Anja Guzzi

from within the IDE

Supporting Developers’ Teamwork

Supporting Developers’ Teamwork

from within the IDE

Proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit

Delft, op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties, in het openbaar te verdedigen
op maandag 30 maart 2015 om 12.30 uur door

Anja GUZZI

Master of Science in Informatics
geboren te Faido, Zwitserland.

'This dissertation has been approved by the promotors:

Prof. dr. A. van Deursen Delft University of Technology, The Netherlands
Prof. dr. M. Pinzger University of Klagenfurt, Austria

Composition of the doctoral committee:

Rector Magnificus chairperson

Prof. dr. A. van Deursen promotor

Prof. dr. M. Pinzger promotor

Prof. dr. ir. D.M. van Solingen Delft University of Technology, The Netherlands
Prof. dr. A. Hanjalic Delft University of Technology, The Netherlands
Prof. dr. P. Lago VU University Amsterdam, The Netherlands
Prof. dr. M. Lanza University of Lugano, Switzerland

Dr. R. DeLine Microsoft Research, Redmond, USA

TUDelft WPA

The work in this dissertation has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics). IPA thesis number 2015-05.

'This research has been financially supported by the Netherlands Organisation for Scien-
tific Research project 612.001.019: Whar your IDE could do once you understand your code.

ISBN 978-94-6186-435-2
© 2015 by A. Guzzi

Author email: anja.guzzi@gmail.com

Contents

Acknowledgements

Ringraziamenti

I Overture

1 Introduction
1.1 Background and Motivation
1.2 Research Questions L.
1.3 ResearchOutline 00....
1.4 ResearchMethod,
1.5 Originof Chapters

2 Developers’ Teamwork

2.1 Overview e

2.2 Methodology
221 ResearchQuestions v v i i
2.22 Brainstorming

2.2.3 Semi-structured Interviews
2.2.4 Data Analysis With Card Sort

23 Results.
2.3.1 RQI: Teamwork from the developers’ perspectives
2.3.2 RQ2: Dealing with imperfect information in teamwork
2.3.3 RQ3: Receivingacodechange
2.4 Interpretation, Implications and Recommendations
2.4.1 Teamwork Collaboration is Coordination
2.4.2 'The Role of Information
2.43 Code Changes and Dependencies

2.5 Concluding Remarks o L L,

iii

p—

NN AW

10
10

13
14

14
14
15
16
17
18
18
19
21

23
23
25
27

29

xi

Contents

3 Communication in OSS Development Mailing Lists

II

xii

3.1
3.2
3.3

3.4
3.5

3.6

3.7

3.8
3.9

OVerview v o o e e e
Related Work

Methodology
33.1 ResearchQuestions.
332 ResearchMethod
333 DataCollection
334 CardSort e
3.3.5 Aliasing and Identification of Developers

Is the development mailing list only for developers?
3.6.1 What do developers focuson?
3.6.2 Dynamics of Interactions
3.6.3 TheOverall Picture
What is the role of the development mailing list>
3.7.1 Isin the mailing list where all the communication occurs?
3.7.2 Is the mailing list for driving coordination?
3.7.3 Is the mailing list used for peer code review?
3.7.4 Is the mailing list the hub of project communication?
Implications L

Limitations e

3.10 Concluding Remarkso o oL

Exposing Information

CARES: Relevant Engineers

4.1
4.2
4.3

4.4

4.5
4.6
4.7

OVErvIEW . . o o o e e
Methodology

Developer Communication
4.3.1 Finding, Selecting, and Contacting a Relevant Person

Tool Design and Implementation
441 CARES Walk-Through
442 Toollmplementation
4.43 Deployment Considerations
444 Understanding Identity L.
Evaluation
Related Work o

Concluding Remarks L oL

31
32
33
34
34
36
36
37
38
39
41
43
44
44
46
46
46
47
48
48
49
49
50
51

Contents

5 Bellevue: Receiving Changes 79
51 Overview ot e e 80
52 Methodology 81

52.1 DesignPrototyping 81
5.2.2 RITE-based Design Evaluation 83
53 Tool Requirements 84
5.3.1 Recognitionover Recall 84
5.3.2 Visibility of System Status L. 85
53.3 ClearlyMarked Exits 85
5.3.4 Helpand Documentation 85
5.3.5 Help Users Recognize, Diagnose, and Recover from Errors . . . 86
5.4 Design Features and Evaluation 86
5.4.1 Recognizable Changed Files and Blocks 87
542 Visible Changes’ Effect 88
5.4.3 Accessible Historical Details 89
544 EditableCode 91
5.4.5 Contacting Change’s Author 91
5.4.6 Evaluation Debriefing 93
55 RelatedWork 93
5.6 Concluding Remarks 0L L. 95

IIT Generating Information 97

6 Pollicino: Code Bookmarks 99
6.1 Overview e e e 100
6.2 RelatedWorko 101
6.3 Motivation e e e e e e 102
6.4 'The Pollicino Approach 104
6.5 Pre-experimental study design L., 106

6.5.1 ResearchQuestions 107
6.5.2 Pretest-Posttest Design 107
6.6 Results. e 110
6.6.1 Participant Characteristics 110
6.6.2 Comprehension Attitude L. 111
6.6.3 TaskPerformance. 112
6.6.4 Experience with Collective Code Bookmarks 113
6.6.5 Expectations vs. Perception of Pollicino 114
6.6.6 ToolFeedback 116
6.7 'Threatsto Validity 117
6.8 Concluding Remarks o L oL, 118

Contents

7 James: Micro-Blogs 119
71 Overview oo e e e e e e e e e 120

7.2 Approach: Quest = Message + Interactions. 121
7.2.1 Capturing IDE Interactions 122

7.2.2 Micro-blogging within the IDE 123

7.2.3 Quests: Building a Knowledge Base 124

7.3 Implementation 124

7.4 Initial Evaluation 126
741 StudySetup 126

742 DataAnalysis 128

75 Discussion oo e e e e e e 134
7.51 Summaryof Findings. 134

7.5.2 Interpretation of Findings 134

7.5.3 Applicationsof James Data L L. 136

7.6 RelatedWork L 138

7.7 Concluding Remarks L o .. 139
IV Finale 141
8 Conclusion 143
8.1 Contributions 143

8.2 Reflection on the Research Questions 145

83 FutureWork 147
Bibliography 151
Summary 167
Riepilogo 171
Samenvatting 175
Curriculum Vitae 179

Xiv

Part1

Overture

Introduction

LSZthware engineering is a team effort: Sometimes even hundreds of professionals
collaborate to devise, build, evaluate, and later evolve a software system. However,
developers working together face many issues that hinder teamwork: For example,
communication in natural language is ambiguous, human memory cannot remember
all of the project’s details, and keeping track of what everyone is doing even in a
small group is cumbersome. As a result, teamwork in software engineering is time-
consuming and problematic.

Given that most of developers’ time is spent within the Integrated Development Envi-
ronments (IDE), researchers have started tackling difficulties of teamwork in software
engineering by adding collaborative capabilities to such environments. Nevertheless,
the IDE remains mostly a soloist tool that primarily helps individual programmers to
be more effective during the classical edit-compile-run cycle.

With this dissertation, we explore how to better support developers’ teamwork from
within the IDE.

Chapter 1. Introduction

1.1 Background and Motivation

Teamwork is fundamental in the production of software. Ever since the first develop-
ment company was founded, the creation of software has been the result of team ef-
fort [106]. Due to the growing complexity of software systems and the urge for faster
time-to-market, over the years teamwork has become more and more fundamental to
the production of software [80]. Nowadays, having a large development team to create
software is the norm rather than the exception.

Effective teamwork requires successful coordination and collaboration [105]. The ter-
minology used in many disciplines [115] defines coordination as “managing dependencies
between activities,” and collaboration as “peers working together.” Despite the clear ad-
vantages of successful teamwork, the difficulty in coordinating developers and teams and
make them collaborate is one of the main reasons why the software industry has been in
crisis since its inception [105]. Multiple studies have provided evidence of the plethora of
problems emerging in software development when teamwork is not successful. For exam-
ple, among others, Sarma ez a/. presented how a decreased communication between team
members working on related artifacts is connected to defects and software failures [150],
Grinter [67] and Herbsleb and Moitra [86] reported that flawed team allocation may lead
to low willingness to help out other team members, and Nagappan ez a/. found a strong
relationship between an overly hierarchical team structure and post-release defects [124].

An ample body of research in supporting the coordination of developers and teams has
shown that it is “one of the most difficult-to-improve aspects of software engineering” [14].
In fact, team effort in software development spans different aspects, such as facing the
challenge of understanding a program written by someone else and a long time before (i.e.,
program comprehension [22]), maintaining effective communication between dependent
engineers [81], dealing with past design decisions that materially affect today’s work [110],
and coordinating shared goals, priorities, responsibilities, and schedules [137].

Additionally, conducting software projects with teams in more than one location, often in
different continents (also known as global software engineering [89]) is not unusual [87]
and exacerbates the difficulties of handling coordination and collaboration [86, 26], by
posing, for example, cultural barriers, process issues, and different communication needs.

'The computer-supported collaborative work (CSCW) [66] community is focused on co-
ordinated activity that can be computer-assisted and is carried out by groups of collabo-
rating individuals [7]. There is a branch of CSCW research devoted to support develop-
ers’ teamwork, which, over the years, has developed theories on teamwork for software
projects (e.g., [88, 27]) and has proposed a number of solutions to the practical chal-
lenges faced during collaborative software development (e.g., [31, 62]). For example,
researchers proposed systems to help manage the team development process, by support-
ing managers and developers in assignment of work, monitoring progress, and improving

processes [20, 174].

4

1.1 Background and Motivation

Many of the proposed solutions are based on the design and development of group-
ware [95], which is “software that accentuates the multiple user environment, coordi-
nating and orchestrating things so that users can “see” each other, yet do not conflict with
each other” [114]. In particular, given the large amount of time developers spend in the
integrated development environment (IDE) [110], a number of approaches have been pro-
posed to support developers’ teamwork in the IDE. Prominent examples are Jazz [92] and
Mylyn [54]: full-fledged platforms built on top of the IDE aimed at transforming the
IDE into a comprehensive collaboration tool. With respect to the approaches for sup-
porting teamwork, Sarma e al. present a comprehensive review of coordination tools and
defines a framework that classifies those technologies according to multiple coordination
paradigms (such as communication, artifact management, and task management) [152].

CSCW research applied to software engineering has to take into account that developers’
teamwork involves “developing shared understanding surrounding multiple artifacts, each
artifact embodying its own model, over the entire development process” [176]. As a result,
teamwork research in software engineering cannot be artifact-neutral, rather it has to take
into account the artifacts (mainly the source code) being created and evolved and their
embedding in the development process at large.

The concerns we seek to address in this work are that (1) many of the artifact-aware
proposed approaches to support teamwork are heavyweight, thus may disrupt the de-
velopment workflow, habits, and development process in place in a team; and (2) such
approaches are often targeted to a specific type of teams (e.g., very large teams in industrial
context, with a long development history) or require a steep learning curve.

Therefore, we aim at supporting teams independently from the development process
they have in place: For example important improvements in their teamwork have been
achieved by projects implementing agile software development methods [117], such as
SCRUM [157] that propose a flexible, iterative, and early-feedback based approach to
manage collaborative software development. Our goal is to devise solutions that do not
disrupt a development process already in place, but possibly complement it. Moreover,
we aim at improving both distributed and co-located settings. In fact, we argue that ap-
propriate teamwork solutions can be beneficial to both distributed and co-located teams.
In the former, the space for improving coordination is greater, because “distance mat-
ters” [130] and disrupts many mechanisms that function to coordinate the work in co-
located settings [87]; in the latter the actual distance might be different from the per-
ceived ones [140] (a door closed or a different floor, can wipe out the benefits of being
co-located [89]), thus the advantages of appropriate teamwork support can become un-
expectedly important.

Overall, our research goal is to devise software-artifact-aware lightweight IDE additions
that can be seamlessly integrated in the development workflow of a variety of teams and
that provide additional effective support to developer’s teamwork, while requiring little
learning time.

Chapter 1. Introduction

1.2 Research Questions

We build our work to support developers’ teamwork in the IDE with lightweight ad-
ditions around four research questions, which we devised and refined through the years
leading to the completion of this dissertation. We follow the advice of Johansen on the
creation of groupware: “A good rule of thumb is to look for current pains or problems [...]
to identify those things that must be done right for an organization to succeed” [95], thus
we start by investigating the support that is still needed in today’s development practice
and the leeway for improvement. Based on this, we phrase our first research question:

[1] How do developers experience collaboration in teamwork?

While answering this question, our results highlighted that developers’ needs in team-
work mostly regard coordination, which requires a substantial amount of information to
be shared among team members. To achieve successful teamwork practice it is therefore
important that this information (which usually resides only in the head of few develop-
ers) is visible and easily accessible to the team. Our results, thus, reiterate on the con-
cept of information sharing, which has been put in evidence as a key point for successful
team coordination by several studies (e.g., [26, 89, 45]) not only in software engineer-
ing (e.g,, [93, 120]). 'This need for information sharing also closely relates to the need
for awareness—“an understanding of the activities of others, which provides a context for
your own activity” [50], and several researchers presented techniques to help developers
maintaining awareness during the development process (e.g., [91, 24]).

Before diving into investigating approaches and solutions to tackle the retrieval and dis-
play of useful information from existing recorded data and the creation of approaches
to record and share novel information, we also explored the special case of open-source
software development, to derive useful information to guide our research and devise our
approaches. On this, we formulate our second research question:

[2] How is information shared in open source software projects?

After we set the ground for information sharing needs, we tackle two complementary as-
pects of information sharing in teamwork: Exposing information that is already recorded
(e.g., by version control systems) and support the creation of new useful information (e.g.,
for program comprehension). In fact, our results also showed that developers struggle
with certain development scenarios when information is lacking and that, although part
of the necessary information could be retrieved from the traces developers leave in soft-
ware repositories [84], this does not happen in practice. Moreover, a significant portion
of information that would be useful (e.g., the rationale of a change and past program com-
prehension efforts) is not recorded as there is neither good motivation nor a simple way
for developers to record and share it. We structure our effort along two research questions,
trying to devise approaches applicable to most types of development teams and processes:

[3] How can we expose existing information to support teamwork?

[4] How can we aid information creation to support teamwork?

1.3 Research Outline

Table 1.1: Mapping of research questions to chapters

Research question Chapters
[1] How do developers experience collaboration in teamwork? 2

[2] How is information shared in open source software projects? 3

[3] How can we expose existing information to support teamwork? 4and5
[4] How can we aid information creation to support teamwork? 6and 7

1.3 Research Outline

Table 1.1 illustrates how the research questions are addressed in the different chapters of
this work. In the following we outline in mode detail the different parts that compose
this dissertation.

Part I: Prologue

In this first part of the dissertation, we first introduced the background and stated the
research goal for our work, then we presented the central research questions we answer
to approach our goal. After that, we illustrate the research method we follow. Then, in
the following chapters of this part, we present: (1) An exploratory study we conduct to
answer our first research question and that sets the empirical basis of the work that we
present in the rest of the dissertation, and (2) an analysis of how teamwork takes place
in open-source software (OSS) projects, particularly by focusing on the analysis of the
development mailing list, considered the hub of OSS project communication.

Chapter 2 provides a background exploratory work aimed at understanding how devel-
opers experience teamwork and at discovering relevant and actionable problems
developers face when working in team. By reflecting on the outcome of this work,
we want to understand the leeway to introduce effective lightweight improvements
in the IDE. We find that developers’ needs in teamwork mostly regard manag-
ing dependencies between activities, rather than working together concurrently on
the same (sub)task. Central in our study is a renewed emphasis on the impor-
tance of shared information as a key enabler for developers’ teamwork. We use this
concept of shared information in the remainder of the dissertation to address our
research goal of supporting developers’ teamwork from within the IDE (i.e., by cre-
ating lightweight software-artifact-aware extensions of the IDE).

Since our study participants are mostly working in the context of industrial devel-
opment, in which team members have clear duties and roles, we also analyze the
OSS context. This helps us understanding how to be more effective in this scenario
and gives further motivation for our approaches.

Chapter 1. Introduction

Chapter 3 presents an extensive qualitative assessment of the development mailing list
of Lucene, a mature and widely used OSS system. Our aim is to update our knowl-
edge of communication and teamwork in open source settings. We find that core
developers are involved in less than 75% of the technical discussions. Furthermore,
we find that development emails are losing their role as the hub of project com-
munication and that other channels, such as issue repositories, are gaining more
popularity. This increased popularity seems to be mostly due to the closer connec-
tion between the communication means and the software artifacts; this strengthens
the motivation for targeting teamwork solutions in the IDE—the place in which
developers work with these artifacts.

Part Il: Exposing Information

In the second part of our work, we cover one side of shared information for teamwork:
Exposing latent, but existing information to developers in order to support coordination
and program comprehension. To this aim, we propose two lightweight approaches. The
first approach proposes a domain-specific, IDE-embedded, photo-oriented communica-
tion tool, and the second approach critiques and rethinks the current support for receiving
changes in the IDE and uses the result of the first approach to display relevant informa-
tion. In this part, we address our second research question.

Chapter 4 presents a year-long series of surveys and interviews that we conduct to better
understand how and why software developers discover and communicate with one
another. Based on these results, we design and implement a tool, CAREs, to en-
courage developers’ communication with one another and to simplify the process
of doing so. cares displays a context-sensitive array of photos of the engineers
who are most tightly connected to the code in each file currently being edited in
the IDE, lets a developer make an informed choice about whom to contact, and
enables the communication with them. By deploying our tool at a large US-based
company, we find that most users report that it simplifies the process of finding and
reaching out to other developers and offers them a sense of community with their
colleagues, even with those colleagues not currently working on their team.

Chapter 5 presents an analysis of the current IDE support for receiving code changes,
which is the most problematic scenario emerged from our initial exploratory work
(Chapter 2). Analyzing IDE support in the light of widespread usability heuris-
tics, we find that it does not properly support the developers’ information needs on
change history. Based on this, we derive requirements for a lightweight IDE ex-
tension, we provide the design of a tool, BELLEVUE, to realize these requirements,
and we evaluate it with senior developers. Developers report that BELLEVUE has
powerful features and that they would use it frequently in their daily activities.

1.3 Research Outline

Part lll: Creating Information

In the third part of our work, we cover the other side of shared information for teamwork:
To aid developers creating new information that, if shared, can support teamwork. Infor-
mation sharing often does not happen autonomously because developers should dedicate
extra effort and time without seeing immediate benefits. Our idea is to provide quick
and simple mechanisms that require little time and effort to share information and that
can also immediately benefit the information creator. In particular we offer support to
the developers working on a specific task and who often have valuable information re-
siding only in their head, to create new information with the goal of helping themselves
and future developers conducting program comprehension tasks. We propose two ap-
proaches with increasing complexity, yet lightweight, implemented as IDE extensions:
(1) an improved code bookmarking mechanism that support sharing, and (2) a short text
messaging system, automatically enriched with collected interaction data. In the former,
the incentive for sharing information derives from the fact that the bookmarking activity
is done for oneself, and the information sharing is a byproduct of this; in the latter, the
incentive for sharing information derives from the possibility to let other people know
about one’s status. In this part of our work, we address our third research question.

Chapter 6 presents an online survey and interviews with professional software engineers
about their current usage and needs of code bookmarks, and the design and im-
plementation of a tool, PoLLicino, for collective code bookmarking. Based on our
results, we devise PoLLICINO to encourage developers to bookmark artifacts while
investigating the source code and to document their findings with a description
associated to a bookmark, which can be shared with other team members. Con-
ducting an experiment with developers using PorriciNo, we find that it can be
used effectively to (micro-)document developers’ findings, which can be later used
by others in their team.

Chapter 7 presents JAMES, an approach to extend the IDE with a (Twitter-like) micro-
blogging facility. We encourage developers to share the information they build
up while understanding a piece of code, so that it does not evaporate after the
corresponding task is finished. JamEs lets developers write status updates on their
tasks and combines it with interaction data automatically collected from the IDE.
By conducting an empirical evaluation of the proposed approach, we get initial
evidence that developers are willing to micro-blog on their activities and that the
combined interaction and micro-blogging data is helpful in maintenance tasks.

Part IV: Epilogue

In the last part of our work, we take a step back from the different research questions and
studies done. We consider our work as a whole, we present our contributions, and we
outline future research directions we envision.

Chapter 1. Introduction

Chapter 8 concludes this dissertation by discussing our approach and findings, providing
answers to our research questions, summarizing the contributions of this work, and
outlining future research directions.

1.4 Research Method

To conduct our research we use a variety of research methods. We often use a mixed
method approach [36] in order to obtain new insights, or to #riangulate common find-
ings, using different methods. In this way, we acquire a better understanding of the re-
search problems than when using one approach alone. Since all research questions address
people and the way they collaborate in teams, we adopt a range of qualitative methods
also commonly used in the social sciences, such as grounded theory, interviews, surveys,
and case study research [55]. We also follow software repository mining approaches [98].
More details on the research methods of the different studies are provided in each chapter.

Our research is based on two pillars: involving practitioners and devising tools. When-
ever possible we follow the full path from exploring a teamwork problem by understanding
current practices (i.e., doing direct data collection [111] by involving developers through
interviews and surveys), through the design/implementation of a tool to solve teamwork
issues, to the evaluation of the solution with users. This allows us not only to verify the
effectiveness of the proposed solutions, but also to focus on the most critical issues devel-
opers have to face in their daily work. When appropriate (e.g., to study communication
habits in open source software projects), we also conduct indirect data collection [111] by
analyzing the documents written by practitioners and users of a software project.

To encourage repeatability and further research on the same topics, unless confidential
because of the industrial context, we share online the tools we implemented, the data we
collected (both in raw and processed format), and the notes we took during our studies.
All the available material can be found at http://www.st.ewi.tudelft.nl/~guzzi/.

1.5 Origin of Chapters

The main chapters (Chapters 2-7) of this document are small adaptations of papers pub-
lished or submitted to conferences. Since the chapters are small adaptations of the papers
which were written separately, they can be read independently of each other, at the price
of some redundancy in background, motivation and examples. The author of this disser-
tation is the main author of all the publications included as chapters.

+ Chapter 2 is the first part of the paper' “Supporting Developers’ Coordination in
The IDE” [74], accepted for publication in the proceedings of the 18th ACM
Conference on Computer-Supported Cooperative Work and Social Computing
(CSCW 2015). 'The authors of this publication are Guzzi, Bacchelli, Riche, and

van Deursen.

10

http://www.st.ewi.tudelft.nl/~guzzi/

1.5 Origin of Chapters

* Chapter 3 contains our paper “Communication in OSS Development Mailing
Lists” [73], published in the proceedings of the 10th Working Conference on Min-
ing Software Repositories (MSR 2013). The authors of this publication are Guzzi,
Bacchelli, Pinzger, Lanza, and van Deursen.

* Chapter 4is a blended version of the paper “Facilitating Enterprise Software Devel-
oper Communication with CARES” [76], published in the proceedings of the 28th
IEEE International Conference on Software Maintenance (ICSM 2012), with au-
thors Guzzi, Begel, Miller, and Nareddy; and the paper “Facilitating Communi-
cation between Engineers with CARES” [75], published in the companion (tool
demonstration track) proceedings of the 34th International Conference on Soft-

ware Engineering (ICSE 2012), with authors Guzzi and Begel.

* Chapter 5 is the second and last part of the paper “Supporting Developers’ Coor-
dination in The IDE” [74], accepted for publication in the proceedings of the 18th
ACM Conference on Computer-Supported Cooperative Work and Social Com-
puting (CSCW 2015). 'The authors of this publication are Guzzi, Bacchelli, Riche,

and van Deursen.

* Chapter 6 contains our paper “Collective Code Bookmarks for Program Compre-
hension” [77], published in the proceedings of the 19th IEEE International Con-
ference on Program Comprehension (ICPC 2011). The authors of this publication

are Guzzi, Hattori, Pinzger, Lanza, and van Deursen.

* Chapter 7 is an extended version of the paper “Combining Micro-Blogging and
IDE Interactions to Support Developers in their Quests” [79], published in the
proceedings of the 26th IEEE International Conference on Software Maintenance
(ICSM 2010). 'The authors of this publication are Guzzi, Pinzger, and van Deursen.

Apart from these publications the author of this dissertation has (co-)authored the follow-
ing publications, which have been created during the PhD trajectory but are not directly
included in this thesis:

* “Documenting and Sharing Knowledge about Code” [72], published in the com-
panion (doctoral symposium track) proceedings of the 34th International Confer-
ence on Software Engineering (ICSE 2012). The sole author of this publication is

Guzzi.

“Adinda: A knowledgeable, Browser-Based IDE” [171], published in the compan-
ion (NIER track) proceedings of the 32nd International Conference on Software
Engineering (ICSE 2012). The authors of this publication are van Deursen, Mes-

bah, Cornelissen, Zaidman, Pinzger, and Guzzi.

“Supporting Collaboration Awareness with Real-time Visualization of Develop-
ment Activity” [109], published in the proceedings of the 14th IEEE European
Conference on Software Maintenance and Reengineering (CSMR 2010). The au-

thors of this publication are Lanza, Hattori, and Guzzi.

1. This paper has been awarded a Best Paper award.

11

Developers' Teamwork

7;mwork in software engineering is time-consuming and problematic. In this chap-
ter, we explore how to better support developers’ teamwork, focusing on the software
implementation phase happening in the integrated development environment (IDE),
where developers spend most of their time.

Conducting a qualitative investigation, we learn that developers’ teamwork needs
mostly regard coordination, rather than concurrent work on the same (sub)task, and
that developers have problems dealing with breaking changes made by peers on the
same project, but they successfully deal with other scenarios considered problematic
in literature. We subsequently derive implications and recommendations.*

1. This chapter contains the first part of the paper “Supporting Developers’ Coordination in the IDE” [74],
accepted for publication in the proceedings of the 18th ACM Conference on Computer-Supported Coop-
erative Work and Social Computing (CSCW 2015). The authors of this publication are Guzzi, Bacchelli,
Riche, and van Deursen. This paper has been awarded a Best Paper award.

13

Chapter 2. Developers’ Teamwork

2.1 Overview

In the exploratory investigation presented in this chapter we aim at understanding how
developers experience collaboration in teamwork and at discovering relevant and action-
able problems developers face when working in team. To this end, we (1) conduct a
brainstorming session with 8 industry experts who are working on the development of a
popular IDE at a large US-based software company; (2) analyze the brainstorming out-
come and surveyed related literature to derive three development scenarios to form the
guideline for subsequent semi-structured interviews; (3) interview 11 industrial develop-
ers with various degrees of experience and seniority, from 9 different companies, about
their teamwork experience using this guideline; and (4) further analyze the interview data
(also using a card sort [164]) to make the most relevant findings emerge.

'The results of our exploratory investigation show that developers work individually most
of their time and, as a consequence, their needs in teamwork mostly regard managing de-
pendencies between activities, rather than working together contemporarily on the same
(sub)task. In addition, in the brainstorming the experts reiterate on the importance of
shared information for teamwork, and underlined that it is the most valuable space for
investigation. Finally, interviews, on the one hand, confirm that problematic develop-
ment scenarios generated by lack of information (i.e., imperfect information) are realistic;
on the other hand, they also show that developers use effective mechanisms to avoid
reaching those situations, or to quickly solve their consequences. One situation, though,
is troublesome: Dealing with code changes, made by peer developers working on the
same project, that generate errors. This situation emerges as one of the main causes of
frustration in interviewees’ experience of teamwork.

We derive implications from these findings and discuss recommendations for supporting
coordination in the IDE.

2.2 Methodology

In this section, we define the research questions and outline the research method we pur-
sued. In particular, we defined three research questions and divided our research method
(illustrated in Figure 2.1) into three main steps: brainstorming, semi-structured inter-
views, and data analysis with card sorting.

2.2.1 Research Questions

Our investigation on how to better support teamwork within the IDE revolves around
the following research questions:

14

2.2 Methodology

Interview

investigation Memos Transcript

506 Units
from Transcript

Brainstorming
9 Participants

Interview 8 8 E
Guidelines| Observations
& Interviews f
11 Practitioners : @
Literature M]
§ Cart Sort on 562 Units

|
| p—
21 areas of | 56
n |
|
|

£

J
=
=

Selected Areas

Figure 2.1: The research method applied in the first phase

[RQ1] What is collaboration in teamwork for developers?

[RQ2] How do developers face problematic development scenarios generated by imper-
fect information?

[RQ3] How do developers deal with receiving code changes?

Given the exploratory nature of our investigation, not all the research questions were
known in advance. Answering the first research question was deemed necessary since the
inception of this work (to reveal the most important aspects of teamwork for developers,
to contextualize the answer of the subsequent questions, and to understand the leeway to
introduce improvements in the IDE). The second and third questions emerged from the
brainstorming and interviews.

2.2.2 Brainstorming

Empirical studies of software projects have shown that teamwork is at the basis of the
most difficult and pervasive problems of software engineering, and that developers face
a plethora of teamwork problems at different levels [37]. We scoped our initial focus
by tapping in the collective knowledge of eight industry experts engaged in the design
and implementation of development tools (including the main author of this research,
as a researcher intern, and another author). To do so, the participants took part in a
brainstorming session of 60 minutes. Brainstorming has traditionally been used to spur
group creativity with the intention of generating concepts and ideas regarding a specific
challenge [133]. After a brief training on the research context and goal, participants were
divided into two groups. To kickstart the discussion, each group was invited to brainstorm
on the challenges and opportunities revolving around two types of teamwork structures:

15

Chapter 2. Developers’ Teamwork

(1) one-to-one and (2) many-to-many. The two authors participating in the brainstorm-
ing were in different groups, their main role was to keep the focus of the discussion on
the goals and to take notes on the resulting ideas.

After the brainstorm, we consolidated all the generated ideas into a list of 21 investigation
areas. We emailed the list to the brainstorm participants, asking to sort the areas by the
positive impact (based on their experience) that solving problems in those areas would
have on teamwork. Our goal was to focus on the most relevant and promising area(s) to
investigate.

'The brainstorming led to the identification of the following areas for further investigation:
awareness (i.e., knowing other people’s work), work dependencies (i.e., knowing my depen-
dencies and who depends on me), and éreaking changes (i.e., knowing who I might be
impacting negatively with my changes and who impacts me). All these areas are centered
on having certain pieces of information. In fact, for each of them, in the ideal scenario,
all the information would be available to all developers, so that they would have all the
relevant knowledge with which to make decisions (i.c., situation of perfect information).
However, in realistic teamwork environments not having all the information (i.e., a situ-
ation of imperfect information) is the norm [88]. This is consistent with literature, which
reported that developers in teams often have difficulties facing questions such as: “Whar
have my coworkers been doing? “How have resources I depend on changed?” “What informa-
tion was relevant to my task?” “What code caused this program state?” [13, 59, 103, 162].

As a result of the brainstorming and its analysis, we proceed to investigate deeper the role
of (im)perfect information in teamwork, through interviews with professional developers.

2.2.3 Semi-structured Interviews

After the brainstorming, we conducted interviews with professional developers to inves-
tigate their perception of collaboration in teamwork (RQ1), and how they deal with sit-
uations in which not having all the necessary information can be problematic (RQ2). To
facilitate the discussion on the latter, we discussed it in terms of three concrete problem-
atic scenarios generated by imperfect information. We derived the scenarios (detailed in
Section 2.3.2) from teamwork situations commonly described as problematic in literature.

We conducted semi-structured interviews [113], a form of interviews that make use of
an interview guide containing general groupings of topics (such as our scenarios) and
questions, rather than a pre-determined exact set and order of questions. Semi-structured
interviews are often used in an exploratory context, such as ours, to “find out what is
happening [and] fo seek new insights” [175]. We used the first research question and the
scenarios as our guidelines.

We conducted 11 interviews, each one with a different professional software developer
who was part of a team of at least four people. To increase the breadth of our analysis,
we selected developers working in different companies and with varying experience levels
(ranging from few months to more than 25 years) and time spent in the current teams

16

2.2 Methodology

(ranging from few months to 10 years), in various combinations. For example, we inter-
viewed a developer with 25 years of experience who worked in the same team for 10 years,
and another with 21 years of experience who just joined a new team in a new company.
Table 2.1 summarizes interviewees’ characteristics.

Table 2.1: Interviewed developers

Overall In current team Team
experience Time Role ‘ Size

D1 7.5 years | 4.5 months dev 4
D2 10 years 6 years dev lead 7
D3 2 months | 2months junior dev 4
5
4

ID

D4 1.5 years 1.5 years sql dev

D5 20 years 10 years senior dev
D6 25+ years 7 years senior dev 15
D7 21 years 2weeks senior dev 10
D8 25+ years 10 years senior dev 16

D9 1 year 1 year dev 5
D10 15 years 5 years dev lead 5
D11 20 years 6 years senior dev 11

We conducted each 90-min interview on the phone, and transcribed the interviews for
latter analysis. After each interview, we analyzed the transcript and split it into smaller
coherent units (i.e., blocks expressing a single concept), which we summarized by using
either an interview quotation or an abstractive sentence. In addition, the interviewer
kept notes (i.e., memos) of relevant and recurring observations in a document iteratively

refined and updated.

Completed the interviews, we analyzed the resulting 56 memos, and we could answer our
research question on how developers face problematic scenarios generated by imperfect
information (RQ2). 'This answer opened a new question on how developers deal with
receiving code changes (RQ3).

2.2.4 Data Analysis With Card Sort

A card sort is a technique employed in information architecture to create mental models
and derive abstractions from input data [164]. We used this technique to answer our
research question about how developers perceive collaboration in teamwork (RQ1) and
the newly emerged RQ3 about how developers deal with code changes. For each research
question, we conducted a different card sort over the summarized 506 coherent units (of
the transcripts) and the 56 memos. Each card sort was used to organize the units and
memos into groups to abstract and describe developers’ experience and perspective on the
specific research question.

17

Chapter 2. Developers’ Teamwork

Each card sort had three steps: (1) preparation (select card sort participants and create the
cards); (2) execution (sort cards into meaningful groups); and (3) analysis (form abstract
hierarchies to deduce general categories).

Preparation: We created the cards from the 506 transcribed coherent units and the 56
memos, for a total of 562 cards. Each card included: the source (transcript or
memo), the interviewee’s name (if from the transcript), the unit/note content, and
an ID for later reference.

Execution: The main author of this research analyzed the cards applying gpen (i.e., with-
out predefined groups, as they emerge and evolve during the sorting process) card
sort. Categories were developed iteratively, and the sorting was redone multiple
times, as the categories emerged, to strengthen the validity of the final result.

Analysis: After macro categories were discovered in the execution phase, the author who
did the first card sorting and another author of this research re-analyzed the catego-
rized cards to obtain a finer-grained categorization. Subsequently, we use affinity
diagramming to organize the categories that emerged from the card sort. This tool
is a process used to externalize and meaningfully cluster observations and insights

from research, keeping findings grounded in data [116].

2.3 Results

In this section, we present the answers to our three research questions. We refer to infor-
mation from the interviews using the [DX.Y] notation, the X represents the developer,
and the (optional) Y the card (e.g., [D2.03] refers to card number 03 from the interview
with developer D2).

2.3.1 RQ1: Teamwork from the developers' perspectives

According to the interview participants, collaboration in teamwork is defined by a wide
spectrum of activities:

Communication — Collaboration is communication: As D8 said: “I# is all about commu-
nication. If you have good communication, you have good collaboration.” Communi-
cation can be both one-to-one and one-to-many, can be formal or informal, and
goes through different channels. Channels are “conventional,” such as email and
instant messaging (IM), but also domain specific, such as interactions via project
management tools (e.g., source code management systems and requirement tracking
systems) and source code; as D4 explains: “[to communicate] #ypically we use [IM],
but we also have an internal wiki that we use.” [1D4.02, D5.100, D7.09, D8.(01,02)]

Helping each other by sharing information — As D9 said: “Collaboration is just sharing
information and ideas.” In particular, according to interviewees, collaboration means

18

2.3 Results

being proactive and sharing useful information to make it easier for others to com-
plete their work (e.g., “make [the acquisition of information] as easy as possible on the
other co-workers, so that they don’t have to struggle” [D7]). This aspect of collaboration
involves voluntarily sending notifications (e.g., FYI—for your information-messages)
and starting discussions (e.g., “let’s coordinate on this change I need to make”) [D7]. Re-
source sharing involves not only knowledge on the actual source code of the project,
but also information from external resources, for example about new technologies
or coding style; as D9 stated: “We also like send each other things, like, style tips and
like interesting articles about how other companies do things.” [D2.02, D7.(02,03,06),
D9.(01,04,05)]

Knowing what others know — According to the interviewees, collaboration also means
to stay aware of the experts of the different parts of the system (i.e., the domain
experts) and to understand artifacts and code changes done by colleagues. D11 ex-
plains: “[collaboration] is keeping track of what everybody is working on and being
able to know how the different pieces are in place.” According to interviewees, know-
ing what the others know has the aim both of preventing problems and of reacting

faster when they occur. [D2.01, D4.03, D7.04-07, D11.47]

Working on the same goal, doing different things — Overall, developers see collabora-
tion as working toward the same goal (e.g., product releases), by acting in parallel
on different parts of the same project (e.g., working separately on different code
artifacts): “Collaboration is we are all working towards the common goal, but maybe
working on different parts of it, but these components do interact” [D7]; “[Collaborating
meant] we divided up the work [...], we went off these directions, and as things started
to merge together, we go on [merging] on a case by case base” [D3]. [D1.02, D3.01,
D4.01, D7.01, D9.(02,06)]

2.3.2 RQ2: Dealing with imperfect information in teamwork

Imperfect information emerged from the brainstorming and its analysis as the issue cre-
ating most difficult situations in teamwork. Our second research question seeks to un-
derstand how developers deal with these situations, in order to define actionable areas for
supporting teamwork.

To investigate how developers deal with imperfect information, we outlined three con-
crete teamwork scenarios in which the existence of imperfect information can generate
problems. The scenarios were derived from teamwork situations commonly described as
problematic in literature.

Inefficient Task Assignment

Scenario. One developer is assigned to a task, while another is already working on a
similar or related task. This introduces inefficiencies in the team.

19

Chapter 2. Developers’ Teamwork

Related literature. Software engineering researchers have recognized task partition and
allocation as important endeavors in the context of teamwork [102, 105]. If dependencies
and common traits among tasks are not correctly handled, developers can reduce their ef-
ficiency and generate unexpected conflicts [85]. Literature suggests different techniques,
with varying results, for efficient task assignment (e.g., [30, 52]). In particular, the assign-
ment of bug fixes (or new features to implement), from a repository of issues or requests
to the most appropriate developers, is one of the main instances of task assignment in-
vestigated by researchers [1]. Researchers reported that bug triaging is a time consuming
task, which requires non-trivial information about the system, and that often leads to
erroneous choices [96]. A number of techniques has been devised to tackle the triaging
problem, e.g., [118, 94].

Interviews’ outcome. Although considered realistic, this scenario was not seen as a core
issue by interviewed developers. In fact, the task assignment processes of teams are in
general effective to prevent the problematic scenario to take place. In some teams super-
vising figures (e.g., managers) do the task assignment (e.g., “[a new task] goes fo a manager,
who decides whom to assign” (D8], and “the boss will tell you about a task [to do]” [D9]); in
the other teams, tasks are divided during team meetings, with various degrees of devel-
opers’ interaction (e.g., “we are using daily SCRUM meetings” [D1], and “we break up the
code, and if the [task] is in your code, it’s yours” [D5]).

Simultaneous Conflicting Changes

Scenario. Developers find themselves in a situation where there is a merge conflict (i.e.,
when different people are touching the code at the same time).

Related literature. A recent significant effort in the software engineering research com-
munity is devoted to detect concurrent modifications to software artifacts (e.g., [82, 83,
141, 151]). In fact, developers making inconsistent changes to the same part of the code
can cause merge conflicts when changes are committed to the code repository, which
leads to wasted developers’ efforts and project delays [24, 99, 152]. Grinter conducted
one of the first field studies that investigated developers’ coordination strategies [67].
She observed that it is sometimes difficult for developers (even for expert ones) to merge
conflicting code without communicating with the other person who worked on a mod-
ule. Later, de Souza ez 4/, in an observation of the coordination practices of a software
team at NASA, observed that developers in some cases think individually trying to avoid
merging, while in others they think collectively by holding check-ins and explaining their
changes to their team members [43].

Interviews’ outcome. Our participants reported only rarely encountering a situation
where more than one person was working on the same file at the same time (“we don’t
run into those situations a lot” [D2]). Most of our participants’ teams were organized to
make developers work on different parts of the system, with a key person in charge of
coordinating development to prevent those issues, typically a lead developer or an archi-
tect. Some participants also used technical solutions to avoid concurrent edits (e.g., “We

20

2.3 Results

put a lock on [the file], so if does not get edited [by others]” [D1]). When a merge con-
flict happens, our participants reported resolving it quickly and easily (e.g., “The best and
quickest solution you have is to undo, we roll back and [fix it].” [D1]; “typically, it is solved
really quick” [D2]), and often using merging tools (e.g., “we don’t have to do much manu-
ally” [D8]). Although automatic merging was used, our participants also explained that
they manually checked each conflict, revealing that it is not entirely trusted.

Breaking changes

Scenario. A developer/team changed some parts of source code. This introduces a change
that breaks the code of another developer/team.

Related literature. Researchers consider breaking changes problematic, not only for de-
velopers who receive the change and have to understand and adapt their code, but also
for developers who are making a change that might break the functionalities of many
clients [2]. Literature presents investigations (e.g., [44]) on the effect of dependencies
that break other people’s work, and proposed methods to address the problems they cause,
at the scale of both single system (e.g., [19, 177]) and ecosystems (e.g., [76, 147]).

Interviews’ outcome. The reaction of the participants were different according to the ori-
gin of the breaking changes. When the origin of the breaking change is exzernal to the
company or, more in general, when developers feel they have neither space for interven-
ing nor displaying their disappointment to ‘the breaker’, they accept the breaking changes
with no strong negative emotions but rather acceptance. This happens even when resolv-
ing the issue might take a vast amount of time (e.g., “more than a year” [D2]) or have a
high economical cost (e.g., “¢his [break] was costing the company many thousands of dollars per
minute.” [D7]). However, when the origin of the breaking change is internal to the com-
pany/team, it causes strong negative emotions (e. § frustration). These emotions seem to
be due to the long time spent by the developer in finding the cause of the issue, which is
then resolved relatively quickly (e.g., “I spend a couple of hours to find out the error [...] fixed
in 5 minutes.” [D3] and “I spent a day fixing the problem I spent three days finding.” [D8]).
Breaking changes generating syntactical errors were not considered an issue, because they
could easily be spotted and fixed. While time is not an issue for external changes, it is
for internal ones. This seems to be a direct consequence of the lack of coordination effort
that was expected from the breaker [D1]. Some developers call for an effective way to
deal with receiving breaking changes, when the origin of the break is internal to the team.
For example, some would prefer stricter rules to avoid internal breaking changes: “pegple
breaking other’s people code [...], I'd like to see management being more rigorous about it” [D8].

2.3.3 RQ3: Receiving a code change

Managing internal breaking changes is the most problematic scenario emerged from RQ2;
our third research question seeks to analyze how developers deal with changes made by

21

Chapter 2. Developers’ Teamwork

peer developers working on the same project. In the following we answer this question
by describing how interviewed developers generally deal with receiving code changes.

When developers are notified of a change in the codebase (e.g., via automatic emails from
versioning systems), they decide to investigate it mostly to discover whether it has an
impact on their own code. Less frequently, their aim is to update/build their own knowl-
edge of the codebase with information such as code expertise and code ownership. When
this process leads to discovering that the changed code has an impact on their own part,
developers proceed to analyze the change impact. In the few cases in which a change has
been made to their own code, developers investigate it.

When developers discover an unexpected error (or an alteration in the behavior) caused
by a change made by someone else, their most prominent complaint regards the lack of
coordination that they feel should have accompanied the change (e.g, they would have
expected an “heads up” email). However, in the case of clear syntactic errors (e.g., compi-
lation errors, or runtime errors generating a stack trace), developers do not feel as much
frustration as in the case of semantic errors (e.g., caused by a library that changes some
sorting order, therefore impacting the dependent code) or unclear alteration in the be-
havior. In fact, semantic errors require developers to perform a deeper and more time-

consuming analysis to understand their cause [D3.(47,49), D8.(28,29,36)].

Once they find the cause, then they can proceed with measuring the impact on their
code by, for example, measuring how many files or lines of code needs to be changed (as
D8 explained: “I measure the impact of a change [looking at] how many files/lines it affects.
A few? Hundreds?”). Usually, the developers receiving the breaking change are the ones
automatically responsible of adapting and fixing their own code. However, when a change
has a deep impact on the codebase, which requires more information about the change
(e.g., the rationale of the change) and the codebase, developers usually want to get in touch
with the author.

When the change introduces a defect, developers receiving it decide whether filing an
issue report against the change to the change author (e.g., D5 explained: “if zhe bug is
in your code, it’s your bug to fix. [...] I send a bug request.”) [D3.(06,09,31), D5.06], or,
occasionally, if the fix takes little time, directly changing the faulty code to fix it (D3 said:
“If it’s small I just fix it and notify the author”) [D3.59, D5.107, D8.38, D9.60]. The time
that gets spent fixing the problem in the code does not seem to bring frustration per se
(e. y “Diagnosing is almost always harder than to fix it. With the majority of bugs, once you
know where the problem is, it’s easy fo fix” [D8.29]). The rationale to fix it directly is that
the developer already has all the necessary information to fix it, which would require time
to share with the author of the faulty code.

Some developers mentioned that the lack of testing contributes to faulty changes being
committed to the repository (e.g., “we are really bad at testing |...], you pull and you get a file
you try to run and it fails” [D9], “If I'd tested it better, I wouldn’t have put [this code] in the
build” [D5]). Nevertheless interviewed developers also warned that running all the tests
for each change would be too expensive (“all tests, to run them all, it would take 3 wecks.

22

2.4 Interpretation, Implications and Recommendations

Unfeasible to take 3 weeks for each check in” [D6]), that testing working on a setup might
unreliable on a different one (“we test and it’s all good, but then they test on their end and
it might break [...]. It something to do with customizing.” [D2]), and that many semantic
changes could not be detected by tests (“even if there are tests that check [most] things, youd
still end up with edge cases. [...] You still need to see that you break, and then react, and then

fix it” [D6]).

2.4 Interpretation, Implications and Recommendations

In this section, we explore the meaning of the data gathered from our three research
questions and discuss its implications and ways in which collaboration in teamwork can
be improved.

2.4.1 Teamwork Collaboration is Coordination

The terminology used in many disciplines [115] defines coordination as “managing de-
pendencies between activities” and collaboration as “peers working together” In this light,
what participants consider as collaboration in teamwork is mostly coordination, needed to
organize the individual work toward achieving a shared goal.

By analyzing the data from the interviews, coordination emerged—after individual work—
as the dominant level of interaction when working in team, rather than collaboration. In
particular, the interviewed developers interact as follows:

1. Developers spend most of the time doing individual work;
2. Most of developers’ interaction is to coordinate (e.g., through daily stand-ups);

3. Collaboration happens infrequently and on a need basis (e.g., with (bi-)weekly sprint
meetings).

4. Most of the time, the intention of collaboration is coordination, which leads to indi-
vidual work eventually.

Both collaboration and coordination are tied to the level of interaction among the devel-
opers working together.

By abstracting the explanations of interviewees, we model developers’ interaction in three
levels (from lowest to highest degree of interaction): individual work, coordination, and
collaboration. Individual work corresponds to no interaction (e.g., a developer working
on her own), while collaboration means developers working together at the same time
on the same (sub)task (e.g., pair programming). Coordination is an intermediate level of
interaction, where developers interact but are not working together on the same (sub)task
(e.g., during task assignment).

An activity is a working state that can be placed as a point on the corresponding level
of interaction. In a set of activities done to accomplish a certain subtask (i.e., ‘working

23

Chapter 2. Developers’ Teamwork

situation’), there can be steps between different levels of interaction, for example, steps
from individual work to coordination (e.g., “[when a file is locked] we just [ask]: hey whar
are you working on? And then when you think I can do it?’ to the author.” [D2.10]), and from
coordination to collaboration (e.g., “sometimes we [...] get together and talk about [similar
things], then realize how we can do these things together and do them together” [D11.45]).
Figure 2.2 depicts our model of developers’ interactions.

collaboration --------------14 ---

interaction

coordination ---
level

individual work ---

A1l A3

working situation working situation
WS1 WS2

Figure 2.2: Model of developers’ interactions in working situations

Figure 2.2 shows two working situations: In the first (WS1), a developer doing individual
work asks another developer to make a change in their code (e.g., “I asked one of the guys:
[...]1 I need a method that would return [a special object], can you write [it] for me?’ He was
able to write [it] and knew exactly where to go” [1D3.(09,15)]). This requires going from
individual work (A1) to coordination (A2) when asking to make a change to the other,
and back to individual work (A3) when they reach an agreement, without reaching a state
of collaboration. In the second situation (WS2), two developers decide to work together
on a subtask. 'This requires moving from individual work (A4) to coordination (A5) when
they decide, then to collaboration (A6) for the actual work.

'The steps between the different levels of interaction in the model are not discrete: In-
termediate interaction levels can be reached. For example, while the activity of task as-
signment can generally be placed on the coordination level, when the task assignment is
discussed together in a meeting it lays on a level between coordination and collaboration.

Implications and Recommendations

Our participants report that most of their time is spent in doing individual work, while,
unexpectedly, they report spending very little time on working together on the same sub-
task (i.e., collaborating). A direct consequence is that interactions revolving around coor-
dination are a more actionable area, with better research opportunities and with greater
potential impact, than areas considering purely the broader collaboration aspects. For

24

2.4 Interpretation, Implications and Recommendations

example, better support for communication would have more relevance than tools for
concurrent real-time coding.

In addition, techniques for supporting information sharing among developers should take
into account that developers spend most of their time doing individual work. Consid-
ering that most of this individual work is spent in the development environment (the
IDE) [110], tools that support coordination within the IDE have the potential, at least,
to be used more frequently and to not require developers to drastically change their work-

ing habits.

2.4.2 The Role of Information

Information is what developers need to make the step from one level of interaction to
a higher one (Figure 2.3). Developers can already have this information, or they can
gather it, for example, through communication or by understanding code changes done
by colleagues.

collaboraton -------- - - - --------

information /
interaction

coordinaton ---------------()----------------

level))
information

individual work ----------{J)--------------------

Figure 2.3: The role of information in developers’ interaction

In an ideal setting, developers would work in a situation of perfect information. This
would allow seamless transitions from one level of interaction to the higher one. Never-
theless, developers do not have all the information necessary to complete a subtask, thus
making the step harder to do.

'The importance of information sharing for teamwork, which also emerged from our brain-
storm (Section 2.2.2) as the most valuable space for investigation for the aim of our study,
has been studied by researchers over the years from different angles. For example, Cataldo
et al. introduced the notion of socio-technical congruence and provided evidence that when
developers share information when making changes in dependent software components,
they complete tasks in less time [29]. Other researchers similarly showed that missing
information correlates with coordination problems and project failures [28, 150, 108]. Ko
et al. analyzed the information needs of developers in collocated teams and found they

25

Chapter 2. Developers’ Teamwork

have difficulties in answering questions related to information about colleagues’ work and
software component dependencies [103].

From our interviews, we observed that developers know how to deal with the investigated
scenarios involving imperfect information, except when they receive an internal breaking
change. This is connected to how easy it is to access the information they need. Analyzing
the ways developers/teams successfully deal with a condition of imperfect information, we
see that the solutions to the problematic scenarios require information to be shared in two
ways: (1) via direct communication (e.g., during a meeting), and (2) by making it visible
(e.g., in a tool).

Table 2.2: Information in investigated scenarios

. Needed Information
Scenario
Communicated Visible
Task assignment v v
Simultaneous changes X v
Breaking changes X X

Table 2.2 shows that for manageable scenarios, the needed information is communicated
orvisible. In the case of task assignment, inefliciencies are avoided by centralizing the task
assignment to the team leader, who has all the information “visible” in mind, or by con-
ducting group meetings in which the information is communicated. Other researchers
report evidence of this behavior: Begel e a/. described that industrial program managers
and developers have regular team meetings for effectively prioritizing bugs and to coor-
dinate component completion schedules [14]; and Guzzi ef al. reported that when open
source software developers meet in person at conferences manage to advance the coor-
dination of their projects better [73]. In the case of simultaneous changes that were not
avoided with the team policies (i.c., through modularization and technical locks), the in-
formation necessary to solve the merge conflict is immediately visible through the merge
tool. de Souza and Redmiles similarly reported that parallel development scenarios they
analyzed were not problematic because configuration management tools can handle most
of the situations involving merges [44]. In the case of breaking changes, we see that the
needed information is neither communicated in time nor easily accessible/visible. As a
result, developers spend long time in finding the information they need to coordinate. A
number of previous studies reported that breaking changes are due to missing information
and lead to significant loss of time (e.g., [147]).

Implications and Recommendations

Our analysis showed that the efforts spent in gaining information, which developers are
missing due to lack of coordination within the team, are a source of negative emotions.

26

2.4 Interpretation, Implications and Recommendations

'This underlines the importance that information should be shared (e.g., communicated)
and accessible (e.g., visible via a tool) when working in a team.

Researchers proposed a number of tools (e.g., Palantir [151] and FASTDash [16]) to de-
tect merge conflicts and tested them in laboratory settings with seeded conflicts. These
tools helped developers to spend less time to resolve conflicts and encouraged communi-
cation. An interesting venue for future research is to verify the overall impact of these tools
on teams whose structure reflects the software architecture, where participants reported
this problem to be less frequent.

In addition, in most of our investigated scenarios, we observed that—unexpectedly—
developers already had means to deal with the missing information, or did not consider
these scenarios as issues, thus making them less worth of further investigation. On this
note, the results of the study by deSouza and Redmiles put in evidence the significant
differences that two unrelated companies have when they deal with the management of
dependencies and the underlying information sharing [44]. This suggests that what is
considered a critical issue for a company/project could be not important for another. As
a consequence, it is important, when investigating potential problems generated by lack
of information, to first study whether and how the target developers already employ any
method to supply this missing information.

What emerged as a fertile area of research is investigating ways to support developers
dealing with breaking changes. In fact, developers do not currently have an easy way to
find and access the necessary information. Particularly important is the case of internal
breaking changes because in this situation developers feels the strongest negative emo-
tions, in view of the fact that the needed information could have been made available by
their colleagues.

2.4.3 Code Changes and Dependencies

As de Souza and Redmiles explained: “it is not possible to study changes in software
systems without studying dependencies” [44]. In this light, our analysis of coordination
and receiving changes is related to the work by Begel ¢# a/. [14] and by de Souza and
Redmiles [44].

Begel ez al. investigated coordination and dependencies in large-scale software teams at
Microsoft. They conducted a survey of Microsoft developers, testers, and program man-
agers to see how these coordinate on dependencies (e.g., tasks) within the same team and
among different teams. The study reported that most Microsoft developers (63%) min-
imize code dependencies to mitigate problems with dependencies. This is similar to our
interviewees who use software modularity to avoid inefficient task assignment or merge
conflicts. Similarly to our findings, Begel ez al. also reported that lack of communication
causes most coordination problems, and that developers keep track of items they depend
on by using emails. Besides these similarities, the different context let emerge interest-
ing differences, particularly in the dichotomy between internal and external dependencies

27

Chapter 2. Developers’ Teamwork

and changes. Begel ez al. found that internal dependencies are managed by “send[ing] an
email and pay[ing] a personal visit to the person blocking their work,” [14] and surveyed
developers do not report any negative emotion. Our findings underlined that, in the case
of internal breaking changes, the process preceding the communication with the per-
son blocking the work (i.e., finding the source of the problem) is cause of dissatisfaction
and frustration, because the expected communication did not take place. This situation
may be problematic for the productivity of the team. Moreover, the two studies present
different definitions of externa/ dependencies and breaking changes: (1) According to
Begel ef al., dependencies are ‘external’ if in different teams within the same company,
with which it is possible to communicate personally; (2) according to our findings, de-
pendencies are ‘external’ if in different companies, with which it is extremely difficult to
communicate. In the former case, Begel ez al. reported that developers have to maintain
personal communication with external teams to remain updated of changes, and the exis-
tence of unexpected changes from external teams generates anxiety. In the latter case, our
interviewed developers did not report anxiety (even though unexpected changes happen
and lead to loss of time), rather acceptance of the situation as part of the natural business
model of the industry.

In their work, de Souza and Redmiles investigated the strategies software developers use
to handle the effect of software dependencies and changes in two industrial software de-
velopment teams [44]. 'The two teams deal with internal dependencies according to our
definition. One team (MVP) allows parallel development and the modularity of the sys-
tem is low, the other team (MCW) focuses on modularity by using a reference architec-
ture. Our interviewed developers have complains similar to those in the MCW team,
and these teams have strikingly similar practices: In both studies these teams avoid inef-
ficient task assignment with modularity, their developers have problems identifying their
impact network (they do not know who is consuming their code or whether changes can
modify the component they depend on) and are only interested in changes in particular
parts of the architecture that impact them. Moreover, both developers in MCW and our
study have expectation that major changes are accompanied by notifications about their
implications, and their are also worried about receiving too many notifications. On the
other hand, the MVP practices correspond to the ideal scenario for our interviewed devel-
opers: Emails are sent to update about changes, everybody reads the notification emails
just to remain updated, management urge developers to notify about breaking changes
and the latter even suggest courses of action to be taken to minimize the impact. As a
result, despite the parallel development, coordination in MVP seems smoother than in
our cases. One important feature of MVP, mentioned by de Souza and Redmiles, is that
most developers have worked on the project for at least two years, and their experience
could also be the cause of the difference with MWC, which is a younger project. Our
results, though, do not seem to corroborate this hypothesis, since interviewed developers
reported similar issues regardless of age of project and their experience. Our additional
analysis of code changes looks at coordination from a low level perspective: Through it,
we additionally found that most of the information developers need to coordinate would
be available, but it is not easily accessible in their working environments.

28

2.5 Concluding Remarks

Implications and Recommendations

Our study confirms that lack of coordination leads to late discovery of unexpected errors or
behaviors in the code, followed by a time-consuming analysis to find the code changes that
are the source of the error/behavior. This calls for better support for coordination when
developers make and receive changes (e.g:, a tool that informs developers automatically
whether a change they are making has an impact on someone else’s code), and for when
they need to investigate a change to determine its impact. Although research has been
conducted on these topics (impact analysis and support for change understanding), they
are still open issues and research prototypes have not yet reached widespread usage in
the IDE. Our findings, in line with previous studies, underlines the substantial practical
relevance of further research in these areas.

The differences between coordination practices between our interviewees’ teams and the
MVP team described by de Souza and Redmiles [44] are an interesting venue for fu-
ture research. In fact, compelling is the hypothesis that the modularity adopted by our
interviewees’ teams and MWC could create asymmetries in engineers’ perceptions of de-
pendencies [68], thus being at the basis of the differences and generating the reported
coordination issues.

By investigating how developers currently handle received code changes in the IDE, we
realized that they do many tasks manually, and spend a lot of effort to collect and remem-
ber change information. The data that would help developers in their tasks is available
(e.g., historical data recorded by the versioning systems), but not easily accessible. This
situation implies that better support for integrating change information in the IDE is
needed, and that it would have impact on software development and coordination.

2.5 Concluding Remarks

In our study we explored how to support developers’ collaboration in teamwork. We fo-
cused on teamwork in the software implementation phase, which takes place in the IDE,
and we conducted a qualitative investigation to uncover actionable areas for improve-
ment. We identified internal breaking changes as one of the most important areas for
improvement, because current IDE support for receiving changes is not optimal.

'This chapter makes the following main contributions:

1. A qualitative analysis indicating that teamwork needs mostly regard coordination,
that developers are able to face scenarios considered problematic in literature, and
that dealing with breaking changes is hard, but it only generates frustration if the
breaker is internal to the project.

2. Recommendations on how to improve collaboration in teamwork in the software
implementation phase, such as to focus on interactions revolving around coordina-
tion rather than on collaboration on the same (sub)task.

29

Communication in OSS
Development Mailing Lists

Open source software development teams use electronic means, such as emails,
instant messaging, or forums, to conduct open and public discussions. Researchers
investigated mailing lists considering them as a hub for project communication. Prior
work focused on specific aspects of emails, for example the handling of patches, trace-
ability concerns, or social networks. This led to insights pertaining to the investigated
aspects, but not to a comprehensive view of how developers communicate. Qur ob-
jective is to increase the understanding of development mailing lists communication.

We quantitatively and qualitatively analyze a sample of 506 email threads from the
development mailing list of a major open source software project, Lucene. Our in-
vestigation reveals that implementation details are discussed only in about 35% of
the threads, and that a range of other topics is discussed. Moreover, core developers
participate in less than 75% of the threads. We observe that the development mailing
list is not the main player in open source software project communication, as it also
includes other channels such as the issue repository.

1. This chapter contains the paper “Communication in OSS Development Mailing Lists” [73], published in the
proceedings of the 10th Working Conference on Mining Software Repositories (MSR 2013). The authors
of this publication are Guzzi, Bacchelli, Pinzger, Lanza, and van Deursen.

31

Chapter 3. Communication in O8S Development Mailing Lists

3.1 Overview

Open source software (OSS) development teams use electronic means, such as emails,
instant messaging, or forums, to communicate. Conversations in OSS settings are typ-
ically conducted in an open public manner and are stored for later reference [17], thus
OSS communication repositories offer a rich source of historical information, which can
be used, for example, to observe software processes [158], to understand software devel-
opers communication dynamics [155], and to improve development practices [159].

Among the many OSS communication repositories, researchers focused on mailing lists
(e.g, [121, 18, 145]), as they have been—historically—the communication hub at the
inception of successful OSS systems, such as Linux [144] and the Apache server [121].

Nevertheless, we are lacking a clear, updated, and well-rounded picture of the communi-
cation taking place in OSS development mailing lists. We only have either abstract and
outdated knowledge (e.g:, obtained as a side effect of the analysis of OSS projects such as
Linux [144]), which does not take into account the recent shift of interest to new social
platforms (e.g., GitHub, J1ra), or a very specialized understanding (e.g., regarding specific
information, such as the code review process [145]), which does not take into account all
the information we can distill from development emails.

Our goal is to increase our understanding of development mailing lists communication:
What do participants talk about? How much do they discuss each topic? What is the
role of the development mailing lists for OSS project communication? Answering these
questions can provide insights for future research on mining developers’ communication
and for building tools to help project teams communicate effectively.

To answer these questions, we conduct an in-depth analysis of the communication tak-
ing place in the development mailing list of one major OSS software system, i.e., the
Apache LuceNE project. We set up our study as an exploratory investigation. We start
without hypotheses regarding the content of the development mailing list, with the aim
of discovering the topics of communication, the prominency of implementation details,
the position of developers, and the role of the development mailing list as communication
channel. To that end, we manually inspect and classify 506 email threads comprising over
2,400 messages, we manually resolve the aliasing among more than 310 email addresses,
and focus on gaining a holistic view on the information exchanged in the mailing list.

Our results show that, although the declared intent of development mailing list commu-
nication is to discuss project internals and code changes/additions, only 35% of the email
threads regard the implementation of code artifacts. Instead, development mailing list
communication also covers a number of other topics, such as social norms and infrastruc-
ture. Also, project developers participate in less than 75% of the overall threads and they
start only half of the discussions. Finally, the development mailing list is not the sole
player in OSS project communication: It is complemented by other channels (e.g, issue
repository) from which it is disconnected.

In this chapter, we make the following contributions:

32

3.2 Related Work

* A coding system that is reusable for analysis of developer communication in general,
and mailing lists in particular (Section 3.4).

* Anassessment of relative frequency of topics in developer mailing lists (Section 3.5).

* Anassessment of relative participation of developers in developer mailing lists (Sec-

tion 3.6).

* A qualitative evaluation of the role of development mailing list for project commu-
nication (Section 3.7).

Based on our findings, we analyze and discuss the implications for researchers and prac-
titioners (Section 3.10).

3.2 Related Work

By analyzing OSS development mailing lists, researchers provided insight in social aspects
of software development. For example, researchers exploited email metadata (e.g., author,
date, and time) to conduct quantitative social analyses: Bird e# a/. proposed techniques to
mine email social networks [17], and investigated social interactions in OSS projects [18];
Ogawa et al. visualized social interaction among participants in OSS projects [129]; and
Shihab e# a/. showed that mailing list activity is related to source code activity [159].
Researchers also quantitatively analyzed the fexs of emails: Pattison ez a/ studied the
frequency with which terms of software entities are mentioned in emails, and correlating
it with the number of system changes [136]; Baysal and Malton searched for a corre-
lation between discussions and software releases [10]; and Bacchelli ez a/. analyzed the
correlation between email discussions and software defects [4].

Most of the aforementioned work is quantitative and based on the premise that devel-
opment mailing list communication mostly regards the implementation of source code
artifacts. This assumption derives from the knowledge about OSS systems provided by
seminal literature such as Zhe Cathedral and The Bazaar [144]. Few studies analyzed the
content of OSS mailing list communications and mostly focused on specific traits of the
communication. Gutwin ez a/. read mailing list archives to study group awareness in
distributed development [70]. Rigby ez a/. analyzed mailing lists to study the OSS code
reviewing process (e.g., [145]). Mockus e al. studied the Apache Server development
process finding that the mailing list play a central role for communication, coordination,
and awareness [121]. We want to obtain a comprehensive knowledge of communication
in development mailing lists of OSS projects.

Our work is also related to data quality: By knowing what data is available in mailing
list repositories, we can devise better techniques for extracting relevant, unbiased, and
comprehensible information. In this vein, researchers have studied bug repositories [179]
and code repositories [100] to understand what information is more relevant. They also

analyzed the impact of data quality on mining approaches and analyses (e.g., [126]). In

33

Chapter 3. Communication in O8S Development Mailing Lists

the context of mailing list data, Bettenburg ¢ a/. showed the risks of using email data
without a proper cleaning pre-processing phase [15].

3.3 Methodology

To explore and understand the communication taking place in development mailing lists,
we performed an in-depth analysis of the development mailing list of Apache LUCENE,
an OSS information retrieval framework and API.

We chose LuceNe for the following reasons: (1) LUCENE is a mature project with a large
user base and an established community of developers; it is a top-level Apache project
since 2005, and it has been broadly recognized for its role in the implementation of
search engines. (2) It was started in 1999 by a single developer, who initially guided
it as a “benevolent dictator”; in 2001, LUCENE joined the Apache Software Foundation
and became a foundation, with a well-organized, hierarchical governance structure and
formalized policies.” (3) The previous work describing the communication occurring in
the development mailing list of OSS projects (e.g., [144, 107]) dates back to the early
2000s, it is high-level and focuses on Linux, which is more of an exception than the rule
in OSS projects [144]. LuceNE’s organizational structure sets it apart from the benevo-
lent dictatorship of Linux; by choosing LUCENE we aim at having an updated knowledge
of contemporary developers’ communication in the development mailing list in a more
common OSS setting. (4) LuceNE has a publicly archived development mailing list with
a declared intent: It is “wbhere participating developers of the Java Lucene project meet and
discuss issues concerning Lucene [...] internals, code changes/additions, ete®

3.3.1 Research Questions

To understand the current usage of an OSS development mailing list and how OSS de-
velopers communicate through this channel, we conduct our investigation to answer the
following four research questions:

[RQ1] What topics are development mailing list participants talking about?

[RQ2] How often do participants talk about each topic> How prominent are implemen-
tation details?

[RQ3] Is the development mailing list just for developers? What do developers focus on?

[RQ4] What is the role of the development mailing lists for the communication in the
OSS at large?

2. http://www.apache.org/foundation/
3. http://lucene.apache.org/core/discussion.html

34

http://www.apache.org/foundation/
http://lucene.apache.org/core/discussion.html

3.3 Methodology

Data Collection

3
Mailing
list

m

Discussion
Threads

i

archive
Lucene
Sep 2001 website
13,000 111,366 Nov 2012
@ Data Analysis Aliasing and
1,000
Developers

Email Lucene
:> authors committers

Catalogue
of
categories

Validation Outcome

Figure 3.1: The mixed approach research method applied.

35

Chapter 3. Communication in O8S Development Mailing Lists
3.3.2 Research Method

WEe followed the approach depicted in Figure 3.1: We modeled all the mailing list emails
(Point 1), reconstructed threads of discussion and removed auto-generated ones (Point 2),
and randomly extracted 1,000 threads (Point 3). Using open card sort [164] (see Sec-
tion 3.3.4), the first two authors of this research manually analyzed together the threads
and extracted categories of discussion (Point 4). To ensure the integrity of the extracted
categories, they sorted threads several times and iteratively refined the catalogue (Point 5).
During the cart sort, they took notes about the mailing list, its role, and the communi-
cation occurring in it (Point 6). We validated the resulting catalogue of categories us-
ing closed card sort (Point 7). We complemented the automatically collected email data
by resolving aliases and by adding information about which participants were developers
(Point 8). Finally, we conducted a statistical analysis on the categorized threads (Point 9).

3.3.3 Data Collection

In our previous work, we presented MILER, a toolset to explore email data [5]. It crawls
the website of MarkMAIL* an online service for searching mailing lists. MArRkMaAIL
has two drawbacks: It obscures email addresses for privacy reasons, and it does not al-
ways reconstruct email threads. To correctly recognize participants, their roles, and the
discussions threads, we extended MILER to collect, extract, and model data from a more
complete source than MarkMair: MBox files. This implies challenges also mentioned
by Bettenburg ez al. [15].

Extracting messages: We wrote an MBox importer tool in PyTHON to download and
model emails. Although the PyTHoN library mailbox’ gives reliable support for
loading the different messages from MBox files, we had to write an algorithm to
automatically correct wrong date formats.

Reconstructing threads: An email discussion thread is a set of messages that are logically
related, i.c., replies in the same chain of emails. To reconstruct discussion threads,
we use two complementary heuristics: (1) Whenever possible, we consider the
‘message-1D’ (a globally unique identifier for emails) and ‘in-reply-to’ (used to spec-
ify the ‘message-ID’ of the email that it is replying to) fields to reconstruct threads.
(2) Otherwise, we consider email subjects. By manually inspecting the Lucene
mailing list, we found that participants are conservative in keeping the subject con-
sistent with the discussion: When a thread changes topic, participants accordingly
modify the subject of the subsequent emails. Thus, if two emails have the same
subject, or two slight variations of it (e.g., they are prefixed by ‘Re:’), we place them
on the same thread, using the timestamp for sorting.

Removing automatically generated emails: Many OSS projects forward a number of au-
tomatically generated emails to development mailing list, for example, from the

4. http://markmail.org
5. http://docs.python.org/2/library/mailbox.html

36

http://markmail.org
http://docs.python.org/2/library/mailbox.html

3.3 Methodology

versioning or the issue tracking systems. For the purpose of our research, aimed
at understanding what parsicipants talk about in a mailing list, we filter out these
automatically generated emails, unless they are answered by a person. Although
this filter has to be customized to the mailing lists under analysis, we used an ap-
proach that can be adapted to other lists. It focuses on the quantity and the thread
subject. In fact, automatically generated emails often outnumber those manually
generated and have a well defined subject pattern. We aggregated threads with a
subject starting with the same 10 characters and manually analyzed their distribu-
tion. This approach found almost all generated emails.

3.3.4 Card Sort

To group the email threads we used card sort, a technique used in information architecture
to create mental models and derive taxonomies from input data [164]. We used it to orga-
nize the threads into groups to abstract and describe mailing list communication. A card
sort has 3 steps: (1) preparation (select card sort participants and create the cards); (2) ex-
ecution (sort cards into meaningful groups); and (3) analysis (form abstract hierarchies to
deduce general categories).

Preparation: We created all cards from the sample resulted from the data collection. Each
card (exemplified in Figure 3.2) represents a thread and includes: (1) number
of emails, (2) subject, (3) duration, with timestamp of the first and last emails,
(4) the first 15 lines (removing white lines) in the body of the initial email, (5) email
addresses of the participants involved, and (6) an univocal id for later reference.

Execution phase: 'The first two authors of this research analyzed the cards applying open
(i.e., without predefined groups, as they emerge and evolve during the sorting pro-
cess) card sort, adapting the guidelines for the analysis of qualitative data with
grounded theory [64]: They avoided information related to LucenE (e.g., its web-
site) and the literature closely related to mailing list communication, as this could
have sensitized them to look for concepts related to existing theory, thus hinder-
ing innovation in organizing the threads. They often interrupted the card sorting
to memo an idea or concept potentially useful for later analysis (see Section 3.7).
When necessary they consulted the entire thread online. Since the rigor of the card
sorting method is in its analysis [116], instead of working separately on different
cards, and checking the consistency of the sorting and merging the cards in a later
phase, they used pair-sorting. 'This requires significantly more time, but it brings
more value to the analysis as they discussed discrepancies in their thoughts for each
card during the card sorting itself.

Analysis phase: To ensure the integrity of the emerging categories, the first two authors
did a second pass on all the analyzed cards, starting from small groups that could
not be included in any larger group, and re-categorizing these cards by redefining
some categories. Subsequently, they analyzed the remaining cards to completely
describe the catalogue of thread categories (see Section 3.4).

37

Chapter 3. Communication in O8S Development Mailing Lists

1 {2) 15 days, 0:45:03 (10/29/02 17:10 - 11/3/02 17:55)

:I was just wondering what is the current development plan status for
ILucene? | have been monitoring the developer's list for some time, and
\have seen very little in the way of CVS commits. | know that may not be
lan accurate barometer of development activity, but there it is.

\Is there any plan for continuing active development of Lucene? How many
:people are working on it? Why aren't there more, and if so, how can we
irecruit them?

' am willing to help contribute, but without some other active
1developers, I'm not sure how useful it will be.

:The frustrating thing is that from the users list, we all know that

Ithere is a significant amount of interest in the product, and some
:feature requests, etc.

1Thanks

-
1[914] 1

Figure 3.2: Card Sort: Example Card

We conducted a validation to verify whether the catalogue was written in a clear and
understandable way that was capturing all the facets of each category (see Section 3.9).

3.3.5 Aliasing and Identification of Developers

Resolving multiple identities (aliases) is fundamental to prepare mailing list data for the
statistical analysis of the participants [18]. Although a number of approaches to solve
aliasing have been proposed, including the one presented in Chapter 4 (Section 4.4.4)
and, for example, the one by Bird e a/. [17], this task cannot be fully automatized, es-
pecially in an open source context. To avoid bias in our statistical results, we manually
resolved aliasing in our data. We started by aggregating on email addresses, to resolve
cases with multiple author names. Then, we manually inspected all possible combina-
tions of names and email addresses. One challenge we encountered regards a handful
of participants using distinct names and addresses (e.g.,John: johns@address1.com’,
and ‘spacej: spacej@address2.co.uk’). To resolve these cases, we read the emails sent
from these addresses. To answer the research question regarding developers communi-
cating in the mailing list participants (i.e., RQ3), we also identified the official commit-
ters of the project: We matched names and addresses in our sample with the official
list of committers.® We also extracted developer user names from the versioning sys-
tem log. Matching developers was time-consuming, as only few developers use their
[user-name]@apache . com address listed on the LuceNE website.

6. http://lucene.apache.org/whoweare.html

38

http://lucene.apache.org/whoweare.html

3.4 What are mailing list participants talking about?

3.4 What are mailing list participants talking about?

We extracted email data from the Lucene development mailing list,” from its inception
(Sep 2001) to Nov 2012, totaling 111,366 emails. We aggregated them into threads and
removed automatically generated messages. From the resulting 13,019 discussion threads
we randomly sampled 1,000 threads and printed the corresponding cards for the card sort.
After sorting the first ca. 300 cards, the newly encountered threads started merging in
the same groups, reaching a saturation effect [64]. To add confidence that the saturation
point was reached, and to improve the significance of the subsequent statistical analysis,
another 200 cards were sorted, reaching a sample of 506 threads. The remaining cards
were discarded.

Through the card sort, 34 groups emerged. During the sorting process, we iteratively gave
explanatory names to groups and reflected on how they could be clustered into higher level
themes. At the end of this phase, we had clustered the 34 groups into 6 categories and
24 subcategories. We now describe each category and the corresponding subcategories.

(A) IMPLEMENTATION

'The IMPLEMENTATION category covers the threads related to the implementation of source
code artifacts. It comprises topics spanning from proposing new features to be imple-
mented, to discussing implementation details, to contributing with patches. It also in-
cludes emails aimed at understanding the system’s implementation, or the rationale be-
hind an implementation choice. It comprises four subcategories:

(A.1) CompREHENSION: Participants start comprehension threads to understand (parts
of) the implementation, to verify if their knowledge is correct and up-to-date, and to
request clarifications on the rationale behind a particular choice (e.g., a used pattern).

(A.2) Discussion: Participants initiate discussion threads to ask the opinion of others
(e.g., “what do you think about [this]”), or to propose one or more possible solutions or
ideas (e.g., “we could do it like [this], or like [that]”). Usually, discussions revolve around
improving an existing code artifact, and start from the comments on a recent feature
implementation, bug fix, or submitted patch.

(A.3) FEATURE sUGGESTION: Participants initiate this kind of threads to describe new
features from a high-level perspective. Often participants requesting a feature on the
mailing list are not directly volunteering to do it, but they mostly propose something
for others to do.

(A.4) CoDE CONTRIBUTION: Participants start these threads to let the community know
that they have working source code ready to be merged in the system. The code may
implement new features; or it may tackle issues that were found by the email author
or that were reported in the official bug repository. Contributions are in the form of
patches, pull requests, external links, or attached code.

7. org.apache.lucene. java-dev

39

org.apache.lucene.java-dev

Chapter 3. Communication in O8S Development Mailing Lists
(B) TEcHNICAL INFRASTRUCTURE

Most OSS software projects rely on a technical infrastructure to support development,
maintenance, and the building process, and to facilitate the communication among project
contributors [57]. This category covers email threads related to such an infrastructure;
the topics of discussions are (B.1) BUILDING sYSTEM (e.g, notification of problems with
the building system), (B.2) DOCUMENTATION (e.g., decisions on the javadoc), (B.3) 1s-
SUE TRACKING (e.g., move to a new tracking system), (B.4) MAILING L1sTs (not only the
development mailing list itself, but also e.g, the user mailing list), (B.5) PROGRAMMING
LANGUAGE (e.g., the version of [programming language] to use), (B.6) TESTING (e.g., how
to use the continuous testing system), (B.7) VERSIONING (e.g, discussions on branches),
and (B.8) WEBSITE (e.g., threads on what content to put in the website). Authors of in-
frastructure threads write to the list for different reasons, such as sending notifications,
discussing problems, and posing questions.

(C) ProjecT STATUS

As described in previous work (e.g., [144, 121, 18]), development mailing lists are also
used to raise awareness on the status of the project and to discuss future steps. This
category regards this kind of topics, and includes two groups of threads: those about
(C.1) pLANNING the future development of the project, and those about (C.2) RELEASES.
Authors of PROJECT STATUS threads write to the mailing list to announce a new release,
decide which issues to fix for a milestone, or discuss the ongoing activity on the project.

(D) SociaL INTERACTIONS

Socializing is an essential ingredient in the long-term survival of OSS projects [51], and
mailing lists play an important role in this context [57]. Participants write to the mailing
list about the norms, values, and perspectives that are part of the community’s operational
structure, and to coordinate with others. This category revolves around these social in-
teractions, and threads are about (D.1) AckNOWLEDGEMENT of efforts (e.g, replying to
a code commit to thank the author), (D.2) COORDINATION (e.g., raising awareness about
an issue in the bug repository, or notifying a participant’s absence), greetings and sug-
gestions to (D.3) NEW CONTRIBUTORS, and (D.4) sociAL NorMs governing the behavior
of mailing list participants (e.g., advices on successfully submitting a patch). Authors of
such threads notify their absence, welcome new members, thank someone for a well done
bug fix, and tell everyone about newly submitted issues.

(E) UsaGe
'The usAaGE category comprises threads with questions and problems about the usage of the

software being developed by the programmers enrolled in the development mailing list,
and it also includes threads related to external projects. It comprises three subcategories:

40

3.5 How often do participants talk about each topic?

(E.1) ProBLEMS AND BuGs: Authors ask advice on how to solve issues they have oper-
ating the project, or report a general problem they have found. Participants may also
bring up a discussion about a problem by forwarding emails sent to other mailing lists,
or by answering automatic messages from the issue tracking system.

(E.2) INForMATION SEEKING: Authors write to ask advice on how to complete an oper-
ation (e.g., “How to do [this]?”), on where to find usage related resources (e.g., documen-
tation, examples), and on the right approach to choose among different usage options
(e.g., “What is the proper means to do [this]?”).

(E.3) EXTERNAL PROJECTS: Participants write, for example, to raise awareness about
their own, external, software project. They ask to be included among the online list of
applications using the main project (e.g., “Powered by”). Participants developing other
systems also ask about including their work as part of the main project.

(F) DiscarDED

'This category groups the threads that do not fit into the categories previously described.
'They are of three kinds:

(F.1) AuTo-GENERATED: Auto-generated threads, such as emails from the continuous
building system or the wiki, that were not filtered out by our heuristics.

(F.2) Trasn: Threads exclusively composed of unreadable emails (due to formatting prob-
lems), and spam emails that are not pertaining to the content of the mailing list (e.g.,
unsolicited commercial emails).

(F.3) TurTLE: Email threads that are unrelated to any other thread, or very difficult to
classify due to the nature of their content (e.g., meaningless because out of context).

3.5 How often do participants talk about each topic?

Figure 3.3 shows the distribution of the threads among the different categories (see also
column ‘threads’ in Table 3.1).

IMPLEMENTATION is the most frequently occurring category, comprising 36% of the
threads. Since the declared aim of the development mailing list of LUCENE is to be
where “participating developers |...] meet and discuss issues concerning LUCENE [...] inter-
nals, code changes/additions, etc.”, we were surprised that—in reality—IMPLEMENTATION
threads only count for just a little more than a third of the total threads. This is different
from the Linux kernel mailing list (often used for studying developers’ interaction), where
IMPLEMENTATION threads “form the large majority of the traffic on the list.” [70]

In comparison, we found the ratio of USAGE threads in the mailing list to be surprisingly
high (27%). In particular, half of these threads regard INFORMATION SEEKING (13% over-
all), in spite of a note on the LUCENE website exhorting participants to “not send mail

41

Chapter 3. Communication in O8S Development Mailing Lists

Implementation
Comprehension
Discussion

Feature Suggestions
Contribution

Technical Infrastructure
Bug Tracking

Building
Documentation

Mailing List
Programming Language
Testing

Versioning

Website

Project Status
Planning
Release

Social Interaction
Social Norm
New Contributors
Acknowledgment
Coordination

Usage

Problems & Bugs
Information Seeking
External Project

Discarded

Automatically Generated
Trash

Turtle

o

20

40

60

80

100

120

Figure 3.3: Distribution of threads per category.

42

140

L HI““QI““IW““QIHu H|

160

180

3.5 How often do participants talk about each topic?

to this list with usage questions or configuration questions and problems.”. Moreover,
threads regarding PROBLEMs AND BUGs account for 8%. Even considering sampling lim-
itations (see Section 3.9), in LuceNE these threads would corresponds to less than half
of the bugs reported in Jira (up to one fifth, when considering other types of issues),
meaning that in LUCENE the mailing list may not be the primary channel for discussing
and reporting problems and bugs.

Threads regarding TECHNICAL INFRASTRUCTURE total 16%. The less frequent thread cat-
egories are SOCIAL INTERACTION and PROJECT STATUS. It was surprising to us that, de-
spite the mailing list always having been considered the hub for OSS project communi-
cation [144, 57], only 7% of the threads in our sample regard the project status, and just
6% regard social interactions among participants.

Finally, there is a not negligible portion (8%) of threads p1scARDED during the card sort-
ing. Besides 10 threads with no clear meaning (TURTLE), and—despite the fact that we
performed a rigorous pre-processing and data cleaning phase (Section 3.3)—a substan-
tial amount of noise (7% of the total threads, from AUTOMATICALLY GENERATED and
TRASH threads) was still present our sample. We also notice that these threads cannot be
clearly distinguished from the other categories: A third of them are replied (e.g., there are
threads automatically generated from the wiki, which all have the same subject and thus
get threaded), almost a third include developers in the emails (e.g., svn commits initially
sent to the mailing list results as sent by the developer author of the commit), and finally
almost a fourth of these threads contain code (e.g., svn commits, and change logs from

the wiki pages).

3.5.1 How prominent are implementation details?

To better understand how prominent implementation details are, we analyzed the dis-
tributions of threads containing code entities (e.g., class names). Are mentioned code
artifacts an indication of discussion about implementation details?

In previous work, Bird e al. reported that the mailing list is made of more than imple-
mentation. They distinguish between process and product, and use the presence of source
code names, such as class names, as classifiers: “Messages that include these source code
names are classified as product and the rest are classified as process” [18]. We also apply
this distinction to our data and verify whether and how it fits to our categories. We con-
sidered the entities mentioned in all the releases of LuceNE, and we analyzed threads to
determine whether they contained code entities. Results from our analysis can be seen in
the column ‘with code entities’.

Our results show that 57% of all the analyzed threads contain code entities, and at least a
third of threads in each category contains code entities (except DISCARDED threads, 28%).
Of IMPLEMENTATION threads, 77% contains code.

To verify to which degree Bird ez al’s classification fits to our data, we first need to define
which of our own categories are part of product. According to the description, these would

43

Chapter 3. Communication in O8S Development Mailing Lists

correspond to our IMPLEMENTATION category alone. However, USAGE and DISCARDED
threads would not fit in either definition: we decided to include USAGE as product (since
Lucene is an API, many usage questions regards its code artifacts), while we consider
DISCARDED as process.

Our data shows that when only considering threads containing code entities, only 76% of
these threads would be regarding product (i.e., IMPLEMENTATION and USAGE), while the
remaining 24% would actually be about process. Moreover, we would only select 70% of
all the IMPLEMENTATION+USAGE threads. This is in contrast with findings by Bird ez al,
where they estimated a correct classification in 90% of the cases.

3.6 Is the development mailing list only for developers?

Once our categories were stable, and after performing several card sort iterations to ensure
the integrity of our categories, we resolved aliasing and determined which participants
were project developers (i.e., those with commit privileges). Table 3.1 shows the statistical
information we collected on the sample of threads categorized in the card sorting process.
WEe include email granularity for completeness.

3.6.1 What do developers focus on?

'The overall ratio of threads in which at least one developer participated (column ‘with
developers’) is quite high: Developers are present in more than 75% of the treads in each
category, except in USAGE (55%) and DISCARDED (35%). In PROJECT STATUS and TECHNI-
CAL INFRASTRUCTURE threads, developers are present in more than 90% of these threads.

Obur results also show that in some categories there is a prevalence of threads ‘started by
developers’. However, overall, only half of all the analyzed threads have been started by
a developer. Developers start the majority of threads in ProjecT staTus (89% of the
threads in this category), TECHNICAL INFRASTRUCTURE, (78%), and SOCIAL INTERAC-
TI0N (70%). Only 54% of the IMPLEMENTATION threads are started by a developer. This
may seem surprising, but, if we look at the subcategories, we can see that only a third of
CONTRIBUTION threads were started by developers. This is also due to the OSS structure
in general, where a person can be a contributor without committing rights. Participants
write to the mailing list offering their contributions, hoping that a developer might inte-
grate it in the project. Moreover, users also occasionally write to the development mailing
list with program comprehension questions or feature requests.

Furthermore, we notice that only 21% of the UsAGE threads were started by a developer,
and, in particular, only 4% of the INFORMATION SEEKING threads. It is not very surprising
that these threads are not started by LuceNE developers. However, developers also start
EXTERNAL PROJECT threads: They often have side projects, built on top of LUCENE, they
want to mention in the mailing list (e.¢., announcing a new release).

44

2

3.6 Is the development mailing list only for developers

ion of email threads.

1zat

Categor

Table 3.1

w
<
%9 %€9 8eve %9t Sie %LS %08 %EL %L9 905 leyop
%le %02 €le %vv ve %82 %82 %S€ %0t [52 (%8) popiedsia 4
%Ee %bt 2 %2y 6L %0¥ %08 %05 %09 ol ounL g4
%02 %LL oe %E9 9l %WLL %vy %vy %EE 6 yseil c¢d
%61 %S 961 %0G 9 %62 4 %Se %EE e pajeseusn Ajleoewoiny |4
%09 %EY vev %02 9L %09 %1e %SS %€9 Gel (%Z2) obesn 3
%¥e %cS 98 %9€ 14 %0€ %Ly %S %65 yx4 108f0id [BUJRIXT €3
%19 %28 ole %ve 66 %09 %V %L %89 89 Bunjesg uonewsou| z'3
%18 %SY 8clh %¥e €9 %08 %S€ %0L %8S oy sbng g swajqold |3
%L2 %99 9 %LS o€ %LE %0L %lLL %0t o€ (%9) uonoeiau| [eos A
%8¢ %L 6 %LV L %Ly %68 %S9 %SE JAS uoneuipIoo) '
%EE %001 € %001 € %EE %001 %001 %0 € juswbpsimouyoy €'a
%61 %58 9¢ %08 13 %62 %L %98 %LL L slonquuo) z'd
%0 %E8 9 %SGZ. 14 %0 %001 %001 %EE € WION [el00S 1°'q
%22c %Vv8 6S€ %8Y €9 %9Y %68 %26 %8L L (%Z) smeis03loid O
%8¢ %58 ocl %95 ve %8¢ %06 %06 %LL X4 asesley g0
%61 %8 €€ee %S 214 %95 %88 %V6 %88 9l Buuueld o
%ie %LL 6EY %€V 9L %9€ %8L %16 %SL 18 (%9}1) aimonaysequ| [edluydal g
%0 %¥6 (4> %58 €l %0 %001 %001 %98 L sysgep\ 89
% %8/ 9L %19 82 %02 %08 %06 %08 oL Buluoisien 2'g
%y %¥6 (72 %L8 e %29 %c6 %c6 %LL €l Bunsal 99
%81 %bS 00} %25 x4 %05 %S/ %001 %001 14 abenbue Bulwweibold g'g
%0 %SL v %SL 14 %0 %29 %29 %EE € s Bulrey g
%LE %E8 8L %EZL €e %SV %98 %56 %65 44 uopeuswNooq £'g
%¥e %L S %95 14 %LE %ES %56 %8 61 Buping 2’9
%0 %26 ve %88 8 %0 %L9 %004 %001 € Bupjoes bng 1°g
%69 %99 626 %92 Sk %LL %vS %18 %9L 08l (%9€) uoneuswsdu] v
%29 %65 GEL %6€ 9¢ %18 %EE %18 %S. 9€ uopnguiuod v
%LS %99 Ge %ES 6} %29 %¥S %LL %S (18 uonsabbng ainjes4 gy
%0.L %0 1SS %6€ 18 %82 %89 %98 %08 a8 uoissnasiq ¢'vY
%2/ %09 80¢ %68 99 %82 %EY %/ %/ 14 uojsusyaidwo) |y
salu siadojens SHUEaTHET Salue siadojona siadojens)
wnow.yE_ " En_E P spiews siodojenep T mnow.HE_\s P _uw_tﬂwv £__>> P paiday speaiy} sau0Ba)e

Chapter 3. Communication in O8S Development Mailing Lists
3.6.2 Dynamics of Interactions

By analyzing the population of mailing list participants, we found that only 16% of the
participants are official committers (column ‘developers’). Thus, the vast majority of par-
ticipants in the development mailing list are 7o LuceENE developers. We asked ourselves:
How are participants interacting via the mailing list? Do developers have a particular
position?

'The column ‘Unique participants’ indicates the number of individual people participating
to discussions threads. When the number of participants is lower than the number of
threads, this means that people are participating in more than one thread (e.g., this is the
case in the IMPLEMENTATION category). Similarly, a higher number of participants than
the number of discussion threads indicates “one-timers” (we observe this in the USAGE
and PROJECT STATUS categories).

To better understand where participants interact, we counted threads that are replied to
(i.e., with more than one email). The analysis of the replied threads by category gives
an idea of the responsiveness of the mailing list and the “rhythm” of talks within each
category. Interestingly, the least responded threads are those about the socIAL INTER-
ACTION (40% overall). We also analyzed multi-email threads in terms of first-response
rate (i.e., how long before the first reply). Threads are answered within a day: TECHNI-
CAL INFRASTRUCTURE and SOCIAL INTERACTION threads get faster reactions (first reply
within two hours), while IMPLEMENTATION and USAGE threads might take up to 21 hours
to be replied to. We did not find a statistically significant difference in responsiveness
depending on who sent the first email (i.e., a developer or not).

3.6.3 The Overall Picture

Figure 3.4 puts all the threads in our sample in a nutshell: It shows, by category, how many
threads are with vs. without code entities (right ws. left side), with ws. without participating
developers (bottom ws. top bar), and how many of the latter were initiated by a developer
(dark ws. light color). The exact amount of threads is reported for each “type”.

We see a large amount of threads without developers in the USAGE category compared
to other categories, a prevalence of developers on IMPLEMENTATION and TECHNICAL IN-
FRASTRUCTURE, and a large amount of threads without developers in the USAGE category
compared to other categories.

3.7 What is the role of the development mailing list?

By answering the previous research questions, we found that the official description of
the aim of the development mailing list does not correspond to its real usage. Our fourth
research question seeks to understand the role of development mailing lists for the com-

munication in OSS at large. We attempt to achieve this by triangulating the information

46

3.7 What is the role of the development mailing list?

without code | with code
Implementation 35%) 10 24
ElEE 74 4
Technical (16%) [4]1
Infrastructure [10_[38 25 [s
Project Status (7%) 30
17 16 | 1
Social Interaction %) 52
1[[13 8 ||t
D without developers
Usage (27%) [34 27]
| il |9 19 I 35 | I:, with developers
Discarded ©%) 23 5 D initiated by a developer
1|7 5||2
T T T T T T T T 1
60 40 20 0 20 40 60 80 100 120

Figure 3.4: Thread types distribution: gives an idea of the distribution of threads and the dif-
Sferent shapes” of our categories.

that we obtained by reading the 506 threads during the card sort, by analyzing the statis-
tical data on the categories, and by searching more facts in the rest of the mailing list.

3.7.1 Isin the mailing list where all the communication occurs?

Previous literature stated that mailing lists are “the bread and butter of project communi-
cations” [57], and in particular that “the developer mailing list is the primary communi-
cation channel for an OSS project” [70]. Reading the analyzed emails, however, makes
it clear that the development mailing list is just one of the communication channels used
in a OSS project; in fact, other channels also play an important role:

Issue Repository — Many threads provided evidence that a significant amount of com-
munication takes place in the JIrA issue repository: Participants often reference
Jira issues in emails, or omit details because already mentioned in the issue discus-
sions. Altough project members started using Jira only in mid 2005, in our entire
population of emails (Sep 2001 to Nov 2012), we found 69,632 (63%) messages
automatically forwarded from discussions taking place in Jira, still showing a clear
increasing trend in its usage.

IRC - Participants talk about the project and implementation details also on the de-
velopment IRC channel (created in Apr 2010): “I propose that we chat on irc at

47

Chapter 3. Communication in O8S Development Mailing Lists

#lucene-dev |...]. Id like to discuss the core elements of the Spatial Strategy APL namely
makeQuery, [...], and SpatialOperation.”

User Mailing List — The user mailing list also plays a role in the project and developers’
communication. Developers monitor it, for example, to understand the usage of
the system (e.g., “I am wondering if TermVectorsWriter is still used [...]. The reason I am
asking is the java-user [email subject]”), to improve the documentation (e.g., “about
the exposure of FieldCache in the documentation [...] see for instance this discussion in
the user list”), and to forward interesting discussions to other developers.

In person —We found evidence that developers also have a number of in-person meetings
where they discuss about project details (e.g., “[Developer] and I talked a little bit
about this at the ApacheCon”).

3.7.2 Is the mailing list for driving coordination?

Previous work reported that a portion of the communication taking place in the mailing
list regards coordination between developers as they work together on the software [144,
18]. Surprisingly we found a very small amount (3%) of coorDINATION threads, with
an average of less than two emails per thread; moreover, most of these threads were not
for fostering collaboration on the implementation, but for raising awareness on already
accomplished work.

By reading emails, we found evidence that developers, instead of using the mailing list,
prefer to coordinate through items in the issue tracking system. For example, one devel-
oper who sent an email with: “If you can help, please coordinate here on this thread, so that
we don’t stomp on each other” afterwards corrected himself in a second message: “Sorry,
should have said, please coordinate on the JIRA issue”. Another developer, who was guiding
a newcomer through the coordination norms in the project, wrote: “You will not fall out
of sync in short order, especially if you work with JiRA s0 others know what you are doing. ”

In addition to the issue tracking system, developers also coordinate in the IRC channel:
“As we discussed on IRC yesterday, the number of people |...] qualified to write [code] will still
be very small”; or in person: “I talked about this with [list of developers] in Berlin, and they
all like this proposal.” Moreover, developers remain coordinated by keeping track of code
changes. They do this by reading emails generated by the versioning system, sometimes
forwarding these emails to the development list along with their comments.

3.7.3 Isthe mailing list used for peer code review?

Rigby ez al. reported that OSS mailing lists are used for submitting patches and perform-
ing peer code reviews [145]. We indeed found that most patches led to a purely technical
discussion, while some also led to a discussion of project objectives, scope, or politics.

48

3.8 Implications

'The vast majority of threads with patches in our sample was sent earlier than the intro-
duction of the Jira issue tracking systems: After mid 2005, we saw the number of patches
drastically diminishing. Reading emails, we found additional evidence that patches, nowa-
days, are not sent anymore to the mailing list, but they are sent, discussed, peer-reviewed,
and approved/rejected in the issue tracking system. For example, when a contributor
asked to go to the issue repository to review a patch: “[issue id] Did anyone try out or
took a look at my redesign [...]2 Id love some feedback.” A senior developer explained: “You
should submit *all* patches you want to commit fo JIRA first to give others the chance to review
and possibly vote against the parch.” 'This finding is inline with the project website: “How
to contribute: [...] Finally, patches should be attached to a bug report in JIRA.”

3.7.4 Is the mailing list the hub of project communication?

Although other researchers also found that the development mailing list is not the only
channel of communication in OSS projects (e.g., [18, 150]), it has always been considered
the Aub of project communication. For example, Mockus ¢z a/. reported that developers
use “email lists exclusively to communicate with each other” and that “due to some an-
noying characteristics of the [issue tracking system], very few developers keep an active

eye on [it]” [121].

When more communication repositories exist, the policy of most OSS projects is to trans-
fer all the official decisions and useful discussions to the mailing list [57], so that they can
be later retrieved. These traceability links between the development mailing list and other
communication repositories must be manually created and updated. We found some cases
in which the traceability link was established, but, more often and in line with the find-
ings of Sarma e# al. [150], we found a clear disconnection among repositories, which led
to coordination issues and duplicated/lost information. For example, because of multiple
communication repositories, developers need to raise inter-repository awareness (e.g., “I
submitted a patch for [JIRA issue] a month ago, [...] it hasn't been picked by anybody yet”), ask
where a discussion takes place (e.g., “were there emails about it or it has been discussed on
IRC?”), and go back and forth between the same discussion taking place in more venues
(e.g, “We would like to implement [this], which was discussed in JIRA”). Overall, our in-
vestigation provides evidence that the various communication channels work in parallel,
remain disconnected between one another, and the development mailing list does not
play (anymore) the role of a hub.

3.8 Implications

From our investigation, we found that the role of the development mailing list, previ-
ously considered as the place for discussing code artifact implementation and as the hub
of all project communication, has changed. In the following we describe some of the
implications deserving future research.

49

Chapter 3. Communication in O8S Development Mailing Lists

On Communication. Communication is scattered among repositories. This once again
underlines the importance of adopting a holistic view and considering software reposi-
tories as a whole, not only in research but also in practical development. In fact, even
project developers have problems in maintaining awareness of each other’s work in the
current situation.

Automatically recovering traceability links among communication repositories would free
developers from the task of recovering scattered traces of previous communication, and
would help researchers having a more complete picture of the development process. More
tools for maintaining awareness would be also necessary to improve developers’ produc-
tivity. Since the advent of better issue tracking systems led to a shift in the habits of OSS
participants toward different communication means, we should investigate the features
in issue tracking systems that produced this change of direction.

On Data Quality. Different communication topics take place in the development mailing
list; to extract valuable information we have to take this into account. We have to improve
our methods for removing noise (8% of our sample, even after a careful pre-processing
phase), then there are the premises for future work on automatic classification of threads of
discussions, so that only the relevant categories would be taken into account for analysis.
We also underlined the importance of a correct aliasing resolution, which still cannot
be fully automatized. We provide our complete aliasing and thread categorization to
benchmark novel automatic techniques. Nevertheless part of the communication data is
going to be lost, because we found that communication takes place in unrecorded places,
even in OSS systems. We have to take this into account in our statistical analyses.

On Software Development. Not only committers respond to the development mail-
ing list, but also other people are very active. We could consider techniques for finding
code experts not only among active contributors, but also among active respondents of
the mailing list. Moreover, considering the shift to other communication repositories,
mailing list may not be the right venue for studying code review anymore.

3.9 Limitations

One potential criticism is that a case study with one project may provide little value.
Historical evidence shows otherwise: Flyvbjerg gave many examples of individual cases
contributing to discoveries in physics, economics, and social science [56]. To under-
stand mailing list communication we read emails spanning 11 years of mailing list usage
and written by 155 diverse participants. To answer our research questions, we also an-
alyzed data from the code repository, the project website, and email threads external to
our sample.

To ensure that the thread categories emerged from the card sort were clear and accurate,
and to judge whether our set of category provides an exhaustive and effective way to
organize mailing list communication, we conducted a validation phase that involved three
people external to the pair-card sort. Three software engineering researchers conducted a

50

3.10 Concluding Remarks

closed card sort on 50 cards (10%) randomly selected from our sample. They observed that
the 6 main categories were clear and covered all thread topics. We measured inter-rater
agreement: The Fleiss’ Kappa value for the four ratings of the random sample was 0.657
(i.e., substantial agreement) for the six categories, and 0.505 (i.e., moderate agreement)
for the 24 sub-categories (which were more difficult to be all recalled by participants). To
verify whether there was a systematic error in our catalogue, we also measured the inter-
rater agreement among the three experiment participants. Their agreement was 0.592
for the main categories, and 0.458 for sub-categories (both corresponding to a moderate
agreement, suggesting there was no systematic misinterpretation).

Threats to validity: Concerning internal threats, the sample size (506) of threads provides
a 98% confidence level and 5% error on subsequent estimations of proportions [170].
Concerning external threats, other OSS projects use communication tools similarly to
LuceNE, for example, 87 other Apache projects are also using the Jira issue tracking
system and have IRC channels. However, team dynamics may differ and our research
should be repeated in other contexts.

3.10 Concluding Remarks

We investigated the communication taking place in OSS development mailing lists, find-
ing that email threads cover a range of topics and that communication on implementation
is only a portion of them. We found that code artifacts are also mentioned in topics not
related to implementation, and that project developers are not the majority of the partici-
pants. We established that the development mailing list is only one of the communication
channels used in an OSS project, and we found evidence of a shift in the communication
habits with an increased usage of the issue repositories.

'The entire dataset used in the experiment, including the cards, the resolved aliases, and
detailed statistical results (by thread and by category), can be found online on the sup-
porting website: http://www.st.ewi.tudelft.nl/~guzzi/oss-communication.

51

http://www.st.ewi.tudelft.nl/~guzzi/oss-communication

Part 11

Exposing Information

53

CARES: Relevant Engineers

Enterprise software developers must regularly communicate with one another to
obtain information and coordinate changes to legacy code, but find it cumbersome
and complicated to determine the most relevant and expedient person to contact.
This becomes especially difficult when the relevant person has transferred teams or
changed their personal contact information since contributing to the project.

In this chapter, we present a year-long series of surveys and interviews we conduct
to help us learn how, why, and how often software developers discover and commu-
nicate with one another. Following what we learn, we design, deploy, and evaluate
a domain-specific, IDE-embedded, photo-oriented, communication tool called cAREs:
Colleagues and Relevant Engineer’'s Support. After deploying our tool, iteratively
refining it, and deploying it again on a company-wide scale, most users report that
it simplifies the process of finding and reaching out to other developers, and that it
offers them a sense of community with their colleagues, even with those colleagues
not currently working on their team.

1. 'This chapter is a blended version of the paper “Facilitating Enterprise Software Developer Communica-
tion with CARES” [76], published in the proceedings of the 28th International Conference on Software
Maintenance (ICSM 2012), with authors Guzzi, Begel, Miller, and Nareddy; and the paper “Facilitating
Communication between Engineers with CARES” [75], published in the companion (tool demonstration
track) proceedings of the 34th International Conference on Software Engineering (ICSE 2012), with authors
Guzzi and Begel.

55

Chapter 4. CARES: Relevant Engineers

4.1 Overview

Successtully developing and maintaining software products requires effective communi-
cation between dependent engineers. Our research explores the challenges of communi-
cation at Microsoft, where software products are extremely large, long-lived, and devel-
oped by non-collocated product teams. Software engineers must often maintain software
written by developers who have left Microsoft or moved to other teams. They try to rely
on specifications, documentation, and source code to answer their questions, but in the
end, engineers prefer to speak with knowledgeable experts or people with the authority
to coordinate actions they need to get their work done [59, 103, 162, 125]. Unfortu-
nately, when there is too little information shared between dependent engineers about
the project’s status and changes, the work relationships required for fluid collaboration
suffer and threaten the project’s success [13].

Grubb and Begel studied the causes of the paucity of inter-team communication and
found that software developers felt inhibited from sharing information on their work [68].
With others on the same team, developers would communicate about their work quite
openly, but with people in other teams, products, and divisions, they would share less.
When asked, engineers reported an aversion to “spam” other engineers with work noti-
fications they might not be interested in. The asymmetry of dependencies on software
teams and the modular boundaries induced by their software architecture [42] sometimes
prevent engineers from noticing that others depend on their work. If an engineer thought
no one cared about their status or changes, he would not think to communicate at all.

WEe tackle this problem from the reverse perspective, looking at the software developer
who needs to communicate with a code owner who can explain some aspect of the soft-
ware, the rationale behind it, or who had the authority to coordinate joint action to im-
prove it. Over the course of a year, we conducted surveys and interviews to better under-
stand how and why Microsoft software developers communicate with one another, and
how often they do so. We discovered the criteria developers use to identify and choose a
set of relevant people, how they select the most expedient person to contact, the means by
which they contact that person, and how often their conversations led to positive working
relationships.

We then designed, developed, deployed and evaluated a new communications tool to en-
courage developers to communicate with one another and simplify the process of doing
so. Our tool, cares: Colleagues and Relevant Engineers’ Support, is a Visual Studio
extension designed specifically for software engineers who want to communicate with
others about source code. cAREs displays a context-sensitive array of photos of the engi-
neers who are most tightly connected to the code in each file currently being edited in the
IDE. To help developers select the best person with whom to communicate, each photo
has a tooltip that reveals the person’s code history, organization, physical location, and
current availability. Developers can then choose to meet the person face-to-face (F2F),
or initiate contact using email, instant messaging (IM), A/V chat, application sharing, or
screen sharing buttons right in the tooltip.

56

4.2 Methodology

Structure of the chapter. We first describe our year-long study (Section 4.2) and results
(Section 4.3), then we present carEs (Section 4.4) and its evaluation (Section 4.5). Fi-
nally, we show how our studies and tool were inspired and influenced by the research
literature (Section 4.6), and conclude with our suggestions for researchers interested in
developing usable software enterprise-oriented communication tools (Section 4.7).

4.2 Methodology

In this section we present the methodological steps we followed to (1) better understand
how and why Microsoft software developers communicate with one another, and how
often they do so; (2) discover the criteria developers use to identify and choose a set of
relevant people, how they select the most expedient person to contact, and the means by
which they contact that person; and (3) (iteratively) derive requirements for the design
and refine the implementation of a tool to facilitate developers’ communication.

Survey 1 — Over a two week period at Microsoft in July 2011, we conducted a 50 ques-
tion web-based survey (Survey 1) divided into 4 sections: demographics and three
communication scenarios (described below). The questions were drawn from Begel
et al’s previous study of inter-team coordination [13] and were piloted with several
developers before being deployed. Out of 500 randomly sampled Microsoft devel-
opers (5% of all developers) invited to take Survey 1, we received 94 valid responses
(19% response rate). Invitees were incented to respond by a raffle for US$100. De-
mographically, the 94 respondents of Survey 1 had spent an average of 11.3 years
(SD=7.5) in the software industry and 6.9 years (SD=5.2) at Microsoft. Most (68%)
reported that they had previously worked at other companies. 97% of respondents
were developers, and 90% of those were individual contributors (ICs).

Survey 2 — After the responses to Survey 1 were received, we realized the need for some
additional questions on communication frequency. We sent a supplemental survey
(Survey 2) to respondents of the first survey who indicated they were willing to
speak further on our topic. Survey 2 was sent to 32 respondents of the first survey,
and we received 18 valid responses (56% response rate).

CARES Design and Implementation — From the research literature, our own prior re-
search, and what we learned from Survey 1 and 2, we decided to build a tool to help
with the problems that developers reported. We designed the cares tool to help
developers find and select the most relevant person to communicate with for their
needs. To make that selection actionable, cCARES supports initiating communication
with the selected party.

Deployment 1 and Interviews — We deployed cares to the 32 people who received Sur-
vey 2 and gave them instructions on how to install and use it. After a few weeks, we
emailed these pilot users and asked them if they would be willing to be interviewed
about it. Eight users agreed after having used cAres from between one and three
weeks. They were all developers (including two developer managers) and worked in

57

Chapter 4. CARES: Relevant Engineers

six different Microsoft departments. Each worked on a team with 4 to 9 people and
regularly collaborated with 3 to 30 engineers working on other teams. The first two
authors of this research interviewed each of those eight carEs users for an hour;
one author asked questions and engaged the interviewee while the other recorded
the interview and took copious notes. The interviews were transcribed verbatim
when it improved the accuracy of the notes. In each interview, interviewees were
asked to demonstrate their use of cARES in their own workspace.

Deployment 2 — From the lessons learned from the first deployment, cAREs was further
developed, while continuing to make the tool available to 30 pilot users (out of the
32 who received Survey 2). Feature and user interface enhancements were added
to improve CARES’ compatibility and robustness with the Microsoft’s development
environments. In March 2012, cares was publicized at an internal Microsoft re-
search conference and made available to all employees at the company. To monitor
CARES usage, the tool included a logging facility to report feature usage.> Until
end of June 2012, carEs has been used by a total of 106 employees (excluding the
original 30 pilot users and anyone associated with the development of the CARES
tool). caRres continued to be used (defined as at least twice in the last two weeks
of June 2012) by 36 of those 106 users. We recorded a total of 4,943 log sessions.

The most prolific user used cares 411 times since installation.

Survey 3 — In April 2012, we conducted a third survey (Survey 3) of 87 (at the time)
known users of cares. In addition to demographic questions, we asked about their
usage of the CARES tool, their understanding of the visualization, their perception of
its utility and impact on their daily work, their subjective assessment of its features,
and their suggestions for improvement. We offered no incentive to answer this
survey. We received 24 responses (28% response rate), of which 19 were developers
(79%) and 5 were testers (21%). Respondents spent 9.1 years (SD=6.9) in the
software industry and 4.8 years (SD=4.1) at Microsoft. The log data shows that
10 of these survey respondents still regularly used cAREs when this research was
completed at the end of June 2012.

4.3 Developer Communication

One of our first research questions was to identify, in detail, why and how developers com-
municate with one another about source code. Previous studies indicated that asymmetry
of dependency was an important factor in mediating the quantity of communication [68],
so we asked study participants questions that concerned both a forwards and backwards
version of communication scenarios we included in our surveys.

2. File paths opened in the editor and employee names and email addresses visible in the UI of the tool are
hashed before being written to the log. This identifying information is not necessary for our analyses of the
data. Logs are collected automatically, but users can opt out in a Settings dialog.

58

4.3 Developer Communication

The first survey scenario (Scl) asked respondents to consider the most recent time they
needed to communicate with someone on another team about source code they saw in
their IDE.? The second scenario (Sc2) asked about the most recent time someone on an-
other team asked them about code they wrote. The third scenario (Sc3) asked about the
most recent time someone on another team had asked them about code they did not own
at the time. Table 4.1 lists the reasons (drawn from our previous studies and the research
literature) respondents could check off to explain why they needed to communicate. In
this report, we divide them into three categories: coordination (i.e., communication requir-
ing negotiation or extended interaction), seeking information, and courtesy (e.g., notifying
someone that you are about to change their code).

Table 4.1: Why respondents communicate about source code, divided by category, with response
rate for each survey scenario: Sc1 (N=91), Sc2 (N=84), 8c3 (N=69). Bolded reasons are in the
top four over all. Bolded numbers indicate for which scenario the reason was chosen most.

Reasons for communication Resp. [%] Scl Sc2 Sc3
Coordination:
Discuss a change I want to make to the code 54 36 26
Know if my use case was supported by the code 37 42 29
File a bug on the code 33 11 12
Know if a bug on the code was fixed 22 14 9
Propose a collaboration on a topic related to the code 12 23 10
Take ownership of the code 9 8 N/A
Ask [the respondent] to make a change to the code ~ N/A 20 14
Seeking Information:
Ask how the code worked 51 65 65
Ask why the code was written that way 47 33 29
Find out who wrote the code 15 4 12
Ask if the code had test cases 8 2 4
Learn more about the code because I used to work onit 7 1 4
Courtesy:
Ask permission to make a change to the code 20 13 10
Let them know I filed a bug on the code 16 11 7

'The most frequent reasons, marked bold, are discussing a code change, inquiring about
support of a particular use case, and to learn how the code worked and why it was written
that way. The top three reasons were highly correlated with one another — about half
of respondents reported two of the three, while 13 reported all three. These reasons are
similar to those found in previous studies [110, 103]. The diversity of responses is inter-
esting as well, as more than 80% (Sc1: 80% (N=90), Sc2: 91% (N=82), Sc3: 81% (N=67))
of respondents indicated that the specific conversation they referred to in their responses
was typical for them.

3. We ask about a specific event to avoid memory and generalization biases by respondents.

59

Chapter 4. CARES: Relevant Engineers

After deploying cAREs, we expected that users would be inspired to ask us to extend
its functionality. Survey 3 respondents asked for a way to easily see and communicate
with other sets of people than just those who had made checkins. The most popular
sets were developers who had code dependencies (i.e., called methods, used classes, etc)
(36% N=22), and testers who wrote tests for code in the file (36% N=22). Some also
wanted to see anyone who had ever made changes to any file in the same Visual Studio
project or solution (18% N=22), and anyone who ever reviewed a checkin to the file (14%
N=22). 'This indicates the need to investigate additional communication reasons and usage
scenarios in the future.

4.3.1 Finding, Selecting, and Contacting a Relevant Person

We anticipated that when a developer wants to talk about code, he would have a difficult
time finding someone relevant to talk to. First, he must discover the set of possible choices
of appropriate people, and then pick the one he believes is most relevant and expedient
for his needs. To our surprise, the majority of respondents (66%) said “it was easy to
find someone relevant to communicate with.” Only 11% said it was not. However, in our
interviews, the developers complained that finding the right person was a tedious process.
We found that this process involves many factors.

Table 4.2: Reasons for choosing a particular a person to talk to, with response rate for each survey
scenario: Sc1 (N=91), 8c2 (N=83), 8c3 (N=69).

Why pick this person? Resp. [%] Scl Sc2 Sc3
I thought they owned the code 56 63 48
Their team owned the code 52 54 45
They contributed to the code 45 60 29
I already knew them 26 N/A 28
I knew one of their teammates wrote the code 13 N/A 30

In Survey 1, we asked respondents how they choose a relevant person. In all three sce-
narios (see Table 4.2), they indicated that code ownership and contribution are the most
important criteria. 26% (Scl: N=91) said, if possible, they would pick a person they al-
ready knew. In our interviews, we explored this process further. All eight interviewees
said that they search the source code checkin history first. From each checkin, they find
the author’s (committer’s) email address, the explanation for the checkin, and the diff
showing what changed. One interviewee explained that the owner is the person to con-
tact because “ownership is important for understanding design rationale.” On some teams,
the owner is the committer with the most checkins. On others, “there is no single owner
because a lot of people touch every file.” A third group of teams contacts the author of the
most recent change, instead of the owner: “I Jook at the [source code] bistory and find out
who last modified the file...[The] last person makes more sense than number of times.” Each
developer’s rules appeared to be team-specific, even among those working on different

60

4.3 Developer Communication

teams for the same product. This fits in with Microsoft’s grass-roots software process cul-
ture, in which each team is encouraged to use whatever process works best for them, so
it “would be hard to get the real owner based on what [my] team|[’s] practice is.” Of course, if
they see someone they already know, developers may pick that person over everyone else.
“The closer to me the dev is, the easier it is [to talk to him].” We found it surprising that no
interviewee ever spoke about searching for a subject matter expert about the code. Per-
haps they expected that the information they sought could always be provided by anyone
with knowledge about the file.

After finding a person, the next step is to contact her. Many survey respondents indicated
that they initiated contact using multiple communication channels at the same time. Over
all three scenarios, email was most common, followed by face-to-face contact, and IM
(Sc1 (N=91): Email 86%, F2F 23%, IM 20%. Sc2 (N=83): Email 76%, F2F 31%, IM
22%. Sc3 (N=69): Email 72%, F2F 30%, IM 20%). Other channels were rarely used.

'The choice of communication channel often depends on how well the developer knows

a person, whether the person is currently available online, and how far away he is. One

interviewee explained, “I mostly use email and IM. But, if they are on the same floor, sometimes
L'l visit them in person. If I know him, I'll IM him. [But] if he’s far away, I will ping or email.

If I don't know him, I will email him.” Another said, “I would IM or email. If [they are] not
online, then I would email. Even if [they are] in the building, I will IM anyway. When they
get back (if [they were] away) I will IM them back. If [they are] out of office, then I will send
email.” The person’s job level also has an impact: “If [they are] low on the management
chain, I talk to them in person. If high up in the chain, I send an email. It doesn’t matter if
I know them.” Another interviewee who felt similarly explained. “Usually managers are
busy... I'd send an email before [1 would] knock on their door” When contacting a manager,

they said they would ask simply for a more appropriate IC contact.

'Thus, although developers and their teams have distinct “algorithms” for finding and se-
lecting the most relevant and expedient person to speak with, overall, they seem to con-
sider at least six criteria: ownership, checkins (most recent or most numerous), a preex-
isting relationship, physical distance, job level, and online availability.

The interviewees communicated most often with their own teams, all of whom were col-
located on the same floor of their building, and frequently in the same hallway. However,
conversations with developers on other teams occurred often as well; in Survey 2, respon-
dents indicated that they contact other developers two to five times per work task, and
that most contact someone at least once a day when doing coding tasks. Most responses
to emails or IMs occurred immediately (31% N=87) or while the asker was still working
on his task (56% N=87). Though we thought it would be more difficult to get a response
from a file owner on another team, 73% (N=91) of Scl respondents said that they were
happy with the timeliness of the response they received.

'These kinds of conversations resulted in mainly positive impressions. Survey 1 respon-
dents reported being satisfied with conversations they had for all of the scenarios (Scl:
84% (N=91), Sc2: 94% (N=84), Sc3: 90% (N=69)). In Scenarios Scl and Sc2, most re-

61

Chapter 4. CARES: Relevant Engineers

spondents agreed with the statement, “the outcome of the conversation we had is still relevant

Jfor me” (Scl: 81% (N=90), Sc2: 83% (N=82)). Such frequent, positive, material commu-
nication is likely to help engineers build and maintain positive working relationships with
one another.

4.4 Tool Design and Implementation

In this section we describe cARES, our tool to support developer in finding, selecting, and
contacting relevant colleagues, and the factors that influenced its design, many of which
originated with Grudin’s studies of groupware failures [69].

cARrEs is an IDE extension that displays a vertical array of phoros of engineers in the whites-
pace in the upper-right corner of the current editor window.* To help developers select
the best person with whom to communicate, each photo has a tooltip that reveals addi-
tional relevant information, such as the person’s code history. Developers can then choose
the best way for them to contact a person. There is a US patent for cares [12].

Photos of engineers: The photos shown are context-sensitive; in each editor, CARES shows
the faces of those engineers who contributed to the file (i.c., checked in changes on
any branch). This minimizes the set of people developers have to consider speaking
with about a topic related to the file’s source code. This reduction can be signifi-
cant, as product teams often employ hundreds of developers, and anyone, on any
team, may have worked on the code in the past. Some of the interviewees worried
that a few files in their product were edited by many colleagues, and they would not
be able to see them all. During Deployment 1, we asked the interviewees to show
us one of their own files that had many committers, but none could find any with
more than five people. When some Deployment 2 users also complained about too
many photos, we added the ability to switch to a more vertically compact, name-
only view. Incidentally, this name-only view addresses a potential problem among
those developers prone to making stereotypical judgments based on seeing some-
one’s race, ethnicity, age, or gender in a photo. CARESs respects employee’s choice
over how their photos are used by observing the Microsoft I'T-standard opt-out
option.

Relevant information: When the developer hovers over a person, a tooltip displays her
name, email address, title, department, manager (because managers are often more
widely-known than ICs), office location relative to the user (because developers are
more likely to walk down the hall to meet with someone than walk up and down the
stairs), and a colored bar indicating her availability (taken from her IM and work
calendar status). The tooltip also shows her historical contribution to the code:
whether she made the most recent checkin, made the most checkins of all of the
people shown, or added the file to the repository, and how many commits relative
to the others she made to the file. Finally, the tooltip reveals the dates of her first

4. Source code typically has a lot of whitespace on the right margin.

62

4.4 Tool Design and Implementation

and most recent checkins, enabling the user to figure out if she is currently working
on the code, or has moved on.

Contacting a person: Once the developer chooses a person, (s)he can click on email, IM,
A/V chat, Visual Studio application sharing, or screen sharing buttons in the tooltip
to initiate contact. CARES helps contextualize the ensuing conversation by filling in
the current file path, class, and method (if applicable) as the message subject.

In the following, we present a walk-through of cArEs, showing how the tool can help de-
velopers discover and contact relevant colleagues to help find information and coordinate
action. Subsequently, we present how cAres was implemented from a technical point
of view, and we report on some deployment considerations regarding the tool’s extensi-
bility and adoptability. Finally, we show how we overcame the challenge of linking the
email address of a committer of a checkin to data describing who that employee is for a
long-lived codebase.

4.4.1 CARES Walk-Through

For this walk-through, we introduce Jane, a fictitious character inspired by the developers
we interviewed, and follow her as she performs one of her tasks, supported by the cAres
tool. Jane is an experienced developer who has just changed teams for the first time
in three years after successfully shipping her last product. She is assigned the job of
designing a new architecture for a common infrastructure platform to support her new
team’s long-lived suite of internal software tools. To design this properly, she must find
and understand the requirements, scenarios, implementations, and bugs of all the old
tools. Various members of her new team have been helping her get started by sending her
pointers to the top-level directories where each tool is located.

1. Jane opens an email with a URL in it that says very simply, “This directory contains
the code for the I'T administration tool.” Jane is not sure what this tool really does,
but she points her IDE at the directory in the repository, checks out the code, and
opens up the project. Jane thinks to herself, “where should I begin?” Perhaps she
can discover something about this tool’s methods from the filenames. She sees one
file that is suggestively named, RecommenderAdapter. cs, and decides to open it.

She sees a GetRecommendations () method that uses library methods she has never
seen before (Figure 4.1). “What could this be for?” Jane wonders. “Maybe I can
find a person who knows enough about the design to help me understand its pur-
pose.”

2. In the upper-right corner of Recommender-Adapter.cs’ editor window, she sees
the cAREs visualization, which shows the photos of three people, a woman and two
men (Figure 4.2). She knows the woman, but has never met the two men. She
hopes that one of the three might be able to help.

63

Chapter 4. CARES: Relevant Engineers

File Edit View Telerik Refactor Project Build Debug Team Data Tools Architecture Test Analyze Window Help

sl S @] % B9 - - &5 P [Windows Phone 7 Emuiator | [Debug -|| 8|
S2|09B LB

RecommenderAdapter.cs” X Solution Explorer

“4 MusicFone RecommenderAdapter ~| ¥ GetRecommendations(RecommendationCollection displayLi: -/ =l a | s

3 4 [Gps
@ GpsAdapter.cs
public IProgressContext ProgressContext { get; set; } b ® GpsUlxaml
[Player

| o &) PlayerAdapter.cs
[Systen.Diagnostics.CodeAnalysis. Suppresshessage ("Microsoft . Namif 7€_ b % PlayerULxami
public RecommenderAdapter(IConnector ¢, IProgressContext pc) i & Recommender

{] IProgressContext.cs
recommender = GetIRecommenderInstanceFrom("Commons”, c); ¥] RecommenderAdapter.cs
ProgressContext = pc; 2

sa10ichq oAi3S By

-

X0q/00L 3

> ® RecommenderULxaml
T £ app.config
= Appaxaml

9 Appxamlcs

{ @) Converters.s
Backgroundiiorker worker = new Backgroundiorker(); &) EnumUtiity.cs

worker lorkerReportsProgress = true;) MusicFonesnk
worker.WorkerSupportsCancellation = true;

public void GetRecommendations(RecomnendationCollection displaylist)

worker.Doklork += delegate (object s, DollorkEventArgs args)
{
args.Result = recommender.GetReconmendations();
args.Cancel = ProgressContext.Canceled;

3

worker . RunWorkerCompleted += delegate(object s, RunWorkerCompletedEvent

{

if (args.Error = null)
:

1% - < i]

== 4 [Z Gps e
- #] GpsAdapter.cs

> ® GpsULxaml
4 [Player

#] PlayerAdapter.cs

> ® PlayerULzaml

— 4 [Recommender
#] IProgressContext.cs

m

#] RecommenderAdapter.cs
> ® RecommenderULxaml

"CA1784:Identifie [app.config

Figure 4.2: Janes looks at the CARES visualization.

64

4.4 Tool Design and Implementation

tecommendationCollection displayLi: ~

ﬁ Phyllis Harris

phyllis.harris@softco.com

REE- -~
' j: Busy - In a meeting. Free in 2 hours @

— amm | Developer
'E Publishing Department @
A

=Rl LEey l
4 [Gps o

Phyllis Harris
is managed by Michael Kiselman.
.Naming", "CA1704:Identifi works on your floorin 99/3523. ®
) Phyllis Harris
) made 12 of 46 checkins of this file.
’ made the most recent checkin of this file. @
Most recent checkin: 2 days ago — Sun 10/16 2:58
First checkin: 2 years ago — Tue 11/17/2009 5:26 AM
playlist)

F% Team E... E® Class V...

Figure 4.3: Jane takes a closer look at Phyllis.

3. She figures that her friend, Phyllis, has worked on the file most recently (cARES
sorts people’s photos, with the person that made the most recent checkin on top),
and hovers her mouse over her photo (A in Figure 4.3). A tooltip shows that she
is Phyllis Harris (B), a developer in the same Publishing Department (C) that Jane
works in. Phyllis worked on the code only two days ago (D), and is the most recent
person to make a checkin (E). “Surely, Phyllis must know what this function is
doing.” Even better, Phyllis works nearby on Jane’s floor (F) and it would be easy
to walk over to meet her in person. But, Phyllis’ presence indicator is red (G); she
is in a meeting (H) and unavailable to help right now.

4. Jane looks at the next photo, David Pelton, another developer in the same depart-
ment. David works for Jill (I in Figure 4.4), one of Jane’s friends since she started
working at the company. David worked on the code last week, but he has not done
much (J); “he probably does not yet have a complete understanding of the code.”

5. 'The last person listed is Jon Cantrell, a developer in the I'T department. He works
in Houston (K in Figure 4.5), far away from Jane, and Jane does not know any-
one in the IT department. Jon added the file to the repository (L), and made the
most checkins of that file (M). Jane believes that he was the original author of the
codebase, however he has not touched this code in three years (N). Jane concludes,
“Since he has moved on to a different part of the company, he probably transferred
ownership of the code to someone else. I am sure he would rather not be bothered
about this unless it was absolutely necessary.”

65

Chapter 4. CARES: Relevant Engineers

66

I b GpsUIxamI I
@ 4 [Player

David Pelton
david.pelton@softco.com

R0 -

Available - Prototyping new code

Developer

laming”, "CA1704:Identifi "ublishing Department

David Pelton

is managed by Jill Shrader.
works in your building in 99/1507.

David Pelton
made 3 of 46 checkins of this file. @

.aylist) Most recent checkin: Last week — Thu 10/13 12:15 AM
First checkin: Last month — Sat 9/3 4:10 AM

Figure 4.4: Jane looks at David’s information.

3 %] PlayerAdapter.cs
’- ‘I » ® PlayerULxaml _I|
+_[B= Racommandar [
Jon Cantrell
jon.cantrell@softco.com

MNP0 -

t.Naming”, "CA1704:Identifi Available - Heading to zero bugs

Developer
); IT Department

Jon Cantrell

is managed by Daniel Escapa.

works in HOUSTON-32/16099.®

Jon Cantrell

made 31 of 46 checkins of this file.
@ added this file to the repository.

made the most checkins of this file.

splaylist)

@Most recent checkin: 3 years ago - Wed 11/12/2008 6:27 AM
First checkin: 3 years ago — Fri 9/12/2008 2:41 AM

Figure 4.5: Jane learns about Jon’s contribution.

4.4 Tool Design and Implementation

I g Service References I
|

David Pelton
david.pelton@softco.c
%El @~ & -

Available - Pr ode

Developer
Publishing Department

mi

wylist) David Pelton
is managed by Jill Shrader.
works in your building in 89/1507.

David Pelton
made 3 of 46 checkins of this file.

Most recent checkin: Last week — Thu 10/13 12:15 AM
First checkin: Last month — Sat 9/3 4:10 AM

= A | 155

Figure 4.6: Jane decides to contact David by email.

File Edit View Teleik Refactor Project Build Debug Team Data Tools Architecture Test Analyze Window Help

=T IR | b [Windows Phone 7 Emuiator | [Debug <] (8 Bl ir =
FZ20PP PS8R

Ll RecommenderAdapter.cs® x Bl solution Explorer

% MusicFone RecommenderAdapter -9 GetRecommendations(RecommendationColecton displayti - [| 2 (1| 1 53
T Z] + @ Application

bl Properties

public IProgressContext ProgressContext { get; set; } > & References
[Service References.
» (@ DataConnectors

N

x0q1001

Review

B) oo e

¥ High Importance
Address Check | Attach Attach Signature | Assign 2o
Book Names | Fle heme e | Poicy+ ¥ Lowlmporance

Basic Text Names Include Tags

David peton

Figure 4.7: CARES fills in the subject line of Jane’s email.

67

Chapter 4. CARES: Relevant Engineers

6. Since Phyllis is not available, and Jon is no longer an option, Jane decides that she
will contact David (O in Figure 4.6). Though he is available, Jane feels uncom-
fortable sending an instant message to a new colleague. Instead, she writes him an
email to introduce herself, and then asks her question.

CARES helps Jane contextualize her email for David by filling in the current method
and file name as the subject of the message (P in Figure 4.7). After a few minutes,
David responds to Jane’s email, and says that he is available for the next hour in his
office. Jane heads over to meet David in person to learn more about the code.

By giving Jane the opportunity to read information about those who have worked on the
source code, cAREs made it possible for her to quickly discover and contact a relevant
co-worker who can help her.

A video of this walk-through is available at http://research.microsoft.com/~abegel/
cares/demo.mp4.

4.4.2 Tool Implementation

CARES is the first instance of a series of lightweight tools in the Codebook family of ap-
plications [13]. It is realized as a Visual Studio 2010 editor component extension. Its
list of photos is a view-relative, embedded editor adornment (i.e., a graphic effect layered
on top of the text view that always remains on screen at the same position relative to the
window borders), which shows as many photos as fits into the vertical space of the editor
(though, during our deployment study, no one had files requiring more than 5 photos).
To a first approximation, when a file from the source code repository is opened into the
editor (detected using Visual Studio’s built-in source code control extensibility object), a
call is made in a background thread to the repository to fetch a list of all of the file’s check-
ins. caRrEs collects the list of unique committers, and with each, associates the number
and range of dates of their checkins, and fetches their company-managed, employee data
(including their photo) from the repository. If the repository’s committers also have Mi-
crosoft Windows identities, publically available extended information is pulled from the
organization’s Active Directory.

When the user hovers over a person’s picture, a tooltip-like element (a Windows Pre-
sentation Foundation Popup with a tooltip-like visual appearance and behavior) is shown
that contains individual and aggregate information about the person, their relationship
to the file and the user, and optionally, their relationship with the other people being
shown. When the Visual Studio user is running the Microsoft Lync communication
software, each person’s picture is augmented with availability information drawn from
the Lync instant messenger status. Buttons in the Popup can then enable the user to
initiate communication with the person via email, IM, phone, and screen sharing.

To ease its adoptability, cAREs needs no configuration. It pulls required information from
Visual Studio’s built-in, pre-configured extensibility objects. CAREs is robust to the loss

68

http://research.microsoft.com/~abegel/cares/demo.mp4
http://research.microsoft.com/~abegel/cares/demo.mp4

4.4 Tool Design and Implementation

or recovery of connectivity to the source code repository and Lync server, gracefully de-
grading the user interface when needed data is unavailable.

'The walk-through in Section 4.4.1 shows just one example of the information that CARES
is capable of displaying. Its architecture employs the Managed Extensibility Framework
to enable plugins, such as our source code repository plugin, to provide additional in-
formation about the current editor context. This context includes the current program
element, file, project, solution, user, and any other associated people. Plugin authors can
define alternative tooltip displays, such as showing number of changed lines per method
instead of number of commits per file, using Windows Presentation Foundation XAML
interface declaration files, without the need to alter the core source code of the tool.

4.4.3 Deployment Considerations

Many developers at Microsoft use Visual Studio, so it was a natural choice hosting the
CARES extension. CARES uses Visual Studio’s Managed Extensibility Framework, which
enables plugins to easily extend Visual Studio internals (similar to what is possible with
Eclipse) and allows plugins to be easily extended as well. cARrgs supports two kinds of
extensions: source control repository access and employee metadata crawling. When a
file is opened, CARES asks each source control extension to check if the file is managed
by that source control system. If so, the extension asynchronously populates a list of email
addresses and associated dates for each checkin and “shelveset” recorded for the file.®

From the CSCW literature and past experience deploying tools at Microsoft, requiring
any configuration steps, server setup, or any type of waiting time between installation and
use would hurt cares’ adoptability [69]. We took advantage of Visual Studio’s built-in
source control connections to obtain information about committers and their contribu-
tions to the code. We use Windows’ connection to Active Directory (available at Mi-
crosoft and many other enterprises) to retrieve employee information. We piggyback
onto the user’s active Microsoft Lync unified communications session to provide our var-
ious communication modes. When the user is disconnected from the corporate network,
or disconnected from Lync, cares gracefully degrades the user interface by disabling the
features that rely on those servers without affecting the others. For example, if the user’s
connection to the source code control server is severed, CARES cannot fetch the checkins
and committers at all. If a new file is opened, cares will display an error message to
the user for five seconds and then fade out. If the connection comes back, cArREs will
reactivate and attempt to initialize itself again.

4.4.4 Understanding Identity

Identifying a person is much more complex than it first appears. To the source code
repository, where cAREs fetches information about checkins and shelvesets, the author is

5. A shelveset is like a checkin, but is intended only to be temporarily held while it is code reviewed by others.

69

Chapter 4. CARES: Relevant Engineers

an email address. In order to identify the name, contact info, and organizational infor-
mation of the person represented by that email address, we simply have to find it in our
Active Directory employee database. This may work, sometimes. But while the source
code repository is recording past events, Active Directory only has records for current
employees. If the email address cannot be found, it may indicate the employee has left
Microsoft or changed his email address. Or, it might not be the email address for a hu-
man, but instead represents a no-longer-used machine account that made the checkin on

behalf of an employee.
Consider this four-step example:

1. John Doe made a checkin in 1999 with the email address: jdoe@microsoft.com.
He then left Microsoft for a startup in February 2000. Active Directory today has
no record of a jdoe@microsoft.com, thus caAREs would have no way to find out
who jdoe@microsof't.com actually is.

2. In 2005, Jane Doe joined Microsoft and was assigned the unused email address
jdoe@microsoft.com. When we now look up jdoe@microsoft.comin Active Di-
rectory, we will get Jane Doe’s contact information. But, then cARES is misleading
the user into thinking that Jane Doe contributed to the file six years before she
joined Microsoft!

3. John Doe (the original) rejoins Microsoft in 2008 as a vendor. He receives the email
address v-jdoe@microsoft.com — the “v” prefix identifies him as a vendor. An
Active Directory lookup of jdoe@microsoft.com still returns Jane’s contact info.
cAREs still believes the committer is Jane, even though John is a current employee.

4. Jane got married in 2011 and changed her name to Jane Public. To go with her
name change, she changed her email address to jpublic@microsoft.com. Now,
Active Directory will again have no record of jdoe@microsoft.com, thwarting
cAares’ lookup. Yet, John Doe does work at Microsoft, but is stuck with his vendor
email address v-jdoe@microsoft.com. This leaves Microsoft with the right John
Doe, but no way to link him to his former email address.

To address these scenarios, cARES uses the Codebook web service, which maintains a
graph of software process information mined from the software repositories used by prod-
uct teams at Microsoft. This information includes people, checkins, bugs, documents,
tests, etc. Crucially for cares, Codebook retains and makes available the entire history
of all of the repositories. Every graph node in Codebook has the potential for recording
a start date and end date when it was valid. Person nodes can store multiple sets of start
and end dates, since people can leave and rejoin Microsoft many times. Each property of
a graph node may be declared to be “revisable,” i.e., it too retains a record of every value
it ever had along with the date range for which the property had that value.

Codebook mines its employee data from Human Resources, rather than Active Directory.
Human Resources uses a much more complex employee database that contains historical
information about current, former, and contingent (vendors, interns, contractors, etc.)
employees. They distinguish employees not by name or email address, but by a personnel

70

4.4 Tool Design and Implementation

number, which is unique to each individual and never reused. Even when a person leaves
and rejoins Microsoft, they are assigned the same personnel number.

Unfortunately, the Human Resources database contains a lot of “dirty” data. Some data is
missing when we expected it to be there (e.g, the identity of the second author’s manager
is missing from the database for his first year of his employment). Some data is not
applicable for a given date range (e.g., a salesman working out of his home has no “office”
phone number). And many date ranges themselves are inconsistent across different tables
in the same database. We spent six months after building cArEs learning how to clean the
data into a coherent, consistent form. This cleaned data is what is stored in Codebook.

cAREs invokes a Codebook web service API that provides the personnel number for any
email address when also supplied with a single date. On any given day at Microsoft, only
one person has a particular email address, so the combination of email address plus date
is unique. CARES looks up each committer (or shelver) using the date of the checkin (or
shelveset), and then retrieves (using another Codebook web service API) the complete
historical record of that person’s employment at Microsoft.

Codebook does not contain all of the information about people. Active Directory alone
contains the person’s photo and their instant messenger email address, both needed by
cAREs. Another employee database contains an important opt-out bit that indicates
whether the employee wishes to make their photo public to people inside Microsoft. We
must combine information from all three data sources in order to properly display the
cAres UL Codebook contains every historical email address for a person and their per-
sonnel number, while Active Directory contains every employee’s current email address
and personnel number. We can use Codebook’s information to obtain the personnel num-
ber, and use that to look up the photo and IM address in Active Directory. We can then
use the current employee email address to look up the opt-out bit in the third database.

Building such a pair-wise data lookup model made it difficult to design carEs with an
extensible architecture that can incorporate additional employee information databases.
However, if we could sufficiently modularize the employee lookup extensions, we could
speed up cAREs by parallelizing the lookups. Our solution is to use an AggregatePerson
facade object which can dynamically aggregate and cache information from individual
Person objects returned by each employee lookup extension. Each extension is requested
to lookup an employee given a pair of an email address and a date. If found, the extension
creates a Person object with whatever data it has available (including historical) and adds
it into a cAREs global Person Repository. Several of a person’s properties can be used to
uniquely identify them, either the personnel number, or a pair of a date range plus an
email address, Exchange name (a person’s name with qualifier, when necessary to distin-
guish the person from others with the same name), GUID, Windows Security ID, IM
address. Whenever a Person is added into the Person Repository, its unique identifiers
are intersected against those already in the repository. Whenever there is a match, those
Person objects are aggregated into a single AggregatePerson facade.

71

Chapter 4. CARES: Relevant Engineers

For example, let us say that John Doe made a checkin. TFS identifies him as
“jdoe@microsoft.com @ 1999-04-20.” Active Directory identifies John Doe as “v-
jdoe@microsoft.com @ current,” as “John Doe @ current,” and as “Personnel
Number 1234567.” Codebook identifies John Doe as “jdoe@microsoft.com @ 1997-
01-03 to 2001-02-10,” as “v-jdoe@microsoft.com @ 2008-04-20 - current,” as
“Personnel Number 1234567,” “John Doe @ 1997-01-03 to 2001-02-10,” and as
“John Doe @ 2008-04-20 - current.” The third database identifies John Doe as “v-
jdoe@microsoft.com opt-in @ current.” The Active Directory Person and Code-
book Person overlap in the personnel number, so they are merged together. The email
address of the third database’s John Doe overlaps with the email address of the Active
Directory Person, allowing it to be merged into the AggregatePerson object as well. Fi-
nally, the email address and date of the TFS Person overlaps with the date range of the
Codebook person’s first email address. 'This last match lets carEs associate its checkin
with the John Doe AggregatePerson object and display his correct, current contact and
organizational information in its user interface.

So, what if the person who made the checkin is found in Active Directory but not in
Codebook? This can happen when employee checkins are gated by quality testing — all
employee checkins in the same time period (e.g. hour) are grouped together and tested.
If the tests succeed, a machine account then commits all of the checkins to the repository.
Machine accounts are Windows principals, and thus exist in Active Directory, but since
they are not employees, they do not exist in the Human Resources database that supplies
data to Codebook. We noticed that a secondary way to confirm the email address belongs
to a machine account is that its Active Directory record contains no manager.

Sometimes an email address from a checkin cannot be found. If the Human Resources
employee database were infallible, we would be able to conclude it is a machine account
that is no longer used. However, the HR database has some missing rows in its email
address to personnel number table, preventing us from linking his contact information
to his email address. To reduce the incidence of these “missing” employees, we have
manually curated 1,500 former employee’s table entries, using manual inspection. The
names and email addresses are often very similar to one another making them easy for a
person to identify.

4.5 Evaluation

We deployed cares twice, first in a pilot to 30 developers, and then in a Microsoft-
wide internal release. Until the end of June 2012, it has been used by 106 additional
employees. The reaction to cARES by most individual contributor developers has been
primarily positive, however, a few people felt that it did not fit with the ways they preferred
to communicate with others. In this section, we describe both the positive and negative
reactions to CARES, illustrating the diversity of communication styles used by employees
sharing the same role.

72

4.5 Evaluation

Eight pilot users were interviewed. All of them liked the carEs tool itself. “CAREs is
pretty cool” and “awesome.” One developer liked it enough to show it to his manager, who
said, “[it] puts a face to the code. Now I know who to talk to.” That manager went on to ask
his entire team to start using cAREs. All of the Survey 3 respondents said it was clear why
the people who showed up in carEs were there (100% N=23).

They told us that cares simplified and sped up their process for finding relevant engineers.
One interviewee said, I “would use the CARES ftool to get their name, email and contact card
with their office address. [1t] saves me time from running [a code history tool] and [an address
book tool].” Another said “The more I can just stay here [in the IDE] where I'm doing my
work, the better it is.” A third said he “looks at [CARES’] availability indicator to confirm
[that someone is] free” “before walking over. Green: yes, Red: message, Yellow: wait or
email.” 56% (N=18) of Survey 3 respondents reported that seeing the person’s availability
indicator helped them to decide who to contact at that moment.

Developers spoke of situations where cares had helped them. One said, “The add-in is
helpful for me... There’s lots of people who have implemented [code] in the past, and I have to
understand them all.” Another said it was “bandy to know who worked on that particular
code, especially when it was developed by someone on a different team years and years ago.” Two
others predicted that people who used cares would end up asking zhem questions, one
because he worked on the product’s core which everyone else used, and the other because
he was in the same team for many years, and had contributed to almost every file.

In the cares design, we chose to show photos instead of names because we wanted to
encourage communication. The photos are always visible, giving the developer the feeling
that someone out there cares about his work, and is keen to be contacted about it. The
CSCW literature backs up our intuition, suggesting that visual cues provided by photos
can help people identify individuals’ relevant social categories and promote shared social
identity among colleagues [142]. 48% (N=21) of Survey 3 respondents strongly agreed
or agreed with the statement, “Secing the faces of the contributors to the code helps me to feel
like I am part of a community.” 43% were neutral and only 1 respondent (5%) disagreed.

CARES’ photos enable group members to easily recognize one another, which increases
their sense of belonging. One interviewee said it was “definitely easier to figure out who the
peaple are with the pictures.” Another showed us how he investigated pointers to Visual
Studio solutions that he received in his email. Having never looked at the solution’s code
before, and then opening it into his cares-enabled IDE, he exclaimed, “#hat’s [name
omitted]! He’s actually on my new team. Itd be real easy for me to talk to him. [Pause] That
would have definitely taken me longer without CARES. I would be trying to hunt people down.”
His feeling was shared by many in Deployment 2. 57% (N=21) of Survey 3 respondents
strongly agreed or agreed with the statement “For those people whom I had met before, seeing
their faces in CARES helped me to recognize them.”

Not everyone found that cAREs was the right tool for them or their team. While 81%
(N=21) of Survey 3 respondents reported that cArREs showed enough information to un-
derstand the recency of a person’s contribution to the file, only 39% (N=23) felt there was

73

Chapter 4. CARES: Relevant Engineers

enough information to see the magnifude of a person’s contribution to the file. 5 Survey
3 respondents requested that cARES show line-by-line attribution each file, rather than
aggregate all contributors to the file. We have been reluctant to add this feature since it
would duplicate the functionality of the “annotate” function (i.e., blame) in Visual Stu-
dio with TFS. Showing relevant people per line also presents a user interface challenge
because you do not want your tool to attract the user’s attention with Ul changes when it
is irrelevant to the user’s main task. [39].

In our interviews, we spoke with one developer who said that while it was useful to know
which developer in India wrote some code, he still preferred to contact the developer’s
team /iaison in India to ask questions. He explained that his way enabled the liaison to
delegate his question to anyone who was relevant and available to answer the question.
With our tool, if the chosen developer was unavailable, or out of office, the answer would
have been delayed at least 24 hours.

Another developer, the most senior member of his team, said that people came to him
to find out who to talk to. “I could gauge whether their question was appropriate, or in my
estimation, they should have done more homework.” He worried that people on his team
would use CARES to speak directly to more relevant colleagues without “demonstrating
that they had any mental model at all.” He noted further that cAREs was of no use to him
because “it’s almost always clear who the author is, or who the right person is to contact... I
know, based on my years of experience... who the author is.”

In Deployment 2, we employed logging to record developers’ interactions with cares. We
have processed basic usage data (shown in Figure 4.8). In its second deployment, CARES
has been used by 106 software engineers all across Microsoft (not including Deployment 1
users). More importantly, CARES was not just used once or twice, but continues to be used
on a regular basis by 36 of those engineers. Most small utilities deployed in an enterprise
lose users quickly, due to serious bugs, overcomplexity, or user boredom; that cArEs has
remained installed and used by developers bodes well for its future.

4.6 Related Work

Coordination studies have a long history in software engineering and CSCW research.
Sarma [152] presents a comprehensive review of coordination tools, with features ranging
from five team awareness, to top-down socio-technical exploration (STC), to IDE-based tools,
to context-sensitive tools. Examples of such tools are:

- Live team awareness: Palantir, TUKAN [156], FastDash, Jazz, and CollabV'S;

- Top-down socio-technical exploration (STC): Expertise Browser, Palantir, FastDash,
Ariadne and Tesseract (both use Cataldo’s STC), BeeHive, and Codebook;

- IDE-based tools: IBM Rational Team Concert (née Jazz), CollabVS, Palantir, TUKAN,
Deep Intellisense, and TeamTracks;

- Context-sensitive tools: TUKAN, TeamTracks, and Deep Intellisense.

74

4.6 Related Work

.
T
av2 T2 iees
IR0 B0 51
| e Sl
se ‘aiea ssssa
N L
- . - - -
i -
aie s = .
T e e 20 ssems movee
T Foa 2 S % LS
e
. ! . .
v - v ce i e
%Gas wes s sesee Wia emid Cesde esed e sras same seees
P i i Lo Lo ! F & 27
4 ediad 33° 7 Tlela aesd’ idia o senaes mae s
T
:
- s e e eaes emes esm
13- cece meee coos s seee v wrer e oem ww eners
21 cee ceeer cem wer scee
T L e
N
- e ereee weeew S ——wre .y - - - eeeee esw -
e e e L B B L
s e
iem o .o
. .- . s ear e s
iesee sesss memes 3.
H
.
2.
. e = . gae . .. e wes -
.
sps s imeewess emma cpsess | eme ws o o we o' o w e s ses mems sas semms
SNNIRTTIVSY Y ST T el swed™ S e BT ERST (ee S
in s e ee semr meesscmes e cc @ semes = ecer cwees car aee sse s eem =
:
ar @ ce v, oer e wes e s ee 4w cwes s aemss ewass
L S e 2 .- - Tee)
s Teene wests efee sdesd wr e cwer 3% sere esem doc s w ces res e cesee
:
momees coce s s em e w8 e s esms sess mewss mc we o m oewsss ® eses coe
o -
" s I . . rgrr o, et we e
FonE et I
: erce =i v mase sest Teem s
:
:
&
5 . B o
She cer s er e e . e e on o s er 07 see s e ace s e sae”d
:
FE .
2 ei Jees?! D ew ms e cemss cess o
-2 .
Mo
=
:
.
R = : PR o . “ws - . .
* sevew resee @ veee W= Teee e owe - reew eve - - veuw LAl e w reewe
F o TOTITI SN . :
20 23ise
320 ceeee s
PR, N ... 3 er saece mcess ssse sems sewe e cms coses
: - - " - - - - - e -
:
Sreeeceesans
gl = -
S ailes s ase mmes| me s es s sse cEses dea s es s ses se e ds —
:
:
e ew s e & cese s occe e s ws sw s s sss wsss esees v e eees P
ST etel SN E P Tels TS H s T 03 e T
ig o2
t: 2
=t * e e e .« e]
ieve ce we . 0w oo
S e Yo ee e evems cees "Ieel aeThee seer emece mo o ces sew s sose oo

Figure 4.8: Usage logs of CARES users. The X axis is the date and the Y axis shows each unique
user. A dot on a row shows when the person used CARES in his or her Visual Studio session.

The timeline begins on March 8, 2012 and ends on June 24, 2012.

Unlike the live awareness tools, CAREs aims at developers on large enterprise software
teams working independently on components of a software product [103, 110, 49, 44, 35].
Each developer may care little of the daily work of people on other teams (if they know
them at all), except when a coordination request or information need arises. As in Costa
et al’s study [35], the products we studied are also long-lived; relevant contributors may
have moved on to unrelated projects. This reduces the need to see others’ current activi-
ties and allows a simpler display of availability in line with the literature’s recommenda-
tions [39]. While some of cAres’ design elements overlap with Schummer’s awareness
design patterns [156], other aspects harmonize with Nakakoji’s guidelines for commu-
nication with experts: being personalized, contextualized, and socially aware (though we
do not limit users’ communication modes) [125].

CARES is context-sensitive and contextualized to the IDE, only showing the people rele-
vant to the user’s focus. This design (also used by TUKAN and Deep Intellisense [90])
requires a simple glance and mouse hover to choose with whom to communicate. The

75

Chapter 4. CARES: Relevant Engineers

top-down STC tools require search, browse, or information-pivoting operations to move
from a global view to the desired context. Jazz, CollabVS, and Palantir always show every-
one on the team, while TeamTracks anonymizes the people and displays their aggregated
IDE actions. Only Ariadne and carREs show how people are related to one another and
to the tool user. Ariadne shows a similarity-metric-based person graph, while CARES
shows concrete relations, such as relative office and organizational location, and relative
code contributions.

There are many possible methods to select relevant people to show (e.g. organizational
charts, program analysis, whole-system STC graph analysis [29], email [91], degree of
interest functions [101, 61], and newsfeeds [58]). Our carEs prototype uses committers
as a simply-computed, ecologically valid proxy for ownership and knowledge. ‘This choice
drastically improves cAres’ deployability by avoiding the need for offline analysis and cus-
tom servers (which are required by many of the other tools). CARES is auto-configured
from the project’s source control context and works immediately after installation.

While many coordination studies have looked at why software engineers communicate
and then pondered the implications of too little or too much communication, ours is
the first to discover the criteria engineers use to select the right person to speak with.
In addition, we noticed that very little of the literature describing communication and
coordination tools offers longitudinal data about usage, whereas our report describes two
deployments over a total of five months of tool use at a large software enterprise.

4.7 Concluding Remarks

Enterprise software development is notable for supporting large numbers of engineers
working for long periods of time on projects that have significant amounts of legacy code.
At Microsoft, we noticed that ad hoc, asynchronous, intermittent communication be-
tween software developers about the source code was common, yet poorly supported by
the general communication tools in daily use: email and IM. We found, after several
months of study, the methods and “algorithms” that software engineers use to discover
and select relevant people to speak with about their code. We learned that although their
communication was intermittent, it was a key factor in establishing long-lasting work
relationships that help make future collaborations less difficult.

By building an IDE-based tool to specifically support the person discovery and selection
process, we realized that modeling employee identification in a large long-lived enterprise
was very complex, and was often made so by the multitude of complementary, yet incon-
sistent employee metadata databases maintained by various corporate departments. Cor-
relating information and dates across the databases was essential to uniquely identifying
individuals who had contributed to source code repositories but had since changed their
organizational affiliation or personally identifying information (PII). Our techniques can
be used to efficiently disambiguate or “unify” individuals across many different kinds of
PII metadatabases.

76

4.7 Concluding Remarks

After distributing our tool twice (once for three weeks and once for four months) we
confirmed that deployability is strongly influenced by ease of installation, simplicity of use,
and effectiveness at a single task. We plan to continue studying the impact carEs has on
developer to developer communication at Microsoft. Our long-term goal is to learn about
and support communication scenarios between developers and non-developers. With
communication comes cooperation and trust, and with both comes more effective and
successful collaboration.

77

Bellevue: Receiving Changes

7;mwork in software engineering is time-consuming and problematic. In this chap-
ter, we explore how to better support developers’ collaboration in teamwork, focusing
on the software implementation phase happening in the Integrated Development En-
vironment (IDE), where developers spend most of their time.

Based on one of the recommendations presented in Chapter 2 we analyze the current
IDE support for receiving code changes. We find that historical information is nei-
ther visible nor easily accessible. Consequently, we devise and qualitatively evaluate
BELLEVUE, an IDE extension that makes received changes always visible and code
history accessible in the editor.*

1. This chapter contains the second and last part of the paper “Supporting Coordination in the IDE” [74],
accepted for publication in the proceedings of the 18th ACM Conference on Computer-Supported Coop-
erative Work and Social Computing (CSCW 2015). The authors of this publication are Guzzi, Bacchelli,
Riche, and van Deursen. This paper has been awarded a Best Paper award.

79

Chapter 5. Bellevue: Receiving Changes

5.1 Overview

Based on one of the recommendations of our exploratory investigation presented in Chap-
ter 2 (Section 2.4.3), in this chapter, we investigate how to improve the current approach
of receiving changes in the IDE, because currently support is minimal and not well inte-
grated in the IDE.

We first briefly recall the current state-of-the-practice to receiving code changes. When
developers decide to receive new changes in the IDE (regardless of the IDE or the ver-
sioning system used), they receive the complete list of changed files. Subsequently, they
can inspect each file with a read-only view, and visualize the textual differences from their
current version. When developers eventually deem the changes are appropriate, they can
(semi-)automatically integrate them (i.e., merge) with their local copies. After the merge,
the context of receiving changes is closed, and developers continue working on the up-
dated code. Figure 5.1 exemplifies a typical user interface employed during this process.

@ JamesGreen / Paint

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE
using System; using System;
Pending Outgoing using System.Collections.Generic; using System.Collections.Generic;
4 Pending Incoming using System.Ling; using System.Ling;
using System.Text; using System.Text;
app.config edited using System.Windous; using Systen.Windows;
LinePaint.cs Bdited using System.Windows.Controls; using System.Windows.Controls;
using System.Windows.Data; using System.Windows.Data;
PaintCanvas.cs edited using System.Windows.Documents; using System.Windows.Documents;
PaintCanvasCommands.cs [using System.Windows.Input; using System.Windows.Input;
X using System.Windows .Media; using Systen.Windows .Media;
PencilPaint.cs added using System.Windows.Media.Imaging; using System.Windows.Media.Imaging;
RectPaint.cs edited using System.Windows.Navigation; using System.Windows .Navigation;
using System.Windows.Shapes; using System.Windows.Shapes;
Window.xaml.cN edited
namespace Paint namespace Paint
{ {
/11 ok togenerated comment /// Interaction logic for Windowl.xaml
< y> </summary>
public partial class Win : Window, IPaintObjectCons public partial class Windowl : Window, IPaintObjectConstructorListend]
private PaintObjectConstructor objectConstructor; private PaintObjectConstructor objectConstructor;
public Windowl() public Windowl()
{ {
InitializeComponent(); InitializeComponent();
this.Loaded += new RoutedEventHandler(Windowl_L this.Loaded += new RoutedEventHandler(Windowl_Loaded);
} }
public void Windowl_Loaded(object sender, RoutedEve public void Windowl_Loaded(object sender, RoutedEventArgs e)
objectConstructor = new PaintObjectConstructor(objectConstructor = new PaintObjectConstructor(this);
objectConstructor.setType("Paint.PencilPaint"); objectConstructor. setType("Paint.PencilPaint");
objectConstructor. setColor(ColorSliderpanel . get objectConstructor. setColor(Colorsliderpanel . getstartingColor(
objectConstructor. setThickness(5); objectConstructor. setThickness(s);
DrawingCanvas.Mouseleave += new MouseEventHandl DrawingCanvas.MouseLeave += new MouseEventHandler(objectConst]
DrawingCanvas.MouseDown += i seButtonEvent DrawingCanvas.MouseDown += new MouseB
DrawingCanvas.MouseUp += new Mo ButtonEventHa DrawingCanvas.MouseUp += new MouseButtonEven
DrawingCanvas.MouseMove += new ventHandle DrawingCanvas MouseMove += new MHouseEventHandler(objectConst
} }
private void SetPaintColor(object sender, ColorChan private void SetPaintColor(object sender, ColorChangedEventargs ¢
{
objectConstructor.setColor(e.ColorValue); objectConstructor. setColor(e.ColorValue);

Figure 5.1: Exemplification of current UIs for receiving code changes

By analyzing the support for receiving changes in the IDE under the light of widespread
usability heuristics [122, 127], we find that it does not properly support the informa-
tion needs of developers about change history. Based on this and on the findings from
the exploratory investigation we (1) derive requirements for an IDE extension, (2) de-
sign BELLEVUE, the design of a prototype fulfilling these requirements, and (3) iteratively
evaluate and improve BELLEVUE with 10 senior industrial developers from different com-
panies and with different backgrounds.

80

5.2 Methodology

BeLLEVUE makes newly integrated code changes always visible, both at project and file
level, and code chunks’ history easily accessible. It shows historical information within
the active editor to allow users to modify the code without switching context. BELLEVUE
takes historical change information that is already available and offers an interactive view
that shows detailed historical information for files and specific chunks with respect to a
previous version. In this chapter we present the BELLEVUE tool design and evaluation.

5.2 Methodology

'The goal of this chapter is to investigate a technique to improve teamwork in the IDE,
by following the recommendations discussed in Chapter 2. In particular, we focus on
receiving changes in the IDE and how to improve its support. In the following we detail
our approach (illustrated in Figure 5.2) by dividing it in the two main methodological
steps we pursued: design prototyping and RITE-based design evaluation.

5.2.1 Design Prototyping

As a first step, we analyzed the current approach for receiving changes in the IDE under
the light of widespread usability heuristics [127] (Point 1 in Figure 5.2). We found several
unmet heuristics that, together with the data collected in the exploratory investigation,
we used as a basis to derive requirements for our IDE extension to improve receiving
changes and support teamwork (Point 2).

Afterwards, we devised an IDE extension, named BELLEVUE, to fulfill the requirements.
To explore our preliminary design ideas for BELLEVUE, we employed concept prototyp-
ing [112]: We created initial concept sketches of BELLEVUE on paper (Point 3), which
we used for communicating our ideas to various industrial user experience (UX) experts
(Point 4). This let us to get their feedback, reveal early problems, and improve the initial
concept.

Once the concept of BELLEVUE was more solid, we devised a detailed storyboard including
a high-fidelity prototype of BeLLEVUE (Point 5). This was implemented in the form of a
slide deck, a technique commonly used in professional UX prototyping, which contained
a sequence of believable action steps of interaction with the prototype. Each step was
devised in a way that the participants of the evaluation phase could observe what was
happening, explain what they would do, and describe the eftects they would expect as a
consequence of their actions.

Compared to implementing a full-fledged version of BELLEVUE to evaluate with users,

this prototype based approach allowed a faster feedback cycle to improve the design and
to incorporate comments from the users during the evaluation.

81

Chapter 5. Bellevue: Receiving Changes

Design Prototyping
current :
approaches
3 N“gﬁr Exploratory
Saoiity Investigation
Heuristics Data

Usability j
Heuristics

&)

<:I requirements

Bellevue prototype
as slide deck

Feedback
UX experts

RITE-based Eveluation
@ FINAL
Rapid Iterative Bellevue

Testing & -.prototype
Evaluation -

< 9 Practltloners

To
story-board including y 888 TODO Investigate

high-fidelity prototype

Figure 5.2: Overview of the applied research method

82

5.2 Methodology

5.2.2 RITE-based Design Evaluation

We evaluated the high-fidelity prototype of BELLEVUE with professional software devel-
opers. We conducted the evaluation using the RITE (Rapid Iterative Testing & Eval-
uation) method: A formative usability testing method used to gain exploratory insights
into the user behavior with the intention of quickly iterating and fixing problems [119]
(Point 6 in Figure 5.2). RITE allowed us to evaluate and identify problems in the proto-
type, quickly fix them, and then empirically verify the efficacy of the fixes, using a rapid
test-fix-test-fix cycle.

We planned to have at least 8 iterations, each one with a different professional developer.
If problems were still present in the design after these cycles, we could extend the num-
ber of iterations, until we reached a stable version. Participants were selected among a
population with the following characteristics: More than three years as a professional de-
veloper, more than one year in the current company, and more than three months in the
current team. Moreover, from a more technical perspective, interviewees had to spend
at least 20 hours per week on writing and editing code, their team had to use a source
control management system, and they had to have at least browsed the change history,
encountered a change merge, or used the file diff comparison view in the month before
the RITE. Evaluation invitees were encouraged to participate by a gratuity in the form
of software offered by Microsoft.

Each participant was invited to come to a usability laboratory at Microsoft, where we
conducted this study. We informed each of them that the session would have been video-
recorded. To minimize invasiveness and the Hawthorne effect [135], only one researcher
participated and guided the session, and the video-recording was done through hidden
cameras. There were three cameras from different angles to evaluate: (1) the reaction
of the participant to the presented design, (2) the interaction with the screen, and (3)
the communication with the researcher guiding the session. To mitigate the moderator
acceptance bias [63], we explained each participant that the product was not created by
the researcher guiding the session, but by an external team. Moreover, to mitigate any
social desirability bias [63], the storyboard plot was describing the actions taken by a proxy
developer named James. This also encouraged developers to comment and discuss their
thoughts without the fear of suggesting something that would be considered “wrong”
when it would not eventually happen in the plot.

Following the storyboard plot described by the slides and the researcher, participants were
solicited to follow a think-aloud protocol, and indicate what they saw, would do, and
would expect as a result of their actions on each screen page. The role of the researcher was
mostly to encourage the participants to think aloud, to confirm what the users suggested
as actions showing the following slide, or to motivate the subsequent choices shown in
the storyboard, if different from users’ expectations.

Both by taking notes during the session, and by analyzing the recorded videos, we docu-
mented areas of difficulty and positive reactions. In particular, we kept track of features
that users suggested (implicitly or explicitly) to change, and of aspects that could be fur-

83

Chapter 5. Bellevue: Receiving Changes

ther investigated. When a participant underlined a clear error in the prototype or when
there was enough data to justify a change, we discussed it and we changed the prototype
before the next iteration to test it with the next participants.

Eventually, after 9 iterations we reached a stable and validated design. At the end of the
process (Point 7 in Figure 5.2), we had: (1) the finalized BELLEVUE prototype, (2) a set of
changes to implement but that were not eventually integrated, and (3) a set of candidate
aspects to be investigated as future work.

5.3 Tool Requirements

Although the current approach (exemplified in Figure 5.1) to receiving code changes is
widespread, our exploratory investigation (presented in Chapter 2) let emerge that it is
not optimal and offers developers minimal support. To pinpoint actionable problems
that could be solved by a tool, we analyzed the current approach under the light of the
broadly accepted [112] usability heuristics presented by Molich and Nielsen [122], and
further refined by Nielsen [127]. This analysis let emerge a series of problems (in line
with the findings of our exploratory investigation): Many widespread usability heuristics
are not met by current support for receiving changes. Satisfying these heuristics defines
the requirements for BELLEVUE, our tool to provide better support for receiving changes
in the IDE. In the following we describe the unmet usability heuristics. We quote the
developers interviewed in our previous exploratory investigation, referring to them as D1-
D11 (see Table 2.1).

5.3.1 Recognition over Recall

“Memory for recognizing things is better than memory for recalling things.” [112]

'Thus, interfaces should not force users to recall information from one part of an applica-
tion to another.

This usability heuristic is not met by development environments: Once the developer
decides to merge a received change with the local version, the information about the
integrated change is not visible anymore. For this reason, when developers encounter
a bug, they must recall which files changed and whether they could have generated the
problem. One interviewed developer explained that the frustration when he encounters
a bug comes from “figuring out where the problem is: Trying to figure out what really has
changed” [D5]. When looking for the cause of a bug, developers memory can be aided
by tools to navigate change history, but such tools require to switch from the current
development context, and they only gives information concerning the changes without
the current development context.

84

5.3 Tovol Requirements
5.3.2 Visibility of System Status

“The system should always keep users informed about what is going on.” [127]

This is not met by change management: Once changes are integrated, there is no distinc-
tion between the lines already present before the merging, and the newly integrated ones.
Therefore, there is no clear visibility of the system status with respect to its history. On
this topic, one interviewed developer explained: “I¢s kind of impossible to know every single
line of code that everybody else on your team changed” [D3]. In fact, historical information is
available, but only in dedicated tools/views out of the current development context, thus
the status is neither self-evident nor easily accessible: “there isn’t really an easy method [...]
that let you see [that] these ten files are different from what you had in your current time” [D5].

5.3.3 Clearly Marked Exits

“A system should never capture users in situations that have no visible escape.” [122]

From the code change management perspective, developers have an escape: If they find
something not working after they merged some changes into their local working copy,
they can roll back to the status prior to the merging. There are two problems with this
approach: (1) the exits are not evident and (2) the exit strategy is binary.

Due to the former problem, developers have to realize themselves (by recalling the merged
changes) that one way to solve the problem at hand could be to undo the merging, instead
of trying to find an error in their own code. Due to the latter, it is necessary to undo a//
the merged changes at once, although the error can be caused by a mistake in a small
fraction of the changed code. Once the code is rolled back, developers have to reconsider
all the undone changes and realize which ones could have caused the error, without having
the full IDE context at disposal, but only the change information, and integrate all the
unrelated changes back again. D1 explained: “Ir’ a loss of time, we have to roll back, figure
out [what the problem was], and roll again. It a loss of time, definitely.”

5.3.4 Help and Documentation

“[Documentation should] be easy to search, focused on the user’s task, list concrete
steps to be carried out, and not be too large.” [127]

Concerning code changes, the documentation often consists in the commit message that
the author of the change wrote to explain it. This is visible in the interface used to in-
spect received code changes (e.g., in Figure 5.1), but once the changes are integrated it
disappears, unless the user performs a number of steps navigating the history of the code
within specialized windows or applications. For example D5 complained: “When you get
the latest [changed files] you get tons of files”; he found it very difficult to search the neces-
sary help or information due to information overload. Finally, when developers integrate
more than one commit into their local copy, often they see only the last commit message,

85

Chapter 5. Bellevue: Receiving Changes

even though a line of code could have been changed several times between their local copy
and the current status.

5.3.5 Help Users Recognize, Diagnose, and Recover from Errors

Current code change management in the IDE makes it difficult to recognize and diagnose
errors generated by integrated code changes, because they are not visible and their history
has to be analyzed outside of the current development context. One interviewed developer
explained that, despite the availability of external history tools, “one of the problems is trying
to figure out what really has changed [and] what’s the impact on your code” [D5]. In fact, as
D3 explained, external tools are not helpful because “version control gives you a list of files
that changed and not the specific lines”: Seeing exactly which part changed and how takes
many steps. Moreover, currently the only possibility to recover from errors is to completely
undo the merged changes, while perhaps it would be sufficient to modify a small part of
code to remove the error.

5.4 Design Features and Evaluation

We designed BELLEVUE to make received code changes always visible, to favor recognition
over recall, both at project and file level. We made the history of code chunks easily
accessible using progressive disclosure, to help users recognize and diagnose errors. We
also made it possible reverting from specific code changes to provide users with marked
exits to recover from errors. BELLEVUE shows historical information within the active
editor to allow users to modify the code without switching context.

BELLEVUE aims at being a lightweight solution, ready to be used, without requiring de-
velopers to change their working style. It takes the historical change information that
is already available, but currently neither visible nor easily accessible, and displays it in
a non-obtrusive way. BELLEVUE offers an interactive view that shows detailed historical
information for files and specific chucks with respect to a previous version.

We detail the features of the prototype, as they were at the end of the RITE phase, and
the corresponding feedback from participants, including future topics to investigate. As
previously mentioned (see “RITE-based Design Evaluation”), nine developers partici-
pated in the evaluation (we refer to them as R1-9). 'The final version of the slide-deck
used in the RITE phase is available in the online appendix [71].

86

5.4 Design Features and Evaluation

® James Green / Paint

EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE

——
using System;
v Paint using System.Collections.Generic;
app.config [#] using System.Ling;
using System.Text;
LinePaint.cs [#] using System.Windows;
PaintCanvas.cs [#] using System.Windows.Media;
using System.Windows.Shapes;
PaintCanvasCommands.cs [#]
PencilPaint.cs [§] namespace Paint
{ |

RectPaint.cs [#]
Windowl.xaml.cs [¥#]

public class PaintCanvas : System.Windows.Controls.Canvas

private List<lList<PaintObject>> history;
private List<PaintObject> paintObjects;

private PaintObject temporaryObject;
private PaintObject hoveringObject;
private Rectangle hoveringRender;

private bool currentlyDrawing;
public PaintCanvas() : base()

history = new List<List<PaintObject>>();
paintObjects = new List<PaintObject>();

hoveringRender = new Rectangle();
hoveringRender.StrokeThickness = 1;
hoveringRender.Stroke = Brushes.DarkGray;
hoveringRender.Visibility = Visibility.Hidden;
this.Children.Add(hoveringRender);

currentlyDrawing = false;

}
public void Repaint()
this.Children.Clear();
foreach (PaintObject po in paintObjects)

{
}

this.Children.Add(hoveringRender);

this.Children.Add(po.getRendering());

+/ Latest changes only [7 files]

Figure 5.3: Recognizable changed files and blocks, and filtering

5.4.1 Recognizable Changed Files and Blocks

BeLLEVUE decorates changed files with an arrow (Figure 5.3, Point 1), and denotes changed
lines with a blue? colored sign, both at a fine-grained granularity (Point 2), to see them in
the context of the current text window, and a more coarse-grained one (Point 3), to see
them in the context of the entire file. One can decide (Point 4) to see only the files that
were just merged into the current local version. This design supports recognition over
recall: Once new changes are merged into the local version, their traces remain visible. It
also enhances the visibility of the system status, with respect to changes.

2. The color blue has been chosen because it is currently considered a neutral color in IDEs, as opposed to
green, orange, or red, which are often associated with versioning systems or debuggers.

87

Chapter 5. Bellevue: Receiving Changes

RITE participants’ feedback—All the participants appreciated this feature. In particular,
they liked that it helps filtering out irrelevant information when looking for the reason
of an error that could have been introduced by a received change: “Knowing what I can
ignore is huge, the larger the project, the more beneficial it comes” [R1]. Concerning the way
in which changes are made recognizable, some users did not find it intuitive, or appro-
priate: “Id prefer a bar or something much more visibile [than a blue-colored sign] zo see that
its different” [R2]. Nevertheless, after they continued in the scenario and experienced
the following features of BELLEVUE, they withdrew their concerns. Some participants
suggested to let the users personalize the color to denote changes; other participants sug-
gested to use different colors to clearly distinguish added, removed, or modified lines, as
it currently happens in tools that display code differences.

public void undo()

{
int lastItemIndex = history.Count - 1;
paintObjects = history.Last<List<PaintObject>>();

4 history.RemoveAt(lastItemIndex);
!r this.Refresh();

}

Figure 5.4: Visibility of changes’ effect by mouse hovering

5.4.2 Visible Changes' Effect

To show the effect of the change in the code, the user can hover on any colored block to
see the latest changes. For example, in Figure 5.4, the user decided to look at the changed
block that was not visible in Figure 5.3. Then, by hovering on the colored sign on the left
(Point 5), (s)he can see the effect of that change: The argument of the RemoveAt method
call has changed (Point 6), and the Refresh method call has replaced a call present before
on the same object (Point 7).

RITE participants’ feedback—This feature was introduced in the third iteration of the tool,
after considering the feedback received by the first participants. As an example, one par-
ticipant had some expectations when hovering the lines indicating a change: “foggle to
highlight what’s different from the last version, to quickly diagnose, I don’t need a true side by
side” [R3]. Once introduced, this feature was well received by all the remaining partic-
ipants (e.g., “ok, good! I can see here how [this part] changed!” [R6]), because it also helps
with the progressive disclosure [97] of the information about the changes: Users can quickly
verify whether the changes seem relevant and, only if necessary, investigate more.

88

5.4 Design Features and Evaluation

@ JamesGreen / Paint
EXPLORE OPEN SEARCH BUILD TEST CHANGES CONSOLE
—

v Paint !

app.config [#1] public void clear()

LinePaint.cs [#] history.Add(new List<PaintObject>(paintObjects));

PaintCanvas.cs [¥] paintObjects.Clear();
this.Repaint();
PaintCanvasCommands.cs [¥#] }

PencilPaint.cs [#]

blic void undo
RectPaint.cs [#] public void undo()

Windowl.xaml.cs [#] 1494 int lastItemIndex = history.Count - 1;
paintObjects = history.Last<lList<PaintObject>>();
142 history.RemoveAt (lastItemIndex)j
14! this.Refresh();

pi and consi; 3 A
10 hours ago history.RemoveAt(lastItemIndex);

#9030
ﬁ:‘;::e ‘7 kathy.farewell@live.com this.Refresh();
420N

“Cleaned up the code and fixed some [...]

12 hours ago

#3044 \ | joesmith@live.com
1£=5%

“Added undo method”
#8227 | 4 weeks ago

history.RemoveAt(history.Count - 1);
this.Refresh();

Previous | ———=— history.RemoveAt(history.Count - 1);
update 'E pouisclt this.Repaint();
2 -
. .

Figure 5.5: Accessible historical details

5.4.3 Accessible Historical Details

In BELLEVUE the user can see the code history of any block that was changed with respect
to the previous local version. This is achieved with one click on the colored sign on the left
of the interesting block. For example, in Figure 5.5, the user decided to further inspect
the history of lines 142-143 because they led to an unexpected behavior. Once the block
is clicked, a pane appears from the bottom (Point 8): It contains the historical details of
the changes happened to that block since the last update of the user. Each item represents
a change and shows the changed code with respect to the previous commit (Point 9), the
commit message to document it (Point 10), and the contact information of the change
author (Point 11). The displayed changed code only regards the chosen block, but it is
possible to extend it by clicking on the ‘... before and after the code lines (Point 12).
Previous history can also be inspected (Point 13).

RITE participants’ feedback—As for the other steps, before showing what would happen
next, the interviewer asked the participants how they would interact with the design and
what their expectations would be. In particular, for this feature, the interviewer asked

89

Chapter 5. Bellevue: Receiving Changes

what participants expected it would happen by clicking on the colored sign on the left
(Point 5). In this way, we learned that the participants wanted to have something similar
to a diff with the previous version (e.g., “I'd do a compare versus the previous version, and
Just look at those particular changes” [R3]). The BELLEVUE solution was, thus, very much
appreciated and it often exceeded their expectations: “A// the details! This is exactly what I
was looking for: It tells me who [...] and it tells me what did each one, and how long ago!” [R1];
“ob I see, so this is exactly what I was looking for. Its even better!” [R8]. Seeing the version
that could have introduced the error (i.c., #9044) was a clearly marked exit: Some partici-
pants considered the possibility of recovering the error by reverting that particular change,
because that would not imply reverting entirely to a more complex change set.

Over the different iterations, we added the clickable revision number (to open a panel to
see all the changes in a revision), and the hovering function over a commit comment to
show the full comment.

Participants’ suggestions that we did not eventually include in the iterative evaluation,
due to time reasons, mostly regarded the possibility of selecting specific parts to see the
history, instead of the contiguous block (e.g., “I want to see the whole function [history, by]
right clicking on a function” [R2]).

public void undo()
{

I

int lastItemIndex = history.Count - 1;
paintObjects = history.Last<List<PaintObject>>();
% historyyRemoveAt (lastItemIndex);

] this.R%esh();

¥
} .
} paint
“Improved readability and consistency.” = .
Latest flioaraoe history.RemoveAt(lastItemIndex);
update . kathy.farewell@live.com this.Refresh();
AlL®ON -

“Cleaned up the code and fixed some [...]

[2lculaog history.RemoveAt(history.Count - 1);

2044 ' P joe.smith@live.com this.Refresh();
A=K -

Figure 5.6: Editable code while accessing historical details

90

5.4 Design Features and Evaluation

public void undo()
{
int lastItemIndex = history.Count - 1;
paintObjects = history.Last<List<PaintObject>>();
b history.RemoveAt(lastItemIndex);
this.Repaint();

)

2 seconds ago

ourself history.RemoveAt(lastItemIndex);
Local 'E y this.Repaint();
2 o

“Improved readability and consistency.”

#9050
Latest 10 hours ago history.RemoveAt (lastItemIndex);

update " kathy.farewell@live.com this.Refresh();
ARt 20O L N o

i

Figure 5.7: New local change added to history

5.4.4 Editable Code

BeLLEVUE allows developers to edit code while reviewing the history (Figure 5.6), because
it integrates history within the active editing context. It also highlights the new code
differently (Point 14 in Figure 5.7) and automatically adds a new item in the list (Point 15)
to put it in its historical context. 'This differs from current approaches for visualizing
history, which involve opening a distinct context in the IDE or a completely different
application, and do not make it possible to edit code (e.g., to fix a bug) and see history in
the same context, at the same time.

RITE participants’ feedback—This feature was also very well received by all the participants.
In particular, a number of them was positively surprised and realized the possibilities of
having code changes better integrated in the IDE: “I have a diff view, but I am not trapped
in that |...] I got my editor and my diff view, so the split view is very very helpful [...]. Let
me do what I want to do, while looking at the information I needed to make my change” [R1];
“Now that I see, I know what is happening [...]. That is intuitive to me: Just clicking, edit, and
go” [R7]. They also appreciated the immediate feedback of the change in the local history
(Figure 5.7): “Ob, 1 like it shows it’s local” [R4].

5.4.5 Contacting Change's Author

'The author’s photo and contact pane is inspired by cares (Chapter 4), our tool to help
developers discover and choose relevant colleagues to speak with when seeking informa-

91

Chapter 5. Bellevue: Receiving Changes

EXI™ B A S Your change in Paint/PaintCanvas.cs, file version #9044 - Message (HTML)
BUILD l Message | Inset Options FormatText Review
3 - Calibri (Body ~ 11~ A" A" % 355 WJJ [[] @ _/T ﬂu ¥ Follow e~ \‘

¥ High Importance

Paste B U ¥-A-|[= Address Check | Attach Attach Signature | Assign Zoom
- < Format Painter = — e Book Names | File Hem~ - Policy~ & LowImportance
Clipboard . Basic Text “ Names Include Tags «| Zoom
From ~ james.green@live.com
=] To... joe.smith@live.com
Send
(o
Subject: Your change in Paint/PaintCanvas.cs, file version #9044

Regarding your change in Paint/PaintCanvas.cs

¥ joe.smith@live.com, revision #9044: “Cleaned up the code and fixed some of the missing comments [..]”
138 public void undo()
139
140 paintobjects = history.Last<List<Paintobject>>();
141 history .Removeat (history.Count - 1);
142 this.Refresh();
143 3
144 }
15 }
Local
||| james.green@live.com, revision #8227: “Added undo method”
138 public void undo()
139
Latest 140 paintobjects = history.Last<List<Paintobject>>();
141 history .Removeat (history.Count - 1);
update 122 this.ReBEIRE();
123 3
]| 144 }
185 }
#3044

Figure 5.8: Contacting the author of a change from within the IDE

tion or coordinating action. In BELLEVUE, the communication icons (i.e., email, instant
message, and phone) can be used to directly contact the author of a given commit, for
example to inform them about an error or a breaking change on the same code. Fig-
ure 5.8 shows the email template automatically generated by clicking on the email icon
next to the author for commit #9044 (i.e., Joe Smith); it includes the diff with the previous
commit, for easier reference.

RITE participants’ feedback—The social interaction within the view was extremely well
received by all the participants. They especially appreciated the possibility of quickly using
email and instant message: “Ireally like that. Id click on chat” [R6]. When discussing what
they would write to the author of the buggy change, they all specified a number things they
would like to ideally see in the email, and when they saw the email automatically generated
by BELLEVUE, they liked how it included everything they wanted: “7har is perfect. [It is]
exactly what I would have sent” [R1]. However, some would have liked the diff view to be
as shown by BELLEVUE in the IDE, while “now it like standard diff” [R6].

Participants’ suggestions that we did not integrate during the evaluation, for time reasons,
are: Adding an email all feature, change the title of the email giving information about

92

5.5 Related Work

method and class in which the new change is taking place, support for copy and paste
from history to email, and include more communication clients (e.g., IRC or Skype).

5.4.6 Evaluation Debriefing

After each RITE session, participants were asked to fill two short questionnaires about
their experience with the tool: A System Usability Scale (SUS) questionnaire [21] and a
proprietary 7-point Likert scale questionnaire standardly used at Microsoft.

The SUS answers were overall positive: The mean SUS score is 85.1 (answers had o =
0.66, on average), which is considered a high value across different domains [8, 9, 153];
as an example, the statement “I think that I would like to use this product frequently” scored
4.7/5.0 (o = 0.50).

'The proprietary survey was equally positive: Mean score was 5.4/7.0 (the higher the bet-
ter: items only included positive wordings [154]), with o = 1 on average. For example
participants gave 5.4/7.0 (o = 1.13) to the statement “This product has powerful function-
ality and excels at what it was designed for” and “This product is something I am likely to share
information about” scored 5.9/7.0 (o = 0.78).

5.5 Related Work

Coordination in software development has been studied in the fields of Software Engi-
neering and Computer Supported Cooperative Work since the 1980s, and researchers
have produced a wide range of analyses and tools [149].

BELLEVUE uses historical change information to support developers’ coordination. Sarma
et al. present a comprehensive review of coordination tools and defines a framework that
classifies those technologies according to multiple coordination paradigms [152]. In this
framework, tools such as versioning systems and issue tracking systems support the devel-
opment process and are at the basis of the more sophisticated tools that provide meaning-
ful and automatically aggregated information: These are research prototypes and indus-
trial applications conceived to better support developers coordination in the IDE. Such
tools includes full-fledged platforms, specific workspace awareness solutions, and code
information visualization tools.

Full-fledged platforms, such as Jazz [92] and Mylyn [54], are at the far end of the spec-
trum in terms of complexity [152], and aim at transforming the IDE experience. Jazz, or
Rational Team Concert, is an IDE platform, built on top of Eclipse and Visual Studio,
that integrates several aspects of the software development process, including integrated
planning, tracking of developer effort, project dashboards, reports, and process support.
Relations between artifacts can be defined and leveraged to gather project information.
Jazz also offer support for communication within the IDE (e.g., instant messaging), more
advanced than BeLLeEvUE. Mylyn and its successor, Tasktop Dev [167], are based on

93

Chapter 5. Bellevue: Receiving Changes

Eclipse and Visual Studio and use task context to improve the productivity of developers
and teams [101]; for example, they reduce information overload by providing developers
with just the artifacts and information necessary for their current code modification task,
and offer a comprehensive task repository to support teamwork by sharing information on
tasks and their context. Both platforms supports the creation of novel information (e.g.,
tasks and work items, and relations among artifacts) to support developers productivity,
and encourage a task or work item based approach to evolution. BELLEVUE aims at us-
ing already available data and visualizing it in a non-obtrusive way. Another example of
improved communication in the IDE is REmail [6], which integrates developers’ email
communication in the IDE to support program comprehension; REmail can be used in
conjunction with BELLEVUE to extend the communication feature of the latter.

Workspace awareness solutions, such as Lighthouse [38], CollabV'S [48], and Syde [81],
are concerned with changes before they are committed to the source code repository, to
address the conflict detection or real-time development information. For example, Syde
tracks fine-grained real-time changes and informs developers when potential conflicts are
emerging by alerting them on a view and on the code editor. Since the goal of these tools
is different from that of BELLEVUE, they do not show change history related information.

Interestingly, BELLEVUE design could be included in environments such as Mylyn and
Jazz, and could be used concurrently with workspace awareness tools, in order to offer
coordination support from a complementary perspective.

Information discovery approaches, such as Ariadne [41] and Tesseract [150], seek and as-
semble information to perform tasks such as expert finding and socio-technical network
analysis. Recommender systems, such as Seahawk [138, 139], exploit change informa-
tion and externally generated data to support software development and comprehension.
Similarly to BELLEVUE some of these approaches also use historical code information to
inform their users. Given their goal, they offer different, complementary views on data
and integration with the development environment.

Code information visualization tools include the “blame” functionality offered, for exam-
ple, by git or svn.? This feature allows to see who did the last change on each line of code of
a file, and when. Another tool is the concept presented by Rastkar and Murphy, in which
the developer is able to see for a summary of commit messages connected to a line of code
in the IDE [143]. In contrast, BELLEVUE offers an interactive view that shows detailed
historical information for specific chucks with respect to a previous version. BELLEVUE
always displays which files and lines changed, so it does not require the developer to ac-
tively ask for the commit message of the line, because the developer may not be already
aware of the relevance of the file and the line. In our exploratory investigation narrowing
down a breaking change to the file and line causing the issue emerged as one of the most
problematic and time-consuming efforts for developers.

3. http://git-scm.com/docs/git-blame

94

http://git-scm.com/docs/git-blame

5.6 Concluding Remarks
5.6 Concluding Remarks

We designed BELLEVUE to enable developers better coordinate, by making historical in-
formation visible and more accessible in the IDE.

This chapter makes the following main contributions:

1. Requirements for a tool to support teamwork based on currently unmet usability
heuristics and the results of our qualitative analysis. For example, to favor recogni-
tion of code changes over recall, and to increase the visibility of the codebase status
with respect to received changes.

2. 'The design and evaluation of BELLEVUE, an IDE extension to support teamwork by
improving the integration of code changes in the IDE. BELLEVUE makes received
changes visible inside the editor, and makes the history of code chunks easily ac-
cessible using progressive disclosure.

95

Part 111

Generating Information

97

Pollicino: Code Bookmarks

7/;; program comprehension research community has been developing useful tools
and techniques to support developers in the time-consuming activity of understanding
software artifacts. However, the majority of the tools do not bring collective benefit
to the team: After gaining the necessary understanding of an artifact (e.g., using
a technique based on visualization, feature localization, architecture reconstruction,
etc.), developers seldom document what they have learned, thus not sharing their
knowledge. We argue that code bookmarking can be effectively used to document
a developer’s findings, to retrieve this valuable knowledge later on, and to share the
findings with other team members.

We present a tool, called PoLLicino, for collective code bookmarking. To gather re-
quirements for our bookmarking tool, we conducted an online survey and interviewed
professional software engineers about their current usage and needs of code book-
marks. We describe our approach and the tool we implemented. To assess the tool’s
effectiveness, adequacy, and usability, we present an exploratory pre-experimental user
study we have performed with 11 participants.

1. This chapter contains the paper “Collective Code Bookmarks for Program Comprehension” [77], published
in the proceedings of the 19th IEEE International Conference on Program Comprehension (ICPC 2011).
'The authors of this publication are Guzzi, Hattori, Pinzger, Lanza, and van Deursen.

99

Chapter 6. Pollicino: Code Bookmarks

6.1 Overview

Software engineers are often faced with the challenge of understanding a program written
by someone else and a long time ago. Due to the lack of proper documentation, program
comprehension may take over 60% of the software maintenance effort [33]. Program
comprehension methods and techniques can have a significant impact on the overall ef-
ficiency of software developers. However, program comprehension is an individualistic
and ephemeral activity. Developers create their mental models of the system [173] to
perform a task, but seldom document them, i.c., most of the knowledge gained during
the comprehension activity resides only in the developer’s mind and typically is forgotten
once the maintenance task is completed. Several barriers prevent developers from docu-
menting their findings, such as constant interruptions, outdated documents that are hard
to update, and preference for face-to-face talks [110].

“Traditional” code bookmarking is a common practice among users of modern IDEs,
such as Visual Studio, Eclipse and IDEA.? Examples of bookmarks include task markers
(//7T0DO and //FIXME), tag annotations (@Task), and cross-reference hyperlinks [166].
They have been used to remind developers of unfinished work [166], which serves a short-
term purpose; and to guide programmers to perform a task [32, 40, 128]. Most of these
bookmarks are embedded in the code, which introduces a trade-off between the benefits
of sharing and the drawbacks of having “noise” in the code.

We propose an approach for micro-documentation and knowledge sharing: collective code
bookmarks. 1t encourages developers to bookmark artifacts while investigating the source
code, and to document their findings with a description associated to a bookmark, which
can be shared with other team members or maintained on the developer’s workspace for
private use. A collective code bookmark is a link from a specific location in a file to one
or more descriptions, which may be comments, links to resources, documents, websites,
and tags. Extra information can be associated with a bookmark, such as author, creation
date, ezc. Our goal is to support the benefits of collective code bookmarks, and keeping
them as an external documentation.

We conducted a survey on the current usage of code bookmarks, as well as interviews with
professional software engineers, to gather the requirements for collective code bookmarks
and for a supporting tool to encourage developers to document their findings while per-
forming a program comprehension task. Based on this survey, we present an approach
for collective code bookmarks with the goal of helping developers to retain and share the
knowledge acquired during program comprehension activities.

'The contributions of this chapter are:

* Requirements for a non-intrusive bookmarking tool that facilitates knowledge shar-
ing. These requirements are the outcome of an online survey on current usage of
code bookmarks, and interviews conducted with professional software engineers.

2. Seemicrosoft.com/visualstudio, eclipse.org/, jetbrains.com/idea/

100

microsoft.com/visualstudio
eclipse.org/
jetbrains.com/idea/

6.2 Related Work

* Anapproach to code bookmarking. We devised our approach as a publicly available
tool named PoLriciNno. We present our approach and describe the tool.

* An exploratory pre-experimental user study with 11 participants to investigate the
potential of collective code bookmarks and to evaluate the tool’s effectiveness, ad-
equacy, and usability; with promising preliminary results.

Structure of the chapter. Section 6.2 presents the related work on code bookmarks. We
motivate our work in Section 6.3, where we report on requirements for a collective book-
marking tool, elicited from a survey and the interviews with practitioners. In Section 6.4
we describe our approach and the tool implementation. Section 6.5 presents the design of
our experiment, while Section 6.6 reports on its results. Section 6.7 discusses the threats
to validity. Finally, we summarize our conclusions in Section 6.8.

6.2 Related Work

Code bookmarking can be classified as one form of support for user-defined annotations.
Other forms are task markers, tag annotations, and cross-reference hyperlinks [166].
'These annotations are relatively common practice among users of modern IDEs, how-
ever their design and purpose vary greatly.

Eclipse’s user-defined annotations are classified into three categories: (1) tasks—//T0DO,
//FIXME, //XXX; (2) problems—reporting invalid states of the system; and (3) bookmarks
—for marking locations and having quick access to them. Tasks reside in the source code
and have the purpose of reminding developers of information regarding a specific piece
of code, while problems and bookmarks are external links to a specific line in a source file.

Brithlmann ez al. proposed a generic annotation tool, called Metanool to capture and
retain human knowledge during reverse engineering processes [23]. Metanool supports
the association of any type of annotation (e.g., comment, document, UML diagram) to a
source code entity. However, it was targeted at facilitating reverse engineering activities
instead of supporting active development.

TagSEA combines the notion of marking locations in spatial navigation with social tag-
ging to support reminding and refinding (revisiting a specific part of the code) [166]. The
TagSEA annotation has the form of a customized Java annotation, residing in the source
code, and thus being shareable across the team. These annotations were designed to be
easy for development teams to search, filter, and manage. They also proved to be useful
for creating tours for technical presentations that involve interacting with the IDE [32].
TagSEA was evaluated in several (longitudinal) case studies: the findings focus on the
sort of tags used and the extent to which tags could be reused.

JTourBus is a similar approach that creates tour guides to help programmers to perform
a task or to assist them to get familiar with a sequence of code dependencies [128].

101

Chapter 6. Pollicino: Code Bookmarks

Contrary to TagSEA, our collective bookmarks are designed to reside outside the source
code, bringing two benefits: flexible privacy setting — the author of the bookmark can
decide whether to share it and with whom; and cleaner code. Furthermore, our evalua-
tion is different, emphasizing code locations over tags, and being carried out with a larger
group of participants all conducting the same tasks. Differently from JTourBus, our ap-
proach does not provide means to create guides, but a lightweight approach developers to
micro-document their findings when performing program comprehension activities.

6.3 Motivation

Previous studies have reported a low use of code bookmarks that do not reside in the source
code. In their report on usage data collected from developers using Eclipse, Murphy ez a/.
state that only 5 out of 41 developers used the bookmark view [123]. In another survey,
Storey et al. report that 84% of the respondents never or rarely use bookmarks [165].
Some hypotheses are raised to explain the low adoption, such as poor visibility in the IDE,
or poor synchronization with the code; however no further investigation was performed to
understand the reasons for the low adoption.

We conducted an online survey to investigate why bookmarks are rarely or never used in
modern IDEs. We collected a total of 209 responses from which 71% of the participants
were practitioners and 29% academics. The vast majority consisted of experienced devel-
opers (60% had more than 6 years of experience, 30% had 3-5 years of experience, the
rest had less than 3 years of experience).

From the respondents, 88% report that they never or rarely use code bookmarks (con-
firming previous results). We furthermore asked them why this is the case. Among those
88%, who never or rarely use bookmarks, 50% answered they did not know that book-
marks existed in their IDE, 25% stated that they do not find them useful, while 9% think
creating a bookmark is cumbersome (Figure 6.1).

50.0%—
- [never
o [Jrarely
c
S
o 25.0%
o
e
0.0° F—— | |

| | I | I
Ididn'tknow ldon'tfind Creating a My IDE Other
they existed them useful bookmarkis doesn't have

cumbersome bookmarks

Reasons

Figure 6.1: Reasons for not using bookmarks in the IDEs

102

6.3 Motivation

We also collected qualitative information about how people are using bookmarks. A
number of respondents reported that bookmarks are useful for keeping track of points of
interest in the code while understanding it (“I use them while I'm skimming code and trying
to get a clue about how fo fix something. I therefore bookmark interesting pieces of code to be
Sfurther inspected”) and to quickly access them later (“as a way to return back to the same bit
of code a few days later”). Respondents also reported to use them as a guide while working
on a task (“For marking something of interest, so I don'’t lose it. Shift-F11 in IDEA lists all
bookmarks. 1 tend to create a series of bookmarks for a particular task, so I can find the main bits

of the problem.”).

To further investigate the potential of our approach, we conducted interviews with four
practitioners with different roles: (R1) a software developer with 6 years of experience who
was not aware of code bookmarks; (R2) a software developer with 8 years of experience
who was aware of code bookmarks; (R3) an open-source developer 10 years of experience;
and (R4) a software architect and team leader with 25 years of experience.

R1 reported that his team has the culture of placing regular comments and task markers in
the code to remind, refind, and annotate decisions. This is a problem when the code goes
to quality assessment: “In the system we work we see thousands of TODOs, and we never do
anything about it. [...] Every six months the manager freaks out because of the quality control,
and we have to clean up the entire code.”

R2 actively uses code bookmarks, mainly to understand a legacy system that his team
maintains. He reported that system size and lack of documentation are the main reasons
for using bookmarks: “The code is huge and I really need them as breadcrumbs, in particular
when I'm digging into code. [...] I'm changing code that was written by 5-6 people in 10 years
with no architecture, no design, [...] and I must have a way to track all the jumps that I'm
doing.” One of his main complaints was the lack of share-ability of bookmarks: “[...] and
I actually tell him (teammate) where to add his bookmarks |...] but since up to now there’s no
way of sharing them, most information remains just for me.” Since R2 is actively using code
bookmarks, we asked him what features he would like to have, and his answer was: “I
want to share my bookmark’s description, and I'd like to add resources to it. [...] Keep it simple.”
Other suggestions were to offer grouping options, and sequencing by the user’s choice.

With R3 and R4 we investigated when collective bookmarks would be useful. R3 thought
they could be very useful to assist the developers of his team, who are spread across dif-
ferent locations. R4 identified the following situations: when a developer is passing the
responsibility of a part of the code to another person; to maintain traceability between
UML diagrams and the code; in the beginning of development, to annotate the most
important methods of the API.

Summary

Based on the survey and the interviews, we have identified the following requirements for
collective code bookmarks and for a tool that supports them.

103

Chapter 6. Pollicino: Code Bookmarks

Be share-able. Current bookmarks are either private or can be shared through the source
code, imposing a restriction on how a developer can share it. The feedback collected
suggests that developers want to be able to share their bookmarks, but doing it so
through the code clutters the source code.

Have a description. Code bookmarks should be used to micro-document findings. Hav-
ing a textual description of each finding is essential for reminding it later.

Support grouping and sequencing. Developers would like to be able to associate auxil-
iary information to bookmarks to help organizing them.

Be platform independent. There are numerous languages and IDEs, and having a book-
mark model for each combination restricts the social benefit of bookmarks. There

should be a standardized model that can be used in any language/IDE.

Be simple to use. 'The action of bookmarking a location in the code should be non-intrusive,
intuitive and almost effortless. Otherwise the gain from the information registered
is hindered by the effort to register it.

6.4 The Pollicino Approach

6.4.1 Collective Code Bookmarks

Two requirements for collective code bookmarks are to be shareable and platform inde-
pendent. Thus, we redefine code bookmarks by proposing a meta-model, in the form of a
standardized and extensible XML schema. Using an XML schema to encode the above
information allows code bookmarks to be shared as XML files, making them portable to
any IDE and attachable to any source file.

description |®

bookmark resource |®

information |®

1

Figure 6.2: Meta-model for collective code bookmarks

Figure 6.2 illustrates our meta-model, composed of three parts. The description can be a
text message, a link to internal/external resources, or tags. Any type of description can be
added (ranking attributes, pictures, movies, etc.). The resource contains information about
the location of the bookmark in a file: project—the name of the project; location—the

104

6.4 The Pollicino Approach

full path of the file within a project; line number—the line number where the bookmarks
should be placed. The three attributes are mandatory to properly locate the bookmark in
afile. Finally, information contains an extensible list of optional attributes (such as author,
creation time, group, or a file revision number).

6.4.2 Pollicino

To assess the feasibility and usefulness of collective code bookmarks, we have imple-
mented PoLLicino® (see Figure 6.3), an Eclipse plug-in that allows developers to place
bookmarks as a way to micro-document their findings, and share them with others. In
the following, we present the main features of PoLLicINO.

800 Java - /checkstyle/s 1 /Checker java - Eclipse SDK =
(Bind @ |- 0-Q |G @ o Gy B |8 Iava
[# Package Explorer, = B[[5] Checkerjava 52 ~_[1] O ineC] heck [3) Main java [J] AbstractviolationRep g =g
& v |[7zse FireFileStarted(fileNane);
8%
I checkstyl 257 final TreeSet<LocalizedMessages fileMessages - Sets.newlreeSet();
1125 checkstyle 258 try {
B sre/tests 259 final FileText theText - new FileText(f.getAbsoluteFile(),
i src/checkstyle mCharset); =
[com.puppycrawl.tools.chec] for (FileSetCheck fsc : mFileSetChecks) {
8 api FileMessages.addALL(fsc.process(F, theText));
5B checks 1 (]
£ doclets i . . .
4 catch (final FileNotFoundException fnfe) {
B fiters Utils. getExceptionLogger(). debug(
£ grammars "FileNotFoundException occured.”, fnfed;
g fileMessages.add(nen LocalizedMessage(8,

[J] Checker java

Defn.CHECKSTYLE_BUNDLE, "general.fileNotFound", null,

[J] ChecksStyleTask java 270 null, this.getClass(), null));

[4] ConfigurationLoader.java 271 . L

5] DefaultConfigurationjava catch (final 10Exception ioe) { . o

273 Utils.getExceptionLogger().debug("10Exception occured.”, ioed;
[J] DefaultContext java - N
) 274 fileMessages.add(new LocalizedMessage(®,

1) Defaultioggerjava Al ars Defn. CHECKSTYLE_BUNDLE, "general.exception”, 4

3] Defn java v 6 new String[] {ioe.getMessage(3}, null, this.getClass(), 1
<Tr
0% outiine 33 = B|/E console £l Proplags | @ Javadoc [&. peciaration |# pollicina. &3 +® Navigate \m 37 =8

LW e ¥ || yetiterent (4
remOveLIStEnerATOTISTEner)

Comment/Tags Resource Line Line Content Author | Date a

v

@R proctssIIst<Files i @ recursively raverse the project to be checked Main.java line 255 traverse lile 1/21/11 10:52 PM

B getStrippedFileName(String) St 4. setun checker (8

& setBasedir(String) - void 5. Process check (3)

© normalize(String) : String @ begin check process for al checkers Checker java line 250 _ fsc.beginProcessing(mCharset); lile 172111 3:42 (@)
" getBasedir0 - String ~for each file, process check [Checkerjava ________[line 262 [fsc.processif, theTex) ___lile __|1/21/113:43 PM |
o fireAuditstarted0 : void @ fire errors in audit listeners Checker java line 279 fireErrorsifileName, fleMessages); lile 1/21/11 3:52 PM

& fireAuditinished() - void 4 || 7 examples of checks @2)
© . fireFilestarted(String) : void v @ very short check example EmptyStatementCheck.java line 46 public class EmptyStatementCheck ext anja 1/27/11 4:12PM 4
= <> @ example of check OneStatementPerLineCheck.j line 30 public final class OneStatementPerLine anja 1/27/11 4:18PM

£

Figure 6.3: Eclipse with the Pollicino plug-in

Bookmarking the code — To bookmark a code snippet, the user can mark it and right-
click on the editor or on the left ruler, and choose “Add Stone” in the popup menu.
'The user then enters the minimum information (e.g., a description) after which Por-
LICINO inserts a blue marker into the left ruler at the corresponding line (Point 1).
Bookmarks can be added in any type of file (e.g., source code, text file, XML file,
and build file). Some participants of the survey reported that creating bookmarks
is cumbersome. To alleviate this, the user can create bookmarks with a simple key-
board shortcut, easing the mechanical process of creating bookmarks.

3. The name Pollicino (‘Little Thumbling’ in Italian) is inspired by the fairy tale Hop-o’-My-Thumb, in which
a boy uses pebbles to find his way back home.

105

Chapter 6. Pollicino: Code Bookmarks

Showing bookmark information — The PorriciNo view can be displayed with one click
(Point 2), showing the bookmarks that are currently in the user’s workspace and the
information associated with them (Point 3). The view shows the user’s comment,
the resource and the line where the bookmark is located, the line content, the author
and the date.

Grouping and sorting bookmarks — There are different ways to organize bookmarks on
the view. 'They can be grouped by “active/archived”, or the user can create cus-
tomized groups. The user can also sort bookmarks according to any column of the
view. The information in all the columns can be searched for specific information
using the search bar (Point 4).

Navigating through bookmarks —Double-clicking on a bookmark entry in the view takes
the user to its location in the editor. The view also provides a Navigation mode
(Point 5), which shows the location of a bookmark with a single click (or navigat-
ing with up and down arrows).

Sharing bookmarks — It is possible to import/export all or a selection of the bookmarks
from/to an XML file that follows the schema presented in Section 6.4 (Point 6).

Customizing bookmarking — When creating a bookmark, by default the user has to en-
ter a comment and her name. The user can transform the creation of bookmarks
as a one-step process by customizing the information she needs to enter on the
preferences page (e.g., save her name and add a blank comment).

PoLLicINO is available at http://www.st.ewi.tudelft.nl/~guzzi/pollicino/.

6.5 Pre-experimental study design

We conducted a user study with the goal of investigating the potential of our approach.
To achieve our goal, we assess the tool’s effectiveness, adequacy and usability using an ex-
ploratory pretest-posttest pre-experimental design [25]. Pre-experimental indicates that
the experiment does not meet the scientific standards of experimental design [3], yet it
allows to report on facts of real user-behavior, even those observed in under-controlled,
limited-sample experiences.

The study is composed of several experimental runs. Each run consists of the initial pretest
questionnaire, a demo/tutorial of Porricino followed by three assignment tasks (to per-
form within Eclipse with our plug-in installed), a final posttest questionnaire and a con-
cluding debriefing talk. The complete handout used in the experiment, including the
tasks, the pretest and posttest questionnaires, can be found in our on-line appendix [78].

106

http://www.st.ewi.tudelft.nl/~guzzi/pollicino/

6.5 Pre-experimental study design
6.5.1 Research Questions

'The main goal of the experiment is to investigate whether PoLLicINO can help software
developers during program comprehension activities (effectiveness). Our main research
question is:

[RQ1] Can collective code bookmarks help developers to perform program comprehen-
sion activities?

We identify the following three sub-research question:

[RQ1.1] Can Porricino be used to (micro-)document a developer’s own findings?

[RQ1.2] Can micro-documentation via bookmarks be useful to team members to get
starting points (i.e., entry points for program comprehension)?

[RQ1.3] Can Porricino be useful during development tasks?

A secondary goal of the experiment is to gather initial feedback on our tool. In particular
we are interested to explore whether the tool’s outcome matches the user’s expectations
(adequacy) and whether the tool is easy to use (usability). We thus identify the two ad-
ditional research questions: (RQ2) Does PorrLicino match the expectation for a code
bookmarking tool? and (RQ3) Is Porricino sufficiently usable by developers? Finally,
we also want to gather feedback on how to improve PoLLicino.

6.5.2 Pretest-Posttest Design

In a pretest-posttest study, participants are subject to a first test (questionnaire), before
performing the experiment, and to a second test, after performing the experiment. For
most questions in our questionnaires, we make use of closed-ended matrix questions:
participants are asked to rate a number of statements on a five-point Likert scale.*

Pretest Design

'The pretest questionnaire is split into 5 parts. The first two parts are dedicated to under-
stand the personal background (part 1) and the software development experience (part 2)
of our participants.

In part 3 we ask participants to rate a number of statements regarding their habits when
understanding code. A participant’s habits might influence her expectations with respect
to a tool that eases program comprehension. We thus investigate common practices, ¢.g.,
reading the comments inside the code, reading the available documentation, and making

4. 1 =“strongly disagree” , 2 = “disagree” , 3 = “neither disagree nor agree”, 4 = “agree”, 5 = “strongly agree”.

107

Chapter 6. Pollicino: Code Bookmarks

Table 6.1: Statements used in the pretest to measure adequacy

a) Such a tool would prevent me from getting lost in the code

b) I don't see the added value of such tool

¢) Bookmarking would help me when I'm trying to understand a functionality
d) Assoon as I understand the code, bookmarks become useless to me

e) Such a tool would help me manage points of interest in the code

f) The tool will not be able to help me in real problems

g) My bookmarks will help others understand what I did

changes to the code and run it to see what happens. Similarly, in part 4, we try to assess the
participant’s familiarity and attitude toward code bookmarking. Participants are asked to
rate dedicated questions, according to whether or not they were aware of the bookmarking
feature of Eclipse. Additionally, an open ended question asks them to provide alternatives
that could replace bookmarks in their function of code location markers.

In part 5, participants are given an abstract description of Porricino (see [78] for the
full text), and asked to rate a number of statements about their expectations of a tool with
such functionalities (see Table 6.1). These statements are then asked again in the posttest,
after introducing the independent variable (i.c., the use of the tool), to assess adequacy.

Posttest Design

The posttest questionnaire is given to the participants after they performed the assigned
tasks to, e.g., verify whether PoLLIcINO is seen as a good bookmarking tool.

We split the posttest into 5 parts. In part 1, we ask the participants to assess a few
statements about their general experience in performing the experiment, e.g., whether
they found the three tasks doable and whether they felt time pressure.

In part 2 of the posttest we ask participants about their experience with PorrLiciNo while
performing the tasks. In particular, we collect information on the tasks and purposes the
tool has been used for. We use the results from this part to address RQ1.

Part 3 of the posttest is dedicated to assess the participants’ perception of PoLLicino. Par-
ticipants are asked to rate similar statements as in question 5 of the pretest. The difference
is that, at this time, we ask directly about the tool and not about code bookmarking in
general. By comparing answers to this question and to its counterpart in the pretest, we
can verify how PoLLicINO meets the participants’ expectation and address RQ2.

In Part 4 participants are asked whether they used particular features of the tool (e.g., key
binding to add a marker) and, if yes, to indicate how useful they were on a scale from 1 =
“very useless” to 5 = “very useful”. The questions in part 5 are used to measure the usability
of the tool. These measures are used to address RQ3. In addition, these statements allow

108

6.5 Pre-experimental study design

us to verify whether usability issues might have influenced the overall experience with the
tool during the assignment.

After the posttest questionnaire, we held a debriefing talk to collect additional informa-
tion, both on the tool and the experiment. During this individual talk with participants,
we could better understand about their experience with the tool and ask them about their
opinion on possible improvements.

Checkstyle

'The system we chose as object of our experiment is Cbecéstyle.s We used version 5.3, which
consists of 341 classes distributed across 22 packages, for a total of 46 KLOCs.® Our
choice was motivated by the following factors: Checkstyle’s size allows for performing
an experimental session, yet being representative of real life programs. It is written in
Java, with which many potential participants are sufficiently familiar. It has been used in
previous experiments [172, 178, 34], from which we could reuse one of the tasks.

Tasks

We designed the tasks for our experiment according to the sub-research question related
to RQ1, from which we derive the following three different scenarios: (1) investigate and
understand a part of a system, (2) (micro-)document a system’s functionality, and (3) add
functionality to the system. The scenarios require a program comprehension process and
are inspired by Pacione’s taxonomy [134].

Task T1 is used to address RQ1.2. It requires the participant to gain general knowledge
about the execution stages of Checkstyle, and is reused from Cornelissen’s controlled ex-
periment [34]. To simulate a collaborative environment, a number of code bookmarks
were already placed in the project. T2 is used to address RQ1.1. It encourages the par-
ticipant to understand and simultaneously document (by adding bookmarks) the class
hierarchy related to the functionality that checks the adherence to each code convention.
'The last task T3 is focused on implementing a new check, to which the knowledge ob-
tained and the bookmarks added in the previous two tasks is potentially useful. We use
this task to address RQ1.3.

The three tasks were tailored to be feasible in the allotted time (20 minutes for each
task) considering the minimal experience level required from the participants. For more
information on each task we refer the reader to [78].

Pilot Studies

We conducted four pilot studies to test the experiment’s feasibility and duration. With
the first two runs we found out that two of the tasks needed to be more focused and

5. See http://checkstyle.sourceforge.net/
6. Measured using http://eclipse-metrics.sourceforge.net/

109

http://checkstyle.sourceforge.net/
http://eclipse-metrics.sourceforge.net/

Chapter 6. Pollicino: Code Bookmarks

have more guidance to be doable in the allotted time. We furthermore identified some
defects in PoLLiciNo, which were fixed before the actual experiment. After the third test
run, we adjusted a few statements from the questionnaires. The fourth pilot study ran
without problems.

6.6 Results

WEe report on the results obtained from our experiment. We first describe our partici-
pants and their attitude toward program comprehension and code bookmarks (as mea-
sured from the pretest). Then, we report on their performance during the assignment (as
measured from the posttest and from analyzing the code bookmarks placed during the
experiment). Finally, we present the results from the posttest, along with the feedback
from the participants, to answer our research questions.

6.6.1 Participant Characteristics

Twelve volunteers participated in our experiment. Two participants were from the Uni-
versity of Antwerp, two from the University of Lugano and seven from the Delft Univer-
sity of Technology. Four participants were PhD students, seven participants were MSc
students (three of which are working as part-time developer). All participants were male,
aged between 24 and 30. One participant reported that the tasks were not feasible. Since
task feasibility was a requirement for our experiment, we excluded his results from our
analysis, giving a total of 11 subjects in our study.

Level

4 T

3 5 T T = T

2 : : - 1 1 i

1 i H i i !

0 -—

Java Team Industrial IDEs Eclipse Checkstyle
size

Figure 6.4: Participants’ experience

Figure 6.4 reports the participants’ experience regarding software development on a 5-
point scale.” The box plot depicts the following data: minimum value, lower quartile, me-

7. 0 = “does not know the subject”, 1 = “familiar with the subject, but still have some difficulties with it”, 2 =
“comfortable in the subject and currently using it daily”, 3 = “highly proficient in this subject”, 4 = “serves as
reference for colleagues, and feels confident in helping them”.

110

6.6 Results

dian, upper quartile, and the maximum value. As can be observed, participants reported
to have good knowledge of Java, IDEs, and Eclipse, while the experience in working
on industry-sized systems is lower. All participants reported to have no or low experi-
ence with Checkstyle, indicating that their answers were were not influenced by previous
knowledge about Checkstyle.

6.6.2 Comprehension Attitude

In the pretest, we ask the participants to rate a number of statements aimed at measuring
their attitude toward both program comprehension and bookmarking. We next go into
detail of these two aspects.

Attitude toward program comprehension

The most popular practices (indicated by 10 out of 11 participants) when working on a task
on unfamiliar code of a system are to investigating the code before starting with the task,
and to reading the code comments (if available). Most of the participants recognized that
they often navigate through several classes and find themselves lost amongst many open
tabs. Seven participants stated that they read the available documentation, and make
changes and/or add print statements to the code and then run it to see what happens.
Some less popular practices indicated are: to start looking at available test suites, to use
specific tool or markers (e.g., //TODO), or to look at UML diagrams.

Overall, we can say that our participants’ effort in program comprehension relies mostly
on investigating the code, reading comments and documentation (when applicable), and
making changes (or insert print statements) before running the code.

Attitude toward (code) bookmarking

One participant who knew about code bookmarking within Eclipse indicated that the
feature is relatively easy to use. According to him, creating a bookmark is not particularly
cumbersome and code bookmarks are useful. Another participant did not think that
bookmarks are easy to use. He indicated that creating code bookmarks is cumbersome
and he is not sure whether they are useful.

Seven out of the nine participants who did not know about this feature, indicated that
they agree with the statement “Code bookmarks seem to be useful”. The remaining two
indicated they “neither disagree nor agree” with the statement.

We asked participants to shortly report on which tools or methods they use to function as
“code location markers” during their program comprehension routines. One participant
reported that he makes use of visually outstanding comments (e.g., “/ / *xx**k*xxxx%x//”),
so that the location is easily spotted when looking at the code. Alternatively, he introduces
lots of consecutive new lines, to create a easily noticeable blank space. Another participant

111

Chapter 6. Pollicino: Code Bookmarks

Table 6.2: Examples of bookmarks placed during the experiment

Comment File Location

Use this method to specify which tokens to respond to Check.java getDefaultTokens()
Implement which token the check is interested in Check.java getDefaultTokens()

If you're interested, this is where your Check is actually called ~ TreeWalker.java notifyVisit(Detail AST ast)
Data structure, it’s parsing a tree DetailAST.java class declaration

This class must be extended for Format checking purposes AFormatCheck.java class declaration

Use this class for logging check output AViolationReporterjava class declaration

Checks respond on tokens. These are the types you can re- TokenTypes.java class declaration

spond to. Compare this to the Listener system: you subscribe
to all tokens you want to respond on

explicitly introduces compilation errors and also uses a custom tool. One participant wrote
that he uses Mylyn to link code to tasks.

Overall, most participants were not aware of code bookmarking features, yet acknowl-
edged the usefulness of code location marking facilities.

6.6.3 Task Performance

During the assignment, the participants were invited (but not required) to use the book-
marks already placed in the project, and to add their own bookmarks. Table 6.2 illustrates
some typical bookmarks they added while performing the tasks. Observe that several
bookmarks were placed at the declaration of a class with a short description of its purpose.
Other locations where bookmarks were commonly placed are at the method declaration,
with a short description of its functionality; or at some statement inside a method, where
there is a method call of interest.

For T1, we provided a set of bookmarks that was split into 5 groups, which corresponded
to the main stages of a check in Checkstyle. Most participants seem to have benefitted
from the grouping, since 10 out of 11 correctly identified the stages, which varied from 4
to 6 in their answers.

T2 required understanding the Check hierarchy, placing bookmarks during this process.
'The number of bookmarks placed by the participants is shown in Table 6.3. A common
practice was to look for the abstract implementation of a Check that could be extended,
or an example of its implementation, and mark its location.

For T3, we asked the participants to implement a check to count the number of methods
in a class. Two participants had correct implementation, three copied the content of a
similar class (making the implementation also correct), two had incomplete implemen-
tation on the right track, and four had incorrect implementation. We did not identify a
correlation between the number and quality of bookmarks added in T2 and the quality of
the code implemented for T3.

112

6.6 Results

Table 6.3: Number of participants who placed a certain number of bookmarks for 12

#Participants 2 2
8 6

1 1 3 2
Bookmarks 5 4 3 0

Overall, participants reported that the tasks were feasible, interesting, and realistic, that
the warm up task (a short “hands-on”, which preceded the tasks) was useful, and that the
experiment was fun to do. Four participants indicated that they would have needed more
guidance to complete the tasks. Eight participants felt time pressure.

6.6.4 Experience with Collective Code Bookmarks

In this section, we discuss and answer RQ1, which is associated with the effectiveness of
PoLriciNo in helping developers to perform program comprehension activities. We first
address the three sub-research questions related to it.

RQ1.1: Can Pollicino be used to (micro-)document a developer's own findings?

Participants reported that Porricino was useful during T2 (six participants reported
to have used the bookmarks already contained in the code), where the scenario was to
(micro-)document some of the system’s functionality. In addition, participant feedback
on Porricino’s bookmarks was generally positive. They found the navigation of book-
marks useful, as they could “tag important stuffand then [...] quickly navigate to it later” (P6).
P8 hypothesizes bookmarks could be used as a mind map for a developer to document
his findings. P2 sees “a very natural relationship between PoLLICINO, code, and diagrams”,
and suggested the possibility to link PoLLicINO’s bookmarks with design documents (e.g.,
UML diagrams). P7, who has work experience, said his practice is to annotate code via
comments and then search for them. After trying our tool, he thinks “a bookmark would

be very handy for that’.

We conclude that PoLLicino can be used to (micro)-document a developer’s own findings.

RQ1.2: Can micro-documentation via bookmarks be useful to team members to get
starting points?

Participants reported that PoLLiciNo was useful during the first task T1, where the sce-
nario was to investigate and understand a part of a system, and ten of them had correct
answers to the task. Additionally, during the debriefing talks, participants recognized the
value of using PoLLicINO within a team, e.g., by having step-by-step instruction to help
newcomers steer their way in a project (P9). They also stressed the importance of sharing
and synchronization of bookmarks, recognized the need of supporting synchronization
of bookmarks, proposing to have bookmarks automatically integrated with a version con-

113

Chapter 6. Pollicino: Code Bookmarks

trol system. Not all participants are convinced that existing bookmarks helped them to
understand the system. They emphasized that a bookmarks’ description should be as
meaningful to other people as to its author.

We conclude that PoLLiciNO can be useful for team members to get starting points.

RQ1.3: Can Pollicino be useful during development tasks?

Only 2 participants reported PoLLiciNo as useful during T3, which asked to implement
a functionality in the system. Also, there seem to be no correlation between the number
of bookmarks placed and the quality of the code implemented for T3. A few participants
mentioned during the debriefing talks that PoLLiciNo bookmarks could be used during
development tasks, e.g, as a replacement for “temporary” TODOs (P3). Participants were
not convinced about the potential of PoLLiciNo during development.

We conclude that regarding active development, PoLLicINO is not as useful as for docu-
menting or understanding code.

Summary

Overall, participants found our tool useful when their tasks were precisely to understand
or document the code (nine and eight matches, respectively), while they did not find it
useful during implementation (only two found it useful). This observation reflects on
the use of bookmarks, which were mostly added during the micro-documenting task, as
indicated by ten participants. Therefore, we can answer RQ1 positively by stating that
collective code bookmarks can help a developer during the documentation of her own
findings, and this information can be useful to her team members.

6.6.5 Expectations vs. Perception of Pollicino

To answer RQ2, associated with the adeguacy of our tool, we analyze of expectations ws.
perception of PoLriciNo. In the pretest, the participants rated seven statements about a
hypothetical tool with PorLicino’s functionality (see Table 6.1). In the posttest they rated
the same statements, but this time about PoLLiciNo itself. By comparing the answers to
this question and to its counterpart in the pretest, we can verify how the perception of
our tool meets the participants’ expectation.

Our sample is composed of (the ratings of) 11 participants. The box plots in Figure 6.5
depict the following data from our sample: minimum value, lower quartile, median, upper
quartile, and the maximum value. To ease the visualization and analysis of the data, we
mirrored the ratings of statements b, d and f (¢f Table 6.1) that were formulated with
a negation (e.g., “4 = agree” becomes “2 = disagree”). We did the same for the ratings of
the corresponding statements in the posttest.

114

6.6 Results

Level

a b c d e f g

(a) Expectations, as measured in the pretest

Level

1 L 4
a o' < d e f g

(b) Perception, as measured in the posttest

Figure 6.5: Expectations and perception of a tool like Pollicino

Figure 6.5a summarizes the ratings obtained for the expectations of a bookmarking tool.
'Thus, in advance many participants are not sure about whether the tool can prevent them
from getting lost in the code (a). Most participants are positive about the added value
of the tool (b), its value to others (d), and about helping someone to manage points of
interest in the code (e). Participants were less, but still positive about the tool helping
them while trying to understand a functionality (c), especially in real problems (f), and
also helping others to understand one’s findings (g). In general, the expectations of a
bookmarking tool with collective benefits were very positive.

Figure 6.5b summarizes the rating levels we obtained for the perception of PoLrLiciNo.
We can see that after using PoLLiciNO, the perception is positive for most participants
and in most aspects. This is reflected by the fact that most participants see the added value
of Porricino (b), think that the tool did not become useless when they understood the
code (d’), and believe that the tool helped them to manage points of interests in the code
(¢’). Participants are still not sure whether PoLLicINO was able to help them with real
problems (f”), and prevented them from getting lost in the code (a’). They have different
opinions on whether their bookmarks will help others understand what they did (g’).

Overall, the perception of the participants remained positive, although the comparison
of the box plots in Figure 6.5 suggests that PoLLiciNO does not match the high expec-
tations of the participants. To test whether this difference is significant, we performed
a Wilcoxon signed-rank test with the ratings from the paired statements. Wilcoxon is

115

Chapter 6. Pollicino: Code Bookmarks

a non-parametric test to assess the null hypothesis that the medians of two samples do
not differ. The results show that for each pair the Wilcoxon test is non-significant (p-
value>0.05), hence from this data we can not conclude a difference between the expecta-
tions and perception of PoLLicINo.

‘Therefore, we answer RQ2 by arguing that, even though the results of the comparison
suggest that PoLLicino did not match the expectations of a collective code bookmarking
tool, the Wilcoxon test did not show a statistical significance on the difference between
expectations and perception. During the debriefing talks, some of the participants argued
that they were expecting the tool to teach them how Checkstyle works (e.g., P8 said
that “they are a starting point, but they don't teach you the system”). Instead, the goal of
PoLriciNoO is to guide its users to points of interest while understanding a concept of the
system. Hence, there was some mismatch between what the tool could offer and what
the participants were expecting from it.

6.6.6 Tool Feedback
Pollicino Usability

Of the eleven participants, nine found PoLLICINO easy to use, while the other two rated
the statement “I found Pollicino’s Eclipse extension easy to use” with “neither disagree nor
agree”. Participants are generally positive that they would be able to get used to PoLLiciNo
during their everyday work activities. Participants reported they did not get error messages
while using the tool and that defects they possibly experienced did not severely hinder
its usefulness. Furthermore, no participant reported that the information from the tool
distracted him from the tasks.

The feedback on the tool’s usability was positive: participants liked the simple, but com-
plete and easy to use, interface of PoLLiciNo. P2 said that “cverything I needed was there”,
while P5 observed: “Ir’s a basic Eclipse feature, so it’s easy to use and understandable’.

Based on this, we can answer RQ3, regarding POLLICINO’s usability, positively.

Pollicino features

We also wanted to gather feedback on how to improve PoLricino. We focus here on the
tool’s features. Their perceived usefulness was measured in part 4 of the posttest, while
additional feedback and suggestions were collected during the debriefing talks.

All eleven participants indicated that the possibility of grouping bookmarks and the PoL-
LICINO view are “useful” and “very useful”. The same rating level was given to both means
to add a bookmark in the IDE (i.e., the popup menu and the keybinding), for which most
participants only used the popup menu, two participants used only the keybinding and
one reported to have used both (finding both of them useful). Moreover, participants find
the navigation mode in the view, used by nine of them, and the sharing (import/export)

116

6.7 Threats to Validity

of bookmarks also useful. Eight participants used the option to archive and activate book-
marks, and they have different opinions about whether it is useful or not, with a tendency
to find the feature not so useful.

In the debriefing talks, participants suggested ways to improve PoLricino. In summary:
have a custom order for the bookmarks within groups; be able to hide archived bookmarks;
have the possibility to add a new empty group; have the possibility to create a hierarchy
for bookmarks (per user, per package, per class, e#c.); be able to add multiple bookmarks to
one location in the code; have different type of bookmarks (e.g., text comment, example,
and todo) to further categorize bookmarks, and maybe have different colors for each type.

6.7 Threats to Validity

Internal Validity

Participants. To ensure the minimal knowledge required to perform the assignment, we
asked them to rate their expertise on a number of topics related to the experiment. In
addition, feasibility of the tasks was a requirement, and the one participant who felt the
assignment was unfeasible has been excluded from the analysis.

Questionnaires and Tasks. 'The 5-point scale questions may have influenced the partici-
pants to follow a pattern on assigning points to the statements. We interleaved affirma-
tive and negatory statements to mitigate this effect. Since some participants could have
known that the tool was created by the researchers performing the evaluation they could
have been affected by the moderator acceptance bias [63]. Providing a description of a
collective code bookmarking tool, we may have influenced the participants to think our
tool would teach them about the object system, which may have had a negative influence
on the comparison between expectation and perception of our tool. Each task was asso-
ciated to one program comprehension activity for which Porricino may be helpful. For
one of these, the authors added bookmarks that might have made it too easy to answer.

Experimental runs. ‘There were several runs, and differences between them, such as dif-
ferent training of PorLLiciNO, may have influenced the results. To alleviate this, we ran 4
pilots to fine tune the experiment, and followed a defined script when giving the tutorial.

External Validity

Participants. 'The fact that the participants were from academia may have limited our
ability to generalize the results to the industrial environment. To alleviate this effect, we
made sure participants had a minimum knowledge of the related topics, and felt the tasks
were feasible. Also, a number of participants have experience as practitioner.

117

Chapter 6. Pollicino: Code Bookmarks

Tasks. Our choice of tasks may not reflect real questions related to program comprehen-
sion. To mitigate this threat, our tasks were inspired by Pacione’s taxonomy [134], and
task T'1 was reused from a previous program comprehension experiment [34].

Object System. Even though Checkstyle is a largely used open-source system, it may not be
representative of complex commercial systems. Thus, the use of a different object system
may have yielded different or more reliable results.

6.8 Concluding Remarks

We have reported on the results of a survey with 209 respondents and on interviews with
4 practitioners. After eliciting the requirements for a collective code bookmark approach,
we presented PoLrLiciNo. We reported on a pretest-posttest pre-experimental user study
to assess the effectiveness, adequacy, and usability of PoLLiciNo. 11 subjects participated
in our user study, which consisted of: performing three program comprehension tasks (us-
ing the Eclipse IDE with Porricino installed), answering two questionnaires (one before
and one after the tasks), and having an individual semi-structured debriefing interview.

The results illustrate that PorLicino can be effectively used to (micro-)document a devel-
oper’s findings, and that those can be used by others in her team. However, the tool was
not effectively used for program comprehension during active development. This could
be partially due to the need of adjusting one’s work habits, when a new tool is introduced.
We also assessed and concluded that PoLLiciNo is usable. Directions for future work are
to improve PoLL1cINO (e.g., to better support synchronization of bookmarks, for example
by having the code itself carry the bookmarks), to investigate better visualizations of the
bookmarks (e.g., inline within the code), and to perform a longitudinal study to assess its
value and that of collective code bookmarks.

118

James: Micro-Blogs

LSZthware engineers spend a considerable amount of time on program comprehension.
Although vendors of Integrated Development Environments (IDEs) and analysis tools
address this challenge, current support for storing and sharing program comprehen-
sion knowledge is limited. As a consequence, developers have to go through the
time-consuming program understanding phase multiple times, instead of recalling the
knowledge from their past or other’s program comprehension activities.

In this chapter, we aim at making the knowledge gained during the program com-
prehension process accessible, by combining two sources of information. Inspired by
the success of Twitter, we first encourage developers to micro-blog about their ac-
tivities, telling their team mates (as well as themselves) what they are working on.
Then, we combine these short messages with automatically collected interaction data
on, e.g., classes, methods, and work products inspected or modified by developers.
We present the underlying approach, as well as its client-server implementation in
an Eclipse plugin called James. We conduct a first evaluation of its effectiveness,
assessing the nature and usefulness of the collected messages, as well as the added
benefit of combining them with interaction data.!

1. This chapter is an extended version of the paper “Combining Micro-Blogging and IDE Interactions to Sup-
port Developers in their Quests” [79], published in the proceedings of the 26th International Conference on
Software Maintenance (ICSM 2010). The authors of this publication are Guzzi, Pinzger, and van Deursen.

119

Chapter 7. James: Micro-Blogs

7.1 Overview

To conduct a software maintenance task, software developers need to build up a substan-
tial amount of knowledge about the software being changed [33]. For example, develop-
ers need to understand dependencies between classes, the impact of changes to particular
methods, or the ways in which two services interact.

Once the maintenance task is completed, most of the knowledge built up during the pro-
cess of conducting the task will “disappear”: The only permanent result is the modified
software, and, optionally, some updates made to the requirements or (UML) design doc-
umentation. This is an unfortunate situation, since this knowledge may be valuable for
future maintenance tasks, possibly conducted by different developers. In our research, we
seek ways to avoid this loss of precious knowledge.

A solution that would require developers to extensively document their findings while
working on the system is likely to fail: This would substantially slow down the completion
of maintenance tasks, which is usually unacceptable; moreover the knowledge gained
would be relative to the current state of the code and, thus, ephemeral. Therefore, we
must seek for lightweight, unobtrusive forms of information recording. In this chapter,
we investigate two such forms, 7.e., micro-blogging and IDE interaction collection, and
study their combination in particular.

In Web 2.0 applications such as Twitter and Facebook, users provide status updates to
their friends and followers, informing them about what they are doing. These applications
are tremendously successful, and one of the questions that we try to answer in this chapter
is to what extent similar forms of micro-blogging can be used to update team members in
a software development project about what is happening in the project. To that end, we
propose a novel lightweight approach that integrates (Twitter-like [132]) micro-blogging
into the Integrated Development Environment (IDE): We first of all encourage develop-
ers to micro-blog about their activities; furthermore, we propose to combine these short
messages with interaction data automatically collected from the IDE. One could say that
we add “location awareness” to the messages by recording which, e.g., classes, methods,
and work products are inspected or modified by the developer.

In this chapter, we present a way to collect user actions, group them into cohesive in-
teractions, and combine them with messages into what we call a guest (Section 7.2). We
describe a prototype tool we built, called James, which includes an Eclipse plugin allow-
ing developers to write and view new messages, and which collects IDE events triggered
by the developer (Section 7.3). Furthermore, using JamMEs, we conducted a set of explo-
rative user studies (Section 7.4), in which we evaluate (1) to what extent developers are
willing to communicate their activities through micro-blog messages; (2) the sort of in-
formation they typically provide in the messages; and (3) the quality of the connections
between messages and interactions as established by our algorithms. The results of our
explorative studies provide strong indication of the great potential in the combination of
micro-blogging and automated collection of IDE interaction data.

120

7.2 Approach: Quest = Message + Interactions

James Core
messages messages knowledge
= collector builder
% ___interaction interaction
% data traces builder
DB

T
| Visualizations | I:I

| Recommenders |

| Statistics |

Figure 7.1: Overview of the James approach

Natural next steps for our work are to share the knowledge thus collected with among all
the team members, to integrate other elements of social networks into the IDE, such as
the ability to (un)follow team mates, specific projects, packages, or classes, and the adop-
tion of recommender systems based on interaction and micro-blogging histories [171].
We briefly discuss these subsequent steps of our work in Section 7.5. The focus of the
present chapter is on the messages themselves and their connections to IDE interactions,
providing a necessary first step towards such a collaborative development environment.

7.2 Approach: Quest = Message + Interactions

We aim at combining messages and IDE interactions to record knowledge built up during
software maintenance tasks. We discuss how we collect and group interaction data, and
how we expect developers to report on their activities.

'The overall approach is illustrated in Figure 7.1. Developers interact with their IDE as
they normally do, resulting in navigation data collected as interaction traces by an IDE
plugin. Furthermore, developers can actively write (short) messages, which are also col-
lected by the IDE. Both data sources are linked to each other and stored in a repository.
We refer to this combination as guesz. The stored data can subsequently be used in vi-
sualizations, recommendations, or other presentation forms helpful to developers. The
schema used in the repository is illustrated in Figure 7.2.

121

Chapter 7. James: Micro-Blogs

triggersh» - conductedInp
User ’1—9% Action on

actionType: Enum
A o timePerformed: Time 0.1
writesh 0}.1 IDE Entity
0 Context viewName: String
v name: String 0. file: String
0f.* 0/.1 f
< goal I -

Message 1 0" Interaction
test: String
timeWritten: Time H 0l.1

Quest

Figure 7.2: Data model used in the repository

7.2.1 Capturing IDE Interactions

We want to capture a fine granularity model of how developers interact with the IDE. Our
minimal independent unit capturing user interaction within the environment (the IDE)
is called Action. Actions refer to IDE features that can be executed by the user, such as
opening a file, changing tab, selecting text, performing an editing operation, closing a file,
and running a test case. As illustrated in Figure 7.2, for every detected action, we record
the developer who performed it, the IDE entity involved (Java file X, Package Explorer
view, etc.), the #ype of action (opening/closing of a view, editing, e#c.) and the date and
time at which the action has been performed.

1] 1 Ll LU 1Ll 1l |
Il AL IR I Il >t
Figure 7.3: Example of user actions within the IDE on a timeline.

Figure 7.3 shows a time line of actions a developer performs interacting with an IDE,
while working on an ordinary task. On the time line we draw a vertical mark for every
action detected, with more recent actions on the right. Actions are automatically collected
and then processed. We group actions into inferactions, according to their time proximity.
Actions at a short time distance apart from each other will be part of a single interaction,
modeling the fact that people take a few instants to decide on what to focus on. As an
example, if a user closes a number of files one after the other (which is recorded as three
distinct actions), we consider this a single interaction with the IDE (which would be

122

7.2 Approach: Quest = Message + Interactions

described as “closing files X, Y, Z”). Our heuristics is based on the time elapsed between
one action and the next one. After the initial action, every other action in the same
interaction has been performed within x < At from the previous one. From observations
during our initial experiments, we set At = 3 seconds.

Figure 7.4: Example of 5 user interaction with the IDE on a timeline.

As an example, Figure 7.4 visually depicts the grouping the actions previously presented
into five interactions. We can also notice that single interactions can differ from each
other by various factors and degrees. Some interactions group few actions, while some
others are bigger, grouping more actions. Moreover the distance between one action and
the other in the same set can vary, however it is never greater than Ar = 3s.

7.2.2 Micro-blogging within the IDE

Users are requested to explicitly tell what they are doing in the form of a short, Twitter-
like, message. Developers are encouraged to contribute in first person, discussing the
things they care about in their code. For every message, we record the developer who
wrote it and the date and time at which the message has been written. To encourage
developers to keep their messages short, we propose a (Twitter-like) message length in-
dicator, suggesting a maximum message length of 140 characters.

% messages

X
ooQ) @ ,:f} James Core
)

%
D
% %@ 0}

I > e

Figure 7.5: Developers sending micro-blog messages

123

Chapter 7. James: Micro-Blogs

Figure 7.5 depicts the micro-blogging scenario with a team of developers. Developers
send a series of short short messages, in which they can express questions, remarks or
any other information related to the software project. Messages are collected and then
analyzed and stored into a central database. The analysis of messages includes their iden-
tification into categories (i.e., questions vs answers) and the identification of keywords
and concepts from the message.

7.2.3 Quests: Building a Knowledge Base

In our approach we combine a micro-blogging message and series of interactions into a
quest. We refer to the message as the quest goa/, and the interactions as the quest zrace.
Messages and interactions are furthermore connected by the contexs: an identification of
the current project or maintenance task the developer is working on.

Figure 7.6 depicts how quests act as “containers” for a series of interactions. Micro-
blogging messages are shown as taller lines with respect to actions, while the domain of
a quest is represented as a rectangle.

L1

Figure 7.6: An example of quests on a timeline.

7.3 Implementation

We implemented the proposed approach in a tool named James. James follows the
client-server architecture displayed in Figure 7.7. Our current implementation provides
an Eclipse client, in the form of the JamEs plugin. In the future we anticipate clients
for, e.g., IBM Jazz, Microsoft Visual Studio, and a fully web-based client. Note that our
approach is language-independent, and thus can be applied to any IDE.

The Eclipse James plugin currently simply allows users to update their quest goal and
collects navigation information through the use of listeners. The Eclipse view provided
for entering messages and for following the messages sent so far is displayed in Figure 7.8.
Micro-blogging messages and interactions are sent to the server to be analyzed and stored.

124

7.3 Implementation

James (Server)

interactions —
James (Client) |e—ioro-blogging /
__recommendations
*,,,,,,,'mfilﬂ'ieft,s ,,,,,,,, analysis
|
|
James for] ; :
Eclipse ames for |
Jazz | /4 ? ‘}\
! |
! |
James for : Visualizations | | Statistics

VisualStudio James I |
web client |
|
|

[James 52

Reccomenders

Figure 7.7: Architecture of James

[anja] J =00

You should let me know what you are doing. [With your codel] 120

(" Update)

Latest: now working on the refresh/background problem on windows platforms

date

2/24]10 @ 13:33 CET
2/24/10 @ 13:31 CET
2/24/10 @ 11:10 CET
2/23/10 @ 21:27 CET
2/23/10 @ 21:12 CET

author
anja
anja
anja
anja
anja

now working on the refresh/background problem on windows platforms

just fixed a null pointer when opening a file.java which doesnt contain a class (package-info.java)
teaching James how to count in negative

Testing more

Testing if James 1.0.1 seems to work fine

Figure 7.8: James Client for Eclipse

125

Chapter 7. James: Micro-Blogs

'The James server provides a (MySQL) database and functionality for analyzing and com-
bining messages and interactions from multiple developers using a JaMEs client (i.c., the
James Eclipse plugin). The schema adopted is based on Figure 7.2. The current proto-
type is primarily intended for gaining experience with the type of messages developers are
willing and able to send, and how these relate to actual interactions. With the results of
the present chapter in place, our next project will be to extend James with functionality
for, e.g., recommendations and visualizations based on the collected information.

7.4 Initial Evaluation

We conducted an initial evaluation with 7 developers working on 5 different projects.
'The goal of this explorative study was to provide first insights into the following research
questions: (1) How often do developers change quest? (2) How many interactions are
there per quest? (3) What do developers write in messages? and (4) How can quests
support programming activities in multi-developer projects?

In the analysis of the gathered data, we focused on understanding whether and to which
degree our approach has a valid foundation. We manually analyzed quest messages from
all the involved developers to evaluate their willingness to share messages and we catego-
rize messages according to information they provide. We first present statistical informa-
tion, such as frequency and length, on the collected messages and interactions. Secondly,
we report on initial findings from our manual examination of quests. Furthermore, we
exemplify the potential benefit of the link between messages and interaction traces.

7.4.1 Study Setup

We distinguish two group of users: group 1 (GI) used James while performing their
typical working activities (both in academic and industrial settings), while group 2 (G2)
worked on a given task on a small sized (4, 500 lines of code) Java system.

The set of software systems on which G worked comprises:
* an industrial project, consisting of approximately 200, 000 lines of code;

+ Crawljax,> an open source tool for automatically crawling and testing Ajax web
applications. The Crawljax core consists of approximately 19, 000 lines of Java code;

* JPacman, an academic project consisting of 4, 000 lines of Java code;

* an academic software project to profile plug-ins executions running in the Eclipse
workspace.

Developers working on these projects used JaMEs during their typical activities during
two weeks, and shared the database of collected messages and interactions with us.

2. http://crawljax.com/

126

http://crawljax.com/

7.4 Initial Evaluation

The three developers in G2 had to perform a given task on James itself (4, 500 lines of
Java code). 'The task took approximately 4 hours. We provided a working version of the
system where quest messages entered by users are directly shown in the view and then
stored into a database. The given task was to “Implement the retrieval of messages from
the database. Messages from different users must be properly displayed in the JAMES view.”
We also provided a mock class with some comments as guideline. To implement the
requested feature, knowledge about part of the system was needed (database connection,
messaging, efc.). Every user had good high level knowledge of the underlying model and
of the functionality provided by the artifact.

We deliberately chose JAMEs as a artifact for our experiment. A very good knowledge of
the underlying code was fundamental to asses the quality of the information provided by
messages and interactions during the analysis of the collected data.

The Data Set

Table 7.1 reports on the total number of messages, interactions and actions collected for
each user during the whole duration of the study.

user project # messages # interactions #actions
user 1 industrial 34 2,829 12,584
user 2 Crawljax 73 1,768 2,471
user 3 JPacman 66 478 763
user 4 academic 14 3,781 10,352
user A James 36 381 572
user B James 41 424 769
user C James 36 221 319
7 users 5 projects ‘ 300 9,882 27,830

Table 7.1: Data collected in our preliminary study

We manually examined the data about users to identify development sessions. We consider
a development session as a period of time when the developer is working in a continuous
manner (i.e., with only short breaks). To separate one session from another we looked at
the time difference between user’s messages and gaps between recorded interactions. To
distinguish between development sessions as faithfully as possible, we used a threshold
of 30 minutes, and manually checked quest messages and relative traces to better under-
stand whether the session was finished. For GZ, the group of users working on their daily
activities, we identified a total of 29 sessions most of which counted between 3 and 9
messages. For G2 there was a larger number of messages (35-40) in a single continu-
ous development session. Distinguishing between development sessions gives a different
(finer), granularity of details about consecutive quests, with respect to considering all the
messages from one user as linearly consecutive. This has an impact, for example, on the
analysis of the frequency of messages.

127

Chapter 7. James: Micro-Blogs

7.4.2 Data Analysis

50%

25%

B = — am W

0:05 0:10 0:15 0:20 0:25 0:30 1:00 >1:00

Figure 7.9: Frequency of messages [hours]

How often do developers change quest?

More than half of the messages have been set within 5 minutes from the previous one.
'This evidence is shown in Figure 7.9, where it is also possible to observe a particular trend
in the distribution of messages frequency.

We can observe that messages that are not set within 5 minutes from the previous one,
are likely to be set either within a short (10 minutes) or after a longer (1 hour or more)
delay. Few messages or no messages have been set with distance of 20-30 minutes one
from the other. Further inspection evidenced that such trend is common to both groups
of users, thus both when performing ordinary maintenance work (either in an academic
or industrial projects) and when participating in the experiment. This indicates that the
frequency at which developers update their quest message is probably independent from
the setting in which they work.

More details and confidence on the distribution of messages frequency is given by the
box-plot in Figure 7.10: Half of the quest messages have actually been set between 45
seconds and 12:30 minutes after the previous one, with most of these being set after 3
minutes.

0:00 0:05 0:10 0:15 0:20 0:25 0:30

Figure 7.10: Frequency of messages per session [hours] (upper value is 5:19)

128

7.4 Initial Evaluation

'The number and frequency of collected messages are a first suggestion that users are willing
to share what they are doing.

How many interactions are there per quest?

We collected a total of 9,882 interactions, grouping more than 27,000 actions performed
by developers. Analyzing interactions in the context of the quest they belong to, we notice
that most quests count a handful of interactions. Figure 7.11 depicts the frequency of the
number of interactions per quest, taking into account all the collected quests. We can
observe that more than half of the quests have less than 10 interactions associated to
them: 2% of quests count one interaction, 13% count 2, 10% comprise 3 interactions.
Of the remaining 75% quests, the 31% count between 4 and 10 interactions, while the
remaining 43% more than 10.

40%
30%
20%
10%

0%
5 10 15 20 25 30 35 40 45 50 >50

Figure 7.11: Interactions per Quest [count]

Considering the frequency at which developers updated their quest messages, we roughly
collected 2.7 interaction per minute (8 interactions every 3 minutes). Furthermore, the
large majority of interactions (66%) comprise only one action.We also analyzed the total
number of actions in one quest. We observe that users exploit more than 10 features of
the IDE (leading to actions) in one minute (see Figure 7.12).

0 10 20 30 40 560 60 70 80

Figure 7.12: Actions per Quest [count]

129

Chapter 7. James: Micro-Blogs
What do developers write in messages?

Some users are more inclined to write a message as they are about to start a task, while
others are more inclined to write a message in which they report the success/failure of what
they have been doing in the last minutes. Furthermore, some messages were expressed in
the form of questions. In a number of quests, developers are “talking to themselves” in
the micro-blogging messages.

Categorization of messages

WEe notice that we can distinguish quest messages expressing activities (i.e., what they are
going to do and what they did) and messages commenting on (part of) the code. Some
users also wrote to do’s. We manually inspected the content of messages, categorizing
them between messages expressing: intentions (“Now I am going to...”), ongoing activities
(“Iam...”) and reports on a finished activity (“I just did...”), as well as comments (“#his is
like 50”) and to-do’s (“later I will need to...”). Figure 7.13 visually describes the result we
obtained from such categorization. We can see that only a minor part of messages does
not fall into one of the proposed categories.

todo remaining
6% 1%

comment

16% intention (future)

33%

report (past)

21% . -
ongoing activity

23%

Figure 7.13: (About) what do developers write in messages?

We observe that 33% of the messages are about future, 21% report on past activity, while
22% cover ongoing activity, about which the message has been updated after the devel-
oper started working on her (sub)task. The remaining of the messages is divided among
comments (16%), todo’s (6%), and other sentences.

By inspecting messages very close to each other (within 30 seconds), we can notice that
quest messages as close to each other as 30 seconds, are either directly correlated, with the
second message acting as “annotation” for the previous quest message, or the first message
states the end of the previous activity. An example of the first case are the following

130

7.4 Initial Evaluation

messages: “so let’s check, whether the SQL query works”, together with: “first figure out where
thejob is invoked ;-)”. While “First run finished” followed by “now switching to Craw/Queue”
is an example of the latter.

Keywords

Some words occurring in messages, together with the verb tense used, have been deter-
minant to establish in which category each message was falling into. We therefore tried
to identify a set of such zeywords recurring in messages from difterent users. It turns out
that words such as now, going (t0), ftest, seems, starting, checking, and frying are recurring
in many messages and among different users. Note that they can often be found directly
at the start of messages. Figure 7.14 illustrates the 20 most frequent identified keywords
in a word cloud?, which also displays their frequency (as size of the words). Furthermore,
two users explicitly expressed to-do’s using an hash (#) in front of the keyword ‘#0d0’,
simulating hashtags in Twitter.

seems ...,

adding 8”6‘i<mgnOW try |n

check checklng test
e wstgomg Switching

e tests

Figure 7.14: What keywords can we find in messages?

Content of Messages

Content of messages in a development session seem to be sufficient to have an idea of
what the developer have been working on during the session. As an example, Figure 7.15
shows a word cloud with words (except keywords) from messages set by user A, who
worked on the given task, implementing the retrieval of messages from a database.

To give a better feeling about the content of quest messages set by developers, we present
a collection of messages in our data set:

1. “first figuring out how fo connect to the server”

2. “testing to see the importance of the synchronized statecompartor”

3. “Inwvestigating failing error in JETsGenerator”

4. “Trying to figure out how to create a proper UUID from an int in the database.”

3. Images created by Wordle.net (http://www.wordle.net/).

131

http://www.wordle.net/

Chapter 7. James: Micro-Blogs

new)
dbmformatlon rid
changes . MESSA eretrleval

adqaddingget messag
changmgcontextquery visible

controller|3test questbook

Figure 7.15: Words most frequent in messages by user A.

5. “No real significant differences found between Craw!Queue / SpeedQueue”

6. “Finding out that "blue’ actually means green here”

7. “seems that QuestMessageCapsule has all the info I need to get the right fields out of my
query”

8. “MoveTest.testApply actually only tests moving towards an empty cell.”

9. “wbhere is the code that is sending a message fo the database?”

10. “Quests should be kept into a sorted list. #todo”

Talking about code elements

We observe that a fair share (28%) of the collected messages mention a code element
(package, class, method or attribute). Such messages mentioning code elements are dis-
tributed across all the message categories and that the portion of quest messages mention-
ing classes, methods, ezc. is interestingly similar for every user. 'This fact, together with
the similarity in the frequency of messages, further suggests that developers have similar
habits when communicating (about) what they are doing.

Messages length

Regarding the length of messages, we observe that more than half of the messages (58%)
have length between 20 and 80 characters, with an average of 54.5 character per message.
On average, users wrote 8.6 words per message. 'This indicates that the limit suggested
by JaMEs of 140 character per message may be sufficient to express what they are doing.

How can quests support programming activities in multi developer projects?

We manually analyzed interactions combined with a subset of the quests with messages
mentioning code elements, in particular class names. Our finding is that most of those
interactions involved navigation inside the mentioned class file, in particular, as we might
expect, when the message expresses an intention. Furthermore, analyzing quests from

132

7.4 Initial Evaluation

users in G2, we noticed that a portion of the relative messages refers to common problems

faced by the developers.

We hypothesize that access to the knowledge base about the system could have helped
(later) developers in their programming activity. To evaluate this hypothesis we inspected
interactions associated quest goals with similar content from developers in G1. We report
on 3 cases, in which messages could have supported program comprehension.

Case 1: Solution found by user B can be useful to user C.

User B: “quickly check how to iterate over a ResultSet”
User C: “Looking for an example how to use a resultset.”

Both users eventually inspected the same file before setting a new quest message. This
gives an insight into the usefulness of interactions associated to messages, at least for
messages stating intentions and ongoing activities.

Case 2: User C has the information user A is looking for.

User C: “How do I turn a timestamp from SQL into a Java timestamp?”
User A: “need to check online on how to include operations on the timestamps in the

query (i.e., >)”

Interactions from user A does not include navigation to any class file in the project. Her
following quest messages indicates that she found the wanted information after 10 min-
utes. On the other hand, user C has been inspecting the code: In particular he has
been browsing classes relative to the quest object representation, eventually terminating
his journey on the class which contains an example SQL query involving a time stamp.
User C sets a new message after 10 minutes, which suggests the issue was solved. The
Knowledge gained by user C during his quest could have been “reused” by user A.

Case 3: Message from user A is the solution to the struggling of user B.

User A: “I think startPlugin() and stopPlugin() are good places to start/stop the
job (Q3)

User B: “first figure out where the job is invoked ;-)” (Q6)

User B: “postponed starting - have to figure out first where fo start the job” (Q7, 16
minutes after Q6)

We can see that the answer to Q6 is directly embedded in Q5. However, not having
access to this information, user B spent quite some time browsing class files in the project
before eventually reaching the same conclusion than user A (2 minutes after setting Q7).
Almost 20 minutes could have been saved to user B by having access to the quest message
previously expressed in Q5 by user A.

133

Chapter 7. James: Micro-Blogs

7.5 Discussion

7.5.1 Summary of Findings

The number, frequency and content of collected messages indicate that developers are
willing and inclined to share what they are doing by means of a short micro-blogging
message, regardless of the setting in which they work. Developers perform approximately
10 actions per minute, which are grouped into 2-3 interactions. A new quest goal is set,
in most cases, every 5 minutes.

We categorized the content of messages into 5 categories and observed that one third of
them expresses future intentions. Messages referring to concluded and ongoing activities
account for one fifth each. Remaining messages include comments and todo’s. Roughly
one third among all the collected quest contain an explicit reference to a code element
(i.e., a class name) in their message.

We analyzed how messages connect to interactions and we try to assess whether these
connections are in principle meaningful. By manually comparing quest goals expressed
in similar messages, we observe that quests provide information that is potentially mean-
ingful to different developers working on similar tasks, both in the associated traces and
in the goal themselves.

From the conducted exploratory evaluation, we can conclude that knowledge about the
software being changed, constantly built up by developers, can be captured in the form of
quests. Accessibility to this knowledge base can support developers during maintenance.

7.5.2 Interpretation of Findings
Impact of message sharing on message frequency

Developers participating to our experiment updated their quest message once every three
minutes. This research motivates the usefulness of sharing such (short) messages with
other developers within the same team. We wonder and plan to study to what extent the
sharing of messages between developers impacts the messages frequency.

We hypothesize that the frequency of messages would slightly decrease because a devel-
oper might “filter out” those messages in which she mainly “talks to herself.” We will
evaluate this hypothesis by comparing the finding reported in this chapter with those ob-
tained by the analysis of messages from future experiments conducted in a similar setting
that the one involving group G2. We will try to quantify the variation in the frequency
of messages when developers in the same team (1) can see each others messages and (2)
receive recommendations based on their current quest goal.

134

7.5 Discussion
Interaction Resolution

Our Eclipse JaMEs plugin captures interactions by modeling navigation information in
the IDE, such as browsing through projects files. However, other programming activities,
such as writing code, are not currently monitored. From the conducted study, we observed
that with a timer on interactions of 3 seconds, two thirds of the collected interactions
are limited to one action. Since our heuristics groups actions into interactions based
on the time elapsed between one action and the next one, we estimate that modeling
changes to the source code as interaction activities in the IDE, would significantly affect
traces associated to quests involving writing code, whereas traces relative to quests with
a program comprehension activity as goal would resemble those currently collected by
James.

We plan to further investigate our current algorithm to clustering actions into interactions,
as well as alternatives. We intend to both extensively analyze the collected actions and to
monitor other developer activities (such as editing or browsing code) in order to determine
a better approach into building interaction traces.

Code completion in messages

Developers referring to code elements in quest messages and the correlation we encoun-
tered between mentioned class files and browsed class files suggest that JamEes should
provide support to developers, for example in the form of auto-completion program el-
ements such as names of packages, classes, methods and attributes. Such support will
be convenient for the users and in particular way useful during the analysis of messages.
Such a feature will not only avoid spelling mistakes, but identify program elements as
such, establishing a direct link between the messages and the code itself.

Connecting messages to interactions

We obtained promising results from the first analysis of traces correlated to quest goals
about future intentions and we are confident that associating interactions to micro-blogging
messages have great potential. While our heuristics associating to a quest all the inter-
action between the setting of its goal and the next one seems to be valid for such quests
expressing intentions, we need to evaluate its quality in regards of quests with messages
falling in the other categories.

As future work, we will research how to improve the heuristics to attribute the appropriate
interactions to a quest. We hypothesize that categorization of messages can help refining
our heuristics to determine which interactions are to be associated with a quest. For
example, when the quest goal reports about the completion of a task, it is likely that at least
part of the interactions preceding it are linked with it. We will try to evaluate whether
and to which extent categorizations of messages can help determining an appropriate
association between quests and interactions.

135

Chapter 7. James: Micro-Blogs
Messaging conventions such as hashtags and emoticons

We observed that in some of the collected messages users used the hash symbol in front
of the sodo keyword, forming an hashtags (#todo), as Twitter. We also noticed that in
some of the messages users try to express their feeling with (informal) onomatopoeic
words such as yes/, mmb, grr, oops, and yu-uh. Users also included emoticons (e.g,, :-))
in their messages. We believe those information could be valuable to understand the
value of the quests they belong to. For example, a message such as “Messages are nicely
stored in the fresh mysql database :-)” leaks out that the user is happy with the solution he
found/implemented.

We intend to further investigate the use of (hash)tags and other methods people use to
enrich their micro-blog messages and whether we can benefit from these findings, for
example for a more detailed or different categorization of messages.

Furthermore, we envision that in addition to actively indicate quest goals, in our approach,
users will have the possibility ze// the IDE whether their journey through the code (the
trace) has been successful and the quest goal is accomplished. By capturing the “en-
lightenment moment” when pursuing a quest goal, additional value is added to the user’s
navigation (since it means that the quest has been accomplished while following those
particular steps). This information is particularly important when sharing this knowledge
with other developers.

7.5.3 Applications of James Data

Our purpose is to build a shared knowledge base with information from developers, which
captures information concerning developers’ knowledge. Such knowledge base can then
be used to support development activities. We propose two applications: (1) sharing
micro-blog messages to increase members awareness and (2) sharing navigation data in
the form of (targeted) recommendations to improve software comprehension.

Increasing Knowledge Awareness

Micro-blogging is an asynchronous approach on information exchanging. However, such
(short) messages are often seen by other users in a semi-synchronous fashion (usually
within the day or within a few days at most). JAMEs takes care of transmitting the mes-
sages to interested users. With inferested users we mean both users that actively want to
“follow” (in a Twitter-like manner) another user, a project, a file, a concept, etc. and also
users for which the message can be relevant. We can determine the relevance of a message
for a user, given his previous messages and navigation data. JamEes will point out related
messages, when this is relevant to improve the user’s work. For example, it will direct the
user to another developer who previously faced a same or similar concern than expressed
in her message. In this way the users can actively take advantage of knowledge of oth-
ers(by contacting other users to directly ask them about their findings). Establishing in

136

7.5 Discussion

this way a foundation for co/laborative program comprehension. We can also have sufficient
information to figure out when messages are obsolete. For example, if they occur in a
part of the code that has later been deleted, or if a message mentions an identifier that

has changed.

% % messages

James Core

e
$°

Figure 7.16: Developer receiving micro-blog messages

Figure 7.16 depicts the sharing of micro-blogging messages, previously collected within
the development team. A user is notified with a subset of the messages previously col-
lected and analyzed by James. Messages are redirected only to those users, for which they
can be relevant (e.g., to solve the concerns they expressed in their quest message).

Recommending Comprehension Paths

By combining quest messages and navigation data, we can recommend to users where to
look in the code, given their quest goal (this can be done when we captured how others
solved the same or a similar issue). The information gathered is processed (interaction
traces are built), and then used to build a general knowledge about the system, which can
be used for a number of applications. For example, JAMEs can suggest where to look
in the code, given a developer’s goal and his/her private navigation history, as shown in
Figure 7.17. The collected knowledge about the system is filtered by JAMEs, so that only

relevant information is reported to the individual engineer.

Among the challenges to be addressed when building such a recommendation system,
one important issue is finding meaningful criteria for the identification of information
relevant to the user’s goal (as opposed to noise generated by browsing irrelevant parts
of the system). Once the information is filtered, it needs to be merged with the previ-
ously recorded data (collected from many users). The merging of the data gathered from
different users is another point of investigation (for example, traces from different users

137

Chapter 7. James: Micro-Blogs

messages
% / James

Recommender
interaction __“*

g data

Figure 7.17: JAMEs recommendation approach schema

working toward the same goal can have a different importance, based on some yet to be
defined metrics, such as developer experience on the code and shorter path to solution)
as well as the scalability of the tool due to the possibly huge amount of data collected.

Another important research question to be tackled is how the collected data can survive
code refactoring, while maintaining its valuable information.

7.6 Related Work

Our research builds upon several (software engineering) disciplines. First, there is related
work concerning studies of what developers do, and what information they need from the
IDE. As an example, Sillito ez a/. provide a study of questions asked during programming
change tasks [161], and Ko ¢# a/. report on an etnographic study of how developers work
at Microsoft and what their information needs are [103].

Software development and maintenance are inherently collaborative activities: A survey of
research in the area of collaborative software engineering is provided by Whitehead [176].
Web 2.0 provides new ways of collaboration and informal communication [131], and the
incorporation of Web 2.0 techniques in software development is attracting more and more
attention both in industry and academia [169, 171]. As an example, IBM’s Jazz* incor-
porates the possibility of adding tags to work items, and its use by IBM developers has
been studied extensively by Treude and Storey [168]. Another example of the integra-
tion of Web 2.0 into the software development process is the work by Begel ¢z al. on
Codebook (inspired by Facebook) to integrate several repositories relevant to software
development [11] and by DeLine on bookmarking in code (inspired by Delicious) [46].

Micro-blogging is an important element of Web 2.0, and thanks to the massive success

4. http://jazz.net/projects/content/project/plans/jia-overview/

138

http://jazz.net/projects/content/project/plans/jia-overview/

7.7 Concluding Remarks

of, e.g., Twitter, an active area of research itself® [65]. We are not aware of other research
studying the potential of micro-blogging during software development. Similar to some
extent to micro-blogging, however, are Internet Relay Chat (IRC) discussions, and their
use during the development of the Linux Gnome code has recently been analyzed by

Shihab [160].

A number of existing studies report on the meaningfulness of navigation traces and their
potential. Fritz ez al. conducted an empirical study assessing the relationship between
programmer’s activity and what a programmer knows about a code base [60] and De-
Line ez al. report results of two studies which demonstrate that sharing navigation data
can improve program comprehension and “is subjectively preferred by users” [47]. Both
Mylyn [101] and NavTracks [163] are navigation aids based on what the programmer
is currently looking at in the IDE, to recommend other entities to look at. Addition-
ally, a study by Robbes on recommender systems based on recorded interactions [146]
recognizes the lack of support for interaction annotations.

7.7 Concluding Remarks

During the process of trying to understand a piece of code, developers build up a sub-
stantial body of knowledge on the code they are inspecting—knowledge that often evap-
orates after the corresponding maintenance task is finished. In this chapter, we propose
a method to capture this valuable information, by recording how developers interact with
the code, and by encouraging developers to tell their team members what they are doing.

The key contributions of this chapter are the following:

* A novel method for recording program comprehension knowledge by combining
micro-blogs expressed by developers with interaction data collected by the IDE;

* A client-server implementation of this approach by means of the James Eclipse
plugin;
* An empirical evaluation of the proposed approach, giving initial evidence that de-

velopers are willing to micro-blog on their activities, and that the combined inter-
action and micro-blogging data is helpful in subsequent maintenance tasks.

Based on our first experiments, we consider the combination of micro-blogging data and
automatically collected interaction data a highly promising route for recording and shar-
ing knowledge built up in the program comprehension process. Future research directions
include enriching the tool suite with additional mechanisms such as providing the ability
to follow specific developers, projects, or work products, and enhance quest visualiza-
tions. Future research directions also includes carrying out larger scale case studies in
which teams will be using JamMEs for a longer period of time. ‘This will help investigating,
for example, the impact on JaAMEs of frequent interruptions of developers’ work [103] and
multitasking, which can break a logical task into many sessions separated in time.

5. See also the bibliography at http://www.danah.org/researchBibs/twitter.html

139

http://www.danah.org/researchBibs/twitter.html

Part 1V

Finale

141

Conclusion

8.1 Contributions

'The goal of this thesis is to provide additional effective support to developer’s teamwork, by
devising lightweight IDE additions that can be seamlessly integrated in the development
workflow of a variety of teams (e.g., from small and co-located to large and distributed) and
that require little learning time. To that end, we investigate how to support developers’
teamwork in the IDE, implement the approaches emerged from our investigations as
lightweight and unobtrusive extensions, and test the approaches with users in different
studies. In this dissertation, we make the following key contributions:

In Chapter 2, we present an in-depth investigation, conducted through qualitative anal-
ysis, of developers’ current teamwork needs. This results in:

additional evidence that teamwork needs mostly regard coordination aspects, cor-
roborating previous research;

novel evidence that developers are able to face scenarios considered problematic in
literature;

evidence that developers find it hard to deal with breaking changes, but they get
frustrated only if the breaker is internal to the project;

recommendations on how to improve collaboration in teamwork in the software
implementation phase.

In Chapter 3, we present an in-depth qualitative evaluation of the role of development
mailing list for OSS project communication. This results in:

a coding system that is reusable for analysis of developer communication in general,
and mailing lists in particular;

the assessment of relative frequency of topics in developer mailing lists;

the assessment of relative participation of developers in developer mailing lists;

143

Chapter 8. Conclusion

* the implications for researchers and practitioners, derived from our findings about
mailing list communication in OSS systems.

In Chapter 4, we conduct an in-depth analysis, based on interviews and surveys, to under-
stand how and why enterprise software developers communicate with one another, and
how often they do so; then we propose an IDE extension to support the person discovery,
selection, and communication process. This results in:

* the criteria developers use to identify and choose a set of relevant people, how they
select the best person to contact, the means by which they contact that person, and
how often their conversations led to positive working relationships;

* CARES, a fully implemented IDE extension to support the person discovery, selec-
tion, and communication process;

* the evaluation of caREs with professional developers in two studies spanning up to
four months, which reveals that the reaction to cAREs by most developers has been
primarily positive;

* evidence that that the deployability of a proposed IDE extension is strongly influ-
enced by ease of installation, simplicity of use, and effectiveness at a single task.

In Chapter 5, we present an analysis of the current support for receiving code changes in
the IDE, based on widespread usability heuristics, and the subsequent design of an IDE
extension to improve teamwork support. This results in:

* a set of requirements for a tool to support teamwork based on the unmet usability
heuristics;

* the design of BELLEVUE, an IDE extension to support teamwork by improving the
integration of code changes in the IDE;

* the evaluation of BELLEVUE, conducted by involving nine professional developers,

which reveals that developers’ reaction to the design was very positive.

In Chapter 6, we present the results of an online survey and several interviews conducted
with professional software engineers on current usage of code bookmarks and the subse-
quent design of an approach to code bookmarking. This results in:

* data on current usage of code bookmarks;

* aset of requirements for a non-intrusive bookmarking tool that facilitates informa-
tion sharing;

* PoLLicino, a novel approach to code bookmarking, which we designed and fully
implemented as an IDE extension;

* the evaluation of PorriciNo and the potential of collective code bookmarks, in an
exploratory pre-experimental user study with eleven participants.

In Chapter 7, we present an approach for creating information during program compre-
hension, which is useful in later consultation and in teamwork scenarios. This results in:

144

8.2 Reflection on the Research Questions

* a novel approach based on the idea of combining micro-blogs expressed by devel-
opers with interaction data collected by the IDE;

* JaMes, a client-server implementation of the aforementioned approach as an IDE
extension for Eclipse;

* the empirical evaluation of JaMEs, and the initial evidence that developers find it
reasonable to micro-blog on their activities, and that the combined interaction and
micro-blogging data help sub-sequent maintenance tasks.

8.2 Reflection on the Research Questions

Taken together, the contributions serve to answer the research questions that we set out
to answer in the introduction. Here, we reflect on these questions, trying answer them in

the light of our findings.

[1] How do developers experience collaboration in teamwork?

To better understand the leeway for improving teamwork support in the IDE, we first
investigated the current practice of developers’ working in teams (presented in Chap-
ter 2). To our surprise, the interviewed professional developers reported to use effective
workarounds that make them able to deal with different scenarios considered as problem-
atic in literature (e.g., inefficient task assignment). Nevertheless, they find it still difficult
and time-consuming to correctly understand code changes made by other people (e.g.,
for maintenance tasks or for finding the source of an unexpected error); moreover, they
find this particularly frustrating when these changes are done by somebody working on
the same project, because of the lack of coordination effort by the author of the changes
(who, for instance, could have shared additional information with them).

Firstly, these findings made us realize once again the importance of verifying whether
assumptions generally accepted in previous research also hold in the specific context un-
der investigation; finding that some scenarios were not seen as problematic allowed us
to concentrate on more relevant issues. Secondly, the findings showed that, although
developers’” questions might be answered by tools already available from research, these
tools are not used by the developers; this underlines the importance of more research in
this area, with the specific aim of creating solutions that can be easily adopted in different
working scenarios, without requiring major changes or expensive learning. Finally, the
findings reiterated on the importance of sharing information to support teamwork; when
information is necessary, but not visible or communicated in advance, developers have
to spend a significant amount of time to look for it, thus leading to inefficiencies and
sometimes even frustration.

In the following question, we move from the industrial context to the open source one.

145

Chapter 8. Conclusion
[2] How is information shared in open source software projects?

To understand how information is shared in OSS systems, we conducted an in-depth
analysis of the communication channel that is considered the hub of project communi-
cation in OSS projects: the development mailing list. This study helped us to better
understand the type of information that is exchanged by open source developers, so that
we can guide the subsequent efforts to the most productive directions. In our case study,
we found that communication is presently scattered across several types of channels, such
as issue repositories, code commits, face-to-face talk, and online chats. Interestingly, the
mailing list seems to have lost its predominant role in favor of the issue repository, which
is closer to development artifacts (e.g., source code entities) and allows a more focused
and structured communication than noisy emails. This is evidence of the importance of
creating ways to improve intra-team communication that are linked to the development
process, as how we tried to do with our proposed approaches.

Moreover, an amount (larger than we expected) of OSS mailing list communication is
devoted to less technical details and more social and organizational issues. This has to be
taken into account in future endeavors to support teamwork with tools.

Considering the lessons learned from answering the first two questions, we focus on ways
to display already-recorded information that is useful to support teamwork, and on ways
to generate additional information that is currently not recorded but that would be useful
to teamwork. These are the pillars that we investigated in the following research questions.

[3] How can we expose existing information to support teamwork?

To better understand the type of information that would be useful to developers working
in teams, in addition to the studies presented in Chapters 2 and 3, we conducted inter-
views and surveys as presented in Chapter 4. We underline that much of the information
that would help developers is already recorded and available, for example, in the code
change history. In fact, questions such as “Who is an expert of this piece of code?” can be
answered by simple queries to the versioning system. Nevertheless, the interviewed and
surveyed developers did not seem to profit from this information. This is not surprising,
because “the ease of acquiring information is at least as important as the quality of the in-
formation in determining the sources that people use” [105]. We focus our answer to this
question on finding how to make this historical and team information easily accessible.

We proposed two approaches, in the form of IDE extensions, to expose information
that is already available, but not easily accessible in the IDE. cares (Chapter 4) is our
first addition: It gives information about who one should contact to ask information on a
specific piece of code. A clean interface that shows contacts’ information, their availability,
and their photo proved to be effective and useful to developers. BeLLevue (Chapter 5),
our second addition, improves the code change support offered by the IDE: Not only
does it keep visible what changed since the last update of the local code, also it seamlessly
integrates code history in the editor and adds contact information similarly to cARES.

146

8.3 Future Work

'Three points that emerged from our findings are particularly interesting: First, lightweight
solutions, which require neither huge implementation effort nor long learning time, could
reach the desired effect of supporting teamwork in the IDE. Second, developers’ pho-
tos, which enable group members to easily recognize one another, increase their sense
of community. Third, despite several usability problems with the current support for
dealing with code changes in the IDE, popular programming environments have neither
acknowledged nor solved them. This might be due to the fact that “the identification of
specific, potential problems in a human-computer dialogue design is difficult” [122]. In
fact, we only became aware of these usability issues after long investigation. We hope that
our efforts will inspire similar industrial and open source solutions in this area.

[4] How can we aid information creation to support teamwork?

Not all the information that would be useful to developers is already recorded. For ex-
ample, when conducting program comprehension tasks, developers do not leave traces
in the source code management system, because they do not make modifications to files.
For this reason, all the precious time developers spend in understanding some parts of the
system is often lost once a task is completed. We argued that this kind of information
would be very valuable to support teamwork. In Chapters 6 and 7, we focused on this in-
stance of creating information to support teamwork. We addressed our research question
by investigating two approaches that support developers in sharing the information they
collect while spending time on program comprehension tasks.

'The study on Porricino focused on code bookmarking. We found that the existing sup-
port in the IDE is currently underused and we proposed a simple, lightweight solution
that showed how such an approach can be effective to generate information that is useful
for other team members afterwards. The study on JamEes made a step further and pro-
posed an approach that let developers share their comments in form of brief messages and
automatically records their interactions with the IDE. An initial study with developers
demonstrated the feasibility and the interest of such an approach.

Overall, we showed that creating and recording additional information to better support
teamwork do not require overly complicated approaches, which might disrupt developers’
productivity and waste their time. With simple, short textual notes developers can share
information valuable to their peers. Participants to our studies showed interest in such
lightweight approaches.

8.3 Future Work

The future steps that we envision as a natural continuation of the presented work are
numerous and are mostly discussed in each chapter, in the specific context from which
they are emerging. Nevertheless, from a higher level perspective, we foresee few directions
that we introduce here.

147

Chapter 8. Conclusion

People in the IDE. The study on cAres especially reported that the small detail of the

photo of the people to contact made a great difference in developers’ perception
of our solution. In our opinion, this underlines that people are an undervalued
part of the development process and that we should find ways to better integrate
information about people in the programming environment. As a future work we
foresee extensions that include people as first-class entities in the IDE, together
with source code artifacts and the development process.

Moreover, the presence of photos increased the sense of belonging of team mem-
bers, probably indicating that the distance perceived among developers was re-
duced. In this context, Dullemond e# a/. investigated the use of mood indicators
within a microblogging solution for developers [53]. They found that the mood
associated with microblogging would made people feel more connected on a so-
cial level. An interesting venue for future work would be to include mood-sharing
capabilities and photos of the posting developers to our JAMESs extension. A quan-
titative evaluation can then be conducted both on the effects on the development
process and outcome and on whether the perceived distance changes, using the
model proposed by Prikladnicki [140].

Integration within the development process. Our research on BELLEVUE is a first step

in the direction of improving the development process by make it more integrated
with the development product. We found that the current support for managing
code changes in the IDE is very basic and suboptimal. We proposed a solution to
this problem and we envision a more comprehensive approach that considers all the
different facets of the development process (e.g., bug management and new feature
requests) and integrates them seamlessly in the IDE. On this, we support solutions
that would provide progressive and unobtrusive disclosure of useful information,
rather than heavyweight solutions interfering with programmers’ productivity or
forcing developers to change their working style.

Moreover, although we aim at supporting teams independently from the develop-
ment process they have in place, an interesting venue for future research would be
to test in which situations our solutions work more effectively or achieve better
results. Agile methods improve the sense of responsibility and belonging of team
members, thus leading people to be willing share more [117]. In this context, our
solutions to help developers creating and sharing information to support teamwork
could be more effective; interesting venue for future work would be to investigate

this hypothesis empirically.

Generalization. The studies we conducted are based on qualitative methods [55]. This

148

allowed us to obtain data grounded in the experience of the participants, rather
than solely in our speculations or in previous literature. Moreover, we obtained
rich information on what people found useful or lacking in our solutions. How-
ever, mainly because of the (time-consuming) nature of qualitative methods, this
usually means having less data points to generalize our findings. Although some-
times we used surveys to tackle this aspect (Chapter 4 and Chapter 6), in general, we

8.3 Future Work

could only draw initial conclusions, for example, on the usefulness and effectiveness
of our tools. An important venue for future research would be to check the find-
ings of our exploratory investigations with a larger pool of participants (Chapter 2
and Chapter 7) and with more systems (Chapter 3); another would be to conduct
quantitative measurements on the impact of our proposed tools and designs, for
example with a longitudinal study in the daily practice [148] or with controlled
experiments [104].

149

Bibliography

[1] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In
Proceedings of ICSE 2006 (28th ACM/IEEE International Conference on Software
Engineering), pages 361-370. ACM Press, 2006. (Cited on page 20.)

[2] Robert Arnold and Shawn Bohner. Software Change Impact Analysis. Wiley-IEEE
Computer Society Press, 1996. (Cited on page 21.)

[3] Earl Babbie. The practice of social research. Wadsworth Belmont, 11th edition, 2007.
(Cited on page 106.)

[4] Alberto Bacchelli, Marco D’Ambros, and Michele Lanza. Are popular classes
more defect prone? In Proceedings of FASE 2010 (13th International Conférence on
Fundamental Approaches to Software Engineering), pages 59-73, 2010. (Cited on
page 33.)

[5] Alberto Bacchelli, Michele Lanza, and Marco D’Ambros. Miler: A toolset for
exploring email data. In Proceedings of ICSE 2011 (33rd ACM/IEEE International
Conference on Software Engineering), pages 1025-1027, 2011. (Cited on page 36.)

[6] Alberto Bacchelli, Michele Lanza, and Vitezslav Humpa. RTFM (Read The Fac-
tual Mails) —augmenting program comprehension with REmail. In Proceedings of
CSMR 2011 (15th IEEE European Conference on Software Maintenance and Reengi-
neering), pages 15-24, 2011. (Cited on page 94.)

[7] Ronald M. Baecker, Jonathan Grudin, William A. S. Buxton, and Saul Greenberg,
editors. Human-computer Interaction: Toward the Year 2000. Morgan Kaufmann
Publishers Inc., 1995. (Cited on page 4.)

[8] Aaron Bangor, Philip Kortum, and James Miller. An empirical evaluation of
the system usability scale. International Journal of Human-Computer Interaction,
24(6):574-594, July 2008. (Cited on page 93.)

[9] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual
SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies,
4(3):114-123, May 2009. (Cited on page 93.)

151

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

Olga Baysal and Andrew J. Malton. Correlating social interactions to release his-
tory during software evolution. In Proceedings of MISR 2007 (International Workshop
on Mining Software Repositories), page 7. IEEE Computer Society, 2007. (Cited
on page 33.)

Andrew Begel and Robert DeLine. Codebook: Social networking over code. In
Proceedings of ICSE 2009 (31st ACM/IEEE International Conference on Software
Engineering - New Ideas and Emerging Results Track), pages 263-266. IEEE Com-
puter Society, 2009. (Cited on page 138.)

Andrew Begel and Anja Guzzi. Graphical user interface for integrated develop-
ment environment tool, May 2, 2013. US Patent App. 13/282,415, US Patent
Pub. US20130111428 A1, http://www.google.com/patents/US20130111428.
(Cited on page 62.)

Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: Discov-
ering and exploiting relationships in software repositories. In Proceedings of ICSE
2010 (32nd ACM/IEEE International Conference on Software Engineering), pages
125-134. ACM, 2010. (Cited on pages 16, 56, 57, and 68.)

Andrew Begel, Nachiappan Nagappan, Christopher Poile, and Lucas Layman.
Coordination in large-scale software teams. In Proceedings of the CHASE 2009 (2nd
International Workshop on Cooperative and Human Aspects of Software Engineering),
pages 1-7. IEEE Computer Society, 2009. (Cited on pages 4, 26, 27, and 28.)

Nicolas Bettenburg, Emad Shihab, and Ahmed E. Hassan. An empirical study
on the risks of using oft-the-shelf techniques for processing mailing list data. In
Proceedings of ICSM 2009 (25th IEEE International Conférence on Software Main-
tenance), pages 539 —542. IEEE Computer Society, 2009. (Cited on pages 34
and 36.)

[16] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. FAST-

[17]

[18]

Dash: a visual dashboard for fostering awareness in software teams. In Proceedings
of CHI 2007 (25th SIGCHI Conference on Human Factors in Computing Systems,
pages 1313-1322. ACM, 2007. (Cited on page 27.)

Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. Mining email social networks. In Proceedings of MSR 2006 (International
Workshop on Mining Software Repositories), pages 137-143. ACM, 2006. (Cited on
pages 32, 33, and 38.)

Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar
Devanbu. Latent social structure in open source projects. In Proceedings of FSE
2008 (16th ACM International Symposium on Foundations of Software Engineering,
pages 24-35. ACM, 2008. (Cited on pages 32, 33, 38, 40, 43, 48, and 49.)

Sue Black. Computing ripple effect for software maintenance. Journal of Software
Maintenance, 13(4):263—, September 2001. (Cited on page 21.)

http://www.google.com/patents/US20130111428
http://www.google.com/patents/US20130111428
http://www.google.com/patents/US20130111428

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Bibliography

Gregory Alan Bolcer and Richard N. Taylor. Endeavors: a process system inte-
gration infrastructure. In Proceedings of ICSP 1996 (4th International Conference on
Software Process), pages 76—89, 1996. (Cited on page 4.)

John Brooke. SUS: A ‘quick and dirty’ usability scale. In Patrick W. Jordan,
B. Thomas, Ian Lyall McClelland, and Bernard Weerdmeester, editors, Usability
Evaluation in Industry, chapter 21, pages 189-194. CRC Press, 1996. (Cited on
page 93.)

Ruven Brooks. Towards a theory of the comprehension of computer programs. In-

ternational journal of man-machine studies, 18(6):543-554, 1983. (Cited on page 4.)

Andrea Brihlmann, Tudor Girba, Orla Greevy, and Oscar Nierstrasz. Enriching
reverse engineering with annotations. In Proceedings of MoDELS 2008 (11th In-

ternational Conference on Model Driven Engineering Languages and Systems), pages
660-674. Springer-Verlag, 2008. (Cited on page 101.)

Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. Early detection
of collaboration conflicts and risks. IEEE Transactions on Software Engineering,
39(10):1358-1375, 2013. (Cited on pages 6 and 20.)

Donald Campbell and Julian Stanley. Experimental and quasi-experimental designs

for research. Rand McNally, 1963. (Cited on page 106.)

Erran Carmel and Ritu Agarwal. Tactical approaches for alleviating distance in
global software development. IEEE Software, 18(2):22-29, March 2001. (Cited
on pages 4 and 6.)

Marcelo Cataldo, James D. Herbsleb, and Kathleen M. Carley. Socio-technical
congruence: A framework for assessing the impact of technical and work depen-
dencies on software development productivity. In Proceedings of ESEM 2008 (2dn
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement), pages 2-11. ACM, 2008. (Cited on page 4.)

Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, and James D. Herbsleb.
Software dependencies, work dependencies, and their impact on failures. IEEE
Transactions on Software Engineering, 35(6):864-878, November 2009. (Cited on
page 25.)

Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb, and Kathleen M.
Carley. Identification of coordination requirements: Implications for the design
of collaboration and awareness tools. In Proceedings of CSCW 2006 (20th ACM
Conference on Computer Supported Cooperative Work), pages 353-362. ACM, 2006.
(Cited on pages 25 and 76.)

Wei-Neng Chen and Jun Zhang. Ant colony optimization for software project
scheduling and staffing with an event-based scheduler. IEEE Transactions on Soft-
ware Engineering, 39(1):1-17, January 2013. (Cited on page 20.)

153

Bibliography

[31] Li-Te Cheng, Cleidson R.B. de Souza, Susanne Hupfer, John Patterson, and
Steven Ross. Building collaboration into IDEs. ACM Queue, 1(9):40-50, 2003.
(Cited on page 4.)

[32] Li-Te Cheng, Michael Desmond, and Margaret-Anne Storey. Presentations by
programmers for programmers. In Proceedings of ICSE 2007 (29th ACM/IEEE In-
ternational Conference on Software Engineering), pages 788-792. IEEE Computer
Society, 2007. (Cited on pages 100 and 101.)

[33] T. A. Corbi. Program understanding: Challenge for the 1990s. IBM Systems
Journal, 28(2):294-306, 1989. (Cited on pages 100 and 120.)

[34] Bas Cornelissen, Andy Zaidman, and Arie van Deursen. A controlled experiment
for program comprehension through trace visualization. IEEE Transactions on
Software Engineering, 2011. (Cited on pages 109 and 118.)

[35] Jean M. Costa, Marcelo Cataldo, and Cleidson R. de Souza. The scale and evolu-
tion of coordination needs in large-scale distributed projects: implications for the
future generation of collaborative tools. In Proceedings of CHI 2011 (29th ACM
Conference on Human Factors in Computing Systems), pages 3151-3160. ACM,
2011. (Cited on page 75.)

[36] John W. Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. Sage Publications, Inc, 3d edition, 2008. (Cited on page 10.)

[37] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design pro-
cess for large systems. Communications of the ACM, 31(11):1268-1287, November
1988. (Cited on page 15.)

[38] Isabella da Silva, Ping Chen, Christopher Van der Westhuizen, Roger Ripley, and
André van der Hoek. Lighthouse: Coordination through emerging design. In
Proceedings of ETX 2006 (OOPSLA Workshop on Eclipse Technology eXchange, pages
11-15. ACM Press, 2006. (Cited on page 94.)

[39] Laura Dabbish and Robert Kraut. Research note—Awareness Displays and So-

cial Motivation for Coordinating Communication. Information Systems Research,
19:221-238, June 2008. (Cited on pages 74 and 75.)

[40] Barthélémy Dagenais and Harold Ossher. Mismar: A new approach to devel-
oper documentation. In Proceedings of ICSE 2007 (29th ACM/IEEE International
Conference on Software Engineering), pages 47-48. IEEE Press, 2007. (Cited on
page 100.)

[41] Cleidson R. B. de Souza, Stephen Quirk, Erik Trainer, and David F. Red-
miles. Supporting collaborative software development through the visualization of
socio-technical dependencies. In Proceedings of GROUP 2007 (International ACM
SIGGROUP Conference on Supporting Group Work), pages 147-156. ACM, 2007.
(Cited on page 94.)

154

http://dx.doi.org/10.1145/1978942.1979409
http://dx.doi.org/10.1145/1978942.1979409
http://dx.doi.org/10.1145/1978942.1979409

Bibliography

[42] Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng, David Millen, and John
Patterson. How a good software practice thwarts collaboration: the multiple roles
of APIs in software development. In Proceedings of FSE 2004 (12th ACM Interna-
tional Symposium on Foundations of Software Engineering), pages 221-230. ACM
Press, 2004. (Cited on page 56.)

[43] Cleidson R. B. de Souza, David Redmiles, and Paul Dourish. Breaking the code,
moving between private and public work in collaborative software development.
In Proceedings of GROUP 2003 (International ACM Conference on Supporting Group
Work), pages 105-114. ACM Press, 2003. (Cited on page 20.)

[44] Cleidson R. B. de Souza and David F. Redmiles. An empirical study of software
developers’ management of dependencies and changes. In Proceedings of ICSE
2008 (30th ACM/IEEE International Conférence on Software Engineering), pages
241-250. ACM, 2008. (Cited on pages 21, 26, 27, 28, 29, and 75.)

[45] Cleidson R. B. de Souza and David F. Redmiles. The awareness network, to whom
should i display my actions? and, whose actions should i monitor? IEEE Trans-
actions on Software Engineering, 37(3):325-340, May 2011. (Cited on page 6.)

[46] Robert DeLine. Del.icio.us development tools. In Proceedings of CHASE 2008
(International Workshop on Cooperative and Human Aspects of Software Engineering),
pages 33-36. ACM, 2008. (Cited on page 138.)

[47] Robert DeLine, Mary Czerwinski, and George Robertson. Easing program com-
prehension by sharing navigation data. In Proceedings of VLHCC 2005 (IEEE Sym-
posium on Visual Languages and Human-Centric Computing), pages 241-248. IEEE
Computer Society, 2005. (Cited on page 139.)

[48] Prasun Dewan and Rajesh Hegde. Semi-synchronous conflict detection and res-
olution in asynchronous software development. In Proceedings of ECSCW 2007
(10th European Conference on Computer Supported Cooperative Work), pages 24-28.
Springer, 2007. (Cited on page 94.)

[49] Joan DiMicco, David R. Millen, Werner Geyer, Casey Dugan, Beth Brownholtz,
and Michael Muller. Motivations for social networking at work. In Proceedings of
CSCW 2008 (ACM conference on Computer Supported Cooperative Work), page 711,
2008. (Cited on page 75.)

[50] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of CSCW 1992 (ACM Conference on Computer-supported
Cooperative Work), pages 107-114. ACM, 1992. (Cited on page 6.)

[51] Nicolas Ducheneaut. Socialization in an open source software community: A
socio-technical analysis. CSCW, 14(4):323-368, 2005. (Cited on page 40.)

[52] Jim Duggan, Jason Byrne, and Gerard J. Lyons. A task allocation optimizer
for software construction. IEEE Software, 21(3):76-82, May 2004. (Cited on
page 20.)

155

http://dx.doi.org/10.1145/1460563.1460674
http://dx.doi.org/10.1109/MS.2004.1293077
http://dx.doi.org/10.1109/MS.2004.1293077

Bibliography

[53] Kevin Dullemond, Ben van Gameren, Margaret-Anne Storey, and Arie van
Deursen. Fixing the ‘out of sight out of mind’ problem: One year of mood-based
microblogging in a distributed software team. In Proceedings of MSR 2013 (10th
IEEE Working Conference on Mining Software Repositories), pages 267-276. IEEE
Press, 2013. (Cited on page 148.)

[54] Eclipse Foundation. Mylyn. [Software]. Available: https://www.eclipse.org/
mylyn/ [Accessed: Jun 4, 2014], 2014. (Cited on pages 5 and 93.)

[55] Uwe Flick. An introduction to qualitative research. SAGE Publications, 5th edition,
2014. (Cited on pages 10 and 148.)

[56] Bent Flyvbjerg. Five misunderstandings about case-study research. Qualitative
inquiry, 12(2):219-245, 2006. (Cited on page 50.)

[57] Karl Fogel. Producing Open Source Software. O’Reilly Media, first edition, 2005.
(Cited on pages 40, 43, 47, and 49.)

[58] Thomas Fritz. Determining Relevancy: How Software Developers Determine
Relevant Information in Feeds. In Proceedings of CHI 2011 (29th ACM Confer-
ence on Human Factors in Computing Systems), pages 1827-1830, 2011. (Cited on
page 76.)

[59] Thomas Fritz and Gail C. Murphy. Using information fragments to answer the
questions developers ask. In Proceedings of ICSE 2010 (32nd ACM/IEEE Interna-
tional Conference on Software Engineering), pages 175-184. ACM, 2010. (Cited on
pages 16 and 56.)

[60] Thomas Fritz, Gail C. Murphy, and Emily Hill. Does a programmer’s activity indi-
cate knowledge of code? In Proceedings of ESEC/FSE 2007 (6th ACM Joint Meeting
on Foundations of Software Engineering), pages 341-350. ACM, 2007. (Cited on
page 139.)

[61] Thomas Fritz, Jingwen Ou, Gail C. Murphy, and Emerson Murphy-Hill. A
degree-of-knowledge model to capture source code familiarity. In Proceedings of
ICSE 2010 (32nd ACM/IEEE International Conference on Software Engineering),
pages 385-394, 2010. (Cited on page 76.)

[62] Randall Frost. Jazz and the eclipse way of collaboration. IEEE Sofiware,
24(6):114-117, 2007. (Cited on page 4.)

[63] Adrian Furnham. Response bias, social desirability and dissimulation. Personality
and Individual Differences, 7(3):385 — 400, 1986. (Cited on pages 83 and 117.)

[64] Barney Glaser and Anselm Strauss. The discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine Transaction, 1967. (Cited on pages 37 and 39.)

[65] Julia H. Grace, Deijn Zhao, and danah boyd. Microblogging: What and how
can we learn from it? In Proceedings of the CHI Workshop on Microblogging. ACM,
2010. (Cited on page 139.)

156

https://www.eclipse.org/mylyn/
https://www.eclipse.org/mylyn/

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Bibliography

Irene Greif, editor. Computer-supported Cooperative Work: A Book of Readings. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. (Cited on page 4.)

Rebecca Grinter. Supporting articulation work using software configuration man-
agement systems. Computer Supported Cooperative Work, 5(4):447-465, 1996.
(Cited on pages 4 and 20.)

Alicia M. Grubb and Andrew Begel. On the perceived interdependence and
information sharing inhibitions of enterprise software engineers. In Proceedings
of CSCW 2012 (ACM Conference on Computer Supported Cooperative Work), pages
1337-1346. ACM, 2012. (Cited on pages 29, 56, and 58.)

Jonathan Grudin. Groupware and social dynamics: eight challenges for developers.
Commun. ACM, 37:92-105, January 1994. (Cited on pages 62 and 69.)

Carl Gutwin, Reagan Penner, and Kevin A. Schneider. Group awareness in dis-
tributed software development. In Proceedings of CSCW 2004 (ACM Conference on
Computer Supported Cooperative Work), pages 72—81, 2004. (Cited on pages 33, 41,
and 47.)

Anja Guzzi. 'The Bellevue design. http://www.st.ewi.tudelft.nl/~guzzi/
bellevue/bellevue-design.pdf, September 2012. (Cited on page 86.)

Anja Guzzi. Documenting and sharing knowledge about code. In Proceedings of
ICSE 2012 (34th ACM/IEEE International Conference on Software Engineering),
pages 1535-1538. IEEE Press, 2012. (Cited on page 11.)

Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie van
Deursen. Communication in open source software development mailing lists.
In Proceedings of MSR 2013 (10th IEEE Working Conference on Mining Software
Repositories), pages 277-286, 2013. (Cited on pages 11, 26, and 31.)

Anja Guzzi, Alberto Bacchelli, Yann Riche, and Arie van Deursen. Supporting
developers’ coordination in the IDE. In Proceedings of CSCW 2015 (18th ACM
Conference on Computer Supported Cooperative Work), page to be published, 2015.
(Cited on pages 10, 11, 13, and 79.)

Anja Guzzi and Andrew Begel. Facilitating communication between engineers
with CARES. In Proceedings of ICSE 2012 (34th ACM/IEEE International Con-
ference on Software Engineering), pages 1367-1370. IEEE Press, 2012. (Cited on
pages 11 and 55.)

Anja Guzzi, Andrew Begel, Jessica K. Miller, and Krishna Nareddy. Facilitat-
ing enterprise software developer communication with CARES. In Proceedings of
ICSM 2012 (28¢th IEEE International Conference on Software Maintenance), pages
527-536, 2012. (Cited on pages 11, 21, and 55.)

Anja Guzzi, Lile Hattori, Michele Lanza, Martin Pinzger, and Arie van Deursen.
Collective code bookmarks for program comprehension. In Proceedings of ICPC

157

http://dx.doi.org/http://doi.acm.org/10.1145/175222.175230
http://www.st.ewi.tudelft.nl/~guzzi/bellevue/bellevue-design.pdf
http://www.st.ewi.tudelft.nl/~guzzi/bellevue/bellevue-design.pdf

Bibliography

2011 (19th IEEE International Conference on Program Comprehension), pages 101
110. IEEE Press, 2011. (Cited on pages 11 and 99.)

[78] Anja Guzzi, Lile Hattori, Michele Lanza, Martin Pinzger, and Arie van Deursen.
Collective code bookmarks for program comprehension — online appendix.
http://www.st.ewi.tudelft.nl/~guzzi/pollicino/user-study-1/, 2011.
(Cited on pages 106, 108, and 109.)

[79] Anja Guzzi, Martin Pinzger, and Arie van Deursen. Combining micro-blogging
and IDE interactions to support developers in their quests. In Proceedings of ICSM
2010 (IEEE International Conference on Software Maintenance), pages 1-5, 2010.
(Cited on pages 11 and 119.)

[80] Lile Hattori. Change-centric Improvement of Team Collaboration. PhD thesis, Uni-
versita della Svizzera Italiana, February 2012. (Cited on page 4.)

[81] Lile Hattori and Michele Lanza. Syde: A tool for collaborative software develop-
ment. In Proceedings of ICSE 2010 (32nd ACM/IEEE International Conférence on
Software Engineering), pages 235-238, 2010. (Cited on pages 4 and 94.)

[82] Lile Hattori, Michele Lanza, and Marco D’Ambros. A qualitative analysis of
preemptive conflict detection. Technical Report 2011/05, University of Lugano,
September 2011. (Cited on page 20.)

[83] Rajesh Hegde and Prasun Dewan. Connecting programming environments to
support ad-hoc collaboration. In Proceedings of ASE 2008 (23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 178-187. IEEE CS
Press, 2008. (Cited on page 20.)

[84] Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko, Wei Wang, Reid
Holmes, and Michael W. Godfrey. The MSR cookbook: Mining a decade of
research. In Proceedings of MISR 2013 (10th Working Conference on Mining Software
Repositories), pages 343-352. IEEE Press, 2013. (Cited on page 6.)

[85] Rebecca M. Henderson and Kim B. Clark. Architectural innovation: The re-
configuration of existing product technologies and the failure of established firms.
Administrative Science Quarterly, 35(1):9-30, March 1990. (Cited on page 20.)

[86] James Herbsleb, Audris Mockus, Thomas Finholt, and Rebecca Grinter. Distance,
dependencies, and delay in a global collaboration. In Proceedings of CSCW 2000
(ACM Conference on Computer Supported Cooperative Work), pages 319-328. ACM
Press, 2000. (Cited on page 4.)

[87] James D. Herbsleb. Global software engineering: The future of socio-technical
coordination. In Proceedings of FOSE 2007 (Future of Software Engineering), pages
188-198. IEEE Computer Society, 2007. (Cited on pages 4 and 5.)

[88] James D. Herbsleb, Audris Mockus, and Jeffrey A. Roberts. Collaboration in
software engineering projects: A theory of coordination. In Proceedings ICIS 2006

(International Conference on Information Systems), 2006. (Cited on pages 4 and 16.)

158

http://www.st.ewi.tudelft.nl/~guzzi/pollicino/user-study-1/

Bibliography

[89] James D. Herbsleb and Deependra Moitra. Global software development. IEEE

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

Software, 18(2):16-20, 2001. (Cited on pages 4, 5, and 6.)

Reid Holmes and Andrew Begel. Deep intellisense: a tool for rehydrating evapo-
rated information. In Proceedings of MISR 2008 (5th International Working Confer-
ence on Mining Software Repositories), pages 23-26, 2008. (Cited on page 75.)

Reid Holmes and Robert J. Walker. Customized awareness: recommending rel-
evant external change events. In Proceedings of ICSE 2010 (32nd ACM/IEEE In-
ternational Conference on Software Engineering), pages 465—-474, 2010. (Cited on
pages 6 and 76.)

IBM. Rational Team Concert. [Software]. Available: http://jazz.net/
projects/rational-team-concert/ [Accessed: Jun 4, 2014], 2014. (Cited on
pages 5 and 93.)

Karen A Jehn and Priti Pradhan Shah. Interpersonal relationships and task per-
formance: An examination of mediation processes in friendship and acquaintance
groups. Journal of Personality and Social Psychology, 72(4):775, 1997. (Cited on
page 6.)

Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug triage
with bug tossing graphs. In Proceedings of ESEC/FSE 2009 (7th ACM Joint Meeting
on Foundations of Software Engineering), pages 111-120. ACM, 2009. (Cited on
page 20.)

Robert Johansen. GroupWare: Computer Support for Business Teams. 'The Free Press,
1988. (Cited on pages 5 and 6.)

John and Gail C. Murphy. Reducing the effort of bug report triage: Recom-
menders for development-oriented decisions. ACM Transactions on Software En-
gineering and Methodology, 20(3):10:1-10:35, August 2011. (Cited on page 20.)

Jeff Johnson, Teresa L. Roberts, William Verplank, David C. Smith, Charles H.
Irby, Marian Beard, and Kevin Mackey. The Xerox Star: A retrospective. IEEE
Computer, 22(9):11-26, 28-29, September 1989. (Cited on page 88.)

Huzefa Kagdi, Michael L. Collard, and Jonathan 1. Maletic. A survey and tax-
onomy of approaches for mining software repositories in the context of software
evolution. Journal of Software Maintenance and Evolution, 19(2):77-131, March
2007. (Cited on page 10.)

Bakhtiar Khan Kasi and Anita Sarma. Cassandra: Proactive conflict minimization
through optimized task scheduling. In Proceedings of ICSE 2013 (35th ACM/IEEE
International Conference on Software Engineering), pages 732-741. IEEE Press,
2013. (Cited on page 20.)

David Kawrykow and Martin P. Robillard. Non-essential changes in version his-
tories. In Proceedings of ICSE 2011 (33rd ACM/IEEE International Conference on
Software Engineering), pages 351-360, 2011. (Cited on page 33.)

159

http://jazz.net/projects/rational-team-concert/
http://jazz.net/projects/rational-team-concert/
http://dx.doi.org/10.1145/2000791.2000794
http://dx.doi.org/10.1145/2000791.2000794

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

160

Mik Kersten and Gail C. Murphy. Using task context to improve programmer
productivity. In Proceedings of FSE 2006 (14th ACM International Symposium on
Foundations of Software Engineering), pages 1-11. ACM, 2006. (Cited on pages 76,
94, and 139.)

Laurie J. Kirsch. The Management of Complex Tasks in Organizations: Control-
ling the Systems Development Process. Organization Science, 7(1):1-21, January
1996. (Cited on page 20.)

Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated
software development teams. In Proceedings of ICSE 2007 (29th ACM/IEEE In-
ternational Conference on Software Engineering), pages 344-353. IEEE Computer
Society, 2007. (Cited on pages 16, 26, 56, 59, 75, 138, and 139.)

Andrew]. Ko, Thomas D. LaToza, and Margaret M. Burnett. A practical guide

to controlled experiments of software engineering tools with human participants.

Empirical Software Engineering, 20(1):110-141, 2015. (Cited on page 149.)

Robert E. Kraut and Lynn A. Streeter. Coordination in software development.
Communications of the ACM, 38(3):69-81, March 1995. (Cited on pages 4, 20,
and 146.)

Elmer C. Kubie. Recollections of the first software company. IEEE Annals of the
History of Computing, 16:65-71, June 1994. (Cited on page 4.)

Ko Kuwabara. A bazaar at the edge of chaos. First Monday, 5(3), 2000. (Cited on
page 34.)

Irwin Kwan, Adrian Schroter, and Daniela Damian. Does socio-technical con-
gruence have an effect on software build success? a study of coordination in a
software project. IEEE Transactions on Software Engineering, 37(3):307-324, May
2011. (Cited on page 25.)

Michele Lanza, Lile Hattori, and Anja Guzzi. Supporting collaboration aware-
ness with real-time visualization of development activity. In Proceedings of CSMR
2010 (14th IEEE European Conference on Software Maintenance and Reengineering),
pages 207-216. IEEE CS Press, 2010. (Cited on page 11.)

Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of ICSE 2006 (28th
ACMV/IEEE International Conference on Software Engineering), pages 492-501.
ACM, 2006. (Cited on pages 4, 5, 25, 59, 75, and 100.)

Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying software
engineers: Data collection techniques for software field studies. Empirical Software

Engineerng, 10:311-341, 2005. (Cited on page 10.)

William Lidwell, Kritina Holden, and Jill Butler. Universal Principles of Design,
Revised and Updated: 125 Ways to Enhance Usability, Influence Perception, Increase

Bibliography

Appeal, Make Better Design Decisions, and Teach through Design. Rockport Publish-
ers, 2nd edition, January 2010. (Cited on pages 81 and 84.)

[113] Thomas R. Lindlof and Bryan C. Taylor. Qualitative Communication Research
Methods. SAGE Publications, Inc., 2010. (Cited on page 16.)

[114] K.]. Lynch,]J. M. Snyder, D. R. Vogel, and W. K. McHenry. The arizona analyst
information system: Supporting collaborative research on international techno-
logical trends. In S. Gibbs and A. A. Verrijn-Stuart, editors, Multi-User Interfaces
and Applications: Proceedings of the IFIP WG 8.4 Conference, pages 159-174. North-
Holland, 1990. (Cited on page 5.)

[115] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coordi-
nation. ACM Computing Surveys, 26(1):87-119, March 1994. (Cited on pages 4
and 23.)

[116] Bella Martin and Bruce Hanington. Universal Methods of Design: 100 Ways to
Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions.
Rockport Publishers, 2012. (Cited on pages 18 and 37.)

[117] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003. (Cited on pages 5
and 148.)

[118] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. Assigning bug reports
using a vocabulary-based expertise model of developers. In Proceedings of MSR
2009 (6th International Working Conference on Mining Software Repositories), pages
131-140. IEEE Computer Society, 2009. (Cited on page 20.)

[119] Michael C. Medlock, Dennis Wixon, Mark Terrano, Ramon L. Romero, and Bill
Fulton. Using the RITE method to improve products: A definition and a case
study. In Proceedings of URPA 2002 (Usability Professionals Association), 2002. (Cited
on page 83.)

[120] Jessica R Mesmer-Magnus and Leslie A DeChurch. Information sharing and
team performance: a meta-analysis. Journal of Applied Psychology, 94(2):535, 2009.
(Cited on page 6.)

[121] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. A case study of open
source software development: the apache server. In Proceedings of ICSE 2000
(21st ACM/IEEE International Conference on Software Engineering), pages 263—
272, 2000. (Cited on pages 32, 33, 40, and 49.)

[122] Rolf Molich and Jakob Nielsen. Improving a human-computer dialogue. Com-
munications of the ACM, 33(3):338-348, March 1990. (Cited on pages 80, 84, 85,
and 147.)

[123] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are java software de-
velopers using the Eclipse IDE? IEEE Software, 23:76-83, 2006. (Cited on
page 102.)

161

Bibliography

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

162

Nachiappan Nagappan, Brendan Murphy, and Victor Basili. The influence of or-
ganizational structure on software quality: An empirical case study. In Proceedings
of ICSE 2008 (30th ACM/IEEE International Conference on Software Engineering),
pages 521-530. ACM, 2008. (Cited on page 4.)

Kumiyo Nakakoji, Yunwen Ye, and Yasuhiro Yamamoto. Comparison of coor-
dination communication and expertise communication in software development:
Motives, characteristics, and needs. In New Frontiers in Artificial Intelligence, Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2010. (Cited on
pages 56 and 75.)

Thanh H. D. Nguyen, Bram Adams, and Ahmed E. Hassan. A case study of
bias in bug-fix datasets. In Proceedings of WCRE 2010 (17th Working Conference on
Rewverse Engineering), pages 259 —=268. IEEE CS Press, 2010. (Cited on page 33.)

Jakob Nielsen. 10 usability heuristics for user interface design. http://www.
nngroup.com/articles/ten-usability-heuristics/ [Accessed: May 2014],
January 1995. (Cited on pages 80, 81, 84, and 85.)

Christopher Oezbek and Lutz Prechelt. JTourBus: Simplifying program under-
standing by documentation that provides tours through the source code. In Pro-
ceedings of ICSM 2006 (23th IEEE International Conference on Software Mainte-
nance), pages 64 =73. IEEE Press, 2007. (Cited on pages 100 and 101.)

Michael Ogawa, Kwan-Liu Ma, Christian Bird, Premkumar T. Devanbu, and
Alex Gourley. Visualizing social interaction in open source software projects. In
Proceedings of APVIS 2007 (6th International Asia-Pacific Symposium on Visualiza-
tion), pages 25-32, 2007. (Cited on page 33.)

Gary M. Olson and Judith S. Olson. Distance matters. Human-Computer Inter-
action, 15(2):139-178, 2000. (Cited on page 5.)

Tim O’Reilly. What is web 2.0: Design patterns and business models for the
next generation of software. http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-20.html [Accessed: May 2014], 2005.
(Cited on page 138.)

Tim O'Reilly and Sarah Milstein. Zhe Twitter Book. O’Reilly Media, Inc., 2009.
(Cited on page 120.)

Alex F. Osborn. Applied Imagination: Principles and Procedures of Creative Problem-
Solving,. Creative Education Foundation, 1993. (Cited on page 15.)

Michael J. Pacione, Marc Roper, and Murray Wood. A novel software visualisation
model to support software comprehension. In Proceedings of WCRE 2004 (11th
Working Conference on Reverse Engineering), pages 70-79. IEEE CS Press, 2004.
(Cited on pages 109 and 118.)

http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Bibliography

[135] H. M. Parsons. What happened at Hawthorne? new evidence suggests the

Hawthorne effect resulted from operant reinforcement contingencies. Science,

183(4128):922-932, March 1974. (Cited on page 83.)

[136] David Pattison, Christian Bird, and Premkumar Devanbu. Talk and work: a pre-
liminary report. In Proceedings of MSR 2008 (5th International Working Conference
on Mining Software Repositories), pages 113-116. ACM, 2008. (Cited on page 33.)

[137] Dewayne E. Perry, Nancy Staudenmayer, and Lawrence G. Votta. People, or-
ganizations, and process improvement. IEEE Software, 11(4):36-45, July 1994.
(Cited on page 4.)

[138] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Leveraging crowd knowl-
edge for software comprehension and development. In Proceedings of CSMR 2013

(17th European Conference on Software Maintenance and Reengineering), pages 57—
66. IEEE CS Press, 2013. (Cited on page 94.)

[139] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Seahawk: Stack Over-
flow in the IDE. In Proceedings of ICSE 2013 (35th International Conference on Soft-
ware Engineering), pages 1295-1298. IEEE CS Press, 2013. (Cited on page 94.)

[140] Rafael Prikladnicki. Exploring propinquity in global software engineering. In
Proceedings of ICGSE 2009 (4th IEEE International Conference on Global Software
Engineering), pages 133-142. IEEE Computer Society, 2009. (Cited on pages 5
and 148.)

[141] Tiago Proenca, Nilmax Moura, and André van der Hoek. On the use of emerging
design as a basis for knowledge collaboration. New Frontiers in Artificial Intelligence,
6284:124-134, 2010. (Cited on page 20.)

[142] Michael K. Rabby and Joseph B. Walther. Computer-mediated communication
effects in relationship formation and maintenence. In Daniel J. Canary and Mari-
anne Dainton, editors, Maintaining relationships through communication, chapter 7,

pages 141-162. Lawrence Erlbaum and Associates, 2003. (Cited on page 73.)

[143] Sarah Rastkar and Gail C. Murphy. Why did this code change? In Proceedings
of ICSE 2013 (35th ACM/IEEE International Conférence on Software Engineering),
pages 1193-1196. IEEE Press, 2013. (Cited on page 94.)

[144] Eric Raymond. 7The Cathedral and the Bazaar - Musings on Linux and Open Source
by an Accidental Revolutionary. O'Reilly, 1999. (Cited on pages 32, 33, 34, 40, 43,
and 48.)

[145] Peter C. Rigby and Margaret-Anne Storey. Understanding broadcast based peer
review on open source software projects. In Proceedings of ICSE 2011 (33rd
ACMV/IEEE International Conference on Software Engineering), pages 541-550.
ACM, 2011. (Cited on pages 32, 33, and 48.)

[146] Romain Robbes. On the evaluation of recommender systems with recorded

interactions. In Proceedings of SUITE 2009 (1st Workshop on Search-Driven

163

Bibliography

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Development-Users, Infrastructure, Tools and Evaluation), pages 45-48. IEEE
Computer Society, 2009. (Cited on page 139.)

Romain Robbes, Mircea Lungu, and David Réthlisberger. How do developers
react to API deprecation? the case of a smalltalk ecosystem. In Proceedings of FSE
2012 (20th ACM International Symposium on the Foundations of Software Engineer-
ing), pages 56:1-56:11. ACM, 2012. (Cited on pages 21 and 26.)

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case study research
in software engineering: Guidelines and examples. John Wiley & Sons, 2012. (Cited
on page 149.)

Anita Sarma. A survey of collaborative tools in software development. Technical
Report UCI-ISR-05-3, Institute for Software Research, University of California,
Irvine, 2005. (Cited on page 93.)

Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James Herbsleb. Tesser-
act: Interactive visual exploration of socio-technical relationships in software de-
velopment. In Proceedings of ICSE 2009 (315t ACM/IEEE International Conference
on Software Engineering), pages 23-33. IEEE Computer Society, 2009. (Cited on
pages 4, 25, 49, and 94.)

Anita Sarma, David Redmiles, and André van der Hoek. Empirical evidence of the
benefits of workspace awareness in software configuration management. In Pro-
ceedings of FSE 2008 (16th ACM International Symposium on Foundations of Software
Engineering, pages 113-123. ACM Press, 2008. (Cited on pages 20 and 27.)

Anita Sarma, David Redmiles, and André van der Hoek. Categorizing the spec-
trum of coordination technology. IEEE Computer, 43(6):61-67, June 2010. (Cited
on pages 5, 20, 74, and 93.)

Jeff Sauro. A Practical Guide to the System Usability Scale: Background, Benchmarks
and Best Practices. CreateSpace, 2011. (Cited on page 93.)

[154] Jeff Sauro and James R. Lewis. When designing usability questionnaires, does it

[155]

[156]

[157]

164

hurt to be positive? In Proceedings of CHI 2011 (29th ACM Confeérence on Human
Factors in Computing Systems), pages 2215-2224. ACM, 2011. (Cited on page 93.)

Adrian Schréter, Jorge Aranda, Daniela Damian, and Irwin Kwan. To talk or not
to talk: factors that influence communication around changesets. In Proceedings
of CSCW 2012 (ACM Conference on Computer Supported Cooperative Work), pages
1317-1326, 2012. (Cited on page 32.)

Till Schiimmer and Jorg M. Haake. Supporting distributed software development
by modes of collaboration. In Proceedings of ECSCW 2001 (7th European Conference
on Computer Supported Cooperative Work), pages 79-98. Kluwer Academic Publish-
ers, 2001. (Cited on pages 74 and 75.)

Ken Schwaber. Agile project management with Scrum, volume 7. Microsoft press

Redmond, 2004. (Cited on page 5.)

Bibliography

[158] Carolyn B. Seaman. Qualitative methods in empirical studies of software engi-
neering. IEEE Transactions on Software Engineering, 25:557-572, 1999. (Cited
on page 32.)

[159] Emad Shihab, Nicolas Bettenburg, Bram Adams, and Ahmed E. Hassan. On
the central role of mailing lists in open source projects: An exploratory study. In
New Frontiers in Artificial Intelligence, volume 6284, pages 91-103. Springer Berlin
Heidelberg, 2010. (Cited on pages 32 and 33.)

[160] Emad Shihab, Zhen Ming Jiang, and Ahmed E. Hassan. On the use of Internet
Relay Chat (IRC) meetings by developers of the GNOME GTK+ project. In
Proceedings of MSR 2009 (6th International Working Conference on Mining Software
Repositories). IEEE, 2009. (Cited on page 139.)

[161] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Asking and answering
questions during a programming change task. IEEE Transactions on Software En-

gineering, 34(4):434-451, 2008. (Cited on page 138.)

[162] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions programmers
ask during software evolution tasks. In Proceedings of FSE 2006 (14th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering), pages 23—
34. ACM, 2006. (Cited on pages 16 and 56.)

[163] Janice Singer, Robert Elves, and Margaret-Anne Storey. NavTracks: Supporting
navigation in software. In Proceedings of IWPC 2005 (13th International Workshop on
Program Comprebension), pages 173-175. IEEE Computer Society, 2005. (Cited
on page 139.)

[164] Donna Spencer. Card sorting: a definitive guide. http://boxesandarrows.
com/card-sorting-a-definitive-guide/ [Accessed: May 2014], April 2004.
(Cited on pages 14, 17, 36, and 37.)

[165] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer.
TODO or to bug: exploring how task annotations play a role in the work practices
of software developers. In Proceedings of ICSE 2008 (30th ACM/IEEE International
Conference on Software Engineering), pages 251-260. ACM Press, 2008. (Cited on
page 102.)

[166] Margaret-Anne Storey, Jody Ryall, Janice Singer, Del Myers, Li-Te Cheng, and
Michael Muller. How software developers use tagging to support reminding and
refinding. IEEE Transactions on Software Engineering, 35:470-483, 2009. (Cited
on pages 100 and 101.)

[167] Tasktop. Tasktop Dev. [Software]. Available: http://www.tasktop.com/dev
[Accessed: Aug 1, 2014], 2014. (Cited on page 93.)

[168] Christoph Treude and Margaret-Anne Storey. How tagging helps bridge the gap
between social and technical aspects in software development. In Proceedings of

165

http://dx.doi.org/http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/http://dx.doi.org/10.1109/TSE.2008.26
http://boxesandarrows.com/card-sorting-a-definitive-guide/
http://boxesandarrows.com/card-sorting-a-definitive-guide/
http://www.tasktop.com/dev

Bibliography

ICSE 2009 (31st ACM/IEEE International Conference on Software Engineering).
IEEE Computer Society, 2009. (Cited on page 138.)

[169] Christoph Treude, Margaret-Anne Storey, Kate Ehrlich, and Arie van Deursen.
Web2SE: First workshop on web 2.0 for software engineering. In Proceedings of
ICSE 2010 (32nd ACM/IEEE International Conference on Software Engineering).
ACM, 2010. (Cited on page 138.)

[170] Mario Triola. Elementary Statistics. Addison-Wesley, 2006. (Cited on page 51.)

[171] Arie van Deursen, Ali Mesbah, Bas Cornelissen, Andy Zaidman, Martin Pinzger,
and Anja Guzzi. Adinda: A knowledgeable, browser-based IDE. In Proceedings of
ICSE 2010 (32nd ACM/IEEE International Conference on Software Engineering),
pages 203-206. ACM, 2010. (Cited on pages 11, 121, and 138.)

[172] Bart van Rompaey and Serge Demeyer. Estimation of test code changes using
historical release data. In Proceedings of WCRE 2008 (15th Working Conference on
Reverse Engineering), pages 269-278. IEEE Computer Society, 2008. (Cited on
page 109.)

[173] Anneliese von Mayrhauser and A. Marie Vans. Program comprehension dur-
ing software maintenance and evolution. Computer, 28:44-55, 1995. (Cited on
page 100.)

[174] Alf Inge Wang. A process centred environment for cooperative software engi-
neering. In Proceedings of SEKE 2002 (14th International Conference on Software
Engineering and Knowledge Engineering), pages 469-472. ACM, 2002. (Cited on
page 4.)

[175] Robert S. Weiss. Learning From Strangers: The Art and Method of Qualitative In-
terview Studies. Free Press, 1995. (Cited on page 16.)

[176] Jim Whitehead. Collaboration in software engineering: A roadmap. In Proceedings
of FOSE 2007 (Future of Software Engineering), pages 214-225. IEEE Computer
Society, 2007. (Cited on pages 5 and 138.)

[177] S. S. Yau,]. S. Colofello, and T. MacGregor. Ripple effect analysis of software
maintenance. In Proceedings of COMPSAC 1978 (2nd IEEE CS International Com-
puter Software and Applications Conference), pages 60—65. IEEE Computer Society
Press, 1978. (Cited on page 21.)

[178] Andy Zaidman, Bart van Rompaey, Serge Demeyer, and Arie van Deursen. Min-
ing software repositories to study co-evolution of production & test code. In Pro-
ceedings of ICST (1st International Conference on Software Testing, Verification, and
Validation), pages 220-229. IEEE, 2008. (Cited on page 109.)

[179] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. What makes a good bug report? IEEE Transactions
on Software Engineering, 36(5):618-643, 2010. (Cited on page 33.)

166

Summary

Supporting Developers' Teamwork from within the IDE

Teamwork is fundamental in the production of software, because of the substantial com-
plexity of software systems and the urge for fast time-to-market. Nevertheless, the diffi-
culties in coordinating developers and teams and in making them collaborate are among
the main reasons why the software industry has always been in crisis. Different researchers
have repeatedly confirmed this problem, by conducting many studies in different contexts.

Achieving good teamwork is difficult for many reasons, for example, because commu-
nication in natural language is ambiguous, human memory cannot remember all of the
project’s details, and keeping track of what everyone is doing, even in a small group, is
hard. These issues are exacerbated if developers are distributed across the globe, or even
if they simply keep their office doors shut or work in different floors of a building.

Supporting teamwork is one of the most difficult-to-improve aspects of software engi-
neering. Researchers have built theories on teamwork for software projects and have pro-
posed a number of solutions to the practical challenges faced during collaborative software
development. In particular, given that developers spend most of their time in the software
environment in which they read, write, test, and design source code (also called integrated
development environment—IDE), researchers have proposed a number of approaches to
support teamwork in the IDE. Prominent examples (such as Jazz and Mylyn) are full-
fledged platforms built on top of the IDE, which are aimed at transforming it into a
comprehensive collaboration tool.

In this dissertation, we work in this context: developers’ teamwork in the IDE. We con-
sider the IDE because it also allows us to better connect with the final product of the de-
velopment effort (i.e., the source code). We work toward creating lightweight additions
to the IDE, instead of heavyweight ones, because the latter may disrupt the development
workflow, habits, and development process in place in a team, and they often require a
steep learning curve. We address both collocated and distributed development settings,
because what supports teamwork is not limited to one scenario.

Overall, the goal of our work is to devise lightweight IDE additions that can be seamlessly
integrated in the development workflow of a variety of teams and that provide additional
effective support to developer’s teamwork, while requiring little learning time.

167

Summary

WEe structure our work in three parts: The first part investigates (through two studies)
how developers currently experience teamwork, to pinpoint important pain points and
understand the leeway for improvement; the second and third parts start from the results
of the first one and explore two approaches each to deal with one of the key aspects of
teamwork: information sharing.

Studies

How do developers experience collaboration in teamwork?

To better understand how to improve teamwork support in the IDE, we first investigated
the current practice of industrial developers’ working in teams. Although developers are
able to find effective workarounds for situations considered as problematic in literature,
they find it difficult and time-consuming to correctly understand the changes to source
code made by other people; and they are especially frustrated when these changes are done
by a project mate, since he could have informed them.

How is information shared in open source software projects?

In the second research question, we investigate the case of open source software develop-
ment (OSS). We investigated the communication channel that is considered in literature
as the hub of project communication in OSS projects: the development mailing list. We
found that communication is currently scattered across several types of channels, such as
issue repositories, code commits, and face-to-face talk. As a result, the mailing list seems
to have lost its role of main communication channel in favor of the issue repository, which
is closer to the code and offers more structured communication than noisy emails.

Reflection

By answering the first two research questions we learned that: (1) knowledge generally
accepted in previous research should be verified, (2) information sharing is vital to support
teamwork, (3) developers could retrieve part of the information they need, but it is not
easily accessible, and (4) tools to support teamwork should be connected to source code.

Approaches

How can we expose existing information to support teamwork?

To expose information that is already available, but not easily accessible in the IDE, we
created two IDE extensions and evaluated them with users. CAREs is our first addition:
It gives information about who one should contact to ask information about a specific
piece of code. It shows contacts’ information, their availability, and their photo; cARES
proved to be effective and useful to developers. BELLEVUE, our second addition, improves
the code change support offered by the IDE: Not only does it keeps visible what changed
since the last update of the local code, it also seamlessly integrates code history in the
editor and adds contact information similarly to cares. Developers rated the design of
BELLEVUE very positively.

168

Summary

How can we aid information creation to support teamwork?

Part of the information that would be useful to developers is neither recorded nor shared.
For example, when they spend time understanding a piece of source code, developers do
not usually leave any trace, so their precious insights are lost once the task is completed.
We argued that this kind of information would be very valuable to support teamwork and
we devised two IDE extensions for this task. PoLLicINO is a simple, lightweight solution
based on sharing bookmarks in the code. Our experiment showed that it can be effective
to generate information useful for other team members. JAMES is an approach that lets
developers share their comments in form of (Twitter-like) brief messages and automat-
ically records developers interactions with the IDE. In an initial study with developers,
we showed the feasibility of our approach and that developers are interested in having it.

Reflection

By answering the last two research questions we learnt that: (1) Lightweight IDE exten-
sions, which require neither huge implementation effort nor long learning time, can sup-
port teamwork effectively, (2) showing developers’ photos close to source code increases
developers’ sense of community, (3) popular IDEs have poor support for dealing with
code changes, but this can be improved, and (4) tools can help team members creating
additional information to support teamwork, without requiring major efforts by them.

Anja Guzzi

169

Riepilogo
Supportare il lavoro di squadra degli sviluppatori dall'interno dell'IDE

I11avoro di squadra (zeamwork) & fondamentale nella produzione di software a causa della
notevole complessita dei sistemi software e dei tempi di commercializzazione molto brevi
caratteristici dell'industria informatica. Tuttavia, le difficolta nel coordinare gli sviluppa-
tori e i loro gruppi di sviluppo (#eam) e nel farli collaborare sono tra i motivi principali per
cui l'industria del software ¢ sempre stata in crisi. Diversi ricercatori, conducendo vari
studi in diversi contesti, hanno confermato ripetutamente questo problema.

Ottenere un buon lavoro di squadra ¢ difficile per molti motivi. Per esempio, perché
la comunicazione in linguaggio naturale & ambigua, perché la memoria umana non puo
ricordare tutti i dettagli del progetto, e percheé tenere traccia di cio che ognuno sta facendo
¢ difficile, persino in un piccolo gruppo. Questi problemi sono aggravati se gli sviluppatori
sono sparsi per il mondo o anche se, pilt semplicemente, tengono le porte dell'ufficio
chiuse oppure lavorano in diversi piani dell'edificio.

Supportare il lavoro di squadra & uno degli aspetti pit difficili da migliorare dell'ingegneria
del software (software engineering). 1 ricercatori hanno formulato teorie sul lavoro di squa-
dra nei progetti software e hanno proposto una serie di soluzioni alle difficolta pratiche
che si incontrano durante lo sviluppo collaborativo del software (collaborative software de-
velopment). In particolare, dato che gli sviluppatori trascorrono la maggior parte del loro
tempo in un ambiente software (chiamato anche 'ambiente di sviluppo integrato, o IDE)
in cui leggono, scrivono, testano, e progettano il codice sorgente, i ricercatori hanno pro-
posto una serie di approcci per sostenere il lavoro di squadra nell IDE. Gli esempi pit
significativi (come Jazz e Mylyn) sono delle vere e proprie piattaforme costruite attorno
all'TDE, le quali mirano a trasformare I'TDE in un ambiente collaborativo a tutto tondo.

In questa tesi, lavoriamo in questo contesto: il lavoro di squadra degli sviluppatori, all'in-
terno dell'1DE (within the IDE). Consideriamo 'IDE perché permette anche di collegarsi
meglio con il prodotto finale degli sforzi degli sviluppatori (ovvero il codice sorgente).
Lavoriamo sulla la creazione di applicazioni aggiuntive e “leggere” (/ightweight) per I'IDE,
al posto di quelle “pesanti”, perché queste ultime possono turbare il flusso di lavoro, le
abitudini e il processo di sviluppo in atto in un team di sviluppatori e spesso richiedono una
curva di apprendimento ripida. Rivolgiamo la nostra attenzione a gruppi di sviluppo sia
collocati sia distribuiti, perché cid che puo sostenere il lavoro di squadra degli sviluppatori
non ¢ limitato ad un solo di questi scenari.

171

Riepilogo

Riassumendo, l'obiettivo del nostro lavoro & quello di ideare applicazioni leggere da ag-
giungere all'TDE, che si possano integrare nel flusso di lavoro di diversi team di sviluppo
e che forniscano un ulteriore supporto efficace al lavoro di squadra degli sviluppatori,
richiedendo loro poco tempo di apprendimento.

11 nostro lavoro ¢& strutturato in tre parti: la prima parte indaga (tramite due studi) come
gli sviluppatori vivano attualmente il lavoro di squadra, con lo scopo di individuare i punti
dolenti piti importanti e di capire il margine di manovra di miglioramento; mentre la se-
conda e la terza parte iniziano dai risultati ottenuti dalla prima ed esplorano ognuna due
strategie per affrontare uno degli aspetti fondamentali del lavoro di squadra: la condivi-
sione delle informazioni.

Gli studi

Come viene attualmente vissuto il lavoro di squadra da parte degli sviluppatori?

Per capire meglio come migliorare il supporto al lavoro di squadra nell IDE, abbiamo
prima studiato le attuali prassi di lavoro degli sviluppatori industriali che lavorano in
gruppi. Anche se gli sviluppatori sono in grado di trovare soluzioni efficaci per situa-
zioni considerate problematiche dalla letteratura, trovano difficile e dispendioso capire
correttamente le modifiche al codice sorgente fatte da altre persone; inoltre sono parti-
colarmente frustrati quando queste modifiche sono fatte da un collega di progetto, dal
momento che quest’ultimo avrebbe potuto informarli.

Come vengono condivise le informazioni in un progetto open source?

Con questa seconda domanda, studiamo le modalita dello sviluppo di software open source
(OSS). Abbiamo studiato il canale di comunicazione che ¢ considerato in letteratura come
il fulcro della comunicazione in progetti OSS: la mailing list dedicata agli sviluppatori.
Riscontriamo che attualmente la comunicazione si svolge tramite vari canali con tipologie
distinte, come per esempio i commenti alle modifiche del codice sorgente (code commit) e
il parlare faccia a faccia.

Osservazione

Rispondendo alle prime due domande di ricerca abbiamo imparato che: (1) lo stato delle
cose derivato e generalmente accettato da precedenti ricerche va verificato, (2) la condi-
visione delle informazioni & vitale per sostenere il lavoro di squadra, (3) gli sviluppatori
potrebbero recuperare parte delle informazioni di cui hanno bisogno, ma questultime
non sono facilmente accessibili, e (4) le applicazioni software che sostengono il lavoro di
squadra dovrebbero essere collegate al codice sorgente.

Le strategie
Come esporre informazioni esistenti in modo da supportare il lavoro di squadra?

172

Riepilogo

Per esporre informazioni che sono gia disponibili, ma non facilmente accessibili nel'IDE,
abbiamo creato due estensioni leggere del' IDE che abbiamo poi valutato con degli utenti.
CARES ¢ la nostra prima estensione: fornisce informazioni su chi si dovrebbe contattare
per chiedere informazioni su un determinato pezzo di codice. Mostra le informazioni dei
contatti, la loro disponibilita e la loro foto; cAREs si & dimostrato efficace ed utile per gli
sviluppatori. BELLEVUE, la nostra seconda aggiunta, migliora il supporto per integrare le
modifiche al codice offerto dal'TDE: non solo mantiene visibile cio che ¢ stato cambiato,
rispetto al codice locale, dall’ultimo aggiornamento, ma integra anche perfettamente la
cronologia del codice nell’editor e vi aggiunge delle informazioni di contatto analogamente
a cares. Gli sviluppatori hanno valutato il concetto di BELLEVUE molto positivamente.

Come creare nuove informazioni in modo da supportare il lavoro di squadra?

Parte delle informazioni che potrebbero essere utili per gli sviluppatori non sono né regi-
strate né condivise. Ad esempio, durante il tempo impiegato per capire un pezzo di codice
sorgente, gli sviluppatori di solito non lasciano alcuna traccia, cosi le loro preziose intui-
zioni vanno perse una volta che il lavoro ¢ terminato. Sosteniamo che questo genere di
informazione sarebbe molto prezioso per supportare il lavoro di squadra e abbiamo ideato
due estensioni dell'IDE a questo scopo. PoLLicINO & una soluzione semplice, leggera e
basata sulla condivisione di segnalibri (bookmark) nel codice. Un nostro esperimento ha
dimostrato che pud essere efficace per generare informazioni utili per altri membri del
team di sviluppo. JAMEs & un approccio che consente agli sviluppatori di condividere le
loro osservazioni in forma di brevi messaggi (simili a un fwee#) e che registra automati-
camente le loro interazioni con I'IDE. In una prima valutazione, abbiamo mostrato sia la
fattibilita del nostro approccio sia il 'interesse degli sviluppatori ad averlo.

Osservazione

Rispondendo alle ultime due domande di ricerca abbiamo imparato che: (1) estensioni
dellIDE che sono leggere, che non richiedono un enorme sforzo di implementazione
e neanche un lungo tempo di apprendimento, sono in grado di supportare il lavoro di
squadra efficacemente, (2) mostrare le foto degli sviluppatori vicino al codice sorgente
aumenta il senso di comunita tra gli sviluppatori, (3) le IDE piu popolari hanno uno
scarso supporto per gestire l'integrazione delle modifiche del codice, ma questo pud es-
sere migliorato, e (4) delle applicazioni software possono aiutare i membri di un team di
sviluppo, creando ulteriori informazioni a supporto del lavoro di squadra, senza bisogno
di sforzi particolari da parte loro.

Anja Guzzi

173

Samenvatting

Teamwerkondersteuning voor ontwikkelaars vanuit de IDE

Teamwerk is onmisbaar bij het produceren van software, vanwege de aanzienlijke com-
plexiteit van softwaresystemen en de noodzaak tot snelle oplevering. De moeite echter die
het kost om teams succesvol samen te laten werken en hun werkzaamheden te coordine-
ren vormt één van de belangrijkste redenen dat de software-industrie zich nog altijd in een
crisis bevindt. Verschillende onderzoekers hebben dit probleem herhaaldelijk bevestigd,

middels uiteenlopende studies in diverse contexten.

Goed teamwerk is moeilijk om vele redenen, bijvoorbeeld omdat communicatie in na-
tuurlijke taal ambigu is, het menselijk geheugen niet alle details van een project kan ont-
houden, en omdat bijhouden wat iedereen doet zelfs in een kleine groep ondoenlijk is.
Deze problemen verergeren als ontwikkelaars verspreid over de wereld werken, of zelfs
als ze enkel hun kantoordeuren dicht houden of op verschillende verdiepingen van een
gebouw werken.

Het ondersteunen van teamwerk is één van de moeilijkste aspecten van software engi-
neering. Onderzoekers hebben theorieén specifiek over teamwerk voor softwareprojecten
opgesteld, en een aantal oplossingen voor de praktische uitdagingen tijdens collaboratieve
softwareontwikkeling voorgesteld. Gegeven het feit dat ontwikkelaars het grootste deel
van hun tijd doorbrengen in de software-omgeving waarin ze broncode lezen, schrijven,
testen en ontwerpen (ook wel een geintegreerde ontwikkelomgeving of IDE genoemd),
hebben onderzoekers een aantal manieren voorgesteld om teamwerk te ondersteunen in
de IDE. Prominente voorbeelden (zoals Jazz en Mylyn) zijn volwaardige platformen ge-
bouwd boven op de IDE, met als doel die te transformeren tot alomvattend gereedschap
voor samenwerking.

De context van dit proefschrift is het teamwerk van ontwikkelaars in de IDE. Wij kiezen
de IDE, omdat dit ons in staat stelt om een beter verbinding te leggen met het eindpro-
duct van de ontwikkeling (d.w.z. de broncode). We richten ons hierbij op lichtgewicht
toevoegingen aan de IDE, in plaats van zwaardere, omdat dat laatste de manier van wer-
ken, de gewoontes en het ontwikkelproces van een team kunnen verstoren, en omdat
ze vaak een steile leercurve hebben. We richten on zowel samenwerking op één locatie
(collocated) als op gedistribueerde ontwikkeling, want wat teamwerk ondersteunt, is niet
beperkt tot één scenario.

175

Samenvatting

Het overkoepelende doel van ons werk is om lichtgewicht IDE-toevoegingen te ont-
wikkelen die naadloos geintegreerd kunnen worden in de ontwikkelworkflow van diverse
teams, die zorgen voor extra effectieve ondersteuning aan het teamwerk van een ontwik-
kelaar, terwijl ze weinig inwerktijd vereisen.

Wij delen ons werk op in drie delen: het eerste deel onderzoekt hoe ontwikkelaars mo-
menteel teamwerk ervaren, om belangrijke pijnpunten op te sporen en te begrijpen waar
ruimte voor verbetering is; het tweede en het derde deel beginnen bij de resultaten van
het eerste deel en verkennen ieder twee strategieén om om te gaan met één van de be-
langrijkste aspecten van teamwerk: het delen van informatie.

Studies

Hoe ervaren ontwikkelaars samenwerking in teamwerk?

Om beter te begrijpen hoe ondersteuning voor teamwerk in de IDE kan worden verbe-
terd, hebben we eerst de huidige praktijk van industriéle ontwikkelaars in teams onder-
zocht. Hoewel de ontwikkelaars in staat zijn om effectieve oplossingen te vinden voor
situaties die in de literatuur als problematisch worden beschouwd, vinden ze het moei-
lijk en tijdrovend veranderingen te begrijpen die door andere mensen in de broncode zijn
aangebracht; en ze zijn vooral gefrustreerd wanneer deze veranderingen zijn gedaan door
een projectgenoot, omdat die hen had kunnen informeren.

Hoe wordt informatie in open source projecten gedeeld?

In de tweede onderzoeksvraag, onderzoeken we open source software ontwikkeling (OSS).
We onderzochten het communicatiekanaal dat in de literatuur als de spil van de project-
communicatie in OSS wordt beschouwd: de mailinglijst. We ontdekten dat de com-
municatie momenteel wordt verspreid over verschillende soorten kanalen, zoals de issue
databases, veranderingen aan de code (code commits), en face-to-face gesprekken. Als ge-
volg hiervan, lijkt de mailinglijst haar rol als belangrijkste communicatieckanaal te hebben
verloren ten gunste van de issue database, die dichter bij de code staat en meer gestructu-
reerde communicatie biedt dan e-mails vermengd met ruis.

Reflectie

Door het beantwoorden van de eerste twee onderzoeksvragen hebben we geleerd dat:
(1) kennis die in eerder onderzoek als algemeen geldend aanvaard werd, opnieuw moet
worden gecontroleerd, (2) het delen van informatie essentieel is voor de ondersteuning
van teamwerk, (3) ontwikkelaars een deel van de informatie die ze nodig hebben kunnen
vinden, maar niet gemakkelijk, en (4) gereedschap ter ondersteuning van teamwerk een
verbinding moet leggen met de broncode.

Strategieén

Hoe kunnen we bestaande informatie om teamwerk te ondersteunen blootleggen?

176

Samenvatting

Om informatie bloot te leggen die al beschikbaar, maar niet gemakkelijk toegankelijk is in
de IDE, creerden we twee IDE-extensies en hebben we deze geévalueerd met gebruikers.
CARES is onze eerste extensie: Het geeft informatie over wie men moet contacteren om
informatie te vragen over een specifiek stukje code. Het laat informatie over contacten
zien, zoals hun beschikbaarheid en foto; cares heeft bewezen effectief en nuttig voor
ontwikkelaars te zijn. BELLEVUE, onze tweede extensie, verbetert de ondersteuning van
de IDE voor veranderende code: niet alleen maakt het zichtbaar wat er veranderd is sinds
de laatste update van de lokale code, maar het integreert ook naadloos code geschiedenis
in de editor, en voegt contactgegevens toe op dezelfde wijze als cares. Ontwikkelaars
beoordeelden de ontwerpen van BELLEVUE zeer positief.

Hoe kunnen we het maken van informatie vergemakkelijken om teamwerk te ondersteunen?

Een gedeelte van de informatie die nuttig zou zijn voor ontwikkelaars is noch vastgelegd
noch gedeeld. Wanneer ze bijvoorbeeld tijd doorbrengen met het doorgronden van een
stukje broncode, laten ontwikkelaars meestal geen enkel spoor achter, zodat hun waarde-
volle inzichten verloren gaan als de taak is volbracht. We stellen dat dit soort informatie
zeer waardevol is om teamwerk te ondersteunen, en daarom hebben we hiervoor twee
IDE-extensies ontwikkeld. PoLLicINO is een eenvoudige, lichtgewicht oplossing, geba-
seerd op het delen van bladwijzers in code. Ons experiment toonde aan dat het effectief
kan zijn om informatie te genereren die nuttig is voor de andere teamleden. JAMEs is een
aanpak die ontwikkelaars opmerkingen laat delen in de vorm van (Twitter-achtige) korte
berichten, en die automatisch de interacties van ontwikkelaars met de IDE opneemt. Uit
een eerste studie met ontwikkelaars is de haalbaarheid van onze aanpak gebleken, en ook
dat ontwikkelaars geinteresseerd zijn om deze extensie te gebruiken.

Reflectie

Door het beantwoorden van de laatste twee onderzoeksvragen hebben we geleerd dat:
(1) lichtgewicht IDE-extensies, die noch een enorme ontwikkeldtijd, noch een lange in-
werktijd nodig hebben, teamwerk effectief kunnen ondersteunen, (2) het tonen va foto’s
van ontwikkelaars in de buurt van de broncode het gemeenschapsgevoel verhoogt, (3) po-
pulaire IDE’s slechte ondersteuning hebben voor het omgaan met wijzigingen in de code,
maar dat dit verbeterd kan worden, en (4) tools teamleden kunnen helpen met het cre-
éren van extra informatie ter ondersteuning van teamwerk, zonder grote inspanning van
de teamleden zelf.

Anja Guzzi

177

Curriculum Vitae

June 25, 1985: Born
Faido (Switzerland)

Education

Nov 2009-Dec 2014: Ph.D in Software Engineering

Delft University of Technology (TU Delft), Delft, The Netherlands
Sep 2007—Jun 2009: M.Sc. in Informatics (summa cum laude)

University of Lugano (USI), Lugano, Switzerland.

Major in Software Design. Master thesis “Supporting Collaboration Awareness in
Multi-developer Projects” under the supervision of Prof. dr. Michele Lanza.

Oct 2004-Jun 2007: B.Sc. in Informatics (magna cum laude)
University of Lugano (USI), Lugano, Switzerland

Work Experience

Jun 2012-Sep 2012: UX Researcher/Designer Intern
Microsoft, Redmond, United States
Jun 2011-Aug 2011: Research Intern
Microsoft Research, Redmond, United States
Dec 2007-Mar 2008: Software developer

AdulaNet, Bellinzona, Switzerland

179

Titles in the IPA Dissertation Series since 2009

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,

Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Ewolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-03

M.P.WJ]. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft-
ware Systems. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-
ence, UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit-
ing Technigues. Faculty of Mathematics
and Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Ap-
plications in Automata Theory and Modal
Logic. Faculty of Sciences, Division
of Mathematics and Computer Science,

VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineering,
Mathematics, and Computer Science,

TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Get-
ting Generic Programming Ready for Prime
Time. Faculty of Science, UU. 2009-9

K.R. Olmos Joftxé. Strategies for Context
Sensitive Program Transformation. Faculty

of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about
Java programs in PVS using JML. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical En-

gineering, Mathematics & Computer Sci-
ence, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical En-

gineering, Mathematics, and Computer

Science, TUD. 2009-13

D. Bolzoni. Rewvisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker.
in Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer
Science, TU/e. 2009-15

Security Matters: Privacy

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-
ence, UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac-
ulty of Sciences, Division of Mathematics

and Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assistants
available over the Web. Faculty of Sci-
ence, Mathematics and Computer Sci-

ence, RU. 2009-18

R.S.S. O’Connor. Incompleteness & Com-
pleteness: Formalizing Logic and Anal-
ysis in Type Theory. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,

TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analy-
sis of Probabilistic Models. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
Pplications to Medical Image Analysis. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fac-
ulty of Science, UU. 2009-23

TXK. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

AL Baars. Embedded Compilers. Faculty
of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,
UT. 2009-26

J.F]. Laros. Metrics and Visualisation
Jor Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-27

CJ. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical En-
gineering, Mathematics, and Computer

Science, TUD. 2010-01

M.R. Neuhiufler. Mode! Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis.
tivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

Termination and Produc-

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
Faculty of Science,

tocol Dynamics.

UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathematics

and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty

of Mathematics and Natural Sciences,

UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer Sci-

ence, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,

UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Division

of Mathematics and Computer Science,
VUA. 2010-10

MM. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty

of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Sci-
ence, VUA. 2011-01

B.J. Arnoldus. An Illumination of the Tem-
plate Enigma: Software Code Generation
with Templates. Faculty of Mathematics
and Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT
Awailability Planning: Methods and
Tovols. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2011-03

L. Astefanoaei. An Executable Theory of
Multi-Agent Systems Refinement. Faculty
of Mathematics and Natural Sciences,

UL. 2011-04

J. Proenga.
of distributed components.

Synchronous coordination

Faculty of

Mathematics and Natural

UL. 2011-05

Sciences,

A. Moralh. IT Architecture-Based Confi-
dentiality Risk Assessment in Networks of
Organizations. Faculty of Electrical En-

gineering, Mathematics & Computer Sci-
ence, UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-

ence, RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-10

PJ.A.van Tilburg. From Computability to
Executability — A process-theoretic view on
automata theory. Faculty of Mathematics
and Computer Science, TU/e. 2011-11

Z. Protic. Configuration management for
models: Generic methods for model com-
parison and model co-evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,

TU/e. 2011-13

S. Malakuti. Ewent Composition Model:
Achieving Naturalness in Runtime Enforce-
ment. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,
UT. 2011-14

M. Raffelsieper. Ce/l Libraries and Verifi-
cation. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality
of Service of Component Connectors. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-17

R. Middelkoop. Capruring and Exploit-
ing Abstract Views of States in OO Verifica-
tion. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Improving
the Quality of Model Transformations. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-19

AN. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Sci-
ence, Mathematics and Computer Sci-

ence, RU. 2011-20

H.]J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fac-

ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Language
Workbenches. Faculty of Electrical En-

gineering, Mathematics, and Computer

Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-24

J. Wang. Spiking Neural P Systems. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Revis-
ited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques for
the Design and Implementation of Domain-
Specific Languages. Faculty of Electri-

cal Engineering, Mathematics, and Com-
puter Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and Prac-
tice. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
Jrciently Searchable Encryption. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Szudies on Ver-
ification of Wireless Sensor Networks and
Abstraction Learning for System Inference.
Faculty of Science, Mathematics and
Computer Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic
Visualization. Faculty of Mathematics
and Computer Science, TU/e. 2012-07

D.E. Nadales Agut. A4 Compositional In-
terchange Format for Hybrid Systems: De-
sign and Implementation. Faculty of Me-
chanical Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein
Interaction Networks by Means of Anno-
tated Graph Mining Algorithms. Faculty

of Mathematics and Natural Sciences,

UL. 2012-09

S.D. Vermolen. Software Language Evo-
lution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches to
Reliable Software. Faculty of Mathematics
and Computer Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els — An Engineering Perspective. Faculty
of Mathematics and Computer Science,

TU/e. 2012-12

W. Heijstek. Software Architecture Design
in Global and Model-Centric Software De-
velopment. Faculty of Mathematics and
Natural Sciences, UL. 2012-13

C. Kop. Higher Order Termination. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems
Domain. Faculty of Mathematics and
Computer Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical

Engineering, Mathematics & Computer
Science, UT. 2012-16

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Automata.
Faculty of Science, Mathematics and
Computer Science, RU. 2013-02

E. Zambon. Abstract Graph Transforma-
tion — Theory and Practice. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2013-03

B. Lijnse. TOP to the Rescue — Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,

Mathematics and Computer Science,

RU. 2013-05

M.S. Greiler. Test Suite Comprehension for
Modular and Dynamic Systems. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2013-06

L.E. Mamane. Interactive mathematical
documents: creation and presenmtion. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2013-07

M.M.H.P. van den Heuvel. Composition
and synchronization of real-time components
upon one processor. Faculty of Mathematics

and Computer Science, TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer
Science, TU/e. 2013-09

S. van der Burg. A4 Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-

ence, TUD. 2013-10

JJ.A. Keiren. Advanced Reduction Tech-
niques for Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped robots,
and dynamic labelings for moving points.
Faculty of Mathematics and Computer
Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods in
Software Development. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-15

C. Tankink. Documentation and Formal
Mathematics — Web Technology meets Proof
Assistants. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in

Automated Digital Forensics.
Science, UvA. 2014-01

Faculty of

D. Hadziosmanovic. 7he Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enbanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P.Bezemer. Performance Optimization
of Multi-Tenant Software Systems. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical

Engineering, Mathematics & Computer
Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2014-06

J. Winter. Coalgebraic Characterizations
of Automata-Theoretic Classes. Faculty of
Science, Mathematics and Computer Sci-

ence, RU. 2014-07

W. Meulemans. Similarity Measures and
Algorithms for Cartographic Schematiza-
tion. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-08

A.F.E. Belinfante. J7orX: Exploring
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-09

A.P. van der Meer. Domain Specific Lan-
guages and their Type Systems. Faculty

of Mathematics and Computer Science,

TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collabora-
tion in Online Software Communities. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap be-
tween Active Learning and Real-World Sys-
tems. Faculty of Science, Mathematics

and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Model-
ing: Software Product Lines and Beyond.
Faculty of Mathematics and Natural Sci-
ences, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

FW. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty

of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record Link-
age. Faculty of Mathematics and Natural
Sciences, UL. 2014-17

G. Alpar. Attribute-Based Identity Man-
agement: Bridging the Cryptographic De-
sign of ABCs with the Real World. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-01

AJ. van der Ploeg. Efficient Abstractions
Jor Visualization and Interaction. Faculty
of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Control
in Health Care Systems. Faculty of Me-
chanical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibility and
Trustworthiness. Faculty of Mathematics
and Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2015-05

	Acknowledgements
	Ringraziamenti
	I Overture
	Introduction
	Background and Motivation
	Research Questions
	Research Outline
	Research Method
	Origin of Chapters

	Developers' Teamwork
	Overview
	Methodology
	Research Questions
	Brainstorming
	Semi-structured Interviews
	Data Analysis With Card Sort

	Results
	RQ1: Teamwork from the developers' perspectives
	RQ2: Dealing with imperfect information in teamwork
	RQ3: Receiving a code change

	Interpretation, Implications and Recommendations
	Teamwork Collaboration is Coordination
	The Role of Information
	Code Changes and Dependencies

	Concluding Remarks

	Communication in OSS Development Mailing Lists
	Overview
	Related Work
	Methodology
	Research Questions
	Research Method
	Data Collection
	Card Sort
	Aliasing and Identification of Developers

	What are mailing list participants talking about?
	How often do participants talk about each topic?
	How prominent are implementation details?

	Is the development mailing list only for developers?
	What do developers focus on?
	Dynamics of Interactions
	The Overall Picture

	What is the role of the development mailing list?
	Is in the mailing list where all the communication occurs?
	Is the mailing list for driving coordination?
	Is the mailing list used for peer code review?
	Is the mailing list the hub of project communication?

	Implications
	Limitations
	Concluding Remarks

	II Exposing Information
	CARES: Relevant Engineers
	Overview
	Methodology
	Developer Communication
	Finding, Selecting, and Contacting a Relevant Person

	Tool Design and Implementation
	CARES Walk-Through
	Tool Implementation
	Deployment Considerations
	Understanding Identity

	Evaluation
	Related Work
	Concluding Remarks

	Bellevue: Receiving Changes
	Overview
	Methodology
	Design Prototyping
	RITE-based Design Evaluation

	Tool Requirements
	Recognition over Recall
	Visibility of System Status
	Clearly Marked Exits
	Help and Documentation
	Help Users Recognize, Diagnose, and Recover from Errors

	Design Features and Evaluation
	Recognizable Changed Files and Blocks
	Visible Changes' Effect
	Accessible Historical Details
	Editable Code
	Contacting Change's Author
	Evaluation Debriefing

	Related Work
	Concluding Remarks

	III Generating Information
	Pollicino: Code Bookmarks
	Overview
	Related Work
	Motivation
	The Pollicino Approach
	Pre-experimental study design
	Research Questions
	Pretest-Posttest Design

	Results
	Participant Characteristics
	Comprehension Attitude
	Task Performance
	Experience with Collective Code Bookmarks
	Expectations vs. Perception of Pollicino
	Tool Feedback

	Threats to Validity
	Concluding Remarks

	James: Micro-Blogs
	Overview
	Approach: Quest = Message + Interactions
	Capturing IDE Interactions
	Micro-blogging within the IDE
	Quests: Building a Knowledge Base

	Implementation
	Initial Evaluation
	Study Setup
	Data Analysis

	Discussion
	Summary of Findings
	Interpretation of Findings
	Applications of James Data

	Related Work
	Concluding Remarks

	IV Finale
	Conclusion
	Contributions
	Reflection on the Research Questions
	Future Work

	Bibliography
	Summary
	Riepilogo
	Samenvatting
	Curriculum Vitae

