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The brain atlas which was used for image registration serves as the basis for the cover image. This
atlas does not represent any single person’s brain, instead, it is an ’average’ brain of sorts. I performed
a 3D projection of the CT images. I then rendered a 2D image at an interesting angle, showing the
characteristic shape of a coronal section of the brain. By experimenting with image manipulation tools I
was inspired to split the image into two separate hemispheres. I think this could very well represent the
analytic and creative sides of the human brain, even though the myth that analytic and creative thought
are located in opposite sides of the brain has been debunked. Nevertheless, significant amounts of
technical as well as creative thought were required at different moments throughout the writing of this
manuscript, so I think the image is still appropriate somehow. The reader is encouraged to come up
with their own interpretation of the artwork, perhaps new ideas will emerge while reading this thesis!

iii





Contents

1 Scientific article 1

2 Stroke & Functional Outcome Prediction 21
2.1 Pertinent Neuro-anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Stroke imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Interventional Neuroradiology & Thrombectomy . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 The MR CLEAN trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Functional Outcome Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Machine Learning 31
3.1 Medical Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Stochastic Gradient Descent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Binary Cross Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 CNN & Med3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Attention mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.1 Transformer models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v





1
Scientific article

1



Does multimodal deep learning improve functional outcome
prediction of endovascular therapy for large vessel occlusion?

F.G. te Nijenhuis
Delft University of Technology

Abstract

The efficacy of endovascular therapy in large vessel
occlusion (LVO) of the anterior circulation is depen-
dent to a high degree on the selection of patients who are
likely to benefit from this procedure. To this end, func-
tional outcome prediction based on clinical parameters
is an active area of research. In the preoperative screen-
ing of LVO patients, CT-Angiography (CTA) imaging
is commonly acquired.

We compare the functional outcome prediction per-
formance of multiple deep learning based classifiers
with multiple conventional methods, including the clin-
ically validated MR PREDICTS decision tool. Using
a dataset composed of 1929 preprocedural CTA images
combined with clinical data, we compare a clinical base-
line model with an imaging based pipeline and a com-
bined pipeline. For the imaging model backbone we
train various state-of-the-art architectures (Med3D, Vi-
sion Transformer, Voxel Transformer). These models
are used to predict dichotomized modified Rankin Scale
score 90 days after mechanical thrombectomy. Binary
classifier outcomes are quantified using Area-Under the
receiver operating characteristic Curve (AUC). The ac-
tivation maps of the best performing image based model
are further investigated using the GradCAM++ post-
hoc visualization method.

Combining clinical features with information ex-
tracted from CTA images does not significantly im-
prove the performance of functional outcome predic-
tion methods compared to the baseline model. The in-
formation extracted from the images does not seem to
be complementary to the clinical features. This multi-
modal technique can however replace radiologically de-
rived biomarkers, as its performance is non-inferior.

1. Introduction
Stroke is the second leading cause of death world-

wide [20]. It leads to approximately 8, 000 deaths in

the Netherlands each year [51]. 366.000 Dutch people
live with the sequelae of stroke, leading to a significant
burden on the healthcare system [1].

In recent years, mechanical thrombectomy, also re-
ferred to as endovascular therapy (EVT), has emerged
as an effective procedure for the treatment of acute
ischemic stroke (AIS) in patients with a large vessel
occlusion (LVO) [7–9,13,32]. Initial trials failed to con-
vincingly show benefit of EVT over more conventional
intravenous therapy (IVT); however it turned out that
in selected subgroups of patients the beneficial effects of
EVT compared to IVT were more substantial [26, 40].
These results motivate the necessity of adequate se-
lection of stroke patients, as better selection methods
directly lead to improved outcomes after EVT.

Functional outcome after EVT is often quantified
using the modified Rankin Scale (mRS), determined 90
days after occurrence of the stroke event. mRS ranges
in multiple steps of increasing disability from a score of
0, indicating no sequelae, to 6, which indicates death.
The mRS scale is shown in Table 1.

Multiple randomized trial based scoring methods
have been developed to prognosticate functional out-
come after EVT, using 90-day mRS (mRS90) as the
outcome variable. Most of these methods are based
on traditional statistical techniques. These methods
are not equipped to directly extract information from
more complicated forms of input data such as radiolog-
ical images. Additionally, they often require radiolog-
ical image biomarker information, which necessitates
an arduous process of expert annotation. The process
of biomarker extraction is further complicated by the
oftentimes high degree of inter-observer variability [25].

AI based decision support systems might be of added
benefit in this regard, either by automating the imag-
ing biomarker extraction process, or by automating the
entire functional outcome prediction process.

We hypothesize that information encoded in base-
line imaging, which is performed for all stroke patients
prior to EVT, can be extracted using deep learning
based methods. A deep learning model that has been



mRS Score Description
0 No symptoms

Favorable outcome
1 No significant disability. Despite some symptoms, the patient is

able to carry out their usual activities.
2 Slight disability. Able to look out after own affairs without assis-

tance, but unable to carry out all previous activities.
3 Moderate disability. Requires some help, but able to walk unas-

sisted.


Unfavorable outcome

4 Moderately severe disability. Unable to attend own bodily needs
without assistance, and unable to walk unassisted

5 Severe disability. Requires constant nursing care and attention,
bedridden, incontinent.

6 Death

Table 1. Explanation of mRS scores. The scores can be dichotomized into a ”Favorable” and ”Unfavorable” outcome, as
shown in the table [38].

trained to effectively predict functional outcome after
EVT can potentially be utilized to inform clinical de-
cision making.

1.1. Related work

Machine learning methods, as well as conventional
statistical methods, have been used to predict func-
tional outcome after thrombectomy.

1.1.1 Classical methods

Multiple prognostic scores of interventional outcome
after EVT for LVO of the anterior circulation have been
developed, such as Pittsburgh Response to Endovascu-
lar therapy (PRE), Totaled Health Risks in Vascular
Events (THRIVE), THRIVE-c, Houston Intra-Arterial
Therapy-2 (HIAT-2), Stroke Prognostication using Age
and NIHSS (SPAN-100), NIHSS with age and volume
(NAV) score, and MR PREDICTS [19, 21, 22, 30, 37,
39, 43, 48]. These scores use clinical information about
the patient to predict functional outcome 90 days after
the intervention, achieving moderate performance. Of
the aforementioned models, MR PREDICTS attains
the highest performance (Area-Under the ROC Curve
(AUC) of 0.80) when all models are compared on a
novel dataset [27]. Prognostic scores that incorporate
neuroimaging based parameters, such as infarct size
on CT or MRI or hemodynamic abnormalities on per-
fusion imaging, do not demonstrably improve perfor-
mance, however, due to the heterogeneity of the differ-
ent study populations it is difficult to directly compare
results [23,41,44,45].

1.1.2 Machine learning based methods

One potential approach to improve the performance
of functional outcome prediction is by using machine
learning based methods. Asadi et al. compared clas-
sical logistic regression methods with Multilayer Per-
ceptron (MLP) and Support Vector Machine (SVM)
based machine learning methods, showing that SVM
works optimally [2]. SVM also performs better than
classical methods when predicting the occurrence of
symptomatic intracranial hemorrhage (SICH) follow-
ing intravenous thrombolysis [5]. Nishi et al. compared
pretreatment statistical methods to regularized logistic
regression, random forest, and support vector machine,
in the prediction of dichotomized mRS90, again demon-
strating superiority of all machine learning methods
[34]. Ramos et al. predicted mRS90 using multiple ma-
chine learning methods, with the best method, random
forest, achieving an AUC of 0.81. Li et al. compared
five machine learning methods with traditional meth-
ods and showed that, when predicting mRS90, machine
learning yields superior results [29]. According to these
results machine learning based methods can lead to su-
perior functional outcome prediction performance com-
pared to conventional methods when using only clinical
input data.

1.1.3 Multimodal analysis

The potential for performance increase of machine
learning methods over classical statistical methods be-
comes even greater when considering the incorporation
of other types of data which are not readily amenable to
meaningful statistical analysis, such as imaging data.
Recent research has focused on predicting functional
outcome using a combination of clinical features as



Paper Image Modality AUC
Zihni et al. [52] TOF-MRA 0.76
Bacchi et al. [4] NCCT 0.75
Samak et al. [42] NCCT 0.75
Hilbert et al. [25] CTA 0.71
De Graaf [15] CTA 0.78

Table 2. Earlier work in mRS prediction after 90 days. TOF-MRA: Time Of Flight Magnetic Resonance Angiography,
NCCT: Non-Contrast CT, CTA: CT Angiography.

well as imaging features extracted using deep learning
based methods. Table 2 summarizes the previous work
in this area. Zihni et al. used a combined pipeline
with a Convolutional Neural Network (CNN) to ex-
tract imaging features as well as an MLP to process
clinical data. The imaging data consisted of 3D vol-
umes of TOF-MRA images. They show that an end-
to-end multimodal pipeline integrating neuroimaging
and clinical data leads to the best performance, with
an AUC of 0.76 [52]. Bacchi et al. predict dichotomized
mRS90 using several CNN and MLP based models, fo-
cusing on a combination of clinical and imaging data.
For the imaging data, Non-Contrast CT (NCCT) scans
are used. The best performing model is a combina-
tion of CNN and MLP, attaining an AUC of 0.75 [4].
Samak et al. also use NCCT imaging data, in combi-
nation with clinical information to achieve an AUC of
0.75 [42]. Hilbert et al. [25] and De Graaf [15] both
successfully use deep learning models trained on CT
Angiography (CTA) images, showing that these im-
ages also contain relevant information with regards to
functional outcome prediction.

1.2. Contributions

Earlier work on automated functional outcome pre-
diction has not convincingly shown improved perfor-
mance of deep learning over conventional methods. We
investigate a multimodal framework combining multi-
layer perceptron (MLP) processing of clinical features
with the output of an image analysis backbone. We
compare the performance of different state-of-the-art
image processing backbone models with clinical base-
line models, to investigate whether functional outcome
prediction performance can be improved. The use of
multiple different backbone models adds more weight
to our conclusions regarding the difficulty of the prob-
lem, as we are able to draw model-agnostic conclusions.
Training is performed on a dataset containing CTA im-
ages as well as clinical features of 1929 patients, which,
to the best of our knowledge, is the largest dataset on
which such an effort has been undertaken so far.

The remainder of this work is structured as follows.
Section 2 describes the different learning strategies that

were used. Section 3 outlines the datasets that were
used, as well as the data preparation and preprocessing
steps. Section 4 contains experimental results. Section
5 contains a discussion of the presented results and
concludes the report.

2. Methods

We investigated three modeling strategies in predict-
ing dichotomized mRS90. The simplest of these is the
unimodal clinical model, which consists of a multilayer
perceptron (MLP) containing four fully connected lay-
ers, which takes as its input patient data. The input
features for the MLP correspond with those used by
the MR PREDICTS model [48], and are shown in Ta-
ble 3. For the nonlinearities we use Leaky ReLU [50].
The final layer of the clinical model contains a single
unnormalized output, which is used for binary classifi-
cation.

A schematic overview of the different processing
pipelines is provided in Figure 1. As a baseline classifier
we use a logistic regression with the coefficients derived
from the updated MR PREDICTS decision tool [48].

The unimodal imaging model consists of a deep
learning model, which we refer to as the backbone
model, which takes CTA scans as input. We trained
Med3D, VisionTransformer and VoxelTransformer ar-
chitectures to serve as the backbone. The number of
output features from the backbone model is variable,
depending on the specific model used. A final linear
layer again maps the output features from the back-
bone to a single unnormalized output value.

The third type of architecture we consider is the
bimodal combined model, which concatenates the out-
puts of the clinical model with the outputs layer of the
imaging model and feeds the combined output to a fully
connected layer. The final output is again a single clas-
sification node. In this way, the combined model com-
bines the imaging information with the clinical data by
concatenating the features that were extracted by the
imaging model with the patient features.



Figure 1. Schematic overview of the unimodal and multimodal architectures. (a) shows the unimodal clinical model, which
processes clinical (and radiological) features, but not information extracted directly from CTA images, using an MLP model.
(b) is a schematic representation of the unimodal imaging model, which uses a neural network as a backbone to directly
infer functional outcome from the CTA images. Finally, (c) is a multimodal approach, combining the previous architectures
by concatenating the outputs. DLM: Deep Learning Model. MLP: Multi-Layer Perceptron. FCL: Fully-Connected Layer.

2.1. Med3D

Med3D is a residual CNN specifically designed for
medical image analysis. It is originally intended for seg-
mentation purposes but can be reconfigured as a classi-
fication network. It consists of a modified ResNet back-
bone with an upsampling branch. The ResNet back-
bone was modified by changing the number of input
channels from three to one, by expanding the 2D con-
volution operations to 3D convolutions, by setting the
stride in layers three and four of the network to one, so

there is no downsampling and by using dilated convolu-
tions in the downstream convolutional layers. Med3D,
like the ResNet on which it is based, comes in multi-
ple sizes. In this work, we opt for the ResNet50 as our
backbone model. The Med3D network was trained on a
3D segmentation dataset [12]. We initialize the Med3D
architecture using the weights which were stored after
training on the 3D segmentation dataset as described
in [12]. We further modify the Med3D network by re-
placing the final segmentation layer with an average



Figure 2. Schematic overview of the Med3D architecture, which is a modified version of the ResNet50 architecture. ResNet50
contains 50 layers in total, divided over multiple blocks. The identity (ID) block has the same input and output size, which
the Conv block reduces the size of its input. For a detailed description of the original structure, we refer to [24]. Med3D
modifies this structure mainly by extending the convolutions from 2D to 3D [12].

pooling layer followed by a linear layer mapping to 64
features.

2.2. Vision Transformer & Voxel Transformer

The Vision Transformer (ViT) is a modification of
the Transformer natural language processing model,
such that it can be used to handle visual tasks [17].
While the original ViT is described as a model which
handles 2D input images, a three-dimensional exten-
sion of the ViT model is provided by the MONAI
consortium, [14]. The Transformer relies on the self-
attention mechanism as an alternative to the convolu-
tional layer. An important benefit of the ViT model
is that it requires less computational resources to train
compared to conventional CNNs. Because the ViT em-
ploys the self-attention mechanism instead of convolu-
tional layers it lacks the inductive biases commonly
seen with CNNs, and as such it requires a relatively
large training dataset to attain satisfactory perfor-
mance. In the ViT model, we use the first token from
the encoder output sequence as input for an MLP layer,
using it as a classification token. A schematic represen-
tation of the ViT architecture is provided in Figure 3.
We also use a modified version of the aforementioned
architecture which performs global average pooling on
the full output sequence, followed by a Fully-Connected
Layer (FCL), which maps the output down to 2 nodes.
We refer to this model as the Voxel Transformer (VoT).

2.3. Statistical analysis

We obtain AUC values and binary accuracy scores
for each classifier on each validation dataset. For each
classifier type, the fold with the best validation per-
formance in terms of AUC is selected for subsequent
statistical analysis. For each of the best validated clas-

sifiers, we obtain an Receiver Operating Characteristic
(ROC) curve on the held out test data. We compare
these curves using DeLong’s test [16] to quantify the
difference in performance. We also report calibration
curves on the test set.

3. Data
We use the MR CLEAN registry, which is an ongo-

ing prospective observational study involving 17 cen-
ters in the Netherlands. The registry contains data
about patients who underwent EVT as a result of is-
chemic stroke. Inclusion of patients began in March
2014 [6].

For each patient the dataset contains demographic
information, information about clinical as well as radi-
ological parameters and patient outcome. Radiological
features are defined as features which can only be de-
termined by a radiologist looking at patient imaging.
Clinical features can be determined using clinical infor-
mation about the patient, which can be taken from pa-
tient records. The patient features are derived from the
MR PREDICTS clinical decision tool and are displayed
in Table 3. The accompanying preoperative CTA scan
is also available for each included patient. For each
patient, mRS90 was registered.

3.1. Image Data Selection

The dataset we investigate consists of two parts.
Subset one contains 1000 patients, originating from
previous work, where patients were selected from part
one & two of the MR CLEAN registry [15]. Subset
two contains 929 patients from part three of the MR
CLEAN registry. Inclusion criteria differed between
these cohorts.



Figure 3. (a) shows a schematic representation of the Vision Transformer architecture. The CTA image is divided into
patches. The patches are projected using a trainable linear projection. A positional encoding is added to each projected
patch, and the patches are fed as a sequence to the transformer encoder. (b) shows the internal structure of a single
layer in the encoder. The encoder contains multiple stacked encoding systems. For the Voxel Transformer variation of the
architecture, see the supplement. Adapted from [17]

In both subsets, patients were included if the oc-
clusion was located in the intracranial internal carotid
arteries or in the M1, M2 or M3 segments of the middle
cerebral arteries. Patients were only included if EVT
was actually performed.

In subset one patients were excluded based on the
images if the scan contained less than 50 slices, if slice
thickness was greater than 1.5mm or if the slice spacing
was greater than the thickness. Using manual inspec-
tion a single scan was selected for each patient. MR
CLEAN registry parts one & two consisted of 3280
patients. Based on image selection criteria, 1711 pa-
tients were selected for preprocessing. Preprocessing
was successful in 1480 cases. Of these patients, 480
were rejected due to an incorrect procedure, incorrect
occlusion location or missing outcome variable. In the
end, 1000 subjects were included in subset one.

In subset two, for each patient, the scan with min-
imal slice thickness was selected if there were multi-
ple, excluding Maximum Intensity Projection (MIP)
images. The slice thickness and spacing constraints
were dropped for subset two. MR CLEAN registry part
three contained 2003 subjects. Due to image selection
criteria, 1603 were selected for registration. NifTI con-

version and registration was successful in 1088 cases.
These failure cases can be explained due to errors in
the NIfTI conversion process. 159 cases were rejected
due to the wrong procedure being performed, leaving
929 cases.

In total, 1929 patients were included. A flowchart
depicting the inclusion process is shown in Figure 4.

3.2. Image data preprocessing

The raw CTA scans are heterogeneous in their im-
age acquisition parameters, even after selection. To
account for this, a number of processing steps are per-
formed, which are also detailed in Figure 5. First,
the images are converted from the DICOM format to
NIFTI. NIFTI is a file format commonly used within
the neuroimaging community, which is more suitable
for image processing needs compared to the DICOM
format [28].

After NiFTI conversion, affine registration to a brain
atlas was performed using the ANTs software [3]. The
construction of this atlas is described in Peter et al.,
[36]. Registration is performed in two steps. First,
an affine transformation is performed to register the
patient to the atlas. Second, a diffeomorphic trans-



Figure 4. Flowchart depicting the inclusion process for scans from the MR CLEAN registry parts 1&2 (on the left) and for
part 3 (on the right).

Figure 5. Illustration of the registration process, from left to right. A: original image, B: after registration to brain atlas, C:
after normalization and clipping, D: after brain masking, E: after midline mirroring (if necessary) and hemisphere masking.



Feature MR CLEAN Reg-
istry 1,2 & 3
(n=1929)

MR CLEAN Reg-
istry mRS90 0-2
(n=813)

MR CLEAN Reg-
istry mRS90 3-6
(n=1116)

Median Age (IQR) 72 (63-80) 69 (57-76) 76 (67-83)
Male % (n) 52% (1008) 57% (465) 49% (543)
Median ASPECTS (IQR)† 9 (8-10) 9 (8-10) 9 (8-10)
DM % (n) 17% (329) 11% (88) 22 % (241)
Mean Glucose (std) 7.40 (2.48) 7.01 (2.11) 7.70 (2.68)
Median baseline NIHSS (IQR) 16 (11-19) 13 (8-17) 17(13-21)
Median pre-stroke mRS (IQR) 0 (0-1) 0 (0-0) 0 (0-2)
Intravenous Alteplase % (n) 64% (1230) 71% (571) 59% (659)
Occlusion location % (n)†

ICA 24.00 % (463) 19.80 % (161) 27.06% (302)
M1 57.02% (1100) 59.04 % (480) 55.56% (620)
M2 18.40 % (355) 20.66 % (168) 16.76% (187)
M3 0.10% (2) 0.25% (2) 0.00% (0)

Collateral score % (n)†
Absent 4.56% (88) 1.85 % (15) 6.54 % (73)
<50% 36.13% (697) 28.17 % (229) 41.94 % (468)
>50<100% 38.00% (733) 41.94 % (341) 35.13% (392)
100% 20.11% (388) 26.69 % (217) 15.32% (171)

Median Systolic BP (IQR) 150 (132-167) 147 (130-163) 150 (135-170)
Median time-to-groin (IQR) 185 (136-265) 173 (130-250) 195 (145-275)

Table 3. Baseline characteristics for the patient, using the unimputed, unnormalized original data. Glucose in mmol/l, BP:
Blood Pressure in mmHg.†: radiologically derived features.

formation was applied to register the atlas to the pa-
tient, so as to preserve the individual anatomical struc-
ture. Element-wise multiplication of the brain mask
and the registered image was performed to remove the
skull. Selected images were mirrored, such that the oc-
cluded vessel is always on the right side of the brain.
The voxel values of the processed images were nor-
malized to a range in [0, 1]. We only process the oc-
cluded hemisphere by cropping the image to a size of
(80× 112× 160) voxels, where each voxel represents a
single cubic mm. Cropping is performed because early
experiments showed no added benefit of using the com-
plete brain versus only the affected hemisphere. Addi-
tionally, cropping the scan reduces the amount of com-
putational resources required.

To standardize the depicted anatomy we clip the im-
age by detecting the first slice which contains at least
one voxel with an HU value greater than 1000, going in
craniocaudal direction. We assume that detecting this
voxel indicates the top of the skull. We define this slice
as an anchor. We start 10mm in cranial direction from
the anchor slice, and include 20cm worth of slices in
caudal direction. This method ensures that we include
the brain of the patient in a standardized way, exclud-
ing any additional anatomy, such as the neck or the

aortic arch, that is sometimes included in the scans.
Subsequently, we threshold the range of values of the
image array between -40 and 260 HU.

3.3. Clinical and radiological data preprocessing

Clinical and radiological data contain both categor-
ical as well as continuous variables. All values are nor-
malized between zero and one to facilitate handling by
the neural networks. In the complete dataset, the glu-
cose value was missing in 8.7% of cases, and in 6.5% of
cases there was no NIHSS follow-up information. For
all other clinical variables values were present in at
least 97.5% of cases. Missing data were imputed for
all independent variables, using Multiple Imputation
by Chained Equations (MICE, [46]) with a Gaussian
Mixture estimator.

4. Experiments and Results
10% of the data (n = 192) is randomly sampled and

held out as an independent test dataset. This test set
is kept constant The remaining 90% of the data (n =
1736) is split using a stratified five-fold cross validation
procedure, with a training set size of n = 1388 and a
validation set containing n = 348 subjects.



Figure 6. Receiver-Operating Characteristic (ROC) curves showing performance of the best fold (according to validation
AUC) on the held out test set. LR: Logistic Regression, MeN: Med3D, VoT: Voxel Transformer, ViT: Vision Transformer,
MLP: Multilayer Perceptron, MRP: MR PREDICTS logistic regression, tpr: true positive rate, fpr: false positive rate.

4.1. Implementation details

All experiments were performed on a single compute
node on the Erasmus MC Radiology department GPU
cluster. This node has an Intel Xeon Silver 4214 CPU,
192 GB of RAM and three P6000 24GB GPUs.

All software was written in Python, [47]. Machine
learning code was written using the Pytorch frame-
work, [35], augmented using the Pytorch Lightning
framework, [18]. Registering the ML models was done
using MLFlow, [11].

Each model was trained for 195 epochs. For each
model, the initial learning rate was set at 1e−4. A
plateau-based learning rate scheduler was used to mul-
tiply the learning rate by a factor of 1e−1 after 25
epochs without improvement of the validation loss,
with a minimum achievable learning rate of 1e−6.

Early stopping was employed, such that training
stopped when no noticeable increase in validation AUC
is detected after 50 consecutive epochs. Additionally,
a maximum of 50 epochs is set. Batch size was empiri-
cally selected to be 5 for the imaging based models due
to limitations on the available GPU memory, and 40
for the clinical models.

Data augmentation was performed using random
rotations and translations, with a probability of 0.5.
Rotations were applied along each axis with a range
∈ [−15◦, 15◦]. Translations were applied at different
settings per axis, such that the affected area would
always remain visible. The translation settings were x-
direction ∈ [−5, 5] voxels, y-direction∈ [−15, 6] voxels
and z-direction ∈ [−5, 5] voxels.

Binary cross entropy is used as a loss function. This
loss is calculated using the raw output logits. A sig-



Image only Image + Clinical Image + Clinical
+ Radiological

AUC (± s.d) 0,58 (± 0,002) 0,75 (± 0,002) 0,70 (± 0,009)LR†
Accuracy (± s.d) 0,53 (± 0,005) 0,53 (± 0,005) 0,71 (± 0,009)
AUC (± s.d) 0,62 (± 0,031) 0,79 (± 0,028) 0,74 (± 0,047)MLP†
Accuracy (± s.d) 0,61 (± 0,016) 0,73 (± 0,015) 0,72 (± 0,056)
AUC (± s.d) 0,68 (± 0,036) 0,82 (± 0,131) 0,88 (± 0,039)MeN Accuracy (± s.d) 0,88 (± 0,082) 0,85 (± 0,120) 0,92 (± 0,030)
AUC (± s.d) 0,62 (± 0,082) 0,69 (± 0,046) 0,72 (± 0,051)VoT Accuracy (± s.d) 0,62 (± 0,071) 0,73 (± 0,024) 0,72 (± 0,019)
AUC (± s.d) 0,45 (± 0,015) 0,69 (± 0,046) 0,75 (± 0,051)ViT Accuracy (± s.d) 0,57 (± 0,025) 0,72 (± 0,022) 0,72 (± 0,033)

Table 4. Average 5-fold validation performance of each classifier. Med3D shows the best average performance for each data
category. †: These models cannot handle image inputs, so they only use clinical and radiological variables. In the case of
the ”Image only” dataset, they only received radiological features. See also Table 3 for the radiologically derived features.

moid operation is applied to the logits to obtain output
probabilities. For optimization the AdamW optimizer
is used [31]. Losses, AUC scores and binary accura-
cies were registered for the training and validation set
during every epoch using the MLFlow framework [11].

4.2. Quantitative Evaluation

Average validation performance is displayed in Ta-
ble 4. ROC curves produced by applying the best val-
idated classifier folds on the held-out test set are dis-
played in Figure 6. Calibration curves are displayed
in Figure 7. DeLong’s test for comparison of ROC
curves reveals that there is not a statistically signifi-
cant difference between LR trained on the radiological
features (AUC=0.57, n=192) and the Med3D model
trained on CTA images only (AUC=0.65, z=1.19,
p=0.235). Similarly, no statistically significant differ-
ence was found between LR and the Voxel Transformer
(AUC=0.55, z=0.43, p=0.665), the Vision Transformer
(AUC=0.55, z=0.46, p=0.643), or the Multilayer Per-
ceptron (AUC=0.57, z=0.36, p=0.714).

Comparing logistic regression trained on the test set
containing clinical features only (AUC=0.75, n=192)
reveals no statistically significant difference with the
Med3D model trained on CTA images and clini-
cal features (AUC=0.73, z=0.72, p=0.471). Similar
comparison between LR and the Voxel Transformer
(AUC=0.76, z=0.62, p=0.535), the Vision Transformer
(AUC=0.75, z=0.11, p=0.915) or the Multilayer Per-
ceptron (AUC=0.74, z=0.89, p=0.373) again yield no
statistically significant differences.

Finally, comparing the performance of the MR PRE-
DICTS clinical decision tool ( [48] ) on the combined
radiological and clinical features (AUC=0.77, n=192)
with Med3D does not lead to a statistically signifi-
cant result (AUC=0.73, z=1.12, p=0.263). The MR

PREDICTS model performs comparably to the Voxel
Transformer (AUC=0.76, z=0.46, p=0.645), the Vi-
sion Transformer (AUC=0.79, z=0.85, p=0.39) and the
Multilayer Perceptron (AUC=0.76, z=0.35, p=0.721)
on the test set, such that no statistically significant
difference can be derived.

4.3. Post-Hoc Explainability

The best performing classifier on the ”Image only”
task, Med3D, was subjected to further analysis. Specif-
ically, using the GradCam++ method [10] we visu-
alize the activation maps of the final convolutional
layer, overlaid on the input image for enhanced inter-
pretability. Figure 8 shows the activations of the best
model when presented with a single image in the test-
ing dataset. The color intensity represents the contri-
bution of the pixel with respect to the positive output
class. From the image we can conclude that the net-
work focuses on the vascular territory of the arteria
cerebri media and the Sylvian fissure, as well as look-
ing more diffusely at the frontal, temporal and pari-
etal cortex. It seems like the ventricles, as well as the
periventricular areas are also relevant to the classifier.

5. Discussion
We have demonstrated that multimodal deep learn-

ing can be used to predict functional outcome af-
ter mechanical thrombectomy in patients suffering
from Large Vessel Occlusion of the anterior circula-
tion, achieving similar performance to the MR PRE-
DICTS clinical decision making tool. Inclusion of pre-
processed imaging data using an end-to-end deep learn-
ing model does not, however, significantly improve per-
formance compared to conventional statistical meth-
ods.



Figure 7. Calibration curves on the test set, for the best performing folds. LR: Logistic Regression, MeN: Med3D, VoT:
Voxel Transformer, ViT: Vision Transformer, MLP: Multilayer Perceptron, MRP: MR PREDICTS logistic regression.

We have also shown that end-to-end deep learn-
ing can attain a similar performance when replacing
the radiological features in the clinical model with a
deep learning based backbone model. In particular,
the Voxel Transformer model attains a similar perfor-
mance on the test set using clinical features and CTA
images compared to the MR PREDICTS model which
uses radiological and clinical features.

When comparing the performance of the classifiers
trained on the imaging data only with logistic regres-
sion trained on the radiological features, we see a mod-
erate (but not statistically significant) increase in per-
formance when using Med3D.

These results indicate that end-to-end deep learn-
ing models can extract latent information from imaging
which is at least partially complementary to the infor-
mation contained in clinical and radiological features.
In particular, it seems like the imaging models look at

cortical and periventricular atrophy to discern the age
of the patient. Age is an important factor in the MR
PREDICTS model. Other overlap of features is less
readily explained. While deep learning does not im-
prove functional outcome prediction performance, the
results do suggest a potential role for deep learning in
replacing the radiologically derived parameters. This
is potentially clinically relevant as it means we can pre-
dict functional outcome without requiring a radiologist
to manually extract radiological features from the scan,
by relying on the Voxel Transformer.

The results are corroborated by post-hoc visualiza-
tions, which show that the model which performs best
on the “imaging only” task, Med3D, mainly focuses on
the vascular territory of the arteria cerebri media, as
well as the surrounding cortical and ventricular regions.
The surprising inclusion of the tissues surrounding the
lesion can be interpreted as the model looking at cor-



Figure 8. GradCAM++ output of the final activation layer of the Med3D model overlaid on four slices of a single input
image. We see that the model mainly focuses on the lateral sulcus, where the M1 and M2 branches of the arteria cerebri
media lie. The model also focuses on the periventricular space and on the cortex.

tical atrophy and subcortical leukoaraiosis, which are
biomarkers for brain age [33]. Since age is a strong
indicator of functional outcome in the clinical dataset,
the information extracted from the image by the deep
learning model might be partially redundant. Simi-
larly, recent research has shown that gender related
differences in brain structure exist at the macroscopic
scale. Neural networks can learn to predict these differ-
ences [49]. It is possible that the classifier has learned
to extract age as well as gender related features, ex-
plaining the moderately good performance on the “im-
age only” task and lack of improvement once clinical
and radiological features are added.

No significant difference is seen between the per-
formance of the imaging based classifiers on the same
datasets, suggesting that the problem itself is indeed
hard. On the “Image + Clinical + Radiological” task,
the performance of the Med3D architecture is rela-
tively bad, while on the “Image only” task it is rela-
tively good. This is most likely due to overfitting which
rapidly occurs in the Med3D architecture. The Trans-
former based classifiers do not suffer from this phe-

nomenon, possibly due to the lack of inductive biases,
allowing these models to more readily extract informa-
tion which is complementary to the clinical features.

We demonstrated non-inferiority of multimodal
deep learning in combination with clinical features to
the linear model with clinical and radiological features.
While multimodal deep learning cannot be used for
fully automated functional outcome prediction, there
is a potential role for it in replacing the radiological
features, potentially speeding up the outcome predic-
tion process and alleviating some of the burden on the
radiologist.

The MR PREDICTS clinical decision model was
trained on a superset of the data on which it was tested,
leading to potential bias through leakage of training
data into the test set. Our reasoning for including the
model was that it would allow for comparison between
our classifiers and an actual decision tool used in clin-
ical practice. As a simple logistic regression which did
not suffer from this issue attained similar performance
we accepted this potential bias.

The affine registration process which is performed



before inference in the imaging based classifiers takes
approximately 5 minutes, and is prone to errors in some
cases. This is potentially problematic when introduc-
ing such a classifier in clinical care.

We excluded subjects where the registration process
was not successful. Registration often fails when arti-
facts were introduced, for instance if the patient moved.
We hypothesize that there might be a correlation be-
tween the success chance of the registration and the
outcome of the patient, as patient who are less capable
of following instructions during the scanning process
might be more seriously affected by the stroke, leading
to a less favorable outcome in this patient group. This
might result in a selection bias, where only relatively
healthy patients are included due to their scans being
usable.

One potential way to improve performance is to
combine the information from multiple imaging modal-
ities. In this study we only investigated the usability
of neural networks when analyzing CTA images, but
one advantage of deep learning is that it can combine
information in unforeseen ways, leveraging imaging in-
formation at the sub-visual level. One potential new
avenue of research would be to investigate whether ad-
dition of non-contrast CT, for instance as a different
input channel to the classifier, would yield better re-
sults.

The preprocessing steps take time, which compli-
cates clinical applicability of the classifiers. It would
be interesting to see whether training the networks on
the raw data would lead to similar performance.

It is not yet clear to what extent features extracted
from the images are similar to the clinical and radio-
logical features, future work should investigate which
features are most relevant to the classifiers, and why.
One potential way to do this is by regressing on the MR
PREDICTS variables using the raw features extracted
by the imaging classifiers, another potential approach
is by calculating Shapley values for the different fea-
tures.

6. Conclusion
We set out to investigate the potential usefulness

of deep learning methods in improving functional out-
come prediction after mechanical thrombectomy in
stroke patients. Results did not indicate a significant
performance improvement of multimodal, end-to-end
deep learning methods, which combine imaging data
with patient features, compared to conventional statis-
tical methods based only on patient features. Future
research must reveal whether such multimodal deep
learning techniques can be of concrete clinical value.
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A. Supplementary Material



Figure 9. Learning curves of the different pipelines. For each model, validation and training loss curves over the five folds
are displayed. Note that Vision Transformer Image + Clinical is missing some curves due to computational issues.



Figure 10. Violin curves. A favorable outcome corresponds to an output of 0, while an unfavorable outcome is predicted
using a 1. The test set contains 192 subjects, and predicted probabilities are displayed for each outcome. An ideal plot
would entail all probability mass for the favorable outcome concentrated around 0, while the unfavorable outcome would be
concentrated around 1.



Figure 11. Voxel Transformer architecture. This architecture is similar to the one described in Figure 3, with the only
difference being the output. Instead of using only the first token for classification as with the Vision Transformer, this
model takes the entire output sequence and feeds it to a final MLP layer to arrive at an output.



2
Stroke & Functional Outcome Prediction

Stroke is a medical condition in which there is a reduced blood flow to a part of the brain. Approximately
80% of strokes are ischemic (caused by an obstruction in the blood vessel), the other 20% are hem-
orrhagic (caused by a bleeding). Each year, approximately 40.000 people suffer from a stroke in the
Netherlands. Stroke is the cause of 8.000 deaths annually in the Netherlands [22]. The symptoms of
stroke depend on the specific location of the obstruction, as the affected brain region dictates the exact
complaints. Traditional symptoms of stroke include hemiparesis, aphasia, dysarthria, facial weakness,
ataxia and vertigo [15], see Table 2.1a. As each cerebral hemisphere controls the contralateral (op-
posite) side of the body, an obstruction in the left hemisphere will result in hemiparesis of the right
side of the body and vice-versa. Apart from these traditional symptoms, many different non-traditional
symptoms may also occur if the the occlusion occurs in a less conventional location.

2.1. Pertinent Neuro-anatomy
The arterial supply of the brain can be divided into an anterior and a posterior circulation. The posterior
part is mainly supplied by the vertebral arteries, which travel through openings (foramina) in the spinal
column of the neck. The anterior part of the vasculature of the brain is supplied by the carotid arteries,
which travel up through the neck. The anterior and posterior circulation connect in the circle of Willis,
a circular arterial structure at the base of the brain. The purported anatomical purpose of the circle
of Willis is to preserve some degree of blood flow to the brain in the event of an obstruction of one of
the supplying blood vessels. There is great anatomical variation in the degree of completeness of this
structure among different people. From the circle of Willis, three cerebral arteries arise to provide blood
to almost the entire brain. The cerebral arteries are paired on the left and right, with anterior, middle and
posterior arteries on each side leading to six arteries in total. Of these three blood vessels, the middle
cerebral artery is the largest vessel. It is the vessel most commonly affected by stroke, accounting for
over half of all cases. The middle cerebral artery consists of M1, M2, M3 and M4 segments. These
vessels provide blood to a significant part of each hemisphere, supplying part of the frontal, temporal
and parietal lobes, as well as other important structures such as the thalamus, the internal capsule and
the caudate nucleus [17]. Figure 2.1 shows the course of the MCA through the brain, and Figure 2.2
shows a detail of the route of the vessel through the brain. A detailed explanation of the anatomy and
neurophysiology of these structures is beyond the scope of this text.

2.2. Stroke imaging
According to most protocols in the Netherlands, initial non-contrast CT imaging should be performed on
every patient with stroke symptoms. A CT (Computed Tomography) scan is an image of the anatomy of
the patient. The CT scan is made by rotating an X-ray emitter tube, with detector arrays on the opposite
side, around the patient. Different types of tissue attenuate the signal differently. Dense tissues such
as bone lead to high attenuation of the X-ray beam, while soft tissues lead to less attenuation. By
mathematically combining the attenuation at each rotation angle, an image can be recovered. Many
different types of CT scans exist. The amount of attenuation at each voxel location in the scan can be
quantified using Hounsfield Units (HU). The HU values for different tissues are provided in Table 2.2.
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22 2. Stroke & Functional Outcome Prediction

Symptom Description
Hemiparesis Weakness on one side of the

body
Aphasia Inability to formulate or compre-

hend language
Dysarthria Difficulty speaking due to weak-

ness of the speech muscles.
Note that in contrast to aphasia,
language comprehension is in-
tact

Facial weak-
ness

This affects only one side, lead-
ing to a drooping corner of the
mouth with flattened wrinkles
and an assymmetric face.

Ataxia Muscle control problems leading
to clumsy, disorganized move-
ments

Vertigo Dizziness
(a) Traditional stroke symptoms and their colloquial interpretation [15].

(b) Illustration of facial symptoms in a stroke patient. Compared to the
left side of the face, the facial weakness is noted on the right side, with a
drooping mouth corner and assymmetric expression. Image available
under Creative Commons license from [1].

Table 2.1

Figure 2.1: Schematic drawing which shows the course of the middle cerebral artery through the brain. Image from [4].
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Figure 2.2: Schematic drawing of a coronal section of the brain at the level of the middle cerebral artery. From the stem (M1)
segment it courses through the brain, giving off branches known as the lenticulostriate arteries, which provide blood to the basal
ganglia. The M2 segment starts at the bifurcation, where a superior and an inferior division are formed. Image from [4].

Tissue or Substance HU
Air -1000
Lung -600 to -400
Fat -100 to -60
Water 0
Muscle 10 to 40
Blood 30 to 80
Soft tissue, contrast 100 to 300
Bone 400 to 3000

Table 2.2: Approximate Hounsfield Unit (HU) values for different tissues and substances on CT. From [6] and [9].

To enhance the visibility of blood vessels on CT, radio-opaque (X-ray absorbing) contrast can be
injected, which will appear dense (white) on the scan. When contrast is present in the blood-vessels the
scan is known as a CT-angiography (CTA) scan. A scan where no intravascular contrast is administered
will be referred to as a non-contrast CT (NCCT).

Figure 2.3 shows a single slice from a NCCT scan. This case shows the devastating results of
stroke when treatment is unsuccessful. Due to an occlusion of the left MCA (on the right side of the
image, one should, by international convention, view medical imaging as if looking up at the patient
from their feet), the entire vascular territory of the MCA has been damaged. This can be seen on the
scan as the hypodense area on the right side, which indicates cytotoxic edema (swelling due to damage
at the cellular level) and cell death. For the patient, this results in hemiparesis of the right side of the
body.

2.3. Interventional Neuroradiology & Thrombectomy
The optimal treatment of stroke is an area of ongoing research. There are two main treatment ap-
proaches, endovascular therapy (commonly referred to as IAT, intra-arterial therapy) or intravenous
administration of a potent thrombolytic agent. Intravenous thrombolysis constitutes administering med-
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Figure 2.3: This non-constrast CT scan shows the outcome of unsuccessful stroke treatment. The patient presented with a
right-sided hemiparesis (weakness of one side of the body). This scan shows the situation 24 hours after the initial symptoms.
The vascular territory of the left MCA (right side of the picture) is irreparably lost. This can be seen on the CT as a hypodense
(darker) signal compared to the other side. Case courtesy of dr. Ian Bickle, found on Radiopaedia.org, stroke progression on
CT.

ication to dissolve the blood clot. This therapy does not work well for larger vessels, which reasonably
contain larger clots.

To perform IAT, the femoral artery (the main artery in the groin) is punctured and a catheter system
is introduced. This catheter is advanced through the arterial system under image guidance from the
groin to the site of occlusion, usually the carotid artery or the MCA. Now the thrombus (blood clot) can
be removed either mechanically using a stent retriever (mechanical thrombectomy), through suction
(thrombosuction), or by administering a potent thrombolytic agent through the catheter (local thrombol-
ysis). Throughout this text we are specifically interested in mechanical thrombectomy.

Mechanical thrombectomy proceeds by deploying a retrievable stent inside the thrombus. The stent
embeds itself in the blood clot. After firm embedding, the stent is pulled back, hopefully with some of
the clot attached to it. Often, multiple passes are required to restore blood flow. The procedure is not
without risk of complications, such as perforation of the vessel or dissection (damage to and loosening
of the layers) of the vessel wall.

Figure 2.6 depicts a thrombectomy procedure in a 63 year old male. The patient presented to
the hospital with complaints of left sided weakness. Initial non-contrast CT of the head showed no
ischemic changes, even though subsequent CTA imaging revealed a complete occlusion of the right
internal carotid artery. Mechanical thrombectomy therapy was performed, leading to a successful clot
removal. The patient left the hospital 12 days after the presentation with only minimal sequelae.

Panel A shows a noncontrast computed tomographic (CT) scan of the head (transverse section) re-
vealing slight hypodensity in the left insular cortex (arrow). Panel B shows a CT angiogram (transverse
section) revealing an occlusion of the first segment of the left middle cerebral artery (arrow). Panel
C shows a cerebral arteriogram (anterior projection) revealing an occlusion of the first segment of the
middle cerebral artery before mechanical thrombectomy (arrow). Panel D shows a cerebral arteriogram
(anterior projection) revealing recanalization of the left middle cerebral artery after thrombectomy (ar-
rows).

2.4. The MR CLEAN trial
MR CLEAN (Multicenter Randomized Clinical trial of Endovascular treatment for Acute ischemic stroke
in the Netherlands) was a multicenter randomized clinical trial performed in the Netherlands. In the 16

https://radiopaedia.org/cases/stroke-progression-on-ct?lang=gb
https://radiopaedia.org/cases/stroke-progression-on-ct?lang=gb
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Figure 2.4: An example of a stent retriever device, consisting of a metal cage attached to a wire. Initially, the metal cage is
folded. The device is threaded into the thrombus through the occluded artery, after which it is expanded using a balloon. After
this expansion the device embeds itself in the blood clot. The stent retriever is subsequently pulled back, hopefully removing the
clot. Image available under Creative Commons license from [20].

Clinical & Radiological features
Age
Baseline NIHSS
Pre-Stroke mRS
Diabetes Mellitus
Baseline Systolic Blood Pressure
Baseline Glucose
Intravenous Alteplase
ASPECT score†
Location of occlusion†
CTA collateral score†
Time from onset to groin puncture

Table 2.3: List of all clinical and radiological features used in the dataset. Note that these features coincide with the features
validated for the MR PREDICTS clinical decision making tool [21].† Radiological features, which means that they can only be
determined after imaging has been acquired.

participating centers, stroke patients were randomized to either receive usual care or usual care and
intra-arterial therapy. Patients were only included if treatment was feasible within 6 hours of onset, with
a confirmed proximal occlusion in the anterior cerebral circulation. The primary outcome measure was
modified Rankin scale at 90 days. Clinical features were registered for each patient, the most relevant
features are listed in 2.3. In total, 500 patients were included. Research based on this trial concluded
that intra-arterial treatment improves outcome if administered within 6 hours after stroke onset [3].

As a follow up to the trial, the MR CLEAN registry was created. This is an ongoing, prospective,
observational cohort study. This registry demonstrated a further significant improvement of functional
outcome compared to the outcomes, both in the control as well as the intervention arms, of the MR
CLEAN trial [11]. These differences are most likely due to improvements in clinical pipelines, leading
to shorter time from onset of symptoms to reperfusion.

2.5. Functional Outcome Prediction
The modified Rankin Scale (mRS) was designed to quantify the outcome of a stroke. It is a seven point
scale of increasing disability. In literature, it is often measured 90 days after the event. This outcome is
also recorded in the MR CLEAN trial and registries so we can compare outcomes after therapy. Being
able to predict the functional outcome using mRS is helpful in selecting those patients who will benefit
from the therapy. Models have been developed to predict functional outcome using clinical parameters,
such as the MR PREDICTS decision tool [21]. The models that have been described use conventional
statistical methods. Functional outcome prediction performance might be improved, potentially directly
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Figure 2.7: Imaging of acute ischemic stroke. Panel A showsNCCT of the head, where the white arrow points to subtle hypodense
attenuation of the left insular cortex, indicating potential ischemic changes. The easiest way to see this is to compare to the other
side, where the same structure is more clearly visible. Admittedly, this is a subtle finding. Panel B shows CTA imaging in the
same patient. The middle cerebral artery is occluded at the location of the arrow. Panels C and D show DSA imaging of the
arterial tree before and after revascularization, respectively. Reproduced with permission from [18], Copyright Massachusetts
Medical Society.
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leading to clinical benefit, using more complex, machine learning based models.





3
Machine Learning

The field of Machine Learning (ML) studies algorithms capable of ”learning” to detect patterns in data.
ML is a subfield of the more general scientific field of Artificial Intelligence (AI). There are many different
paradigms within the ML field, such as semi-supervised or unsupervised learning; in this work we are
concerned with supervised learning. Supervised learning refers is a type of ML where the correct output
labels are available to the algorithm during training, such that the algorithm can correct itself immedi-
ately after an incorrect prediction. Supervised ML algorithms are ”trained” using a training dataset. This
training process involves improving the performance of the algorithm by presenting it with progressively
more data, the algorithm is ”learning”. ”Training” and ”learning” are anthropomorphic terms used to de-
scribe an underlying optimization process, in which the performance of the algorithm is improved by
minimizing a loss function using mathematically derived steps. After the training phase, we assess the
performance by presenting the algorithm with new, unseen data in the form of a so-called test set. This
is done because checking the efficacy of the method on the dataset it was trained on will overestimate
its true performance, as models tend to overfit to the dataset they are trained on. Great care must be
taken to avoid leakage of the training data into the validation set.

Deep learning is a sub-field within machine learning, which involves the use of artificial neural net-
works. Artificial neural networks are inspired by biological information processing systems, even though
they significantly differ from real brains in multiple important ways. The term ”deep” refers to the fact
that any arbitrary mathematical function can be approximated using a neural network with at least one
hidden layer (of arbitrary width) of non-polynomial activation functions [10], whereas the simple linear
perceptron model, which is the historical precursor of artificial neural networks, cannot. The network
must therefore be ”deep”, either in the sense of the layer width or in the amount of layers, and not
”shallow”.

3.1. Medical Machine Learning
Medical ML can be defined as the application of ML methods to medical problems. There are certain
difficulties which are more common in medical ML as compared to other application areas of machine
learning. One such issue is the reduced availability of data. There are multiple factors contributing to
the sparsity of data in the medical sectors, such as stringent privacy laws that preclude data-sharing,
and the fact that obtaining new medical data is relatively expensive. One of the main predictors of
ML algorithm success is the amount of data available. Care must therefore be taken, for instance by
using appropriate data augmentation techniques, to ensure that enough data is available to the learning
system. Luckily, there are multiple ongoing initiatives to share medical data between hospitals.

Another issue which is perhaps more relevant in medical ML as opposed to other application do-
mains is the interpretability or explainability of the results. In the medical domain, this is very relevant
as clinicians should be able to justify and explain their reasoning about certain treatment decisions with
patients. Many ML methods are problematic in this regard, as they do not have a human readable way
to show how the results are derived. In artificial neural networks, for instance, the representations of
the data inside the network do not have a clear interpretation. Instead, artificial neural networks must
be considered to be black box models, where only the input and output are amenable to interpretation
by human observers. In recent years, the concepts of shared decision making and informed consent

31
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have become increasingly relevant in the medical field, as such, development of explainable ML is
even more pressing.

3.2. The Multilayer Perceptron
The simplest type of deep neural network is the Feedforward Neural Network (FNN), sometimes also
referred to as Multilayer Perceptron (MLP). The network consists of an input layer, followed by one or
more hidden layers and finally an output layer. In between the layers, information flows. Each layer
except for the input layer consists of nodes, where information from the previous layers is aggregated
and passed through a nonlinear activation function. The input layer is special in that it does not contain
nonlinear activation functions. The network receives an input vector 𝑥, which is propagated through
the nodes in the next layers. Each non-input node receives a weighted sum of the outputs of all the
nodes in the preceding layer. A simple example of an MLP is provided in Figure 3.2.

The output of a layer in the network can be described as

𝑦 = 𝑓(𝑥; 𝜃, 𝑤, 𝑏) = Φ(𝑥; 𝜃)𝑇𝑤 + 𝑏
which shows that the output of a layer, 𝑦, can be seen as a nonlinear function 𝑓 taking a vector 𝑥 as
input. The function 𝑓 is parameterized by the parameters 𝜃 of the nonlinear activation function Φ, as
well as by weight vector 𝑤 and bias term 𝑏 (adapted from [7]). In this way, the MLP as a whole can be
seen as a composition of arbitrary nonlinear functions.

3.2.1. Activation Functions
The nonlinear functions which process the inputs of each node are called activation functions. There
are many different types of activation functions, their most important property is that they are nonlinear,
such that the network can learn to combine them to approximate arbitrary functions, as opposed to
a linear combination of linear functions, which would be unable to learn arbitrary nonlinear functions.
Traditionally, the sigmoid function, defined as

𝑓(𝑥) = 1
1 + 𝑒−𝑥

was used as an activation function, though it is less popular nowadays. Currently, the most popular
activation function is the ReLU (Rectified Linear Unit) function. This is a piecewise linear function
defined as

𝑓(𝑥) =max(0, 𝑥)
such that the neuron is only activated for inputs with a positive sum. The main benefit of such a simple
activation function is the fact that there are fewer problems with vanishing gradients since the function
does not saturate. The vanishing gradient problem is a well known issue where gradients which are
being backpropagated through the neural network become increasingly smaller, until the value is zero.
This phenomenon obstructs the learning process, as nonzero gradients are required to update the
weights during the learning steps. ReLU negates this problem by being linear, preventing decay of
gradient values. Another advantage of ReLU is that it is simple to compute, and that it typically leads
to sparse activations since negative inputs will result in no information being propagated to the next
layer. A potential issue is the fact that this function is non-differentiable at 0. This problem can be
fixed using smooth approximations of the ReLU which are differentiable everywhere, such as GELU
(Gaussian Error Linear Unit). The aforementioned activation functions are displayed in Figure 3.1. A
full treatment of the different activation functions and their properties is outside the scope of this work.

3.3. Stochastic Gradient Descent
In the context of ML, learning is defined as a process in which performance is improved over time, by
allowing the model to adjust its weights based on examples. Now that we have a basic understanding
of the structure of artificial neural networks we are equipped to reconsider learning in a more formal
way. Let 𝜃 ∈ ℝ𝑑 define the parameters of a neural network. We define the training dataset as 𝒟 =
{(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1, containing 𝑁 samples indexed by 𝑖, where 𝑥 represents an input vector and 𝑦 represents
the desired model output. We define the loss function as

ℒ(𝜃) ∶ ℝ𝑑 → ℝ
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(a) ReLU (b) Sigmoid

Figure 3.1: ReLU and Sigmoidal activation functions.

We do not impose any restrictions on the loss function other than that it must be differentiable. As the
training dataset does not change, the loss depends only on the parameters of the network. ”Learning”
proceeds in two steps. Firstly, we iterate over the samples in 𝒟 to calculate the loss as a function of
the current parameterization 𝜃. Secondly, we update 𝜃 using the update rule

𝜃𝑚 ← 𝜃𝑚−1 − 𝜂∇ℒ(𝜃𝑚−1)
Here, 𝑚 indicates the current iteration of the learning process, and 𝜂 ∈ (0, 1) is an update factor

called the learning rate. Updating 𝜃 involves calculating the gradient of each weight with respect to
the loss. This gradient calculation is implemented in an algorithm called backpropagation. The name
refers to the fact that weights in layers closer to the input need gradient information from the deeper
layers to be calculated. Partial gradient information must therefore be propagated backwards, from the
deep to the shallow layers.

A single iteration through the entire training dataset is called an epoch. Often, it is computationally
expensive to iterate through the entire dataset in order to calculate the gradient, and so, subsets of the
dataset are used to calculate a partial gradient. These subsets are called batches, and the procedure is
known as stochastic gradient descent (SGD). Stochasticity follows from the fact that we do not calculate
the gradient using the entire dataset, instead relying on a small batch. As a result, SGD is faster to
compute, at the expense of less precise gradient information. SGD is a simple optimization algorithm
used in neural network training, in practice, more sophisticated optimizers, such as the Adam algorithm
[13], are often used. These methods often incorporate additional information, using for instance an
exponentially weighted moving average of the previous batch gradients, to stabilize the optimization
trajectory.

3.4. Binary Cross Entropy
We have provided a broad definition of loss functions, restricting them only to be differentiable. Many
loss functions exist, and different loss functions are more suited to different machine learning tasks.
The problem studied in this thesis is dichotomized functional outcome prediction, which is an example
of a binary classification problem in which 𝑦 ∈ {0, 1}. For this problem, binary cross entropy (BCE) is
often introduced as a loss function. Define �̂� to be the output of the model, which is a probability. BCE
is then defined as

𝐿(𝜃) = − 1𝑁

𝑁

∑
𝑖=1
(𝑦𝑖 log �̂�𝑖 + (1 − 𝑦𝑖) log(1 − �̂�𝑖))

Here, 𝜃 is the parametrization of the ML algorithm, 𝑦𝑖 is the true class of the 𝑖-th sample, and �̂�𝑖
is the predicted probability of this sample. To obtain the total loss, we average over the losses of the
individual samples. BCE loss is useful in binary classification because it especially penalizes those
classifications which are confident and wrong.
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Figure 3.2: Schematic illustration of the multilayer perceptron. On the left side, an input is provided. The three nodes in the
hidden layer each combine the values of the input using their own weights. The values produced by the hidden nodes are again
combined in different ways by the two nodes in the output layer, leading to two output values. Image available under Creative
Commons license from [16]

Figure 3.3: The image on the left is convolved with a circular kernel, leading to the activation map on the right hand side. Red
indicates positive value, blue negative. The shape of the kernel has an effect on the type of features being detected. In this
case, the round shape of the kernel leads to detection of the round shape of the sunflowers. Image adapted from the TU Delft
Deep Learning course (CS4180).

3.5. CNN & Med3D
While the simple MLP described in the previous sections is an appropriate architecture for learning from
independent data, it is less suitable when data is involved which has some kind of inherent, combined
structure, such as images. There are multiple reasons for this, the most important being simply the
number of parameters needed for a fully connected layer. Already, a relatively small image of 400×400
pixels would require 160000 parameters to represent the connections to a single neuron in the first
hidden layer alone. A potential solution for this problem is a convolutional neural network (CNN), which
reduces the required number of parameters by performing a discrete convolution operation.

3.5.1. Convolution
The one dimensional discrete convolution operation can be defined as follows

𝑧[𝑛] = (𝑓 ∗ 𝑔)[𝑛] =
∞

∑
𝑚=−∞

𝑓[𝑚]𝑔[𝑛 − 𝑚]

extending this operation to more dimensions is straightforward. Essentially, this operation rep-
resents the dot product of the filter with a specific element in the signal, as well as its neighboring
elements in the spatial sense. The convolutional operation is translation equivariant, meaning that the
result changes predictably with translations of the input. The convolution operation is not rotation invari-
ant, meaning that rotations of the input (in 2D or higher dimensions) do affect the output. An illustration
of the effects of the discrete convolution operation is provided in Figure 3.3.

If we define an image (referring to a CT scan) 𝑔 ∈ ℝℎ×𝑤×𝑑 and a filter 𝑓 ∈ ℝ𝑖×𝑗×𝑘 then performing a
convolution will result in an output image 𝑧 ∈ ℝℎ′×𝑤′×𝑑′ that represents the activation map of the filter.
Each convolutional layer in a CNN consists of multiple of these filters, leading to multiple activation
maps. The filters are trainable, meaning that the parameters of the filter can be adjusted, such that
the network ”learns what to look at” during the training process. Each element in the activation map is
based on an area the size of the convolutional kernel from the preceding layer. This means that the
later layers in the network represent larger receptive fields, and it has been demonstrated that they
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Figure 3.4: Schematic overview of a residual block. Image from [8]

come to represent more abstract features during the training process. In other words, the model learns
to extract and process increasingly abstract features from the input as information flows from input to
output.

Another important layer in the CNN is the pooling layer, which can perform subsampling by com-
bining elements of the activation map. Multiple different types of pooling layers exist, such as the max
pooling layer, which simply subsamples an area in the layer input by propagating only the maximum
value of this area, for each area of a certain size in the layer input, and discarding the rest. Another
important pooling method is average pooling, where instead of the maximum, the average is taken.
Pooling layers can increase processing speed by discarding less relevant information.

There are multiple specific parameter settings for the convolutional layers, such as the stride, which
refers to the step size between applications of the filter in the input image, or the padding, which refers
to the method of dealing with missing values in the input image by adding additional values. Different
CNN architectures use different settings with regard to these parameters.

In the classification setting the final activation map, which results from applying convolutional and
downsampling layers in alternating fashion, usually feeds into one or more fully connected layers. The
output of these fully connected layers is often passed through a softmax operation, which leads to a
class probability as model output.

3.5.2. ResNet
A well known issue in deep networks is the vanishing gradient problem. Due to the depth of large feed-
forward networks, the gradient becomes negligible at some point point in the backpropagation process.
This means that certain weights in the network are not being updated. One potential solution is to in-
troduce skip connections. A residual (or skip) block is a part of a neural network where information
bypasses at least one layer. Figure 3.4 shows an example of a residual block. Because of this infor-
mation bypass, referred to as a skip connection, information can flow freely through the skip block in
addition to being processed. Mathematically, the residual connection can be expressed as:

ℱ(𝑥) + 𝑥

where 𝑥 is the layer input and ℱ(⋅) is the transformation applied by the layer. Residual networks
are capable of achieving state-of-the-art performance in image recognition tasks because of the use of
these residual connections.

The most well-known neural network architecture that employs residual blocks is the ResNet archi-
tecture [8]. There are many different variations of the ResNet architecture. The ResNet architecture
follows the design philosophy of the famous VGG architecture, but it adds residual connections. Med3D
is a three-dimensional version of the ResNet architecture which has been pretrained on a combined
dataset of medical challenges called 3DSeg-8. In the Med3D architecture, the output is a segmenta-
tion, but one can easily move from performing segmentation to classification by appending a global
average pooling layer followed by a softmax layer. Another relevant, ResNet based architecture is the
VoxResNet, which is specifically designed to handle brain imaging data.
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3.6. Attention mechanisms
Attention mechanisms were originally developed in the field of natural language processing (NLP).
In NLP, one often works with sequence to sequence models, which are supposed to translate one
sentence to another. An issue that occurred here was that for long sentences, state information would
get lost in the Recurrent Neural Networks (RNNs) that were used to translate these sentences. One
proposed solution to this problem was to use a weighting mechanism to combine state information
based on how relevant words are to each other. This is the attention mechanism.

Attention is essentially a learnable soft weighted information retrieval mechanism, which can be
used to detect salient features in some input. In one of the earlier definitions by Bahdanau et al. [2],
the mechanism was used to weight encoder outputs using weights derived from the decoder inputs. In
self-attention, which was developed at a later point in time, the attention mechanism uses inputs from
the same layer as the weights.

To retrieve information, we need three tokens, the query, key and value token. The query represents
”what” we are looking at in the output. The key represents the relative importance of the other words in
the input for that particular output. The value represents the relevance of the output words compared
to the particular output. The self attention mechanism works based on these equations:

q𝑖 =W𝑞x𝑖 + 𝑏𝑞
k𝑖 =W𝑘x𝑖 + 𝑏𝑘
v𝑖 =W𝑣x𝑖 + 𝑏𝑣
y𝑖 =∑

𝑗
softmax(q𝑇𝑖 k𝑗) ⋅ v𝑗

In these equations, x𝑖 is the embedded input. To obtain the query q𝑖, the key k𝑖 and the value v𝑖
vectors we perform linear projections of the embedded input vectors with the relevant matrix and bias
vector. For the query we project withW𝑞 and add a bias term 𝑏𝑞, and we do the same with the key and
value. To obtain the output y𝑖 we sum over the weighted similarities between keys and the query, using
the value vector to weight the similarity. In our equations, we use the softmax operation to normalize the
similarity between key and query, but other similarity operations can be used. The softmax operation
can be defined as softmax(𝑧𝑖) =

exp 𝑧𝑖
∑𝐾𝑗=1 exp 𝑧𝑗

. The time complexity of the aforementioned operations is

𝒪(𝑁2𝑑), where 𝑁 is the size of the database and 𝑑 is the dimensionality of the feature space.
The attention mechanism provides an alternative to convolutional methods for processing informa-

tion. The mechanism is inspired by the human visual system, where the field of view is only focused
on certain aspects of an input at a time. As an example, when reading a book the brain is actually only
looking at a few words at a time, it is not possible to process the entire page at once.

Multi-Head Attention is an extension of the aforementioned attention mechanism where multiple
query, key and value triples are used, such that elements can attend to different concepts using the
multiple different heads. The outputs of the different heads are subsequently concatenated.

3.6.1. Transformer models
The focus of current deep learning literature is shifting from the CNN to attention based models, such
as the Transformer [5]. The Transformer model is a sequence-to-sequence model that was originally
derived in the context of natural language processing (NLP), but it has been successfully modified so
that it can be applied in other fields as well. Transformers are based solely on self-attention mecha-
nisms, the convolutional mechanism is no longer used. Because transformers do not have a recurrent
structure, they can be readily parallelized. The basic building blocks of the Transformer model consist
of encoder and decoder blocks. The input sequence is first tokenized. After this, positional information
is added using a positional encoding. Then, the input is passed through one or more encoder blocks
in sequence. Each encoder block contains a Multi-Head Attention (MHA) mechanism, followed by a
feed forward layer. Residual connections across the MHA and feed forward layers facilitate uncon-
strained propagation of information, by adding the input of each layer to the output and normalizing.
After the encoder blocks, a decoding structure is also present. The decoder block takes as input both



3.6. Attention mechanisms 37

Figure 3.5: Example of the Transformer architecture. Input is embedded and a positional encoding is added. The input is then
passed through a Multi-Head Attention (MHA) mechanism, followed by a feed forward connection. This structure encompasses
the encoder. The decoder (on the right) has a similar structure, with the addition of a masked MHA mechanism to receive the
masked output. After the decoded block, the outputs are passed through a linear layer followed by a softmax operation. Note
that in all operations apart from the final output, residual connections are provided, allowing information to skip each operation.
Image available under Creative Commons license from [12].

the output from the encoder, as well as a shifted version of the embedded output. The desired output is
embedded using positional encoding, and fed to a masked version of the MHA module to prevent data
peeking. The output of this first MHA module is combined with the output from the encoder module
in another MHA module, after which it is passed through a feed-forward network. The output of the
decoder block is passed through a linear layer followed by a softmax operation to predict classes. A
schematic overview of the general structure of the Transformer model is provided in Figure 3.5.
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