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A New Model for the Planetary Radiation Pressure Acceleration
for Solar Sails
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https://doi.org/10.2514/1.G007668

Solar sailing is a propulsion method that takes advantage of solar radiation pressure to generate thrust.

Although most of near-future solar-sail missions will fly in low Earth orbit, where planetary radiation pressure

can be as large as 20% of solar radiation pressure, studies on the accelerations produced by the Earth’s albedo and

blackbody radiation have only been conducted to a very limited first-order extent. This paper therefore provides a

novel, detailed analytical model for these perturbing accelerations, valid for perfectly reflecting solar sails. The full

derivation of the model is described, and a thorough analysis of the blackbody and albedo radiation pressure

accelerations is conducted for different orbital conditions. Then, to determine the model’s accuracy, a comparison

with the state of the art (the finite-disk radiation source model and a high-fidelity numerical model) is provided.

Ultimately, different analyses to quantify the effect of planetary radiation pressure acceleration on the solar-sail

maneuvering capabilities are presented, using NASA’s upcoming ACS3 mission as reference scenario. The results

highlight the nonnegligible effect of uncontrolled planetary radiation pressure acceleration, which can reduce the

sailcraft’s achievable altitude and inclination gains to 76 and 80%, respectively, of the gains obtained when

planetary radiation pressure is not accounted for.

Nomenclature

A = area, m2

A� = Earth’s visible surface as seen from sailcraft
a = acceleration vector, m/s2

a = semi-major axis, m
ac = solar-sail characteristic acceleration, m/s2

CD = drag coefficient
CL = lift coefficient
c = speed of light, 299,792,458 m/s2

e = eccentricity
f = true anomaly, rad
GF = geometrical factor
h = altitude, m
I = radiation intensity, W/(sr·m2)
i = inclination, rad
J2 = J2 spherical harmonics coefficient, 1.082626925639⋅

10−3

LF = latitudinal factor
n̂ = sail normal direction
P = radiative power, W
P = radiation pressure, N/m2

R = Earth radius, 6,378,136.3 m
r = orbital radius vector, m
S = radiative flux, W/m2

S� = solar radiative flux at Earth, 1367 W/m2

ŝ = sunlight direction
VR = atmospheric particle velocity ratio, 0.05
v = sailcraft inertial velocity, m/s
α = solar-sail cone angle, rad
α� = solar-sail planetary cone angle, rad

ε = error
η = subsatellite point’s latitude, rad
Λ = albedo factor
μ = Earth’s gravitational parameter, 3.986004415⋅1014

m3/s2

ν = shadow factor
ρ = atmospheric density, kg/m3

σ = solar-sail loading parameter, kg/m2

σN; σT = aerodynamic momentum accommodation coefficients,
0.8

Φ = albedo phase function
χ� = phase angle, rad
ω = argument of pericenter, rad
œ = steering law target orbital element

Subscripts

abs = absolute
aero = aerodynamic
An = analytic
avg = average
eq = equatorial
f = final
J2 = J2 spherical harmonics coefficient
out = outward-pointing
pol = polar
rel = relative
sail = at sail
0 = initial

I. Introduction

S OLAR sailing is a low-thrust propulsion method that has raised
increasing interest over the last few decades, mainly because of

its propellantless nature [1]. In light of its enabling potential for a
wide variety of mission scenarios [2,3], extensive research has been
conducted on its dynamics and trajectory optimization. Although
most of these studies focused on heliocentric flight regimes [3–7],
the majority of solar-sail missions to date remained Earth bound
[8–12], as will those scheduled for launch in the near future, for
example, NASA’s Advanced Composite Solar Sail System (ACS3)
and Gama’s Beta mission [13]. In close proximity of the Earth,
the dynamics are much more complex than in interplanetary space
because of the presence of eclipses, atmospheric drag, and planetary
radiation pressure (PRP). Although multiple studies on the effect of
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aerodynamic drag in low Earth orbit (LEO) have been conducted
and showed the enabling capabilities of solar sails for deorbiting
purposes [14–18], optimal orbit raising [19,20], and optimal incli-
nation changing [19,21], the accurate derivation of the PRP accel-
eration and the perturbing effect on the solar-sail dynamics have been
investigated to a much lesser extent. Research on this topic has
mainly focused on the first-order characterization of the blackbody
radiation pressure (BBRP) and albedo radiation pressure (ARP)
accelerations and the optimization of planetocentric solar-sail trajec-
tories under these effects [22,23]. In these studies, the models for
the BBRP and ARP accelerations are based on the one devised by
McInnes [1] and assume the radiating body to be a uniformly bright
disk irradiating only in the planet-to-sailcraft direction. Although this
assumption correctly approximates the PRPacceleration experienced
by sailcraft at large distances from Earth, at low altitudes, a more
realistic geometry of the problem and radiation properties of theEarth
should be considered to achieve accurate results. Indeed, at low
altitudes, the spherical shape of the Earth and the geographical
variation of the albedo and blackbody radiation flux play an impor-
tant role in the modeling of the PRP acceleration. To account for
them, several acceleration models have been devised, differing in the
formulation adopted (i.e., analytical or numerical), the model
employed for the albedo and blackbody radiation flux distributions
across the Earth, and the shape of the spacecraft considered. The first
works on PRP-accelerationmodeling focusedmainly on the develop-
ment of analytical models, particularly by means of approximations
through series expansions in the frame of general perturbations
methods [24–31]. The use of series expansions based on spherical
harmonics increases the complexity of the acceleration equations
significantly. As a result, the obtained acceleration formulas are
difficult to employ and have limited applicability, especially when
compared to currently available numerical models. In fact, these
more recent models outperform analytical models in terms of accu-
racy, although requiring a considerably larger computational effort.
These numerical methods are mostly used in software tools for
geodetic parameter estimation and precise orbit determination, such
as Aerodynamics and Radiation Pressure Analysis (ARPA) [32],
NASA’s GEODYN [33], ESA’s Navigation Package for Earth Orbit-
ing Satellites (NAPEOS) [34], and Delft University of Technology’s
Near Real-Time Density Model (NRTDM) [35]. To the best of the
authors' knowledge, no analytical model exists in the literature that
provides a closed-form, analytical solution for the PRP acceleration
of a solar sail that does not rely on series expansions, is easy to
implement, and achieves a high accuracy. In light of this and the fact
that the PRP acceleration can reach a nontrivial magnitude in the
order of 10–20% of the solar-sail characteristic acceleration [22], the
need for formulating an accurate expression for the PRP acceleration
in proximity of the Earth arises. Such an analytical acceleration
model would provide a powerful tool to perform high-fidelity orbit
analyses for solar-sail LEO missions. Furthermore, it would also lay
the foundation for the accurate optimization of Earth-bound steering
strategies through (semi-)analytical optimization methods account-
ing for both the solar radiation pressure (SRP) and PRP accelerations.
In order to fulfill this research need, this paper presents a novel

closed-form, analytical model for the BBRP and ARP accelerations
of solar sails, found through a sequential surface averaging approach.
The model takes into account the complexity of the problem in its
entirety as it considers the spherical shape of the emitting body (i.e.,
the Earth) and accounts for the limited area of the radiating surface as
seen from the sailcraft, the geographical dependencies of the albedo
and blackbody radiation intensities, the illumination conditions of the
radiating surface, and the possibility that both sides of the sail are
exposed to the planetary radiation. Thismodel, hereinafter referred to
as the spherical model, forms an extension of the finite-disk (FD)
radiation pressure acceleration model devised by McInnes [1], is
valid at any altitude, and can be used for flat-shaped, two-sided
reflective solar sails, that is, solar sails with perfectly reflecting front
and back sides. In the paper, the assumptions and full derivation of the
model are discussed, and analyses are performed to quantify the
magnitude of theBBRPandARPaccelerations for different altitudes,
sail attitudes, and Sun-planet-sailcraft relative orientations. Then, the

model is validated through a thorough error analysis with extensive
comparisons against McInnes’s FD model and the NRTDM numeri-
cal model. Finally, a variety of analyses are presented to assess the
effect of the PRP accelerations on the maneuvering capabilities of
real-life solar sails in Earth orbit. To this end, the solar-sail orbital
dynamics are propagated with and without PRP acceleration using
locally optimal orbit-raising and inclination-changing steering laws
[19]. In this way, the impact of the uncontrolled PRP acceleration on
the maximum achievable altitude and inclination changes is quanti-
fied. The analyses are performed considering NASA’s ACS3mission
as a reference scenario [13,19]. This solar-sail mission is scheduled
for launch in mid-2024 and reflects the currently available technol-
ogy readiness level of solar-sail missions in LEO.

II. Dynamical Model

The dynamics of a solar sail in proximity to Earth are expressed
in an inertial Earth-centered reference frame, I�x; y; z�, with the
x axis pointing toward the vernal equinox, the z axis perpendicular
to the equatorial plane and pointing toward the north pole, and the
y axis completing the right-handed frame. Within this frame the
equations of motion of a solar sail can be expressed in vectorial
form as

�r� μ

r3
r � aSRP � aaero � aJ2 � aBBRP � aARP (1)

where the dot notation indicates differentiation with respect to
time, r = [x, y, z]T is the sailcraft position vector, r = ||r||,

μ� 398;600.4415 km3∕ s2 is the Earth gravitational parameter [36],
and aSRP, aaero, aJ2, aBBRP, and aARP are the SRP, aerodynamic,
J2 gravitational, BBRP, and ARP accelerations, respectively. These
accelerations will be described in more detail in the following
sections.
It should be noted that, in the analyses presented in the remainder

of this paper, only steering laws to increase the semi-major axis and
inclination are considered. Although the Earth’s J2 gravitational
perturbation has no secular effect on these Keplerian elements
[36], other gravitational perturbations with a secular effect on the
inclination exist, such as the gravitational accelerations of the Moon
and Sun. However, these are orders of magnitude smaller than
the accelerations on the right-hand side of Eq. (1), for the orbits
considered in this paper [37]. As a consequence, they have not been
considered in the equations of motion in order to avoid hampering a
clear investigation into the effects of the BBRP and ARP acceler-
ations on the solar-sail orbital dynamics.

A. Solar Radiation Pressure Acceleration

The SRP acceleration is defined assuming a flat, perfectly reflect-
ing sail as per the ideal sail model [1],

aSRP � νac cos
2 α n̂ (2)

where ν ∈ �0; 1	 is the shadow factor and α ∈ �0; π∕2	 is the solar-sail
cone angle measured between the direction of sunlight ŝ and the sail
normal direction with no component pointing towards the Sun n̂; see
Fig. 1a. The shadow factor ν accounts for the effect of eclipses and its
value ranges from 0 (no sunlight reaches the sail) to 1 (sail completely

a) b)

Fig. 1 Solar-sail attitude angles to determine the SRP and aerodynamic
accelerations.
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illuminated). In this paper, eclipses are modeled using the conical

shadow model presented in Refs. [38,39], with the only difference

that ν � 0 both when in umbra and penumbra. Finally, ac represents

the SRP characteristic acceleration, that is, the maximum SRP accel-

eration (achieved for α � 0) at a distance of 1 astronomical unit (AU)

from the Sun [1]:

ac �
2S�
cσ

(3)

In Eq. (3), S� � 1367 Wm−2 represents the solar flux at Earth [36],

c= 299,792.458 km/s is the speed of light invacuum [40], and σ is the
sailcraft mass-to-sail area ratio.

B. Aerodynamic Acceleration

The sailcraft aerodynamics are modeled assuming the sail to be a

flat plate orbiting at a velocity much larger than the thermal velocity

of the atmospheric particles. Under these assumptions, the hyper-

thermal free-molecular flow model can be used to define the aerody-

namic acceleration as [19–21,41,42]

aaero �
ρv2

2σ
�CDD̂� CLL̂� (4)

In Eq. (4), CD and CL are the drag and lift coefficients of the sail, v is

the sailcraft inertial velocity, and ρ is the atmospheric density, which

is modeled using an averaging technique based on the NRLMSISE-

00 atmospheric model [19]. The unit vectors D̂ and L̂ indicate the

drag and lift directions, which lie in the same plane formed by the sail

normal direction n̂ and the sailcraft inertial velocity direction v̂, and
are antiparallel and perpendicular to v̂, respectively (see Fig. 1b). The
expressions for CD and CL are given by [19–21,41,42]

CD � 2 σT � σNVR cos ζ � �2 − σN − σT� cos2 ζ cos ζ (5)

CL � 2 σNVR � �2 − σN − σT� cos ζ cos ζ sin ζ (6)

where ζ ∈ �0; π∕2	 is the complementary angle to the solar sail’s

angle of attack (again, see Fig. 1b), σN and σT are the normal and

tangential momentum accommodation coefficients, respectively, and

VR is the ratio of the atmospheric particle average thermal velocity to

the sailcraft inertial velocity. Based onRefs. [19–21], σN � σT � 0.8
and VR � 0.05.

C. J2 Gravitational Acceleration

The gravitational acceleration due to the Earth’s J2 effect in frame

I�x; y; z� is given by [37]

aJ2 � −
3

2

R2

r5
μJ2 �xx̂� yŷ� 1 − 5

z2

r2
� z 3 − 5

z2

r2
ẑ (7)

where x̂, ŷ, and ẑ are the unit vectors pointing in the I�x; y; z� frame’s

x-, y-, and z-axis directions, respectively, R � 6378.1363 km is the

Earth radius [36], and J2 � 1.082626925639 ⋅ 10−3 is the Earth’s J2
gravitational field constant of the Joint Gravity Model 2 (JGM-

2) [36,43].

D. Planetary Radiation Pressure Acceleration

To determine the PRP acceleration exerted on a solar sail, it is

essential to first establish the amount of planetary radiation received

by the sail, define its flux and finally the radiation pressure. If an

elementary piece of Earth’s surface dA is considered, see Fig. 2a, the

amount of power irradiated in a generic direction l̂ and enclosed

within an infinitesimal solid angle dΩ is represented by the second

differential d2P as [44]

d2P � I cos ϑdΩdA (8)

In Eq. (8), I represents the planetary radiation intensity (across
the entire electromagnetic spectrum) along the normal direction to

dA, N̂, and ϑ ∈ �0; π∕2	 is the angle between N̂ and l̂; see again
Fig. 2a. Assuming the Earth’s surface to be a Lambertian scatterer,
the radiation intensity can be expressed as [45]

I � S

π
(9)

where S is the planetary radiation power flux (i.e., the emitted
radiation power per unit area) at the surface element dA. When only
the radiation received by the solar sail is considered, dΩ represents
the solid angle subtended by an infinitesimal piece of illuminated
sail surface dAsail. In this case, dΩ is defined as [46]

dΩ � dAsail cos θ

l2
(10)

where l is the magnitude of the vector l pointing from dA to dAsail and

θ ∈ �0; π∕2	 is the angle between l̂ and the sail normal direction with

positive component along l̂, n̂l; see Fig. 2a. It should be noted that,
depending on the relative orientation of the sail and the surface
element dA, n̂l can either coincide with the sail normal direction
pointing away from the Earth, n̂out, as shown in Fig. 2b, or it can be
antiparallel to it. Mathematically, this corresponds to

n̂l � n̂out ⋅ sign l̂ ⋅ n̂out (11)

Making use of Eqs. (9) and (10), Eq. (8) can be rewritten as

d2P � S

π
cos ϑ cos θ

l2
dAsail dA (12)

Because this paper considers a flat-shaped solar sail whose dimen-
sions are significantly smaller than l, θ and l can be assumed to be
constant across the entire sail surface. This assumption allows one to
easily integrate Eq. (12) with respect to dAsail over the entire sail
surface Asail, thus yielding the radiation power dP received by the
entire sail due to the radiation emitted by dA:

dP � S

π
cos ϑ cos θ

l2
Asail dA (13)

The power flux at the sail’s location due to the radiation emitted by
dA, dSsail, is then found as

dSsail �
dP

Asail cos θ
� S

π
cos ϑ

l2
dA (14)

The corresponding radiation pressure dP is given by [1]

dP � dSsail
c

� S

πc
cos ϑ

l2
dA (15)

a) b)

Fig. 2 Geometry of the problem to determine the PRP acceleration.
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so that the infinitesimal PRP acceleration exerted on the perfectly
reflecting sail is found as [1]

daPRP � 2
dP
σ

cos2θ n̂l �
2S

πcσ
cos ϑcos2θ

l2
n̂l dA (16)

Finally, integration of Eq. (16) over the entire visible surface of
the Earth as seen from the sailcraft, A�, yields the total acceleration
exerted on the sailcraft:

aPRP � 2

πcσ
A�

S
cos ϑ cos2θ

l2
n̂l dA (17)

It should be noted that Eq. (17) was derived independently of the
type of planetary radiation considered. Therefore, this expression
is valid for both the BBRP and ARP accelerations, and aPRP serves
as a unifying term to indicate either aBBRP or aARP.
The solution to the surface integral of Eq. (17) depends on the

Earth-sail geometrical configuration and, most importantly, on the
definition of the planetary radiation flux S. Indeed, the planetary
radiation flux quantifies the amount of radiation emitted by the
surface elements dA across A�, and its definition depends on whether
the blackbody or albedo radiation is considered. To differentiate
between the two, in the following, the symbols SBBR and SAR will
be used instead of S to refer to the blackbody and albedo radiation
fluxes, respectively. Because the amount of radiation emitted by an
elementary piece of Earth surface strongly depends on its geographi-
cal location, both SBBR and SAR vary across the surface of the Earth
following a complex pattern. This renders the integral of Eq. (17)
nonelementary, that is, not solvable in terms of elementary functions.
To solve this problem, two different approaches have been used in
literature to find approximated solutions. The first is to approximate
the integrand function of Eq. (17) using Legendre polynomials series
expansions (particularly for the planetary flux term S), so as to make
the PRP acceleration integral solvable [27,31]. The second is to
approximate the PRP acceleration integral by a finite sum over a
set of discretized surface elements of the Earth visible from the
sailcraft. To apply this method, discrete maps of the geographical
distribution of the blackbody radiation flux and albedo coefficient
(formally defined later in this section) are required. As an example,
Fig. 3 displays the yearly averaged maps of the blackbody radiation
flux and albedo coefficient, based on the numerical model of
Analysis of Non-Gravitational Acceleration due to Radiation and
Aerodynamics (ANGARA) developed by Hyperschall Technologie
GöttingenGmbH [47], and used for different applications, spanning
from precise orbit determination to parameter estimation
[35,48,49]. Although such numerical approaches allow one to
achieve accurate results, this comes at the cost of a high computa-
tional effort. To derive a closed-form expression for the BBRP and
ARP accelerations, this paper uses an analytical approach instead.
In particular, a closed-form solution to the integral of Eq. (17) has

been found by approximating the planetary flux S with a surface-

averaged flux S, whose definition is given later in this section. By

employing S, the radiation emitted by the visible surface A* is
assumed to be irradiated isotropically, that is, such that any elemen-
tary piece of the Earth’s visible surface dA emits the same amount of
radiation, regardless of its geographical location. Taking advantage
of this simplification and using Eq. (11) to express n̂l, an analytical
solution to the integral of Eq. (17) can be found, leading to the
following expression for the PRP acceleration:

aPRP � 2S

πcσ
A�

cosϑ cos2θ

l2
n̂l dA � ac;PRP GF n̂out (18)

where ac,PRP is the PRP characteristic acceleration andGF ∈ �0; 1	 is
the so-called geometrical factor. The geometrical factor correlates
the Earth-sail geometrical configuration to the PRP acceleration and
is defined as

GF � 3

2π
A�

cosϑ cos2θ

l2
sign l̂ ⋅ n̂out dA (19)

The solution to the surface integral on the right-hand side of Eq. (19)
depends on the geometrical configuration of the sail with respect to
the Earth, which is uniquely identified by the planetary cone angle
(PCA), α� ∈ �0; π∕2	, and maximum view angle, φ ∈ �0; π∕2	; see
Fig. 2b. The former is defined as the angle between n̂out and the
radial direction r̂, while the latter is the angle between the direction
pointing to the Earth’s tangent as seen from the sailcraft and−r̂. Two
possible configurations can then be defined:
1) If α� � φ ≤ π∕2, the incoming radiation from the visible sur-

face A* illuminates only one side of the sail. In this case, the geomet-
rical factor is equal to

GF�r; α�� � 1 − 1 −
R2

r2
1 −

R2

r2
1 −

3

2
sin2α� (20)

2) If α� � φ > π∕2, the incoming radiation from the visible sur-
face A* illuminates both sides of the sail. In this case, each of the two
sides of the double-sided reflecting sail provides an acceleration that
points either along or opposite to n̂out. Consequently, GF assumes
a more complex expression, given by

GF�r; α�� � 1 −
1

π
2 1 −

R2

r2
1 −

R2

r2
1 −

3

2
sin2α� sin−1A

� 2tan−1B

− 3B3cos4α� − 2Bcos2α� 1 −
3

2
sin2α� (21)

where

Fig. 3 Yearly averaged maps of the a) blackbody radiation flux and b) albedo coefficient.
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A � cos α�
sin α�

r2

R2
− 1 B � R2

r2cos2α�
− 1 (22)

The PRP characteristic acceleration is defined as

ac;PRP � 4

3

S

cσ
(23)

Unlike the geometrical factor, the PRP characteristic acceleration
depends on the type of radiation considered through the surface-

averaged fluxS. Its definition is provided in the following subsections
for both the blackbody and albedo radiations. Note that hereinafter

the symbols SBBR and SAR will be used instead S to refer to the
blackbody and albedo radiation fluxes, respectively. In a similar
fashion, ac,BBRP and ac,ARP will be used instead of ac,PRP to indicate
the BBRP and ARP characteristic accelerations, respectively.

1. Blackbody Flux Model

As shown in Fig. 3a, the blackbody radiation flux SBBR varies

across the surface of the Earth following a complex trend. To a first-

order level, this trend can be approximated assuming a sinusoidal

variation of SBBR with the latitude η ∈ �−π∕2; π∕2	:

SBBR � SBBR;eq − SBBR;eq − SBBR;pol sin2η (24)

In Eq. (24), SBBR;eq � 264.609W∕m2 and SBBR;pol � 173.436W∕m2

are the reference blackbody radiation fluxes at the equator and the

poles. These values have been found by a least-squares fit of the right-

hand side of Eq. (24) to the numerical data of the ANGARA yearly

averaged flux map of Fig. 3a. Expressing SBBR as in Eq. (24) allows

one to define the surface-averaged blackbody radiation flux SBBR
analytically as

SBBR � A� SBBR dA

A� dA
� SBBR;eq − �SBBR;eq − SBBR;pol�LF (25)

where LF ∈ �0; 1	 is the so-called latitudinal factor given by

LF�r; η� �
1

3

R2

r2
� R

r
� 1 −

1

2

R

r

R

r
� 1 cos2 η (26)

Because SBBR varies sinusoidally with latitude, hereinafter this model

will be referred to as the sinusoidal blackbody flux model. As men-

tioned before, this model assumes the blackbody radiation to be

emitted isotropically, that is, with a constant flux SBBR by the visible

surfaceA*. However, the flux value depends on the size and location of

A* relative to the equator/poles through the factorLF. It is worth noting

that if SBBR;eq � SBBR;pol the sinusoidal variation with latitude is lost,

see Eqs. (24) and (25), and SBBR;eq, SBBR;pol, SBBR, and SBBR coincide.
In this case, a uniform (i.e., constant) flux distribution across the entire

Earth’s surface is obtained, and the model is consequently referred

to as the uniform blackbody flux model. In the reminder of this

paper, whenever the uniform flux model is employed, a flux of

SBBR � 234.732 W∕m2 is used. This valuewas found by performing

a numerical surface average of the flux values of the ANGARAyearly

averaged fluxmap given in Fig. 3a. Because SBBR is constant, ac,BBRP is

also constant, and its value represents the maximum achievable BBRP

acceleration, in a fashion similar to the traditional SRP characteristic

accelerationac.However, this situation occurs only for a nadir-pointing

solar sail (n̂out � r̂, α� � 0) at zero altitude, as in this case GF = 1,

see Eq. (20), and kaBBRPk � ac;BBRP. Finally, it isworth noting that ac,

BBRP can also be expressed in terms of the SRP characteristic accel-

eration ac by substituting Eq. (3) in Eq. (23):

ac;BBRP �
2

3

SBBR
S�

ac � 0.1145ac (27)

2. Albedo Flux Model

The albedo radiation flux SAR is defined as [50]

SAR � Λ S� max �0; cos χ� (28)

where Λ is the Earth’s albedo coefficient, that is, the average amount

of solar radiation received by the Earth reflected into space [50] and χ
is the sunlight incidence angle between the reverse sunlight direction

−ŝ and N̂; see Fig. 4. The albedo coefficient Λ provides the depend-

ency ofSAR on the reflectivity properties of theEarth’s surface,which
vary following a complex trend; see Fig. 3b. At the same time, the

sunlight incidence angle χ provides the dependency of SAR on

the illumination conditions of the visible surface A*, determined by

the relative positions of the Earth, Sun, and sailcraft. In light of this,

any high-fidelity analytical expressions for SAR assumes a highly

nonlinear form, for which the corresponding surface-averaged flux

SAR cannot be expressed in terms of elementary functions. To solve

this issue, in this paper, different approximations are introduced to

express SAR in a closed, analytical form. First, the albedo coefficient

is approximated as a sinusoidal function of the latitude η, similar to

SBBR in Eq. (24),

Λ � Λeq � �Λpol − Λeq� sin2 η (29)

where Λeq� 0:1854 and Λpol� 0:6149 are the reference albedo

coefficients at the equator and poles. Similar to SBBR;eq and

SBBR;pol, Λeq and Λpol have been found by a least-squares fit of the

right-hand side of Eq. (29) to the numerical data of the ANGARA

yearly averaged albedo map of Fig. 3b. Second, the effect of the

albedo and sunlight incidence angle on the albedo radiation flux is

uncoupled by approximating the surface-averaged albedo flux SAR
with the product of the surface-averaged albedo Λ and surface-

averaged cosine of the sunlight incidence angle Φ. In this way, SAR
can be defined as

SAR � A� SAR dA

A� dA
� S�ΛΦ (30)

where

Λ � A� Λ dA

A� dA
� Λeq � �Λpol − Λeq�LF (31)

Fig. 4 Geometry of the problem to determine the albedo radiation flux.
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Φ � A� max�0; cos χ� dA
A� dA

(32)

In the literature, Φ ∈ �0; 1	 is known as albedo phase function [45]
and will be referred to as such in this paper. The phase function
accounts for the illumination conditions of the visible surface of the
Earth and its expression depends on whether the Earth’s visible
surface A* is completely illuminated (if the sailcraft “sees” only the
sunlit side of the Earth), partially illuminated (if the Earth’s day-night
terminator is visible from the sailcraft), or completely dark (if the
sailcraft “sees” only the dark side of the Earth). These three cases can
be identified through themaximumview angleφ and the phase angle,

χ� ∈ �0; π	, that is, the angle between r̂ and the opposite to the
sunlight direction −ŝ; see Fig. 4. For each of these cases, analytical
expressions can be found for the phase function Φ, as shown in the
following:
1) If χ� < φ, the visible surface A* is completely illuminated by

the Sun. In this case, Φ is equal to

Φ�r; χ�� � 1

2
1� R

r
cos χ� (33)

2) If φ < χ� < π − φ, the visible surface A* is partially illumi-
nated by the Sun. In this case, Φ is given by

Φ�r; χ�� � 1

2π
1 −

R

r

−1
cos−1

R

r sin χ�
−
R

r
sin2χ� −

R2

r2

� 1� R

r
cos χ�cos−1 −

R

r2 − R2
p cos χ�

sin χ�
(34)

3) If π − φ < χ�, the visible surface A* is completely dark and
Φ � 0.
The introduction ofΛ andΦ to separate the dependencies ofΛ and

χ (and therefore compute SAR analytically) introduces two sources of
approximation. Indeed, by employing Λ, a constant albedo coeffi-
cient is considered across the entire visible surface A*, despite the
sinusoidal variation with latitude assumed in Eq. (29). Similarly as

forSBBR, the value ofΛ depends on the size and location ofA* relative
to the equator/poles by means of the latitudinal factor LF. Second,
the usage of the phase functionΦ implies that all the albedo radiation
is emitted isotropically (i.e., uniformly) by the entire visible surface
A*. As a result, the fact that in reality radiation is emitted unevenly
and only by the illuminated part of A* is not taken into account.
Similarly as for the blackbody flux model, it is worth noting that if

Λeq � Λpol the sinusoidal variation of the albedowith latitude is lost,

see Eqs. (29) and (31), andΛeq,Λpol,Λ, andΛ coincide. In this case, a

uniform (i.e., constant) albedo distribution across the entire Earth’s
surface is obtained, and therefore the model is referred to as the
uniform albedo model. Hereinafter, whenever the uniform albedo
model is employed, an albedo coefficient ofΛ � 0.3259 is used. This
value was found by performing a numerical surface average of the
albedo values of the ANGARAyearly averaged albedo map given in
Fig. 3b. By assuming a constant albedo coefficient and substituting
Eq. (3) in Eq. (23), ac,ARP can be expressed as a function of the phase
function Φ and the SRP characteristic acceleration ac as follows:

ac;ARP � 2Λ
3

Φac � 0.2173Φ ac (35)

In the next two sections, different analyses are presentedwhich aim
to characterize the BBRP and ARP accelerations achievable in close
proximity of the Earth. Here, the discussion will focus mostly on the
uniform blackbody flux model and uniform albedo model, unless
stated otherwise, for the sake of clarity and easiness of the treatment.
The higher-fidelity sinusoidal blackbody flux model and sinusoidal
albedo model will be employed later on in the paper, where the

validation of the spherical BBRP and ARP acceleration models and
the analyses of PRP-perturbed trajectories are discussed.

III. Analysis of Blackbody Radiation Pressure
Acceleration

Figure 5 shows the contour plots of the BBRP acceleration mag-
nitude relative to the solar-sail characteristic acceleration ac in the
near-Earth environment, for altitudes up to h = 34,200 km. Two
different sail attitudes are considered, namely, a nadir-pointing solar
sail (i.e., n̂out � r̂) and inertial-pointing solar sail (chosen to point
along the x axis, n̂out � 
x̂, without loss of generality). As can be
seen in Fig. 5a, for a nadir-pointing attitude, the BBRP acceleration
magnitude aBBRP depends solely on the orbital altitude h as the PCA is
constantly equal to zero. This allows correlating aBBRP and h, as shown
in the legend of Fig. 5a. The contour plot shows the rapid decay of
aBBRP, especially at low altitudes. This is because each elementary
piece of Earth’s visible surface dA emits radiation whose power
intensity dP decreases as an inverse square law of the distance from
the sail l; see Fig. 2a and Eq. (13). Although increasing the altitude
also extends the size of the visible surface of the Earth (that is, the size
of the surface emitting radiation) A*, the inverse-square-law decay of
the radiation intensity remains dominant. As a result, aBBRP declines
swiftly, displaying a behavior similar to an inverse square law.
Nevertheless, the contour plot shows that accelerations even up to
11% of ac can be achieved for low altitudes, which is in agreement
with Eq. (27) and in line with the results found in the literature [22].
Similar to Fig. 5a, Fig. 5b shows the iso-acceleration curves for an
inertial-pointing solar sail, with the sail normal pointing along the x
axis. In this case, the acceleration varies less uniformly as the PCA is
not constant. In particular, aBBRP is equal to zero on the z axis; this is
because the sail is oriented edgewise with respect to the radial
direction (α� � π∕2), therefore causing the BBRP accelerations
exerted on the sail’s front and back sides to counteract each other.
Also, it is worth noting that the acceleration profile is symmetric with
respect to the z axis, which is a consequence of the fact that a double-
sided perfectly reflecting solar sail has been considered. Indeed, for a

Fig. 5 BBRP acceleration for a) nadir-pointing and b) inertial-pointing
solar sails (spherical uniform model).
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solar sail with different optical properties on the front and back sides,
no symmetry would be found.
The results presented earlier in this section considered a spherical

uniform PRP acceleration model. To gain insight also into the spheri-
cal sinusoidal model, Fig. 6 displays the sinusoidal model’s distri-
bution of the BBRP acceleration magnitude around the Earth for a
nadir-pointing solar sail, considering altitudes up to h = 34,200 km.
Unlike the uniform model’s distribution of Fig. 5a, the sinusoidal
model’s distribution shows no spherical symmetry, only an axial
symmetry along the Earth’s polar axis. This is due to the latitudinal
variation of the BBRP acceleration magnitude introduced by the
latitudinal factor LF; see Eq. (26). The latitudinal variation of
aBBRP is especially evident at low altitudes as it creates an equatorial
bulge in the acceleration magnitude distribution with a maximum
value of almost 13% of ac. On the other hand, a smaller acceleration
magnitude is achieved at the poles,whereaBBRP reaches atmost 8.4%
of ac. Finally, it is worth noting that for increasing altitudes the
contour lines circularize, meaning that a spherical symmetry is found
and the sinusoidal model tends to the uniform model.

IV. Analysis of Albedo Radiation Pressure Acceleration

Similar to Fig. 5 for the BBRP acceleration, Fig. 7 shows the
variation of the ARP acceleration magnitude aARP relative to the
characteristic acceleration ac for a nadir-pointing and Sun-pointing
solar sail and for altitudes up to h = 39,600 km. Although for the
BBRP acceleration the relative position of the Sun with respect to the
sail was not of any importance, it is for the ARP acceleration. In both
plots of Fig. 7, the Sun is placed along the positive x axis, and
therefore the direction of sunlight is ŝ � −x̂. Compared to the BBRP
acceleration, the variation of the ARP acceleration around the Earth
for a nadir-pointing sail displays a more complex pattern, due to the
additional dependency of aARP on the phase angle χ�. Indeed, Fig. 7a
shows that large ARP accelerations are achieved when the sail is
above the sunlit side of the Earth, reaching values up to 21% of the
characteristic acceleration for low altitudes and χ� � 0 (subsolar
point, on the positive x axis), in agreement with Eq. (35). The ARP
acceleration decreases rapidly when moving toward the dark side of
the Earth, and, notably, the acceleration contour lines assume a high
curvature in proximity of the terminator. This highlights that aARP

does not decrease monotonically with altitude in this region, which
is due to two counteracting effects: although for increasing altitudes
the intensity of the radiation emitted by the Earth decreases, a higher
altitude also allows the illuminated part of the Earth visible from the
sailcraft to be larger, thus making the sail receive more albedo
radiation. Because this latter effect is predominant at low altitudes,
an increase in altitude initially yields a larger aARP. However, for even

larger altitudes, the radiation intensity decreases rapidly and its effect

becomes predominant, hence making aARP decrease as well. Similar

to Fig. 5a, Fig. 7b displays the variation in ARP acceleration for a

Sun-pointing solar sail. In this case, the region of high ARP accel-

eration shrinks, because moving toward the dark side of the Earth

yields increasingly larger PCAs that negatively affect the ARP accel-

eration magnitude.

To gain insight into the ARP acceleration as per the spherical

sinusoidal model, Fig. 8 displays the sinusoidal model’s distribution

of the ARP acceleration magnitude around the Earth, for altitudes up

to h = 39,600 km, for a nadir-pointing solar sail, and assuming the

Fig. 6 BBRP acceleration for a nadir-pointing solar sail (spherical
sinusoidal model).

Fig. 7 ARP acceleration for a) nadir-pointing and b) Sun-pointing solar
sails (spherical uniform model).

Fig. 8 ARP acceleration for a nadir-pointing solar sail (spherical sinus-
oidal model).
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Sun to be in the equatorial plane (along the positive x axis).
Comparison of Figs. 7a and 8 shows that the accelerations of the
uniform and sinusoidal models vary similarly at large distances
from the Earth, while differences arise at low altitudes. Indeed, the
largest ARP acceleration magnitude in the sinusoidal model is
about 19% of ac and it is found at intermediate latitudes. The
reason behind this peculiar acceleration magnitude distribution is
twofold. On the one hand, the surface-averaged albedo radiation
flux SAR tends to decrease when moving away from the subsolar
point, as the phase function Φ assumes increasingly lower values;
see Eqs. (30) and (33). On the other hand, because in the sinusoidal
model the albedo coefficient increases with latitude, the albedo
radiation flux tends to increase when moving away from the
equator; see Eqs. (29–31). These two effects work in opposite
directions, thereby resulting in an acceleration distribution with a
maximum magnitude at intermediate latitudes.

V. Comparison with State of the Art

This section presents several analyses that aim to measure the
accuracy of the spherical PRP acceleration model compared to other
models in the state of the art. In particular, Sec. V.A provides a
comparison with the FDmodel devised byMcInnes [1], and Sec. V.B
presents different parametric analyses to validate the spherical model
bymeasuring its accuracy relative to a high-fidelity numerical model.

A. Comparison with Finite-Disk Radiation Source Model

The FDmodel has beenwidely applied in the literature [22,23] and
assumes the emitting body (the Earth) to irradiate as a uniformly
bright disk solely in the radial direction r̂. As such, it does not take
into account the curvature of the Earth and the possibility of having
both sides of the sail illuminated simultaneously. Similar to the
spherical uniform model, the FD model also assumes a constant
blackbody radiation flux and albedo coefficient. In light of this, in
the following subsections, the FDmodelwill be compared against the
spherical uniform model, rather than the spherical sinusoidal model.
In this way, the differences arising from the different geometrical
assumptions underlying the FD and spherical uniformmodels will be
better highlighted.

1. Blackbody Radiation Pressure Acceleration

When using the FDmodel, the BBRP accelerationaBBRP;FD can be
expressed as [1,22,23]

aBBRP;FD � ac;BBRP GF;FD n̂out (36)

where GF,FD represents the geometrical factor of the FD model:

GF;FD � 1 − 1 −
R2

r2

3∕2
cos2α� (37)

The only difference between the BBRP accelerations of the spherical
uniform model and FD model is given by the definition of the
geometrical factors; see Eqs. (18) and (36). For this reason, the
comparison of the BBRP accelerations of these two models also
provides direct insights in the difference between GF and GF,FD.
Figure 9 displays a comparison between the acceleration envelope

curves of the spherical and FD models for a range of altitudes. These
curves represent the set of all attainable BBRP accelerations achiev-
able when changing the PCA. As can be seen, both models provide
the same BBRP acceleration when α� � 0. This is because, for
α� � 0, the spherical and FD models’ geometrical factors are iden-
tical; see Eqs. (20) and (37). For increasing PCAs, discrepancies
between the acceleration envelope curves arise, particularly in the
transversal direction (i.e., perpendicular to r̂). These differences
depend on the altitude considered because for increasingly larger
altitudes the approximation introduced by considering the planet as a
uniformly irradiating disk rather than a spherical radiation source
reduces. Consequently, the spherical model’s envelope curve con-
verges to the FD model’s envelope curve for h → ∞. Because the

spherical model’s envelope curve depends on the altitude and

exhibits a larger transversal component compared to the FD mod-

el’s envelope curve, the largest acceleration differences between the

two models are found for low altitudes and intermediate values of

the PCA (45–75 deg), reaching values even in the order of 3–4% of

the characteristic acceleration ac.

2. Albedo Radiation Pressure Acceleration

Similarly as for the analysis for the spherical BBRP acceleration

model, the accuracy of the spherical uniformARPaccelerationmodel

is quantified by comparing it against the FDARP accelerationmodel.

The ARP acceleration of the FD model can be expressed as [1]

aARP;FD � ac;ARP;FD GF;FDn̂out (38)

where ac;ARP;FD is the albedo characteristic acceleration of the

FD model. Similar to Eq. (35) for the spherical uniform model,

ac;ARP;FD can be defined in terms of the SRP characteristic accel-

eration ac as

ac;ARP;FD � 2Λ
3

ΦFD ac � 0.2173ΦFD ac (39)

where ΦFD is the albedo phase function of the FD model, given by

ΦFD � max �0; cos χ�� (40)

The given definition of ac;ARP;FD is based on albedo flux models

commonly used in the literature [22,50] and differs from ac;ARP only
for the use of ΦFD instead of Φ; see Eqs. (35) and (39).
The different definitions of the geometrical factor and phase

function of the spherical and FD models are at the core of the

acceleration differences between the two models. Different geomet-

rical factors determine different shapes of the ARP acceleration

envelope curves, in a fashion similar to the BBRP acceleration

envelope curves of Fig. 9. On the other hand, the albedo phase

functions affect the maximum achievable ARP accelerations of the

two models, so different phase functions translate into different

dimensions of the ARP acceleration envelope curves. To provide

insights into this difference, Fig. 10 displays the albedo phase func-

tions of the two models. As can be observed, the spherical model’s

phase function depends on altitude, unlike the FD model’s phase

function, in agreement with Eqs. (33), (34), and (40). Furthermore, it

is interesting to note that, while the geometrical factor of the spherical

model converges to that of the FD model for increasing altitudes,

see Fig. 9, the opposite is true for the phase function. Indeed, the

spherical model’s phase function Φ and FD model’s phase function

ΦFD coincide for h � 0. Then, for increasing altitudes, the difference
between Φ and ΦFD (and, therefore, between the sizes of the accel-

eration envelope curves) increases steadily, reaching values even in

Fig. 9 BBRP acceleration envelope curves of the FD and spherical
models.
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the order of 0.05–0.10 for altitudes in the range 500–1000 km and a

maximum of 0.5 for h → ∞.

B. Parametric Analyses

In this section, different parametric analyses are presented which

aim to validate the spherical PRP acceleration model and quantify its

accuracy compared to a high-fidelity numerical model. To achieve

this, a wide variety of PRP-perturbed, Earth-bound orbits have been

propagated using different PRP acceleration models. The equations

of motion employed are given in Eq. (1), but with aaero � aJ2 � 0,
that is, excluding the effect of aerodynamic drag and J2 gravitational

accelerations. These terms have been neglected as they would have

introduced additional perturbations in the dynamics, thus making it

more difficult to clearly determine the accuracy of the different PRP

acceleration models. The PRP acceleration models considered are

as follows:
1) The PRP acceleration model implemented in the software tool

near real-time density model (NRTDM), which computes the BBRP
and ARP accelerations by approximating the acceleration integral of
Eq. (17)with a finite sum.NRTDM is a software tool developed at the
Delft University of Technology under ESA contract whose results
have been used for different applications, including precise orbit
determination, parameter estimation for the ERS and ENVISAT
satellites, and processing of the GOCE and Swarm satellites’ mea-
surements [35,48,49]. Tomodel the planetary flux distribution across
the Earth, this model makes use of two monthly averaged maps, one
for the blackbody radiation flux and one for the albedo coefficient,
similar to the yearly averaged maps of Fig. 3. These maps have been
obtained from the ANGARA software package developed by Hyper-
schall Technologie Göttingen GmbH [47], and they have been cre-
ated based on the satellite data collected across the 1980s by the Earth
Radiation Budget Experiment (ERBE) mission [35]. Thanks to the
fine angular resolution of 2.5 × 2.5 deg2 and the fact that a monthly
variability is considered in the maps, this model allows one to
determine the BBRP and ARP accelerations to a very high accuracy,
although requiring a large computational effort. For more informa-
tion on NRTDM, the reader is referred to Ref. [35].
2) The spherical model with uniform blackbody radiation

flux/albedo distributions, see Secs. II.D.1 and II.D.2.
3) The spherical model with sinusoidal blackbody radiation flux/

albedo distributions, see Secs. II.D1 and II.D.2.
4) The finite-disk model, see Secs. V.A.1 and V.A.2.
5) A model neglecting the PRP acceleration altogether, that is,

aBBRP = aARP = 0 at any time.

All analyses make use of the ACS3 mission orbit as baseline sce-

nario, with a solar-sail characteristic acceleration of ac = 0.045 mm/s2

and the following vector of initial orbital elements defined in frame
I�x; y; z�:

�a0; e0; i0; LTAN0; ω0; f0	T

� 7093.1363 km;0; 98.2490 deg;

00∶00 AM

00∶30 AM

..

.

11∶30 PM

;0 deg;0 deg

T

(41)

where a is the semi-major axis, e is the eccentricity, i is the
inclination, ω is the argument of perigee, f is the true anomaly,
LTAN stands for local time of the ascending node, and the sub-
script 0 denotes the initial value of these variables.§ These orbital
elements represent a circular, Sun-synchronous orbit with initial
altitude h0 � a0 − R � 715 km. In Eq. (41), several values of
the LTAN are considered, spaced by 0.5 hrs along the entire 24-
hour time span. This parameter defines the orbit orientation in
frame I�x; y; z� and is equivalent to the right ascension of the
ascending node, which, in a similar fashion, is spaced by 7.5 deg
across the entire 360 degrees angular span. The parametric analy-
sis also considers 12 different simulation start times, correspond-
ing to the 15th day of each month of 2023. For each initial orbit,
the solar-sail dynamics are propagated while implementing locally
optimal orbit-raising and inclination-changing steering laws.
These steering laws are computed using an algorithm devised by
McInnes [1], accounting only for SRP in the optimization process.
Therefore, the BBRP and ARP accelerations are considered as
uncontrolled perturbing accelerations affecting the orbit. For each
initial orbit, each simulation start time, and each steering law, five
different propagations are performed in which the PRP accelera-
tion is computed through the five models listed previously. Then,
the relative errors between the final altitude/inclination obtained
by the NRTDM model (taken as the ground truth) and each of the
analytical models, εrel, are computed. The parameter εrel is used as
metric of the accuracy of the analytical models, and it is defined as

εrel �
œNRTDM;f − œAn;f

œNRTDM;f − œ0

(42)

where œ0 indicates the initial value of the steering law’s target
parameter (i.e., h or i) and œNRTDM;f and œAn;f represent the final

values of the target parameter found through the NRTDM and
the analytical model under consideration, respectively. For each
simulation, the dynamics have been propagated for 10 days, using
MATLAB®’s ode45 integrator with absolute and relative toleran-
ces of 10−12. The analysis settings presented will be used as
reference settings in the following subsections to investigate the
accuracy of the spherical models and its variation with the initial
LTAN, altitude, and inclination.

1. Variation in Accuracy Due to LTAN

Figure 11 shows the variation of the relative error with the LTAN
for the orbit-raising steering law for all analytical models. For each
model, a band is displayed which represents the range of relative
errors obtained by considering simulation start times at different
months. All the error bands follow a 12-hour periodic trend, approx-
imately symmetric with respect to the LTAN at 1200 hrs. This is
due to the relative orientations of the Sun-synchronous orbits with
respect to the direction of sunlight, which can be similar even for
different LTANs and therefore yield similar errors εrel.When the PRP
is neglected or the FD model is used, the relative errors approach a
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Fig. 10 Albedo phase functions of the FD and spherical models.

§The ACS3 mission data were taken from personal communication with
W.K. Wilkie, Principal Investigator of the ACS3 mission, NASA Langley
Research Center, February 2023.
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minimum for a LTAN at 0600/1800 hrs (corresponding to a dawn-
dusk orbit). The reason for this is that the phase angle χ� is always
close to 90 deg and therefore a very small ARP acceleration is exerted
on the sail; see Figs. 7 and 8. Furthermore, by implementing the orbit-
raising steering law, the sail is constantly oriented almost edgewise
with respect to the radial direction. This corresponds to a PCA α�
approximately equal to 90 deg at all times and thus a minor BBRP
acceleration; see Figs. 5b and 9. When a LTAN at 0000/1200 hrs is
considered (corresponding to noon-midnight orbits), the BBRP and
ARP accelerations are the largest, and therefore the errors εrel
achieved by these two models are maximum. This result is due to
the fact that the sailcraft flies in the vicinity of the subsolar point once
per orbit, where the ARP acceleration is the largest. Also, in this case,
the PCA α� varies in a wide range, from 0 to 90 deg, thus yielding
considerable BBRP accelerations. While these considerations hold
true also for the spherical models, their error bands exhibit a weaker
dependency with the LTAN. This stems from the fact that the spheri-
cal models manage to approximate the ARP and BBRP accelerations
better than the no-PRP and FD models, particularly for LTANs close
to 0000/1200 hrs. Although the errors that the uniform and sinusoidal
models produce are similar in magnitude, it is worth noting that the
width of the uniform model’s error band is larger than the sinusoidal
model’s error band. This is due to the higher level of approximation of
the uniform model, which introduces a larger error uncertainty with
respect to the simulation start time. The narrower error band dis-
played by the sinusoidal model also highlights its different trend
compared to the other models, with a minimum for a LTAN at
0000/1200 hrs and a maximum for LTANs close to 0600/1800 hrs.
This trend is determined by a second-order source of error, originat-
ing from a complex interplay between the sail orientation and the
Sun-Earth-sailcraft relative geometry. Indeed, when the day-night
terminator is visible from the sailcraft and for specific sail attitudes,
the outward-facing side of the sail can receive more albedo radia-
tion than its inward-facing side. This yields an ARP acceleration
that points opposite to n̂out. However, because of the simplifying
assumption that the Earth irradiates isotropically, the sinusoidal
model always provides ARP accelerations pointing toward n̂out;
see Eq. (18). This discrepancy affects the results particularly if the
day-night terminator is often visible from the sailcraft, that is, for
a LTAN at 0600/1800 hrs, thus yielding a larger relative error εrel.
Conversely, for LTANs close to 0000/1200 hrs, the day-night termi-
nator is visible only for short periods of time, and therefore εrel is
minimum.
As can be seen in the plots, neglecting the PRP acceleration in the

dynamics yields large relative errors, even in the order of 14%.When
employing the FDmodel, these errors are strongly reduced, reaching
values of 4% at most. Because of their higher fidelity with respect to
the FDmodel, the sphericalmodels achieve even smaller errors, in the
range 0–1.3% and 0.3–1% for the uniform and sinusoidal models,
respectively.

Similarly as in Fig. 11 for the orbit-raising case, Fig. 12 displays
the variation of εrel for the inclination-changing steering law, for
different LTANs and PRP acceleration models. In this case, a 12-
hour periodicity in the errors is again obtained, although the error
bands appear skewed and asymmetric, unlike the ones observed in
Fig. 11. This asymmetry is due to the complex, discontinuous nature
of the inclination-changing steering law, for which orbits with similar
orientations with respect to the sunlight direction still yield different
increases in inclination [1]. Similar to the orbit-raising case, only a
minor ARP acceleration perturbs the orbit for LTANs close to 0600/
1800 hrs, as the phase angle is close to 90 deg at all times. This leads
to small relative errors εrel particularly when the no-PRP, FD, or
uniform models are used. The errors achieved by these three models
increase as the LTAN deviates from 0600/1800 hrs, reaching their
maximum between 1100/2300 hrs and 1400/0200 hrs. In these cases,
the sail flies in the vicinity of the subsolar point once per orbit with a
small PCA. This results in considerable ARP and BBRP accelera-
tions, which yield larger errors for all models except the sinusoidal
model. Indeed, for the same range of LTANs, the sinusoidal model
achieves much smaller errors, even compared to the uniform model.
This is due to the higher fidelitywithwhich the blackbody and albedo
radiation fluxes are modeled. As such, the error difference between
the uniform and sinusoidal models provides direct insights into how
the modeling of the blackbody and albedo radiation fluxes affects the
accuracy. Comparing the error bands of the spherical sinusoidal and
uniform models, it can be noted that the former exhibits a narrower
spread than the latter. As for the orbit-raising case, this is due to the
better level of approximation of the sinusoidal model, which yields a
lower error uncertainty. The plots also show that the sinusoidal model
achieves its maximum error for a LTAN at 0800/2000 hrs. Like in the
orbit-raising case, this is due to the approximation that the Earth
behaves as an isotropic radiator, which can lead to errors in the ARP
acceleration direction when in proximity of the day-night terminator.
Figure 12 shows that if the PRP is not accounted for in the

dynamics large errors are produced, reaching magnitudes even in
the order of 34%.On the other hand, smaller errors are achievedwhen
the FD, spherical uniform, and spherical sinusoidal models are
employed, reaching values of atmost 5.0, 2.8, and 1.1%, respectively.

2. Variation in Accuracy Due to Altitude

The parametric analysis discussed in Sec. V.B.1 provided insights
into the accuracy of the PRP accelerationmodels for awide variety of
LTANs and simulation start times. Nevertheless, the fidelity of the FD
and spherical PRP acceleration models also depends on the orbital
altitude considered, as highlighted in Sec. V.A. In light of this,
additional parametric analyses have been conducted in order to
quantify the variation in the accuracy of the PRP acceleration models
with altitude. More specifically, the same parametric analyses of
Sec. V.B.1 have been performed again multiple times, although
considering the set of initial altitudes h0 � f450; 550; 650; 715;

Fig. 12 Relative error on the inclination increase of different analytical
PRP acceleration models.

Fig. 11 Relative error on the altitude increase of different analytical
PRP acceleration models.
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800; 900; 1000g km and their corresponding Sun-synchronous
inclinations, which range between i0 � 97.2139 deg and i0 �
99.4790 deg. It should be noted that the altitude lower bound of
450 km was chosen, as this represents the lowest altitude for which
solar sails can maneuver without deorbiting, despite the intense
atmospheric drag [19]. To conveniently summarize the results
obtained, Fig. 13 displays the maximum relative error achieved over
all LTANs and simulation start times, εrel;max, for each PRP accel-

eration model, steering law, and initial altitude.
Figure 13a shows the variation of εrel;max with the initial altitude

for the orbit-raising steering law. As can be observed, εrel;max

increases for decreasing values of h0, for all PRP acceleration
models. This stems from the fact that, by lowering the altitude,
the sail experiences larger PRP accelerations perturbing the orbit to
a larger extent. The increase in εrel;max for increasingly lower h0 is

especially visible when PRP is not considered, as εrel;max varies

between 12.2 and 17.2%. Using the FD model yields better results,
although maximum relative errors between 2.9 and 5.5% can still be
achieved. The spherical PRP acceleration models also show a slight
increase in error for decreasing altitudes, although much less pro-
nounced than the FD and no-PRP models: εrel;max always assumes

values in the ranges 1.2–1.6% and 0.9–1.1% for the uniform and
sinusoidal models, respectively. Figure 13b shows the change of
εrel;max with the initial altitude for the inclination-changing steering

law. Similar to the orbit-raising case, the results show that the
no-PRP, FD, and spherical uniform models perform less accurately
for decreasing initial altitudes. Neglecting the PRP acceleration
yields large maximum relative errors, particularly at low altitudes,
where εrel;max can even reach 45%. In contrast, the FD and uniform

models perform considerably better than the no-PRP model, achiev-
ing εrel;max in the ranges 3.6–6.9% and 2.2–3.9%, respectively.

Ultimately, when the spherical sinusoidal model is employed, the
error variation with altitude almost disappears, as εrel;max remains

between 1.05 and 1.10%.

3. Variation in Accuracy Due to Inclination

The parametric analyses discussed in Sec. V.B.2 provided insights
into the accuracy of the PRP acceleration models for a variety of
orbital conditions, though only considering Sun-synchronous orbits.
Therefore, to investigate also the impact of inclination on the accu-
racy of the different PRP acceleration models, additional parametric
analyses have been conducted. In particular, the same parametric
analyses of Sec. V.B.1 have been performed again multiple times
considering the inclinations i0 � f0.5; 24; 50; 75; 90; 98.2490g deg,
where the last value corresponds to the Sun-synchronous inclination
for h0 � 715 km.
Figure 14a shows the variation of εrel;max with the initial inclination

for the orbit-raising steering law. As can be seen, neglecting the PRP
acceleration leads to considerable errors, with values of εrel;max even

in the order of 14% for (quasi-)polar orbits. For equatorial orbits, the

FD model performs particularly well, and, notably, it achieves
εrel;max even lower than the uniform model’s. However, for increas-

ing initial inclinations, the accuracy of the FD model reduces, while
that of the uniform model improves. This causes the error curve of
the FD model to grow from 1.9 to a maximum of 4.2%, whereas for
the uniform model, εrel;max reduces from 2.6 to 1.3%. The uniform

model displays large errors for small inclinations because of its
limited accuracy in predicting the planetary radiation flux near the
equator. Because the sailcraft flies only on top of the equatorial
region for an equatorial orbit, the error committed accumulates
rapidly over time. On the other hand, for larger inclinations, the
sailcraft’s ground track covers a larger portion of the Earth’s surface,
thus alleviating the accumulation of error and lowering εrel;max.

Ultimately, the sinusoidal model achieves the lowest errors for
any initial inclination considered, with εrel;max varying in the range

0.4–1.2%. Figure 14b shows the change of εrel;max with the initial

inclination for the inclination-changing steering law. The error
curves of the no-PRP model shows a weak dependency with the
initial inclination, whereas the FD and uniform models display
trends similar to those found in Fig. 14a. Compared to the orbit-
raising case, however, the magnitude of the errors is amplified:
εrel;max reaches even 34.7% when PRP is neglected, while values

in the ranges 4.2–5.0% and 2.7–5.5% are found for the FD and
uniform models, respectively. Unlike Fig. 14a, the sinusoidal model
performs worse for equatorial orbits than high-inclination orbits, as
εrel;max � 3.7% is found for i0 � 0.5 deg, while smaller errors of at

most of 1.1% are found for (quasi-)polar inclinations. Nonetheless,
the sinusoidal model still performs the best among all models and
for all inclinations considered.
The results presented in Figs. 13 and 14 highlight the limits of both

the FD and no-PRP acceleration models to accurately represent the
solar-sail dynamics, especially at low altitudes and for orbits with
high inclination. On the other hand, the spherical uniform and
sinusoidal models achieve much lower errors, with the sinusoidal
model performing the best among all analytical models, as it achieves
a consistent accuracy independent of altitude and only slightly
dependent on inclination. Based on these results, therefore, the
spherical uniform and sinusoidal models are deemed validated. In
addition to their accuracy, it should also be noted that using the
spherical uniform or sinusoidal models incurs only minor additional
computational costs compared to the FDmodel. This is due to the fact
that all these models are analytical. Therefore, they require a similar
computational effort which is, however, substantially smaller than the
computational effort required by numerical methods such as
NRTDM. More specifically, by considering several orbital scenarios
and computing the corresponding PRP accelerations through the
aforementioned models, it was found that the spherical sinusoidal
model requires run times 1.02 and 2.73 times larger than those of the
spherical uniform and FD models, respectively. In contrast, the run
time of the sinusoidal model was found to be 31.7 times shorter than
the run time of the NRTDM model.

a) b)

Fig. 13 Maximum relative error on the a) altitude increase and b)
inclination increase for different altitudes.

a) b)

Fig. 14 Maximum relative error on the a) altitude increase and b)
inclination increase for different inclinations.
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VI. ACS3 Mission Analysis

In this section, the effect of the BBRP and ARP accelerations on
the orbit-raising and inclination-changing capabilities of different
Earth-bound solar-sail orbits is analyzed. Similar to the last section,
all analyses make use of the ACS3mission as baseline scenario, with
a simulation start time of 1 June 2024 (i.e., the expected deployment
date of the solar sail). The initial orbital elements are given in
Eq. (41), although the initial LTAN values have been restricted to
0600 and 1200 hrs only. These identify two orbits in dawn-dusk and
noon-midnight conditions, corresponding to right ascensions of the
ascending node of 339.9554 and 69.9554 deg, respectively. Unlike
Sec. V (in which the dynamics considered only the SRP and PRP
accelerations), in this section, a more realistic full-dynamical model
is employed, which accounts also for the aerodynamic and J2 gravi-
tational accelerations. In these dynamics, the PRP acceleration is
modeled using the spherical sinusoidal model, because of its high
accuracy and limited computational costs, as seen in Sec. V. For each
initial orbit, the solar-sail dynamics are propagated, and locally
optimal orbit-raising and inclination-changing steering laws are
employed. These steering laws are computed using an algorithm
accounting for SRP, atmospheric drag, and the J2 perturbation in
the optimization process [19], but not for the PRP. Therefore, the
BBRP and ARP accelerations are considered as uncontrolled per-
turbing accelerations affecting the orbit. To quantify the effect of
these accelerations on the orbit-raising and inclination-changing
capabilities of the ACS3 mission, the equations of motion presented
in Eq. (1) are propagated with and without PRP acceleration on the
right-hand side. In this way, the final increases in altitude and
inclination for PRP-perturbed and PRP-unperturbed orbits can be
compared and their differences assessed. Similarly as in Sec. V, for
each scenario, the equations of motion are propagated for 10 days
using MATLAB®’s ode45 integrator, with absolute and relative
tolerances of 10−12. More details on the optimization scheme as well
as the settings used for the optimizer are provided in Ref. [19].
Figure 15 shows the variation of the SRP, aerodynamic, BBRP,

and ARP accelerations over one orbital period, for the orbit-raising
and inclination-changing steering laws (top and bottom plots,
respectively) and LTANs at 0600 and 1200 hrs (left and right plots,
respectively). It should be noted that, although the J2 gravitational
acceleration has also been included in the dynamics, its magnitude is
not displayed in Fig. 15. This is because the J2 acceleration is
significantly larger than the other accelerations considered, ranging
between 206 and 459 times the characteristic acceleration ac. The
large differences in the acceleration profiles for the four cases are due
to the different sail attitude control profiles adopted. Indeed, the solar-
sail attitude control is computed through the optimization process
and strongly depends on the steering law and LTAN considered [19].
As shown in the plots, most of the time, the SRP acceleration is the
dominant acceleration. However, the BBRP and ARP accelerations
can get as large as 10–15%of the solar-sail characteristic acceleration
and, for some cases and in some particular sections of the orbit, attain
values even larger than the SRP acceleration. These large values of
the BBRP and ARP accelerations are achieved when an initial LTAN
of 1200 hrs is considered. As discussed in Sec. V, this is due to the
orbit orientation (which allows the sailcraft to fly in proximity of the
subsolar point) and the low PCAvalues encountered along the orbit.
On the other hand, for an initial LTANat 0600 hrs, the PCA and phase
angle assume values close to 90 deg, thus yielding smaller BBRP and
ARP accelerations equal to at most 4% of the characteristic accel-
eration. It is interesting to note that when an orbit-raising steering law
is considered, no BBRP and ARP accelerations are produced during
eclipses. Indeed, in this circumstance, the normal vector of the sail is
oriented perpendicular to the orbital plane. This translates into the sail
being oriented parallel to the wind flow to prevent atmospheric drag
while, at the same time, the BBRPs on the sail front and back sides
counteract each other to produce a null net acceleration. In addition,
because the sail is in eclipse, no solar radiation or albedo is present,
thus making the total acceleration exerted on the sail reduce to the J2
acceleration only. When an inclination-changing steering law is
employed and the sail is in eclipse, a similar phenomenon takes

place. Indeed, in this case, the sail is oriented edgewise with respect
to the radial direction, but with a nonzero angle of attack with respect
to thewind flow.As a consequence, this sail attitude yields once again
a null BBRP acceleration but also a nontrivial aerodynamic accel-
eration. This is visible in the bottom-right plot of Fig. 15 for the
inclination-changing steering law with LTAN at 1200 hrs, which
shows that the aerodynamic acceleration is the only nonzero accel-
eration (except for the J2 acceleration, not displayed).
Table 1 displays the average BBRP and ARP accelerations experi-

enced by the sail and the final altitude and inclination increases
obtained after 10 days, for all orbit scenarios, with and without PRP
in the dynamics. In the table, Δœ is the total increase in the steering
law’s target parameter (i.e., h or i) after 10 days, and εrel;f is the relative
error between theΔœ found with and without PRP in the dynamics. It
should be noted that, although the J2 acceleration is orders of magni-
tudes larger than the SRP, PRP, or aerodynamic accelerations, the
results given in Table 1 are affected by the J2 perturbation only to a
limited extent. Indeed, the J2 perturbation has no secular effect on the
altitude and inclination, only a short-term periodic effect [36]. Con-
sequently, accounting for the J2 perturbation affects the investigation of
the orbit-raising and inclination-changing capabilities of solar sails
only slightly. As observed also in Fig. 15, the average BBRP and ARP
accelerations are considerably smaller for a LTAN at 0600 hrs than at
1200 hrs. Therefore, for a LTAN at 0600 hrs, the effect of the PRP on
the orbit-raising/inclination-changing capabilities of the sail is only
minor. This translates into relative errors in the altitude/inclination
change in the range 0.2–0.7%with respect to the case inwhich the PRP
is not accounted for. Conversely, for a LTAN at 1200 hrs, larger BBRP
and ARP accelerations are found, and the orbit is perturbed signifi-
cantly; neglecting the PRP in the dynamics yields relative errors of
24.21 and 19.61% for the orbit-raising and inclination-changing steer-
ing laws, respectively. It is interesting to note that the relative errors
εrel;f given in Table 1 assume values close to the relative errors εrel

Fig. 15 ACS3 acceleration profiles for the orbit-raising (top) and
inclination-changing (bottom) steering laws with LTAN at 0600 (left)
and 1200 hrs (right).
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displayed in Figs. 11 and 12, for the no-PRP error band. This is due to
the fact that εrel;f is defined similarly as in Eq. (42), where the final

altitude/inclination achieved by the NRTDM model, œNRTDM;f, is

substitutedwith the final altitude/inclination of the spherical sinusoidal
model. Because the difference between the final altitude/inclination
achieved by these twomodels is minor (see again Figs. 11 and 12), εrel
and εrel;f assume similar values.More specifically, the values assumed

by εrel;f for the inclination-changing steering law arewithin or slightly

below the error band of Fig. 12. On the other hand, the errors εrel;f for
the orbit-raising steering law are within the error band of Fig. 11 for a
LTAN at 0600 hrs but are far above the error band for a LTAN at
1200 hrs. Further investigations showed that this discrepancy is due to
the presence of the aerodynamic drag, which strongly affects the
achieved altitude increase. Consequently, accounting for it in this
section but not in Sec. V produces larger relative errors compared to
the those of Fig. 11.
The results provided in this section show that the PRP acceleration

can achieve a nonnegligible magnitude compared to the SRP and
aerodynamic accelerations. When the PRP is uncontrolled, the orbit-
raising and inclination-changing capabilities of solar sails can be
affectednegatively to a significant extent. Therefore, in future research,
accounting for the PRP in the optimization procedure may prove
beneficial. In thisway, the detrimental effects observed in the presented
analysis may be counteracted, and, potentially, even larger altitude and
inclination changes might be achieved than foreseen to date.

VII. Conclusions

In this paper, a novel analytical model for the PRP accelerations of
double-sided perfectly reflecting solar sails has been presented. The
accuracy of this model, named the spherical PRP acceleration model,
has been measured by analyzing the orbit-raising and inclination-
changing capabilities of NASA’s upcoming ACS3 mission under the
influence of PRP, for a wide variety of orbital scenarios. The results
show the spherical model’s superiority in terms of accuracy compared
to another state-of-the-art analytical model, namely, the finite-disk
radiation pressure acceleration model devised by McInnes. Further-
more, when the spherical model is used assuming sinusoidal distribu-
tions of the Earth’s blackbody radiation flux and albedo coefficient
with latitude, it achieves a very high accuracy even compared to a high-
fidelity numericalmodel,with errors atmost in the order of 1 and 3% in
themeasured altitude and inclination gains, respectively. This accuracy
is found consistently for all orbit scenarios analyzed, regardless of the
orbit orientation, altitude, steering law, or time of the year considered.
In addition, the spherical modelwas also found to require 32 times less
run time than the previouslymentionednumericalmodel.These results
demonstrate the validity of the spherical model as a computationally
efficient, yet accurate, alternative to numerical PRP acceleration mod-
els, particularly for planetocentric solar-sail mission design and analy-
sis. Finally, the newly devised spherical model has also been used to
determine the perturbing effect of the PRP acceleration on Earth-
orbiting solar sails. Using the ACS3 mission as reference scenario, it
was shown that neglecting the PRP acceleration in the dynamics can
lead to large errors in the estimated orbit-raising and inclination-
changing capabilities, even in the order of 20%. This result highlights
the importance of accounting for the PRP acceleration in the solar-sail
dynamics. Furthermore, because the PRP acceleration can reach

magnitudes up to 10–20% of the solar-sail characteristic acceleration
in proximity of the Earth, the results also suggest that the PRP accel-
eration may be exploited beneficially to enhance the maneuvering
capabilities of solar sails.
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Table 1 ACS3 simulation results for different steering laws and initial LTANs, with and without PRP

Steering law Orbit raising Inclination changing

LTAN 0600 hrs 1200 hrs 0600 hrs 1200 hrs

PRP ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

aBBRP;avg∕ac, % N/A 1.31 N/A 4.57 N/A 2.59 N/A 2.88

aARP;avg∕ac, % N/A 0.48 N/A 4.85 N/A 0.71 N/A 3.82

Δœ 19.581 km 19.445 km 12.834 km 10.332 km 9.370 ⋅ 10�2 deg 9.347 ⋅ 10�2 deg 4.886 ⋅ 10�2 deg 4.085 ⋅ 10�2 deg
εrel;f , % 0.701 24.21 0.246 19.61

✓ indicates that the PRP is considered, while ✗ indicates that the PRP is not considered.
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