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ABSTRACT

Drinking water biosafety has become an increasing concern for public health. Chlorination is widely used as the main disinfec-

tion strategy worldwide but has clear and well-known byproduct issues. The Netherlands has successfully demonstrated

unchlorinated approach for almost 20 years but has not been widely adopted by other countries. To chlorine or not chlorine

is becoming a critical question in front of all the water utilities. This review aims to provide a good overview of current biosafety

management strategies, their disadvantages, as well as the latest developments and future trends. Firstly, the advantages and

deficiencies of conventional disinfection and non-disinfection were discussed. Secondly, the commonly used and promising

methods for biostability assessment are described. Finally, critical views on the strategy selection for ensuring drinking

water biosafety were discussed. It is recommended to achieve both biological and chemical balance by removing pathogens

while minimizing the organic matter and dosing a minimum level of disinfectants, which would represent the compromise

choice between the current chlorine-based disinfection and chlorine-free strategy. It’s worth noting that the complexity of

ensuring biosafety lies in the variations among different regions, the selection of suitable methods should be tailored to specific

situations on a case-by-case basis.
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HIGHLIGHTS

• Recent development in drinking water biosafety is reviewed.

• Disadvantages of chlorination are discussed.

• Successful unchlorination demostration is given regarding key points and limitations.

• Monitoring technologies are presented and reviewed.

• Chlorination and unchloriantion are compared, with a focus on disucssing future trends and directions.

1. INTRODUCTION

Ensuring the biosafety of drinking water is essential for promoting public health, preventing outbreaks of water-
borne diseases, protecting vulnerable populations, supporting economic development, and preserving the

environment. This is especially true for drinking water distribution systems, where the growth of microbes
may result in water quality deterioration, such as undesirable aesthetic (e.g., tastes, odors, and visual turbidity)
water quality (Van Der Kooij 2000). It may also cause infrastructure failures, such as the blockage of filters at

the point of use, biofouling on distribution pipes, and corrosion caused by biological factors (Lee et al. 1980).
In an extreme situation, the consumption of water harboring pathogens poses a hygiene threat to consumers
and affects public health (Vital et al. 2007).

Particularly, waterborne microbial infections are recognized as a significant public health issue worldwide
(Azimirad et al. 2018; Bailey et al. 2021). Approximately 4.0% of global deaths and 5.7% of the overall disease
burden may be attributed to waterborne pathogens (Prüss et al. 2002). In 2015, over 1.3 million global deaths
resulted from diarrhea, making it the fourth most prevalent cause of death in children under the age of five
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(Wang et al. 2016). This poses a significant health threat on a global scale, affecting not only low-income regions
with limited access to safe water, sanitation, and prompt medical assistance, but also high-income regions where
acute infectious diarrhea often leads to hospital visits (Wazny et al. 2013).

To ensure the biosafety of drinking water, water supply systems typically employ a series of water treatment
processes designed to efficiently eliminate or deactivate microorganisms associated with hygiene concerns
(Favere et al. 2021a). These approaches can generally be categorized into two groups based on the presence
or absence of chlorination. Chlorine disinfection can diffuse and enter the cell to inactivate microbes primarily

by reacting with cell components (Young & Setlow 2003), while the unchlorinated route is producing and distri-
buting biologically stable water based on nutrient limitation during water treatment. Besides, in terms of
monitoring and testing, microbiological indicators of water quality are utilized globally to ensure the biosafety

of drinking water. Traditional detection methods like heterotrophic plate count (HPC) are commonly used to
monitor microorganisms in drinking water (Allen et al. 2004). For instance, European Union directives specify
that no total coliforms, Escherichia coli, or Enterococci should be detected in every 100 mL of drinking water

(Sandra & Rachel 2013) In China, the total plate count in chlorinated drinking water must be below
100 CFU/mL (Colony Forming Units), and no total coliforms, Clostridium perfringens, or fecal coliforms like
E. coli and Enterococci should be detected in 100 mL of water.

The development of science and technology in the field of drinking water keeps updating the knowledge and
our understanding on biosafety. Particularly, the fast detection and advance characterization techniques on
microbes and organic matter providing new insights into this specific field of research. In this review, we provide
a comprehensive assessment on the limitations and advantages of widely used disinfection methods and non-dis-

infection methods, the biostability assays for monitoring and mitigating the risk of microorganism contamination,
and the recommendations on future research and applications, with a special emphasize on the development of
new methodologies and technologies.

2. DRINKING WATER DISINFECTION

2.1. Disinfection strategies

Disinfection typically serves as the final step in water treatment, aimed at eliminating pathogenic microorganisms
(Sharma et al. 2016). The widely applicable disinfection methods include chlorine-containing disinfectants (pri-

marily free chlorine, chloramine, and chlorine dioxide), ozone disinfection, and ultraviolet (UV) disinfection
(Sedlak & von Gunten 2011), among which chlorine is extensively used as a drinking water disinfectant
owing to its stable disinfection effectiveness and affordability. It penetrates cells and primarily inactivates

microbes by reacting with cell components (Young & Setlow 2003). The concerns about the formation potential
toxic byproducts have led water utilities to switch residual disinfection from chlorine to chloramine, which is
believed to maintain a more stable residual than free chlorine, providing prolonged protection against regrowth,
and it is thought to penetrate biofilms more effectively (Lee et al. 2011).

Ozonation disinfection works by destroying bacterial cell walls, releasing cellular components, damaging
nucleic acids, and breaking down carbon-nitrogen bonds in proteins, ultimately leading to depolymerization
(Hollender et al. 2009). Its effectiveness depends on factors such as the susceptibility of the organism, reaction

time, and radical concentrations (Alexander et al. 2016). UV irradiation is known for its strong disinfection capa-
bilities, disrupting the DNA structure of organisms by creating pyrimidine dimers and destroying cell membranes
through reactive oxygen species (ROS) during photolysis (Gong et al. 2012; Liu et al. 2019). Although UV is effi-

cient in eliminating chlorine-resistant protozoa such as Cryptosporidium parvum (Linden et al. 2002), it cannot
maintain prolonged inactivation ability. In cases of emergencies, such as drinking water contamination due to
pipeline leakage during distribution, disinfection can promptly inactivate microorganisms (Tong et al. 2015).
Overall, disinfection serves as a relatively quick and efficient treatment approach to ensure the biosafety of drink-
ing water.

2.2. Limitation of disinfection (chlorination)

As chlorine-based disinfection is the widely used strategy worldwide for drinking water production and disinfec-

tion, this section will focus on the limitations of chlorination, such as chlorine gas, sodium hypochlorite, or
chloramines. The main limitations include the presence of chlorine-resistant bacteria, formation of disinfection
byproducts (DBPs), generation of growth-promoting carbon sources, and promotion of antimicrobial resistance

(AMR) in water (Figure 1).
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2.2.1. Disinfection-residual bacteria

Almost none of the disinfection technologies are capable of completely eliminating all microorganisms in water

on a large scale (Proctor & Hammes 2015). The residual microorganisms that have the ability to grow or main-
tain virulence after disinfection are referred to as disinfection-residual bacteria (DRB) (Wang et al. 2021).
Disinfection exerts a notable selection pressure on bacterial types in drinking water (Luo et al. 2021), meaning
that not all bacterial groups behave in the same way when exposed to disinfection, e.g., chlorination (Di

Cesare et al. 2020). The efficacy of disinfection against microorganisms is significantly influenced by intrinsic
properties of microbial cells, such as a robust cell envelope observed in Mycobacteria or the ability to form endo-
spores in certain microorganisms, enabling these microbial communities to withstand disinfection stress (Ivone

et al. 2013). Another important mechanism is the bacteria’s ability to recover from a damaged state, notably seen
in certain groups like Beta- and Gammaproteobacteria (Becerra-Castro et al. 2016). Undesirable DRBs may pose
various risks related to changes in regrowth potential, biofouling potential, antibiotic resistance levels, etc.

(Garner et al. 2018; Yu et al. 2018). In the study by Wang et al. (2021), at the genus level, Pseudomonas, Myco-
bacterium, Legionella, Sphingomonas, and Bacillus showed the highest increase in relative abundance after
chlorine disinfection.

2.2.2. Disinfection byproducts

The disinfection process can lead to the formation of haloacetic acids (HAAs) and trihalomethanes (THM4), such
as chloroform, dibromochloromethane, dibromo-dichloromethane, and bromoform, which are identified as
byproducts resulting from the reaction of disinfectants with precursors present in raw water. The concentrations
of DBPs increased with increased chlorine dosages and high levels of precursors (Niu et al. 2017). These precur-

sors may originate from natural organic compounds (NOM) (Ruan et al. 2021; Maqbool et al. 2022), as well as
anthropogenic contaminants such as endocrine-disrupting chemicals (EDCs), pharmaceutical and personal care
products (PPCPs), pesticides and herbicides, cyanotoxins, textile dyes, surfactants (Richardson & Postigo 2015;

Postigo et al. 2017). These DBPs are considered toxicological contaminants with mutagenic, teratogenic, and car-
cinogenic properties. For instance, epidemiological research has indicated links between the consumption of
chlorinated tap water with increased THM4 levels and negative health effects, such as bladder cancer (Costet

et al. 2011), miscarriages (Waller et al. 1998), and birth defects (Grellier et al. 2010; Wright et al. 2017),
among others. It is important to note that measuring THM4 concentrations to assess exposure to DBPs is not
because they have been demonstrated to be the main contributors to cancer risk; rather, they are carcinogens,

and their concentrations are assumed to be associated with those of other DBPs (Li & Mitch 2018). Furthermore,

Figure 1 | Main disadvantages of (chlorine-based) disinfection.
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these links do not necessarily represent a cause-and-effect relationship; for example, epidemiology studies addres-
sing different types of birth defects do not universally support a causal connection between exposure to
chlorination DBPs and any birth defects (Hrudey 2009).

However, the dangers of DBPs cannot be overlooked. Firstly, humans are exposed to DBPs through various
pathways, including direct consumption of water and dermal absorption during activities such as showering,
bathing, and swimming in treated pools (Li et al. 2017b; Qiu et al. 2023). Secondly, the analysis and regulation
of DBPs present challenges due to the diversity of precursors, resulting in the formation of a highly complex mix-

ture of DBPs likely numbering over 1,000 (Li & Mitch 2018). Some of these DBPs, including both regulated and
unregulated compounds, have demonstrated higher genotoxicity and cytotoxicity compared to certain regulated
compounds (Richardson & Postigo 2015; Plewa et al. 2017), with insufficient understanding of their toxicological

risks. Thirdly, although the causal linkage between diseases and DBP exposure is unclear, a positive correlation
has been found between bladder cancer and THM4 and HAAs (Grellier et al. 2015).

Utilities have made efforts to optimize the use of disinfectants to achieve both pathogen reduction and regulat-

ory limits on DBPs. For instance, utilities are transitioning from relying solely on chlorine disinfection to
combining primary disinfectants (e.g., ozone, UV) with chloramines as secondary disinfectants (Seidel et al.
2005; Dotson et al. 2012). However, each disinfectant promotes the formation of distinct classes of DBPs. Chlor-

amination promotes the production of nitrosamines (Liu et al. 2020)and iodinated DBPs (Hu et al. 2018), ozone
leads to the formation of haloacetaldehydes and halonitromethanes (McCurry et al. 2016), while medium
pressure UV irradiation has the potential to generate dichloroacetonitrile (Ye et al. 2018).

2.2.3. Disinfection-generated organic matter (DgOM)

Another concern arises from the possibility that disinfected natural organic matter present in surface water may
change the molecular composition of dissolved organic matter (DOM) and transform into assimilable organic

carbon (AOC) (Ramseier et al. 2011; Ye et al. 2018), introducing uncertainty to the biological stability of the fin-
ished drinking water (Liu et al. 2015a). This type of disinfection by-product, related to biodegradable organic
matter, could form following various disinfection approaches, such as ozone, ferrate, permanganate, chlorine

dioxide, chlorine, and chloramine (Ramseier et al. 2011; Liu et al. 2015b; Li et al. 2018). For instance, it is
acknowledged that several disinfection methods, including ozonation (Park et al. 2016) and chlorination (Liu
et al. 2002), could increase the AOC concentration during the drinking water treatment processes. The heigh-
tened availability of nutrients promotes microbial regrowth, which is contrary to the original objectives of

water disinfection, namely ensuring biological safety. Previous studies have indicated a strong correlation
between bacterial growth and AOC concentrations. In a study by Li et al. (2018), an AOC concentration of
less than 135 μg/L in the distribution water distribution system (DWDS) limited intact cell concentrations.

2.2.4. Antimicrobial resistance

Disinfection impacts the antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in drinking

water, which has garnered considerable research attention (Karkman et al. 2018). Current disinfection methods
not only fail to completely eradicate ARB and ARGs before entering the drinking water distribution system
(DWDS), but they may also actively contribute to their development and spread (Sanganyado & Gwenzi

2019). Disinfection methods known to enhance AMR include chlorination, chloramine, and UV irradiation.
Less commonly used disinfection technologies, such as ozonation and other advanced oxidation processes,
are not considered selective factors (Guo et al. 2017; Zhang et al. 2020). For example, UV and chlorine treat-
ments effectively inactivated bacterial cells but incompletely degraded ARGs (Stange et al. 2019). Whereas,

low-dose oxidants may stimulate the production of ROS (Jin et al. 2020), increasing the permeability of bacterial
cell membranes and facilitating the transfer of ARGs among bacteria (Zhang et al. 2017). Chlorine exposure has
been found to induce the overexpression of efflux pumps (Hou et al. 2019), enhancing bacterial antibiotic resist-

ance (Blair et al. 2015). The remaining ARGs could be assimilated into pathogenic microorganisms through
transformation and transduction in water settings, posing a health risk to humans (Zhang et al. 2020).

3. THE BIOSAFETY AND BIOSTABILITY OF UNCHLORINATED DRINKING WATER

3.1. Chlorine-free drinking water supply in The Netherlands

In practice, the whole country of the Netherlands, and some regions of Switzerland, Austria, and Germany rea-
lized producing and distributing chlorine-free drinking water (van der Kooij et al. 2002; Hammes et al. 2010a;
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Rosario-Ortiz et al. 2016). The well-known example is the Netherlands, for which the chlorination was halted in
2005 (Hijnen et al. 2018a). Instead, the approach shifted toward suppressing growth in the distribution network
by inducing nutrients limited biostability, rather than relying on chemical disinfectant residuals. This was accom-

plished through systematic optimization of drinking water system by combining efforts from water source, water
treatment, and water distribution.

Firstly, prioritize the use of the best available sources, starting with microbiologically safe groundwater, fol-
lowed by surface water with soil passage like managed artificial recharge (MAR) or riverbank filtration (RBF),

and the direct treatment of surface water (e.g., abstracted from dunes, and the rivers Meuse and Rhine) employing
multiple barrier treatments (Figure 2).

Figure 2 | (a) Full-scale conventional water treatment processes at the drinking water treatment plant, adapted from Sousi
et al. (2020b); (b) The direct treatment of surface water employing a series of measures, adapted from Smeets et al. (2009b);
(c) One-step reverse osmosis system based on RBF, adapted from Zhai et al. (2021).
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Secondly, the direct treatment of surface water requires a series of measures, opting for preferred physical pro-
cess treatments including sedimentation, filtration (e.g., ultrafiltration, nanofiltration, and reverse osmosis (RO)
(Kamp et al. 2000), and UV disinfection, if indispensably necessary, consider oxidation using ozone (often com-

bined with biological treatment such as sand filters or biologically active carbon filtration), peroxide or H2O2-UV
irradiation (Kruithof et al. 2007), but chlorine usage is avoided. Pre-treatment through soil infiltration or applying
post-treatment via slow sand filtration proved effective in achieving low levels of high molecular weight organic
carbon and microbial growth potential in the production of drinking water (van der Kooij et al. 2017). Besides,
employing ultrafiltration post-treatment in traditional surface water treatment facilities demonstrated a promising
method to improve the biological stability of drinking water (Schurer et al. 2019).

Thirdly, avoid growth and contamination during distribution, and set strict hygiene procedures for the con-

struction, maintenance, and repair of DWDS. To prevent the growth of microorganisms, it also requires using
biostable pipe material (Park et al. 2021; Duong et al. 2023). Keeping the monitoring of water quality and
system performance on a regular frequency is also important for preventing potential adverse health impacts,

for example monitoring program for tap water quality and the malfunction of the system (e.g., avoidance of stag-
nant areas and prevention of sediment accumulation (Liu et al. 2014; Ling et al. 2018)). The remarkably low
number of outbreaks and complaints in the Netherlands suggests the effectiveness and safety of the Dutch

approach (de Moel et al. 2006; Smeets et al. 2009a). Moreover, certain circumstances in the Netherlands, encom-
passing population density, geography, and economy, were conducive to these procedures (Smeets et al. 2008).

Beyond the established achievements, the Dutch scientist proposed and realized the one-step reverse osmosis
(OSRO) concept recently (Zhai et al. 2021), which combines RBF and RO for drinking water treatment. In brief,

river water flows through the soil passages to eliminate particles, organic compounds, and microorganisms. Sub-
sequently, the well-pretreated water by nature is abstracted and pumped through RO membrane to provide high-
quality drinking water. Alternatively, RBF can be utilized not only as its natural form but also integrated with

artificial recharging, constructed wetlands, and various other methods of natural water purification (D’Alessio
et al. 2018). The OSRO treatment is recognized for its capability to efficiently remove particles, pathogens,
and nutrients (Albergamo et al. 2020). Moreover, it has been proved that even artificially adding pathogens

into OSRO-treated water, the pathogens could not grow in the water and simulated plumbing system, confirming
it is a green and safe technology for producing high-quality drinking water (Learbuch et al. 2019).

The implementation of water safety plans regarding emergencies is rapidly increasing in the Netherlands. Some
general corrective actions are presented here. For example, emergency response measures adopted include shut-

ting down the intake at moments of poor raw water quality and discharging the pollutants from the intake
reservoir back into the river. Moreover, emergency power supplies and dividing the system into water-tight com-
partments are employed to address risks such as power loss or flooding. In case of contamination occurs during

the distribution, the affected area is isolated by selectively closing valves while keeping pressure in the system.
Meanwhile, to avoid pressure losses, the water supply security plans enable alternative systems to partially
take over the water supply in the affected region. Additionally, flushing the system where feasible and chlori-

nation may be employed to deactivate pathogens that could persist in the distribution system after flushing.
Customers will receive notifications through door-to-door boiling notices, the internet, and radio broadcasts.
Regional crisis centers are activated in cases of considerable-scale events. The boiling notice will be lifted

upon microbial sampling confirms water safety (van Lieverloo et al. 2006; Smeets et al. 2009b).

3.2. Biostability assays

When producing and distributing biostable drinking water (i.e., without the use of additional residual disinfec-

tants), precisely monitoring the biological stability of drinking water is of high priority (Favere et al. 2021b).

3.2.1. Chemical assays: biodegradable organic matter

Several methods such as biodegradable dissolved organic carbon (BDOC) and AOC are employed to evaluate the
biodegradable organic carbon in drinking water, which are recognized as the primary nutrients that bacteria pre-
ferentially consume because they are prone to bacterial degradation. Generally, a low AOC level (below 50 μg/L)

can be recognized as biostability in chlorinated drinking water (Kooij 1992), which should be below 10 μg C/L in
non-chlorinated systems (van der Kooij 1992).

Although valuable insights have been gained through these indicators, BDOC and AOC as representations to
assess biodegraded organic carbon are limited to scenarios where growth relies solely on biodegradable carbon
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and overlook the quantity of other organic matter available for bacterial utilization in drinking water (van der
Kooij 2000). AOC was initially assessed using strains Pseudomonas fluorescens strain P17 and Spirillum strain
NOX, but not all biodegradable organic carbon present in drinking water could be assimilated by these strains

(Wu et al. 2022). Moreover, AOC tests by definition do not evaluate autotrophic growth and exhibit limitations
in assessing nutrients beyond organic carbon (Prest et al. 2016). An improved method has been developed to
measure AOC in drinking water, which is based on batch growth of a natural microbial community until the
stationary phase is reached and all AOC is consumed (1 μg AOC¼ 1� 107 cells) (Hammes & Egli 2005). For

instance, slowly biodegradable compounds have been demonstrated to influence bacterial regrowth in DWDS
significantly (Hijnen et al. 2018b). Furthermore, other growth-limiting nutrients, e.g., phosphate (Miettinen
et al. 1997), are also underestimated, which may be more crucial in certain situations for comprehending

microbial growth in full-scale drinking water systems. In addition, considering the complex nature of AOC regard-
ing a mixture of chemicals (Terry & Summers 2018) and the conventional assays for DOM only from a specific
aspect (Hem& Efraimsen 2001; Kim et al. 2017; Wang et al. 2022). For instance, the absorbance at 254 nm in the

UV–visible absorbance spectroscopy is indicative of aromatic compounds (Yan et al. 2017). Excitation-emission
matrix employs parallel factor analysis to differentiate various fluorescent components (Lin & Guo 2020), but it
cannot identify nonfluorescent DOM components. High-performance size exclusion chromatography can deter-

mine the relative molecular weight component of DOM (McAdams et al. 2018). However, these methods yield
relatively abstract conclusions and cannot offer crucial information about the source and specific compositions of
organic matter.

Therefore, it is desirable to detect accurately and understand the transformation of organic matter at the mol-

ecular level as the type and composition of nutrients are essential for both bacterial growth and shaping the
bacterial community (Elhadidy et al. 2016; Nescerecka et al. 2018).

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is a promising method to provide

crucial information in terms of element combination, compound compositions, and the fate of DOM in drinking
water (Lavonen et al. 2015). In the study by Huang et al. (2019), Pseudomonas aeruginosa was selected to evalu-
ate the extent of AOC formation from NOM upon chlorination, UVC irradiation, and photocatalysis (TiO2-UVA).

and FT-ICR-MS was utilized to establish connections between transformations of NOM to the corresponding
AOC formation. In another study by Hou et al. (2022), a pilot-scale system was implemented to enhance real
drinking water treatment procedures employing the coagulation coagulation/ ozonation/catalytic ceramic mem-
brane filtration process in a continuous mode and FT-ICR MS was utilized to offer insights into DOM

transformation at the molecular level and the correlation between AOC and various classes of compounds. How-
ever, the application of this technology has its limitation. Firstly, the FT-ICR-MS data employed for analysis
typically possess a relatively high mass cutoff (namely, mass-to-charge, m/z), indicating the exclusion of mol-

ecules with lower molecular weight, while these fractions are demonstrated to contribute to biodegradable
substances. Secondly, electrospray ionization prefers easily ionized compounds, thus the detection of compounds
with low ionization efficiency would be limited (Huang et al. 2020). To date, the utilization of the FT-ICR MS

technology in analyzing the DOM transformation of drinking water at the molecular level is promising.

3.2.2. Biological assays: microbiological parameters

Another aspect of biological stability concerns microbiological parameters, with the widely used parameter being
traditional HPCs for monitoring microbial drinking water quality (Srinivasan & Harrington 2007; Favere et al.
2021b). However, this assay is time- and labor-consuming, and the results only represent a limited and specific

fraction of culturable microbial communities in water samples. For instance, regulated bacteria like E. coli are
more susceptible to disinfectants than most pathogens (van Lieverloo et al. 2007), while certain protozoa like
Cryptosporidium can be exposed to similar dosages of chlorine disinfectant with little or no effect. This could

lead to prolonged undetected serious pathogenic contamination in actual operations, thus highlighting the limit-
ations of traditional detection methods such as HPC.

In view of this, it is necessary to use culture-independent methods to detect the activity and number of micro-

organisms. Bacterial cell viability can be evaluated by labeling cells using fluorescent dyes that target specific
bacterial physiological features, which include cell membrane integrity, membrane potential, respiratory activity,
that can be detected with epifluorescence microscopy or flow cytometry (FCM) (Prévost et al. 1998; Hoefel et al.
2005; Berney et al. 2008; Hammes et al. 2011). For example, the flow-cytometric total cell concentration proved
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to be a credible and reasonable parameter for illustrating bacterial growth throughout the 18-month sampling
campaign in both drinking water treatment and the distribution system (Hammes et al. 2010b).

Moreover, adenosine triphosphate (ATP) can serve as a valuable assay of biological activity (Pan et al. 2021).
This method is capable of specifically detecting intracellular and extracellular ATP and estimating the average
bacterial ATP content per cell by integrating it with FCM (Hammes & Egli 2010; Hammes et al. 2010c). FCM
and ATP measurements have been demonstrated to be effective for precise detection and rapid analysis, offering
more descriptive value for assessing the treatment effectiveness of drinking water than conventional HPC

measurements (Siebel et al. 2008; van der Wielen & van der Kooij 2010; Vital et al. 2012).
Bacterial community profiling has expanded the assessment scope of biological stability by examining commu-

nity structures. A shift in the microbial community composition may indicate instability, emphasizing the need to

understand bacterial dynamics for evaluating microbial risk and ensuring the delivery of safe drinking water
(Pinto et al. 2014). Molecular methods for this purpose are typically categorized into fingerprinting methods
and high-throughput sequencing techniques (HTS). While fingerprinting methods like denatured gradient gel

electrophoresis (DGGE)and terminal-restriction fragment length polymorphism (T-RFLP)track changes in
microbial communities, they primarily identify predominant species (Douterelo et al. 2014). In contrast, HTS
analyze microbial diversity and structure across different water settings, offering deeper insights. For instance,

in a study by Pinar-Méndez et al. (2022), 16S rRNA metabarcoding and microbial water quality indicators
were used to study bacterial community dynamics in a full-scale DWTP.

4. CONCLUSION AND OUTLOOK: TO CHLORINATE OR NOT TO CHLORINATE?

To summarize (Figure 3), this review provides a comprehensive overview of drinking water biosafety by chlori-
nation and unchlorinated but by nutrients limitation approach. The main disadvantage of chlorination

includes formation of DBPs and AOC, promotion of chlorine-resistant microbes and AMR. By the successful
demonstration of the Netherlands, we propose the combination of efforts in source, treatment, and distribution
to achieve unchlorinated water supply. At the end, chemical and microbiological based monitoring methods for

biosafety and biostability were reviewed.

4.1. Balancing the immediate microbial risks and chronic chemical risks

Optimizing the combinations of disinfectants has been preferred as a useful approach to balance the immediate
threat from pathogens in contrast to the chronic risk linked with DBPs. However, this is a highly complex balance

Figure 3 | A schematic illustration of insights into the use of disinfection and non-disinfection strategies to ensure drinking
water biosafety.
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(Li & Mitch 2018). In addition, employing chlorination to more than one step by adjusting the time interval and
dosage ratio could improve the disinfection efficiency like a higher overall Ct value and a shorter recovery time,
and this strategy could reduce chlorine consumption costs. However, the formation of DBPs has not been clari-

fied and needs further research to suit the production conditions (Li et al. 2017a). Additionally, sensor-based
monitoring and evaluation systems can be utilized to collect and analyze data to obtain precise measurement
results and these data gained at the passive chlorinator and throughout the distribution network can help to
develop a predictive model for determining an optimal initial chlorine dose (Wilson et al. 2017; Lindmark

et al. 2022). The WHO guidelines for chlorination suggest maintaining chlorine levels equal to or exceeding
0.5 mg/L across the distribution system and a minimum level of 0.2 mg/L chlorine at the point of delivery in
piped infrastructure (Lindmark et al. 2022). Real-time monitoring and timely detection of system malfunctions

could trigger alerts for the maintenance of passive chlorinators to improve long-term service delivery (Andres
et al. 2018). These technologies enable real-time monitoring and control of water quality parameters, guiding
prompt adjustments in disinfectant dosages and treatment processes to lie on water quality standards while main-

taining optimal disinfection levels and minimizing the formation of DBPs. However, there are some limitations of
passive in-line chlorination such as frequent manual testing (labor and time-consuming) to detect technical failure
and long-term sustainability not well-studied (Lindmark et al. 2022). In this review, we only discussed the com-

monly used disinfection methods. Other physical and chemical approaches, such as dry and moist heat, ethylene
oxide, hydrogen peroxide, and alcohol were not mentioned due to their limited application in full-scale systems
(Bharti et al. 2022). The direction of less-toxic disinfectant alternatives would mean the possibility of having
greener disinfection approaches.

In the case of the Netherlands, drinking water is produced without chlorine, which completely eliminates the
chronic risk associated with lifelong exposure to potentially carcinogenic DBPs. Achieving this requires multi-
barrier water treatments and a well-maintained distribution system, which may not be applicable for other

cases. For example, utilizing soil infiltration as a pre-treatment or slow sand filtration as a post-treatment requires
substantial area of spaces, the adequate land area for abstracting groundwater is in total about 1,500 square kilo-
meters, 4.4% of the ground in the Netherlands (Smeets et al. 2009b).In addition, unique geographical conditions

such as sandy aquifers covered by impermeable clay layers act as a protective barrier, shielding the groundwater
from potential surface contamination (Schijven & Hassanizadeh 2002). Moreover, optimized membrane technol-
ogies (e.g., nanofiltration, RO) can remove all microbes from the water when the integrity of the membrane and
connections is guaranteed (Kamp et al. 2000), but with high costs and energy consumption (Vingerhoeds et al.
2016; Sousi et al. 2020a). Furthermore, it is also associated with advanced and expensive monitoring and main-
tenance of the distribution system. As discussed, organic matter enables the consumption of disinfectants and
conversion into DBP (including AOC). Therefore, another point of interest for achieving such biological and

chemical balance would be removing pathogens while minimizing the organic matter and maintaining a mini-
mum level of disinfectants. This would be the compromise choice between the current chlorine-based
disinfection and the successful but challenging chlorine-free in the Netherlands.

4.2. Advancing high-resolution and high frequency monitoring methods

It is more than clear that HPC and E. coli are not good indicators for monitoring and managing drinking water

biosafety and bio-quality. Methodology that could provide fast, accurate, and preferably molecular and fundamen-
tal insights on microbiological processes to bring forward the microbiological water quality measurements to
actionable management. Examining native bacterial community compositions and community dynamics could
be linked to the proposed actions, providing an evaluative framework for the microbial management of drinking

water. Precise and sensitive microbial monitoring is crucial for evaluating microbial processes and further ensur-
ing the biosafety of drinking water for the end consumer. Recognizing the need for these aspects, methods
including ATP, FCM, and HTS technologies, especially the combination of multi-omics (e.g., metagenomics,

metatranscriptomics, metaproteomics, and metabolomics) could expand our understanding on the activity and
diversity drinking water microbes. Moreover, Parameters aimed at monitoring more specific microbial groups,
such as heterotrophic or Aeromonas plate counts, Mycobacterium spp., and fungi, are recognized as reliable indi-

cators for detecting regrowth in DWDS (van der Wielen et al. 2016). In return, this would offer valuable insights
on how disinfectants impact microbial ecology and guide the practical work on biological water quality monitor-
ing. Additionally, some of these technologies (e.g., ATP and FCM measurement) could be (or already)

implemented in real-time monitoring in water supply utilities, combing with machine learning models, it will
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bring revolutionary changes in drinking water supply paradigm, particularly regarding the dosage of disinfectants
and the response from distribution system (Czyczula Rudjord et al. 2022; Kang et al. 2023).

It should be mentioned that the complexity of ensuring biosafety lies in the variations among different

countries, which exhibit various source water characteristics, employ distinct conditions of treatment and main-
tenance, and implement different analytical methods for monitoring (van der Kooij 2000; Laurent et al. 2005).
The selection of suitable methods should be on a case-by-case basis regarding specific situations.
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