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Abstract
The Green’s function molecular dynamics (GFMD) method for the simulation
of incompressible solids under normal loading is extended in several ways:
shear is added to the GFMD continuum formulation and Poisson numbers as
well as the heights of the deformed body can now be chosen at will. In
addition, we give the full stress tensor inside the deformed body. We validate
our generalizations by comparing our analytical and GFMD results to calcu-
lations based on the finite-element method (FEM) and full molecular dynamics
simulations. For the investigated systems we observe a significant speed-up of
GFMD compared to FEM. While calculation and proof of concept were
conducted in two-dimensions only, the methodology can be extended to the
three-dimensional case in a straightforward fashion.

Keywords: contact mechanics, tribology, Green’s function

(Some figures may appear in colour only in the online journal)

1. Introduction

Green’s function molecular dynamics (GFMD) [1–3] is a boundary-value method allowing
one to simulate the linear-elastic response of a solid to an external stress or, more generally, to
a boundary condition. So far, GFMD has been used predominantly to describe either non-
reflecting [4, 5] and thermalizing [6–8] boundaries to which an atomistic region is coupled,
or, as a tool to simulate the contact mechanics of solids with rough surfaces [9–11]. One
advantage of GFMD is that it only necessitates knowledge of the displacements in the top
layer of a solid and that effective interactions are block diagonal in Fourier space. Relatively
large systems can therefore be simulated and be quickly relaxed. Typical system sizes in the
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context of contact mechanics range from 4096× 4096 surface atoms on single CPUs [9] to
O 10 105 5´( ) on supercomputers [11].

An additional, conceivable application consists in coupling GFMD to discrete dislocation
dynamics (DDD) [12]. The idea is to use GFMD, instead of the finite-element method, to
compute the image fields of dislocations in DDD. Towards this end, we generalize the GFMD
method in the following ways: first, we consider the elastic response of a cubic or an isotropic
body with arbitrary Poisson number and allow for lateral displacements as well as for shear
tractions in addition to normal tractions. Second, we deduce the internal stresses for a given
surface boundary condition and do this for solids of arbitrary height. The approaches pursued
so far were limited to either normal displacements and normal tractions in the continuum
formulation [11, 13] or to the full atomistic Green’s functions [2, 9], which do not relate
directly to the continuum limit. While the finite-width elastic continuum problem with shear
was solved by Carbone and Mangialardi [14], their work did not put us into the position to
deduce directly the Green’s function coefficients needed for a numerical implementation. In a
later work, in particular appendixA of [15], useful formulae for the GFMD simulations were
stated, but unfortunately only for the frictionless case.

In this work, we present a solution for the Green’s function of finite-height elastic slabs
having the following advantages: the only required mathematical tools are partial derivatives,
Fourier transforms, and linear algebra, i.e., there is no need to solve Fredholm integral
equations. All equations needed to implement the approach into computer code are given
explicitly in compact form. Moreover, our approach can be readily modified in various ways.
For example, it should be straightforward to extend our solution strategy to layered materials,
to materials with gradient or square-gradient corrections to the elastic energy, or to non-
isotropic crystals—as long as they remain homogeneous within each plane. In fact, the most
important equations for non-isotropic crystals are given and tested in this work. Lastly, we
validate our solution against numerical data and moreover consider various limiting cases
including that of very small slab heights or that of a vanishing shear modulus characteristic
for fluids.

The coupling between GFMD and DDD will be presented in a separate manuscript.

2. Theoretical considerations

2.1. General background

In this paper, we are concerned with the quasi-static loading, in which case the precise
dynamical response of the simulated layer does not play a role, see [5, 15, 16] for general-
izations from the static to the dynamic case. Moreover, we consider to load the surface of a
body that is translationally invariant within the xy-plane, which, in principle, is allowed to be
a gradient material as long as the gradients are normal to the xy surface plane. One can then
write the linear stress-displacement relation u rs[ ( )] as

u r Gr r r rd , 12
3ò s= ¢ ¢ + ¢a ab b( ) ( ) ( ) ( )

where G r¢ab ( ) is the Green’s function tensor, u ra ( ) is the α component of the displacement as
a function of the (two-dimensional) in-plane coordinate r, and 3s b is the traction in z-
direction. In Fourier space, equation (1) reads

u Gq q q . 23s=a ab b˜ ( ) ˜ ( ) ˜ ( ) ( )
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In contact problems, one often knows the displacement of the bodies and wants to deduce
the contact pressure, and thus, one usually does not need to evaluate the Green’s function
(tensor) itself, but its inverse. Thus, force calculations in GFMD simulations require one to
evaluate

G uq q q . 33
1s =a ab b

-˜ ( ) [ ˜ ( )] ˜ ( ) ( )

The precise functional form of the (inverse) Green’s function tensor depends on the elastic
properties of the deformed material including its height.

In its simplest form, usually used in the context of (continuum) contact mechanics [17],
one is only interested in normal displacements induced by normal tractions applied to a semi-
infinite, isotropic body. In this case, if the body is incompressible, 0.5n = , all quantities in
equation (3) can be considered as scalars and the equation reduces to

qE uq q 2, 4*s =˜ ( ) ˜( ) ( )
where E E 1 2* n= -( ) is the contact modulus, E being the Young’s modulus and ν the
Poisson number. However, as mentioned in the introduction, we wish to generalize GFMD to
give the elastic response of a body with generic Poisson’s ratio, and therefore, we can no
longer use a scalar to describe surface displacement. Moreover, we intend to consider
problems where contact loading is not restricted to be in normal direction, i.e. tractions and/or
displacement can be applied in normal or tangential directions, everywhere on the body
surface. Therefore, we can no longer rely on equation (4) and need to find a form for the
Green’s function tensor in equation (3), which has to depend on the Poisson’s ratio and on the
height of the slab. Towards this end, we next calculate the analytical solutions for the
displacement in linearly elastic slabs of finite height, from which the stresses can be deduced
in a straightforward fashion. The stress distribution underneath the contact are of particular
interest in problems as fretting fatigue, to determine whether a possible tensile loading
underneath the contact would give rise to crack nucleation and propagation.

2.2. Analytical solutions for the displacement in finite-height, linearly elastic slabs

We consider a linearly elastic body of cubic or higher symmetry in a slab geometry with a
fixed bottom, i.e., the displacement reads x zu , 0 0= =( ) rather than x zu , 0 -¥ ( ) as
for semi-infinite solids. Moreover, we assume that no body forces are exerted, which implies
the usual equilibrium condition r 0s¶ =a ab ( ) , where rsab ( ) is the stress at the point r inside
the body and r¶ º ¶ ¶a a. For isotropic or cubic bodies the equilibrium condition is given by

C u C u C C u 0 511 1
2

1 44 3
2

1 12 44 1 3 3¶ + ¶ + + ¶ ¶ =( ) ( )

C u C u C C u 0, 611 3
2

3 44 1
2

3 12 44 1 3 1¶ + ¶ + + ¶ ¶ =( ) ( )

where we have restricted our attention to (1+1)-dimensional solids so that in-plane
wavevectors are now scalars, and where the Cijʼs denote coefficients of the elastic tensor in
Voigt notation.

Assuming an in-plane undulation of the top layer with the real-valued wavenumber q,
equations (5) and (6) can be solved with the factorization

u x z u qx kz, exp i exp i , 70=a a( ) ( ) ( ) ( )
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where k is a complex wavenumber satisfying

k q b b 1 82 2= -  -( ) ( )

with

b
C C C C

C C2
. 911

2
44
2

12 44
2

11 44
=

+ - +( )
( )

Thus, we obtain solutions for the displacements either oscillating exponential functions for
b 1< or purely exponential functions for b 1> . The nature of the solution changes at b=1,
which automatically holds for isotropic media as these satisfy the isotropy condition
C C C 244 11 12= -( ) . The solutions for b=1 are proportional to qzexp ( ), and, in addition,
proportional to z qzexp ( ), i.e., similar to those of critically damped harmonic oscillators.
The decaying solutions can usually be ignored when the z-position of the top layer zm satisfies
z q1m  but not for a finite-slab geometry.

In the remainder of this section, we focus on the isotropic case, because this is a common
approximation. In the result section, we also consider the case of a cubic solid violating the
isotropy condition to demonstrate the correctness of our approach. At this point, it may suffice
to state that metallic cubic crystals tend to have a relatively small shear modulus, in which
case b 1> , while non-metals rather correspond to b 1< .

Due to the nature of the differential equations (5) and (6), the solutions of the in-plane
cosine transform of the lateral u1 displacement field couples to the in-plane sine transform of
the normal u3 displacement, and vice versa. Thus, we can write

u x z qx u q z, cos , 101
c

1
c=( ) ( ) ˜ ( ) ( )

u x z qx u q z, sin , . 113
s

3
s=( ) ( ) ˜ ( ) ( )

Solutions satisfying the boundary condition xu , 0 0=( ) and the differential equation for
isotropic media are then obtained after some algebra to satisfy

u q z

u q z

f qz f qz

f qz f qz
A
A

,

,
121

c

3
s

1 2

2 3

1

2
=

-⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

˜ ( )
˜ ( )

( ) ( )
( ) ( )

( )

with

f qz qz
s

s
qz qzsinh

1

1
cosh , 131 = +

-
+

( ) ( ) ( ) ( )

f qz
s

s
qz qz

1

1
sinh , 142 =

-
+

( ) ( ) ( )

f qz qz
s

s
qz qzsinh

1

1
cosh , 153 = -

-
+

( ) ( ) ( ) ( )

where s C C44 11º . The latter ratio has allowed values of s0 1< < for stable, two-
dimensional isotropic solids [18]. The coefficients A1,2 follow from equation (12) once
u q z,1

c˜ ( ) and u q z,3
s˜ ( ) are given at z zm= , where zm is the height of the undeformed solid.

Lastly, the in-plane sine transform of u1 and cosine transform of u3 can be calculated in a
similar fashion via:

u q z

u q z

f qz f qz

f qz f qz
B
B

,

,
. 161

s

3
c

1 2

2 3

1

2
=

-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

˜ ( )
˜ ( )

( ) ( )
( ) ( )

( )
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In summary, for an arbitrary surface displacement field x zu , m( ), the in-plane Fourier
transform is taken to yield q zu , m˜ ( ). The real and imaginary parts can be associated with left-
hand sides of equations (12) and (16), which allow one to determine the pertinent coefficients
A1,2 and B1,2 for each wavenumber q by evaluating them at z zm= . The knowledge of these
coefficients then allows one to deduce the displacement inside the body.

2.3. Finite-height-slab strain, stress, and energy density

Not only the displacement but also the strain and thus the stress field on the surface or inside
the body can be deduced as soon as the coefficients A1,2 and B1,2 have been determined for a
given surface topography, obtained by perturbation of an initially flat surface. For reasons of
simplicity, we first restrict our attention to the case of a perturbation by a single wave number
q and B 01,2 = . The elements of the infinitesimal Cauchy’s strain tensor (in Voigt notation)
are then given by

x z u x z
q qx u q z

, ,
sin , , 17

1 1 1

1
c

 º ¶
=-

( ) ( )
( ) ˜ ( ) ( )

x z u x z
qx u q z

, ,
sin , , 18

3 3 3

3 3
s

 º ¶
= ¶

( ) ( )
( ) ˜ ( ) ( )

x z u x z u x z
qx qu q z u q z

, , ,
cos , , . 19

5 1 3 3 1

3
s

3 1
c

 º ¶ + ¶
= + ¶

( ) ( ) ( )
( ){ ˜ ( ) ˜ ( )} ( )

These expressions can now be used to compute the stresses inside the body as well as on its
surface with the usual stress-strain relations. Knowledge of the latter suffices to determine the
work per unit area needed to deform the body—assuming small surface slopes and thus the
surface normal to be approximately parallel to the z-axis—via

v
L

x x z u x z x z u x z
1

d , d , , d , . 20
L u x z u x z

el
0 0

,

31 m 1 m
0

,

33 m 3 m
1 m 3 m

ò ò òs s= +
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )

( ) ( )

This yields

v
C

q z u q z
C

q z
C

q z u q z
2

, ,
2

,
2

, , 21el
44

5
c

m 1
c

m
11

3
s

m
12

1
s

m 3
s

m  = + +{ }˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )

with

q z qu q z, , , 221
s

1
c = -˜ ( ) ˜ ( ) ( )

q z u q z, , , 233
s

3 3
s = ¶˜ ( ) ˜ ( ) ( )

q z u q z qu q z, , , . 245
c

3 1
c

3
s = ¶ +˜ ( ) ˜ ( ) ˜ ( ) ( )

Thus, for the surface layer

q z qu q z, , , 251
s

m 1
c

m = -˜ ( ) ˜ ( ) ( )

q z r
qz r qz

f z
qu q z

r
qz qz rqz

f z
qu q z

,
cosh 1

,

1
cosh sinh

, , 26

3
s

m

2
m m

2

m
1
c

m

m m m

m
3
s

m

 =
- -

+ -
+

˜ ( )
( ) ( )

∣∣ ( )∣∣
˜ ( )

( )
( ) ( )

∣∣ ( )∣∣
˜ ( ) ( )
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q z r
qz qz rqz

f z
qu q z

r qz rqz

f z
qu q z

, 1
cosh sinh

,

1 sinh 2
, , 27

5
c

m
m m m

m
1
c

m

2
m m

2

m
3
s

m

 = +
-

+
- -

˜ ( ) ( )
( ) ( )

∣∣ ( )∣∣
˜ ( )

( ) ( ) ( )
∣∣ ( )∣∣

˜ ( ) ( )

where

r
s

s

1

1
28º

-
+

( )

and

f qz f qz f qz f qz

qz rqzcosh 1. 29
1 3 2

2

2 2

º +

= - -

∣∣ ( )∣∣ ( ) ( ) ( )
( ) ( ) ( )

Gathering all expressions entering the elastic energy leads to

v
q

u q z u q z
M qz M qz

M qz M qz
u q z

u q z2
, , ,

,

,
30el 1

c
m 3

s
m

11 m 13 m

13 m 33 m

1
c

m

3
s

m
=

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ˜ ( ) ˜ ( )]

( ) ( )
( ) ( )

˜ ( )
˜ ( )

( )

with

M qz r
qz qz rqz

f qz
C1

cosh sinh
, 3111 m

m m m

m
11= -

-
( ) ( )

( ) ( )
∣∣ ( )∣∣

( )

M qz
r

r

r qz rqz

f qz
C

1

1

1 sinh 2
, 3213 m

2
m m

2

m
11=

-
+

- -
( )

( ) ( ) ( )
∣∣ ( )∣∣

( )

M qz r
qz qz rqz

f qz
C1

cosh sinh
, 3333 m

m m m

m
11= -

+
( ) ( )

( ) ( )
∣∣ ( )∣∣

( )

which is a central result for GFMD simulations in which both normal and shear stresses are
considered.

For reasons of completeness, we state the general elastic energy density

v
q

u u
M qz M qz

M qz M qz
u
u

q q
q
q2

,
i

i
, 34

q
el 1 3

11 m 13 m

13 m 33 m

1

3
* *å=

-⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ˜ ( ) ˜ ( )]

( ) ( )
( ) ( )

˜ ( )
˜ ( )

( )

where u q˜( ) is now the complete, complex Fourier transform of the displacement of
wavevector q. For zero shear (normal) stress, the elastic energy is minimized with respect to
the lateral (normal) displacement and thus becomes

v
q

M qz
M qz

M qz
u q

2
zero normal stress , 35el 11 m

13
2

m

33 m
1

2= -
⎧⎨⎩

⎫⎬⎭( )
( )
( )

∣ ˜ ( )∣ ( ) ( )

v
q

M qz
M qz

M qz
u q

2
frictionless contact . 36el 33 m

13
2

m

11 m
3

2= -
⎧⎨⎩

⎫⎬⎭( )
( )
( )

∣ ˜ ( )∣ ( ) ( )

2.3.1. Asymptotic analysis. It is instructive to consider various limits. First, for large
wavevectors, the problem reduces to that of a semi-infinite solid. In this case, the quotients in
equations (31)–(33) with f qzm∣∣ ( )∣∣ in the denominator can be set to one and the elastic
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energy is essentially q times an effective modulus times a squared displacement. More
specifically, the M qzij m( ) become

M qz
s

C1
2

1
, 3711 m 44=

+
( ) ( )

M qz
s

s
C1

2

1
, 3813 m 44=

+
( ) ( )

M qz
s

C1
2

1
. 3933 m 44=

+
( ) ( )

In the second limit, i.e. that of short wavevectors, we find

qM z
C

z
1 , 4011 m

44

m
=( ) ( )

qM z 1 0, 4113 m =( ) ( )

qM z
C

z
1 4233 m

11

m
=( ) ( )

so that we may write for center-of-mass displacements

v q
C

z
u

C

z
u0

2
0

2
0 . 43el

44

m
1
2 11

m
3
2= = +( ) ˜ ( ) ˜ ( ) ( )

This corresponds to the elastic energy—per unit area—of an isotropically deformed (and
periodically repeated) solid being glued to a rigid substrate.

As a brief side aspect, let us also discuss the limiting case of C 044 = ( r 1 = ) which
describes a compressible fluid. Given the prefactors in equations (31)–(33), one might have
been tempted to set all M qzij m( ) to zero. However, the just-presented asymptotic analysis
reveals that this would not have lead to the correct result for M qz 033 m ( ), which remains
finite even for a vanishingly small shear modulus. Thus, the only mode necessitating elastic
energy when altering the shape of the ‘top layer’ of a fluid is that which leads to a volume
reduction, i.e., the u q 03 =˜ ( ) mode.

We conclude this section by making the link of our results to the contact modulus E*

introduced in equation (4). For semi-infinite solids, or large qzm, the expression in the curly
brackets in equation (36) reduces to s C2 1 44-( ) , which indeed can be shown to be half E*.
This implies that equation (36) is consistent with (4) in the limit of a frictionless semi-infinite
contact.

3. Numerical results

3.1. Displacements in non-isotropic solids

To model a non-isotropic solid, we consider a cubic crystal with its (100) surface facing up.
To make the comparison of continuum theory to full molecular dynamics (MDs) simulations
as transparent as possible, we furthermore restrict ourselves to a simple cubic lattice in which
each atom (which one may also see as a grid point) is connected to its nearest neighbors with
a spring of stiffness k1 and to next-nearest neighors with a spring of stiffness k k2 1= .
Mechanical equilibrium of the springs is assumed at a distance a0 between nearest neighbors
and a2 0 for next-nearest neighbors. With these definitions, it is readily seen that the elastic
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tensor—fully defined by C k k a11 1 2 0= +( ) and C C k a12 44 2 0= = —violates the isotropy
condition for the given choice of k k1 2= , since in this case C C C 244 11 12> -( ) . Here, the
stiffness is divided by a0 so that the elastic constants have the usual units.

In our example, we consider a slab of height L L 2z x= , where L a40x 0= is the lateral
length of the domain, which is repeated periodically along the x-direction. The just-defined
system is solved with a self-written MD code, in which individual atoms are also coupled to
damping linear in velocity. The mass of atoms is set to unity, the time step to 0.1 and damping
to 0.25. Two cases of displacements in the top layer are treated: normal loading for which
u x z, 01 m =( ) , u x z A x L, cos 2 x3 m 0 p=( ) ( ) and shear loading for which

Figure 1. Lateral (red circles) and normal (blue squares) displacements u1,3 at selected
crosssections for shear (left) and normal (right) loading as obtained from MD
simulations. The displacements are given in units of the maximum displacement A0,
which is valid at the top layer of the solids located at the normal coordinate
z z L 2xm= = . The displacements are set to zero at the bottom layer (z= 0). Full lines
represent the continuum solutions used to obtain internal stresses in GFMD
simulations.

Figure 2. (a) Periodic unit cell of an isotropic slab indented by a flat rigid sticking
punch. (b) The normalized tangential surface displacement u Lx1¯ obtained using
GFMD and FEM.
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u x z A x L, cos 2 x1 m 0 p=( ) ( ), u x z, 03 m =( ) . To justify the assumption of linear elasticity, the
maximum displacement amplitude is set to A a 1000 0= . The bottom layer is kept fixed. The
system relaxes after a few thousand time steps.

Agreement between full MD and the analytical expressions for the displacement fields is
clearly revealed in figure 1.

3.2. Displacement and stress fields in isotropic solids

As a benchmark problem to compare GFMD to FEM we here consider the indentation of an
isotropic elastic two-dimensional slab by an array of flat rigid punches. Contact between
punches and slab is taken to be fully sticking. The analysis is performed on a periodic unit cell
with fixed bottom as shown schematically in figure 2(a).

Normal displacement is prescribed at the contact of length Lx
p:

u x z u
L L

x
L L

, for
2 2

. 44x x x x
3 m 3

0
p p

=
-

< <
+

( ) ( )

The slab is indented to u L 2.5 10x3
0 4= ´ - . Outside the contact region, the top surface is

traction free. The aspect ratio of the slab, which is taken to have the elastic properties of
aluminum, C 10511 = GPa and s C C 0.2544 11= = , is a z L 1 4xm= = , and the rigid
punch is L L 1 4x x

p = . For the finite-element analysis the slab is discretized using a uniform
mesh of square elements. The number of degrees of freedom is n nnx nnz2dof = ´ , where
nnx is the number of nodes in x-direction, and nnz the number of nodes in z-direction. For the
GFMD simulation the surface is discretized using nx equispaced grid points, with nx=nnx.
Contact between the rigid indenters and the slab is modeled through a hard-wall potential.
The static solution is found in GFMD using damped dynamics as described in [11]. The
damping factor η used in this simulations is

nx

1
, 45x z 0h h h

t
= = ( )

Figure 3. Displacement fields obtained using: (a), (c) GFMD and analytical solution;
(b), (d) and FEM.
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where 0h is the damping prefactor and τ is the time step. The damping prefactor is selected
such that the slowest mode is slightly under-damped in z-direction. The number of MD
iterations used to reach convergence scales as n O nxit ~ ( ) and the time step is τ=0.25.
The normalized lateral surface displacement u Lx1̄ obtained by the two methods is shown for
nnx nx 1024= = in figure 2(b). The over bar indicates the value of the variable at the
surface. No differences can be seen by the naked eye.

The displacement and stress fields inside the body for the GFMD simulations are cal-
culated using equations (12)–(16) and (25)–(27). For a better comparison with FEM, the fields
are evaluated at all locations inside the body corresponding to the nodes in the FEM calc-
ulation. The body fields hence obtained are compared with those obtained using FEM in
figures 3 and 4.

3.3. Convergence rate and simulation time

The convergence rate is studied considering the calculation of the L2 norm of the surface
displacement,

u u x z, . 46L
i

nx

i1
1

1 m
2

2 å=
=

 ¯ ( ) ( )

Figure 4. Stress fields obtained using: (a), (c), (e) GFMD and analytical solution; (b),
(d), (f) and FEM.
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Following [19], the error in the norm obtained using FEM as a function of the degrees of
freedom in the simulation can be written as:

u L u L
n

. 47x L x L1
FEM

1
exact

dof
2 2

k
- » b   ( ¯ ) ( ¯ ) ( )

The exact solution, the asymptotic rate of convergence β, and the prefactor κ, are obtained by
linearly fitting three data points corresponding to nnx=256, 512, 1024. As expected [19],
given that the mesh refinement is uniform and the order of the interpolating polynomial for
the shape functions is one, the asymptotic rate of convergence is found to be 0.5:

u L
n

0.692
2.552

10 . 48x L1
dof
0.5

5
2 = - ´ - 

⎛
⎝⎜

⎞
⎠⎟( ¯ ) ( )

Since the finite-element mesh has square elements, it follows that

nnx

a

n

1 2
. 49

dof

0.5

=
⎛
⎝⎜

⎞
⎠⎟ ( )

We can therefore rewrite the L2 norm as

u L
a nnx

0.692
2.552

2

1
10 , 50x L1 0.5

5
2 = - ´ - 

⎛
⎝⎜

⎞
⎠⎟( ¯ )

( )
( )

which allows for direct comparison with GFMD (see figure 5(a)). The order of convergence
with respect to the discretization of the two methods is found to be the same, while the
prefactors are favorable for GFMD, i.e. L 3.609 10x

5k = - ´ - for FEM while
L 1.653 10x

5k = - ´ - for GFMD. Figure 5(b) shows the simulation time as a function
of the surface discretization. The results are all obtained on a single Intel Xeon(R) 3.10 GHz
processor with 31.3 Gbytes of RAM. The GFMD simulations are found to be faster than
FEM, and the computational advantage increases with increasing system size. In addition to

Figure 5. (a) The L2 norm of tangential surface displacement obtained using GFMD
and FEM are plotted as a function of nx1 (b) Simulation time for GFMD compared
with FEM.
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this, a smaller number of grid points are needed in GFMD to obtain the same results as in
FEM. For the simulation reported here, if we decide to tolerate an error e=0.005 in the L2
norm of lateral surface displacement, the GFMD simulations require nx=128 grid points
while the FEM simulations need nnx=1024 surface nodes. This results in a GFMD
simulation being 1650 times faster than FEM.

It is to be noted here that: (1) we have not searched for the optimal meshing scheme to
solve the finite-element problem, simply used a mesh with squared elements for ease of
comparison with the equi-spaced surface grid points used in GFMD; (2) the speed of the
finite-element simulation depends heavily on the solver used. Here we have used a direct
sparse solver with skyline storage, where the time consuming step is the factorization of the
skymatrix. The order of factorization in a skyline solver is generally O nnx B 2(( ) ) [20] where
B is the mean bandwidth, which cannot exceed nnx. We are aware that for large systems, an
iterative solver would be much more cost-effective. In GFMD, the computational complexity
scales withO nx nx nxlog( ), (3) the speed of the GFMD simulation depends on the choice of
the damping factors, which in general are different in the x and z-direction. The optimal
damping factor to obtain critical damping of the system depends on the loading, the height of
the slab and the elastic constants. We here simply considered a single damping factor that
would critically damp the modes in z-direction, and thus under-damp the modes in x-
direction.

4. Conclusions

GFMD, a fastly converging boundary value method used to compute contact pressures and
surface displacements of incompressible continuum semi-infinite solids, is here extended to
apply to finite solids with generic Poisson’s ratio and boundary conditions. Moreover, the
body fields can now be computed analytically from the tractions and/or surface displace-
ments. This extension allows the GFMD technique to provide the same information that can
be obtained through the FEM, but with a significant gain in simulation time.

An additional advantage of GFMD is that for typical contact problems, where the contact
area evolves during the simulation, the contact can be easily captured and simply described by
means of an interaction potential. We have here used a hard-wall potential, but one can also
model the bodies in contact explicitly and apply an interaction potential, as the Xu–Nee-
dleman [21], where the contact response in normal direction is coupled to that in tangential
direction.

An interesting application that can be envisaged for the GFMD method, in virtue of the
extensions presented in this paper, is the replacement of the FEM in discrete dislocation
plasticity simulations of contact. This has the potential to significantly increase the time
efficiency of the discrete dislocation plasticity calculations by that allowing to extend the
applicability of such models to bodies of larger size, and with a realistic surface profile.
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