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A B S T R A C T

The objective of this study is to address the issue of service time uncertainty in synchro-
modal freight transport, which can cause delays, inefficiencies, and reduced satisfaction for
shippers. The proposed solution is an online deep Reinforcement Learning (RL) approach that
takes into account the service time uncertainty, assisted by an Adaptive Large Neighborhood
Search (ALNS) heuristic that provides state and reward information based on the routing and
scheduling. The proposed planning approach re-plans in response to unexpected events and
learns from real-time information from various transport modes, including road, railway, and
inland waterways. The performance of the proposed planning approach is evaluated in the
European Rhine-Alpine corridor under various scenarios with different types and severities of
unexpected events. The results demonstrate that the RL approach consistently outperforms other
strategies by effectively handling service time uncertainty, leading to reduced costs, emissions,
and waiting time, as well as decreased transport delays and improved rewards through accurate
decision-making and agile transport re-planning. This study also finds that incorporating event
severity information improves the average reward obtained by the RL approach in scenarios
involving multiple types of events.

1. Introduction

Synchromodal freight transport is an advanced version of intermodal freight transport, which has the potential to provide low-
cost, reliable, and sustainable services by utilizing multiple modes (such as road, railway, and inland waterway) in combination
with real-time updates (Tavasszy et al., 2017; Li et al., 2017; Zhang et al., 2022b,a). However, synchromodal transport planning is
often faced with various uncertainties, such as service time uncertainty, which can significantly impact the transportation system’s
efficiency (SteadieSeifi et al., 2014; Delbart et al., 2021). Service time in synchromodal transport refers to the duration of picking up,
delivering, or transferring goods at terminals, including time for loading/unloading and related activities. Synchromodal transport
strives for seamless and efficient transfer of goods between modes, however, the service time uncertainty at terminals caused by
unexpected events poses a significant challenge to achieving this goal. Unexpected events, such as congestion, bad weather, and
equipment malfunctions, can cause long waiting times or changes in the duration of service, leading to uncertainty in service time.
This uncertainty can trigger delays and infeasible transport plans, causing low efficiency, high cost, and request cancellation. One
necessary task of synchromodal freight transport is to adapt to service time uncertainty at terminals (including ports, train/truck
stations, and transshipment terminals).

To tackle transport planning problems under uncertainty, most of the existing approaches in the literature are based on
robust optimization (Abbassi et al., 2019), re-planning (Hrušovskỳ et al., 2021), or stochastic programming (Guo et al., 2021).
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Robust optimization evaluates the solutions using worst-case realizations of uncertain parameters and may generate unused excess
capacities (Gabrel et al., 2014). Re-planning refers to adjusting transport plans and schedules in response to unexpected events.
The re-planning is usually carried out after significant delays without predicting when and how long a delay will be. Stochastic
programming approaches rely on prior assumptions on probability distributions for travel times or demands. They do not account
for possible deviations from an assumed distribution (Farahani et al., 2021). These approaches usually assume that distribution
information about the uncertainty is available a priori before an action is taken. This is not always a realistic assumption because the
information about uncertainty is usually incrementally revealed during the transport process. Moreover, using historical distributions
without detecting changes in an environment, the planning performance may decline (Phiboonbanakit et al., 2021). Therefore, a
dynamic learning ability that updates the planning model is required for dealing with uncertainty in the environment.

Online scheduling and routing problems arise naturally in many application areas and have received increasing attention in recent
ears. Contrary to offline optimization, data is not assumed available a priori in online optimization. Rather it is collected during
lgorithm execution (Bent and Van Hentenryck, 2005). Thanks to the development of digital platforms and the rise of concepts such
s synchromodal transport, a carrier is more and more able to collect real-time information from the transport network (through
ort authorities, terminal operators and/or sensors) about uncertainties.

The complexity and size of a transport network make it difficult for carriers to retain and learn from events. Advanced models
nd algorithms, specifically deep Reinforcement Learning (RL), have the potential to be instrumental in handling unexpected events.
L has been proven to be able to achieve human or superhuman skill in tasks such as Atari games (Mnih et al., 2015) and the game
o (Silver et al., 2018). In synchromodal freight transport, the pattern of service time uncertainty refers to the regularities or
ssociations that are related to factors that have an impact on the duration of service. Such factors include but are not limited to the
ode of transport, current time, terminal, and type of event. The collected information from port authorities, terminal operators,

nd sensors can be used to learn the pattern of uncertainties by RL. By learning online, RL can handle the uncertainty and help
perators take better decisions in a re-planning framework. As opposed to traditional methods of re-planning that lack an adaptive
earning component, the utilization of RL for re-planning enables learning from experience and adjusting transport plans accordingly
sing continuously updated policy.

It is widely recognized that RL algorithms can be challenging to implement due to the ‘‘curse of dimensionality’’ (Gosavi, 2009).
his term refers to the difficulty of training RL agents when the dimension of the environment state or control action is high. This
hallenge is compounded in the context of synchromodal transport planning, which involves a large state space due to the need
o consider routing and scheduling across multiple transport modes, as shown in Fig. 1. The decisions in synchromodal transport
re also complex, which include both discrete actions (e.g., vehicle selection) and continuous actions (e.g., shipment scheduling).
o address these challenges and enhance the convergence of RL training, we propose a model-assisted RL approach in this paper.
nstead of relying solely on the RL agent to make control decisions without guidance, we integrate a transport planning model to
rovide assistance. Specifically, we employ Adaptive Large Neighborhood Search (ALNS) to aid the RL, which helps to reduce the
ize of both actions and states and thus accelerates the training process. In this way, an optimization algorithm (ALNS) that has the
omain knowledge for synchromodal freight transport and a machine learning technique (RL) for unexpected events are integrated
o handle the synchromodal transport re-planning under service time uncertainty. While the methodologies suggested in this study
ave the potential to be applicable to passenger transport, this study focuses on freight transport.

As shown in Fig. 1, there are delays in terminals due to unexpected events, such as congestion, bad weather, and equipment
alfunctions, and the carriers need to take appropriate actions when such delays occur. The problem is that a carrier usually does
ot know how long an unexpected event will last. Therefore, a model-assisted RL approach is proposed to find suitable actions
y learning from the historical experiences of all vehicles in the transport network. The proposed RL is not provided with any
ransportation information in advance. It learns from nothing but the state input, the reward, and the taken actions—just as a
arrier in practice would. In Fig. 1, when the RL is not implemented, requests 𝑟1 and 𝑟2 are scheduled for transportation from

terminals A and C to terminals E and G, respectively. However, unexpected events at terminals A, B, C, and D result in service
time uncertainty and both requests arrive with a delay. When RL is implemented, new requests 𝑟′1 and 𝑟′2 need to be transported
with the same origin and destination as 𝑟1 and 𝑟2. The RL adjusts the transport modes and routes based on its experience with
requests 𝑟1 and 𝑟2. The mode of transportation between terminals B and E for request 𝑟′1 is changed from train to truck for improved
speed. The route for request 𝑟′2 is altered from C-D-G to C-F-G to avoid service time uncertainty in terminal D. Both requests 𝑟′1
and 𝑟′2 are eventually delivered without delay. By using RL, our approach is able to adapt to unexpected events and make decisions
in real time based on the current state of the transportation system. We demonstrate the effectiveness of our approach through a
series of simulation experiments, illustrating that the approach could significantly improve the efficiency of synchromodal transport
re-planning compared to traditional non-learning methods.

The main contributions of this paper are summarized as follows: (a) we introduce a synchromodal transport re-planning problem
under service time uncertainty; (b) we propose a synchromodal transport re-planning framework that can accommodate different
strategies; (c) under the re-planning framework, we develop a model-assisted RL approach to handle the service time uncertainty
online; (d) we evaluate the performance of the proposed approach under different scenarios using a realistic transport network,
including scenarios with disturbance and disruptions, scenarios with multiple types of events, and scenarios with perfect and
imperfect severity levels.

The remainder of this paper is organized as follows: Section 2 presents a brief literature review. Section 3 formalizes the studied
problem. Section 4 proposes the synchromodal transport planning and the model-assisted RL approach for the re-planning. In
Section 5, simulation experiments and results are provided, and the ability of the approach to handle unexpected events in different
2

scenarios is evaluated. Section 6 concludes this paper and gives future research directions.
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Fig. 1. Synchromodal transport planning under service time uncertainty.

2. Literature review

We first review existing studies for synchromodal transport planning under uncertainty and then review the learning approaches
under uncertainty in vehicle routing problems.

2.1. Synchromodal transport planning under uncertainty

At the operational level, synchromodal transport is required to adapt to uncertainty in a dynamic environment (SteadieSeifi et al.,
2014). Therefore online planning is needed based on real-time information that becomes available over time (Yee et al., 2021). In the
literature, some studies do re-planning when an unexpected event occurs, while the uncertainty is not considered. For example, Van
Riessen et al. (2015) measure the effect of a disturbance and update suitable paths in an intermodal transport network to adapt to
occurring disturbances, such as early or late service departure and cancellation of services. Li et al. (2015) use the receding horizon
intermodal container flow control approach to control and reassign intermodal container flows under disturbances in transportation
demand and travel time. Qu et al. (2019) re-plan the synchromodal transport by shipment flow rerouting, service rescheduling, and
transshipment when the release time, container volume, and travel time change.

Some studies consider demand uncertainty. For example, Van Riessen et al. (2016) adopt decision trees to make real-time
container transport planning based on offline obtained optimal solutions. Rivera and Mes (2017) propose a look-ahead planning
method for the intermodal long-haul round-trips under the uncertainty of the arrival of new orders.

Travel time uncertainty is an important issue related to the efficiency of transportation. Different approaches have been developed
to handle it, including stochastic programming (Demir et al., 2016; Guo et al., 2021), Markov decision process (Yee et al., 2021),
and RL (Guo et al., 2022). Most of them focus on travel time on transport arcs, including roads, railways, and waterways. In
synchromodal transport, the service time uncertainty at terminals, including ports, train/truck stations, and transshipment terminals,
is very common due to unexpected events, such as congestion, weather conditions, late arrivals of services, and late releases of empty
containers. However, the service time uncertainty does not attract enough attention and few studies (Demir et al., 2016) propose
approaches to handle it.
3
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2.2. Learning approaches for vehicle routing problems under uncertainty

In vehicle routing problems with uncertainty, studies mainly use RL to handle the demand uncertainty. Basso et al. (2022) use
L to learn the stochastic demand and energy consumption offline for an electric vehicle routing problem. Pan and Liu (2023)
esign a real-time decision support system that consists of a deep neural network and an RL algorithm to control the value function
f the VRP with demand uncertainty. Balaji et al. (2019) propose an RL benchmark for a VRP of an on-demand delivery driver,
here orders are generated with a constant probability. Phiboonbanakit et al. (2021) use RL to discover strategies for VRP with
elivery incidents and the results show that RL can quickly adapt to demand uncertainty by identifying patterns of abnormalities
nd rearranging shipments.

The Vehicle Routing Problem with Stochastic Travel Times (SVRP) has received considerable attention in the operations research
OR) community since its introduction by Laporte et al. (1992). Recently, the computer science (CS) community also found that RL
s a potentially ideal approach to solve the SVRP, especially for dynamic SVRPs (Hildebrandt et al., 2021). The OR methodology can
e used to model the SVRP with as much practical consideration as possible, such as time windows, capacity, precedence constraints,
tc. The CS methodology can tackle the challenging stochastic part of the SVRP with a learning approach. In this way, a hybrid
pproach that combines methodologies from both OR and CS communities can provide a powerful tool to search the action space
nd evaluate actions in SVRP efficiently.

.3. Summary

Table 1 provides a summary of the reviewed papers. In synchromodal/intermodal transport, only Demir et al. (2016) consider
ervice time uncertainty, while they do not propose an online planning approach. Service time is crucial in synchromodal transport
ecause a delay at one terminal could propagate to other terminals due to transshipment, hence causing numerous consequences,
uch as delays and reductions in shipper/customer satisfaction. Previous studies in synchromodal transport have focused on
redefined arcs or paths, without considering the flexibility of vehicle routing (Zhang et al., 2022b). However, in this study,
he ability to choose routes and switch to available vehicles under uncertainty freely is taken into account, which is a critical
haracteristic of synchromodal transport (Tavasszy et al., 2017; Giusti et al., 2019). In VRP, although integrating RL from CS and
pproaches from OR is promising, handling the uncertainties of the transport environment using RL has not been well-addressed, and
xisting studies mainly focus on dealing with demand uncertainty (Hildebrandt et al., 2021; Phiboonbanakit et al., 2021). Moreover,
ost studies require prior information, such as distribution and historical demands, while the proposed approach learns online and
oes not need such information.

Guo et al. (2022) is the most similar study to our work. Guo et al. (2022) use the Q-learning algorithm to learn the policy of
atching a shipment with a service in synchromodal transport. There are five differences that distinguish our work from Guo et al.

2022): (a) we tackle the service time uncertainty at terminals, while Guo et al. (2022) consider the travel time uncertainty on arcs;
b) Guo et al. (2022) assume that probability distributions of uncertainties are available, while the proposed model in our work
oes not need the distribution to train the RL; (c) Guo et al. (2022)’s RL approach uses offline simulation to learn, while our model
tilizes online learning, allowing it to adapt and improve as new information is revealed during transportation. This enables our
odel to better handle uncertainty in real-world scenarios; (d) Guo et al. (2022) use a tabular Q-learning approach and the obtained
olicy cannot be generalized to events that have never been encountered before, while our model can handle events with similar
eatures by using a deep neural network as a function approximator to estimate the action-value function; (e) our study proposes
model-assisted RL, which integrates a heuristic with RL to let RL only focus on the uncertainty part, and the size of the state is

educed compared to Guo et al. (2022).

. Problem description

The notation used in the mathematical model is provided in Table 2. We consider a transport network 𝐺 = (𝑁,𝐴) (𝑁/𝐴 represents
the set of nodes/arcs) with multiple modes 𝑤 ∈ 𝑊 , and the carrier transports containers in the network. The nodes (terminals) 𝑁
include ports, train/truck stations, and transshipment terminals. The arcs 𝐴 include waterway, railway, and road. A carrier usually
owns multiple vehicles 𝑘 ∈ 𝐾 and serves multiple requests 𝑟 ∈ 𝑅. The pickup and delivery terminals of request 𝑟 ∈ 𝑅 are designated
by 𝑝(𝑟) and 𝑑(𝑟), respectively. A request 𝑟 needs to be picked up in time window [𝑎𝑝(𝑟), 𝑏𝑝(𝑟)] at terminal 𝑝(𝑟) and delivered in time
window [𝑎𝑑(𝑟), 𝑏𝑑(𝑟)] at terminal 𝑑(𝑟). Let 𝑜(𝑘) ∈ 𝑂 ⊆ 𝑁 and 𝑜′(𝑘) ∈ 𝑂 ⊆ 𝑁 represent the starting and the ending depot of vehicle 𝑘.
Request 𝑟 can be served by a single vehicle 𝑘 or by multiple vehicles 𝑘1, 𝑘2,… ∈ 𝐾 via transshipment terminals 𝑇 ⊆ 𝑁 .

During the transportation, unexpected events 𝑢𝑒 may occur with starting time 𝑡𝑢𝑒 and ending time 𝑡𝑢𝑒. The starting and ending
times are unknown when designing the initial transportation plan. Due to unexpected events, the duration of service time at each
terminal 𝑖 ∈ 𝑁 is uncertain. If a vehicle 𝑘 arrives at terminal 𝑖 and cannot transport request 𝑟 as planned, the request 𝑟 is an affected
request. If the vehicle 𝑘 continued as originally planned, the delivery time of request 𝑟 could exceed 𝑏𝑑(𝑟) and a delay penalty will
e charged. To avoid delay, the best action needs to be taken. This study addresses the following research question: How does an
gent learn online to plan better under service time uncertainty in the context of synchromodal transportation? Specifically, the
ollowing questions need to be considered:

1. Should the affected requests be served by the current vehicle?
4

2. If not, which vehicles are suitable for serving them?
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Table 1
Comparison between the proposed model and existing approaches in the literature.

Article Problem characteristics Methodologies

Mode Problem Vehicle Uncertainty Event Approach Learning Re-planning Required prior
routing location information

Synchromodal transport
Li et al. (2015) road, railway,

inland waterway
STP – – RHC – periodical –

Van Riessen et al. (2016) road, railway,
inland waterway

STP demand – DT ✓, offline real-time historical
requests

Demir et al. (2016) road, railway,
inland waterway

STP travel/service
time, demand

arcs SO – –

Rivera and Mes (2017) road, inland
waterway

STP demand – MDP periodical distribution

Yee et al. (2021) road, railway,
inland waterway

STP travel time arcs MDP periodical distribution

Qu et al. (2019) road, railway,
inland waterway

STP – – LP real-time –

Guo et al. (2021) road, railway,
inland waterway

STP travel time and
demand

arcs SO periodical distribution

Guo et al. (2022) road, railway,
inland waterway

STP travel time arcs RL ✓, offline periodical distribution

Vehicle routing problems
Balaji et al. (2019) road VRP ✓ demand – DRL ✓, online – none
Pan and Liu (2023) road VRP ✓ demand – DRL ✓, online real-time none
Basso et al. (2022) road VRP ✓ demand – RL ✓, offline real-time historical data

This research road, railway,
inland waterway

STP ✓ service time terminals model-assisted DRL ✓, online real-time none

–: in the ‘‘Required prior information" column, it means that no information is required as uncertainty is not taken into account; in other columns, it means
that the relevant item is not mentioned in the article.
RHC: Receding horizon control; STP: Synchromodal transport planning; VRP: Vehicle Routing Problem; MDP: Markov decision process; DT: Decision trees; LP:
Linear programming model; SO: Stochastic optimization.

In question 1, if request 𝑟 is served by one vehicle, only the schedule of the current vehicle needs to be evaluated. If two or more
ehicles are used, the schedules of subsequent vehicles also need to be considered. If the request is removed from the schedule of a
ehicle, then question 2 is considered. After inserting the removed request into a new route of vehicle 𝑘′, the schedules of vehicle

𝑘′ and vehicles that have transshipment operations with 𝑘′ need to be re-evaluated. Since multiple requests could be influenced by
the same unexpected event, the above re-evaluation needs to be iterated until all affected requests have either been confirmed to
keep the original plan or have been re-planned.

The severity of unexpected events may differ. Some events may cause severe disruptions and some may only disturb the schedules
of vehicles. For different terminals, the factors that influence the duration of unexpected events are various, such as weather
conditions, equipment malfunctions, or traffic congestion. Therefore, the duration of unexpected events at different terminals may
be of different types. Multiple events of different types may happen in a single terminal. Moreover, the severity level of the event
may be provided by the port authority or terminal operator (for example based on the source of the event), and the severity level
may be inaccurate. The performance of the model under severity level with inaccurate information needs to be evaluated. Therefore,
different scenarios need to be considered to evaluate the effectiveness of the proposed approach.

4. Proposed planning approach

Solving vehicle routing problems by RL is challenging because the size of the state is very large, especially for synchromodal
transport with multiple modes and transshipment (Guo et al., 2022). RL can be computationally expensive and may not always
find the optimal solution, especially in such large and complex environments. Different from approaches that solely use RL to solve
vehicle routing problems (Nazari et al., 2018; James et al., 2019; SteadieSeifi et al., 2021), this study integrates RL and ALNS
to make use of the strengths of both, namely the data-driven strength of the former and the domain knowledge from the latter,
as shown in Fig. 2. ALNS is a metaheuristic optimization algorithm that is widely used to solve vehicle routing problems, and
the ALNS used in this study is extended from our previous work (Zhang et al., 2022b). It works by iteratively constructing and
improving solutions by making changes to the current solution, called ‘‘neighborhood moves’’. ALNS can provide efficient search
and optimization capabilities for the static problem, while RL can provide real-time adaptability and decision-making capabilities
under uncertainty. This can potentially allow the integrated approach to find good solutions quickly and adapt to unexpected events
in real-time. Different from the ALNS in our previous paper (Zhang et al., 2022b), in this study, ALNS is used to build schedules,
provide information on states, check feasibility to provide rewards and guide the RL agent by prioritizing vehicles. Benefiting from
5
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Table 2
Notation.

Sets:
𝑊 Set of modes indexed by 𝑤.
𝑅 Set of requests indexed by 𝑟.
𝑁 Set of terminals indexed by 𝑖 and 𝑗. 𝑂 ⊆ 𝑁 , set of depots. 𝑃∕𝐷∕𝑇 ⊆ 𝑁 , set of

pickup/delivery/transshipment terminals. 𝑇𝑤2
𝑤1

, set of terminals that allows transshipment between
mode 𝑤1 and mode 𝑤2.

𝐾 Set of vehicles indexed by 𝑘 and 𝑙. 𝐾b&t ⊆ 𝐾, set of barges and trains. 𝐾truck ⊆ 𝐾, set of truck fleets.
𝐾𝑤 ⊆ 𝐾, set of vehicles of mode 𝑤. 𝐾fix ⊆ 𝐾, set of vehicles that have predefined routes and
schedules. 𝐾𝑢𝑒 ⊆ 𝐾, set of vehicles that affected by unexpected event 𝑢𝑒.

𝐴 Set of arcs. For 𝑖, 𝑗 ∈ 𝑁 , the arc from 𝑖 to 𝑗 is denoted by (𝑖, 𝑗) ∈ 𝐴. 𝐴𝑝∕𝐴𝑑 ⊆ 𝐴 represents the set of
pickup/delivery arcs. For (𝑖, 𝑗) ∈ 𝐴𝑝, 𝑖 ∈ 𝑃 . For (𝑖, 𝑗) ∈ 𝐴𝑑 , 𝑗 ∈ 𝐷. 𝐴𝑤 ⊆ 𝐴 represents the set of arcs for
mode 𝑤. 𝐴𝑘

fix ⊆ 𝐴 represents the set of arcs for a fixed vehicle 𝑘 ∈ 𝐾fix.

Parameters:
𝑢𝑘 Capacity (TEU) of vehicle 𝑘.
𝑞𝑟 Quantity (TEU) of request 𝑟.
𝜏𝑘𝑖𝑗 The travel time (in hours) on arc (𝑖, 𝑗) for vehicle 𝑘.
[𝑎𝑝(𝑟) , 𝑏𝑝(𝑟)] The pickup time window for request 𝑟.
[𝑎𝑑(𝑟) , 𝑏𝑑(𝑟)] The delivery time window for request 𝑟.
[𝑎𝑘𝑖 , 𝑏

𝑘
𝑖 ] The open time window for fixed vehicle 𝑘 at terminal 𝑖.

𝑡′′𝑘𝑖 The loading (or unloading) time (in hours) for vehicle 𝑘 at terminal 𝑖.
𝑣𝑘 Speed (km/h) of vehicle 𝑘.
𝑑𝑘
𝑖𝑗 Distance (km) between terminals 𝑖 and 𝑗 for vehicle 𝑘.

𝑒𝑘 CO2 emissions (kg) per container per km of vehicle 𝑘.
𝑐𝑛𝑘 𝑐1𝑘/𝑐1′𝑘 is transport cost (euro) per hour/km per container using vehicle 𝑘. 𝑐2𝑘 is the loading (or

unloading) cost per container. 𝑐3𝑘 is the storage cost per container per hour. 𝑐4𝑘 is the carbon tax
coefficient per ton. 𝑐5𝑘 is the cost per hour of waiting time.

𝑐delay
𝑟 The delay penalty per container per hour of request 𝑟.
𝑀 A large enough positive number.

Variables:
𝑥𝑘𝑖𝑗 Binary variable; 1 if vehicle 𝑘 uses the arc (𝑖, 𝑗), 0 otherwise.
𝑦𝑘𝑟𝑖𝑗 Binary variable; 1 if request 𝑟 transported by vehicle 𝑘 uses arc (𝑖, 𝑗), 0 otherwise.
𝑧𝑘𝑖𝑗 Binary variable; 1 if terminal 𝑖 precedes (not necessarily immediately) terminal 𝑗 in the route of

vehicle 𝑘, 0 otherwise.
𝑠𝑘𝑙𝑖𝑟 Binary variable; 1 if request 𝑟 is transferred from vehicle 𝑘 to vehicle 𝑙 ≠ 𝑘 at transshipment terminal

𝑖, 0 otherwise.
𝑡𝑘𝑟𝑖 ∕𝑡′𝑘𝑟𝑖 ∕𝑡𝑘𝑟𝑖 The arrival time/service start time/service finish time of request 𝑟 served by vehicle 𝑘 at terminal 𝑖.
𝑡𝑘𝑖 ∕𝑡

′𝑘
𝑖 ∕𝑡

𝑘
𝑖 The arrival time/last service start time/departure time of vehicle 𝑘 at terminal 𝑖.

𝑡wait
𝑘𝑖 The waiting time of vehicle 𝑘 at terminal 𝑖.
𝑡delay
𝑟 The delay time of request 𝑟 at delivery terminal.

combining ALNS, the RL approach can focus on the uncertainty in real-time and the size of the state in RL can be reduced by only
keeping critical factors that influence decisions.

Section 4.1 presents the mathematical model for synchromodal transport planning. Section 4.2 introduces a re-planning
ramework that considers different strategies, one of which is the model-assisted RL. Section 4.3 presents the details of the
odel-assisted RL.

.1. Synchromodal transport planning

The mathematical model for synchromodal transport planning is extended from Zhang et al. (2022b). The objective of
ynchromodal transport planning is minimizing cost (Euros), which consists of transit cost (𝐹1), transfer cost (𝐹2), storage cost

(𝐹3), carbon tax (𝐹4), waiting cost (𝐹5), and delay penalty (𝐹6), as shown in Eqs. (1)–(7).

min 𝐹 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 + 𝐹5 + 𝐹6 (1)

𝐹1 =
∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴

∑

𝑟∈𝑅
(𝑐1𝑘𝜏

𝑘
𝑖𝑗 + 𝑐1

′

𝑘 𝑑𝑘𝑖𝑗 )𝑞𝑟𝑦
𝑘𝑟
𝑖𝑗 (2)

𝐹2 =
∑ ∑∑

(𝑐2𝑘 + 𝑐2𝑙 )𝑞𝑟𝑠
𝑘𝑙
𝑖𝑟 +

∑ ∑ ∑

𝑐2𝑘𝑞𝑟𝑦
𝑘𝑟
𝑖𝑗 +

∑ ∑ ∑

𝑐2𝑘𝑞𝑟𝑦
𝑘𝑟
𝑖𝑗 (3)
6
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Fig. 2. Model-assisted RL.

𝐹3 =
∑

𝑘,𝑙∈𝐾,𝑘≠𝑙

∑

𝑟∈𝑅

∑

𝑖∈𝑇
𝑐3𝑘𝑞𝑟𝑠

𝑘𝑙
𝑖𝑟 (𝑡

′𝑙𝑟
𝑖 − 𝑡𝑘𝑟𝑖 ) +

∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴𝑝

∑

𝑟∈𝑅
𝑐3𝑘𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 (𝑡

′𝑘𝑟
𝑖 − 𝑎𝑝(𝑟)) (4)

𝐹4 =
∑

𝑘∈𝐾

∑

(𝑖,𝑗)∈𝐴

∑

𝑟∈𝑅
𝑐4𝑘𝑒𝑘𝑞𝑟𝑑

𝑘
𝑖𝑗𝑦

𝑘𝑟
𝑖𝑗 (5)

𝐹5 =
∑

𝑘∈𝐾

∑

𝑖∈𝑁
𝑐5𝑘𝑡

wait
𝑘𝑖 (6)

𝐹6 =
∑

𝑟∈𝑅
𝑐delay
𝑟 𝑞𝑟𝑡

delay
𝑟 (7)

Constraints (8)–(15) are temporal constraints at terminals. Other constraints, e.g., temporal constraints on arcs, spatial con-
straints, capacity constraints, etc., are presented in Appendix A.

𝑡𝑘𝑟𝑖 ⩽ 𝑡′𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (8)

𝑡′𝑘𝑟𝑖 + 𝑡′′𝑘𝑟𝑖
∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 ⩽ 𝑡𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (9)

𝑡𝑘𝑖 ⩽ 𝑡𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (10)

𝑡′𝑘𝑖 ⩾ 𝑡′𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (11)

𝑡𝑘𝑖 ⩾ 𝑡𝑘𝑟𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (12)

Constraints (8) and (9) are time constraints on service start and finish time, respectively. Constraints (10), (11), and (12) take
care of the vehicle’s arrival, service, and departure time, respectively.

𝑡𝑘𝑟𝑖 − 𝑡′𝑙𝑟𝑖 ⩽ 𝑀(1 − 𝑠𝑘𝑙𝑖𝑟 ) ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 , ∀𝑘, 𝑙 ∈ 𝐾, 𝑘 ≠ 𝑙 (13)

𝑡wait
𝑘𝑖 ⩾ 𝑡′𝑘𝑖 − 𝑡𝑘𝑖 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (14)

𝑡delay
𝑟 ⩾ (𝑡𝑘𝑟𝑑(𝑟) − 𝑏𝑑(𝑟))

∑

𝑖∈𝑁
𝑦𝑘𝑟𝑖𝑑(𝑟) ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾 (15)

Constraints (13) are time constraints for transshipment. If there is a transshipment from vehicle 𝑘 to vehicle 𝑙, but vehicle 𝑙 arrives
before vehicle 𝑘 departs, vehicle 𝑙 can wait until vehicle 𝑘 completes its unloading. Constraints (14) and (15) calculate waiting time
and delay time, respectively.

4.2. Synchromodal transport re-planning framework

This section presents a re-planning framework that accommodates different strategies: (a) waiting strategy, (b) average duration
strategy, and (c) model-assisted RL strategy. When an unexpected event 𝑢𝑒 occurs prior to the planned service start time (𝑡𝑢𝑒 < 𝑡′𝑘𝑟𝑖 ),
the service should start when the unexpected event 𝑢𝑒 is resolved, as shown in Constraints (16):

𝑡′𝑘𝑟𝑖 ⩾ 𝑡𝑢𝑒 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾𝑢𝑒, ∀𝑟 ∈ 𝑅 (16)

However, the event ending time 𝑡𝑢𝑒 in Constraints (16) is uncertain, which influences requests served by vehicle 𝑘 at terminal 𝑖.
If appropriate action is not taken, it may cause a long waiting time 𝑡wait

𝑘𝑖 at terminal 𝑖 and hence severe delay 𝑡delay
𝑟 at the delivery

terminal 𝑑(𝑟).
7
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With an event-triggered mechanism, the framework consists of two phases: re-planning when the unexpected event occurs at
ime step 𝑡𝑢𝑒 and evaluation/learning when the unexpected event ends at time step 𝑡𝑢𝑒. In order to address the two questions outlined

in Section 3, the re-planning phase contains two sub-phases: the removal phase and the insertion phase. Three strategies (a), (b),
or (c) are employed to determine the actions in these sub-phases. In the removal phase, the actions are to either wait or remove a
request from the vehicle’s schedule. In the insertion phase, the actions are to either insert a request into the schedule or not insert
it.

As presented in Algorithm 1, in strategy (a), all vehicles just wait during the unexpected event mimicking the traditional planning
in practice. When an unexpected event finishes, if there is a delay and re-planning is possible, the affected request will be re-planned.
As presented in Algorithm 2, strategy (b) collects the duration of unexpected events online and then assumes that the current
expected event’s duration equals the average duration of these records and is updated as more information is received. This strategy
mimics carriers who also learn from experience, but in a simpler way compared to RL.

Strategy (c) integrates re-planning and learning using a model-assisted RL, as presented in Algorithm 3. The re-planning phase
stores information about the situation at time step 𝑡𝑢𝑒. Since RL cannot immediately receive a reward for its actions when events
occur, we allow the RL agent to learn when events end. As illustrated in Fig. 3, when an event begins, the situations faced by all
vehicles at different terminals are stored. When the event ends, RL is trained by simulating the situation when the event occurred.
Since the duration of the event is known at the end, the reward for the taken action can be calculated. During the learning phase,
the re-planning process relies on ALNS. For strategy (c), we also consider RL with and without severity level in the state.

Detailed procedures of these three strategies are introduced in Sections Section 4.2.1, Section 4.2.2, and Section 4.2.3.
Algorithm 1: Waiting strategy
Input: 𝐾, 𝑅, 𝐺; Output: 𝑋, 𝑅pool; // 𝑋/𝑅pool represents the solution/request pool.
obtain the initial routes by the static ALNS’s solution for the mathematical model in Section 4.1 (Zhang et al., 2022b);
if an event 𝑢𝑒 finishes then

get affected requests 𝑅𝑢𝑒;
add the event duration to schedules of 𝑅𝑢𝑒 and check feasibility of 𝑅𝑢𝑒’s schedules;
if there are delays for requests 𝑅𝑢𝑒 and re-planning is possible, re-plan using Algorithms 4 and 5 and update solution 𝑋

end

Algorithm 2: Average duration strategy
Input: 𝐾, 𝑅, 𝐺; Output: 𝑋, 𝑅pool; // 𝑋/𝑅pool represents the solution/request pool.
obtain the initial routes by the static ALNS’s solution for the mathematical model in Section 4.1 (Zhang et al., 2022b);
set the average duration 𝐷𝑈 as zero;
if an event 𝑢𝑒 occurs and enough historical durations are collected then

get affected requests 𝑅𝑢𝑒;
for 𝑟 in 𝑅𝑢𝑒 do

add average duration 𝐷𝑈 to 𝑟’s schedule;
check feasibility of request 𝑟’s schedule;
if 𝑟’s schedule is infeasible then

remove and reinsert request 𝑟 using Algorithms 4 and 5 and update solution 𝑋
end

end
end
if an event 𝑢𝑒 finishes then

the average duration 𝐷𝑈 is updated with the event duration;
get affected requests 𝑅𝑢𝑒;
add the event duration to schedules of 𝑅𝑢𝑒 and check feasibility of 𝑅𝑢𝑒’s schedules;
if there are delays for requests 𝑅𝑢𝑒 and re-planning is possible, re-plan using Algorithms 4 and 5 and update solution 𝑋;

end

4.2.1. Re-planning when the unexpected event occurs
The initial solution for the synchromodal transport re-planning is generated using ALNS (Zhang et al., 2022b). However,

nexpected events during transportation may require the initial solution to be modified through re-planning. The synchromodal
ransport re-planning process proceeds as follows:

1. Find affected requests 𝑅𝑢𝑒: When an unexpected event 𝑢𝑒 occurs at terminal 𝑖 at time 𝑡𝑢𝑒, the first step is to determine which
transport mode 𝑤𝑢𝑒 is affected by the event. Then, for each vehicle 𝑘 in the set 𝐾𝑤𝑢𝑒

, the process checks whether the vehicle
passes terminal 𝑖. If it does, the process identifies all requests 𝑅𝑖

𝑘 that have operations at 𝑖. For each request 𝑟 in 𝑅𝑖
𝑘, if the

planned service start time is larger than the event occurring time (𝑡′𝑘𝑟𝑖 > 𝑡𝑢𝑒), then the request is added to the set of requests
𝑅 that are affected by the unexpected event.
8
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Algorithm 3: RL strategy
Input: 𝐾, 𝑅, 𝐺; Output: 𝑋, 𝑅pool; // 𝑋/𝑅pool represents the solution/request pool.
obtain the initial routes by the static ALNS’s solution for the mathematical model in Section 4.1 (Zhang et al., 2022b);
if an event 𝑢𝑒 occurs and RL is mature then

get affected requests 𝑅𝑢𝑒;
for 𝑟 in 𝑅𝑢𝑒 do

send the state of request 𝑟 to RL and obtain the action from RL;
if the action is removal then

remove request/segment 𝑟 using Algorithms 4 and update solution 𝑋;
for 𝑘 in suitable vehicles 𝐾 ′ for request/segment 𝑟 do

try to insert 𝑟 to vehicle 𝑘 using Algorithm 5; send the state of 𝑘 and 𝑟 to RL and receive action from RL;
if the action is insertion then

keep the insertion, update solution 𝑋, and break the loop;
end

end
end

end
end
if an event 𝑢𝑒 finishes then

update the RL’s policy using the approach in Section 4.3;
get affected requests 𝑅𝑢𝑒;
add the event duration to schedules of 𝑅𝑢𝑒 and check feasibility of 𝑅𝑢𝑒’s schedules;
if there are delays for requests 𝑅𝑢𝑒 and re-planning is possible, re-plan using Algorithms 4 and 5 and update solution 𝑋;

end

Fig. 3. Data storage and learning.

2. Collect RL state information: If the RL strategy is being used, for each request 𝑟 in 𝑅𝑢𝑒, the process collects the state information
in Section 4.3.

3. Take action: For strategy (a), the waiting action is always taken when an unexpected event occurs and the schedules are
not changed. For strategy (b), the average duration is added to the schedules, and the feasibility is checked. If the request
is infeasible, it is removed and re-inserted using Algorithms 4 and 5 in Section 4.2.3. For strategy (c), RL is used to make
decisions (see details in Section 4.3). The ALNS sends the state to RL and waits for the action from RL. If the action is waiting,
the process evaluates the next affected request. If the action is removal, the process uses Algorithms 4 and 5 to remove and
insert the request/request segment, respectively. When strategies (b) and (c) are not implemented, waiting action is taken.

4. The above steps are repeated until all requests have been delivered.

4.2.2. Evaluation/learning when the unexpected event finishes
When unexpected event 𝑢𝑒 finishes, the duration is known. The RL agent can then learn from the experience of affected requests

𝑅 during the event. All routes, unserved requests, and state 𝑠 are retrieved from the data storage to simulate the same situation
9
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Fig. 4. Reschedulable part when there is no transshipment.

at time step 𝑡. The ALNS sends the state 𝑠𝑡 to RL and RL gives the action. Similar to the procedures in Section 4.2.1, if the action
is removal, the request/request segment is removed and re-inserted using Algorithms 4 and 5 in Section 4.2.3. If the action is
non-removal, the vehicle will wait until the event finishes. After the action is taken, the reward is determined by the methods in
Section 4.3 and sent to RL for learning.

If RL is implemented, the performance of the action 𝑎𝑡 taken by RL is evaluated. For each affected request 𝑟 in 𝑅𝑢𝑒, the routes,
removal action 𝑎𝑡 and insertion action 𝑎′𝑡 (if any) at time step 𝑡 are restored to recreate the same situation. The reward is then
determined by checking the feasibility after taking the action 𝑎𝑡 using the approaches in Section 4.3.

If strategy (b) is used, the duration is collected. The performance of strategies (a) and (b) are evaluated in a similar way to the
evaluation of RL.

4.2.3. Removal and insertion methods
There are two types of synchromodal transport re-planning: re-planning for requests with and without transshipment. Requests

without transshipment involve the transportation of goods using only one mode of transportation. If an unexpected event occurs
at a terminal along the route of a vehicle transporting such a request, the vehicle may need to wait at the terminal until the event
is resolved. This can cause delays in the delivery of the goods and may result in decreased efficiency and increased costs. In this
case, re-planning may involve adjusting the route or waiting at the terminal until the event is resolved, depending on the specific
situation. Requests with transshipment in synchromodal transport involve the transfer of goods from one mode of transportation
to another at a specific terminal. If an unexpected event occurs at the transshipment terminal, it may affect the availability of the
next mode of transportation or the transfer of goods between modes. Therefore, the re-planning for requests with transshipment
also needs to consider the case where only a segment of the request is affected, meaning that only the request segment after the
transshipment terminal needs to be re-planned. This helps to minimize the impact of the re-planning on the initial plan. The cases
of these two types are shown in Figs. 4 and 5, respectively.

The key to successful re-planning is to identify the current location 𝑖𝑘 of the vehicle 𝑘 and the terminal 𝑖𝑢𝑒 with the unexpected
event 𝑢𝑒, and determine the possible actions. If 𝑖𝑘 is a terminal after 𝑖𝑢𝑒, vehicle 𝑘 is not affected by the event 𝑢𝑒. Except in the case
where 𝑢𝑒 occurs at the delivery terminal, only the re-planning from 𝑖𝑢𝑒 is considered in order to minimize changes to the initial
plan.

On the route of vehicle 𝑘, if 𝑖𝑢𝑒 is a previous terminal of the pickup terminal 𝑝(𝑟) or is 𝑝(𝑟), then it is case 1 in Fig. 4. In this
case, the entire request 𝑟 will be removed to 𝑅pool and re-planned. For case 2, 𝑖𝑢𝑒 is in the middle of 𝑝(𝑟) and 𝑑(𝑟), and the request
can be segmented by 𝑖𝑢𝑒 and delivery time 𝑡𝑟𝑖𝑢𝑒 at 𝑖𝑢𝑒 if the request cannot be delivered on time. This results in the request 𝑟 being
segmented into two segments: 𝑟1𝑖𝑢𝑒 , which needs to be picked up in the time window [𝑎𝑝(𝑟), 𝑏𝑝(𝑟)] at terminal 𝑝(𝑟) and delivered in
the time window [𝑎𝑝(𝑟), 𝑡𝑟𝑖𝑢𝑒 ] at transshipment terminal 𝑖𝑢𝑒, and 𝑟2𝑖𝑢𝑒 , which needs to be picked up in the time window [𝑡𝑟𝑖𝑢𝑒 , 𝑏𝑑(𝑟)] and
delivered in the time window [𝑎𝑑(𝑟), 𝑏𝑑(𝑟)]. The planning for 𝑟1𝑖𝑢𝑒 remains unchanged, while 𝑟2𝑖𝑢𝑒 is removed to 𝑅pool and re-inserted.
In case 3, the unexpected event occurs at the delivery terminal 𝑑(𝑟). If 𝑖𝑘 is a previous terminal of 𝑑(𝑟), the request can be removed
or segmented by 𝑖 in a similar way as in cases 1 and 2. Otherwise, the request cannot be rescheduled.
10
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Fig. 5. Reschedulable part when there is transshipment.

There are five cases to consider when request 𝑟 is transferred at transshipment terminal 𝑗, as shown in Fig. 5. In case 4, similar
to case 1, the unexpected event influences the entire transportation of request 𝑟, and the request can be fully removed and re-
planned. Cases 5 and 6 are similar to case 2, with the unexpected event occurring at a terminal between 𝑝(𝑟) and 𝑗 (case 5) or at
transshipment terminal 𝑗 (case 6), resulting in the request segment from the affected terminal to 𝑑(𝑟) being removable. In case 7,
the unexpected event occurs at a terminal between 𝑗 and 𝑑(𝑟), and the request segment from the affected terminal to 𝑑(𝑟) can be
re-planned, potentially requiring the use of three or more vehicles to serve the request. In case 8, the unexpected event occurs at
the delivery terminal, and the request can be removed or segmented as in cases 4-7, depending on the location of vehicle 𝑘.

The removal and insertion algorithms are presented in Algorithms 4 and 5. Algorithm 4 removes the request or request segment
based on the case it belongs to, while Algorithm 5 inserts the request into a route until the feasibility, as evaluated by ALNS/RL, is
achieved.

4.3. Model-assisted reinforcement learning

The RL agent interacts with an environment  at each of a sequence of discrete time steps, 𝑡 = 0, 1, 2, 3,…. Besides the planning of
all vehicles and requests,  contains the uncertain duration of the service time at terminals. For the unexpected event 𝑢𝑒 occurring
at each time step 𝑡𝑢𝑒, the RL agent receives a state 𝑠𝑡 and chooses an action 𝑎𝑡 from a set of possible actions  according to its
policy 𝜋 = 𝑃 (𝑎𝑡|𝑠𝑡). When the event finishes, the actual duration is known. ALNS checks the feasibility of schedules after adding
the duration and gives the RL agent a scalar reward 𝑟𝑡. The goal of the RL agent is to maximize cumulative rewards 𝑅𝑡 by selecting
appropriate actions from each state 𝑠𝑡:

𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +⋯ =
∞
∑

𝑘=0
𝛾𝑘𝑟𝑡+𝑘 (17)

where 𝛾 is a discount factor.
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Algorithm 4: Removal algorithm
Input: 𝐾, 𝑟, 𝑋current, 𝑅pool, 𝑐𝑎𝑠𝑒; Output: 𝑋removal, 𝑅pool; // 𝑋current/𝑋removal means the current solution/the
solution after removal.
if case == 1 or case == 4 then

for 𝑘 in 𝐾 do
if 𝑘 serves 𝑟 then

remove 𝑟 from 𝑘’s schedule in 𝑋current and obtain 𝑋removal;
end

end
add 𝑟 to 𝑅pool;

else
remove the request segment from related vehicles and obtain 𝑋removal;
add the request segment to 𝑅pool.

end

Algorithm 5: Insertion algorithm
Input: 𝑘, 𝑟, 𝑋current, 𝑅pool ; // 𝑘 is the vehicle that is trying to be used, and 𝑟 could be a request or a
request segment.
Output: 𝑋insertion, 𝑅pool; // 𝑋current/𝑋insertion means the current solution/the solution after insertion.
for position 𝑝𝑜𝑠 in all possible positions in 𝑘’s route in 𝑋current do

insert 𝑟 to the position 𝑝𝑜𝑠;
check feasibility of the inserted route by the ALNS or RL;
if the solution after insertion is feasible then

keep the insertion and obtain 𝑋insertion;
remove 𝑟 from 𝑅pool;
stop;

else
remove 𝑟 from position 𝑝𝑜𝑠.

end
end

In this RL approach, the state includes important information about the current time 𝑡, passed terminals that have unexpected
vents 𝑁𝑢𝑒, the travel time 𝜏𝑘𝑖𝑗 between adjacent terminals 𝑖, 𝑗 ∈ 𝑁𝑢𝑒, and the delay tolerance 𝑡tolerance

𝑟 of the request. The current
ime 𝑡 helps the RL agent to evaluate how long the unexpected event will last. The decision for one request must consider not only
he unexpected event at the current terminal but also events at later terminals. Therefore, we include all passed terminals that have
nexpected events 𝑁𝑢𝑒 and the travel time 𝜏𝑘𝑖𝑗 in the state. The delay tolerance 𝑡tolerance

𝑟 represents the maximum possible delay time
nd should not be smaller than the duration of the unexpected event, otherwise, there will be a delay in delivering the request
nd the request may need to be switched to another vehicle. As shown in Fig. 6, there are two cases when calculating the delay
olerance. In both cases, the delay tolerance includes the duration between the latest delivery time and the planned delivery time
𝑑(𝑟) − 𝑡delivery

𝑟 . In case 1, the event begins after the service start time 𝑡′𝑘𝑟𝑖 , so the delayed time is equal to the duration of the event.
n case 2, the event begins before 𝑡′𝑘𝑟𝑖 , and part of the duration 𝑡′𝑘𝑟𝑖 − 𝑡𝑢𝑒 does not affect the service, which needs to be added to the
elay tolerance. Therefore, the delay tolerance is calculated by:

𝑡tolerance
𝑟 = (𝑡′𝑘𝑟𝑖 − 𝑡𝑢𝑒)+ + (𝑏𝑑(𝑟) − 𝑡delivery

𝑟 ). (18)

In order to provide more information about the event that is causing the service time uncertainty, we also consider the severity
evel of the event as a part of the state in the RL approach. The severity level is a measure of the impact of the event on the transport
peration and can be obtained from the terminal operator or other sources. The severity level may not always be accurate due to
ncomplete information and measurement errors, therefore, the consideration of imperfect severity level is also incorporated. The
nclusion of the severity level is only applied in complex scenarios, as demonstrated in Section 5.2.

Fig. 7 shows the flowchart of the model-assisted RL. When a request is influenced, firstly the RL agent decides whether the
urrent vehicle is suitable to serve it or not in the removal phase. The first step involves generating the route for the request and
ending the relevant state information to the RL agent. The RL agent then makes a decision about whether the request should be
emoved or if the vehicle should wait until the event finishes. ALNS then evaluates the feasibility of the original route based on the
ction taken by the RL agent and sends a reward to the RL agent based on whether or not the action avoided delay. If the action is
emoval and there is a delay when the event finished, or if the action is waiting and there is no delay when the event finishes, the
eward is 1. Otherwise, the reward is 0.
12
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Fig. 6. Delay tolerance in the state.

If the action in the removal phase is removal, RL will determine which vehicle is the most suitable for the affected request in
the insertion phase. The insertion phase includes the following steps:

1. ALNS ranks the vehicles based on their unit cost. For each vehicle, it inserts the removed request into the route using the
ALNS greedy insertion operator (Zhang et al., 2022b), and then sends the resulting state to RL. RL then returns an action,
which can be either non-insertion (1) or insertion (0).

2. ALNS evaluates the action by checking the feasibility of the original route and sends a reward to RL. If the action is non-
insertion (1) and there is a delay, or if the action is insertion (0) and there is no delay, the reward is 1. Otherwise, the reward
is 0.

3. If the action is an insertion, the insertion phase is stopped and the affected request is inserted into the chosen vehicle. If the
action is non-insertion, the process continues with the next vehicle until the request is inserted or there is no suitable vehicle
left.

The actions and rewards in the insertion phase have a similar meaning to those in the removal phase but are named differently.
Therefore, the same RL approach can be utilized for both phases. If the action in the removal phase is waiting, then the insertion
phase is not necessary. If the action is removal, it may be necessary to perform additional iterations in the insertion phase to identify
a suitable vehicle.

Once the RL approach has reached a certain level of maturity or a predetermined number of iterations, it will be used to make
decisions for requests that are affected by uncertainty, while the ALNS heuristic will continue to handle constraint checking. As the
RL approach continues to interact with the environment, it will continue to learn and improve its decision-making capabilities.

The proposed model-assisted RL framework can be built upon any RL algorithm. In this paper, we use the deep Q-network
(DQN) (Mnih et al., 2015), a representative RL technique, as the RL algorithm. The action value 𝑄𝜋 (𝑠, 𝑎) = E[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎] is the
expected return for selecting action 𝑎 in state 𝑠 and following policy 𝜋. The optimal value function 𝑄∗(𝑠, 𝑎) gives the maximum
action value for state 𝑠 and action 𝑎 for any policy. The 𝑄∗(𝑠, 𝑎) obeys the Bellman equation:

𝑄∗(𝑠, 𝑎) = E𝑠′ [𝑟 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎]. (19)

where 𝑠′ and 𝑎′ are the state and action at the next time step. The Bellman equation means that the optimal policy is to choose the
action maximizing the expected value of 𝑟+𝛾 max𝑎′ 𝑄∗(𝑠′, 𝑎′) if 𝑄∗(𝑠′, 𝑎′) of 𝑠′ is known for all possible actions 𝑎′. In practice, finding
𝑄∗(𝑠, 𝑎) is computationally expensive. Therefore, the DQN uses deep neural networks, called Q-network, as a nonlinear function
approximator with parameters 𝜃 to estimate the action value function: 𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄∗(𝑠, 𝑎).

The algorithm for training DQN to approximate the optimal action-value function 𝑄∗(𝑠, 𝑎) is presented in Algorithm 6. A target
network �̂�(𝑠, 𝑎; 𝜃−) is cloned from 𝑄 using an older set of parameters 𝜃− in every 𝐶 iterations and is used to generate the Q-learning
targets 𝑦 for the following 𝐶 iterations. In the beginning, both 𝑄 and �̂� are initialized with random parameters 𝜃. Then, for each
iteration 𝑡, the DQN receives state 𝑠𝑡 and selects an action 𝑎𝑡 according to an 𝜀-greedy policy (𝜀 = 0.05). The action is sent to ALNS
and reward 𝑟𝑡 and state 𝑠𝑡+1 is received. The target Q-value 𝑦 is calculated using the Bellman equation (19) with �̂�:

𝑦 = 𝑟𝑡 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝜃−𝑡 ). (20)

The predicted Q-value is obtained using the current parameters 𝜃𝑡 in the network 𝑄(𝑠, 𝑎; 𝜃𝑡). At each iteration 𝑡, the 𝑄(𝑠, 𝑎; 𝜃𝑡)’s
parameters 𝜃𝑡 are updated to minimize the mean-squared error between the target and predicted Q-values, i.e., the loss function:

2 (21)
13
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Fig. 7. The flowchart of the model-assisted RL. The dashed lines represent the interactions between ALNS and RL.
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Fig. 8. An example of how RL learns.

Differentiating (21) with respect to 𝜃𝑡, we obtain the following gradient:

∇𝜃𝑡𝐿(𝜃𝑡) = E𝑠,𝑎,𝑟,𝑠′ [(𝑦 −𝑄(𝑠, 𝑎; 𝜃𝑡))∇𝜃𝑡𝑄(𝑠, 𝑎; 𝜃𝑡)]. (22)

These gradients are then used by optimization algorithms like stochastic gradient descent used in this study to update the parameters
in a direction that minimizes the loss.
Algorithm 6: Deep Q-network

Initialize the Q-network 𝑄 parameters 𝜃 randomly;
Initialize the target Q-network �̂� parameters 𝜃− = 𝜃;
repeat

Receive state 𝑠1 from ALNS;
for 𝑡 = 1, 2, ..., 𝑇 do

Select 𝑎𝑡 = argmax𝑎 𝑄(𝑠𝑡, 𝑎; 𝜃) or a random action 𝑎𝑡 with probability 𝜀;
Send action 𝑎𝑡 to ALNS and receive reward 𝑟𝑡 and state 𝑠𝑡+1;
Calculate the target Q-value using the Bellman equation (20) and the predicted Q-value using 𝑄(𝑠, 𝑎; 𝜃);
Compute the loss function (21) as the mean squared error between target and predicted Q-values;
Perform a gradient descent step using equation (22) and update 𝜃 using stochastic gradient descent to minimize the
loss function;

Reset �̂� = 𝑄 in every 𝐶 iterations;
if the RL is mature then

Return: Trained Q-network
end

end
until the number of episodes is reached;
Return: Trained Q-network

Besides, the DQN also makes use of different techniques to stabilize the learning with neural networks, including the replay
buffer and gradient clipping, as introduced by Mnih et al. (2015).

The process of how the RL agent learns to make decisions in the presence of unexpected events is illustrated in Fig. 8. A request is
initially planned to be transported by truck and then transferred to a barge via transshipment. However, an unexpected event occurs
at the transshipment terminal, requiring the RL agent to determine whether to remove the request from the barge and whether to
insert it onto the train service as an alternative. If the request is removed from the barge and inserted onto the train, there will be
no delay in its transportation. In the removal phase, the RL agent receives a reward for removing the request from the barge service,
as remaining on the barge would result in a delay. Through training, the RL agent continually tries different actions and receives
rewards, eventually learning to make the decision to remove the request. Similarly, in the insertion phase, the RL agent is trained
to ultimately make the decision to insert the request onto the train service.
15
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Fig. 9. Transport network of EGS,
Source: Zhang et al. (2022d).

5. Case study

The network shown in Fig. 9 inspired by the European Gateway Services (EGS) network located in the Rhine-Alpine corridor,
is selected as a real-world case study to evaluate the effectiveness of the proposed planning approach. This network includes three
terminals in the Port of Rotterdam and seven inland terminals in The Netherlands, Belgium, and Germany, and offers a total of 116
services including 49 barges, 33 trains, and 34 truck services, according to the EGS website (EGS, 2021). We assume a truck service
is a fleet with an unlimited number of trucks and truck services are available between any of the two terminals. To evaluate the
approach, instances with 5, 10, 20, 30, 50, and 100 shipment requests are designed. Requests have random origins and destinations
among deep-sea and inland terminals. Container volume is uniformly distributed in [10, 30] TEUs. Earliest pickup 𝑎𝑝(𝑟) is uniformly
distributed in [1, 120] and latest delivery 𝑏𝑑(𝑟) is 𝑎𝑝(𝑟)+𝐿𝐷𝑟, where 𝐿𝐷𝑟 is the lead time and is independently and identically distributed
among {24, 48, 72} hours (probabilities {0.15, 0.6, 0.25}). Further information can be found in Zhang et al. (2022d).

We consider scenarios with different types of unexpected events, which moreover follow different duration distributions. A
duration distribution is a statistical representation of the distribution of time periods for a specific type of event. It describes the
likelihood of the event taking a certain amount of time. In order to generate realistic unexpected events, we use truncated normal
distributions to exclude negative durations, which are commonly used in the literature (Srinivasan et al., 2014; Soltani-Sobh et al.,
2016). These distributions are not known to the RL algorithm. In terms of the severity level information in the state of RL approach,
we have three cases: no severity level information, perfect severity level information (the level is accurate), and imperfect severity
level (where some levels are not as expected). In Section 5.1, there is no severity level information. In Section 5.2, because the
scenario with multiple events is complex, perfect and imperfect severity levels are considered.

Unless otherwise specified, the maximum number of iterations in the learning phase is set to 5000, and the RL is evaluated every
100 iterations. During the evaluation, the RL is tested 10 times and the rewards are recorded. If the average reward is greater than
0.9 for five consecutive evaluations, we consider the RL to be mature and ready for implementation. During the implementation
phase, the RL is used to make decisions for 200 iterations.

The performance is evaluated using two indicators: average reward of all iterations and total delay over all requests in the
implementation phase. The performance indicators are evaluated from the carrier’s perspective and consider all vehicles in the
transport network. Rewards are given for actions that avoid delay (referred to as ‘‘correct actions’’). A higher reward and lower
delay indicate better performance. However, a high reward does not necessarily mean a low delay, as incorrect actions can result in
substantial delays even if the majority of actions are correct and result in a high average reward. We also evaluate the proportion
of rewards obtained through removal, waiting, non-insertion, and insertion actions, with higher proportions being favorable.

5.1. Results under disruptions and disturbances without severity level information

To test the model under different types of unexpected events, several scenarios are designed, including (a) disturbances, (b)
severe disturbances, (c) disruptions, and (d) a mix of disruptions and disturbances. The distributions used in each scenario are
16
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Fig. 10. Normal distributions used in different scenarios (unknown to RL). These distributions are truncated at zero to avoid negative duration.

llustrated in Fig. 10. In scenario (a), the mean value 𝜇 of the duration distribution is set to a small value of 5 h, and the standard
eviation 𝜎 is set to 1. This represents a situation where the duration of unexpected events is generally short but still somewhat
ariable. In scenario (b), the distribution is defined by the parameters [𝜇, 𝜎] = [40, 20] or [40, 1]. In scenario (c), the mean value
of the distribution is set to 80 h, and the standard deviation 𝜎 is set to 40, 20, or 1. This allows us to evaluate the performance

f the proposed approach under different levels of variability in the duration of unexpected events. In scenario (d), the terminals
re divided into two groups. The first group (terminals 1-5) and the second group (terminals 6-10) experience different types of
vents in scenarios (a), (b), and (c). The findings from scenario (d) are presented in Appendix B, demonstrating similar insights as
he other scenarios. The information on these distributions is unknown to RL.

Fig. 11 shows the proportion of actions and rewards among various strategies. Each rectangle of a distinct color represents a
pecific action, with the size of the rectangle indicating the proportion of that action. The filled portion of each rectangle represents
he proportion of rewards obtained through the corresponding action, while the blank portion represents the proportion of the action
hat does not result in a reward. Across all scenarios, the RL strategy (strategy (c)) consistently performs the best, while the waiting
trategy (strategy (a)) consistently performs the worst. The waiting strategy performs well only in the presence of disturbances in
ig. 11(a), where the wait time is sufficient in most cases. As the severity of unexpected events increases, the waiting strategy
erforms increasingly poorly. The average duration strategy (strategy (b)) performs worse as the variation in the unexpected events
ecomes larger, as it becomes more difficult to utilize average duration to determine the optimal action in such circumstances. In
he presence of disruptions, the proportion of non-insertion and removal actions increases as the strategy attempts to mitigate the
isruptions and subsequent delays. The RL strategy uses more insertion and waiting actions compared to the average strategy, even
n the presence of disruptions, because it is able to identify situations in which requests can still be serviced by vehicles despite
he disruptions occurring frequently at terminals. This capability allows the RL strategy to earn more rewards compared to the
ther two strategies. The RL strategy also exhibits superior performance in terms of its ability to accurately recognize and execute
on-insertion and removal actions.

Fig. 12 compares the delay (in hours) of different strategies under various numbers of requests and scenarios where the duration
f unexpected events at all terminals follows the same distribution. It is observed that the delay of the waiting strategy is higher
han other strategies in 75% of the cases. The RL strategy is relatively insensitive to increases in the variations or stochasticity of the
uration of the events, and the total delay is the lowest in all scenarios, including disturbances, severe disturbances, and disruptions.
s the severity of the events increases, the maximum delay for the waiting and average duration strategies increases significantly,
hile the maximum delay for the RL strategy remains below half of the maximum delay for the other strategies in the majority of

ases. The delay of the RL strategy is lower than the other two strategies in 80% of the cases. In the remaining cases, the RL strategy
erforms better than at least one of the other two strategies in five out of seven cases. On average, the RL strategy reduces delay
ompared to the average duration strategy by 9.6% and the waiting strategy by 53.8%. This suggests that the RL approach is more
ffective at handling unexpected events and minimizing the delay compared to the waiting and average duration strategy.

.2. Results under multiple events with perfect and imperfect severity levels

In previous experiments, we assumed that there is only one type of event at each terminal. However, multiple types of events
an occur at the same terminal, with some events causing disruptions and others causing disturbances. To tackle this issue, we
reated five scenarios incorporating 2-6 types of events occurring at the same terminal. In each scenario, 12 cases are generated
ith different events, randomly chosen from the following types ([𝜇, 𝜎]): disturbance ([5, 1]), severe disturbance [𝜇, 𝜎], severe
isturbances with a higher standard deviation ([40, 20]), disruption ([80, 5]), and disruptions with a higher standard deviation
[80, 40]). In the majority of the cases, the types of events differ, but some cases contain the same type of events. This section
xclusively displays the results of the simplest (two events) and most complex (six events) scenarios, while the results of other
cenarios can be found in Appendix B.
17
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Fig. 11. Proportion of actions and rewards under disturbances or disruptions.

Fig. 13 presents the average rewards obtained by all actions of the RL strategy with varying numbers of training iterations under
cenarios involving different numbers of events occurring at the same terminal. It is observed that in the scenario with two events
Fig. 13(a)), the RL’s average rewards reach 0.9 when the number of training iterations is 10000, indicating that the RL is able to
hoose correct actions in more than 90% of cases. However, as the number of events increases, the performance of the RL declines,
ith the average reward unable to reach 0.8 in scenarios with six events. This suggests that the problem becomes increasingly

omplex as the number of events increases, and the RL is unable to effectively solve it without additional information. In order to
easure the performance of RL in complex scenarios with multiple events at the terminal, the state has been augmented with the

nclusion of a severity level. The severity level is labeled from 1 to 6 and is defined as follows: Level 1: duration time ≤ 20, Level 2:
uration time ∈ (20, 40], Level 3: duration time ∈ (40, 60], Level 4: duration time ∈ (60, 80], Level 5: duration time ∈ (80, 100],

Level 6: duration time > 100. The RL is only informed about the level as a label but does not know the duration. Fig. 13 also presents
the average rewards for scenarios after adding a severity level to the state. The results indicate that the average reward is able to
reach 0.8 in most cases when the number of training iterations is 1000, and approaches or exceeds 0.9 when the number of training
18
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Fig. 12. Total delay over all requests under disturbances or disruptions.

iterations is 5000. This suggests that incorporating a severity level into the state is beneficial in enabling the RL to choose correct
actions, as it can help to differentiate between events with different levels of impact and allow for more informed decision-making.

Fig. 14 presents the average rewards of the three strategies under various numbers of requests in scenarios with multiple events
and severity levels. Across all cases, the RL strategy’s average rewards of handling all requests are higher than the waiting and
average duration strategies. Fig. 15 provides the proportions of actions and the corresponding rewards obtained by each action.
This figure more clearly demonstrates the RL’s ability to accurately utilize different actions in complex cases involving up to six
events at a single terminal. Fig. 16 compares the delay experienced by the different strategies. In 25 out of 30 cases, the RL strategy
performs the best among the three strategies, and in the remaining four out of five cases, the RL’s performance is similar to that
of the other two strategies. On average, the RL strategy reduces delay compared to the waiting and average duration strategies by
52.8% and 29.0%, respectively.

While incorporating severity levels can improve the performance of the RL, it is important to recognize that such knowledge may
be imperfect, potentially incomplete or outdated, subject to interpretation, or prone to measurement errors. In these cases, the RL
may make suboptimal decisions or take longer to learn an optimal policy. To assess the RL’s performance under imperfect knowledge
19
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Fig. 13. Average rewards under multiple types of events at the same terminal (12 cases with different colors).

Fig. 14. Average rewards of different strategies under multiple events at the same terminal.

f severity levels, we designed scenarios that include random severity levels with a probability ranging from 0.2 to 0.5. This section
pecifically presents the results corresponding to probabilities 0.2 and 0.5 in Fig. 17, while the results associated with probabilities
.3 and 0.4 can be found in Appendix C. For the scenario with two or six events, as the probability increases, the average reward
ecreases, but still reaches 0.8 or 0.7 with sufficient training iterations when half of the severity levels are randomly provided.
he incorporation of imperfect knowledge can increase the complexity of the problem for the RL, requiring it to consider multiple
otential states and incorporate uncertainty into its decision-making process. However, the use of deep neural networks in the RL
llows the agent to adapt to changes in the environment, even with imperfect knowledge of the state, making it particularly useful
n complex synchromodal transport environments where other methods may be ineffective.

.3. Analysis of other performance indicators: served requests, costs, emissions, waiting time, and training time

Besides delay and reward, there are several additional performance indicators that need to be considered, such as the number of
erved requests, costs, emissions, waiting time, and training time. The waiting strategy serves all requests even at the cost of a high
20
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Fig. 15. Proportion of actions under multiple events at the same terminal.

Fig. 16. Total delay over all requests under multiple events at the same terminal.

elay penalty. The average duration and RL strategies may selectively unserve a limited number of requests in order to optimize
verall performance in instances where delays are unavoidable and alternate services are more appropriate for other requests. In
he average duration strategy, all requests are served in 91.2% of the experiments, in 7% of the experiments only one request is not
erved, and in the remainder 1.8% of the cases two requests are left unserved. The RL strategy has a higher rate of served requests,
ith all requests being served in 93.9% of the experiments, only one request being unserved in 5.7% of the experiments and two
eing unserved only in 0.4% of the cases. It is noteworthy that the experiments with unserved requests are mostly the larger ones
uch as those with 100 requests.

The performance indicators including average cost per request, average emissions, and average waiting time are presented in
igs. 18, 19, and 20, respectively. These results are derived from the evaluation of different strategies under a variety of scenarios,
ncluding disturbance, severe disturbance, disruption, and mixed events in various terminals as discussed in Section 5.1, as well
s multiple events at a single terminal in Section 5.2. In the scenario with multiple events, the RL strategy with severity level is
sed. The performance of the different strategies in terms of cost is shown in Fig. 18. The average duration and RL strategies have
emonstrated an improvement over the waiting strategy, reducing costs by 26.8% and 44.0%, respectively. This is attributed to the
etter handling of service time uncertainty, leading to a reduction in delay penalties and the effective adjustment of transport plans,
voiding the use of more expensive trucks in the late stages. Handling service time uncertainty not only leads to cost reduction, but
lso results in a decrease in emissions, particularly under scenarios with disruptions, mixed events, and multiple events, as shown in
ig. 19. The waiting strategy, which only implements re-planning upon the occurrence of a significant delay, often leads to high-cost,
igh-emission vehicles to mitigate the delay at the last minute. On the other hand, the average duration and RL strategies reduce
missions by switching the shipment request to a suitable vehicle in the presence of unexpected events and reducing the need for
igh-emission vehicles at the last minute. As illustrated in Fig. 20, the waiting time is significantly reduced when compared to
he waiting strategy. The average duration and RL strategies have resulted in a reduction of 13.2% and 24.5%, respectively. The
fficient handling of service time uncertainty allows for a more agile and flexible allocation of resources, leading to the avoidance
f unnecessary wait times and the prompt adjustment of shipment requests to suitable vehicles. These results highlight the benefits
f efficient handling of service time uncertainty, as it reduces the risk of missing the best time to switch vehicles and reduces costs,
missions, and waiting time.
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Fig. 17. Average rewards under multiple events with imperfect severity levels (12 cases with different colors).

Fig. 18. Average cost per request in different scenarios with different strategies.

The training time for the RL strategy is presented in Fig. 21. The total duration of training is no more than one hour when the
ize of the instance is small, such as the instance with 5 requests. The total training time increases proportionally with the size of the
nstance. The average training time per iteration is calculated to be a few seconds, with the longest being less than three minutes for
he largest instance. As the duration of service time in the field of synchromodal transport often requires several hours, the training
an be completed during this period and can be done online. Additionally, the time required for the RL approach to make a decision
s less than 1 ms when the RL approach is implemented, making it an efficient solution for real-time decision-making.

.4. Ablation study

To evaluate the impact of individual components within the neural network of DQN, we conduct an ablation study by selectively
odifying the number of layers, the number of neurons in each layer, and the activation function, and observing the resulting
erformance changes. Our current DQN configuration employs a neural network architecture with two hidden fully connected layers,
ach consisting of 64 neurons. The Rectified Linear Unit (ReLU) activation function is used. In our ablation study, we investigate the
22
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Fig. 19. Average emissions per request in different scenarios with different strategies.

Fig. 20. Average waiting time per request in different scenarios with different strategies.

Fig. 21. Training time of RL strategy in different scenarios.

following cases: (a) 32 neurons: We reduce the number of neurons in each layer to 32. (b) One layer: We retain only one layer with
64 neurons. (c) Sigmoid activation function: We replace the ReLU activation function with the sigmoid function, which is another
commonly used activation function (Dubey et al., 2022). (d) Three layers: We add an extra layer with 64 neurons.

We conduct the ablation study using scenarios that involve two or six events and imperfect levels. Fig. 22 shows the average
reward achieved for each case. Upon analysis, we find that the current network configuration consistently outperforms the other
cases, except for the scenario with three layers. However, the difference in average rewards between the current network and
the three-layer network is less than 0.01 when a sufficient number of training iterations are performed. Additionally, we compare
the computation times of the current network and the three-layer network. It is observed that the three-layer network requires
23
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Fig. 22. Ablation study. The stars represent the reward with different training iterations and the lines are the average rewards across all training iterations..

approximately 14% more time to train compared to the current network. Considering the trade-off between reward and computation
time, we conclude that the current network configuration is the most suitable option.

5.5. Performance of trained policy on different transport networks

In previous sections, we conduct training and testing of our proposed approach on the EGS transport network. To further explore
the transferability of the trained policy, we evaluate its performance on another distinct transport network. In this case, we chose
Contargo’s transport network, a renowned intermodal container hinterland logistics network operating extensively in Europe (Zhang
et al., 2022a,c). Contargo plays a pivotal role in facilitating container transport between western seaports, Germany’s North Sea
ports, and the European hinterland. Fig. 23 visually illustrates both the Contargo and EGS transport networks on the same map,
providing a comparative perspective. Contargo’s transport network includes 20 terminals/ports and it operates 38 barge services,
23 train services, and 95 truck services. To establish the distances between terminals of different modes within Contargo’s network,
we utilize the same data sources as in Shobayo et al. (2021). We obtain service-related information from schedules available on
Contargo’s websites (Contargo, 2021). Similarly, we generate an instance with 30 requests for Contargo’s network following a similar
approach used for the EGS network.

We deploy the trained policy from EGS directly on Contargo’s transport planning, which means there is no training using
Contargo’s transport network information. Our evaluation includes scenarios encompassing both disturbances (Scenario 1: [𝜇, 𝜎] =
[40, 1], Scenario 2: [𝜇, 𝜎] = [40, 20]) and disruptions (Scenario 3: [𝜇, 𝜎] = [80, 20], Scenario 4: [𝜇, 𝜎] = [80, 40]). We select these
cenarios as they cannot be easily addressed by always employing the same action. Each scenario is repeated three times to obtain
verage results. Table 3 presents the results in terms of the proportion of actions, average reward, delay, and computation time per
teration. The proportion of actions and success rates demonstrate that the trained policy can consistently select the appropriate
ction for a new transport network in the majority of cases. The average reward for scenarios with disturbances (Scenarios 1 and
) surpasses that of scenarios with disruptions (Scenarios 3 and 4), owing to the higher variability in the disruption scenarios. In
cenario 1, the average reward reaches 0.9, while even in the scenario with the lowest performance (Scenario 4), the reward remains
bove 0.7. As the severity levels escalate from Scenario 1 to 4, the delay also increases. Notably, the computation time for each
teration is completed in approximately half a second for all experiments, affirming the feasibility of implementing the proposed
odel in real-time settings. These results indicate that despite differing terminals, distances, and network architectures, a learned
olicy from one transport network can be effectively applied to another transport network. If further performance is desired, the
L needs to be trained on the new network as well.
24
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Fig. 23. Transport networks of Contargo and EGS.

Table 3
Performance of the trained policy on Contargo’s transport network.

Scenario Proportion of action (success rate) Reward Delay (h) Computation
time (s)

Removal Waiting Non-insertion Insertion

1 6.8% (1.4%) 83.6% (81%) 2.9% (1.9%) 6.8% (5.5%) 0.90 0.80 0.50
2 12.3% (5.7%) 72.6% (68.6%) 6.3% (4.4%) 8.8% (5.3%) 0.84 2.50 0.53
3 32.2% (26.0%) 22.7% (19.3%) 27.9% (23.3%) 17.3% (7.4%) 0.76 10.04 0.55
4 36.3% (23.7%) 20.8% (17.3%) 24.4% (20.1%) 18.5% (11.1%) 0.72 20.25 0.53

6. Conclusions and future research

It is important to consider the challenges of managing synchromodal transport operations in the presence of service time
uncertainty due to unexpected events at terminals. Unexpected events, such as disruptions or disturbances, can have a significant
impact on the efficiency and effectiveness of transportation processes, resulting in delays, high costs, and high emissions. These
events are often difficult to predict and can be caused by a variety of factors, including weather, accidents, or maintenance issues.
As a result, it is crucial for transport operators to have tools and strategies in place to mitigate the impact of such events and
maintain the smooth operation of the transportation system.

We have proposed a Reinforcement Learning (RL) approach for online synchromodal transport planning that can handle
uncertainty and determine whether requests should be switched to different vehicles in case of delays. The RL approach is assisted
by an Adaptive Large Neighborhood Search (ALNS) heuristic, which provides state and reward information, makes changes on
the transport plans, and checks the feasibility of schedules. The model-assisted RL approach learns in real time and adapts its
recommendations for carriers dynamically based on the uncertain service time conditions in the environment. This approach can
be used by synchromodal transport carriers through a digital platform, where the carrier receives information about unexpected
events from port authorities and terminal operators.

Several scenarios that varied in the type and severity of unexpected events and the level of variability in their duration are
investigated. The performance of each strategy is measured in terms of average reward and total delay. The results of this study
indicate superior performance of RL on unexpected events, as it is able to adapt to unexpected events and effectively handle complex
scenarios, resulting in significantly reduced delays and higher rewards compared to other strategies. The waiting strategy, on the
other hand, is unable to effectively mitigate the impact of disruptions or severe disturbances. The RL strategy outperforms the
waiting and average duration strategies in the majority of cases, particularly when dealing with disruptions, a mix of disruptions
and disturbances, and multiple events in a single terminal. The efficient handling of service time uncertainty, as demonstrated by
25
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Fig. 24. Proportion of actions and rewards under different types of events occurring at different terminals.

xpensive and high-emission trucks, and allowing for a more agile and flexible allocation of resources. Therefore, transportation
anagers may consider implementing the RL strategy in their decision-making process to reduce delays and increase efficiency in

heir operations. It is worth noting that the RL strategy requires a longer training period compared to the other two strategies, but
his is compensated by its superior performance in the long run. Therefore, transportation managers should also consider investing
ufficient training time to fully optimize the RL strategy’s performance.

The potential of incorporating knowledge of event severity into the decision-making process is a key managerial insight
rom this study. The results indicate that providing this type of information to the RL algorithm can significantly improve its
erformance. Transportation managers should prioritize regularly updating and accurately assessing event severity information
n order to optimize their management systems. However, it is important to note that imperfect information on event severity is
nevitable in complex synchromodal transport systems due to various factors such as outdated or incomplete information, subjective
nterpretation, or measurement errors. Despite this, the proposed RL approach is able to handle imperfect information and still
chieve good performance.

To better evaluate the performance of the proposed approach, we conduct the ablation study and test the performance of trained
olicy on different transport networks. The ablation study demonstrates that the current DQN configuration consistently outperforms
lternative configurations in terms of average reward. The addition of an extra layer yields minimal improvement but increases
raining time by 14%, making the current configuration the most suitable choice. Our evaluation also demonstrates the transferability
f the trained policy. Despite differences in terminals, distances, and network architectures, the policy achieves appropriate action
election for the new transport network.

The following directions for future research are suggested: (a) The re-planning model can be extended to consider uncertainties
n travel time and demand. (b) The proposed planning approach can be extended for multiple carriers. When used by multiple
arriers, the experiences of these carriers can be shared, allowing each carrier to learn more quickly. Multi-agent Reinforcement
earning and Federated Learning are promising approaches for this research direction.
26
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ppendix A. Constraints in the synchromodal transport planning model

Constraints (23)–(41) are the spatial constraints. Constraints (23) enforce that each vehicle may initiate at most one route from its
eginning depot; Constraints (24) ensure that the same vehicle ends the route at its end depot. Not all of the available vehicles may
ave to be used in synchromodal transport, therefore we use ‘‘⩽ 1’’ instead of ‘‘= 1’’ in constraints (23). Virtual depots (𝑜(𝑘)∕𝑜′(𝑘) ∈ 𝑂)
re used to avoid the constraints on pickup/delivery terminals also work on depots. These virtual depots have the same location
s depots, but with different names. Constraints (25) and (26) ensure that containers for each request are picked and delivered at
heir pickup and delivery terminals, respectively.

∑

𝑗∈𝑁
𝑥𝑘𝑜(𝑘)𝑗 ⩽ 1 ∀𝑘 ∈ 𝐾b&t (23)

∑

𝑗∈𝑁
𝑥𝑘𝑜(𝑘)𝑗 =

∑

𝑗∈𝑁
𝑥𝑘
𝑗𝑜′(𝑘)

∀𝑘 ∈ 𝐾b&t (24)

∑ ∑

𝑦𝑘𝑟𝑝(𝑟)𝑗 ⩽ 1 ∀𝑟 ∈ 𝑅 (25)
27

𝑘∈𝐾 𝑗∈𝑁
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Fig. 26. Average rewards under multiple types of events at the same terminal (supplementary results, 12 cases with different colors).

∑

𝑘∈𝐾

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑑(𝑟) ⩽ 1 ∀𝑟 ∈ 𝑅 (26)

Constraints (27) and (28)–(31) represent flow conservation for vehicle and request flows, respectively. Constraints (28) and (29)
are for regular and transshipment terminals, respectively. If request 𝑟 is not transferred at terminal 𝑖 ∈ 𝑇 but vehicle 𝑘 passes
terminal 𝑖 due to operations for other requests, Constraints (28) do not work on request 𝑟. Therefore, additional flow conservation
of requests (Constraints (30) and (31)) are added. Constraints (32) link 𝑦𝑘𝑟𝑖𝑗 and 𝑥𝑘𝑖𝑗 variables in order to guarantee that for a request
to be transported by a vehicle, that vehicle needs to traverse the associated arc.

∑

𝑗∈𝑁
𝑥𝑘𝑖𝑗 −

∑

𝑗∈𝑁
𝑥𝑘𝑗𝑖 = 0 ∀𝑘 ∈ 𝐾b&t, ∀𝑖 ∈ 𝑁 ⧵ 𝑜(𝑘), 𝑜′(𝑘) (27)

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 −

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 = 0 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑁 ⧵ 𝑇 , 𝑝(𝑟), 𝑑(𝑟) (28)

∑

𝑘∈𝐾

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 −

∑

𝑘∈𝐾

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 = 0 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 ⧵ 𝑝(𝑟), 𝑑(𝑟) (29)

∑

𝑦𝑘𝑟𝑖𝑗 −
∑

𝑦𝑘𝑟𝑗𝑖 ⩽
∑

𝑠𝑙𝑘𝑖𝑟 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 ⧵ 𝑝(𝑟), 𝑑(𝑟) (30)
28

𝑗∈𝑁 𝑗∈𝑁 𝑙∈𝐾
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Fig. 27. Average rewards of different strategies under multiple events at the same terminal (supplementary results).

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 −

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑖𝑗 ⩽

∑

𝑙∈𝐾
𝑠𝑘𝑙𝑖𝑟 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 ⧵ 𝑝(𝑟), 𝑑(𝑟) (31)

𝑦𝑘𝑟𝑖𝑗 ⩽ 𝑥𝑘𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (32)

Constraints (33) ensure that the transshipment occurs only once per transshipment terminal. Constraints (34) forbid transshipment
between the same vehicle 𝑘.

∑

𝑗∈𝑁
𝑦𝑘𝑟𝑗𝑖 +

∑

𝑗∈𝑁
𝑦𝑙𝑟𝑖𝑗 ⩽ 𝑠𝑘𝑙𝑖𝑟 + 1 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 , ∀𝑘, 𝑙 ∈ 𝐾 (33)

𝑠𝑘𝑘𝑖𝑟 = 0 ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝑇 , ∀𝑘 ∈ 𝐾 (34)

Constraints (35)–(37) are the subtour elimination constraints and provide tight bounds in relatively short computation time among
several polynomial-size versions of subtour elimination constraints (Öncan et al., 2009). Constraints (38) are the capacity constraints.

𝑥𝑘𝑖𝑗 ⩽ 𝑧𝑘𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t (35)

𝑧𝑘𝑖𝑗 + 𝑧𝑘𝑗𝑖 = 1 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t (36)

𝑧𝑘𝑖𝑗 + 𝑧𝑘𝑗𝑝 + 𝑧𝑘𝑝𝑖 ⩽ 2 ∀𝑖, 𝑗, 𝑝 ∈ 𝑁, ∀𝑘 ∈ 𝐾b&t (37)
∑

𝑟∈𝑅
𝑞𝑟𝑦

𝑘𝑟
𝑖𝑗 ⩽ 𝑢𝑘𝑥

𝑘
𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (38)

Constraints (39) and (40) ensure vehicles running on suitable and predefined routes, respectively. Constraints (41) ensure the
transshipment occurs in the right terminal.

𝑥𝑘𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾𝑤, ∀(𝑖, 𝑗) ∈ 𝐴 ⧵ 𝐴𝑤, ∀𝑤 ∈ 𝑊 (39)

𝑥𝑘𝑖𝑗 = 0 ∀𝑘 ∈ 𝐾fix, ∀(𝑖, 𝑗) ∈ 𝐴 ⧵ 𝐴𝑘
fix (40)

𝑠𝑘𝑙𝑖𝑟 = 0 ∀𝑘 ∈ 𝐾𝑤1
, ∀𝑙 ∈ 𝐾𝑤2

, ∀𝑖 ∈ 𝑇 ⧵ 𝑇𝑤2
𝑤1

, ∀𝑟 ∈ 𝑅, ∀𝑤1, 𝑤2 ∈ 𝑊 (41)

Constraints (42) and (43) ensure that the time on route of barges and trains is consistent with the distance traveled and speed,
and Constraints (44) and (45) ensure the time on route of trucks. Constraints (46) and (47) take care of the time windows for pickup
29
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Fig. 28. Proportion of actions under multiple events at the same terminal (supplementary results).

terminals and fixed terminals, respectively.

𝑡𝑘𝑖 + 𝜏𝑘𝑖𝑗 − 𝑡𝑘𝑗 ⩽ 𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾b&t (42)

𝑡𝑘𝑖 + 𝜏𝑘𝑖𝑗 − 𝑡𝑘𝑗 ⩾ −𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾b&t (43)

𝑡𝑘𝑟𝑖 + 𝜏𝑘𝑖𝑗 − 𝑡𝑘𝑟𝑗 ⩽ 𝑀(1 − 𝑦𝑘𝑟𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾truck (44)

𝑡𝑘𝑟𝑖 + 𝜏𝑘𝑖𝑗 − 𝑡𝑘𝑟𝑗 ⩾ −𝑀(1 − 𝑦𝑘𝑟𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾truck (45)

𝑡′𝑘𝑟𝑝(𝑟) ⩾ 𝑎𝑝(𝑟)𝑦
𝑘𝑟
𝑖𝑗 , 𝑡

𝑘𝑟
𝑝(𝑟) ⩽ 𝑏𝑝(𝑟) +𝑀(1 − 𝑦𝑘𝑟𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐴,∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾 (46)

𝑡𝑘𝑟𝑖 ⩾ 𝑎𝑘𝑖 𝑦
𝑘𝑟
𝑖𝑗 , 𝑡

𝑘𝑟
𝑖 ⩽ 𝑏𝑘𝑖 +𝑀(1 − 𝑦𝑘𝑟𝑖𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾fix (47)

Constraints (48) to (50) set variables 𝑥, 𝑦, and 𝑧 as binary variables.

𝑥𝑘𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (48)

𝑦𝑘𝑟𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅 (49)

𝑧𝑘𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (50)

Appendix B. Results with mixed events at different terminals

Fig. 24 depicts the distribution of actions and rewards under scenarios in which different types of events occur at different
terminals. In Fig. 24(a), the waiting strategy only effectively handles half of the cases in the scenario with both disturbances
and severe disturbances. The average duration strategy performs better than the waiting strategy as it uses historical information,
although it is still less accurate and yields fewer rewards compared to the learning strategy. In Fig. 24(b), the performance of the
waiting and average duration strategies is similar to that observed in Fig. 24(a). In Figs. 24(c) and 24(d), when disruptions occur
at some terminals, the waiting strategy’s performance deteriorates significantly as it is unable to avoid delays caused by disruptions
in the majority of cases. In contrast, the learning strategy is able to handle a mixture of disruptions and disturbances effectively,
utilizing a range of actions appropriately based on the specific circumstances it encounters, and consistently earning the highest
30
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Fig. 29. Total delay over all requests under multiple events at the same terminal (supplementary results).

Fig. 30. Average rewards under multiple events with imperfect severity levels (supplementary results, 12 cases with different colors).
31
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Fig. 25 presents the total delay over all requests under scenarios in which different terminals experience different types of
vents. In 21 out of 24 cases, the RL strategy outperforms the other two strategies, while in the remaining three cases, the RL
trategy performs comparable to the waiting or average duration strategy that has a better performance. Despite the presence of
arious types of events, including disturbances, severe disturbances, and disruptions, at different terminals, the RL strategy is able to
ffectively identify and implement strategies to avoid delay based on the terminal and its accumulated experiences at that terminal.
he results indicate that when either the waiting or average duration strategy is the best-performing strategy, the RL strategy is
ble to obtain similar results. In cases where these strategies are not optimal, the RL strategy is able to devise a superior approach.
n average, the RL strategy reduces delay compared to the average duration strategy by 22.1% and the waiting strategy by 73.8%.

ppendix C. Supplementary results for Section 5.2

Figs. 26 to 30 provide supplementary results for Figs. 13 to 17, respectively.
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