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a b s t r a c t

We present a novel problem formulation for model-free data-driven fault diagnosis, in which possible
faults are diagnosed simultaneously to identifying the linear time-invariant system. This problem is
practically relevant for systems whose model cannot be identified reliably prior to diagnosing possible
faults, for instance when operating conditions change over time, when a fault is already present before
system identification is carried out, or when the system dynamics change due to the presence of the
fault. A computationally attractive solution is proposed by solving the problem using unconstrained
convex optimization, where the objective function consists of three terms of which two are non-
differentiable. An additional recursive implementation based on a proximal algorithm is presented in
order to solve the optimization problem online. The numerical results on a buck converter show the
application of the proposed solution both offline and online.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the increase of complexity of automated systems, timely
nd accurate fault diagnosis is essential for preventing catas-
rophic failures. Accordingly, fault detection and identification
as recently been considered within the top-three of control
echnologies with high future impact in industrial applications
Samad et al., 2020). Whereas model-based and signal-based
ethods (Gao, Cecati, & Ding, 2015a) require human expertise
n modeling of the specific system or designing its characteristic
ignal shapes, knowledge-based methods rely on identifying the
ystem and the possible faults from past data (Gao, Cecati, &
ing, 2015b; Venkatasubramanian, Rengaswamy, Kavuri, & Yin,
003). This makes knowledge-based fault diagnosis attractive
pecifically for large-scale industrial systems for which modeling
s burdensome.

For its use of large amounts of historical data, knowledge-
ased fault diagnosis is often referred to as data-driven (Dai & Gao,
013; Ding, 2014; Gao et al., 2015b; Simani, 2021; Yin, Ding, Xie,
Luo, 2014). However, it can effectively be partitioned in a (data-
ased) model acquisition phase and a model-based fault diagnosis

✩ The material in this paper was partially presented at the 22nd IFAC
World Congress (IFAC 2023), July 9–14, 2023, Yokohama, Japan. This paper
was recommended for publication in revised form by Associate Editor Simone
Formentin under the direction of Editor Alessandro Chiuso.
∗ Corresponding author.

E-mail addresses: j.noom@tudelft.nl (J. Noom), o.a.soloviev@tudelft.nl
O. Soloviev), m.verhaegen@tudelft.nl (M. Verhaegen).
ttps://doi.org/10.1016/j.automatica.2024.111656
005-1098/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
phase. Especially in the first phase reliable and often also labeled
data is required. In complex industrial applications this is not
always available, or it is desired to diagnose faults directly from
the first operational run of the unidentified system. Moreover,
the main limitation of existing fault diagnosis techniques is that
predetermined features or predetermined models lack the capa-
bility of accommodating for changing input/output dynamics for
example due to changes in the internal system dynamics or in the
environment.

The main contribution of this manuscript is threefold. First,
a formulation for the problem of model-free data-driven fault
diagnosis is presented. Different from existing categories for fault
diagnosis which assume separate time periods for system mod-
eling/identification and fault diagnosis, this novel formulation
includes the goal of both retrieving the system dynamics and
diagnosing the faults simultaneously. With a fixed data window,
the diagnosis involves both the determination of the active faults
from a set of hypothesized faults (fault isolation) and of their
corresponding sizes (fault identification). The system dynamics
are assumed to be Linear and Time-Invariant (LTI) over the con-
sidered data window. The proposed problem differs from the one
formulated in Chen (2017), where only the presence of a fault
in an unknown LTI system is to be detected. Instead, model-
free data-driven fault diagnosis focuses on fault isolation and
identification, simultaneously to retrieving an up-to-date model
of the system.

The second contribution of this manuscript proposes to use
our earlier developed solution (Noom, Soloviev, & Verhaegen,
2023) to the problem of model-free data-driven fault diagnosis.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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y reformulating the problem as a convex optimization problem,
he proposed solution is computationally attractive. As in Zhang
2021) a dictionary of hypothesized faults is constructed, after
hich sparsity is employed by the natural assumption that only
few of the hypothesized faults are concurrently active. The
odel-based approach in Zhang (2021) however assumes the
vailability of a predetermined model of the system. In the
roposed solution for model-free data-driven fault diagnosis such
predetermined model is not required, but is identified si-
ultaneously to diagnosing the faults. The simultaneous goal

s achieved using results from the field of blind system iden-
ification (Scobee et al., 2015), which aims for identifying a
ystem with unknown inputs. Different from Scobee et al. (2015),
he proposed solution in this manuscript considers multiple
on-differentiable optimization terms in order to apply it to
odel-free data-driven fault diagnosis. Hereby this contribu-

ion establishes a link between blind system identification and
odel-free data-driven fault diagnosis. In addition to our ear-

ier work (Noom et al., 2023), conditions are introduced on
he identifiability and diagnosability of the system and faults,
espectively.

The third contribution of this manuscript is to propose a
ast recursive implementation for solving the convex but non-
ifferentiable optimization problem, enabling online monitoring
ncluding fault detection, isolation, fault identification and si-
ultaneous system identification. The recursive implementation
llows the unknown system dynamics and active faults to change
ver time, while being identified and diagnosed in real-time.
hereas the recursive approaches in Ding (2014) are limited to

ault detection only and require an initial model of sufficient
uality, our approach is fully model-free and is able to isolate
nd identify the faults in addition to detection. The proposed re-
ursive implementation of model-free data-driven fault diagnosis
elies on the proximal operators (Combettes & Pesquet, 2011;
arikh & Boyd, 2014) of the objective terms, of which closed-form
olutions are available. Using efficient updates of the proximal
perators, an established proximal algorithm (Combettes & Pes-
uet, 2008) is implemented recursively. Different from recursive
mplementation of subgradient methods such as in Angelosante
nd Giannakis (2009), the proposed proximal-based implementa-
ion does not involve fragile restrictions on tuning parameters for
uaranteeing convergence. Other recursive implementations of
roximal algorithms (Ajalloeian, Simonetto, & Dall’Anese, 2020;
ixit, Bedi, Tripathi, & Rajawat, 2019) are only able to cope with
ne non-differentiable objective term (or multiple terms only if
he problem is block-separable), whereas the proposed approach
an handle multiple non-differentiable objective terms even if the
roblem is not block-separable.
The manuscript is organized as follows. Section 2 presents

he novel problem formulation. Section 3 presents the method-
logy for model-free data-driven fault diagnosis, starting with
ection 3.1 introducing the structured data matrices and
ection 3.2 recapping the method of Zhang (2021) for model-
ased fault diagnosis, neglecting the effect of the initial state.
his negligence is based on developments in subspace identi-
ication (Chiuso, 2007; Verhaegen & Verdult, 2007). The pro-
osed data-driven approach to fault diagnosis is presented in
ection 3.3 with conditions on identifiability and diagnosability
n Section 3.4. For the resulting convex optimization problem,
ection 4 demonstrates the adoption of a proximal algorithm.
ubsequently, Section 5 shows how the proximal algorithm can
e implemented recursively in order to achieve online moni-
oring. The proposed methodology is tested numerically on a
uck converter electronic circuit in Section 6 and conclusions are
rawn in Section 7.
2

2. Problem formulation

Consider the following linear time-invariant system

x(k+ 1) = Ax(k)+ Bu(k)+ Fd(k)+ w(k)
y(k) = Cx(k)+ v(k)

(1)

with x(k) ∈ Rnx , u(k) ∈ Rnu , d(k) ∈ Rnd and y(k) ∈ Rny the
state, input, fault signal and output; A, B, C and F the state-space
matrices; and w(k) and v(k) the process and measurement noise,
respectively. The fault signal

d(k) = θ (k)z (2)

is constructed from a known dictionary θ (k) ∈ Rnd×nz consisting
of possible fault signal shapes and an unknown weighing vector
z = [z1, . . . , znz ]

⊤
∈ Rnz which determines the active faults and

their severity. Typically only a few faults out of the set of possible
faults are active simultaneously.

With Φ = A−KC , consider the observer (Verhaegen & Verdult,
2007) for system (1):

x̂(k+ 1) = Φ x̂(k)+ Bu(k)+ Fθ (k)z + Ky(k)
ŷ(k) = Cx̂(k)

(3)

with estimated state x̂(k) and estimated output ŷ(k). Using this
model, we can write the estimated output ŷ(k) as:

ŷ(k) = CΦsx̂(k− s)

+

s∑
i=1

CΦ i−1
(
Bu(k− i)+ Fθ (k− i)z + Ky(k− i)

)
(4)

f the system is detectable and K is designed such that Φ is
symptotically stable, the effect of the state x̂(k − s) decreases
o zero for increasing s. This leads to the following approximate
ector Auto-Regressive model with eXogenous input (VARX):

ˆ(k) ≈
s∑

i=1

Biu(k− i)+ Fiθ (k− i)z + Kiy(k− i). (5)

he matrices Bi, Fi and Ki of compatible size refer to the so-
alled observer Markov parameters (Phan & Longman, 1996). The
ARX model description covers a wide range of multiple-input
ultiple-output (MIMO) systems and is studied comprehensively

n Chiuso (2007), Lütkepohl (2005). It is identifiable in the sense
hat every unique set of VARX parameters leads to a unique
utput given that the input is persistently exciting (Ljung, 1999).
First we formulate the problem for model-based Fault Diagno-

is (FD).

roblem 1 (Model-Based FD). Given the VARX parameters Bi, Fi
nd Ki in (5), input u(k) and output y(k) sequences and the corre-
ponding fault dictionary θ (k), isolate the faults as the nonzero
lements in the unknown vector z, together with their corre-
ponding sizes.

The problem for model-based FD within this formulation has
een widely studied both for time-invariant and time-varying
ystems (see e.g. Basseville and Nikiforov (1993), Blanke, Kin-
aert, Lunze, and Staroswieck (2006), Ding (2013)). Alternatively,
nowledge-based (also called data-driven) FD consists of an extra
receding phase, formulated as follows.

roblem 2 (Data-Driven FD). Given the input u(k) and output
(k) sequences and the corresponding fault dictionary θ (k) with
he true weights z, first identify the system characteristics in a
raining phase with known faults. Afterwards, diagnosis can be
erformed in a subsequent phase where the faults are unknown.
ased on the identified system characteristics and given the in-
ut u(k) and output y(k) sequences and the corresponding fault
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Fig. 1. (a) Model-based, (b) data-driven and (c) model-free data-driven FD.

ictionary θ (k), isolate the faults as the nonzero elements in the
nknown vector z, together with their corresponding sizes.

Some well-known approaches for solving the data-driven FD
roblem for dynamical systems are summarized in Ding (2014),
ao et al. (2015b), Yin et al. (2014). These approaches require
eparate time periods for system identification prior to the fault
iagnosis experiment. However, the system dynamics may al-
eady have changed in between the system identification and
he fault diagnosis experiment, or for some applications it is not
ven possible to perform system identification due to costly data
cquisition prior to productive system operation. In such cases
t is desirable to perform fault diagnosis without requiring a
reviously identified model. This problem is formulated below.

roblem 3 (Model-Free Data-Driven FD). Given the input u(k)
nd output y(k) sequences and the corresponding fault dictionary
(k), simultaneously identify the system characteristics and iso-
ate the faults as the nonzero elements in the unknown vector z,
ogether with their corresponding sizes.

Problems 1–3 are visualized in Fig. 1. Naturally, the problem
or model-free data-driven FD imposes some assumptions on
ystem observability, the input sequence and the fault dictionary.
he assumptions on input sequence and the fault dictionary will
e stipulated in Section 3.4.
In the methodology we will make use of the following ma-

rix norm notation. The Frobenius norm is defined as ∥X∥F =∑
i,j |xij|

2, the (1, 1)-norm as ∥X∥1,1 =
∑

i,j |xij| and the nuclear
orm as ∥X∥∗ =

∑
i σi(X), where xij are the (i, j)th elements of

he matrix X , and σi(X) the ith singular value.

. Model-free data-driven fault diagnosis

.1. VARX model identification

To introduce the structured data matrices, we first consider
he fault-free identification problem with d(k) = 0. It should be
oted that this fault-free identification step is not required for the
3

xecution of the proposed approach introduced later, however
ssential for building up the relevant knowledge.
Regard the available information[

u(k) u(k+ 1) . . . u(k+ N − 1)
]
,[

y(k) y(k+ 1) . . . y(k+ N)
]
.

hen with

=

⎡⎢⎢⎢⎢⎣
y⊤(k+ s)

y⊤(k+ s+ 1)
...

y⊤(k+ N)

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
B⊤1
B⊤2
...

B⊤s

⎤⎥⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎢⎣
K⊤1
K⊤2
...

K⊤s

⎤⎥⎥⎥⎥⎦ , (6)

nd the Toeplitz matrices

u =

⎡⎢⎢⎢⎢⎣
u⊤(k+ s− 1) u⊤(k+ s− 2) . . . u⊤(k)
u⊤(k+ s) u⊤(k+ s− 1) . . . u⊤(k+ 1)

...
...

. . .
...

u⊤(k+ N − 1) u⊤(k+ N − 2) . . . u⊤(k+ N − s)

⎤⎥⎥⎥⎥⎦

Ty =

⎡⎢⎢⎢⎢⎣
y⊤(k+ s− 1) y⊤(k+ s− 2) . . . y⊤(k)
y⊤(k+ s) y⊤(k+ s− 1) . . . y⊤(k+ 1)

...
...

. . .
...

y⊤(k+ N − 1) y⊤(k+ N − 2) . . . y⊤(k+ N − s)

⎤⎥⎥⎥⎥⎦
(7)

the following least-squares problem aims at finding the sys-
em parameters B and K for the 1-step ahead predictor:

in
B,K

Y − [
Tu Ty

] [
B
K

] 2

F
. (8)

he solution to this problem is unique if the matrix
[
Tu Ty

]
as full column rank. This condition requires the input to be
ersistently exciting (Verhaegen & Verdult, 2007) and leads to
dentifiability of the system as in Definition 1.

.2. Model-based fault diagnosis under sparseness assumption

Suppose now that the fault signal d(k) is nonzero and com-
osed as in (2), and the system matrices A, B, C , F and K are
nown. Whereas Zhang (2021) indicates for conventional ap-
roaches that ‘‘tractable solutions are only available when a small
umber of possible faults are assumed’’, recently he proposed
computationally efficient method to diagnose from a large

et of possible faults. Neglecting the effects of initial condition
given the fact that Φ is asymptotically stable (Chiuso, 2007;
erhaegen & Verdult, 2007)) the approach in Zhang (2021) can
e (accurately) approximated as follows.
Let F be constructed from F similarly to B from B in (6).

onsider the Kronecker product

(z) = F⊗ z (9)

nd the Toeplitz matrix Tθ constructed as Tu in (7) with all
lements u⊤(k) replaced by vec(θ⊤(k))⊤, such that the VARX
pproximation becomes

≈
[
Tu Tθ Ty

] [ B
F(z)
K

]
. (10)

ith the sparseness assumption on z entailing only a small
umber of faults is active simultaneously, this results in a lasso
ptimization problem:

in
Y − [

Tu Ty
] [

B
]
− TθF(z)

2
+ λ∥z∥1 (11)
z K F
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
ith F(z) given in (9). In words, the output residual is mini-
ized over the fault weighing variables z by subtracting their
orresponding fault responses TθF(z) from the data equation.
he 1-norm is included to enhance sparsity on the weighing
ector. This approach has shown good performance on both time-
nvariant and time-variant systems by Zhang (2021), where also
he (negligible) effect of the initial condition is taken into consid-
ration.

.3. Model-free data-driven approach to fault diagnosis

In our case of data-driven fault diagnosis the system matrices
, K and F are unknown in addition to the fault(s). This implies
11) becomes a bilinear optimization problem, which is compu-
ationally expensive due to its nonconvexity. However, from the
efinition of F(z) it is possible to compose the matrix F∗(z) as
∗(z) := vec

(
F⊤

)
z⊤ (12)

hich has rank one (Scobee et al., 2015). Besides, the variable F(z)
as by construction in (9) a degree of sparsity (defined as the ratio
f nonzero components) equal to that of z. As a result, the bilinear
ptimization problem can be replaced by the rank-constrained
inimization problem

min
,F(z),K

Y − [
Tu Tθ Ty

] [ B
F(z)
K

]2

F
+ λ∥F(z)∥1,1

s.t. rank
(
F∗(z)

)
= 1.

(13)

ote that in contrast to (11) where z is the optimization variable,
n (13) the quantity F(z) is an explicit optimization variable.
he solution of F and z can be found up to a multiplicative
calar from singular value decomposition (SVD) of F∗(z). Since no
odel knowledge is assumed, the optimization problem relies on
inimizing the output residuals, now with respect to both model
arameters as well as fault parameters.
Problem (13) can be relaxed to a convex optimization problem

y replacing the rank constraint with an additive weighted nu-
lear norm to the objective function. The eventual unconstrained
onvex optimization problem is then

min
,F(z),K

Y − [
Tu Tθ Ty

] [ B
F(z)
K

]2

F
+ τ

F∗(z)
∗

+ λ∥F(z)∥1,1.

(14)

The faults can be isolated using (14) only, however their
agnitudes will be biased toward zero due to the additional
enalties to the least-squares term. Also, the identified VARX
atrices B and K may be affected by the bias in F(z). For refined
stimation of the fault magnitudes and system parameters, a
econd optimization without the 1-norm can be performed over
he nonzero estimated elements ẑ found in (14). In practice, this
eans that the components of the dictionary θ (k) and the weigh-

ng variables z in (2) are in the second optimization neglected
ccording to the ‘zero’ (in practice below a threshold) elements of
ˆ found in the first optimization, and in the second optimization
= 0.
The choice of the tuning parameters may be nontrivial. How-

ver, it can be deduced that a rank one solution is encouraged
y increasing τ , and the sparsity of z by increasing λ. A possible
uning strategy is to set λ to zero first and tune τ such that the
redictor performance of (5) (for instance calculated as Variance
ccounted For (VAF)) with parameters found in (14) is optimized
n a validation data set. While fixing τ to the value found in
he first step, λ can be adapted gradually by optimizing the
erformance of (5) on validation data, with parameters found in

14) after refinement.

4

.4. Identifiability & diagnosability

The model-free data-driven approach to fault diagnosis re-
uires both the system to be identifiable and the faults to be
iagnosable.

efinition 1 (Identifiability of a System). A system is regarded
o be identifiable if there exists an input sequence such that the
ariables B and K in (14) can be determined uniquely.

A sufficient condition for the solution to B, K and also F(z) in
14) to be unique is that the matrix

[
Tu Tθ Ty

]
has full column

ank. This is now a condition on the persistency of excitation of
he joint input (u⊤(k), vec(θ⊤(k))⊤). However, due to the regular-
zation terms, full column rank of

[
Tu Tθ Ty

]
is not a necessary

ondition for uniqueness of the solution to (14). Moreover, with
Tu Ty

]
full column rank and τ = 0, the solution may still be

unique (Ali & Tibshirani, 2019). The fact that τ > 0 in (14) further
increases the probability of a unique solution. It must be noted
that a unique solution does not guarantee diagnosability of each
fault, and vice versa.

Definition 2 (Diagnosability of a Fault). Given an input/output
sequence u(k) and y(k) and a fault dictionary θ (k), a fault zj ̸= 0 is
egarded to be diagnosable if all possible solutions to (14) satisfy
j ̸= 0.

The following lemma states a condition necessary for a fault
o be diagnosable.

emma 1 (Necessary Condition for Diagnosability). Consider a fault
j with its corresponding dictionary signal θj(k). In order for the fault
j to be diagnosable, it is necessary that at least one column of its
orresponding dictionary signal

vec(θ⊤j (k))⊤

vec(θ⊤j (k+ 1))⊤

...

vec(θ⊤j (k+ N − 1))⊤

⎤⎥⎥⎥⎥⎥⎦
s linearly independent of the columns of

u⊤(k) y⊤(k)
u⊤(k+ 1) y⊤(k+ 1)

...
...

u⊤(k+ N − 1) y⊤(k+ N − 1)

⎤⎥⎥⎥⎥⎦ .

roof. In the case of linear dependence, the dictionary signal can
e written as

ec(θ⊤j (k)) = Luu(k)+ Lyy(k) (15)

ith Lu and Ly time-invariant matrices representing the linear
ependence. Then,Y − [

Tu Tθ Ty
] [ B

F(z)
K

]2

F
=

Y −
[
Tu Tθ Ty

]⎡⎣ B̃
F̃(z)
˜

⎤⎦2

F

(16)
K
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here

B̃ = B+

⎡⎢⎣L⊤u F
⊤

1
...

L⊤u F
⊤
s

⎤⎥⎦ zj,

˜ = K+

⎡⎢⎣L⊤y F
⊤

1
...

L⊤y F
⊤
s

⎤⎥⎦ zj,

F̃(z) = F⊗

⎡⎢⎢⎢⎢⎢⎣
z1
...

z̃j = 0
...

znz

⎤⎥⎥⎥⎥⎥⎦
and (B, F(z),K) the actual situation with zj ̸= 0. With optimiza-
ion problem (14) regularizing on F(z) but not on B and K, the
global optimum is achieved with z̃j = 0. Following Definition 2,
this fault is not diagnosable. □

Lemma 1 stresses the importance of designing a healthy com-
bination of the fault dictionary, system inputs and outputs. As
long as it satisfies Lemma 1, possible dictionary signals include
sinusoidal, triangular or square waveforms with various frequen-
cies, random Fourier expansions as in Bliek, Verstraete, Verhae-
gen, and Wahls (2018), unit steps with various starting points,
user-defined fault progressions and nonlinear relations of u(k)
nd/or y(k). Practical examples of hypothesized fault patterns
nclude varying load resistances in a buck converter (as illustrated
n Section 6) and blockage of air data sensors modeled as additive
inusoidal pressure changes (Freeman, Seiler, & Balas, 2013).

. Adoption of proximal algorithm

The data-driven fault diagnosis problem can be recast to a
atch optimization problem consisting of m = 3 convex but
ossibly non-differentiable functions fi:

in
x

f (x) = min
x

m∑
i=1

fi(x) (17)

= min
x

1
2
∥y− Hx∥22 + τ∥xL∥∗ + λ∥xS∥1, (18)

here y ∈ Rny are the vectorized measurements, x ∈ Rnx

the optimization variables with xL and xS constructed from x by
selecting and rearranging its elements to a low-rank matrix and
sparse vector, respectively. For the data-driven fault diagnosis
problem, identical elements from x are selected for constructing
both xL and xS .

Problem (18) is convex but non-differentiable due to both the
nuclear norm and the 1-norm. Therefore, conventional gradient-
based algorithms provide limited convergence properties. Alter-
natively, proximal algorithms have recently shown their poten-
tial for solving large-scale non-smooth problems (Combettes &
Pesquet, 2011; Parikh & Boyd, 2014).

A proximal algorithm uses proximal operators of the objective
terms iteratively in order to solve a convex optimization prob-
lem (Parikh & Boyd, 2014). The proximal operator of a function g
is defined as

proxg (v) = argmin
x

(
g(x)+

1
2
∥x− v∥22

)
. (19)

or several specific functions g a closed-form expression for the
roximal operator can be derived (Combettes & Pesquet, 2011),
nabling fast evaluation.
For optimization problems involving a sum of two terms fi,

stablished proximal algorithms include forward–backward split-
ing (Combettes & Wajs, 2005), Douglas–Rachford splitting (Com-
ettes & Pesquet, 2007) and FISTA (Beck & Teboulle, 2009). How-
ver, the data-driven fault diagnosis problem encompasses three
erms of which two are non-differentiable, which in general
annot be handled efficiently by these algorithms. Alternatively,
 i

5

inimization of (18) is enabled by multiple-operator splitting
chemes, such as the Parallel ProXimal Algorithm (PPXA) (Com-
ettes & Pesquet, 2008), generalized forward–backward split-
ing (Raguet, Fadili, & Peyré, 2013) or the Davis–Yin algorithm
Davis & Yin, 2017). For the small number of tuning parameters,
nd the convergence being robust against the choice of these
uning parameters, we select PPXA for solving the data-driven
ault diagnosis problem. It is reproduced in Algorithm 1.

Algorithm 1 Parallel ProXimal Algorithm (PPXA) (Combettes &
Pesquet, 2008) for solving (17).

Initialization
0 < ρ <∞ ▷ Scalar step size
0 < ω = [ω1, . . . , ωm] ≤ 1 satisfying

∑m
i=1 ωi = 1

Γ = [γ1, . . . , γm] = ρω

x0 ▷ Initial condition
function ppxa(Γ , ω, x0)

v0 : (vi,0)1≤i≤m = x0 ▷ Auxiliary variables
for j = 0, 1, . . . , np − 1 do ▷ For np iterations

for i = 1, . . . ,m do
pi,j = proxγifi (vi,j)+ εi,j ▷ Error εi,j

end for
pj =

∑m
i=1 ωipi,j

ξj ∈]0, 2[ ▷ Tuning parameter
for i = 1, . . . ,m do

vi,j+1 = vi,j + ξj(2pj − xj − pi,j)
end for
xj+1 = xj + ξj(pj − xj)

end for
end function

In words, PPXA evaluates the proximal operator for the indi-
vidual terms fi in parallel, after which the outcomes are averaged
and employed in next iteration. Convergence is ensured under the
following conditions (Combettes & Pesquet, 2008):

• lim∥x∥→∞ f (x) = +∞
• ∩

m
i=1ri domfi ̸= ∅ (the intersection of the relative interiors

of the domains of fi is nonempty)
• limnp→∞

∑np
j=0 ξj(2− ξj) = +∞

• ∀i ∈ {1, . . . ,m} limnp→∞
∑np

j=0 ξj∥εi,j∥ < +∞ (the possible
error εi,j in the computation of the ith proximal operator
decreases to zero)

For the data-driven fault diagnosis problem (18) the first two
conditions are naturally satisfied and the third condition by the
straightforward choice ξj = 1 ∀j. Assuming the ability for precise
evaluation of the proximal operators (for instance by closed-
form computation) and by assigning trivial values to the weights
ωi = 1/m, the only remaining tuning parameter γ affects the
speed of convergence. A small step size γ will lead to slow initial
convergence, whereas a large step size decelerates convergence
close to the optimum.

With the soft-thresholding operator defined entrywise as

[Sγ (v)]n = sign(vn)[|vn| − γ ]+ (20)

losed-form expressions for the proximal operators of the objec-
ive terms in optimization problem (18) are presented in Table 1.

The evaluation of proxγ f1 is relatively computationally expen-
ive due to the inverse (γH⊤H+ I)−1, which would require O(n3

x)
lops for each iteration of the proximal algorithm. However, given
hat PPXA allows some small errors εi,j in the calculation of the
roximal operators, there are several possibilities to ease the
valuation of proxγ f1 (v). Some of these possibilities are specified

n the next section.
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Table 1
Proximal operators for objective terms in (18) with step size γ .

Function g(x) Proximal operator proxγ g (v)

f1(x) = 1
2 ∥y− Hx∥22 (γH⊤H + I)−1(v+ γH⊤y)

f2(x) = τ∥xL∥∗ (Cai, Candès, & Shen, 2010) USγ τ (Σ)V⊤

with SVD vL = UΣV⊤

f3(x) = λ∥xS∥1 Sγ λ(vS )

4.1. Opportunities for accelerated implementation

Since the inverse (γH⊤H + I)−1 and γH⊤y remain invari-
able over the iterations of the proximal algorithm for the batch
problem (18), a first option is to cache and reuse it in subse-
quent iterations of the proximal algorithm. This would require
O(n3

x) flops for the first iteration, however only O(n2
x) flops for

ubsequent iterations, without introducing approximation errors.
A second option is to replace the proximal operator with a

tep in the direction of the negative gradient, as elaborated in the
ollowing lemma.

emma 2. If γ is small enough such that

lim
n→∞

(−γH⊤H)n = 0, (21)

he proximal operator for γ f1 can be approximated by a step in the
irection of its negative gradient:

roxγ f1 (v) ≈ v− γH⊤Hv+ γH⊤y = v− γ∇f1(v). (22)

roof. Under condition (21), by the Neumann series:

γH⊤H + I)−1 =
∞∑
n=0

(−γH⊤H)n

= I − γH⊤H +
∞∑
n=2

(−γH⊤H)n

= I − γH⊤H + e(γ ,H)

This approximation is substituted in the proximal operator for f1
in Table 1:

proxγ f1 (v) =
(
I − γH⊤H + e(γ ,H)

)
(v+ γH⊤y)

= v− γ (H⊤Hv− H⊤y)− γ 2H⊤HH⊤y
+ e(γ ,H)(v+ γH⊤y)

= v− γ∇f1(v)− γ 2H⊤HH⊤y
+ e(γ ,H)(v+ γH⊤y),

which concludes the proof. □

The gradient step in (22) reduces the computational complex-
ity to O(n2

x) flops for each iteration. This goes at the expense of
trading off γ for small approximation errors and fast convergence
while guaranteeing (21).

A third possibility is to approximate it with an iterative method
such as conjugate gradient, provided with a warm start from a
previous solution (Parikh & Boyd, 2014). The conjugate gradient
method requires multiple iterations of O(n2

x) flops in order to
solve proxγ f1 (v). However, in contrast to approximation (22), the
conjugate gradient method allows the tolerance (and thus the
magnitude of the approximation error εi,j) to be predefined, pro-
viding more control on the convergence properties of Algorithm

1. o

6

5. Proximal-based recursive implementation

Multiple variants are possible to solve (18) online in which
each time step a new set of inputs and outputs become available.
Let us consider (18) over an Infinite Window (IW), Finite moving
Window (FW) or Exponentially Weighted (EW) window. These
are all addressed by the following adapted cost function:

x̂k = argmin
x

1
2

k∑
j=ℓ

βk−j∥yj − Hjx∥22 + τ∥xL∥∗ + λ∥xS∥1 (23)

here 0 ≤ βk−j ≤ 1 is a forgetting factor and Hj is the regressor
atrix corresponding to time instance j. The formulation (23)
llows to make three different choices by the parameters ℓ and
k−j as highlighted in Table 2. With the corresponding recursive
efinitions Rk and rk in Table 2, the argument of optimization

problem (23) can be found by

x̂k = argmin
x

1
2
x⊤Rkx− x⊤rk + τ∥xL∥∗ + λ∥xS∥1

= argmin
x

fr,k(x)+ f2(x)+ f3(x).
(24)

ccordingly, the proximal operator for the least-squares term fr,k
s

roxγ fr,k (v) = (γRk + I)−1(v+ γ rk). (25)

ogether with the proximal operators for f2 and f3 in Table 1,
PXA in Algorithm 1 can be performed each time instance k with
arm start x0 = x̂k−1 in order to solve (24).
Section 4.1 provides three opportunities to accelerate the eval-

ation of the proximal operator for the least-squares term in
he batch problem (18). These opportunities can be extended
o the case when the cost function is recursive as in (24). The
irst opportunity of caching and reusing the inverse enables exact
valuation, however in the recursive problem the inverse (γRk+

)−1 should be updated each time step. This exact evaluation is
andled in Section 5.1, whereas two approximations analogous
o those in Section 4.1 are elaborated in Section 5.2.

.1. Exact recursive evaluation of (25)

Depending on the window type, the evaluation of proxγ fr,k
an be accelerated using the matrix inversion lemma (for Infinite
indow (IW) and Finite Window (FW)) or CG (for Exponentially
eighted (EW) window). First, we study the case of IW after
hich FW is studied in the following two lemmas, which are
eneral results from recursive least-squares literature (Sayed,
003).

emma 3. In the case of IW, Pk = (γRk + I)−1 can be updated
ecursively by

k = Pk−1 − γPk−1H⊤k (I + γHkPk−1H⊤k )−1HkPk−1. (26)

roof. The matrix inversion lemma is given by Verhaegen and
erdult (2007):

A+ BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (27)

n the case of IW (see Table 2),

γRk + I)−1 =
(
(γRk−1 + I)+ γH⊤k Hk

)−1
.

y substituting the matrices in (27) with

A← P−1k−1 = (γRk−1 + I), B← γH⊤k ,

← I, D← Hk
ne arrives at (26). □
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Table 2
Basic instances of (23) by choices of ℓ and βk−j , where L is a fixed window length and 0 ≤ β < 1.

Window type ℓ βk−j Rk rk

Infinite Window (IW) 1 1 Rk−1 + H⊤k Hk rk−1 + H⊤k yk
Finite Window (FW) k− L 1 Rk−1 + H⊤k Hk − H⊤ℓ Hℓ rk−1 + H⊤k yk − H⊤ℓ yℓ

Exponentially Weighted (EW) 1 βk−j βRk−1 + H⊤k Hk βrk−1 + H⊤k yk
Lemma 4. In the case of FW, Pk = (γRk + I)−1 can be updated
recursively by

P′k = Pk−1 − γPk−1H⊤k (I + γHkPk−1H⊤k )−1HkPk−1

Pk = P′k − γP′kH
⊤

ℓ (−I + γHℓP′kH
⊤

ℓ )−1HℓP′k
(28)

Proof. By defining

P′k = (γR′k + I)−1 =
(
(γRk−1 + I)+ γH⊤k Hk

)−1
,

the first line in (28) is obtained using Lemma 3.
In the case of FW (see Table 2),

(γRk + I)−1 =
(
(γRk−1 + I + γH⊤k Hk)− γH⊤ℓ Hℓ

)−1
=

(
(γR′k + I)− γH⊤ℓ Hℓ

)−1
.

By substituting the matrices in (27) with

A← (P′k)
−1
= (γR′k + I), B← γH⊤ℓ ,

C ←−I, D← Hℓ

one arrives at the second line in (28). □

The computational complexity for evaluating the proximal
operator (25) using (26) or (28) is O(n2

x) flops for each iteration
of the proximal algorithm.

5.2. Approximate evaluation of (25)

An exact recursive update of (γRk + I)−1 is not for each win-
dow type available. For EW some possibilities for approximating
this covariance matrix based on (γRk−1 + I)−1 and γH⊤k Hk are
summarized in Gunnarsson (1996), in general at the cost of O(n2

x)
flops each time step k. However, such approximation induces the
corresponding errors to propagate over time.

Following Lemma 2, the proximal operator in (25) can be
approximated by a step in the direction of the negative gradient,
for which evaluation of the matrix inversion is not required. Such
gradient step involves a computational complexity of O(n2

x) flops
per iteration of the proximal algorithm. This is however at the
expense of inducing an upper bound on γ , which in the recursive
variant cannot be verified prior to the experiment.

An alternative to the gradient step as introduced in Section 4.1,
is to approximate the proximal operator in (25) using the conju-
gate gradient method provided with a warm start. This requires
multiple evaluations of O(n2

x) flops each iteration of the prox-
imal algorithm and allows the approximation tolerance to be
predefined. The warm start could for instance be provided from a
previous solution of the proximal algorithm at no computational
cost.

5.3. Algorithm overview

The overview of the proximal-based implementation for
model-free data driven fault diagnosis is presented in Algorithm
2. It should be noted that this scheme is applied straightforwardly
to optimization problems in the form of (24), as well as recur-
sive least-squares problems with convex regularization terms
different from the nuclear norm and 1-norm, especially when
closed-form expressions of their corresponding proximal opera-

tors are available. A list of functions with closed-form expressions

7

Algorithm 2 Proximal-based implementation for solving (24)
recursively.

Initialization
0 < ρ <∞ ▷ Scalar step size
0 < ω = [ω1, ω2, ω3] ≤ 1 satisfying

∑3
i=1 ωi = 1

Γ = [γ1, γ2, γ3] = ρω

x̂s−1 ▷ Initial condition
for k = s, . . . ,N do

Obtain measurement yk with regressor Hk

Update Rk and rk in (25) using Table 2
If applicable update Pk = (γ1Rk + I)−1 using (26) or (28)
x̂k = ppxa(Γ , ω, x̂k−1) (Algorithm 1) using the updated
proxγ1fr,k in (25), and from Table 1 proxγ2f2 and proxγ3f3

end for

for the proximal operators is for instance given in Combettes and
Pesquet (2011).

In order to solve (24), Algorithm 2 preserves the convergence
properties of PPXA (Combettes & Pesquet, 2008) summarized in
Algorithm 1. The warm start from x̂k−1 allows to perform only a
small number of iterations np in PPXA, suppressing the computa-
tional effort per time instance k. The experimental demonstration
of Algorithm 2 is presented in Section 6.3.

6. Numerical results

Consider the buck converter in Fig. 2 as example for a DC–
DC switch mode power supply. In Al-Greer, Armstrong, Ahmeid,
and Giaouris (2019) the issue is raised that contemporary system
identification procedures for DC–DC switch mode power supplies
cannot handle unknown rapidly varying load resistances. How-
ever, when a set of possible load profiles is available – for instance
when multiple loads are connected but not necessarily activated
– the proposed data-driven fault diagnosis procedure can be
implemented in order to identify the system characteristics si-
multaneously to diagnosing the activated loads. The assumptions
are as follows:

• The voltage difference over the load resistance VR(k) is
measured as output variable, corrupted with noise y(k) =
VR(k)+ v(k).
• The duty ratio of the switch is regarded as the known

input variable u(k) = SB(k). These are typical input/output
variables (Al-Greer et al., 2019).
• The load resistance RB(k) = RB +∆RB(k) consists of a static

part RB and a time-varying part ∆RB(k).
• For the time-varying load resistance d(k) = ∆RB(k) = θ (k)z,

a dictionary θ (k) of possible profiles (or: faults) is known,
but not necessarily their magnitudes z. Only a small number
of possible load resistance profiles from the dictionary is
active.
• The variables L , C , V and R are unknown.
B B B B
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Fig. 2. Buck converter circuit with inductance LB , diode DB , capacitance CB ,
witch with duty ratio SB(k), source voltage VB and time-varying load resistance
B(k). The voltage difference over the load resistance VR(k) is measurable.

he simultaneous goals are:

• Identify the system (obtain an equivalent for the knowledge
of LB, CB, VB and RB).
• Diagnose the time-varying load resistance ∆RB(k).

In order to show that the dynamics of the buck converter can
e captured in (5), an averaged and linearized model of the buck
onverter is presented in Appendix A.
The nominal numerical values are taken similar to those in

hmeid, Armstrong, Gadoue, Al-Greer, and Missailidis (2017),
amely VB = 10 V, LB = 220 µH, CB = 330 µF and RB =

�. The switching frequency is 200 kHz and the sampling rate
0 kHz. The initial voltage VR(0) = 4.5 V and initial inductor
urrent iL(0) = 0.9 A. The measurement noise is distributed
s v(k) ∼ N (0, 10−3). The duty ratio of the switch SB(k) takes
he values 0.4 and 0.5 following a pseudo-random binary signal.
he time-varying load resistance ∆RB(k) is built up from the
ictionary θ (k) ∈ R1×50 consisting of 50 square waves with

linearly increasing frequencies between 1000 and 1900 Hz and
amplitude 1 �. The fault parameter vector z ∈ R50 consists of
zeros with randomly drawn entries set to one.

6.1. Data-driven fault diagnosis

The simulation experiment tests the proposed approach to
model-free data-driven fault diagnosis in (14) with number of
data points N = 1200, VARX order s = 3 and τ = λ = 10. It is
solved using PPXA in Algorithm 1 with γ = 10−3 and np = 104.

Fig. 3 shows a typical realization of the simulated buck con-
verter in the case of three active faults. In the bottom figure it can
be seen that the entries of z corresponding to the activated square
waves are diagnosed correctly up to a multiplicative scalar. After
applying the refinement step as elaborated in Section 3.3, the
estimates of B, K, F and z are verified with a Variance Accounted
For (VAF) (Verhaegen & Verdult, 2007) of 98.8%.

6.2. Comparison to model-based fault diagnosis

The proposed model-free approach with parameters as in
Section 6.1 is compared to model-based fault diagnosis using
an error-free and erroneous linearized model. The corresponding
linear VARX-models required for the model-based approach are
constructed as described in Appendix A, after which an error of
0.4 is introduced in the (2, 1)th element of the discretized A-
matrix. Then, the observer poles for the discretized linear models
are placed on 0.2 and 0.21 and a VARX model order of s=8 is
chosen. These models are then used in the model-based approach
(11) with λ = 0.3 and solved using CVX (Grant & Boyd, 2014).

Based on 100 realizations, the rates of successful fault isolation
against the number of data points are presented in Figs. 4 and
5 for three and four active faults, respectively. The isolation is
regarded successful if each nonzero component of ẑ satisfying
 r

8

Fig. 3. Part of a realization of the noise-free system output of the buck-converter
with corresponding duty ratio as input and load resistance RB(k). A solution of
the optimization problem (14) provides diagnosis of z (bottom, red circles) and
a refinement step using (14) with λ = 0 provides system identification with VAF
8.8% (top, red) with respect to the noise-free system output. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

ẑ| > ϵ∥ẑ∥∞ with ϵ = 0.1 is diagnosed while the other
components are not, i.e. no misdetection nor overdetection.

For three active faults, Fig. 4 shows that the model-free ap-
proach requires more data than the model-based approach in
order to reach a high isolation rate. However, if the employed
model is erroneous, the isolation rate of the model-based ap-
proach remains at a value around 80%, regardless of the increas-
ing data size. For four active faults, Fig. 5 presents a different
phenomenon, namely a decreasing isolation rate from a cer-
tain data size. Since the net load resistance RB(k) approaches
ero at certain time instances, the buck converter starts show-
ng non-negligible nonlinear behavior. Since the performance of
he model-free approach decreases slower than the model-based
pproach, it appears that the model-free approach can better
ccommodate this nonlinearity.

.3. Proximal-based recursive implementation

The second simulation experiment demonstrates the recursive
mplementation of the proximal algorithm as described in Algo-

ithm 2. Here we consider optimization problem (23) with a finite
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Fig. 4. Successful isolation rate in case of three active faults using a linearized
odel (blue, ◦), an erroneous linearized model (red, □) and the proposed model-

ree approach (yellow, ⋄). More data leads to an increased isolation rate and
he model-free approach outperforming the model-based approach with an
rroneous model.

Fig. 5. Successful isolation rate in case of four active faults using a linearized
odel (blue, ◦), an erroneous linearized model (red, □) and the proposed model-

ree approach (yellow, ⋄). More data reveals the nonlinear nature of the buck
onverter in the condition of four active faults. The model-based approach
ecreases in performance more than the model-free approach.

indow using L = 1000 samples. Equivalently to Section 6.1,
= 3, τ = λ = 10 and γ = 10−3. Each time step, the

PXA algorithm performs np = 10 iterations initialized with a
arm start from previous time step. The results are compared to
hose without regularization using recursive least squares (Sayed,
003).
The results are shown in Fig. 6. In the initial configuration

0 ≤ t < 0.06 s) the VAF for system identification converges
round t = 0.01 s and the faults can be diagnosed correctly
rom circa t = 0.04 s. In the second phase (0.06 ≤ t <

.12 s) the active faults have changed to different square wave
requencies. The VAF decreases slightly after which it slowly
ncreases again. Simultaneously, the new faults can be diagnosed
rom circa t = 0.11 s. In the third phase (0.12 ≤ t < 0.18 s)
he system characteristics have changed by adjusting the nominal
oad resistance RB from 5 � to 3.5 �. This results in a reduction
n the VAF, after which it increases again. The diagnosed faults
emain roughly constant. In the fourth phase (0.18 ≤ t < 0.3 s)
oth the active faults and model change to their original config-
ration. Now the VAF shows a sharp drop, but again it recovers
fter some time and also the original faults are diagnosed again
round t = 0.23 s. By the regularization on the nuclear norm
nd the 1-norm, the recursive proximal algorithm outperforms
nregularized recursive least squares in identifying the system in
small number of measurements, and in highlighting the active

aults while suppressing the entries of the non-active faults.
9

Fig. 6. The diagnosed faults over time without regularization using recursive
least squares ((Sayed, 2003), FW with R0 = I , top) and with regularization using
the recursive proximal algorithm ((23), FW with R0 = 0 solved using Algorithm
2, second), together with their corresponding Root Mean Square Error (RMSE)
with respect to the inactive faults (third) and the VAF of the simultaneously
identified model (bottom). The vertical dashed lines at t = 0.06, t = 0.12 and
= 0.18 s indicate a change in active faults, system characteristics and both,
espectively. The average computational time per time instance k on an Intel
7-9750H CPU was 929 µs for Algorithm 2 versus 148 µs for unregularized
ecursive least squares. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

. Conclusions

Model-free data-driven fault diagnosis aims at identifying the
ystem and diagnosing the faults simultaneously, eliminating the
ecessity of an extensive identification phase prior to diagnosing
aults. A proposed approach reformulates it as a convex optimiza-
ion problem in order to make it computationally attractive. This
pproach is implemented online using a recursive implementa-
ion of a proximal algorithm.

The numerical results on a buck converter show how the
aults are diagnosed simultaneous to system identification. A sec-
nd simulation shows how the recursive implementation handles
arying system parameters and (dis-)appearance of faults during
peration.
The newly introduced methodology provides ample room for

uture research. A few examples are outlined as follows. First,
he diagnosis performance trade-off with respect to the data
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ize could be analyzed theoretically, including a comparison with
odel-based and state-of-the-art data-driven techniques. This is
resumably dependent on the chosen input signal and the fault
ictionary. The second is the evaluation of the uncertainty of the
stimated quantities with respect to the number of active faults,
he properties of the I/O-data and those of the dictionary. On
he algorithmic side we mention a third area of future research
elated to competitive optimization algorithms able to handle
ore than two possibly non-smooth objective term. In line of that

esearch objective the computational efficiency of the recursive
mplementation could be further improved exploiting possible
tructure in the problem.

ppendix A. Buck converter system equations

Regarding the continuous-time variables

x(t) =
[
x1(t)
x2(t)

]
=

[
iL(t)
VR(t)

]
(t) = SB(t)

(A.1)

here iL(t) is the current through the inductor, the averaged (Tan
Hoo, 2015) continuous-time model for the buck converter is

ẋ(t) =

[
0 −1

LB
1
CB

−1
RBCB

]
x(t)+

[
VB
LB

0

]
u(t)

+

[
0

∆RB(t)VR(t)
(RB+∆RB(t))RBCB

]
(t) =

[
0 1

]
x(t)+ v(t)

(A.2)

inearization around ∆RB = 0 and V R yields

ẋ(t) =

[
0 −1

LB
1
CB

−1
RBCB

]
x(t)+

[
VB
LB

0

]
u(t)+

[
0
VR

R2BCB

]
d(t)

y(t) =
[
0 1

]
x(t)+ v(t)

(A.3)

here d(t) = ∆RB(t). Assuming zero-order hold for u(t) and d(t),
he discretized state-space representation is

(k+ 1) = Ax(k)+ Bu(k)+ Fd(k)
y(k) = x(k)+ v(k),

(A.4)

hich can be approximated by the VARX model (5).
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