the AWS which is the reaction of the wave
being radiated from it. It consists of an extra inertial term (madd) and a
convolution integral representing the memory of the fluid. Chapter 3.2.4
of the literature study report and reference [6] cover the derivation. The
convolution integral in 3.7 can be approximated in a number of ways as
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shown in appendix C. For the results presented in this report, the memory
term was approximated as the radiation force being modelled as a constant
damping, where the damping value depends on the average zero-crossing
wave period.

Frad = −maddz̈ −
∫ t

0
R(t − τ)ż(τ)dτ (3.7)

Fsp is the force due to the gas pressure inside the AWS. It is expressed as
a function of the floater position (z) in terms of the equilibrium spring force
(F̄sp), the equilibrium position (z̄), the heat capacity ratio (γ) and the equiv-
alent spring length at equilibrium (L̄G). The value for equivalent spring
length is set to the desired value by pumping water into or out of the AWS,
in order to tune or detune the AWS to the excitation force. The AWS can
be tuned to a natural period of between 7 and 13 seconds. The results pre-
sented in this report are for a tuning period of 1.3·Tz , but limited to between
7 and 13 seconds.

Fsp = F̄sp

(

1 +
z − z̄

L̄G

)

−γ

(3.8)

Fwb is the force applied by the water brakes. The water brakes act as an
extra damping force when a limit in the vertical displacement is exceeded:

Fwb =







0 z < κ

−βwbż
2, z ≥ κ

(3.9)

where κ is the water brake limit and βwb is the water brake coefficient.
Fend is the reaction force of the rubber end stops in case they are hit.

In principal this should never occur but they are nevertheless included in
the model to prevent unrealistic results for simulation case where the con-
straints are broken. The end stop reaction force is modelled as a force which
attempts to halt the floater within 0.1 seconds:

Fend =

{

0, z < θ
(mf + madd)ż/0.1, z ≥ θ

(3.10)

where θ is the end stop position.
Fe is the excitation force, also refered to as the vertical hydrodynamic

force. The excitation force is a function of the wave profile. Chapter 3.2 of
the literature studyand reference [6] describe the linear wave theory used
to calculate the excitation from the sea surface elevation:

Fe(d, ω) = ρgSF η(ω)KP (d, h, ω) (3.11)

where d is the depth, η is the surface elevation and KP is the decay factor.
KP is a function of the depth to the sea bed (h), the depth and frequency.

KP (ω, h, d) =
cosh(k(ω)(h − d))

cosh(k(ω)h)
(3.12)
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where k(ω) is the wave number. The excitation force is calculated for a
floater at mid-position. This is an approximation. See section 5.4.2 for a
discussion on the approximation. Appendix B.3 gives the m-code used to
translate the surface elevation to the excitation force.

The excitation force and the force of gravity are external forces since
they do not depend on the motion of the system. The coulomb friction
in the bearings depends both on the position of the floater as well as the
resulting horizontal force acting on the floater and hence depends on both
external and internal signals.

3.2 Linearizing the AWS model

Making use of a linear model to predict the response of the AWS improves
the speed of solving the optimization problem, and also allows the prob-
lem to be formulated as a quadratic problem when the cost function is ex-
pressed as a linear function of the state.

The system can be seen as a non-linear mass-spring damper, whereby
the hydrodynamic forces caused by the waves are seen as the external in-
puts. The non-linear system can hence be approximated as a second order
linear system parameterized by a stiffness coefficient (k), a damping coeffi-
cient (d), and a value for the inertia felt by the AWS (m):

(

ż
z̈

)

=

(

0 1

− k
m

− d
m

)(

z
ż

)

+

(

0
1
m

)

Fe +

(

0
1
m

)

Fgen (3.13)

The inertia felt by the device is the sum of the mass of the floater (mf )
and the extra intertia felt by the floater due to it being submerged, referred
to as the added mass (madd).

m = mf + madd (3.14)

The floater mass is known and the added mass can be determined theoret-
ically or experimentally.

An appropriate value for the stiffness coefficient is the stiffness at the
equilibrium position. The equilibrium stiffness is actively tuned so that the
AWS is in resonance with the excitation force. The same stiffness value to
which the AWS is tuned is used in the linear model.

k =
γgF̄sp

L̄G

− ρgSf (3.15)

The damping force is not easy to linearize. There are three damping
forces present.
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Figure 3.2: Average damping coefficients for a range of sea-states
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• The drag force is strongly non-linear. It varies proportionally to the
square of the velocity, and the drag coefficient changes with the sign
of the floater velocity. When the sea state is rough the root mean
square of the drag force will be larger than when the sea state is calm.

• The radiation force depends on the frequency of the floater velocity,
and hence depends on the wave period. The radiation force is highest
for a period of between 7 and 8 seconds.

• The magnitude of the friction in the bearings depends on the posi-
tion of the floater and the magnitude of the horizontal hydrodynamic
loads acting on it. When the waves are higher, the horizontal forces
are larger and it is expected that the average coulomb damping at the
bearings will be higher. Only the direction of the friction is related to
the velocity.

In order to model the damping forces linearly an equivalent lineariza-
tion is performed. The idea is to get an average value for ’best-fit’ damping
coefficients as a function of the sea-state.

The AWS motion is simulated for 1000 real sea states using the most de-
tailed model described in section 3.1 whereby a control force opposing the
excitation force of a magnitude of 0.8 times the excitation force is assumed.
The sea states used are taken from sea surface measurements taken at the
test site of the AWS prototype. This excites the motion of the floater to the
expected amount for each sea state. The average linear damping coefficient
is calculated for each sea state as d = ¯|Fd|/ ¯| ˙ |z where ¯|Fd| is the time aver-
age of the sum of the absolute values of all the damping forces and ¯| ˙ |z is
the time average of the absolute values of the floater velocity. Figure 3.2
shows the average damping coefficients attained for different sea states.
The results used in this report make use of the linear dmping coefficient
d(Hs) = 5200 · Hs + 87000.

Determining the linear damping coefficient in this way has the advan-
tage that it finds an average value over the entire operating range. Analyt-
ically linearizing the model about a certain point would be representative
only in the neighbourhood of that point. For example, consider linearizing
the model around ż = 0. The damping coefficient due to the drag force
is equal to zero because the drag is proportional to the square of the ve-
locity. The damping coefficient due to the bearing friction is equal to zero
because the magnitude of the force is not related to the velocity. This leaves
only the damping caused by the reaction of the radiated wave which badly
mis-represents the AWS for non-zero floater velocities.

Figure 3.3 compares the open loop responses of the linear and non-
linear models for a chirp input signal. The input signal is a sine function
with a frequency which varies from 0.34 rad/s to 2 rad/s and has a mag-
nitude of 1·105 N. The tuning frequency of the AWS is set to 0.5 rad/s.
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The damping in the linear model is set to 96.1·103 Ns/m corresponding
to a significant wave height of 1.75 m. The friction in the bearings for the
non-linear model is modelled using the horizontal loads as calculated for
a sea state with significant wave height of 1.75 m and a wave period of 9.5
seconds. The responses of the models appear to be quite similar and it is
hopeful that the linear model is sufficient to be used by the model predic-
tive controller.

3.3 Predicting the Excitation Force

The excitation force is highly irregular and directly influences the energy
input to the system. In order to optimize the controller a prediction of the
excitation force is required.

The excitation force is predicted by means of an auto-regressive (AR)
model. For a specific sea state an AR model can be identified given enough
values of the measured or estimated excitation force. This model can then
be used to make short-term predictions. The model should be re-identified
whenever the sea state changes significantly. Auto-regressive models are
of the form:

y[n+1|n] = a1y[n]+a2y[n−1]+a3y[n−2]+ · · ·+aN−1y[n−N +2] (3.16)

where N is the order of the model and a1 up to aN−1 are constant coeffi-
cients.

The wave prediction is implemented by the controller as follows. First
the AR model is identified using the matlab function ar.m. This is only
done once for a given sea state. The AR model is identified based on a time
series of 500 values with a step size equal to the controller step size. The
controller step size is typically between 0.3 and 0.6 seconds depending on
the tuning period (the step size is chosen such that there are 30 steps within
one tuning period). The order of the model is set to 40.

Next a prediction of the excitation force is made using the 40 previous
values for the excitation force. This prediction can be used by the model
predictive controller.

To ensure a reasonable excitation force model it is important that the
step size should be much smaller than the average period of the excitation
force. It is also important that the identification data spans a long enough
time period to ensure that the identified model is stable.

Figure 3.4 gives a typical example of the prediction. As can be seen,
in this case, the prediction is quite accurate on the short term but starts
to deviate from the true excitation force after some time. In general the
prediction method can only be used for short term predictions of less than
one period. Appendix B.1.3 contains the code used to identify the excitation
force prediction model.
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3.4 Estimating the Excitation Force

In order to predict the excitation force by the method described above, past
values for the excitation force must be given. It is possible to use a pressure
sensor to measure this force although this would decrease the reliability of
the design. Alternatively, it is possible to estimate the force from the motion
of the AWS.

It is assumed that the measured vertical displacement signal is of suffi-
ciently high quality so that it is possible to calculate the acceleration. Sec-
tion 5.4 discusses the case where the acceleration cannot be estimated in
this manner. From Newtonian mechanics:

Fe = m
∂2z

∂t2
− Fd − Fk − Fwb − Fgen (3.17)

The damping force (Fd) is estimated using the average linear damping
attained in section 3.2. The spring force (Fk) is attained using the same
equations as those used in the non-linear model described in section 3.1.
This is an ideal case since the exact stiffness force would not be known in
real life. Section 5.4 demonstrates that using an approximate model of the
spring stiffness is also sufficient to estimate the excitation force. The water
brake force (Fwb) and the generator force (Fgen) are known to the controller.

The attained estimate is filtered with a band pass filter. High frequen-
cies introduced by sudden changes in the generator force and water brakes,
and those introduced by the erratic coulomb friction in the bearings, are fil-
tered out. Low frequencies due to numerical errors which introduce drift
are also filtered out. The low pass and high pass filters used are given as:

LP (s) =
400

(s + 20)2
(3.18)

HP (s) =
s2

(s + 0.1)2
(3.19)

Figure 3.5 gives the bode plot of the band pass filter. Frequencies lower
than 0.2 rad/s and higher than 10 rad/s are filtered out. The frequency of
the excitation force is always between 0.3 rad/s and 1.6 rad/s depending
on the sea state. The filter is hence not expected to influence the magnitude
of the estimate, but may cause a small phase shift for low frequencies.

Figure 3.6 shows a typical result for two sea states with a zero-crossing
wave period of 5.5 seconds and 11.5 seconds, each with a significant wave
height of 2.25 m. The estimate is in general reasonable, but shows some
error due to the damping estimate.
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Chapter 4

Controller Design

This chapter discusses controller design. Basically two types of controllers
have been designed. One controls the trajectory of the device, as discussed
in section 4.1. The other attempts to optimize the energy produced, and is
discussed in section 4.2. Additionally two alternative possibilities are sug-
gested. The possibility to switch between the two controllers is discussed in
section 4.3. Finally, attempts to approximate the expression for the energy
produced in order to lower the computational requirements of the energy
maximizing controller are discussed in section 4.4.

4.1 Reference Tracking for Phase Control

Phase control is a control methodology for wave energy converters which
controls the velocity of the converter to ensure that it is in phase with the
excitation force. In this section a model predictive controller is designed
with the objective of tracking a reference trajectory which does the same.
The magnitude of the trajectory to follow is defined as a constant scaling of
the excitation force. This is a sub-optimal form of control.

4.1.1 Theory

Phase control is a common control methodology for wave energy convert-
ers found in literature (for example references [3], [8] and [10]). Ensuring
that the velocity of the floater is in phase with the excitation force ensures
that the excitation power (given as Pe = żFe) is always positive.

Specifying the phase only is not enough to define a suitable trajectory
for the floater to follow. A suitable magnitude of the trajectory is more
difficult to calculate. The following discussion briefly covers the reasoning
behind selecting the resulting trajectory.

It is possible to express the magnitude of the floater trajectory which op-
timizes the mechanical power absorbed by the AWS. It should be stressed
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that this expression does not take into account the power losses in the gen-
erator, assumes the motion is unconstrained, and assumes that system is
linear. The velocity of the optimal trajectory is given as:

vopt(ω) =
Fe(ω)

2Ri(ω)
(4.1)

where Ri(ω) is the intrinsic mechanical resistance. It is the sum of the re-
sistance caused by the friction, the viscosity and the radiated wave. The
theory behind equation 4.1 is given in chapter 4.3.2 of the literature study
report and chapter 6 of reference [6].

Unfortunatly Ri(ω) is difficult to calculate. Additionally, to calculate the
optimal velocity requires the Fourier transform of the excitation force. The
Fourier transform of the excitation force can only be approximated because
the future excitation force is not known. An approximate expression for
equation 4.1 in the time domain is given as:

vopt(t) ≈
Fe(t)

2d
(4.2)

where d is the same average damping coefficient as used in the linear model.
Another disadvantage of the expression is that it assumes a power take

off system with linear characteristics and does not take into account the
generator losses. The generator losses are given as:

Pgen = c1

(

Fgen

Frated

)2

+ c2

∣

∣

∣

∣

ż

vrated

∣

∣

∣

∣

+ c3 (4.3)

where the first term represents the resistive losses and the second term rep-
resents the iron losses. Decreasing the magnitude of the velocity would
decrease the iron losses. The resistive losses depend on the effort needed to
follow the reference trajectory, which in turn depends on the difference be-
tween the natural response of the floater to the excitation force. By trial and
error, a better reference trajectory for the given generator losses is given as:

vref (t) =
Fe(t)

2.5d
(4.4)

Another problem with following a reference trajectory is that it can en-
ter the constrained zone. To calculate the optimal trajectory which respects
the constraints is more difficult. Model predictive control is capable of han-
dling the constraints but it should be stressed that this does not mean that
it handles the constraints optimally.

4.1.2 Controller design

The linear model used by the model predictive controller is derived in sec-
tion 3.2. The general state space form is:

~̇x = A~x + BuFgen + BdFe (4.5)
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The performance index is defined as:

J = Cz~x + DzuFgen + Dzrvref

=

(

0 −1
0 0

)

~x +

(

0
λ

)

Fgen +

(

1
0

)

vref

=

(

vref − ż
λFgen

)

(4.6)

where λ is a weight on the control force. The weight prevents the controller
from tracking the reference over-zealously which could cause the closed
loop to become unstable and would increase the generator losses. Since
Fgen is in the order of 105 N and accepting a tracking error in the order of
10−1 m, the weight is set to λ = 10−6.

Given the initial state and the future excitation force one can use the
above equations to express the future performance index and the future
state as an affine function of the future control force. The predicted perfor-
mance index (Ĵ) can then be optimized with respect to the control signal
(F̂gen).

min ĴT Ĵ = min 1
2 F̂ T

genHF̂gen + F̂ T
genf s.t. KF̂gen ≤ l

F̂gen F̂gen

(4.7)

where H and K are constant matrices, and f and l are constant vectors. Ĵ
and F̂gen are vectors containing predictions of the performance index and
control force at discretized time steps until the horizon is reached. The hori-
zon is defined as the length of time that the controller ’looks’ into the fu-
ture. The procedure of formulating the optimization problem is described
in appendix D and reference [1].

The reference velocity is defined by equation 4.4, except that the maxi-
mum reference velocity is limited to the rated velocity.

The horizon of the controller is chosen as the natural period of the AWS.
The step size is chosen so that there are 30 steps within the horizon. The
constraints of the optimization problem are set to prevent the floater po-
sition from exceding the water break limit and the floater velocity from
exceding the rated velocity. The m-code which implements the controller
is given in appendix B.2, where the standard predictive control toolbox [1]
is used.

4.1.3 Results

Figure 4.1 shows the performance for different synthetically generated sea
states. The power spectra used to generate the sea states are made to re-
semble those at the test site. For each sea state the closed loop is simulated
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Figure 4.1: Average power produced for synthetic sea states over 7 minute
intervals

for 7 minutes, and the average power produced is calculated. The power
produced increases strongly with the significant wave height and also in-
creases with the wave period.

The average power produced is irregular. This is because the waves
are irregular and the simulation time is short. If the simulation time is
increased the effects of the irregularities should disappear. Unfortunatly
due to time constraints the simulation lengths were limited to 7 minutes.

A typical result is discussed. The significant wave height is 2.25 m and
the average wave period is 9.5 s. Figure 4.2 shows the reference track-
ing performance of the closed loop. The floater follows the reference quite
well. The control force remains moderate, except for where the optimiza-
tion problem becomes infeasible.

Figure 4.3 shows the energy and power produced. The power produced
is irregular. The power produced is often negative when the control force
does not damp the floater velocity, but rather accelerates it.

Figure 4.4 shows how the controller is influenced when the wave force
is not known a priori, for 9 different sea states. The figure shows the av-
erage power produced in each sea state for 3 types of controllers. Type 1
controllers are ideal controllers where the excitation force is known a pri-
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Figure 4.4: Comparison of average power produced when less information
is available to the controller

ori. Type 2 controllers make use of an AR model to extrapolate known
values of the excitation force to provide an estimate of the future excitation
(see section 3.3). Type 3 controllers first estimate the excitation force from
the motion of the device (see section 3.4), and then uses the obtained val-
ues to estimate the future excitation. In general type 2 controllers show a
marginally worse performance than the type 1 controllers. In a few cases
the type 2 controller performs marginally better. Type 3 controllers often
show a significantly performance, typically by about 5 to 10 %.

4.2 Direct Energy Maximization

The energy produced by the floater can also be maximized in a more direct
manner by calculating the control force based on an optimization proce-
dure which attempts to maximize an expression for the energy produced.
In this manner the generator losses can easily be taken into account, and
the energy produced can be maximized with respect to the constraints.
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4.2.1 Theory

The energy produced by the AWS can be approximated as a function of the
floater velocity (ż) and the generator force (Fgen):

E =

∫ tfinal

t0

(

−żFgen − c1

(

Fgen

Frated

)2

− c2

∣

∣

∣

∣

ż

vrated

∣

∣

∣

∣

− c3

)

dt (4.8)

where the first term żFgen represents the mechanical power absorbed by
the generator, and the other terms represent the generator losses.

The velocity is a function of the control force as well as the excitation
force and initial state. Given the initial state and a prediction of the exci-
tation force it is possible to write an expression for the predicted energy
with the control force as the only variable. It is then possible to formulate
an optimization problem which finds the control force that maximizes the
energy produced.

Unfortunatly the optimization problem is non-linear which is a difficult
optimization problem to solve. It has high computational demands and
may contain local maxima. Reference [5] provides an overview of non-
linear optimization problems.

To investigate the optimization problem further the problem is solved
for 12 different cases. For each case the optimization problem is formulated
in terms of different future excitation forces and different initial conditions.
Each of these optimization problems is then solved for 200 different ini-
tial guesses of the generator force signal. The generator force predictions
are vectors where each element is a random value between −Frated and
Frated. For moderate and large excitaion forces the optimization algorithm
always finds the same solution. This is encouraging because it shows that
the optimization problem has no or very few local optima. For small ex-
citation forces the optimization problem gives some variation in the solu-
tions found. These seas states however, are not very interesting because
there is little energy available anyway. Appendix E gives a more elaborate
overview of the random search results.

4.2.2 Controller Design

The designed controller uses the matlab function fmincon.m to minize the
equation:

min (−E) = min
∑N

i=1

(

ż[i + 0.5]F̂gen[i] + c1

(

F̂gen[i]
Frated

)2
+ c2

∣

∣

∣

ż[i]
vrated

∣

∣

∣

)

F̂gen F̂gen

(4.9)
where the velocity is predicted using a linear model (see appendix D). The
velocity values denoted by ż[i+0.5] in equation 4.9 are taken as the average
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between two consecutive points (i.e. ż[i + 0.5] = 0.5(ż[i] + ż[i + 1]). This
is to minimize the innacuracies caused by evaluating the cost function at
discrete points only.

The optimization problem often becomes infeasible for high-energy sea
states when hard constraints are applied to restrict the motion. For this
reason soft constraints are applied for larger floater deviations, whereby a
penalty is added to the cost function 4.9 when the prediction of the state
approaches the water brake limit.

The penalty is added for each step whereby the absolute position ex-
ceeds 3.5 m or the absolute floater velocity exceeds the rated velocity. The
magnitude of the penalty is given as:

Pen =











0, |z| < 0

4 · 106 ·
(

(|z| − 3.5)2 + (|ż| − vrated)
2
)

, ż ≥ 0
(4.10)

Additionally, hard constraints are implemented to prevent the floater
from hitting the end stops.

The horizon is chosen as one natural period. A horizon of one natural
period is long enough to ensure that the controller attempts to maximize
the overall energy produced instead of attempting to maximize the short
term power produced while neglecting the long term concerns. The step
size should be small enough to minimize the effects of the model-mismatch.
The stepsize is chosen so that there are 30 steps within the horizon. Ap-
pendix B.2 contains the m-code used to implement the controller.

4.2.3 Results

Figure 4.5 shows the performance for different synthetically generated sea
states. The power spectra used to generate the sea states are made to re-
semble those at the test site. The power produced increases strongly with
the significant wave height and also increases with the wave period.

The average power produced is irregular. This is because the waves are
irregular. If the simulation time is increased the effects of the irregulari-
ties should disappear. Unfortunatly due to time constraints the simulation
lengths were limited to 7 minutes.

A typical result is discussed. The significant wave height is 2.75 m
and the average wave period is 8.5 s. Figure 4.6 shows the closed loop
response. The reference velocity used in the reference tracking controller
is also shown for comparison. The velocity has a similar magnitude to the
reference, but is slightly out of phase.

The controller has no problem handling the constraints in this particu-
lar sea state. Note the steepness of the control force at 75 seconds in figure
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Figure 4.5: Average power produced for synthetic sea states over 7 minute
intervals

4.6. This shows how the controller applies a sudden extra damping to han-
dle the constraints. Section 5.3 provides a more general discussion on the
constraint obedience.

It is observed that the generator force does not only apply a damping
to the floater, but also accelerates it sometimes. Accelerating the floater re-
quires energy, which the generator pulls from the electrical grid. The reason
that this happens is because the controller does not attempt to maximize the
instantaneous power produced but maximizes the energy produced over a
certain time interval. The controller uses energy from the grid to excite the
floater in order to maximize the energy produced on the long run. In fact,
what the controller does is ensures that the closed loop is more in resonance
with the excitation, despite the frequency of the excitation being irregular.

Figure 4.6 shows the energy and power produced. The power produced
fluctuates and is often negative. Nevertheless the net energy produced
steadily increases.

Figure 4.8 shows how the controller is influenced when the wave force
is not known a priori, for 9 different sea states. The figure shows the av-
erage power produced in each sea state for 3 types of controllers. Type 1
controllers are ideal controllers where the excitation force is known a priori.
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Figure 4.6: Closed loop response (Hs = 2.75 m and Tz = 8.5 s)
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Figure 4.7: Energy performance (Hs = 2.75 m and Tz = 8.5 s)
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Figure 4.8: Energy produced for various sea states

Type 2 controllers make use of an AR model to extrapolate known values
of the excitation force to provide an estimate of the future excitation (see
section 3.3). Type 3 controllers first estimate the excitation force from the
motion of the device (see section 3.4), and then uses the obtained values to
estimate the future excitation. The type 2 controllers perform marginally
worse than the type 1 controllers, typically by about 1 to 2 %. Type 3 con-
trollers also perform marginally worse than the type 2 controllers, also typ-
ically by about 1 to 5%.

4.3 Switching between the Controllers

The reference tracking controller has problems in dealing with the con-
straints, and the energy maximizing controller is computationally expen-
sive. Combining the two controllers could improve the overall perfor-
mance.

4.3.1 Theory

The reference tracking controller is used to control the device under normal
operating conditions. When the trajectory approaches the constraints the
energy maximizing controller can be used with a smaller horizon. The idea
is to let the energy maximizing controller handle the contraints only. This
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has the advantage that a smaller horizon can be used, hence lightening the
computational requirements.

4.3.2 Controller Design

The controller is designed such that the controller switches from the ref-
erence tracking problem to the energy maximization problem when the
prediction of the floater position exceeds the water brake limit (κ). The
controller switches back from the energy maximizing problem to the refer-
ence tracking problem when the any part of the floater position prediction
is under a position 2 m below the water brake limit and at least two sec-
onds have passed since the energy maximizing controller was switched on.
In this manner the controller does not switch between the problems too
frequently.

When the controller is solving the reference tracking problem and the
difference between the reference velocity and actual velocity is large, a de-
caying exponential function is added to the reference velocity. This is done
to ensure a smooth transition between the two controllers. The exponential
function used is given as follows:

e = (ż(tswitch) − vref (tswitch))etswitch−t (4.11)

where tswitch is the time at which the reference tracking controller was
switched on.

The horizon of the reference tracking controller is set to one tuning pe-
riod and the horizon of the energy optimizing controller is set to one third
of a tuning period. The step size is selected to so that there are 30 steps
within one tuning period.

Appendix B.2 contains the code used to implement the controller.

4.3.3 Results

Figure 4.9 shows the improvement of the average power produced of the
switching controller over the reference tracking controller. In low-energy
sea states the controller never switches to the energy maximizing controller
and the average electrical power produced is the same. In high energy sea
states an improvement is observed of at most 10 kW. The improvement is
good, but does not approach the same performance as the energy maximiz-
ing controller (see figure 5.1).

An example for a high-energy sea state is discussed. The significant
wave height is 3.75 m and the average wave period is 8.5 s. Figure 4.10
shows the closed loop response. When the floater approaches the con-
straints the controller switches to an energy maximizing tactic.

It has been demonstrated that the switching controller has potential to
improve the energy production of the reference tracking controller while
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Figure 4.9: Improvement over the reference tracking controller

retaining relatively low computational requirements. If ultimately the com-
putational requirements of the energy maximizing controller prove too high
the switching controller provides a good alternative

The controller is parameterized by a number of extra tuning parame-
ters:

• when to switch to the energy maximizing controller

• when to switch back to the reference tracking controller

• the energy maximizing horizon

Further research would be necessary to fine-tune the controller to maximize
the increase in power given the processing availability.

4.4 Approximating the Energy Function for Faster Op-

timization

The expression representing the energy produced as a function of the floater
velocity and generator force is non-linear. Additionally, the floater velocity
depends on the generator force. This makes finding the optimal genera-
tor force a computationally expensive optimization problem. This section
discusses one possibility of approximating the cost function to allow faster
optimization.
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Figure 4.10: Closed loop response (Hs = 3.75 m and Tz = 11.5 s)
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Figure 4.11: Energy performance (Hs = 3.75 m and Tz = 11.5 s)
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4.4.1 Theory

The main problem with the controller that maximizes the energy is that the
optimization problem is non-linear, making it computationally expensive.
It is possible to construct an approximate expression for the energy in a
more convenient form for optimization. For example, the cost function:

J = 2λFgenż + (λFgen)2 + ż2 (4.12)

is similar in form to equation 2.4, and the optimization problem is a quadratic
problem. Implementing this controller gives positive results but signifi-
cantly worse than the reference tracking controller and is not mentioned
further.

Another option to provide an approximate expression for the power
produced is to first solve the reference tracking problem, and then to for-
mulate another optimization problem making the predicted control force
and the predicted velocity attained from the reference tracking problem.
The procedure is described as follows:

Step 1: Given the predicted excitation force and the initial state the ref-
erence tracking optimization problem is solved. This yields a computed
control force (F̂gen0) and an associated predicted velocity (v̂0).

Step 2: The change in velocity and change in control force are defined as:

δv̂ = v̂ − v̂0

δF̂gen = F̂gen − F̂gen0

(4.13)

where F̂gen is the new control force. The new predicted velocity (v̂) is a
function of the new control force aswell as the initial state and the pre-
dicted excitation force.

Step 3: Substituting v̂ = δv̂ + v̂0 and F̂gen = δF̂gen + F̂gen0 into the power
equation:

P̂ = − (δv̂ + v̂0)(δF̂gen + F̂gen0) − c1

(

δF̂gen + F̂gen0

Frated

)2

− c2

∣

∣

∣

∣

δv̂ + v̂0

vrated

∣

∣

∣

∣

− c3

= δv̂δF̂gen − F̂gen0δv̂ − v̂0δF̂gen − v̂0F̂gen0

− c1

F 2
rated

(

δF̂ 2
gen + 2F̂gen0δF̂gen + F̂ 2

gen0

)

− c2

∣

∣

∣

∣

δv̂ − v̂0

vrated

∣

∣

∣

∣

− c3

(4.14)

The change in power is then given as (assuming that δv̂ + v̂0 has the same
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sign as v̂0):

δP̂ = δv̂δF̂gen−F̂gen0δv̂−v̂0δF̂gen−
c1

F 2
rated

(

δF̂ 2
gen + 2F̂gen0δF̂gen

)

−c2
δv̂

vrated

(4.15)
Step 4: Assuming that the terms δv̂δF̂gen and δF̂ 2

gen are small we get:

δP̂ ≈ −
(

F̂gen0 +
c2

vrated

)

δv̂ −
(

v̂0 + c1
2F̂gen0

F 2
rated

)

δF̂gen (4.16)

Both δv̂ and δF̂gen can be expressed as affine functions of F̂gen. Hence the
increase in power over the reference tracking problem can be expressed as
an affine function of the generator force.

To implement the controller first the reference tracking problem is solved,

yielding the vectors ~v0 and ~F0. Next a linear system is formulated which

describes
(

F̂ T
e ~vT

0
~F T

gen0 F̂ T
gen

)T

→
(

δv̂T δF̂ T
gen

)T

. The matlab function

linprog is used to determine the generator force which maximizes equation
4.16. The variables δv̂ and δF̂gen are constrained because equation 4.16 is
only valid for small changes. Appendix B.2 contains the code used. Refer-
ence [5] provides an overview of linear programming problems.

4.4.2 Results

The optimization problem itself performs better. Unfortunately, when im-
plemented in closed loop, the power produced is less than for the refer-
ence tracking controller. An improvement can only be seen when the ref-
erence to follow is chosen poorly. Figure 4.12 shows the closed loop re-
sponse of the reference tracking controller when the reference is chosen as
vref (t) = Fe(t)/(4 · d), and the improvement which results from the sec-
ond optimization step. As a comparison the figure also shows the power
produced when the reference is chosen well (vref (t) = Fe(t)/(2.5 · d)).

When the reference is chosen well there is usually a slight degradation
in the power produced. Even though the method does not yet provide
an improvement to the overall results, it shows some promise in optimiz-
ing the energy produced while retaining low computational demands. The
method is recomended for further research.
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Chapter 5

Evaluation

This chapter discusses the performance of the controllers. Section 5.1 com-
pares the reference tracking controller and the energy maximizing con-
troller. Section 5.2 discusses how close the controllers are expected to come
to producing the maximum power available. Section 5.3 investigates the
ability of the controller to handle the constraints. Section 5.4 investigates
the effect of the uncertainties and approximations made.

5.1 Comparison of the Controllers

The energy maximizing controller and reference tracking controller pro-
duce similar amounts of energy. Figure 5.1 shows the difference in the
energy produced between the two. As can be seen the energy maximiz-
ing controller has performs better in high energy sea states where the con-
straints play a major role.

Figure 5.2 and 5.3 show the closed loop response to a chirp excitation
signal, with a magnitude of 0.5·106 N with a frequency which increases
linearly from 0.25 rad/s to 1 rad/s. The tuning frequency of the AWS is set
to 0.5 rad/s.

For lower frequencies the reference velocity guides the floater into the
constraints. The reference tracker has trouble dealing with this and stut-
ters around the water brake limit. The energy maximizing controller also
approaches the constraints but handles them much more smoothly. The
power produced in both cases is relatively low.

Around the tuning frequencies the power produced is relatively high.
The reference tracking controller no longer has to deal with the constraints.
The energy maximizer controller still pushes the floater close to the con-
straints and extra breaking is needed. Interesting to note is that the power
output of the reference tracking is lower when the floater is at its peak than
at its height.

For high frequencies the reference tracking controller needs more and
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Figure 5.1: Improvement of the energy maximizer over the reference
tracker

more effort to keep the floater on reference. The power produced in both
cases decreases significantly.

Figures 5.4 up to 5.6 show the power breakdowns for three sea states.
The graphs compare the average power entering the system from the waves
(Pe), the average mechanical power absorbed by the generator (Pmech), and
the average electrical power produced by the generator (Pelec). The graphs
also show the mechanical losses.

In general the energy maximizing controller yields a higher excitation
power, but has larger mechanical losses. For sea states with high energy the
energy maximizing controller gains more by increasing the excitation than
it loses by the higher mechanical losses, when compared to the reference
tracking controller. For sea states with little energy the reference tracking
controller and the energy maximizing controllers produce about the same
average electrical power.

The reference tracking controller does not handle the constraints well.
The relatively high average power lost by the water brakes reflects this.

5.2 Optimality

It is very difficult to estimate the maximum amount of energy that can
be produced given a certain excitation. Work to make such an estimate
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Figure 5.4: Power breakdown for Hs = 1.25m andTz = 6.5s

Figure 5.5: Power breakdown for Hs = 2.25m andTz = 8.5s
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Figure 5.6: Power breakdown for Hs = 3.75m andTz = 11.5s

has been done for systems which are linear and which have an unlimited
stroke, as done for example by Falnes [6]. When the constraints play a
larger role however, optimality becomes a very complicated issue.

It seems highly unlikely that the reference tracking controller performs
close to the optimum because of the simplified way in which the reference
trajectory is defined. By keeping the floater velocity in phase with the ex-
citation force the controller deals with the irregular wave periods. The ex-
citation power can be maximized by maximizing the velocity magnitude,
but this would increase the losses. Figure 5.7 shows the power breakdown
for three different reference velocities. When the magnitude is large the
excitation power is large, but the mechanical and generator losses are also
large.

The problem is that a constant scaling factor is assumed. For the true
optimal trajectory the scaling factor actually varies with the frequency of
the excitation and is influenced by the non-linearity of the device.

The controller which attempts to maximize the energy produced in prin-
cipal should be close to optimal because the linear damping accounts well
for the losses. The performance is limited by the following factors:

• model-mismatch between the linear model and the non-linear model
causes an innacurate velocity

• the penalty on large floater positions and velocities interefere with
the cost function

• the cost function is the sum of the power evaluated at discretized
point instead of the integral of the power over time

40



Figure 5.7: Effect of changing the magnitude of the reference velocity (Hs =
1.75m andTz = 8.5s)

The fact that the performance is similar to the reference tracking con-
troller suggests that the controller can still be improved.

Further research is needed to provide an estimate of the optimal perfor-
mance.

5.3 Constraint Handling

One of the control challenges is to ensure that the constraints are met for
all sea states for which the AWS is active. The closed loop simulation is
run for the synthetically generated sea states and its constraint obedience
is checked. The significant waves heights span from 0.75 m to 3.75 m and
increase in steps of 0.5m. The average zero-crossing periods span 5.5 s to
11.5 s, and increase in steps of 1 s. Table 5.1 shows the maximum velocity
at which the end stops are hit over simulation lengths of 7 minutes.

Table 5.1: Constraints breach
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Figure 5.8: Closed loop response of the AWS for a high-energy sea state

In order to investigate further, figure 5.8 shows the closed loop response
for a sea state with Hs = 3.75 m and Tz = 11.5 s. As can be seen the
controller reacts to the incoming constraint by setting the controller force
to maximum far in advance. Unfortunately the excitation force is simply
too large for the generator to cope with, and the constraints are breached.
It is possible to detune the AWS to make constraint handling easier. Figure
5.9 compares the closed loop responses in the cases that the AWS is well-
tuned and detuned. In the detuned case the constraints are easily met, at
the cost of the energy produced.

5.4 Effect of Assumptions

The results presented in this report is based on a number of assumptions.
The following assumptions were made to simplify the control problem:

• the velocity and acceleration signals are known to the controller

• the non-linear stiffness of the floater is exactly known

• the generator losses are known

• the tide level is always equal to zero
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Furthermore, in order to simplify simulating the system the hydrodynamic
forces acting on the floater are calculated in advance given the wave profile
for a floater at mid-position.

This section discusses the expected implications of the above mentioned
assumptions to the performance. The assumptions made to construct the
non-linear model are not discussed. Section 5.4.1 discusses the implica-
tions for the estimation of the excitation force. Section 5.4.2 discusses the
implications for the closed loop performance.

5.4.1 Excitation Estimation

To estimate the excitation force it was assumed that the non-linear spring
characteristics are known, and that the position, velocity and acceleration
of the floater are known. The effect of using a simplified spring model, and
poor signals for the velocity and acceleration of the floater on the excitation
signal is investigated.

The stiffness is highly non-linear and varies with the floater position.
The stiffness also varies with the tuning frequency. Assuming that the stiff-
ness is known exactly would be quite optimistic. Instead the stiffness is
approximated as an affine function of the floater position, parameterized
by the tuning stiffness (kn):

k(z) = 1.15kn − 140
√

kn · z (5.1)

Figure 5.10 shows the results for different tuning frequencies, whereby the
dashed lines are given by equation 5.1 is used to estimate the spring force,
and the solid lines show the stiffness used in the non-linear model. The
approximation 5.1 is basically chosen quite arbritrarily in order to get a feel
for the effects model-mistmatch on the excitation estimation. Figure 5.11
compares in the estimate of the excitation force when the exact stiffness
is used and when the stiffness is approximated. There is little difference
between the two results.

Assuming that the spring force as used in the non-linear model gives
a good representation of the actual spring force, and that the real spring
force can be approximated to a similar degree, it can be concluded that the
excitation force can be reasonably estimated from the motion of the device,
given reliable values for the velocity and acceleration.

The velocity of the floater is used to estimate the damping forces. The
damping forces are already estimated in a rough way and are relatively
small compared to the excitation force. A velocity signal can be obtained
from the current and voltage information, or by filtering the position and/or
the acceleration signals if available. The acceleration of the floater is needed
to estimate the excitation force. The acceleration signal can be attained by
filtering the position and/or velocity signals or incorporating an inertial
sensor.
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In order to evaluate how the quality of the signals affects the perfor-
mance a noisy signal is superimposed on the acceleration signal used by
the estimator. The noisy signal is parameterized by it’s magnitude and has
a bandwidth of 2π rad/s. Figure 5.12 shows the results for varying mag-
nitudes of noise added to the velocity and acceleration signals. The noise
added to the velocity signal has marginal impact on the estimate. The noise
added to the acceleration has a much larger impact.

When the excitation is estimated poorly, the closed loop would be influ-
enced. Figure 5.13 shows the influence of adding noise to the acceleration,
and using equation 5.1 to approximate the stiffnes on the closed loop per-
formance. It can be concluded that a noise component on the acceleration
signal of be larger than 0.2 m/s2 significantly decreases the closed loop
performance.

This investigation does not conclusively determine the minimum re-
quirements on the quality of the signal for input estimation.

5.4.2 Closed Loop Performance

The following simplyfying assumptions are relevant to the closed loop per-
formance, given an estimate of the excitation force:

• The calculation of the excitation force is approximated by calculating
it for a floater at mid-position.

• The tide level was assumed zero.

• The velocity signal was assumed known.

• The generator losses are assumed known.

Excitation force approximation: The vertical hydrodynamic force act-
ing on the floater is calculated from the surface elevation profile for the
floater at mid-position. This signal is used as the excitation force. This is an
approximation because the hydrodynamic force depends on the depth and
hence on the floater position. It is lower when the floater position is low,
and higher when the floater position is high.

The vertical hydrodynamic pressure is given as:

pe(d, ω) = ρgη(ω)KP (d, h, ω) (5.2)

where η(ω) is the surface elevation in the frequency domain and KP (d, h, ω)
is the decay factor which depends on the depth to the sea bed (h) and the
depth at which the pressure is felt (d). Figure 5.14 shows how the decay
factor varies with depth and frequency. This means that for high floater
positions the hydrodynamic force is larger, and for low floater positions
the hydrodynamic force is lower.
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To investigate the effect of this approximation the excitation force is var-
ied as a function of the floater position as:

F ∗

e = Fe(0.25z + 1) (5.3)

which means that F ∗

e = 1.5Fe when the floater is at its maximum height
and F ∗

e = 0.5Fe when the floater is at its lowest height. This is quite a high
approximation of how the excitation force is likely to change.

Figure 5.15 shows the influence on the performance. In this case the en-
ergy produced increases, but the constraints become more difficult to obey.
The energy produced increases because the hydrodynamic force is larger
for high floater positions where the stiffness is smaller and it is smaller for
low floater positions where the stiffness is larger.

Tide level: The tide level was assumed equal to zero. For higher tide levels
the depth increases which decreases the vertical hydrodynamic force and
the energy produced is expected to decrease. The factor by which the exci-
tation force decreases depends on the frequency. To get a rough idea of the
expected decrease in performance we compare two cases

controlled by the energy optimizing controller using the excitation force
calculated for Hs = 2.25 m, Ts = 9.5 s and ηT = 0. For the two cases the
excitation force is multiplied by a factor 1 and 0.85. The factor 0.85 is rep-
resentative of an increase in tide level to 3 m, for a frequency of 0.65 rad/s.
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Figure 5.16 shows the results. The total electrical energy produced over the
100 second time period decreases from about 11 MJ to about 8 MJ. Velocity

signal: The velocity signal is assumed to be available. In the final design of
the AWS the quality of the velocity signal may not be known. In order to
evaluate the effect of only having a poor quality velocity signal noise was
added to the velocity signal used by the controller. Figure 5.17 shows how
the noise affects the closed loop response. A noise component of larger than
0.2 m/s has significant impact on the performance. The reference tracking
controller seems to be more sensitive to poor velocity signals than the en-
ergy maximizing controller.

Generator losses: The energy maximizing controller uses the same equa-
tion to maximize the energy produced as the non-linear model uses. When
the generator losses are not known exactly there may be some degradation
in performance. For example, if the generator losses are over estimated
the generator would provide less effort to facilitate the motion of the de-
vice and the mechanically absorbed power would decrease. If the resistive
losses are under estimated the mechanical power absorbed would increase,
but the generator losses would also increase.

To give a rough idea of the expected losses the results are compared
using an exact expression for the generator losses to the results when the
generator losses are mis-estimated, for a sea state with Hs = 2.25 m and
Tz = 8.5 s. Doubling the resistive loss coefficient used by the controller
causes the reduces the average electrical power produced from 59 kW to
52.6 kW. When the controller under estimates the resistive losses by 75% the
average electrical power produced decrease from 59 kW to 58.6 kW. When
the controller ignores the generator losses and only attempts to maximize
the mechanical power absorbed the average electrical power produced de-
creases to 42 kW.
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Chapter 6

Conclusions

The control objective is to design a controller for the AWS which maximizes
the power produced while obeying certain pre-set constraints. The control
problem is made challenging by the ocean waves being highly irregular. It
was opted to make use of a model predictive control strategy because of the
importance of the constraints. Two controllers were designed. One controls
the trajectory of the floater to ensure that the motion remains in-phase with
the excitation force. The other attempts to maximize the power produced.
The following conclusions can be drawn from the thesis study:

• The excitation force can be predicted by making use of a linear auto
regressive model fitted to past data. The model is used to extrapolate
future values from the most recent. The closed loops are simulated
for both the cases whereby the future excitation force is known a-
priori, and whereby the excitation force is predicted by the described
method. Comparing the results show that predicting the excitation
force causes only a small reduction in the performance. It is sufficient
to predict the excitation force in this manner for this type of model
predictive controller.

• A linear model is used by the model predictive controller, while the
system is non-linear. Additionally, the damping is chosen in an ap-
proximate way, and is expected to show variation depending on the
sea state. The linear model is accurate enough for the purpose of
controlling the trajectory of the floater. Whether the linear model is
sufficient to maximize the energy produced has not been confirmed.

• In order to estimate the excitation force from the motion of the floater
by the method used in this report the quality of the acceleration sig-
nal is important. It has been demonstrated that when noise with a
magnitude of larger than 0.2 m/s2 is added to the acceleration signal
a significant reduction in the closed loop performance is likely.
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• The constraints can be handled for most sea states, without any prob-
lem. In the most stormy sea conditions evaluaed the constraints are
breached. In such cases it is possible to detune the AWS to allow it to
stay operational.
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Chapter 7

Reccomendations

The work done on control of the AWS by this thesis is far from exhaustive.
There is still a lot of research that can be done. The following recommen-
dations are made for future research.

• Controlling the trajectory of the floater so that it remains in phase
with the excitation force is a control strategy frequently found in lit-
erature. However, the optimal gain is more complicated to calculate,
especially when the motion is constrained. Further research could be
done in calculating the optimal trajectory from the excitation force.
Alternatively the optimal trajectory could be found by an adaptive
algorithm.

• The controller which attempts to maximize the non-linear optimiza-
tion problem performs well but has high computational requirements.
The optimization problem should be further examined to be able to
decrease the computation time needed. Alternatively one could do
further research into approximating the energy produced to an ex-
pression which is easier to optimize.

• It is difficult to estimate the maximum amount of energy that can
be produced, and whether the controllers come close to performing
so well. The energy optimizing controller is expected to come close
because the linear damping used to estimate the energy produced
accounts well for the losses. Nevertheless further research is required.

• The report assumes the use of passive water brakes which activate
automatically when the floater exceeds a certain position. It is a pos-
sibility to use active water brakes where the water brake action can
be actively controlled. A control strategy whereby the water brake
settings can be controlled should be designed and the improvement
of the performance evaluated.
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• The controllers designed require an excitation force signal. When
the signal is inacurate, the prediction of the signal is also inacurate
and the performance decreases. The signal could be provided by a
pressure sensor which would decrease the reliability, or could be es-
timated from the motion of the floater which requires a good model
of the AWS and a reliable signal of the floater acceleration. A trade-
off could be made between these two options. Alternatively other
options could be considered, such as using information from surface
measurements or information from nearby AWSs to estimate the sig-
nal.

• The AWS is a non-linear system. A linear model is used to predict
the motion of the floater which is in turn used to calculate the control
force. If a more accurate model is used to predict the motion this may
improve the performance, especially for high-energy sea states where
water brakes are often applied. Using a more accurate model would
raise the computational requirements.

• The report has focused on control of a single AWS. It is intended for
the AWS to be deployed in wave parks numbering about 20. Dis-
tributed control and information exchange to improve the overall per-
formance can be considered.

• The report has explored solely the possibility of using model predic-
tive control. Other control strategies could also be investigated.
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Appendix A

List of Symbols
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c1, c2, c3 power loss coefficients
CDDW drag coefficient when the floater velocity is downwards
CDUP drag coefficient when the floater velocity is upwards
d linear damping coefficient
df water depth
g acceleration due to gravity
hf floater height
Hs significant wave height
J performance index
k linear spring coefficient
L̄G equivalent spring length
m apparent mass of the floater
madd added mass: extra inertia felt by the floater due to the wave it radiates
mf floater mass
Mx horizontal hydrodynamic moment
pamb ambient pressure
P power produced by the AWS
Pe excitation power
Pgen generator power losses
Pmech mechanical power losses
Ri intrinsic mechanical resistance
Sf inner cross-sectional area of the floater
SF outer cross-sectional area of the floater
t time
Tz average upwards-zero-crossing wave period
vopt optimal velocity
vrated designed maximum velocity
w white noise
~x state
z vertical displacement of the floater

Table A.1: List of symbols: miscellaneous
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A state matrix
Bd disturbance input matrix
Bu control input matrix
Cy output matrix to measured output
Cz output matrix to performance index
Dyd feedthrough matrix from disturbance to output
Dyu feedthrough matrix from control signal to output
Dzr feedthrough matrix from reference to performance index
Dzu feedthrough matrix from control signal to performance index

Table A.2: List of symbols: state space matrices

Fbear coulomb friction in bearings
Fd damping force
Fdrag drag force
Fe excitation force
Fgen control force supplied by the generator
Fgrav force due to gravity
Fhs hydrostatic force
Fk spring force
FNtop, FNbot horizontal force felt by the top and bottom bearings
Frad radiation force
Frated designed maximum generator force
Fsp gas spring force
Fwb force due to the water brakes
Fx horizontal hydrodynamic force
Mx horizontal hydrodynamic moment

Table A.3: List of symbols: forces

57



βwb water brake coefficient
γ heat capacity ratio
ε filtered white noise made to resemble the damping discrepancy
κ water brake limit
µ bearing friction coefficient
η sea surface elevation
ηT tide level
ρ water density
ω angular frequency

Table A.4: List of symbols: greek letters

ˆ prediction
~ vector
¯ equilibrium value
˙ time derivative

Table A.5: List of symbols: accents
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Appendix B

Matlab Code

The closed loop is programmed into m-code. The code can be categorized
into two types: the framework and the specific controllers. The framework,
given in section B.1, calculates the response of the AWS to the given hydro-
dynamic forces and the control force calculated by the specific controllers
and also provides a prediction of the excitation force. The various con-
trollers, given in section B.2, calculate the control force as a function of the
current state and the prediction of the excitation force.

Additionally the code used to calculate the hydrodynamic loads acting
on the AWS from the sea surface profile is given in section B.3.

B.1 Framework

The framework consists of 4 files:

• run model.m: the central m-file which runs the other files and simu-
lates the closed loop using an ode solver.

• wave model.m: identifies an AR model used to predict the excitation
force.

• Feedback.m: the ode solver calls the function after every successful
integration step. It predicts the excitation force and calls the controller
function.

• AWS.m: describes the dynamics of the AWS and calculates the esti-
mated excitation force.

A number of MPC controllers have been implemented. Each uses two
files identified by the suffix. The suffix can be defined on line 58 of run
model.m. The files are formulate***.m and controller***.m. The first defines
the necessary parameters, the second is called by Feeback.m and calculates
the control input.
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B.1.1 Central m-file

%
% The central m-file simulates the closed loop system by the f ollowing
% steps:
%
% (1) initialize: loads the wave data, defines AWS parameter s, formulates
% the optimization problem for control etc...
% (2) wave prediction model: identifies a model used to predi ct the wave
% excitation force
% (3) run simulation: simulates the closed loop by running tw o functions
% (a) d(state)/dt=AWS(t,state) describes the dynamics of t he AWS
% (b) Feedback(t,state) provides a prediction of the excita tion
% force and uses it to calculate a control signal
%
% * Select dataset: lines 29 and 30 (datasets contain excitatio n force and
% horizontal loads; to use other values see lines 70 to 80)
% * Change controller parameters: lines 45 to 49
% * Specify controller: line 58
% * Change simulation parameters: lines 62 and 67

clear all;
close all;
clc;
addpath c:\paul\matlab71\toolbox\mpc2;

%(1) initialize
disp(’initializing...’);

% -load wave data
load increasing_heights;
n=5;
global Tn;
Tn=T(n) * 1.3; %tuning period
mess=[];
if Tn>13

message=sprintf(’ * Tn too large. Tn set equal to 13 seconds\n’); disp(message);
Tn=13; mess=1;

elseif Tn<7
message=sprintf(’ * Tn too small. Tn set equal to 7 seconds\n’); disp(message);
Tn=7; mess=1;

end;

% -AWS parameters
define_parameters;

% -controller parameters
global N Nm lambda dt cont_type
dt=Tn/30; %step size
N=round(Tn/(dt)); %prediction horizon
Nm=1; %minimum control horizon
%the type of controller used specified by the suffix of the m- files
%example: for reference tracking controller cont_type=’’
% for constrained reference tracking controller cont_type =’_c’
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% no suffix -reference tracking controller
% _c -constrained reference tracking controller
% _e -reference tracking controller including noise model
% _2 -cost function = (velocity + lambda * Fgenerator)ˆ2
% _f -full cost function = c1 * (Fgen/Frated)ˆ2 + c2 * (abs(vel/v_rated))
cont_type=sprintf(’_fsc_obs’);

% -simulation parameters
global type tfinal;
tfinal=50; %simulation length [s]
% select type to determine the information available to the c ontroller
% type=1: excitation force known a priori
% type=2: excitation force measured at present
% type=3: excitation force estimated through AWS motion
type=1;

% -external parameters
global Fen Fxn Mxn damp damp2
Fen=Fe(:,n+1); %vertical hydrodynamic force
Fxn=Fx(:,n+1); %horizontal hydrodynamic force
Mxn=Mx(:,n+1); %horizontal hydrodynamic moment
damp=5200* H(n)+87000; %estimated average damping
damp2=damp* 1.75; %damping used to define reference velocity
% -re-interp the forces

tn=Fe(:,1);
t_new=0:dt:tn(length(tn));
Fen=spline(tn,Fen,t_new);
Fxn=spline(tn,Fxn,t_new);
Mxn=spline(tn,Mxn,t_new);

% -feedback parameters
global Fgen Fe_hat t_prev x_est Fgen0;
Fgen=0; %initial generator force (control input)
Fe_hat=[]; %prediction of excitation force
t_prev=0; %output time after last successful iteration
x_est=zeros(5,1);

% -simulation outputs
global Fe_est t2
t_error=[]; %times at which optimization problem is not sol ved
flag=[]; %problem with the optimization procedure (flag=- 2: infeasible)
Fe_est=[]; %estimated excitation force
water=[]; %water brakes active? (0=false, 1=true)
P=[]; %power output
t_out=[]; %points in time at which power is output
t2=[]; %time output corresponding to step-size
t3=[]; %time output including intra-iteration
Fgenrem=[]; %generator force
v_est=[]; %estimated velocity
t4=[]; %time output for using estimator
p_est=[]; %estimated position
e=[]; %x-p_est
swit=[]; %switcher controller: on/off value
Pl_c1=[]; %copper losses
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Pl_c2=[]; %iron losses
Pe=[]; %excitation power
Pl_drag=[]; %drag losses
Pl_rad=[]; %radiated power
Pl_bear=[]; %bearing losses
Pl_wb=[]; %water brake losses
Fgen_out=[]; %generator force
v_est=[]; %estimated velocity when using observer
message_out=sprintf(’\nMessages:\n’); %output message s
if mess==1

message_out=sprintf(’%s%s’,message_out,message);
end

% -formulate optimization problem
dt_obs=0.1; %observer step size
form=sprintf(’formulate%s’,cont_type);
eval(form);

%(2) prediction model based on observations
disp(’creating wave prediction model...’);

% -prediction matrix
global Cp order;
order=40;
%quick=0: for type 3 run the AWS model to generated estimated excitation
% force. then use the estimated to id the wave model
%quick=1: identifies the wave model based on known past exci tation force
% with some noise super-imposed
quick=1;

% -parameters for simulink model on which the wave model is ba sed (if
% quick=0)
Wave_Force=[Fe(:,1) Fe(:,n+1)];
Mhor=[Mx(:,1) Mx(:,n+1)];
Fhor=[Fx(:,1) Fx(:,n+1)];
global Rss;
load convolution;
Rss=ss(Rss.a,Rss.b,[25 0],0);

[Cp,mod]=wave_model(Fen,t_new,N,H,dt,order,type,qui ck,Wave_Force,Mhor,Fhor);

%(3) simulate closed loop
disp(’running simulation...’);

options=odeset(’OutputFcn’,@Feedback,’AbsTol’,1e-3, ’MaxStep’,dt_obs);
if dt<=dt_obs

options=odeset(’OutputFcn’,@Feedback,’AbsTol’,1e-3, ’MaxStep’,dt);
end
y0=[0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];

[t,y]=ode45(@(t,y) AWS(t,y,Fxn,Mxn),[0 tfinal],y0,opt ions);

%(4) results
if length(message_out)>11
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disp(message_out);
end;

figure(1);
subplot(211);
plot(t,y(:,9),’m-’);
hold on;grid on;

subplot(212);
plot(t_out,P,’m-’);
hold on;grid on;
legend(’energy’,’power’);

B.1.2 Parameters

%Parameter Definitions
global m_f m_add mu_bear C_M C_D dtop0 dbot0 rho_sea d_out h_ f S_F C_DUP C_DDW;
global beta_wb_min beta_wb_max delta d_pp g x_0 d_ZH eta_T h d_0 p_amb S_f;
global gamma_air F_hs_equi F_sp_equi L_sp_equi khs ktot wb _limit end_stops;
global c1 c2 c3 Frated vrated;

m_f=4e5; %floater weight [kg]

m_add=3.55e5; %added mass [kg]

mu_bear=0.1; %bearing friction coefficient
C_M=2; %coefficients use to calculate horizontal wave forc es
C_D=1;
dtop0=19; %initial distance from floater bottom to top bear ing
dbot0=10; %initial distance from floater bottom to bottom b earing

rho_sea=1.025e3; %sea water density [kg/mˆ3]
d_out=11; %floater diameter [m]
h_f=28.5; %floater height [m]
S_F=95; %floater outer area [mˆ2]
C_DUP=0.2; %upwards drag coefficient
C_DDW=0.4; %downwards drag coefficient

beta_wb_min=1e3; %water brake minimum damping coefficien t [kg/m]
beta_wb_max=1.5e6; %water brake maximum damping coeffici ent [kg/m]

delta=9; %stroke

g=9.8; %acceleration due to gravitiy [m/sˆ2]

x_0=17.75; %distance mid-floater to sea bed at equilibrium
d_ZH=43; %water depth wrt hydrographic zero
eta_T=0; %tide level
h=d_ZH+eta_T; %depth to sea bed
d_0=d_ZH-x_0+eta_T; %depth to mid-position
p_amb=1e5; %ambient pressure [N/mˆ2]

S_f=79; %floater inner area [mˆ2]
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gamma_air=1.4; %isothermal/adiabatic
Fg=-m_f * g;

%compute stiffness at equilibrium
F_hs_equi=-S_F * (rho_sea * g* (d_0-h_f/2)+p_amb)+(S_F-S_f) * (rho_sea * g* (d_0+h_f/2)+p_amb);
F_PTO_offset=0;
F_sp_equi=-Fg-F_hs_equi-F_PTO_offset;
L_sp_equi=gamma_air * F_sp_equi/((m_f+m_add) * (2 * pi/Tn)ˆ2+rho_sea * g* S_f);
khs=-rho_sea * g* S_f;
ksp=gamma_air * F_sp_equi/L_sp_equi;
ktot=ksp+khs;

wb_limit=4;
end_stops=4.5;

c1=25e4;
c2=2e4;
c3=1e4;
Frated=1e6;
vrated=2.2;

B.1.3 Wave model

function [Cp,mod]=wave_model(Fe,t,N,H,dt,order,type, quick,Wave_Force,Mhor,Fhor);
%
% [Cp,mod]=wave_model(Fe,t,N,H,dt,order,type,quick,W ave_Force,Mhor,Fhor)
%
% creates a prediction of the excitation force, by:
% (1) identifying an ar model
% (2) creating a prediction matrix
%
% inputs:
% Fe,t -> force inputs to AWS for id at times t
% N -> prediction horizon
% H -> sig. wave height
% dt -> controller step size
% order -> ar model order
% quick -> toggle simulink model on/off
% Wave_Force, Mhor, Fhor -> in case quick==0 these are needed to tun the
% simulink model
%
% outputs:
% Cp -> matrix such that ( y(k) ) ( 0 )
% ( y(k+1) ) ( y(k-order) )
% ( ... ) = Cp * ( ... )
% ( ... ) ( y(k-1) )
% ( y(k+N) ) ( y(k) )
%
% mod -> ar model in iddpoly format

global Rss;
%(1) identify the model
% -resample
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if type==3
if quick==0

clear F time;
[t,ex,y]=sim(’observer’);
F=y(:,4);
time=0:dt:t(length(t));
F=spline(t,F,time);
F=F+rand(1,length(F)). * max(F)/10;

else
% Noise should be added to represent the noise in the excitati on force
% signal. It is needed to ’teach’ the ar model that there is a hi gh
% -frequency component.
time=0:dt:t(length(t));
F=spline(t,Fe,time);
F=F+rand(1,length(F)). * max(F)/10;

end;
else

time=0:dt:t(length(t));
F=spline(t,Fe,time);

end;

% -identify model
past=500; %number of id values

dat=iddata(F(1:past)’);
mod=ar(dat,order);
a=mod.a;

%(2) construct prediction matrix
B=[-a(2:order+1); [eye(order-1) zeros(order-1,1)]];
C=[1 zeros(1,order-1)];
Cptemp=[1 zeros(1,order-1)];
for i=1:(N-1)

Cptemp=[Cptemp; C * Bˆi];
end;

% -re-order the matrix
[l,w]=size(Cptemp);
Cp=[];
for i=0:w-1

Cp=[Cp Cptemp(:,w-i)];
end;

B.1.4 Feedback

function status=Feedback(t,state,flag);
%
% (1) Calculates the predicted excitation force.
% -type 1: uses the same pre-calculated values of the force as used
% as input in AWS.m
% -type 2: makes a prediction of the future values using only p ast
% and present values of the same pre-calulated values as used as
% input in AWS.m
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% -type 3: makes a prediction of the future values using past a nd
% present values of the estimation of the excitation force
% (2) Calls the controller function to calculate the next con trol input
% (3) Calculates and records the power output
% (4) Displays progress

global type Fe_hat t2 Fgen tfinal Fe_est dt t_prev Fen Cp cont _type;
global c1 c2 c3 Frated vrated;
global m_f m_add mu_bear C_M C_D dtop0 dbot0 rho_sea d_out h_ f S_F C_DUP C_DDW;
global beta_wb_min beta_wb_max delta d_pp g x_0 d_ZH eta_T h d_0 p_amb S_f;
global gamma_air F_hs_equi F_sp_equi L_sp_equi khs ktot wb _limit end_stops;
global N order Fen Fxn Mxn Tn

if length(t)>2
% make a prediction of the excitation force
% type 1: force is known a priori
% type 2: prediction is based on exact measurements of past an d
% present excitation force
% type 3: prediction is based on an estimation of the excitati on
% force based on the AWS motion
if type==1
% type 1: the excitation force prediction equals the future e xcitation
% force

% Output future values
[a,b]=size(Cp);
a=N;
b=order;
Fe_hat=Fen((floor(t(length(t))/dt)+1):(floor(t(leng th(t))/dt)+a))’;
t2=[t2 t(length(t))];

elseif type==2
% type 2: the excitation force prediction is extrapolated fr om the past
% and present excitation force

% select past values excitation fore, and make a prediction
[a,b]=size(Cp);
if (floor(t(length(t))/dt))>=b

Fe_past=Fen(floor(t(length(t))/dt)+2-b:floor(t(leng th(t))/dt)+1)’;
Fe_hat=Cp * Fe_past;
t2=[t2 t(length(t))];

else
Fe_hat=Fen((floor(t(length(t))/dt)+1):(floor(t(leng th(t))/dt)+a))’;
t2=[t2 t(length(t))];

end

elseif type==3
% type 3: the prediction of the excitation force is extrapola ted from
% an estimation based on the motion of the AWS.

% when step number increases make a new estimate of the excita tion
% force: the output of the filter as described in the report, c omputed in AWS.m
if floor(t_prev/dt)<floor(t(1)/dt)

t2=[t2 t(1)];

66



Fe_est=[Fe_est -0.4 * state(7,1)-0.16 * state(8,1)+ ...
(-62.5 * state(3,1)-78.12 * state(4,1)+400 * ((m_f+m_add) * state(1,1)-state(6,1)))];

elseif floor(t(1)/dt)<floor(t(2)/dt)
t2=[t2 t(2)];
Fe_est=[Fe_est -0.4 * state(7,2)-0.16 * state(8,2)+ ...

(-62.5 * state(3,2)-78.12 * state(4,2)+400 * ((m_f+m_add) * state(1,2)-state(6,2)))];
elseif floor(t(2)/dt)<floor(t(3)/dt)

t2=[t2 t(3)];
Fe_est=[Fe_est -0.4 * state(7,3)-0.16 * state(8,3)+ ...

(-62.5 * state(3,3)-78.12 * state(4,3)+400 * ((m_f+m_add) * state(1,3)-state(6,3)))];
elseif floor(t(3)/dt)<floor(t(4)/dt)

t2=[t2 t(4)];
Fe_est=[Fe_est -0.4 * state(7,4)-0.16 * state(8,4)+ ...

(-62.5 * state(3,4)-78.12 * state(4,4)+400 * ((m_f+m_add) * state(1,4)-state(6,4)))];
end;

% Select past values of excitation and make prediction
[a,b]=size(Cp);
if length(Fe_est)>=b

Fe_past=[Fe_est(length(Fe_est)-b+1:length(Fe_est))] ;
Fe_hat=Cp * Fe_past’;

else
Fe_hat=Fen((floor(t(length(t))/dt)+1):(floor(t(leng th(t))/dt)+a))’;

end
end
t_prev=t(length(t));

%calculate control input
cont=sprintf(’controller%s(t,state,Fe_hat);’,cont_t ype);
eval(cont);

% calculate the power out
P=-Fgen * state(2)-c1 * (Fgen/Frated)ˆ2-c2 * abs(state(2)/vrated)-c3;
% output power and points in time
assignin(’base’,’varInBase’,P);
evalin(’base’,’P(end+1)=varInBase;’);
assignin(’base’,’varInBase’,t(length(t)));
evalin(’base’,’t_out(end+1)=varInBase;’);

% output power losses
n=round(t(1)/dt)+1;
Fe=Fen(n);
Fx=Fxn(n);
Mx=Mxn(n);
Pl_c1=c1 * (Fgen/Frated)ˆ2;
Pl_c2=c2 * abs(state(2)/vrated);

% -Fwb: water brakes (external)
if state(1)>wb_limit

Fwb=-beta_wb_max * (state(2))ˆ2 * sign(state(2));
wb=true;

else
Fwb=0;
wb=false;

end;
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% -Frad: force due to radiated wave
omn=2* pi/Tn;
if omn<0.75

R=omn* 6.4286e4-8.2143e3;
elseif omn<0.89

R=40000;
elseif omn<1.08

R=-5.2632e4 * omn+8.6842e4;
else

R=-7.1429e4 * omn+1.0714e5;
end
Frad=-2 * R* state(2);

% - bearing losses
xtop=dtop0-state(1);
xbot=dbot0;
FNtop=(Mx-Fx)/(xtop-xbot);
FNbot=(Fx-FNtop);
Fbear=-mu_bear * sign(state(2)) * (abs(FNtop)+abs(FNbot));

% -Fdrag: viscous drag
if state(2)>0

Fdrag=-0.5 * C_DUP* rho_sea * S_F* (state(2)ˆ2);
elseif state(2)<0

Fdrag=0.5 * C_DDW* rho_sea * S_F* (state(2)ˆ2);
else

Fdrag=0;
end;

% Output detailed power info
Pe=Fe* state(2);
Pl_drag=-Fdrag * state(2);
Pl_rad=-Frad * state(2);
Pl_bear=-Fbear * state(2);
Pl_wb=-Fwb * state(2);

assignin(’base’,’varInBase’,Fgen);
evalin(’base’,’Fgen_out(end+1)=varInBase;’);
assignin(’base’,’varInBase’,Pe);
evalin(’base’,’Pe(end+1)=varInBase;’);
assignin(’base’,’varInBase’,Pl_drag);
evalin(’base’,’Pl_drag(end+1)=varInBase;’);
assignin(’base’,’varInBase’,Pl_rad);
evalin(’base’,’Pl_rad(end+1)=varInBase;’);
assignin(’base’,’varInBase’,Pl_bear);
evalin(’base’,’Pl_bear(end+1)=varInBase;’);
assignin(’base’,’varInBase’,Pl_wb);
evalin(’base’,’Pl_wb(end+1)=varInBase;’);
assignin(’base’,’varInBase’,Pl_c1);
evalin(’base’,’Pl_c1(end+1)=varInBase;’);
assignin(’base’,’varInBase’,Pl_c2);
evalin(’base’,’Pl_c2(end+1)=varInBase;’);

% check the constraints
if state(1,1)>(end_stops-0.01)

text=sprintf(’ * !!end stops hit!! with a velocity of %0.5g m/s\n’,state(2,1 ));
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disp(text);
assignin(’base’,’varInBase’,text);
evalin(’base’,’message_out=sprintf(’’%s%s’’,message _out,varInBase);’);

end

% display the progress
if length(t)>2
if floor(t(length(t)))>floor(t(length(t)-1))

show=sprintf(’initializing...\ncreating wave predicti on model...
\nrunnning simulation...\nprogress: %d%%’,floor(t(len gth(t))/tfinal * 100));

clc;
disp(show);

end;
end;

end;
status=0;

B.1.5 AWS dynamics

function [dstatedt]=AWS(t,state,Fxn,Mxn);
%
% Describes the dynamics of the AWS as a system of differentia l equations.
%
% d(state)
% -------- = f(state) + Fexternal
% dt
%
% where state=[x v D1 D2 I1 I2 HP1 HP2 E R1 R2 ... RN]’.
%
% The system has two states to describing the motion (positio n (x) and
% velocity (v)), 4 states (D1, D2, I1 annd I2) implement the fi lter (see
% report) to estimate the excitation force, 2 states act as a h igh-pass
% filter, one state represents the energy output (E), and the last N states
% can be used to represent the radiation force.
%
% syntax: dstate_dt=AWS(t,state)
% the external forces are defined globally under the names:
% Fen, Mxn, Fxn -> vertical and horizontal hydrodynamic load s
% interpolated in 0.1 second intervals
% Fgen -> control force supplied by generator

%AWS parameters
global m_f m_add mu_bear C_M C_D dtop0 dbot0 rho_sea d_out h_ f S_F C_DUP C_DDW;
global beta_wb_min beta_wb_max delta d_pp g x_0 d_ZH eta_T h d_0 p_amb S_f;
global gamma_air F_hs_equi F_sp_equi L_sp_equi ktot wb_li mit khs end_stops;
global c1 c2 c3 Frated vrated Tn;

%external variables
global Fen Fgen Fe_hat type dt damp;

%output variables
global water;
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n=round(t/dt)+1;
x=state(1);
xdot=state(2);
Fe=Fen(n);
Mx=Mxn(n);
Fx=Fxn(n);

%output time
assignin(’base’,’varInBase’,t);
evalin(’base’,’t3(end+1)=varInBase;’);

%Forces
% -Fgen: control force (external)
assignin(’base’,’varInBase’,Fgen);
evalin(’base’,’Fgenrem(end+1)=varInBase;’);

% -Fwb: water brakes (external)
% Water brakes are active if the floater position is larger th an wb_limit as
% defined in ’define_parameters.m’
if state(1,length(t))>wb_limit

Fwb=-beta_wb_max * (state(2,length(t)))ˆ2 * sign(state(2,length(t)));
wb=true;

else
Fwb=0;
wb=false;

end;
assignin(’base’,’varInBase’,wb);
evalin(’base’,’water(end+1)=varInBase;’);

% -Frad: force due to radiated wave
%Frad=93.75 * state(10); %second order
%Frad=33.58 * state(12); %fourth order
omn=2* pi/Tn;
if omn<0.75

R=omn* 6.4286e4-8.2143e3;
elseif omn<0.89

R=40000;
elseif omn<1.08

R=-5.2632e4 * omn+8.6842e4;
else

R=-7.1429e4 * omn+1.0714e5;
end
Frad=-2 * R* state(2);
%Frad=-15000 * 2* 2* pi/Tn * state(2);
%Frad=-2500 * state(2);

% -Fbear: coulomb friction in bearings xtop=dtop0-state(1 );
xbot=dbot0;
FNtop=(Mx-Fx)/(xtop-xbot);
FNbot=(Fx-FNtop);
Fbear=-mu_bear * sign(state(2)) * (abs(FNtop)+abs(FNbot));

% -Fdrag: viscous drag
if xdot>0
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Fdrag=-0.5 * C_DUP* rho_sea * S_F* (xdotˆ2);
elseif xdot<0

Fdrag=0.5 * C_DDW* rho_sea * S_F* (xdotˆ2);
else

Fdrag=0;
end;

% -Fspring: spring force due to air-pressure and nitrogen cy linders
Fspring=F_sp_equi * ((x/L_sp_equi)+1)ˆ(-gamma_air);

% -Fgrav: gravity
Fgrav=-m_f * g;

% -Fhs: hydrostatic force
Fhs=-S_F * (rho_sea * g* (d_0-h_f/2-x)+p_amb)+(S_F-S_f) * (rho_sea * g* (d_0+h_f/2-x)+p_amb);

% estimate known forces
k_nonlin=((1+state(1,length(t))/L_sp_equi)ˆ(0.5 * (-gamma_air-1))) * ...

(F_sp_equi * gamma_air/L_sp_equi)+khs;
F_known=Fgen+Fwb-damp * xdot-k_nonlin * x;

% end stop reaction force: should halt the floater with dt_es seconds
if x>end_stops && xdot>0

dt_es=0.01;
Fes=-xdot * (m_f+m_add)/dt_es;

% Fes=0;
else

Fes=0;
end

dstatedt= [xdot;
(Frad+Fbear+Fdrag+Fwb+Fspring+Fgrav+Fhs+Fe+Fgen+Fes )/(m_f+m_add);
-40 * state(3)-50 * state(4)+256 * ((m_f+m_add) * state(1)-state(6));
8* state(3);
F_known;
state(5);
-0.2 * state(7)-0.08 * state(8)+0.5 * (-62.5 * state(3)-78.12 * state(4)+ ...

400* ((m_f+m_add) * state(1)-state(6)));
0.125 * state(7);
-Fgen * xdot-c1 * (Fgen/Frated)ˆ2-c2 * abs(xdot/vrated)-c3;

% -0.4 * state(10)-0.54 * state(11)+64 * state(2);
% 0.5* state(10);

-0.9 * state(10)-0.85 * state(11)-0.305 * state(12)-0.18 * state(13)+64 * state(2);
state(10);
state(11);
0.5 * state(12);
];

B.2 Controllers

A number of MPC controllers have been implemented. Each uses two files
identified by the suffix. The suffix can be defined on line 58 of run model.m.
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Suffix Description

none phase control by reference tracking (no constraints)
c phase control by reference tracking (incl. constraints)
e includes a noise model in the controller
2 optimizes a very rough expression for the energy
f optimizes an accurate expression for the energy (no

constraints)
fc optimizes an accurate expression for the energy (incl. hard

constraints)
fsc optimizes an accurate expression for the energy (incl. hard

and soft constraints)
fsc obs optimizes an accurate expression for the energy (incl. constraints)

but uses an observer to provide the velocity signal
switch uses the ’ c’ controller ordinarily but switches to ’ fsc’ to

handle the constraints
2step optimizes an elaborate approximate expression for the energy

by iterating from the reference tracking solution

The files are formulate***.m and controller***.m. The first defines the neces-
sary parameters, the second is called by Feeback.m and calculates the control
input. Another important file used by some of the controllers is E hat cost
sc.m which is a cost function representing the energy produced. It includes
soft constraints.

This appendix only gives the code for the controllers which appear in
this report. The CD delivered to the DCSC administration contains the
following controllers:

All controllers make use of the standard model predictive control tool-
box [1].

B.2.1 Reference Tracking Controller

Formulation

%
% Formulates the optimizition problem, the result of which g overns the
% control law.
%
% In this case the constrained cost function:
%
% J = [v_ref-v lambda * Fgen]’ * [v_ref-v lambda * Fgen]
%
% is minimized over the prediction horizon. v_ref is an estim ate of the
% optimal reference velocity and is a function of the excitat ion force.
%
% ouptut:
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%
% HH,AA,bb: define a quadratic optimization problem which s olves:
% minimize mu’ * HH* mu
% mu subject to AA * mu<bb* [1; x; v; 0; Fe_pred; v_ref];
%
% vv: is a matrix such that the control input is calculated as:
% Fgen = vv* [x; v; 0; Fe_pred(1); v_ref(1);...Fe_pred(N); v_ref(N); m u];
%
% options2: defines the options used by the online optimizer quadprog
% Gpredx: system to predict floater position

global vv HH AA bb options2 Gpredx;

% Define model of the system
mass=m_f+m_add;
A=[0 1; -ktot/mass -damp/mass]; B=[0; 1/mass;]; C=[0 1]; D= [0];
temp=c2d(ss(A,B,C,D),dt);
A=temp.a; B=temp.b; C=temp.c; D=temp.d;
Be=[0; 0]; De=[1];
Bd=[B(:,1) zeros(2,1)]; Dd=[0 0];
Bu=B(:,1); Du=[0];

%position prediction
C2=[1 0];
B2=B(:,1);
[G,dim]=ss2syst(A,Be,B2,Bu,C2,De,Dd,Du);
[Gpredx,dim2]=pred(G,dim,N);

% Define constraints: -1<E * [x; v]<1
E=[1/(wb_limit) 0; 0 1/vrated];

% Define performance index:
% z = Cz* [x; v] + Dze * e + Dzd* [Fe_pred; v_ref] + Dzu * Fgen
lambda=1e-6;
Cz=[0 -1; 0 0]; %performance: (v_ref-v lambda * Fgen)’
Dze=[0; 0];
Dzd=[0 1; 0 0];
Dzu=[0; lambda];

% Formulate optimization problem
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du,Cz,Dze,Dzd,Dz u);
[G,dim]=add_x(G,dim,E);
[G2,dim2]=pred(G,dim,N);
[G2,dim2]=add_u(G2,dim2,Frated);
[dGam]=dgamma(1,N,dim);
%[vv,HH,AA,bb]=contr(G2,dim2,dim,dGam);
[vv,HH,AA,bb]=contr_mod2(G2,dim2,dim,dGam);

options2=optimset(’display’,’off’);

Controller

function Fgen=controller_c(t,state,Fe_hat);
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%
% Calculates value for control input
%
% In this case the constrained cost function:
%
% J = [v_ref-v lambda * Fgen] * [v_ref-v lambda * Fgen]’
%
% is minimized over the prediction horizon. v_ref is an estim ate of the
% optimal reference velocity and is a function of the excitat ion force.
%
% The controller first determines ’mu’ by solving:
%
% minimize mu’ * HH* mu
% mu subject to AA * mu<bb* [1; x; v; 0; Fe_pred; v_ref];
%
% Then the control force is calculated using:
%
% Fgen = vv* [x; v; 0; Fe_pred(1); v_ref(1);...Fe_pred(N); v_ref(N); m u];

global N damp dt vv HH AA bb t2 Fgen options2 Frated
global vrated damp2 Gpredx wb_limit end_stops;

% Define prediction of disturbance input
vref=Fe_hat./(2 * damp2);
dist=[];
for i=1:N

if vref(i)>vrated
vref(i)=vrated;

end
dist=[dist; Fe_hat(i); vref(i);];

end;

if length(t2)==1
%initial value
mu=quadprog(HH,[],AA,bb * [1; state(1); state(2); 0; dist],[],[],[],[],[],options 2);
Fgen=vv * [state(1); state(2); 0; dist; mu];
Fgen=Fgen(1);

elseif length(t2)>1
%if next step is reached
if floor(t2(length(t2))/dt)>floor(t2(length(t2)-1)/d t)

[mu,value,flag]=quadprog(HH,[],AA,bb * [1; state(1); state(2); 0; dist], ...
[],[],[],[],[],options2);

Fgen=vv * [state(1); state(2); 0; dist; mu];
x_pred=(Gpredx.c) * [state(1); state(2)]+(Gpredx.d) * [0; Fe_hat; Fgen];
Fgen=Fgen(1);

if flag˜=1
text=sprintf(’ * optimization issue in quadprog:

flag=%d, at t=%ds\n’,flag,t2(length(t2)));
disp(text);
assignin(’base’,’varInBase’,text);
evalin(’base’,’message_out=sprintf(’’%s%s’’,message _out,varInBase);’);
assignin(’base’,’varInBase’,t2(length(t2)));
evalin(’base’,’t_error(end+1)=varInBase;’);
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assignin(’base’,’varInBase’,flag);
evalin(’base’,’flag(end+1)=varInBase;’);
if Fgen<-Frated

Fgen=-Frated;
elseif Fgen>Frated

Fgen=Frated;
end;

end;

end;
end
assignin(’base’,’varInBase’,Fgen);
evalin(’base’,’Fgen_out(end+1)=varInBase;’);

B.2.2 Energy Maximizing Controller

Formulation

%
% Formulates the optimization problem, the result of which g overns the
% control law.
%
% In this case the constrained non-linear cost function is mi nimized on-line.
% The cost function is found in E_hat_cost.m and minimizes:
%
% J=v_pred * Fgen_pred+c1 * (Fgen_pred/Frated)ˆ2+c2 * abs(v/v_rated)+P
%
% where P is a penalty which increases quadratically as the fl oater
% approaches the endstops.
%
% output:
%
% Gpred, Gpredx: the systems used to predict the velocity and position
% options2: the options used by the on-line optimizer ’fminc on’
% Cc, ineq_matrix: prediction matricies such that
% ( x_hat ) = Cc * ( x0 ) + ineq_matrix * (Fgen_hat + Fe_hat)
% ( v_hat ) ( v0 )
% Constraints:
% ( x_hat ) <= Constraints
% ( v_hat )
% x_max, v_max: maximum state values used to formulate penal ty

global Gpred Gpredx options2 Cc ineq_matrix Constraints v_ max x_max;

N=N+1;

% Define model of the system
mass=m_f+m_add;
A=[0 1; -ktot/mass -damp/mass]; B=[0; 1/mass;]; C=[0 1]; D= [0];
temp=c2d(ss(A,B,C,D),dt);
A=temp.a; B=temp.b; C=temp.c; D=temp.d;
Be=[0; 0]; De=[1];
Bd=B(:,1); Dd=[0 0];
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Bu=B(:,1); Du=[0];

% Define a linear velocity predictor
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du);
[Gpred,dim2]=pred(G,dim,N);
% Position prediction
C=[1 0];
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du);
[Gpredx,dim2]=pred(G,dim,N);

% Formulate constraints
Cc=[Gpredx.c; Gpred.c];
Ddxc=Gpredx.d; Ddxc=Ddxc(:,2:N+1);
Ddvc=Gpred.d; Ddvc=Ddvc(:,2:N+1);
ineq_matrix=[Ddxc; Ddvc];
x_max=end_stops;
v_max=vrated+0.5;
Constraints=[ones(N,1). * x_max; ones(N,1). * v_max];

options2=optimset(’Display’,’off’,’TolFun’,1e-1,’Ma xIter’,1e10,’MaxFunEvals’,1e10, ...
’Largescale’,’off’);

Controller

function Fgen=controller_fsc(t,state,Fe_hat);
%
% Calculates value for control input for the constrained non -linear optimization
% problem:
%
% J=sum_over_N ( v_pred * Fgen_pred+c1 * (Fgen_pred/Frated)ˆ2+c2 * abs(v/v_rated) )
%
% where P is a penalty which increases quadratically as the fl oater
% approaches the endstops.
%
% The function E_hat_cost_sc expresses the predicted outpu t power. It
% predicts the velocity as a function of the future generator and
% excitation forces by use of the linear model.

global damp N dt t2 Fgen Gpred c1 c2 c3 Frated vrated options2 F gen0;
global Gpredx wb_limit end_stops v_max Cc ineq_matrix Cons traints;

if length(t2)==1
%initial control force

Fgen0=zeros(N,1);
elseif length(t2)>1

if floor(t2(length(t2))/dt)>floor(t2(length(t2)-1)/d t)
% generator force constraints
ub=ones(1,N) * Frated;
ineq_vec=Constraints-Cc * [state(1); state(2)]-ineq_matrix * Fe_hat;

% use fmincon to find optimal control force
[Fgen,f,flag]=fmincon(@(Fgen) E_hat_cost_sc(Fgen,Fe_ hat,Gpred,Gpredx, ...

state(1),state(2),c1,c2,Frated,vrated,wb_limit),Fge n0,ineq_matrix, ...
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ineq_vec,[],[],[],[],[],options2);
%[Fgen,f,flag]=patternsearch(@(Fgen) E_hat_cost(Fgen ,Fe_hat,Gpred,state(1), ...

state(2),c1,c2,Frated,vrated),Fgen0,[],[],[],[],-ub ,ub,[],options2);
Fgen0=Fgen;
Fgen=Fgen(1);
if Fgen>Frated

Fgen=Frated;
elseif Fgen<-Frated

Fgen=-Frated;
end

% output flags
assignin(’base’,’varInBase’,t2(length(t2)));
evalin(’base’,’t_error(end+1)=varInBase;’);
assignin(’base’,’varInBase’,flag);
evalin(’base’,’flag(end+1)=varInBase;’);

% if optimization terminates untimely give a message
if flag<1

text=sprintf(’ * There were problems with fmincon:
flag=%d at t=%ds\n’,flag,t2(length(t2)));

assignin(’base’,’varInBase’,text);
evalin(’base’,’message_out=sprintf(’’%s%s’’,message _out,varInBase);’);
x_pred=(Gpredx.c) * [state(1); state(2)]+(Gpredx.d) * [0; Fe_hat; Fgen0];
v_pred=(Gpred.c) * [state(1); state(2)]+(Gpred.d) * [0; Fe_hat; Fgen0];
if state(2)>0

Fgen=-Frated;
elseif state(2)<=0

if state(1)<wb_limit
Fgen=Frated;

else
Fgen=-Frated;

end
end;

end;
end;

end

Cost Function

function [E]=E_hat_cost_sc(Fgen_hat,Fe_hat,Gpred,Gpr edx,x,v,c1,c2,Frated,vrated,wb_limit);
%
% Express the predicted negative energy output as a function of the predicted
% control force. The velocity is predicted as a function of th e control force
% and excitation force using a linear model of the AWS. A penal ty is added
% when the floater approaches the constraints.
%
% syntax: E=E_hat_cost(Fgen_hat,Fe_hat,Gpred,Gpredx,x ,v,c1,c2,Frated,vrated,wb_limit);
%
% Fgen_hat: predicted control force
% Fe_hat: predicted excitation force
% Gpred,Gpredx: prediction model
% x,v: current floater position and velocity
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% c1,c2,Frated,vrated: generator parameters
% wb_limit: position afterwhich water brakes activate

x_pred=(Gpredx.c) * [x; v]+(Gpredx.d) * [0; Fe_hat; Fgen_hat];
v_pred=(Gpred.c) * [x; v]+(Gpred.d) * [0; Fe_hat; Fgen_hat];

N=length(v_pred);
v_pred2=(v_pred(2:N)+v_pred(1:N-1))/2;

E=v_pred2’ * Fgen_hat(1:N-1)+sum((c1/(Fratedˆ2)) * (Fgen_hat(1:N-1).ˆ2)+(c2/vrated) * abs(v_pred(1

penalty_up=[ones(N,1). * wb_limit-0.5; ones(N,1). * vrated]-[x_pred(1:N); v_pred(1:N)];
penalty_down=[-ones(N,1). * wb_limit+0.5; -ones(N,1). * vrated]-[x_pred(1:N); v_pred(1:N)];
for i=1:2 * N

if penalty_up(i)>0
penalty_up(i)=0;

end;
if penalty_down(i)<0

penalty_down(i)=0;
end;

end;

penalty_down=(penalty_down)’ * (penalty_down) * 4e6;
penalty_up=(penalty_up)’ * (penalty_up) * 4e6;
penalty_Fgen=0;

E=E+penalty_down+penalty_up+penalty_Fgen;

B.2.3 Switching Controller

Formulation

%
% *** Switcher Formulation ***
%
% Formulates the optimization problem, the result of which g overns the
% control law.
%
% In this case the controller switches between an unconstrai ned reference
% tracker and minimizing a soft constrained non-linear cost function when
% the motion approaches the constraints.
%
% output:
%
% Gpred,Gpredx: the system used to predict the velocity and p osition
% options2: the options used by the on-line optimizer ’fminc on’
% Cc, ineq_matrix: prediction matricies such that
% ( x_hat ) = Cc * ( x0 ) + ineq_matrix * (Fgen_hat + Fe_hat)
% ( v_hat ) ( v0 )
% Constraints:
% ( x_hat ) <= Constraints
% ( v_hat )
% vv,HH,AA,bb: matrices used to define reference tracker co ntrol signal
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global Gpred Gpredx options2 Cc ineq_matrix Constraints vv HH AA bb;

% Define model of the system
mass=m_f+m_add;
A=[0 1; -ktot/mass -damp/mass]; B=[0; 1/mass;]; C=[1 0]; D= [0];
temp=c2d(ss(A,B,C,D),dt);
A=temp.a; B=temp.b; C=temp.c; D=temp.d;

% First define the unconstrained reference tracking proble m
Be=[0; 0]; De=[1];
Bd=[B(:,1) zeros(2,1)]; Dd=[0 0];
Bu=B(:,1); Du=[0];

% Define constraints: -1<E * [x; v]<1
E=[1/(wb_limit) 0; 0 1/vrated];

% - define performance index for reference tracking
lambda=1e-6;
Cz=[0 -1; 0 0]; %performance: (v_ref-v lambda * Fgen)’
Dze=[0; 0];
Dzd=[0 1; 0 0];
Dzu=[0; lambda]; %weighting on input

% - formulate feedback law
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du,Cz,Dze,Dzd,Dz u);
[G,dim]=add_x(G,dim,E);
[G2,dim2]=pred(G,dim,N);
[G2,dim2]=add_u(G2,dim2,Frated);
[dGam]=dgamma(1,N,dim);
[vv,HH,AA,bb]=contr_mod2(G2,dim2,dim,dGam);

% Next define matrices needed for non-linear optimization p roblem:
ktot2=1 * ktot;
damp=damp;
A=[0 1; -ktot2/mass -damp/mass]; B=[0; 1/mass;]; C=[1 0]; D =[0];
temp=c2d(ss(A,B,C,D),dt);
A=temp.a; B=temp.b; C=temp.c; D=temp.d;

Be=[0; 0]; De=[1];
Bd=B(:,1); Dd=[0 0];
Bu=B(:,1); Du=[0];

% - define a linear position predictor
N2=round(N/4);
C=[1 0];
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du);
[Gpredx,dim2]=pred(G,dim,N2);
% - define a linear velocity predictor
C=[0 1];
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du);
[Gpred,dim2]=pred(G,dim,N2);

% - formulate constraints
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Cc=[Gpredx.c; Gpred.c];
Ddxc=Gpredx.d; Ddxc=Ddxc(:,2:N2+1);
Ddvc=Gpred.d; Ddvc=Ddvc(:,2:N2+1);
ineq_matrix=[Ddxc; Ddvc];
x_max=end_stops;
v_max=vrated;
Constraints=[ones(N2,1). * x_max; ones(N2,1). * v_max];

options2=optimset(’Display’,’off’,’TolFun’,1e-2,’Ma xIter’,1e10,’MaxFunEvals’,1e10, ...
’Largescale’,’off’);

Controller

function Fgen=controller_switch(t,state,Fe_hat);
%
% Controller which combines the soft-constrained energy ma ximizing controller
% with the unconstrained reference tracking controller.
%
% The soft-constrained energy maximizing controller only s witches on when
% the predicted trajectory crosses the constraints. It swit ches back when
% the prediction has moved well away from the constraints and a time
% interval has passed.

global damp dt N t2 Fgen Gpred c1 c2 c3 Frated vrated options2 C c ineq_matrix
global vv HH AA bb damp2 Constraints
global Gpredx wb_limit end_stops
persistent t_switch v_switch sw_flag Fgen0 t_on;

% if sw_flag==[] then set sw_flag=0;
if sw_flag<inf
else

sw_flag=0;
end;
if t_on<inf
else

t_on=0;
end;

if length(t2)==1
%initial control force
Fgen0=-Fe_hat;

elseif length(t2)>1
if floor(t2(length(t2))/dt)>floor(t2(length(t2)-1)/d t)

% the following determines whether to use the reference trac ker or
% the energy maximizer:
% sw_flag=0: use reference tracker
% sw_flag=1: use energy maximizer
N2=length(Gpredx.c);
x_pred=(Gpredx.c) * [state(1); state(2)]+(Gpredx.d) * [0; Fe_hat(1:N2); Fgen0(1:N2)];
if sw_flag==0

%if prediction is too large switch to energy maximizer
if max(x_pred)>wb_limit

sw_flag=1;
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t_on=t2(length(t2));
end;

end;
if sw_flag==1

%if prediction small enough again and the energy maximizing controller
%has been on for long enough switch to reference tracker
if t2(length(t2))-t_on>2
if max(x_pred)<wb_limit-2

sw_flag=0;
end;
end;

end;

% use the non-linear optimization controller
if sw_flag==1

ub=ones(1,N2) * Frated;
ineq_vec=Constraints-Cc * [state(1); state(2)]-ineq_matrix * Fe_hat(1:N2);

% use fmincon to find optimal control force
[Fgen,f,flag]=fmincon(@(Fgen) E_hat_cost_sc(Fgen,Fe_ hat(1:N2),Gpred, ...

Gpredx,state(1),state(2),c1,c2,Frated,vrated,wb_lim it),Fgen0(1:N2), ...
ineq_matrix,ineq_vec,[],[],-ub,ub,[],options2);

Fgen0=Fgen;
Fgen=Fgen(1);

% output some useful stuff
assignin(’base’,’varInBase’,t2(length(t2)));
evalin(’base’,’t_error(end+1)=varInBase;’);
assignin(’base’,’varInBase’,1);
evalin(’base’,’swit(end+1)=varInBase;’);
assignin(’base’,’varInBase’,flag);
evalin(’base’,’flag(end+1)=varInBase;’);

% if optimization terminates untimely give a message
if flag<1

text=sprintf(’ * There were problems with fmincon: flag=%d at
t=%ds\n’,flag,t2(length(t2)));

assignin(’base’,’varInBase’,text);
evalin(’base’,’message_out=sprintf(’’%s%s’’,message _out,varInBase);’);
Fgen=-Frated;

end;
end;

% use uncon. ref. tracker
if sw_flag==0
% Define prediction of disturbance input
vref=Fe_hat./(2 * damp2);
if abs(vref(1)-state(2))>1

t_switch=t2(length(t2));
v_switch=state(2);

end
%this smoothens out the transition incase the actual veloci ty and
%reference velocity differ by too much
if t2(length(t2))-t_switch<1

81



vref=vref+(v_switch-vref). * exp(1 * (t_switch-t2(length(t2))-[0:dt:N * dt-dt]’));
end;
dist=[];
for i=1:N

dist=[dist; Fe_hat(i); vref(i);];
end;

%solve quadprog
[mu,value,flag]=quadprog(HH,[],AA,bb * [1; state(1); state(2); 0; dist], ...

[],[],[],[],[],options2);
Fgen0=vv * [state(1); state(2); 0; dist; mu];
Fgen=Fgen0(1);

%output some useful data
assignin(’base’,’varInBase’,0);
evalin(’base’,’swit(end+1)=varInBase;’);

%incase the optimization procedure is not successful use
%Fgen=Frated and output a message
if flag˜=1

text=sprintf(’ * optimization issue in quadprog: flag=%d,
at t=%ds\n’,flag,t2(length(t2)));

disp(text);
assignin(’base’,’varInBase’,text);
evalin(’base’,’message_out=sprintf(’’%s%s’’,message _out,varInBase);’);
assignin(’base’,’varInBase’,t2(length(t2)));
evalin(’base’,’t_error(end+1)=varInBase;’);
assignin(’base’,’varInBase’,flag);
evalin(’base’,’flag(end+1)=varInBase;’);
if Fgen<-Frated

Fgen=-Frated;
elseif Fgen>Frated

Fgen=Frated;
end;

end;
end;

end;
end

B.2.4 2-step Controller

Formulation

%
% 2-step formulation
% Formulates the optimizition propblem, the result of which governs the
% control law.
%
% The controller first finds the solution to the reference tr acking
% problem, then uses the predicted trajectory and predicted generator force
% to optimize and expression for the change in energy (see rep ort).
%
% outputs:
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% vv,HH,AA,bb: matrices for quadprog to solve refernec trac king
% Cy,Dyd,Dyu,L,K: matrices used to define change in predict ed E as a
% function of the generator force
% Gpredx,Gpredv: systems to predict floater position and ve locity
% constraints: maximum change in velocity and generator for ce
% ub: vector containing upper bound in control force
% options2,options3: options for quadprog and fmincon reps ectively

global vv HH AA bb options2 Cy Dyd Dyu L K Gpredv Gpredx constra ints ub options3;

% Define model of the system
mass=m_f+m_add;
A=[0 1; -ktot/mass -damp/mass]; B=[0; 1/mass;]; C=[0 1]; D= [0];
temp=c2d(ss(A,B,C,D),dt);
A=temp.a; B=temp.b; C=temp.c; D=temp.d;
Be=[0; 0]; De=[1];
Bd=[B(:,1) zeros(2,1)]; Dd=[0 0];
Bu=B(:,1); Du=[0];

%constraints
E=[1/(wb_limit) 0; 0 1/vrated];

% Formulate reference tracking optimization problem
% Define performance index
Cz=[0 -1; 0 0]; %performance: (v_ref-v lambda * Fgen)’
Dze=[0; 0];
Dzd=[0 1; 0 0];
Dzu=[0; 1e-6]; %weighting on input
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du,Cz,Dze,Dzd,Dz u);
[G2,dim2]=pred(G,dim,N);
[dGam]=dgamma(1,N,dim);
[vv1,HH,AA,bb]=contr_mod2(G2,dim2,dim,dGam);% - defin e performance index for ref. track
lambda=1e-6;
Cz=[0 -1; 0 0]; %performance: (v_ref-v lambda * Fgen)’
Dze=[0; 0];
Dzd=[0 1; 0 0];
Dzu=[0; lambda]; %weighting on input

% - formulate feedback law
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du,Cz,Dze,Dzd,Dz u);
[G,dim]=add_x(G,dim,E);
[G2,dim2]=pred(G,dim,N);
[G2,dim2]=add_u(G2,dim2,Frated);
[dGam]=dgamma(1,N,dim);
[vv,HH,AA,bb]=contr_mod2(G2,dim2,dim,dGam);
options2=optimset(’Display’,’off’,’LargeScale’,’off ’);

order=length(A);
% Velocity prediction
Be=[0; 0]; De=[1];
Bd=[B(:,1)]; Dd=[0];
Bu=B(:,1); Du=[0];
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du);
[Gpredv,dim2]=pred(G,dim,N);
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% Position prediction
C=[1 0];
[G,dim]=ss2syst(A,Be,Bd,Bu,C,De,Dd,Du);
[Gpredx,dim2]=pred(G,dim,N);

A=Gpredv.a;
B=Gpredv.b;
C=Gpredv.c;
D=Gpredv.d;
D=D(:,2:N+1);

K=c1/Fratedˆ2;
L=c2/vrated;

%define the system:
% [dv; dF]=Cyd * [x; v]+Dyd * [v0; F0; Fe_hat]+Dyu * Fgen_hat
Cy=[C; zeros(N,2)];
Dyd=[-eye(N) zeros(N) D; [zeros(N) -eye(N) zeros(N)]];
Dyu=[D; eye(N)];

%new constraints
dv_max=0.5;
dF_max=1e4;
ub=Frated;
constraints=[ones(N,1). * dv_max; ones(N,1). * dF_max];

options3=optimset(’Display’,’off’,’LargeScale’,’off ’);

Controller

function Fgen=controller_2step(t,state,Fe_hat);
%
% 2 step controller
%
% First finds the solution to the reference tracking problem , then uses the
% predicted trajectory and predicted generator force to opt imize and
% expression for the change in energy (see report).

global N dt t2 Fgen Gpredx Gpredv Frated vrated c1 c2;
global vv HH AA bb options2 options3;
global damp K L Cy Dyd Dyu constraints ub;

if length(t2)==1
Fgen=0;

elseif length(t2)>1
%if next step is reached
if floor(t2(length(t2))/dt)>floor(t2(length(t2)-1)/d t)

%first compute reference tracking control input signal
% -define prediction of disturbance input
vref=Fe_hat./(2 * damp);
dist=[];
for i=1:N

dist=[dist; Fe_hat(i); vref(i);];
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end;

% -solve quadprog
[mu,value,flag]=quadprog(HH,[],AA,bb * [1; state(1); state(2); 0; dist], ...

[],[],[],[],[],options2);
F0=vv * [state(1); state(2); 0; dist; mu];
v0=(Gpredv.c) * [state(1); state(2)]+(Gpredv.d) * [0; Fe_hat; F0];

%next find the optimum of the approximated increase in energ y
% -constrain changes in v and Fgen
ineq_mat=[Dyu; -Dyu];
ineq_vec=[constraints; constraints]-[Cy; -Cy] * [state(1); state(2)]- ...

[Dyd; -Dyd] * [v0; F0; Fe_hat];

f=(F0+L * 10)’ * Dyu(1:N,:)+(v0+K)’ * Dyu(N+1:2 * N,:);
[Fgen_hat,fun,flag]=linprog(f’,ineq_mat,ineq_vec,[] ,[],-ub * ones(N,1), ...

ub* ones(N,1),F0,options3);
y=Cy* [state(1); state(2)]+Dyd * [v0; F0; Fe_hat]+Dyu * Fgen_hat;
dv=y(1:N);
dF=y(N+1:2 * N);

if flag˜=1
disp(’bleh’);
Fgen=F0(1);

else
Fgen_hat’;
Fgen=Fgen_hat(1);

end
if Fgen<-Frated

Fgen=-Frated;
elseif Fgen>Frated

Fgen=Frated;
end;
assignin(’base’,’varInBase’,flag);
evalin(’base’,’flag(end+1)=varInBase;’);

end
end

B.3 Calculating the hydrodynamic loads

The hydrodynamic loads acting on the AWS can be derived from the sea
surface profile. The hydrodynamic loads are the loads acting on the outside
of the floater due to the waves passing over the AWS. The loads calculated
are the vertical force (the excitation force Fe) and the resulting horizontal
force profile, characterized by the horizontal force acting on the bottom of
the floater (Fx), and the horizontal moment acting about the bottom of the
floater (Mx). The derivation is covered in section 3.2 of the literature study
report.

%
% This m-file computes the external hydrodynamic forces act ing on the AWS
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% from the sea surface profile. The computation is based on li near wave
% theory as discussed in chapter 3.2 of the literature study r eport.
%
% Output:
% t = time
% Fe = excitation force
% Fx = horizontal force
% Mx = horizontal moment around the bottom of the floater

fs=5;
global dt;
dt=1/fs;
tfinal=250;
t=0:dt:tfinal;
N=length(t);
f=linspace(0,fs,N);
om=2* pi * f;

v=spline(time(:,n)-time(1,n),v(:,n),t);
A=fft(v)./N;

gain=S_F * rho_sea * g;

%find k as a function of omega
ktemp=0.001:0.001:10;
temp=tanh(ktemp. * h);
temp2=g. * ktemp;
for l=1:length(om)

[m,idx]=min(abs(om(l)ˆ2-temp2. * temp));
k(l)=ktemp(idx);

end;
% clear k;
% k=(om(1:500).ˆ2)/g;
% k=[k ones(1,N-500). * k(500)];

Kc=sin(k * d_out/2)./(k * d_out/2);

decay_top=cosh(k. * (h-(h-h_f/2-x_0)))./cosh(k. * h). * Kc;
decay_bot=cosh(k. * (h-(h+h_f/2-x_0)))./cosh(k. * h). * Kc;
for i=ceil(N/2):N

decay_top(i)=decay_top(2 * ceil(N/2)-i);
decay_bot(i)=decay_bot(2 * ceil(N/2)-i);

end

fE=gain. * A. * decay_top-(S_F-S_f) * rho_sea * g. * A. * decay_bot;

Fe=real(ifft(fE)). * N;

%**** horizontal loads ****
u=[];
a=[];
dz=2;
for z=0:dz:h_f

d=h-x_0+h_f/2-z;
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Kh=cosh(k. * (h-d))./sinh(k. * h);
U=om.* Kh;
Acc=-j * om. * om. * Kh;
for i=ceil(N/2):N

U(i)=U(2 * ceil(N/2)-i);
Acc(i)=Acc(2 * ceil(N/2)-i);

end
u=[u; ifft(U. * A). * N];
a=[a; ifft(Acc. * A). * N];

end;

for i=1:length(t)
dfdx=real(a(:,i)). * rho_sea * pi * d_out * dz * C_M+ ...

0.5 * rho_sea * d_out * dz * C_D.* real(u(:,i)). * abs(real(u(:,i)));
dfdxF=fit([0:dz:h_f]’,dfdx,’linearinterp’);
dmdx=fit([0:dz:h_f]’,dfdx. * [0:dz:h_f]’,’linearinterp’);
F_hor(i)=integrate(dfdxF,h_f,0);
M_hor(i)=integrate(dmdx,h_f,0);

end;

global Fx Mx;
Fx=[F_hor’];
Mx=[M_hor’];
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Appendix C

Approximating the Radiation
Force

As the floater of the AWS oscillates it radiates a wave. The radiation force
is the reaction of the radiated wave onto the floater. This appendix briefly
summarizes the results obtained from linear wave theory, and discusses
modelling it.

C.1 An Analytical Expression for the Raditaion Force

Using linear wave theory the radiation force is given as:

Frad = −maddz̈ −
∫ t

0
2K(t − τ)ż(τ)dτ (C.1)

where madd represents the added inertia to the floater and K(t) represents
the memory of the fluid. The extra inertia (madd) is a constant and can be
determined numerically or experimentally. The memory term (K(t)) can
be determined from the Haskind relation:

K(ω) =
ωk(ω)|Hη→Fe(ω)|2
4πρg2D(k(ω)h)

(C.2)

where Hη→Fe(ω) is the transfer function from the wave elevation to the
excitation force as derived in chapter 3.2 of the literature study report, k(ω)
is the wave number, and D(k(ω)h) is the depth function and is given as:

D(k(ω)h) =

(

1 +
2k(ω)h

sinh(2k(ω)h

)

tanh(k(ω)h) (C.3)

Figure C.1 shows the resulting transfer function. Note that the transfer
function is purely real.

The literature study report and Falnes [6] give a detailed derivation.
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Figure C.1: Schematic of the AWS

C.2 Approximating the Memory Term as a Damping

The radiation force can be expressed as a damping coefficient multiplied
by the floater velocity, where the magnitude of the coefficient depends on
the frequency of the floater motion. Assuming the frequency of floater mo-
tion is similar to that of the excitation force (which is true for the optimal
motion) then the frequency of the floater motion is centered on the tuning
frequency of the AWS (i.e. the average frequency equals the tuning fre-
quency). Hence the average radiation damping coefficent can be related to
the tuning frequency of the AWS.

K(ω) is approximated as a set of affine functions as shown in figure
C.1. The tuning frequency is then used to calculate the average radiation
damping coefficient. This provides a rough expression for the radiation
force.
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C.3 Approximating the Memory Term as a Linear Sys-

tem

It is also possible to approximate the radiation force as a linear system with
the same frequency response as K(ω). One way to do this is illustrated in
[8], whereby the impulse repsonse of the memory term is mimicked by a
sum of exponential functions:

K(t) ≈
N
∑

i=1

αie
βit (C.4)

The memory term can then be approximated as:

∫ t

0
K(t − τ)ż(τ)dτ ≈

N
∑

i=1

∫ t

0
αie

βitżdτ (C.5)

Each integral Ii =
∫ t

0 αie
βitżdτ can be expressed by the second order linear

system:

(

˙<(Ii)
˙=(Ii)

)

=

(

<(βi) −=(βi)
<(βi) =(βi)

)(

<(Ii)
=(Ii)

)

+

(

<(αi)
=(αi)

)

ż (C.6)

where <(·) and =(·) represent the real and imaginary parts of their argu-
ments respectively.

Finally the memory term can be expressed by the following linear sys-
tem:
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(C.7)
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Appendix D

Model Predictive Control

This appendix gives a short introduction to Model Predictive Control and derives
some of the tools used in the main report. Most of the appendix is taken from ref-
erence [1]. Reference [7] also provides a good course on model predictive control.

D.1 Basic Principle

MPC is a control methodology which, as the name implies, makes use of a model
to predict future states. At any point in time the current state of the system can
be considered as the initial conditions. It is then possible, using a model of the
system, to express an estimate of the future trajectory of the states in terms of the
input. The future state values can then be used to express a peformance index or
cost function for which an optimal can be found. For example, the most apparent
performance index for the case of the AWS would be the net power produced
by the generator. Including the system constraints the problem comes down to a
constrained optimization problem. The controller solves this problem and yields
a future control input from the initial state until some finite time into the future.
The last future time for which the optimal input is predicted is called the horizon.

Next the start of the computed optimal input is implemented. The system re-
sponds but inevitably does not respond in exactly the same way as predicted, due
to reality-model mismatch and unexpected or unpredictable disturbances. The
system output then provides the controller with new initial conditions and the
controller makes another estimate of the future optimal control input. Figure D.1
shows a flowchart illustrating the principle of the MPC controller

D.2 Using Linear Models to make Predictions

When the dynamics of a system can be approximated by a linear system it is a
simple matter to predict the state of the system in terms of the initial state and the
future input and disturbance. The system can be written as a discrete-time linear
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Figure D.1: Basic Principle of MPC

system:

x[k + 1] = Ax[k] + Bu[k]

x[k + 2] = Ax[k + 1] + Bu[k + 1]

= A (Ax[k] + Bu[k]) + Bu[k + 1]

= A2x[k] + (AB B) (u[k] u[k + 1])
T

x[k + 3] = A3x[k] +
(

A2B AB B
)

(u[k] u[k + 1] u[k + 2])
T

...

x[k + N ] = ANx[k] +
(

AN−1B AN−2B ... B
)

(u[k] u[k + 1] ... u[k + N ])
T

(D.1)

where x[k] is the state vector and u[k] is a vector containing the inputs to the open
loop (the control signal, and the disturbances) at time step k.

When a signal is expressed as a linear function of the state (e.g. an output
signal (y) or a performance signal (z)) it is a trivial matter to predict it aswell.

y[k] = Cyx[k] + Dyu[k]

y[k + 1] = Cyx[k + 1] + Dyu[k + 1]

= CyAx[k] + CyBu[k] + Dyu[k + 1]

y[k + 2] = Cyx[k + 2] + Dyu[k + 2]

= CyA2x[k] + Cy (AB B) (u[k] u[k + 1])
T

+ Dyu[k + 2]

...

(D.2)

It is convenient to express the resulting system as:

ŷ = C̃yx[k] + D̃ydd̂ + D̃yuû

ẑ = C̃zx[k] + D̃ydd̂ + D̃zuû
(D.3)
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where the decorationˆdenotes that the variable is a vector containing predicted

values. For example ŷ = (y[k] y[k + 1] ... y[k + N ])
T

. The inputs are split into d
and u, the external signals and the control signal respectively.

D.3 Reformulating to the Quadratic Programming Prob-

lem

A quadratic programming problem is an optimization problem of the form:

min
1

2
~xT H~x + ~xT ~f

~x
(D.4)

where H is a constant matrix and ~f is a constant vector. Reference [5] provides an
overview of the programming problem.

Very quick and reliable algorithms exist to find the constrained optimum of
the quadratic programming problem, as long as the matrix H is positive definite.
Hence it is desirable to express the optimization problem used to determine the
optimal control signal as such. The optimization problem becomes a quadratic
programming problem when the controller tries to minimize a cost function of the
form:

J = min
∑N

i=0 z[k + i|k]2

û
(D.5)

where z is a linear combination of the state variables. This is shown below.
Rewriting equation D.5 we get:

J =min ẑT ẑ

û
(D.6)

Recall that ẑ is given as:

ẑ = C̃zx[k] + D̃ydd̂ + D̃zuû (D.7)

By substitution:

J = min
(

C̃zx[k] + D̃ydd̂ + D̃zuû
)T (

C̃zx[k] + D̃ydd̂ + D̃zuû
)

û

= min ûT D̃T
zuD̃zuû + 2ûT D̃T

zu

(

C̃zx[k] + D̃ydd̂
)

+
(

C̃zx[k] + D̃ydd̂
)T (

C̃zx[k] + D̃ydd̂
)

û

(D.8)

Next we define:

H ≡ 2D̃T
zuD̃zu

~f ≡ 2D̃T
zu

(

C̃zx[k] + D̃ydd̂
)

K ≡
(

C̃zx[k] + D̃ydd̂
)T (

C̃zx[k] + D̃ydd̂
)

(D.9)
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and substitute:

J = min
1

2
ûT Hû + ûT ~f + K

û

= min
1

2
ûT Hû + ûT ~f

û

(D.10)

It can be shown that H = 2D̃T
zuD̃zu is always positive definite. Hence, as long

as the performance index (z) can be expressed as a linear combination of the state
variables, it is possible to write the controller optimization problem as a quadratic
programming problem.
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Appendix E

Random Search Results

This appendix presents the results of the random search used to investigate the
properties of the nonlinear optimization problem. The optimization problem is
defined as:

min (−E) = min
∑N

i=1

(

ż[i + 0.5]F̂gen[i] + c1

(

F̂gen[i]
Frated

)2

+ c2

∣

∣

∣

ż[i]
vrated

∣

∣

∣

)

F̂gen F̂gen

(E.1)
where the velocity (ż) is a function of the excitation force, the generator force, and
the initial state. The generator parameters (c1, c2, vrated and Frated) also play and
important role in the properties of the cost function. The values used are the same
as those used by the controller and are listed in table E.

The optimization problem is solved in for 12 different cases, each with differ-
ent excitation force signals and different initial conditions. In each case the op-
timization problem is solved 200 times. Figure E shows the resulting range of
control forces found, where the dashed lines show the excitation force. Table E
gives the average cost values found and the standard deviation.

When the excitation force is very low there is a large variation in the resulting
control signals. The variation in the resulting cost values is also particularly large.
In such sea states the controller is likely to perform poorly. It could be worth it
to implement a multi-start in the controller, but the energy provided by the sea is
small anyway. For larger excitation forces the range in control forces is very small
and the variation in the cost value is also small.

95



0 10 20 30
−1

−0.5

0

0.5

1
x 10

6

step

fo
rc

e 
[N

]

x
0
=1.5m

 v
0
=−1m/s

0 10 20 30
−1

−0.5

0

0.5

1
x 10

6

step

x
0
=0m

  v
0
=0m/s

0 10 20 30
−5

0

5

10
x 10

5

step

x
0
=1m

      v
0
=−1.5m/s

0 10 20 30
−1.5

−1

−0.5

0

0.5

1
x 10

5

fo
rc

e 
[N

]

x
0
=0m

  v
0
=0m/s

0 10 20 30
−4

−2

0

2

4
x 10

5

x
0
=0m

  v
0
=0m/s

0 10 20 30
−3

−2

−1

0

1

2
x 10

5

x
0
=0m

  v
0
=0m/s

Case 4 Case 5 Case 6

Case 1 Case 2 Case 3

0 10 20 30
−2

−1

0

1

2
x 10

6

step

fo
rc

e 
[N

]

x
0
=1.5m 

v
0
=−1m/s

0 10 20 30
−2

−1

0

1

2
x 10

6

step

 x
0
=0m    

v
0
=0m/s

0 10 20 30
−2

−1

0

1

2
x 10

6

step

x
0
=1m

      v
0
=−1.5m/s

0 10 20 30
−1

−0.5

0

0.5

1
x 10

6

fo
rc

e 
[N

]

x
0
=1.5m 

v
0
=−1m/s

0 10 20 30
−1

−0.5

0

0.5

1
x 10

6

 x
0
=0m    

v
0
=0m/s

0 10 20 30
−1

−0.5

0

0.5

1
x 10

6

x
0
=1m

       v
0
=−1.5m/s 

 

 

Case 10 Case 11

Case 7 Case 8

Case 12

Case 9

Figure E.1: Random search results: generator forces
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Parameter Value

c1 250 kW
c2 20 kW
Frated 1 MN
vrated 2.2 m/s

Table E.1: Generator parameters

Table E.2: Cost values
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