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Abstract

In 2016 Hieber and Kashiwabara showed that the three dimensional primitive equations
admit a unique, global, strong solution for all initial data in a closed subspace of the
Bessel space H2{p,ppΩq provided p ě 6{5, being this the first result in the general Lp-
setting. Their approach consisted in studying the properties of the hydrostatic Stokes
operator Ap defined on the solenoidal subspace LpσpΩq of LppΩq. In 2017 Giga et. al.
further proved that the hydrostatic Stokes operator Ap admits a bounded H8-calculus,
obtaining maximal Lq ´Lp regularity estimates for the linearized primitive equations in
a much simpler way.

In this work we will study Giga et. al.’s and Hieber and Kashiwabara’s works par-
ticularized for the L2-case as well as all the necessary literature to replicate the proofs.
The goal of the thesis is to present an extended version of Giga et. al.’s proof to make
it more accessible. Although the Lp-case is not studied for lack of time, we differentiate
between the Sobolev-Slobodeckij, Bessel potential and Besov spaces to accentuate how
we could extend the proofs to the Lp-setting.
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Symbols and notation

N “ t0, 1, 2...u - non-negative integers
Z - integers
R - real numbers
R` - positive real numbers R` “ p0,8q
C - complex numbers
K - scalar field (R or C)
xˆ y - cross product of x, y P R3

x ăă y - x is much less than y for x, y P R
x ¨ y - inner product of x “ px1, x2, . . . , xnq, y “ py1, y2, . . . , ynq P Rn given by

x ¨ y :“ x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn

|x| - euclidean norm of x “ px1, x2, . . . , xnq P Rn given by

|x| :“ px2
1 ` x

2
2 ` ¨ ¨ ¨x

2
nq

1{2

Opgpxqq - for gpxq real-valued, fpxq “ Opgpxqq if there exist M ą 0, x0 P R, such that

|fpxq| ďM |gpxq| for all x ě x0

BΩ - boundary of Ω Ď Rn
} ¨ }X - norm in Banach space X
} ¨ }p - Lp-norm
p¨|¨qH - inner product in Hilbert space H
p¨|¨qΩ - inner product in L2pΩq
ãÑ - continuous embedding
< - real part
LpX,Y q - space of bounded linear operators from X to Y
LpXq - space of bounded linear operators from X to K
C8 - space of smooth functions
Cb - space of bounded continuous functions
S - space of Schwartz functions
X˚ - dual Banach space
x¨, ¨y - duality, for x P X and x˚ P X˚ given by

xx, x˚y :“ x˚pxq

xα - for x “ px1, x2, . . . , xnq P Rn and a multiindex α “ pα1, α2, . . . , αnq P Nn we set

xα :“ xα1
1 xα2

2 ¨ ¨ ¨xαnn
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Bαf - for some function f on Rn and a multiindex α we set

Bαf :“ Bα1
1 ¨ ¨ ¨ Bαnn f

txu - greatest integer less than or equal to x
A - complement



Chapter 1

Introduction

The primitive equations of the ocean, derived from the Navier-Stokes equations by as-
suming hydrostatic balance, constitute the fundamental model for geophysical flow. In
this work we consider the simplified model consisting of the momentum and continuity
equations, explicitly given by

Btv ` vvv ¨∇v `∇Hπ ´∆v “ f on Ωˆ p0, T q,

Bzπ “ 0 on Ωˆ p0, T q,

divvvv “ 0 on Ωˆ p0, T q,

vp0q “ v0 on Ω,

(1.1)

where Ω :“ Gˆ pa, bq is a cylindrical domain with G :“ p0, 1q2 and a ă b. The velocity
of the fluid is vvv “ pv, wq with v “ pv1, v2q and w horizontal and vertical components of
vvv respectively, π denotes the pressure of the fluid and f the external force.

The mathematical analysis of primitive equations was initiated in 1992 by Lions,
Teman and Wang [25, 24], who proved that given initial data in L2, there exists a global
weak solution to the problem. Note that uniqueness of solutions in three dimensions is
still an open problem. In 1995 Ziane [36, 37] proposed studying the linearized problem
instead and showed H2-regularity for the solution of the resolvent problem. Based on
this result, Guillén-González, Masmoudi and Rodŕıguez-Bellido [11] proved in 2001 the
existence of a local, strong solution for initial data in H1.

In 2007 Cao and Titi [3] took a big step forward and proved the existence of a
unique, global, strong solution for arbitrary initial data in H1. In later works they
included modifications on the viscosity and diffusion, establishing global well-posedness
for initial data belonging to H2.

These results were extended to the Lp-setting in 2016 by Hieber and Kashiwabara
[15], assuming Neumann and Dirichlet boundary conditions on the upper and bottom
layers of the cylinder respectively. They studied the problem from the point of view of
evolution equations, seeing the linearized primitive equations as semi-linear parabolic
evolution equations in certain solenoidal subspaces of Lp. Their proof starts with the
claim that the solution of the linearized equations is governed by an analytic semigroup
pTpptqqtě0 on the hydrostatic solenoidal subspace LpσpΩq of LppΩq, see (4.20). Follow-
ing Sohr’s approach for the classical Navier-Stokes equations [31], they introduced the
hydrostatic Helmholtz projection, denoted Pp, which eliminates the horizontal pressure
gradient ∇Hπs and has range precisely LpσpΩq. The generator of the pTpptqqtě0 semi-
group, Ap “ Pp∆, is called the hydrostatic Stokes operator and they proved that ´Ap
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CHAPTER 1. INTRODUCTION 2

is a sectorial operator of spectral angle 0, generating an exponentially decaying analytic
semigroup. Finally, adapting the Fujita-Kato approach for the Navier-Stokes equation
[20, 6], they constructed a unique, global strong solution to the nonlinear primitive equa-
tions for arbitrary initial data in the complex interpolation space rLpσpΩq, DpApqs1{p for

p P r6{5,8q. Since rLpσpΩq, DpApqs1{p ãÑ H2{p,ppΩq, for p ě 6{5 large the result extends
to initial data having less differentiability properties than H1.

In this work we are going to study the recent article by Giga et. al. [7] where it is
further proved that the hydrostatic Stokes operator admits a bounded H8-calculus. By
rewriting the hydrostatic Stokes operator Ap as a perturbation of the Laplacian

Apv “ ∆v `Bv, Bv “ ´∇H∆´1
H divH Bzv

ˇ

ˇ

D
,

they use perturbation theorems and the fact that Laplace operator ∆ admits a bounded
H8-calculus to show sectoriality of Ap and that it generates and analytic semigroup
on LpσpΩq in a much shorter way than Hieber and Kashiwabara. Moreover, multiple
corollaries are obtained immediately, such as maximal Lq ´ Lp-regularity and a charac-
terization of domains of fractional powers. As a consequence, in another recent article
by the same authors [8] they give a new proof of a unique, strong global solution for the
primitive equations for initial data in the real interpolation space pLpσpΩq, DpApqq1{q1,q.

In particular, we will restrict the proof to the L2-setting. Although the perturbation
argument is the same in both cases, it relies on the hydrostatic Stokes operator Ap being
invertible and sectorial with spectral angle 0 and the Lp-realization of the Laplacian ad-
mitting a bounded H8-calculus. Both proofs can be found in Hieber and Kashiwabara’s
previous work [15] and Nau’s dissertation [27] respectively, but contain bigger mathe-
matical difficulties. However, being the goal of this work to understand Giga et. al.’s
article, we decided the L2-approach to be a good start.

1.1 Outline

The thesis is divided into three parts. In chapter 2 we introduce the relevant equations to
construct a model of the large-scale ocean and derive the primitive equations of the ocean
through the Boussinesq and hydrostatic approximations. We conclude the chapter by
stating the simplified linearization of the primitive equations, also called the hydrostatic
Stokes equations.

In chapter 3 we introduce the relevant preliminaries to understand Giga et. al.’s [7]
proof. Finally, in chapter 4 we show that the hydrostatic Stokes operator admits a
bounded H8-calculus. To this end, in section 4.1 we establish the weak solvability of
the Poisson problem

∆Hπ “ divH f on G, π periodic on BG,

which will allow us to define the hydrostatic Helmholtz projection

P2v “ v ´∇Hπ with RanP2 “ L2
σpΩq.

We also include a useful characterization of the hydrostatic solenoidal subspace L2
σpΩq

of L2pΩq. In section 4.2 we define the hydrostatic Stokes operator

A2v “ P2∆v, DpA2q “ tv PW
2,2
perpΩq

2 : v
ˇ

ˇ

ΓD
“ 0, Bzv

ˇ

ˇ

ΓN
“ 0u X L2

σpΩq,
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and show that it generates an exponentially stable analytic semigroup following Hieber
et. al. [15] for the p “ 2 case. A construction for the Lp-case can also be found in the
referenced article. The proof consists of two steps, first we show the resolvent estimate
(4.36) by finding a unique solution of the weak formulation of the resolvent problem

#

λv ´∆v `∇Hπs “ f on Ω,

divH v “ 0 on G,
(1.2)

for every λ P Σπ´ε Y t0u through the Ladyzhenskaya-Babuška-Brezzi theorem and ap-
plying difference quotients. Second, we use the resolvent estimate to show that the
hydrostatic Stokes operator is sectorial and invertible, and apply the Laplace trans-
form representation to obtain the exponentially decaying bound. Finally, in section 4.3
we show that ´A2 admits a bounded H8-calculus through perturbation arguments by
rewriting it as

Apv “ ∆v `Bv, Bv “ ´∇H∆´1
H divH Bzv

ˇ

ˇ

D
.

We start by establishing H8-boundedness of the Laplacian through reflection arguments
and then apply the perturbation theorems of section 3.7 to obtain the desired result.
Although the assertion for the general Lp-setting relies on ´Ap generating an exponen-
tially decaying analytic semigroup, the H8-boundedness of the Lp-Laplacian is an easy
generalization of the Lp-case and can be found on [27]. We finish the work including two
immediate corollaries of the H8-boundedness of the hydrostatic Stokes operator, an ex-
plicit characterization of the domains of fraction powers p´A2q

θ through Bessel potential
spaces and maximal Lp-regularity estimates for the linearized primitive equations.

Our work ends at chapter 5 with a summary of the proof and possible future direc-
tions.



Chapter 2

Primitive equations

The primitive equations of the ocean are the standard model for the study of geophysical
flows. They are derived from the Navier-Stokes equations assuming hydrostatic balance
for the pressure in the vertical direction, justified by the difference of scale between the
depth of the ocean („ 11km) and the width (103 to 104km). In this chapter we provide a
brief explanation of the construction of the hydrostatic Stokes equations studied by Giga
et. al. in [7]. We will start by introducing the relevant equations to construct a model of
the large-scale ocean, while defining the basic concepts of oceanic fluid dynamics. In sec-
tions 2.1 and 2.2 we explain the Boussinesq and hydrostatic approximation respectively,
continuing with several simplifications. Finally, in section 2.3 we state the final form of
the hydrostatic Stokes equations we will study in the rest of the work. This chapter is a
compilation of several works [13, 12, 29]. The general theory on fluid dynamics and the
respective definitions are obtained from [35].

In general, the ocean is modeled as a slightly compressible fluid with Coriolis force.
The full set of equations of the large-scale ocean are: the momentum equation, the
continuity equation, the diffusion-transport equations for the temperature and salinity
and the equation of state. In what continues we will explain each of these equations.

We will start with the conservation of momentum. Newton’s second law of motion for
inertial frames of reference states that the acceleration of a body is equal to the net force
acting on it. Since we are interested in describing the flow relative to Earth’s surface, we
have to translate this law to a rotating frame of reference. Moreover, in case of fluids,
individual molecules cannot be followed and we instead consider an approximation by
a continuum, this is, the momentum per unit volume is ρvvv, where ρ : R3 Ñ R is
the density of the fluid and vvv : R3 Ñ R3 the velocity. The resulting equation is the
momentum equation in a rotating frame, which describes how the velocity of a fluid vvv
responds to inertial and imposed forces, assumed to be the pressure and gravity:

ρ
dvvv

dt
“ ´∇π ´ ρg ´ 2ρω ˆ vvv `Dvvv, (2.1)

Here, π : R3 Ñ R is the pressure, g “ p0, 0, gq the constant gravity vector, ω the angular
momentum, D is the molecular dissipation modeling the viscosity part of the velocity
changes by the anisotropic Laplacian

D “ µ1∆H ` µ2B
2
z , µ1, µ2 ą 0, (2.2)

and the Coriolis force 2ρω ˆ vvv is a fictitious force that arises from considering a non-
inertial coordinate system. Note that the acceleration is not simply the partial derivative

4



CHAPTER 2. PRIMITIVE EQUATIONS 5

Bvvv
Bt but the material derivative, which describes the change of momentum of the fluid
subject to space-time dependent velocity field and is defined as

d

dt
:“

B

Bt
` vvv ¨∇, (2.3)

where ∇ is the covariant derivative.
Next is the conservation of mass. Although in classical mechanics mass is absolutely

conserved, in fluid-mechanics the fluid flows into and away from regions. Therefore, the
continuity equation describes the relation between the rate at which the mass enters and
leaves the system, taking into account the accumulation of masses within the system:

ρ div vvv `
dρ

dt
“ 0. (2.4)

The temperature and salinity of the ocean are modeled by diffusion transport equations

dT

dt
“ DTT `QT and

dS

dt
“ DSS `QS , (2.5)

where DT and DS are the heat and salinity diffusivities associated with the anisotropic
Laplacian (2.2) and QT and QS are sources of temperature and salinity respectively.

Finally, the equation of state. Note that the momentum and continuity equations in
three dimensions provide two equations but three unknowns (density ρ, pressure π and
velocity vvv). Consequently, in order to obtain a solution another equation is needed, an
equation of state. For seawater liquid such a model is not easily derivable, we usually
rely on semi-empirical equations. In our case, a priori we will just assume the density of
the ocean to be a general function of pressure, temperature and salinity

ρ “ fpπ, T, Sq. (2.6)

The combination of equations (2.1)-(2.6) constitutes the set of equations governing
the dynamics of the large-scale ocean:

ρ
dvvv

dt
“ ´∇π ´ ρg ´ 2ρω ˆ vvv `Dvvv,

ρ div vvv `
dρ

dt
“ 0,

dT

dt
“ DTT `QT ,

dS

dt
“ DSS `QS ,

ρ “ fpπ, T, Sq.

(2.7)

Nevertheless, these equations are still mathematically complicated to study and spe-
cially computationally hard, so several simplifications are commonly considered which
will be studied in the following sections.

2.1 Boussinesq approximation

The variations of density in the ocean are due to three effects: the compression of water
by pressure (∆πρ), the thermal expansion of water by temperature changes (∆Tρ) and
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the haline contraction by salinity changes (∆Sρ). However, these variations are relatively
little („ 5%) around the ocean in comparison to the mean density and, accordingly, the
Boussinesq approximation exploits this feature of the ocean to obtain a simpler equation
of motion. Here we will give a brief explanation of its consequences, but for a rigorous
justification of the approximation we refer the reader to [35].

Fixing ρ0 as a reference value for the density, we may write

ρ “ ρ0 ` ρ
1pt;x, y, xq with ρ1 ăă ρ0, (2.8)

The appropriate equation of state that approximately evaluates the change in pressure,
temperature and salinity is the linear one

ρ “ ρ0p1´ βT pT ´ T0q ` βSpS ´ S0qq,

where βT , βS are the expansion coefficients and T0, S0 the reference values of temperature
and respectively. Substituting (2.8) in (2.1) and dividing by ρ0 the momentum equation
can be written as

ˆ

1`
ρ1

ρ0

˙

dvvv

dt
“ ´

1

ρ0
∇π ´ ρ

ρ0
g ´

ˆ

1`
ρ1

ρ0

˙

2ω ˆ vvv ` ν1∆Hvvv ` ν2B
2
zvvv,

where νj “ µj{ρ0 is the kinematic viscosity. If ρ1 ăă ρ0, we can neglect the ρ1{ρ0 term
on the left and in the Coriolis force. However, the gravity term g is relatively big and
there is no reason to disregard it. Consequently, the equation of motion after Boussinesq
approximation takes the form

dvvv

dt
“ ´

1

ρ0
∇π ´ ρ

ρ0
g ´ 2ω ˆ vvv ` ν1∆Hvvv ` ν2B

2
zvvv.

The same substitution (2.8) applied to the continuity equation (2.4) gives

Bρ1

Bt
` vvv ¨∇ρ1 ` ρ0 div vvv ` ρ1 div vvv “ 0,

where we already developed the material derivative (2.3). Dividing by ρ0 again, taking
ρ1 ăă ρ results in

div vvv “ 0.

Finally, separating the velocity vvv “ pv, wq : R3 Ñ R3 into its horizontal v “ pv1, v2q and
vertical w coordinates we obtain the Boussinesq equations of the ocean:

pBEsq

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Btv ` v ¨∇Hv ` w ¨ Bzv “ ´
1

ρ0
∇Hπ ´ 2ω ˆ v ` ν1∆Hv ` ν2B

2
zv,

Btw ` v ¨∇Hw ` w ¨ Bzw “ ´
1

ρ0
Bzπ ´

ρ

ρ0
g ` ν1∆Hw ` ν2B

2
zw,

divH v ` Bzw “ 0,

BtT ` v ¨∇HT ` w ¨ BzT ´DTT “ QT ,

BtS ` v ¨∇HS ` w ¨ BzS ´DSS “ QS ,

ρ “ ρ0p1´ βT pT ´ T0q ` βSpS ´ S0qq.

(2.9)

In absence of subscript we will assume all the operators (e.g. ∇ and ∆) to be 3-
dimensional, and we will denote by the subscript H (e.g. ∆H) the 2-dimensional opera-
tors that refer only to horizontal coordinates.



CHAPTER 2. PRIMITIVE EQUATIONS 7

2.2 Hydrostatic approximation

As mentioned earlier, the difference of horizontal and vertical scale of the ocean is such
that the momentum equation of the vertical motion can be substituted by the hydrostatic
equation. A careful study of scales, see [29, Section II.3], shows that the aspect ratio
(reason between the vertical Z and horizontal L characteristic lengths) is small:

ε “
Z

L
« 10´3

and related to this aspect ratio, the a priori viscosities

ν1 “ Op1q, and ν2 “ Opε2q,

lead to primitive equations with full viscosity, while lower orders would lead to only
partial viscosity. We define the scaled Boussinesq equations of the ocean, omitting
temperature, salinity and the Coriolis force for simplicity, by

Btv ` v ¨∇Hv ` w ¨ Bzv ´∆Hv ´ B
2
zv `∇Hπ “ 0,

ε2pBtw ` v ¨∇Hw ` w ¨ Bzw ´∆Hw ´ B
2
zwq ` Bzπ “ ´ρg,

divH v ` Bzw “ 0.

(2.10)

Letting εÑ 0` formally gives the hydrostatic approximation for the vertical velocity by

Bπ

Bz
“ ´ρg, (2.11)

For a rigorous justification of the hydrostatic balance see [13, Section 1.14].
Replacing the moment equation for the vertical velocity by the hydrostatic approx-

imation in the Boussinesq equations, we obtain the so called primitive equations of the
ocean:

pPEsq

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Btv ` v ¨∇Hv ` w ¨ Bzv `
1

ρ0
∇Hπ ` 2ω ˆ v ´ ν1∆Hv ´ ν2B

2
zv “ 0,

Bzπ “ ´ρg,

divH v ` Bzw “ 0,

BtT ` v ¨∇HT ` w ¨ BzT ´DTT “ QT ,

BtS ` v ¨∇HS ` w ¨ BzS ´DSS “ QS ,

ρ “ ρ0p1´ βT pT ´ T0q ` βSpS ´ S0qq.

(2.12)

2.3 Model situation

Temperature and salinity do not impose any added complexity to the problem, but
rather just complicate the mathematical analysis. Therefore, we will assume a simpler
isothermal scenario in our model, i.e. temperature and salinity are assumed to be con-
stant. By the same argument, we will neglect the Coriolis and gravity term from our
analysis and all constants are normalized to one. The resulting set of equations is

Btv ` v ¨∇Hv ` w ¨ Bzv “ ´∇Hπ `∆v,

Bzπ “ 0,

divH v ` Bzw “ 0.

(2.13)



CHAPTER 2. PRIMITIVE EQUATIONS 8

Moreover, we will assume the simplest domain possible for the ocean, the cylindrical
domain. Given a, b P R, we set the domain to be

Ω “ Gˆ pa, bq Ă R3 with G “ p0, 1q ˆ p0, 1q,

and we denote the bottom, upper and lateral parts of the boundary of Ω respectively by

Γa “ Gˆ tau, Γb “ Gˆ tbu and Γl “ BGˆ pa, bq.

Note that the boundary BΩ is not smooth, but we will overcome this difficulty by assum-
ing lateral periodicity. The primitive equations of the ocean (2.13) can be supplemented
by diverse boundary conditions, following Giga et. al.’s approach [7], we will focus on
the mixed case

v, w, π are periodic on Γl ˆ p0,8q, (2.14)

w “ 0 on pΓa Y Γbq ˆ p0,8q, (2.15)

v “ 0 on ΓD ˆ p0,8q and Bzv “ 0 on ΓN ˆ p0,8q, (2.16)

vp0; ¨, ¨, ¨q “ v0 on Ω, (2.17)

where Dirichlet and Neumann boundary conditions are given by the notation

ΓD P tH,Γa,Γb,Γa Y Γbu and ΓN “ pΓa Y ΓbqzΓD.

In particular, in the new set of equations (2.13) the full pressure π : Ω Ñ R can be
determined from the surface pressure πs : GÑ R. On the other hand, when substituting
the continuity equation for the vertical velocity by the hydrostatic approximation, we
lose an evolution equation for the vertical velocity. One of Lions et. al.’s [25] biggest
contribution, in their own words, was overcoming the difficulties caused by the absence
of an evolution equation for the vertical velocity w. Indeed, integrating the continuity
equation with respect to the vertical variable over pa, zq we obtain

wpt;x, y, zq ´ wpt;x, y, aq “ ´

ż z

a
divH vpt;x, y, sq ds (2.18)

and substituting the bottom boundary condition w
ˇ

ˇ

Γa
“ 0, cf. (2.15), we arrive at

wpt;x, y, zq “ wpvqpt;x, y, zq :“ ´

ż z

a
divH vpt;x, y, sq ds. (2.19)

which gives the vertical component of the velocity in terms of the horizontal one. Anal-
ogously, integrating over the whole vertical interval pa, bq and substituting both the
bottom and upper boundary conditions for the vertical velocity we obtain that

divH v “ 0, with vpt;x, yq :“
1

b´ a

ż b

a
vpt;x, y, sq ds. (2.20)

The simplified set of equations modeling the large-scale ocean is

Btv ` v ¨∇Hv ` wpvqBzv `∇Hπs ´∆v “ f on Ωˆ p0, T q,

divH v “ 0 on Gˆ p0, T q,

vp0q “ v0 on Ω,

(2.21)
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where f : Ω Ñ R is a given external force and v0 P R3 the initial horizontal velocity.
The linearized version of the above set of equations is what we refer to as the hydrostatic
Stokes equations:

pHSEsq

$

’

&

’

%

Btv `∇Hπs ´∆v “ f on Ωˆ p0, T q,

divH v “ 0 on Gˆ p0, T q,

vp0q “ v0 on Ω.

(2.22)



Chapter 3

Preliminaries

3.1 Vector-valued Fourier transform

This section is divided into two main parts. In the first subsection we have compiled
some notions about integration in Banach spaces and we introduce the vector-valued
Fourier transform. In the second section we summarize without proof basic facts about
R-boundedness and state the vector-valued Mikhlin multiplier theorem. We will only
touch a few basic aspects of the theory necessary to get a general understanding of the
H8-functional calculus in section 3.6 and maximal regularity in section 3.8. However,
for the interested reader a thorough study of the field is carried out in [18, 19], a concise
introduction to R-boundedness and operator-valued Fourier multipliers can be found in
[22].

3.1.1 Introduction to the vector-valued setting

In order to work with vector-valued function spaces, we need to extend the notion of
integrability to vector-valued functions. This is done analogous to the scalar case, by
approximation of simple functions. Fix a measure space pΩ,F , µq and a Banach space
X. Let f : Ω Ñ K and x P X, we define f b x : Ω Ñ K by

pf b xqpωq :“ fpwqx.

Definition 3.1.1. A function g : Ω Ñ X is called simple if there exist a finite number of
elements of the Banach space txju

n
j“1 Ă X and disjoint sets of finite measure tFju

n
j“1 Ă

F , such that g is a linear combination of the form

g “
n
ÿ

j“1

1Fj b xj . (3.1)

A function f : Ω Ñ X is called strongly measurable if it is a pointwise limit of a sequence
of simple functions pgnqně1, i.e.

fpωq “ lim
nÑ8

gnpωq, ω P Ω.

We can define the integral of simple functions as

ż

Ω
g dµ :“

n
ÿ

j“1

µpFjqxj ,

10



CHAPTER 3. PRELIMINARIES 11

and the triangle inequality implies
›

›

›

›

ż

Ω
g dµ

›

›

›

›

X

ď

ż

Ω
}g}X dµ.

Pointwise limit of simple functions is what makes the following definition of integration
in Banach spaces allowable.

Definition 3.1.2. A strongly measurable function f : Ω Ñ X is said to be Bochner
integrable with respect to µ if there exists a sequence pgnqně1 of simple functions gn :
Ω Ñ X such that

lim
nÑ8

ż

Ω
}f ´ gn}X dµ “ 0.

In that case we define the Bochner integral of f by
ż

Ω
f dµ “ lim

nÑ8

ż

Ω
gn dµ.

Perhaps a simpler characterization is the following.

Proposition 3.1.3 ([18, Proposition 1.2.2]). A strongly measurable function f : Ω Ñ X
is Bochner integrable with respect to µ if and only if

ż

Ω
}f}X dµ ă 8.

In this case we have
›

›

›

›

ż

Ω
f dµ

›

›

›

›

X

ď

ż

Ω
}f}X dµ.

Proof. To prove the sufficient condition let f be a strongly measurable function such
that

ş

Ω }f}X ă 8, then by definition there exists a sequence of simple functions pgnqně1

such that gn Ñ f pointwise. We can define a new sequence of simple functions by

fn :“ 1t}gn}ď2}f}ugn,

which converge to f pointwise as well. Since }fn} ď 2}f} and each fn is simple, by the
dominated convergence theorem we get that

lim
nÑ8

ż

Ω
}f ´ fn}X dµ “ 0.

For the necessary condition let pgnqně1 be a sequence of simple functions as in definition
3.1.2. Then for n large enough we get

ż

Ω
}f} dµ ď

ż

Ω
}f ´ gn} dµ`

ż

Ω
}gn} dµ ă 8.

The Bochner integral allows us to easily generalize many classical function spaces.
For example, the vector-valued Lp-spaces, where we say that two strongly measurable
functions f : Ω Ñ X and g : Ω Ñ X are in the same equivalence class if fpωq “ gpωq for
µ-almost all ω P Ω.
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Definition 3.1.4. For 1 ď p ă 8, we denote by LppΩ;Xq the space of all strongly
measurable functions f : Ω Ñ X such that

ż

Ω
}f}pX dµ ă 8.

For p “ 8, we denote by L8pΩ;Xq the space of all strongly measurable functions
f : Ω Ñ X for which there exists r ě 0 such that µp}f} ě rq “ 0.

Endowed with the norms

}f}LppΩ;Xq :“

ˆ
ż

Ω
}f}pX dµ

˙1{p

and }f}L8pΩ;Xq :“ ess sup
ωPΩ

}fpωq}X ,

the spaces LppΩ;Xq, 1 ď p ď 8 are Banach spaces.
Before we define the vector-valued Fourier transform, we will introduce the vector-

valued Schwartz class and tempered distributions. All these notions are straightforward
modifications of their scalar counterparts, but we gather them here for the sake of clarity.

Definition 3.1.5. The Schwartz class of X-valued functions on Rn is the space

SpRn;Xq :“
!

f P C8pRn;Xq : }f}α,β :“ }x ÞÑ xβBαfpxq}L8pRn;Xq ă 8, @α, β P Nd
)

.

The space of X-valued tempered distributions is defined by

S 1pRn;Xq :“ LpSpRnq;Xq.

Denoting by DpRn;Xq the space of X-valued smooth function with compact support
on Rn, and the space of X-valued distributions D1pRn;Xq analogous to the tempered
distributions, we have the usual inclusions

DpRN ;Xq ãÑ SpRn;Xq and S1pRn;Xq ãÑ D1pRn;Xq.

Definition 3.1.6. An X-valued tempered distribution u P S 1pRn;Xq is called regular if
there exists a strongly measurable function f : Rn Ñ X such that

upϕq “

ż

Rn
fpxqϕpxq dx, for all ϕ P SpRnq.

Note that, in particular, every Bochner integrable function f P L1pRn;Xq defines a
regular distribution uf P S 1pRn;Xq by the identification

uf pϕq :“

ż

Rn
fpxqϕpxq dx, ϕ P SpRnq.

By abuse of notation, we continue to write f to denote the regular distribution uf .
We now have set the framework to define the vector-valued Fourier transform.

Definition 3.1.7. Let X be a complex Banach space. Given f P L1pRn;Xq, the Fourier
transform of f , F : L1pRn;Xq Ñ L8pRn;Xq, is defined by

Fpfqpξq :“ pfpξq :“

ż

Rn
fpxqe´2πix¨ξ dx, ξ P Rn.
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Restricted to the Schwartz class SpRn;Xq, the Fourier transform is an isomorphism
whose inverse is given by

F´1pfqpxq :“ qfpxq :“

ż

Rn
fpξqe2πix¨ξ dξ, x P Rn.

And this property extends to the space of X-valued tempered distributions when we
define the Fourier transform here via duality. Given u P S 1pRn;Xq we define the Fourier
transform of u by

Fpuqpfq :“ upFpfqq, f P SpRnq.

Many of the L1-properties of the scalar-valued Fourier transform continue to be true
in the vector-valued case, but in general the L2-results fail unless X is a Hilbert space.
For example, Plancherel’s theorem is essential in order to extend isometrically the scalar-
valued Fourier-Plancherel transform from L1pRnq X L2pRnq to L2pRnq. However, the
same construction cannot be applied in the general vector-valued case since Plancherel’s
theorem only holds for Hilbert-valued functions. Furthermore, the following theorem is
true.

Theorem 3.1.8 ([18, Theorem 2.1.18], Kwapień). For a Banach space X the following
assertions are equivalent:

i) the Fourier-Plancherel transform extends to a bounded operator on L2pRn;Xq;
ii) X is isomorphic to a Hilbert space.

3.1.2 R-boundedness and operator-valued Fourier multipliers

When trying to extend the Mikhlin multiplier theorem to the vector-valued setting we
encounter a similar problem.

Definition 3.1.9. Let 1 ď p ă 8 and let X and Y be complex Banach spaces. A
function m P L8pRn;LpX,Y qq is called an operator-valued Lp-Fourier multiplier if the
Fourier multiplier operator

Tmpfq :“ F´1pm pfq, f P SpRn;Xq,

extends uniquely to a bounded operator on LppRn;Xq. In other words, Tmpfq P L
ppRn;Y q

and there exists C ą 0 such that

}Tmpfq}LppRn;Y q ď C}f}LppRn;Xq, f P SpRn;Xq.

Note that the operator Tm : SpRn;Xq Ñ S 1pRn;Y q is well defined because for f P
SpRn;Xq the multiplication m pf P L8pRn;Y q defines a regular distribution in S 1pRn;Y q.

In particular, if X “ Y is a Hilbert space J. Schwartz proved the following theorem.

Theorem 3.1.10 ([22, Theorem 1.6]). Let X be a Hilbert space. Assume that for the
function m P C1pRzt0u,LpXqq the sets

tmpuq : u P Rzt0uu and tum1puq : u P Rzt0uu

are bounded in LpXq. Then the Fourier multiplier operator Tm extends to a bounded
operator on LppR;Xq for 1 ă p ă 8.
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Unfortunately, as in the case of the Fourier-Plancherel transform, G. Pisier proved
that if this theorem holds for a Banach space X, then X is isomorphic to a Hilbert
space. Consequently, if we want a more general multiplier theorem for a wider class of
multipliers and Banach spaces we need to change some assumptions. We will devote the
rest of this section to introduce the framework to state Weis’ operator-valued Mikhlim
multiplier theorem.

Definition 3.1.11. A Banach space X is called a UMD-space if the Hilbert transform

Hpfqptq :“ lim
εÓ0
RÑ8

1

π

ż

εă|x´y|ăR

fpyq

x´ y
dy, f P SpR;Xq,

extends to a bounded operator on LppR;Xq for 1 ă p ă 8.

Definition 3.1.12. Let X and Y be Banach spaces. A family of operators F Ď LpX,Y q
is called R-bounded if for some p P r1,8q there exists a constant C ě 0 independent of
N ě 1 such that we have

›

›

›

›

›

N
ÿ

n“1

εnTnxn

›

›

›

›

›

LppΩ;Y q

ď C

›

›

›

›

›

N
ÿ

n“1

εnxn

›

›

›

›

›

LppΩ;Xq

for any finite choice of x1, ..., xN P X and T1, ..., TN P F , where tεnu
N
n“1 is a sequence of

independent, symmetric t´1, 1u-valued random variables on Ω.

The definition of R-boundedness is independent of p P r1,8q, i.e. if F is R-bounded
for some p P r1,8q, then it is for all p P r1,8q, this follows from the Kahane-Khintchine
inequality below.

Proposition 3.1.13 ([19, Theorem 6.2.4]). Let pεnqně1 be a sequence of independent,
symmetric t´1, 1u-valued random variables on Ω. Then for all 0 ă p ă q ă 8 and all
finite sequences txnu

N
n“1 in any Banach space X, we have
›

›

›

›

›

N
ÿ

n“1

εnxn

›

›

›

›

›

LqpΩ;Xq

ď κq,p

›

›

›

›

›

N
ÿ

n“1

εnxn

›

›

›

›

›

LppΩ;Xq

.

for some constant κq,p ą 0.

Although the constant C in definition 3.1.12 depends on p, for most purposes there
is no need to distinguish the p-dependence. The next two propositions are included to
get a general feeling of the relation between R-boundedness and Hilbert spaces.

Proposition 3.1.14. If F Ď LpX,Y q is a R-bounded family of operators, then F is
uniformly bounded.

Proof. It is a simple matter of checking the definition 3.1.12 for N “ 1. If ε is a
symmetric t´1, 1u-valued random variable on Ω, then

}ε}LppΩq “ pE|ε|pq1{p “ p|1|pP pε “ ´1q ` | ´ 1|pP pε “ 1qq1{p “ 1,

and therefore for every x P X and T P F we have the uniform bound

}Tx}Y “ }εTx}LppΩ;Y q ď }εx}LppΩ;Xq “ }x}X .
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The converse is true if X and Y are Hilbert spaces.

Proposition 3.1.15. Let X and Y be Hilbert spaces. Then F Ď LpX,Y q is R-bounded
if and only if F is uniformly bounded.

Proof. We already proved the sufficient condition. For the necessary, let p “ 2. Recalling
that the norm in a Hilbert space comes from an inner product we obtain that

›

›

›

›

›

N
ÿ

n“1

εnTnxn

›

›

›

›

›

2

L2pΩ;Y q

“ EΩ

›

›

›

›

›

N
ÿ

n“1

εnTnxn

›

›

›

›

›

2

Y

“ EΩp

N
ÿ

n“1

εnTnxn|
N
ÿ

n“1

εnTnxnqY

“

N
ÿ

i,j“1

EΩεiεjpTixi|TjxjqY “
N
ÿ

n“1

EΩ}Tnxn}
2
Y

ď C
N
ÿ

n“1

EΩ}xn}
2
X “ C

N
ÿ

i,j“1

EΩεiεjpxi|xjqX

“ CEΩp

N
ÿ

n“1

εnxn|
N
ÿ

n“1

εnxnqX “ CEΩ

›

›

›

›

›

N
ÿ

n“1

εnxn

›

›

›

›

›

2

X

“ C

›

›

›

›

›

N
ÿ

n“1

εnxn

›

›

›

›

›

2

L2pΩ;Xq

,

where we used that since the random variables tεnu
N
n“1 are independent,

EΩεiεj “

#

EΩεiEΩεj “ 0 if i ­“ j

EΩε
2
i “ 1 if i “ j.

We can finally state the main theorem of this section, L. Weis’ celebrated vector-
valued multiplier theorem.

Theorem 3.1.16 ([22, Theorem 1.10]). Let X and Y be UMD spaces. Assume that for
m P C1pRzt0u,LpX,Y qq the sets

tmpuq : u P Rzt0uu and tum1puq : u P Rzt0uu

are R-bounded. Then the Fourier multiplier operator

Tmpfq “ F´1pm pfq, f P SpR;Xq

extends to a bounded operator Tm : LppR;Xq Ñ LppR;Y q for all p P p1,8q.

3.2 Interpolation theory

In this section we introduce interpolation couples, and look more closely to real and com-
plex interpolation. However, we do not intend to cover more than the essential properties
for the self-containment of this work. For a more extensive study of Interpolation theory
we refer the reader to [26], [33] and [18], which constitute the basis of this introduction.

Definition 3.2.1. A couple of Banach spaces pX,Y q is said to be an interpolation couple
if both X and Y are continuously embedded in a Hausdorff topological vector space V.
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Proposition 3.2.2. If pX,Y q is an interpolation couple, then the spaces

X X Y :“tv P V : v P X and v P Y u,

X ` Y :“tv P V : v “ x` y with x P X, y P Y u.

are Banach spaces with the respective norms

}v}XXY :“maxt}v}X , }v}Y u, (3.2)

}v}X`Y :“ inf
x`y“v
xPX, yPY

t}x}X ` }y}Y u. (3.3)

Proof. We start with XXY . It is evident that } ¨}XXY defines a norm, and we only need
to show completeness. For this purpose let pvnqně1 Ă X X Y be a Cauchy sequence.
From the definition of the norm it follows pvnqně1 is a Cauchy sequence in X and Y as
well, therefore there exist limits in X and Y respectively. However, since X and Y are
continuously embedded in a Hausdorff space V, the limits coincide, where we will denote
the common limit by v. We thus have that vn Ñ v both in X and Y , and consequently
also in the intersection X X Y .

For } ¨ }X`Y the only non-trivial norm property is point-separation. Assume
}vn}X`Y “ 0, since the norm is taken as an infimum there exist sequences pxnqně1 Ă X
and pynqně1 Ă Y such that v “ xn ` yn for all n P N and }xn}X ` }yn}Y Ñ 0. However,
X and Y are continuously embedded in the Hausdorff space V, v “ xn ` yn Ñ 0 in
V, thus v “ 0. Recall that completeness is equivalent to every absolutely convergent
series in X ` Y converging in X ` Y . Let pvnqně1 Ď X ` Y be absolutely convergent
ř

ně1 }vn}X`Y ă 8. By the infimum in the definition of the norm, we can find sequences
pxnqně1 Ď X and pynqně1 Ď Y such that

vn “ xn ` yn and }xn}X ` }yn}Y ă 2´n ` }vn}X`Y , n P N.

This gives that both
ř

ně1 }xn}X and
ř

ně1 }yn}Y are absolutely convergent sequences of
the Banach spaces X and Y respectively, thus the limits x “

ř

ně1 xn and y “
ř

ně1 yn
exist. Defining now vn “ x` y, we get that

›

›

›

›

›

v ´
N
ÿ

n“1

vn

›

›

›

›

›

X`Y

“

›

›

›

›

›

ÿ

něN`1

xn ` yn

›

›

›

›

›

X`Y

ď 2´N `
ÿ

něN`1

}vn}X`Y ,

therefore letting N Ñ8 we conclude that v “
ř

ně1 vn in X ` Y as desired.

Definition 3.2.3. Let pX,Y q be an interpolation couple. An intermediate space is any
Banach space E such that

X X Y ãÑ E ãÑ X ` Y.

Interpolation theory is the study of spaces that are in certain sense intermediate to
X and Y . To begin with, we would like to guarantee that continuous functions in X
and Y are also continuous in any intermediate space E. The precise meaning of this is
contained in the following definition.

Definition 3.2.4. Let pX,Y q be an interpolation couple. An interpolation space be-
tween X and Y is any intermediate space E such that for every linear operator T :
X ` Y Ñ X ` Y whose restriction to X belongs to LpXq and whose restriction to Y
belongs to LpY q, then T

ˇ

ˇ

E
P LpEq.
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3.2.1 Real interpolation

Given an interpolation couple pX,Y q we will define real interpolation spaces by the
K-method which assigns to each θ P p0, 1q and 1 ď p ď 8 an interpolation space Xθ,p.

For t ą 0 and v P X ` Y we define the K-functional :

Kpt, v;X,Y q :“ inf
v“x`y
xPX, yPY

t}x}X ` t}y}Y u.

If it does not lead to confusion we will simply write Kpt, xq instead. Note that Kp1, ¨q “
} ¨ }X`Y and Kpt, ¨q is a norm in X ` Y for every t ą 0, equivalent to } ¨ }X`Y .

Definition 3.2.5. Let θ P p0, 1q, 1 ď p ď 8. We define real interpolation spaces as

pX,Y qθ,p :“ tv P X ` Y : t ÞÑ t´θKpt, vq P LppR`,
dt

t
qu,

endowed with the norm

}v}pX,Y qθ,p :“ }t´θKpt, vq}LppR`, dt
t
q
. (3.4)

These are indeed interpolation spaces between X and Y . Given v P X`Y and t ą 0,
from the inequality

mint1, tu}v}X`Y ď Kpt, vq ď mint1, tu}v}XXY

and the independence of the norms }¨}XXY and }¨}X`Y from t it is inferred that pX,Y qθ,p
is an intermediate space

X X Y ãÑ pX,Y qθ,p ãÑ X ` Y. (3.5)

Consider now a linear operator T : X ` Y Ñ X ` Y such that T
ˇ

ˇ

X
P LpXq and

T
ˇ

ˇ

Y
P LpY q with norms

}T }LpXq “ AX and }T }LpY q “ AY .

Without loss of generality we can assume AX ­“ 0. Fix v P pX,Y qθ,p and take x P X,
y P Y such that v “ x` y. If t ą 0, then

}Tx}X ` t}Ty}Y ď AX

ˆ

}x}X `
AY
AX

t}y}Y

˙

,

or equivalently

Kpt, Tvq ď AXK

ˆ

AY
AX

t, v

˙

.

Using this inequality we can show that T
ˇ

ˇ

pX,Y qθ,p
is continuous

}Tv}p
pX,Y qθ,p

“

ż 8

0
rt´θKpt, Tvqsp

dt

t
ď

ż 8

0

„

t´θAXK

ˆ

t
AY
AX

, v

˙p dt

t

“ AX

ˆ

AY
AX

˙θp ż 8

0
rs´θKps, vqsp

ds

s
“ A

p1´θqp
X AθpY }v}

p
pX,Y qθ,p

.

Where we used the change of variable s “ tAY {AX . In conclusion, T
ˇ

ˇ

pX,Y qθ,p
P

LppX,Y qθ,pq with norm

}T }LppX,Y qθ,pq ď A
p1´θq
X AθY . (3.6)
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Remark 1. In particular, let y P XXY and take the operator T : K`KÑ X`Y such that
T : λ ÞÑ λy in (3.6). If we follow the same prove by choosing AX “ }T }LpK,Y q “ }y}X
and AY “ }T }LpK,Y q “ }y}Y instead we get the inequality

}y}pX,Y qθ,1 “ }T }LpK,pX,Y qθ,1q ď Cpθq}y}1´θX }y}θY , y P X X Y.

Proposition 3.2.6. Let θ P p0, 1q and 1 ď p ď 8. The real interpolation space pX,Y qθ,p
is a Banach space endowed with the norm (3.4).

Proof. Take a Cauchy sequence pvnqně1 in pX,Y qθ,p, we can denote the limit of pvnqně1

in X ` Y as v. Given ε ą 0, choose N ě 1 such that }vn ´ vm}pX,Y qθ,p ă ε for all
n,m ě N . If m ě n ě N we can apply the triangle inequality

ˆ
ż 8

0
rt´θKpt, v ´ vnqs

p dt

t

˙1{p

ď ε`

ˆ
ż 8

0
rt´θKpt, v ´ vmqs

p dt

t

˙1{p

ď ε` }v ´ vm}X`Y

ˆ
ż 8

0
t´θp

dt

t

˙1{p

,

where in the last inequality we applied the property Kpt, yq ď maxt1, tu}y}Y`X . Since
vm Ñ v in X ` Y when mÑ8 we get that

}v ´ vn}pX,Y qθ,p ă ε for all n ě N,

with N sufficiently large, thus pvnqně1 converges to x P pX,Y qθ,p in pX,Y qθ,p as desired.

Since both X˚ and Y ˚ are continuously embedded in pXXY q˚, taking as the ambient
Hausdorff space V “ pXXY q˚ we see that pX˚, Y ˚q is an interpolation couple. Therefore,
the following characterization of duality of interpolation spaces is rather expected.

Theorem 3.2.7 ([26, Theorem 1.18]). Let 1 ď p ă 8. If X X Y is dense in X and Y ,
then for each θ P p0, 1q we have

ppX,Y qθ,pq
˚ “ pX˚, Y ˚qθ,p1 , where

1

p
`

1

p1
“ 1.

3.2.2 Complex interpolation

The construction of complex interpolation spaces is less intuitive than real interpolation,
but nevertheless they will be very useful to treat fractional exponents of operators. Take
the open strip S in the complex plane

S :“ tz P C : 0 ă <z ă 1u,

and let S be its closure.

Definition 3.2.8. We denote by FpX,Y q the complex vector space of all functions
f : S Ñ X ` Y such that

(i) f P HpS;X ` Y q X CbpS;X ` Y q;
(ii) t ÞÑ fpitq P CbpR;Xq, t ÞÑ fp1` itq P CbpR;Y q;
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(iii)
}f}FpX,Y q :“ maxtsup

tPR
}fpitq}X , sup

tPR
}fp1` itq}Y u ă 8. (3.7)

As expected, FpX,Y q is a Banach space endowed with the norm (3.7). However
for its proof we will need the maximum principle for strips in general Banach spaces
X. Remember that the scalar-valued maximum principle stated that if f is a nonzero
holomorphic function on a bounded connected open subset Ω of the complex plane C,
continuous up to the boundary of Ω, taking complex values then |f | attains its minimum
value on the boundary of Ω. We state the generalization of the theorem for general
complex Banach spaces in the following lemma.

Lemma 3.2.9 (Maximum modulus principle for strips). Let f : S Ñ X be holomorphic
in S and continuous in S. Then

}fpξq}X ď maxtsup
tPR
}fpitq}X , sup

tPR
}fp1` itq}Xu for every ξ P S.

Proof. We will start by proving it for a general bounded open connected subset Ω of
the complex plane C. The proof relies on writing the theorem in terms of a general
scalar product. From the Riesz theorem we know that there exists x˚ P X˚ such that for
every ξ P Ω we can write }fpξq}X “ xfpξq, x

˚y with }x˚}X˚ “ 1. The complex function
z ÞÑ xfpzq, x˚y is nonzero, holomorphic on Ω and continuous on Ω, we can thus apply
the maximum principle to get that

}fpξq}X “ |xfpξq, x
˚y| ď max

zPBΩ
|xfpzq, x˚y| ď max

zPBΩ
}fpzq}X , ξ P Ω.

The proof for unbounded strips S follows analogously applying the Hadamard three-lines
theorem instead.

Proposition 3.2.10. FpX,Y q is a Banach space endowed with the norm (3.7).

Proof. Take pfnqně1 a Cauchy sequence in FpX,Y q. Let ξ P S, by the maximum mod-
ulus principle for strips 3.2.9 we have the bound

}fnpξq ´ fmpξq}X`Y ď max

"

sup
tPR
}pfn ´ fmqpitq}X`Y , sup

tPR
}pfn ´ fmqp1` itq}X`Y

*

ď max

"

sup
tPR
}pfn ´ fmqpitq}X , sup

tPR
}pfn ´ fmqp1` itq}Y

*

“ }fnpξq ´ fmpξq}FpX,Y q

Thus for every ξ P S there exists fpξq “ limnÑ8 fnpξq in X ` Y . Since the limit is
uniform f P HpS;X ` Y q X CbpS;X ` Y q and consequently f P FpX,Y q. Moreover,
t ÞÑ fnpitq and t ÞÑ fnp1` itq converge in CbpR;Xq and CbpR;Y q respectively, so fn Ñ f
in FpX,Y q as desired.

Definition 3.2.11. Let θ P r0, 1s. We define complex interpolation spaces as

rX,Y sθ :“ tfpθq : f P FpX,Y qu,

endowed with the norm

}x}rX,Y sθ :“ inf
fPFpX,Y q
fpθq“x

}f}FpX,Y q. (3.8)
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They are indeed interpolation spaces between X and Y and the proof is analogous
to the real case. We will start by proving that they are intermediate spaces.

Lemma 3.2.12. Let θ P p0, 1q, then

X X Y ãÑ rX,Y sθ ãÑ X ` Y.

Proof. For the first embedding consider x P X X Y , the constant function fpzq :“ x
is obviously holomorphic in S and bounded in S with t ÞÑ fpitq P CbpR;Xq and t ÞÑ
fp1` itq P CbpR;Y q, thus f P FpX,Y q and fpθq “ x P rX,Y sθ with

}x}rX,Y sθ ď }f}FpX,Y q ď maxt}x}X , }x}Y u “ }x}XXY .

For the second embedding take x P rX,Y sθ, then by definition there exists f P
FpX,Y q such that fpθq “ x. By the maximum modulus principle for strips 3.2.9:

}x}X`Y ď }fpθq}X`Y ď maxtsup
tPR
}fpitq}X`Y , sup

tPR
}fp1` itq}X`Y u

ď maxtsup
tPR
}fpitq}X , sup

tPR
}fp1` itq}Y u “ }f}FpX,Y q,

taking te infimum of all admissible f P FpX,Y q gives the continuous embedding X`Y Ă
rX,Y sθ.

Theorem 3.2.13. Let θ P p0, 1q. The spaces rX,Y sθ are interpolation spaces.

Proof. Consider a linear operator T : X ` Y Ñ X ` Y such that T
ˇ

ˇ

X
P LpXq and

T
ˇ

ˇ

Y
P LpY q with norms

}T }LpXq “ AX and }T }LpY q “ AY .

Without loss of generality we can assume AX , AY ­“ 0. If x P rX,Y sθ, then there exists
f P FpX,Y q such that fpθq “ x. We are going to define g : S Ñ X ` Y by

gpzq “

ˆ

AX
AY

˙z´θ

Tfpzq, z P S.

Defined this way g is bounded in the boundary of the strip S:

}gpitq}X ď

›

›

›

›

›

ˆ

AX
AY

˙it´θ

Tfpitq

›

›

›

›

›

X

ď A´θX AθYAX}fpitq}X “ A1´θ
X AθY }f}X

}gp1` itq}Y ď

›

›

›

›

›

ˆ

AX
AY

˙1`it´θ

Tfp1` itq

›

›

›

›

›

Y

ď A1´θ
X Aθ´1

Y AY }fp1` itq}Y

“ A1´θ
X AθY }fp1` itq}Y

(3.9)

Since f P FpX,Y q and T is continuous, g P FpX,Y q. And the above norms imply that

}g}FpX,Y q “ maxtsup
tPR
}gpitq}X , sup

tPR
}gp1` itq}Y u

ď A1´θ
X AθY maxtsup

tPR
}fpitq}X , sup

tPR
}fp1` itq}Y u “ A1´θ

X AθY }f}FpX,Y q.
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Moreover, gpθq “ Tfpθq “ Tx, so Tx P rX,Y sθ with norm

}Tx}rX,Y sθ “ inf
fPFpX,Y q
fpθq“x

}f}FpX,Y q ď }g}FpX,Y q ď A1´θ
X AθY }f}FpX,Y q.

Taking the infimum over all f P FpX,Y q we conclude that T
ˇ

ˇ

rX,Y sθ
P LprX,Y sθq, with

norm
}T }LprX,Y sθq ď A1´θ

X AθY .

We can generalize the above proof by considering the domain and range of the
bounded linear operator T belonging to two different interpolation spaces to obtain
the following stronger statement.

Proposition 3.2.14. Let pX0, X1q and pY0, Y1q be two complex interpolation couples. If
a linear operator T : X0`X1 Ñ Y0`Y0 belong to LpXj , Yjq for j P t0, 1u, then the restric-
tion of T to the complex interpolation space rX0, X1sθ belongs to LprX0, X1sθ, rY0, Y1sθq

for every θ P p0, 1q. Moreover,

}T }LprX0,X1sθ,rY0,Y1sθq
ď p}T }LpX0,Y0qq

1´θp}T }LpX1,Y1qq
θ.

Proof. Follow the proof of theorem 3.2.13 taking AX “ }T }LpX0,Y0q and AY “ }T }LpX1,Y1q

instead.

We can now prove that complex interpolation spaces are Banach spaces.

Proposition 3.2.15. Let θ P p0, 1q. The complex interpolation space rX,Y sθ is a Ba-
nach space endowed with the norm (3.8).

Proof. Take an absolutely convergent sequence pxnqně1 in rX,Y sθ. For every xn we can
find gn P FpX,Y q such that gnpθq “ xn and }gn}FpX,Y q ď }x}rX,Y sθ `2´n. Then pgnqně1

is absolutely convergent in FpX,Y q and let g “
ř8
n“0 gn be the limit. If we define

x :“ gpθq, we have that

›

›

›

›

›

x´
8
ÿ

n“0

xn

›

›

›

›

›

rX,Y sθ

ď

›

›

›

›

›

8
ÿ

něN`1

gn

›

›

›

›

›

FpX,Y q

ď 2´N `
8
ÿ

něN`1

}xn}rX,Y sθ ,

which from absolute convergence of pxnqně1 converges to 0 when N Ñ8. We conclude
that x “

ř8
n“0 xn in rX,Y sθ.

The following simple properties are a direct consequence of the definition of complex
interpolation spaces and give us a flavor of how they work.

Proposition 3.2.16. Let θ P p0, 1q and 0 ă θ1 ă θ2 ă 1, then
(i) rX,Y sθ “ rY,Xs1´θ;

(ii) if X “ Y , then rX,Xsθ “ X;
(iii) if Y Ă X, then rX,Y sθ2 ãÑ rX,Y sθ1.
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Proof. For piq note that f P FpX,Y q if and only if fp1´ ¨q P FpY,Xq, with equal norms

}x}rX,Y sθ “ inf
fPFpX,Y q
fpθq“x

max

"

sup
tPR
}fpitq}X , sup

tPR
}fp1` itq}Y

*

“ inf
fPFpY,Xq
fp1´θq“x

max

"

sup
tPR
}fp1´ itq}X , sup

tPR
}fp´itq}Y

*

“ }x}rY,Xs1´θ .

For piiq we use the maximum modulus principle for strips 3.2.9. Take x P rX,Xsθ, then
theres exists f P FpX,Xq such that fpθq “ x and

}x}X “ }fpθq}X ď maxtsup
tPR
}fpitq}X , sup

tPR
}fp1` itq}Xu “ }f}FpX,Xq,

taking the infimum of all such f P FpX,Xq we obtain }x}X ď }x}rX,Xsθ . For the reverse
take x P X, then the constant function g : z ÞÑ x with z P S is in FpX,Xq with gpθq “ x
so

}x}rX,Xsθ ď }g}FpX,Xq “ }x}X .

For piiiq we claim that if X Ă Y then rX,Y sθ1 ãÑ rX,Y sθ2 . Take x P rX,Y sθ1 , then we
can choose f P FpX,Y q such that fpθ1q “ x and

}f}FpX,Y q ď }x}rX,Y sθ1 ` ε.

Let λ :“ θ1{θ2 ă 1, then θ1 “ λθ2 and we define the function

gpzq :“ fpθ2zqe
εpz2´λ2q.

We have that g P FpX, rX,Y sθ2q since

sup
tPR
}gpitq}X “ sup

tPR
}fpitqeεp´t

2´λ2q}X ď eε}f}FpX,Y q,

sup
tPR
}gp1` itq}rX,Y sθ2 “ sup

tPR
}fpθ2 ` itqe

εpp1`itq2´λ2q}rX,Y sθ2
ď eε}f}FpX,Y q,

thus
}g}FpX,rX,Y sθ2 q ď eεp}x}rX,Y sθ1 ` εq.

Note that if X Ă Y , then X ãÑ rX,Y sθ2 and consequently

rX, rX,Y sθ2sλ ãÑ rrX,Y sθ2 , rX,Y sθ2sλ “ rX,Y sθ2

where the last equality follows from piiq. Now since gpλq “ fpθ1q “ x, the claim follows

}x}rX,Y sθ2 ď }x}rX,rX,Y sθ2 sλ ď }g}FpX,rX,Y sθ2 q ď }x}rX,Y sθ1 .

Finally, if Y Ă X we can use the claim and piq to prove the proposition

rX,Y sθ2 “ rY,Xs1´θ2 ãÑ rY,Xs1´θ1 “ rX,Y sθ2 .



CHAPTER 3. PRELIMINARIES 23

3.2.3 Interpolation with domains

To finish the section on interpolation we will include some tools to construct interpolation
spaces with domains. They are included in a rather abstract setting following [23] in
order to apply it for the construction of Bessel and Besov spaces in section 3.3, as
well as to characterize the domains of the fractional Stokes operator, corollary 4.3.6, by
retraction and coretraction arguments.

Definition 3.2.17. Let X and Y be two Banach spaces. An operator R P LpX,Y q is
said to be a retraction if there exists an operator S P LpY,Xq such that

RS “ I in LpY, Y q,

holds. In this case, S is said to be a coretraction.

The following theorem will allow us to characterize unknown interpolation spaces in
terms of known ones via retraction/coretraction arguments.

Theorem 3.2.18 ([23, Lemma 5.3]). Let pX0, X1q and pY0, Y1q be two interpolation
couples and let Xθ “ rX0, X1sθ and Yθ “ rY0, Y1sθ for a given θ P p0, 1q. Let

S P LppY0, Y1q, pX0, X1qq and R P LppX0, X1q, pY0, Y1qq,

be operators such that the restrictions S P LpYj , Xjq are coretractions, with corresponding
retractions R P LpXj , Yjq and RS “ I on Yj for j P t0, 1u. Then SR defines a projection
on Xθ and R is an isomorphism from SRpXθq onto Yθ with inverse S. Moreover, the
following estimates hold

C´1
S }Sy}Xθ ď }y}Yθ ď CR}Sy}Xθ , y P Yθ,

C´1
R }Rx}Yθ ď }x}Xθ ď CS}Rx}Yθ , x P Xθ

where CR “ maxjPt0,1u }R}LpXj ,Yjq and CS “ maxjPt0,1u }S}LpXj ,Yjq.

Proof. Since RS “ I in both Y0 and Y1, from the definition of complex interpolation
it is clear that RS “ I in Yθ as well, and consequently pSRq2 “ SpRSqR “ SR is a
projection. The upper bounds follow from proposition 3.2.14. To finish the proof it
suffices to show the lower bounds, which for the coretraction S is an easy calculation

}y}Yθ “ }RSy}Yθ ď CR}Sy}Xθ , y P Yθ,

and for the retraction R note that if x :“ SRu P SRpXθq, then

}x}Xθ “ }SRSRu}Xθ ď CS}RSRu}Yθ “ CS}Rx}Yθ .

In particular, theorem 3.2.18 is very useful to treat interpolation spaces with bound-
ary. We will start with some notation.

Definition 3.2.19. Let F ãÑ D1pRn;Xq be a Banach space. We define the factor space
to an open set Ω Ď Rn as

F pΩq :“ tf P D1pRn;Xq : Dg P F, f “ g
ˇ

ˇ

Ω
u,

and the norm
}f}F pΩq :“ inft}g}F : g

ˇ

ˇ

Ω
“ fu.
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Definition 3.2.20. We say that E is an extension operator for F pΩq if
i) for all f P F pΩq, pEfq

ˇ

ˇ

Ω
“ f ;

ii) E : F pΩq Ñ F is bounded.

We can now prove the main theorem of this section.

Theorem 3.2.21 ([23, Lemma 5.4]). Let F 0, F 1 ãÑ D1pRn;Xq be two Banach spaces.
For θ P p0, 1q let

F θ “ rF 0, F 1sθ.

Let Ω Ď Rn be an open set and define the factor F θpΩq as in definition 3.2.19. If there
exists an extension operator E for F spΩq for s P t0, 1u, then

rF 0pΩq, F 1pΩqsθ “ F θpΩq

and there exists C only depending on the norms of the extension operator such that

C´1}f}F θpΩq ď }f}rF 0pΩq,F 1pΩqsθ ď }f}F θpΩq.

Moreover, E is an extension operator for F θpΩq.

Proof. The exists an extension operator E for F spΩq for s P t0, 1u by hypothesis, hence
we can define the retraction R : F s Ñ F spΩq by Rf “ f

ˇ

ˇ

Ω
and corresponding core-

traction S : F spΩq Ñ F s by S “ E. Both operators are bounded by construction with
}R} ď 1 and }S} ď C, where C is the boundedness constant of the extension operator.
From theorem 3.2.18 we get that if f P rF 0pΩq, F 1pΩqsθ, then

C´1}f}F θpΩq ď C´1}Ef}F θ ď }f}rF 0pΩq,F 1pΩqsθ .

Conversely, if f P F θpΩq we can choose g P F θ such that Rg “ g
ˇ

ˇ

θ
“ f and we get

}f}rF 0pΩq,F 1pΩqsθ ď }g}rF 0,F 1sθ
ď }g}F θ ,

taking the infimum over all g the inequality follows. To prove the assertion note that the
extension operator E : F θpΩq Ñ F θ is bounded by the above inequalities. Moreover, for
f P F 0pΩq X F 1pΩq the extension operator pEfq

ˇ

ˇ

Ω
“ f by hypothesis, and this extends

to all F θpΩq by density [33, Theorem 1.9.3].

3.3 Function spaces

We assume the reader is familiar with distributions and Fourier transform results on the
scalar-valued setting, for a general reference consult [9].

Recall that the derivative of a tempered distribution f P S 1pRnq, with respect to a
multiindex α P Nn, is defined via duality

xϕ, Bαfy “ p´1q|α|xBαϕ, fy, ϕ P SpRnq.

A tempered distribution f is called regular if there exists a measurable function g such
that

xϕ, fy “

ż

Rn
gpxqϕpxq dx, for all ϕ P SpRnq.
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In particular, every f P L1pRnq defines a regular distribution uf setting

xϕ, uf y :“

ż

Rn
fpxqϕpxq dx.

If there is no room for confusion we will denote uf by f . Finally, if the distributional
derivative of a tempered distribution is regular, we call Bαf the weak derivative of f .

Definition 3.3.1. Let m P N and 1 ď p ď 8. We define the Sobolev space of m-times
weakly differentiable, Lp-integrable functions in Rn as

Wm,ppRnq :“ tf P S 1pRnq : Bαf P LppRnq for all α P Nn : |α| ď mu.

It is a Banach space equipped with the norm

}f}Wm,ppRnq “
ÿ

|α|ďm

}Bαf}LppRnq.

We can define Sobolev spaces in smooth domains Ω Ď Rn directly by substituting
the tempered distributions for general distributions

Wm,ppΩq :“ tf P D1pΩq : Bαf P LppΩq for all α P Nn : |α| ď mu. (3.10)

However, in the hydrostatic Stokes equation we will be treating a non-smooth domain
where we are interested in requiring boundary conditions to our functions. With this in
mind, it is simpler to define our function spaces in domains through extension/restriction
operators.

Definition 3.3.2. Let m P N and 1 ď p ď 8. Let Ω Ď Rn be an open set. We define
the Sobolev space of m-times weakly differentiable, Lp-integrable functions in Ω as

Wm,ppΩq :“ tf P D1pΩq : Dg PWm,ppRnq with g
ˇ

ˇ

Ω
“ fu,

where the extension is taken in the distributional sense.

Although for bounded C8-domains both definitions coincide for Sobolev spaces, for
more complicated spaces we cannot expect an inner description of the type (3.10) to
exist [34, Section 3.1.2]. Every smooth compactly supported function has clearly an
extension to the real space, and we have the embeddings

DpΩq ãÑWm,ppΩq ãÑ D1pΩq.

The completion of smooth functions C8c pΩq on the } ¨ }Wm,ppΩq-norm provides us with
the space of Sobolev functions with trace zero

Wm,p
0 pΩq “ C8c pΩq

}¨}Wm,ppΩq
,

which is in general different from Wm,ppΩq. This notation allows us to define negative
order Sobolev spaces via duality in the following way.

Definition 3.3.3. Let m P N and 1 ď p ă 8. Let Ω Ď Rn be an open set. We define
the Sobolev space of order ´m and integrability p1 on Ω as

W´m,p1 :“ pWm,p
0 pΩqq˚, where

1

p
`

1

p1
“ 1.
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Definition 3.3.4. Let m P N, s P pm,m` 1q and 1 ď p ă 8. We define the fractional
Sobolev space or the Sobolev-Slobodeckij space W s,p on Rn as the real interpolation space

W s,ppRnq :“ pWm,ppRnq,Wm`1,ppRnqqθ,p with θ “ s´m.

We can define Sobolev-Slobodeckij spaces in domains through factors as in theorem
3.2.21 as long an extension exists for Wm,ppRnq and Wm`1,ppRnq. Note that this char-
acterization coincides with definition 3.3.2. We can take a complex interpolation instead
of a real one and define the following space.

Definition 3.3.5. Let m P N, θ P p0, 1q and 1 ď p ď 8. We define the Bessel potential
space of order s “ m` θ and integrability p in Rn as the complex interpolation space

Hs,ppRnq :“ rWm,ppRnq,Wm`1,ppRnqsθ.

As for Sobolev-Slobodeckij functions, we can define Bessel potential spaces in do-
mains through extension operators. Moreover, if the domain is good enough we can
impose boundary conditions.

Definition 3.3.6. Let Ω Ă Rn be a bounded C8-domain. Let tBju
k
j“0 be a finite family

of k P N differential operators on BΩ such that

Bjfpxq “
ÿ

|α|ďj

bj,αpxqpB
αfq

ˇ

ˇ

BΩ
, for j “ 0, 1, ...k, (3.11)

where bj,α : BΩ Ñ R. For s ą 0 and 1 ă p ă 8 the Bessel potential spaces with boundary
conditions (3.11) are defined as

Hs,p
tBju

pΩq :“

"

f P Hs,ppΩq : Bjf
ˇ

ˇ

BΩ
“ 0 for j `

1

p
ă s

*

. (3.12)

For the proper meaning of trace in Bessel spaces we refer the reader to section 3.4.
Following Hieber’s notation [15], a smooth function f : r0, 1sn Ñ R is said to be

periodic of order m if

Bαf

Bxα
px1, ..., xi´1, 0, xi`1, ..., xnq “

Bαf

Bxα
px1, ..., xi´1, 1, xi`1, ..., xnq,

for every x1i “ px1, ..., xi´1, xi`1, ..., xnq P r0, 1s
n´1, all |α| ď m and 1 ď i ď n. However,

with the above notation we can extend periodicity to Bessel functions by choosing an
adequate family tBju

k
j“0 of differential operators on BΩ.

Definition 3.3.7. A Bessel function f P Hs,ppr0, 1snq is said to be periodic of order tsu
if f P Hs,p

B pr0, 1s
nq where

B “ tpBαfq
ˇ

ˇ

txi“0u
´ pBαfq

ˇ

ˇ

txi“1u
, i “ 1, 2, . . . , n, |α| ă 2su.

Finally, the complex interpolation of Bessel functions on domains with boundary
conditions is again a Bessel function as expected.

Theorem 3.3.8 ([33, Section 4.3.3]). Let Ω Ă Rn be a bounded C8-domain. Let the
family tBju

k
j“1 be as in definition 3.3.6. Let m ą k, 1 ă p ă 8 and θ P p0, 1q. Then

rLppΩq, Hm,p
tBju

pΩqsθ “ Hθm,p
tBju

pΩq, j `
1

p
ă mθ.
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Definition 3.3.9. Let m P N, s P pm,m ` 1q and 1 ď p, q ă 8. We define the Besov
space Bs

p,q on Rn as the real interpolation space

Bs
p,qpRnq :“ pWm,ppRnq,Wm`1,ppRnqqθ,q with θ “ s´m.

Moreover, we can define them for negative exponents as

B´sp1,q1pR
nq :“ pBs

p,qpRnqq˚.

Attending to theorem 3.2.7, we can rewrite the dual spaces of real interpolation
spaces by developing

B´sp1,q1pR
nq “

”

pWm,p1pRnq,Wm`1,p1pRnqqθ,q1
ı˚

“

´

pWm,p1pRnqq˚, pWm`1,p1pRnqq˚
¯

θ,q

“ pW´m,ppRnq,W´m´1,ppRnqqθ,q

(3.13)

Therefore, for m P N, s P pm,m` 1q and 1 ď p, q ă 8, the Besov space of order ´s ă 0
in Ω Ď Rn is

B´sp1,q1pΩq “ pW
´m,ppΩq,W´m´1,ppΩqqθ,q with θ “ s´m,

as long as extension operators exist for W´m,ppΩq and W´m´1,ppΩq.

3.4 Traces

Given a bounded Lipschitz domain Ω, boundary values of smooth functions can be point-
wise defined as continuous functions in BΩ. However, for Lp-functions the restriction to
the boundary does not make sense in the usual way. In the following chapter we are going
to introduce a short overview of how functional analytical methods can be employed to
overcome the problems of defining traces of Sobolev spaces. Although the text is largely
based in Sohr’s book [31] difficult proofs of important theorems, avoided in the text for
simplicity, are cited properly through the chapter.

We start by extending the concept of trace for continuous functions to Sobolev func-
tions.

Theorem 3.4.1 ([1, Theorem 7.39]). Let Ω Ď Rn, n ě 2, be a bounded Lipschitz domain.
Let 1 ă p ă 8 and m P N. Then there exists a bounded and surjective operator

Γ : Wm,ppΩq Ñ B
m´ 1

p
p,p pBΩq

u ÞÑ Γu
(3.14)

such that
Γu “ u

ˇ

ˇ

BΩ
for all u P C8pΩq. (3.15)

We call this operator the trace operator.

Notation (3.15) is used for all u P Wm,ppΩq as long as it does not lead to confusion.

In particular, surjectivity of the trace operator implies that for every g P B
m´ 1

p
p,p pBΩq
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there exists at least one u P Wm,ppΩq such that g “ u
ˇ

ˇ

BΩ
. Furthermore, u P Wm,ppΩq

can be chosen in a way such that the map

E : B
m´ 1

p
p,p pBΩq Ñ Wm,ppΩq

g ÞÑ u with g “ u
ˇ

ˇ

BΩ

(3.16)

is bounded. This map is called extension operator E, which by definition has the property

ΓEg “ g.

Note that this is consistent with definition 3.2.20, and consequently the interpolation
spaces in domains from section 3.3 are well defined.

Remark 2. The trace operator allows us to generalize Green’s theorem initially given for
u P C8pΩq and v P C8pΩqn:

pu| div vqΩ “ pu|νBΩ ¨ vqBΩ ´ p∇u|vqΩ, (3.17)

where νBΩ is the outer unit normal on BΩ. Using the density of smooth functions and
the continuity of the trace operator, we can extend the equation to u P Wm,ppΩq and
v P Wm,p1pΩqn, with p1 “ p

p´1 , so that pu|νBΩ ¨ vqBΩ is still well defined as a surface
integral with

u
ˇ

ˇ

BΩ
P B

m´ 1
p

p,p pBΩq and ν ¨ vBΩ
ˇ

ˇ

BΩ
P B

m´ 1
p1

p1,p1 pBΩq. (3.18)

The trace theorem generalizes to Besov spaces following the same technique as for
Sobolev spaces.

Theorem 3.4.2 ([1, Theorem 7.43]). Let Ω Ď Rn, n ě 2, be a bounded Lipschitz domain.
Let 1 ă p, q ă 8 and s ą 1{p. Then there exists a bounded and surjective operator

Γ : Bs
p,qpΩq Ñ B

s´ 1
p

p,q pBΩq

u ÞÑ Γu
(3.19)

such that
Γu “ u

ˇ

ˇ

BΩ
for all u P C8pΩq. (3.20)

However, when treating the hydrostatic Stokes operator we are going to deal with
regular distributions, meaning that we are interested in extending the Green’s theorem
further. Let Ω Ď Rn be a bounded Lipschitz domain and define

EppΩq :“ tv P LppΩqn : div v P LppΩqu,

where the divergence is taken in the distributional sense. EppΩq is a Banach space
equipped with the norm

}v}EppΩq :“
`

}v}pp ` } div v}pp
˘1{p

,

and clearly W 1,ppΩqn Ď EppΩq. We can define a generalized trace for functions in EppΩq.

Let u “ Eg PW 1,p1pΩq such that u
ˇ

ˇ

BΩ
“ g P B

1´ 1
p1

p1,p1 pBΩq and v PW 1,ppΩqn. Substituting
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u and v in (3.17), using Hölder’s inequality and the continuity of the extension operator
we get that

|pu|νBΩ ¨ vqBΩ| ď }Eg}p1}div v}p ` }∇Eg}p1}v}p ď }Eg}W 1,p1 pΩqp}v}p ` } div v}pq

ď C}g}
B

1´ 1
p1

p1,p1
pBΩq

}v}EppΩq.
(3.21)

We can therefore see u ÞÑ pu|νBΩ ¨vqBΩ as a continuous functional in B
1´ 1

p1

p1,p1 pBΩq for every

v PW 1,ppΩq. In other words, p¨|νBΩ ¨ vqBΩ P B
´1{p
p,p pBΩq for every v PW 1,ppΩq. Moreover,

from equation (3.21) we can deduce that

W 1,ppΩq Ñ B
´1{p
p,p pBΩq

v ÞÑ p¨|νBΩ ¨ vqBΩ
(3.22)

is continuous in the } ¨ }EppΩq norm.
Since smooth functions are dense in EppΩq we can extend the map (3.22) to conclude

that there exists a generalized trace operator

Γν : EppΩq Ñ B´1{p
p,p pBΩq

such that
Γνv “ p¨|νBΩ ¨ vqBΩ for v P C8pΩqn.

We will once again make use of the notation Γνv “ νBΩ ¨ v
ˇ

ˇ

BΩ
for every v P EppΩq.

Theorem 3.4.3 ([31, Lemma 1.2.3], Green’s generalized theorem). Let Ω Ď Rn, n ě 2,
be a bounded Lipschitz domain with boundary BΩ. Let 1 ă p ă 8 and p1 “ p

p´1 . Then

for all u PW 1,ppΩq and v P Ep1pΩq,

pu| div vqΩ “ pu|νBΩ ¨ vqBΩ ´ p∇u|vqΩ, (3.23)

where pu|νBΩ ¨ vqBΩ is well defined in the sense of generalized trace with

νBΩ ¨ v
ˇ

ˇ

BΩ
P B

´1{p1

p1,p1 pBΩq and u
ˇ

ˇ

BΩ
P B

1´ 1
p

p,p pBΩq.

3.5 Operator semigroups

Given a Banach space X and an unbounded linear operator A : DpAq Ď X Ñ X, we are
interested in solving the abstract Cauchy problem

pACP q

#

u1ptq “ Auptq, t P r0, T s,

up0q “ x ,
(3.24)

where x P X is the initial value and u : r0, T s Ñ X the unknown solution. In this section,
we will build intuition for the framework of the solutions starting from the scalar field.
The presented notes are a summary of the classical work by Engel and Nagel [5] combined
with [4] and [19].
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The problem (3.24) has an easy answer in the scalar field X “ C if the associated
operator A is a matrix A P MnpCq. Here the unique solution is given by the matrix
exponential

etA :“
N
ÿ

k“1

tkAk

k!
,

which is well-defined because the truncated sums of the series form a Cauchy sequence.
Moreover, the map tÑ etA has some interesting properties:

i) for t ě 0, tÑ etA is continuous;
ii) for t, s ě 0, tÑ etA satisfies the semigroup properties, i.e.

e0A “ I and ept`sqA “ etAesA. (3.25)

Attending to the second property, the family of bounded operators petAqtě0 is called the
semigroup generated by the matrix A. Let us now study the behavior of the solution at
infinity. A continuous semigroup petAqtě0 is called stable if

lim
tÑ8

}etA} “ 0.

And Liapunov’s theorem [5, Theorem 2.10] states that for continuous semigroups gen-
erated by matrices A P MnpCq, stability is equivalent to all eigenvalues of A having
negative real part. In other words, we can characterize the stability of a semigroup
through the spectral properties of its generator.

Consequently, it is not surprising that spectral theory plays a big role in the study
of solutions of abstract Cauchy problems in general Banach spaces X. We will start by
recalling some notions.

Definition 3.5.1. We call resolvent set of A, denoted ρpAq, to the set of complex scalars
λ P C such that λ´A has a bounded two-sided inverse, i.e. there exists a bounded linear
operator B on X such that Bx P DpAq for all x P X and

pλ´AqB “ Bpλ´Aq “ I.

In this case, we call B the resolvent operator associated with A and we write

Rpλ,Aq :“ B “ pλ´Aq´1.

The spectrum of A, denoted σpAq, is defined as σpAq :“ CzρpAq.

The following basic properties of spectrums and resolvents of unbounded operators
can be found in any introductory book to Functional Analysis, see for instance [30,
Chapters 12-13]. We gather them here without proof for the sake of clarity.

Proposition 3.5.2. Let A be an unbounded operator in X.
i) If the resolvent set ρpAq is nonempty, then A is closed. Recall that an unbounded

operator is closed if whenever xn Ñ x in X and Axn Ñ y in Y , then x P DpAq
and Ax “ y. In particular, every bounded operator A is closed.

ii) The resolvent set ρpAq is open.
iii) The resolvent identity holds, i.e. if λ, µ P ρpAq, then

Rpλ,Aq ´Rpµ,Aq “ pµ´ λqRpλ,AqRpµ,Aq.
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iv) If A is bounded, its spectrum is contained in the open ball Bp0, }A}q.

For general Banach spaces X and linear bounded operators A, we can still define
exponentials through the Dunford functional-calculus for holomorphic functions. More
precisely, by the last property of proposition 3.5.2 there exists a bounded open set Ω Ď C
such that the spectrum of A is contained in Ω, σpAq Ď Ω, and a suitable contour Γ in
Ω with winding number one around every point of the spectrum σpAq, such that the
integral

etA :“
1

2πi

ż

Γ
etzRpz,Aq dz (3.26)

converges. Moreover, it defines a bounded operator on X and its definition does not
depend on the particular choice of contour Γ. Recall that Dunford functional-calculus
is actually well-defined for every holomorphic function in the open set Ω, f P HpΩq,
through

fpAq :“
1

2πi

ż

Γ
fpzqRpz,Aq dz.

It is an easy calculation to see that the matrix exponential defined this way is a solution
of the abstract Cauchy problem (3.24).

Proposition 3.5.3 ([5, Proposition 3.5]). Let A be a bounded operator on a Banach
space X. Let petAqtě0 be a a family of operators defined by equation (3.26). Then

i) the family petAqtě0 is a uniformly continuous semigroup, i.e. has the semigroup
properties (3.25) and t Ñ etA is continuous with respect to the operator topology
pLpXq, } ¨ }q;

ii) the mapping tÑ etA is differentiable and satisfies the differential equation

Bte
tA “ AetA, t ě 0.

Furthermore, the converse is also true. Every uniformly continuous semigroup is of
the form petAqtě0 for some bounded operator A P LpXq, determined uniquely by the
derivative of the semigroup at t “ 0. In conclusion, if A is a bounded, the mapping
tÑ etA is actually the unique solution to the abstract Cauchy problem 3.24.

Stability in general Banach spaces is characterized through the following notion.

Definition 3.5.4. A semigroup pT ptqqtě0 on a Banach space X is called uniformly
exponentially stable is there exists constants ε ą 0, M ě 1 such that

}T ptq} ďMe´εt, t ě 0.

For uniformly continuous semigroups, uniform exponential stability is equivalent to

lim
tÑ8

}T ptq} “ 0.

Finally, we would like to generalize solutions for unbounded operators A. Since
uniformly continuous semigroups uniquely characterize solutions to the abstract Cauchy
problem (3.24) with bounded generators A, we need a weaker notion of semigroup for
our purpose.

Definition 3.5.5. A family pT ptqqtě0 of bounded linear operators on a Banach space
X is called a strongly continuous semigroup or C0-semigroup if it satisfies the following
properties:
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i) T p0q “ I;
ii) T ptqT psq “ T pt` sq for all t, s ě 0;
iii) lim

tÑ0
}T ptqx´ x} “ 0 for all x P X.

The generator of the family pT ptqqtě0 is the linear operator pA,DpAqq given by

DpAq :“ tx P X : lim
tÑ0

1

t
pT ptqx´ xq exists in Xu, (3.27)

Ax :“ lim
tÑ0

1

t
pT ptqx´ xq, x P DpAq. (3.28)

It turns out that the generator pA,DpAqq is a closed and densely defined operator
uniquely determined by the C0-semigroup. Moreover, strong continuity implies contin-
uously differentiability of the orbits t ÞÑ T ptqx if x P DpAq, with

T ptqx P DpAq and BtT ptqx “ AT ptqx “ T ptqAx, t ě 0.

Consequently, for initial values x P DpAq the function

uptq :“ T ptqx, t ě 0,

solves the abstract Cauchy problem (3.24).
There is a special class of unbounded operators for which the respective C0-semigroup

can be characterized as a general form of the Dunford integral (3.26). Given ω P p0,πq,
a sector of angle ω is given by

Σω :“ tx P Czt0u : | argpzq| ă ωu,

where the argument is taken in p´π,πq.

Definition 3.5.6. A linear operator pA,DpAqq is called sectorial of angle ω if σpAq Ď Σω

and
Mω :“ sup

zPAΣω

}zRpz,Aq} ă 8.

We will also use the notation

Cω :“ sup
zPAΣω

}ARpz,Aq}.

We call A sectorial if it is sectorial for some angle ω P p0,πq. The infimum ω for which
A is ω-sectorial is called the angle of sectoriality of A and denoted by ωpAq.

Now the exponential function can be properly defined for the ω-sectorial operator A
by the Cauchy integral

ezA :“
1

2πi

ż

Γ
ezλRpλ,Aq dλ, (3.29)

where the contour Γ is taken as the boundary of a sector Σν for some ν P pω,πq.

Definition 3.5.7. A C0-semigroup pT ptqqtě0 of bounded linear operators on a Banach
space X is called analytic on the sector Σω if for all x P X, the function t ÞÑ T ptqx
extends analytically to Σω and satisfies

lim
zPΣω
zÑ0

T pzqx “ x.

We call pT ptqqtě0 an analytic C0-semigroup if pT ptqqtě0 is analytic on Σω for some ω P
p0,πq. Moreover, if the family pT ptqqtě0 is uniformly bounded we call it a bounded
analytic C0-semigroup.
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Σω

ω

σpAq

AΣω

Figure 3.1: Spectrum of a sectorial operator.

It is a simple matter of checking that the exponentials defined by equation (3.29)
form a bounded analytic C0-semigroup petAqtě0, see [5, Proposition 4.3].

We may now state the main theorem of this chapter, it gives a characterization of
bounded analytic C0-semigroups fundamental to solve the hydrostatic Stokes equation.

Theorem 3.5.8 ([19, Theorem G.5.2]). For a closed and densely defined operator A on
a Banach space X the following are equivalent:

(1) A is sectorial of angle ω P p0,π{2q;
(2) ´A generates a bounded analytic C0-semigroup pT ptqqtě0 on Σω.

3.6 R-boundedness and bounded H8-calculus

In this section we are going to develop a functional calculus for sectorial operators taking
the Dunford functional calculus as inspiration. The main problem is that the Cauchy
integral defined for the matrix exponential in (3.29) does not necessarily give a bounded
operator if we take an arbitrary bounded holomorphic function f P H8pΣωq instead
of the exponential. Furthermore, the space of functions such that fpAq is a bounded
linear operator does not admit an explicit characterization. Here we are going to limit
ourselves to the definitions of the prerequisites to understand the H8-calculus and some
immediate properties, but the full construction is carried out in [19] and [22].

In order to ensure the convergence of the Dunford integral, the first step is to restrict
ourselves to a smaller class of functions that have certain decay properties on zero and
infinity.

Definition 3.6.1. Let 1 ď p ď 8 and σ P p0,πq. We define the Hardy space of order p
as:

HppΣσq :“ tf : Σσ Ñ C : }f}HppΣσq “ sup
|ν|ăσ

}t ÞÑ fpeiνtq}LppR`, dt
t
q
ă 8u.

For functions f P H1pΣσq is easy to see that the operator fpAq defined by the
generalized Dunford integral

fpAq :“
1

2πi

ż

BΣν

fpzqRpz,Aq dz, ν P pωpAq, σq,

is bounded. Take ν P pωpAq, σq arbitrary and consider the contour BΣν oriented “down-
wards” such that the spectrum of A is on the left-hand side, then we can bound the
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integral by

}fpAq} ď
Mν

2π

ż

BΣν

|fpzq|
|dz|

|z|
ď
Mν

2π
}f}H1pΣσq.

Taking the infimum over all ν P pωpAq, σq we get that the operator fpAq is bounded

}fpAq} ď
Mσ

2π
}f}H1pΣσq.

The next step is to restrict ourselves to H1pΣσq XH
8pΣσq and extend the calculus

to H8pΣσq by approximation arguments, if this extension is possible depends on the
properties of the sectorial operator A.

Definition 3.6.2. Let A be a sectorial operator on X and σ P ωpAq,πq. Then A is said
to admit a bounded H8pΣσq-calculus if there exists a constant C ě 0 such that

}fpAq} ď C}f}8, f P H1pΣσq XH
8pΣσq.

We define the angle of H8-boundedness as

ωH8pAq :“ inftσ P pωpAq,πq : A has bounded H8pΣσq-calculusu.

Finally, we say that A admits a bounded H8-calculus if there exists σ P pωpAq,πq such
that A admits a bounded H8pΣσq-calculus.

The following couple of examples are going to help us understand the H8-functional
calculus and provide the basis to prove that the Laplacian in chapter 4 admits a bounded
H8-calculus.

Proposition 3.6.3 ([19, Proposition 10.2.22]). Let σ P p0,πq and 1 ď p ă 8. Let
pX,A , µq be a finite measure space and m : X Ñ C a measurable function taking
values in Σσ µ-almost everywhere. Consider the pointwise multiplication operator Mm

on LppXq given by

Mmpφqpxq :“ mpxqφpxq, φ P LppXq, x P X (3.30)

DpMmq :“ tφ P LppXq : mφ P LppXqu. (3.31)

Then Mm admits a bounded H8pΣσq-calculus on LppXq.

Proof. Let z P AΣσ, then z P ρpMmq and the resolvent

Rpz,Mmqφpxq “ pz ´mpxqq
´1φpxq.

Take ν P pωpMmq, σq. For f P H1pΣσq XH8pΣσq and φ P LppXq Dunford’s integral is
well-defined with

fpMmqφpxq “
1

2πi

ż

BΣν

fpzqRpz,Mmqφpxq dz

“
1

2πi

ż

BΣν

fpzqpz ´mpxqq´1φpxq dz “ fpmpxqqφpxq

(3.32)

for µ-almost all x P X. Thus }fpMmq} ď }f}8 and Mm admits a bounded H8pΣσq-
calculus on LppXq.
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Proposition 3.6.4 ([19, Proposition 10.2.13]). Let A be a densely defined, positive, self-
adjoint operator on a complex Hilbert space H. Then A admits a bounded H8-calculus
of angle ωH8pAq “ 0.

Proof. By the spectral theorem for positive, self-adjoint operators [28, Theorem VIII.4],
there exists a finite measure space pX,A , µq, a measurable function m : X Ñ r0,8q and
a unitary transformation U : H Ñ L2pXq such that

A “ U´1MmU,

where Mm is as in equation (3.30) for p “ 2. Since A is injective, m is strictly positive
µ-almost surely. By proposition 3.6.3, Mm admits a bounded H8-calculus of angle 0
on L2pSq. Finally, since bounded H8-calculus is preserved under similarity transforms
because

pz ´ U´1MmUq
´1 “ pU´1Uz ´ U´1MmUq

´1 “ U´1pz ´Mmq
´1U,

we conclude that A admits a bounded H8-calculus with angle ωH8pAq “ 0.

In particular, the bounded H8-calculus allows us to define the fractional powers of
sectorial operators.

Theorem 3.6.5 ([4, Theorem 2.5]). If A is admits a bounded H8-calculus on X, then

DpAαq “ rX,DpAqsα for all α P p0, 1q.

Similar to the case of the vector-valued Mikhlin multiplier theorem 3.1.16, in order to
derive properties of vector-valued operator families uniform boundedness is not enough
and we need to make use of R-boundedness. We will finish this section introducing
R-sectoriality and stating the relation between R-boundedness of the H8-functional
calculus.

Definition 3.6.6. A sectorial operator A is called R-sectorial if there exists σ P

pωpAq,πq such that the family of resolvents

tzRpz,Aq : z P AΣσu

is R-boundend.

Definition 3.6.7. Let A be a sectorial operator admitting a bounded H8-functional
calculus. We say that A admits a R-bounded H8-calculus if the functional calculus

tfpAq : f P H8pΣσq, }f}8 ď 1u

is R-bounded. The set of operators A admitting a R-bounded H8-calculus on X is
denoted by RH8pXq.

Theorem 3.6.8 ([19, Theorem 10.3.4]). If a Banach space X is good enough and A
admits a bounded H8-calculus, then

i) A is R-sectorial and;
ii) the full H8-calculus of A is R-bounded.

For the proper definition of good enough in this context see the referred literature.
For all practical purposes in the following chapters, LppΩq as a Lp space with values in
a Hilbert space is indeed good enough.
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3.7 Perturbation theorems

In this section we study permanence properties of sectorial operators under additive
perturbations. We will touch only a few aspects of the theory relevant for the proof of
the main theorems in chapter 4. For a deeper discussion of perturbation results of the
H8-calculus we refer the reader to [22].

Definition 3.7.1. Let A : DpAq Ď X Ñ X be a generator of a C0-semigroup and
consider a second operator B : DpBq Ď X Ñ X. Then the sum A`B is defined as

pA`Bqx :“ Ax`Bx in DpA`Bq :“ DpAq XDpBq.

If the sum A`B generates a C0-semigroup again, we say that B is a perturbation of A.

Note that the domain DpA ` Bq might be trivial in general. Even in the simplest
case B “ ´A, the sum A ` B is the zero operator. Therefore, we need to add more
requirements to the perturbation term in order to obtain properties such as sectoriality
or H8-boundedness of the functional calculus. The following theorem ensures at least
the sectoriality of the sum.

Theorem 3.7.2 ([4, Theorem 1.5]). Let A : DpAq Ď X Ñ X be a sectorial operator and
let B : DpBq Ď X Ñ X be a perturbation subordinated to A, i.e., DpAq Ă DpBq and

}Bx} ď b}Ax}, x P DpAq, (3.33)

for some constant b ě 0. Then b ă 1 implies that the sum A ` B is closed, densely
defined and NpA`Bq “ t0u. Moreover, A`B is sectorial with spectral angle

ωpA`Bq ď inftσ ą ωpAq : bCσpAq ă 1u.

Proof. We first show closedness. Let xn Ñ x and pA ` Bqxn Ñ z, we want to prove
that x P DpA ` Bq “ DpAq and z “ pA ` Bqx. From the definition of subordinate
perturbation (3.33) it is easy to check that txnun defines a Cauchy sequence

}Apxn ´ xmq} ď }pA`Bqpxn ´ xmq} ` }Bpxn ´ xmq}

ď }pA`Bqpxn ´ xmq} ` b}xn ´ xm} Ñ 0.

Since A is closed, this implies that x P DpAq and Axn “ x, thus the sequence txnun is
convergent in DpAq. We conclude that DpAq is a Banach space with respect to the graph
norm } ¨ }DpAq, hence A`B is closed. To prove injectivity assume that pA`Bqx “ 0, it
is immediate from the bound (3.33) that Ax “ 0, which by injectivity of A implies that
x “ 0. Finally, to show sectoriality take ν P pωpAq,πq and let λ P AΣν . Then λ P ρpAq
and we have

λ´ pA`Bq “ p1´Bpλ´Aq´1qpλ´Aq,

hence λ´ pA`Bq is invertible whenever }Bpλ´Aq´1} ă 1, with inverse

pλ´ pA`Bqq´1 “ pλ´Aq´1p1´Bpλ´Aq´1q´1. (3.34)

Consider ν ą ωpAq such that bCνpAq ă 1, then using the above characterization for
λ P AΣν we obtain the bound

}λpλ´ pA`Bqq´1} ď
}λpλ´Aq´1}

}1´Bpλ´Aq´1}
ď

MνpAq

1´ bCνpAq
,
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where the lower bound of the denominator is evident from

}Bpλ´Aq´1} ď b}Apλ´Aq´1} ď bCνpAq ă 1.

An immediate consequence of the above theorem is the following corollary, where
assuming a more general perturbation we prove sectoriality of the right shift µ`A`B
for some µ ě 0.

Corollary 3.7.3 ([4, Corollary 1.6]). Let A : DpAq Ď X Ñ X be a sectorial operator
and let B : DpBq Ď X Ñ X be a relative perturbation of A, i.e., DpAq Ă DpBq and

}Bx} ď a}x} ` b}Ax}, x P DpAq, (3.35)

for some constants a, b ě 0. Then there exists b0 ą 0 such that the sum µ ` A ` B is
sectorial whenever b ă b0 and µ ě 0 is large enough.

Proof. Consider σ ą ωpAq and λ P AΣσ Ď ρpAq. Repeating the argument (3.34), from
the hypothesis (3.35) we get the bound

}Bpλ´Aq´1} ď a}pλ´Aq´1} ` b}Apλ´Aq´1} ď a
MσpAq

|λ|
` bCσpAq,

hence λ´ pA`Bq is invertible provided

bCσpAq ă 1 and |λ| ą µ0 :“ a
MσpAq

1´ bCσpAq
.

In other words, λ´ pµ0 `A`Bq is invertible for all λ P AΣσ.

Note that (3.35) is equivalent to the graph norm } ¨ }DpAq if a, b ą 0. Since
pX,DpAqqα,1 ãÑ DpAαq for α P p0, 1q, see [26, Proposition 4.7], we could further ask
if sectoriality holds for perturbations of lower order type like

}Bx} ď a}x} ` b}Aαx}, x P DpAαq. (3.36)

Turns out that the answer is affirmative whenever α P r0, 1q, even without applying any
restriction to a, b ě 0.

Theorem 3.7.4. Let A : DpAq Ď X Ñ X be a sectorial operator and let B : DpBq Ď
X Ñ X be a lower order perturbation of A, i.e., DpAq Ă DpBq and inequality (3.36)
holds for arbitrary constants a, b ě 0. Then the sum µ ` A ` B is sectorial whenever
α P r0, 1q and µ ě 0 is large enough.

Proof. Let α P p0, 1q be such that inequality (3.36) holds. Since pX,DpAqqα,1 ãÑ DpAαq
there exists a constant C ě 0 such that we can rewrite (3.36) equivalently as

}Bx} ď pa` bq}x}DpAαq ď Cpa` bq}x}pX,DpAqqα,1 .

We may now bound the norm in the real interpolation space following the same reasoning
as in remark 1 by

}Bx} ď Cpa` bq}x}1´αX }x}αDpAq.
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Further, multiplying/dividing by ε and applying Young’s inequality we get

}Bx} ď Cpa` bq
´

ε´α{p1´αqp1´ αq}x}X ` εα}x}DpAq

¯

“ Cε,α}x}X ` Cpa` bqεα}Ax}X ,

for some constant Cε,θ ą 0. As ε is arbitrary small, taking ε ă 1{pCpa ` bqαq we see
that B is a relative perturbation of A and the assertion follows from corollary 3.7.3.

Moreover, for perturbations of lower order type the following permanence of func-
tional calculus for sectorial operators is true.

Theorem 3.7.5 ([22, Proposition 13.1]). Let A : DpAq Ď X Ñ X be an invertible,
sectorial operator admitting a bounded H8pΣσq-calculus on X. Let δ P p0, 1q and suppose
that B : DpBq Ď X Ñ X is a lower order perturbation of A of the type

}Bx} ď C}A1´δx},

where C ą 0. Then the sum µ ` A ` B admits a bounded H8pΣσq-calculus on X for
µ ě 0 sufficiently large.

Proof. From theorem 3.7.4 we can assume, possibly by a right shift, that A ` B is
sectorial. For λ P AΣωpA`Bq we can rewrite the resolvent as

Rpλ,A`Bq “ Rpλ,Aq `Rpλ,A`BqBRpλ,Aq

“ Rpλ,Aq `Rpλ,A`BqBAδ´1A1´δRpλ,Aq

“ Rpλ,Aq `Mpλq.

(3.37)

Let σ ą ωpA`Bq and f P H1pΣσqXH
8pΣσq. For every ν P pωpA`Bq, σq, by the above

characterization, we can write

fpA`Bq “ fpAq `
1

2πi

ż

BΣν

fpλqMpλq dλ,

where fpAq is bounded because A admits a bounded H8-calculus. Moreover, we can
estimate the integrand by

}fpλqMpλq} ď }f}8
Mν,A`B

|λ|
}BAδ´1}C 1

M δ
ν,A

|λ|δ
C1´δ
ν,A ď C}f}8Mν,A`B

M δ
ν,AC

1´δ
ν,A

|λ|1`δ
,

where we applied remark 1 in the second inequality, with x “ Rpλ,Aq, to get

}A1´δRpλ,Aq} ď C 1}Rpλ,Aq}δ}ARpλ,Aq}1´δ ď C 1
M δ
ν,A

|λ|δ
C1´δ
ν,A .

Taking the infimum over all ν P pωpA ` B, σq the integral converges absolutely and its
norm is bounded by À }f}8.

One last result about lower order perturbations is needed in order to prove the main
theorem of the work. The next proposition characterizes how much we can modify the
sum of two operators A`B without losing the functional calculus.



CHAPTER 3. PRELIMINARIES 39

Proposition 3.7.6 ([4, Proposition 2.7]). Let A : DpAq Ď X Ñ X be a sectorial
operator and B : DpBq Ď X Ñ X a lower order perturbation of A of the type

}Bx} ď a}x} ` b}Aαx}, x P DpAq,

for arbitrary constants a, b ą 0 and α P r0, 1q. Assume that A ` B is sectorial and
invertible. Then hpAq P LpXq implies hpA ` Bq P LpXq for any h P H8pΣσq, where
σ ą ωpAq, ωpA`Bq.

Proof. Let f “ ψh with ψpλq “ λp1 ` λq´2. For special properties of ψ P H1pΣσq X

H8pΣσq see [4, Section 2.1]. Then

hpA`Bq “ ψ´1pA`BqfpA`Bq “ p2`A`B ` pA`Bq´1qfpA`Bq

“ p2`A`BpI `Aq´1pI `Aq ` pA`Bq´1qfpA`Bq

“ p2`BpI `Aq´1 ` rI `BpI `Aq´1sA` pA`Bq´1qfpA`Bq.

From invertibility of A ` B and sectoriality of A, both pA ` Bq´1 and pI ` Aq´1 are
bounded. Since f P H1pΣσq XH

8pΣσq, the only point remaining concern is the bound-
edness of AfpA`Bq. Let ν P pωpA`Bq, σq, from the resolvent equation (3.37) we get
that

AfpA`Bq “ AfpAq `
1

2πi

ż

BΣν

fpλqApλ´Aq´1Bpλ´A´Bq´1 dλ.

The first term AfpAq “ AψpAqhpAq is bounded because hpAq is bounded by hypothesis,
and the same computation as in theorem 3.7.5 proves that the integral is absolutely
convergent.

3.8 Maximal regularity

As mentioned in the introduction, in order to analyze the full nonlinear problem it is
enough to consider its linearized part. Although it is not our purpose to study the exact
construction of solutions to the full nonlinear problem -which is done via fixed point
arguments from the solutions to the linearized problem-, this construction is tightly
linked to the property of maximal regularity. In this section we will state some basic
properties of maximal Lq-regularity and give an intuition behind the relation between
maximal Lq-regularity and the boundedH8-calculus of an operator. However, the proofs
of these theorems exceed the scope of this work and we refer the interested reader to
[22, 17].

Let X be a Banach space and A a closed operator in X. For 1 ď q ď 8 and
0 ă T ď 8, consider the abstract Cauchy problem

u1ptq `Auptq “ fptq, t P p0, T q

up0q “ 0,
(3.38)

If f P Lqp0, T ;Xq, from f “ u1 ` Au it is clear that the solution u and Au cannot be
more regular than the external force f . Therefore, maximal regularity refers to the best
scenario, when u and Au have the same regularity as f .
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Definition 3.8.1. Let q P r1,8s and 0 ă T ď 8. A closed linear operator A has
maximal Lq-regularity in p0, T q if for each f P Lqp0, T ;Xq, the equation (3.38) admits a
unique solution u satisfying

u P Lqp0, T ;DpAqq XW 1,qp0, T ;Xq,

and there exists a constant C ě 0 such that

}u}Lqp0,T ;DpAqqXW 1,qp0,T ;Xq ` }Au}Lqp0,T ;Xq ď C}f}Lqp0,T ;Xq.

We will often write “maximal Lq-regularity (for all q)”, this is because for a closed and
densely defined operator A in X, A having maximal Lq0-regularity for some q0 P r1,8s
implies A having maximal Lq-regularity for all q P p1,8q.

The next bundle of classical theorems uncovers the relation between maximal Lq-
regularity and semigroup theory. For the remainder of the section, A is assumed to be
closed and densely defined in X.

1. Dore’s theorem: If A has maximal Lq-regularity in a bounded interval p0, T q,
with 0 ă T ă 8, then ´A generates an analytic C0-semigroup on X. On the
other hand, if A has maximal Lq-regularity in the positive real line R`, then ´A
generates a bounded analytic C0-semigroup on X.

2. De Simone’s theorem: In particular, if X is a Hilbert space the reverse also
holds true.

3. Kalton-Lancien: If X has an unconditional basis and every generator of a
(bounded) analytic C0-semigroup on X has maximal Lq-regularity in p0, T q (re-
spectively R`), then X is isomorphic to a Hilbert space.

As one would imagine, maximal Lq-regularity in the positive real line implies maximal
Lq-regularity in every bounded interval p0, T q with 0 ă T ă 8. However, the converse
is nontrivial and contained in the following theorem.

Theorem 3.8.2 (Dore-Kato). Let q P r1,8s and suppose that A is a densely defined
closed operator which has maximal Lp-regularity in a finite interval p0, T q with 0 ă T ă
8. If ´A generates a uniformly exponentially stable semigroup tSptqutě0, i.e.

}Sptq} ďMe´ωt, with M ě 1, ω ą 0,

then A has maximal Lq-regularity in R`.

One final remark regarding the initial data in the Cauchy problem (3.38). We can
of course instead consider the inhomogeneous Cauchy problem

u1ptq `Auptq “ fptq, t P p0, T q

up0q “ u0,
(3.39)

as long as the initial data satisfies

u0 P pX,DpAqq1{q1,q, where
1

q1
`

1

q
“ 1.

Although chapter 4 focuses solely in the L2 case, we will be following Giga et. al.’s
proof for the general Lp-case [7], thus it is of interest to ask whether a form of De Simone’s
result extends for general Banach spaces. Turns out that R-boundedness 3.1.12 offers
a powerful tools to deal with the present situation. The main theorem of this section
is a consequence of the operator-valued Fourier multiplier theorem 3.1.16, the following
provides a necessary and sufficient condition for maximal regularity in UMD spaces.
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Theorem 3.8.3 ([22, Theorem 1.11]). Let A be a generator of a bounded analytic semi-
group on a UMD-space X. Then A has maximal Lq-regularity in R` for one (all)
q P p1,8q on X if and only if,

tλRpλ,Aq : λ P Σσu

is R-bounded for some σ ă π{2.

Corollary 3.8.4. If A admits a bounded H8-calculus of angle σ ă π{2 on a UMD
space X, then A has maximal Lq-regularity in R` on X for all q P p1,8q.



Chapter 4

Hydrostatic Stokes operator in L2

In order to construct a unique, global strong solution for the non-linear equations mod-
eling the large-scale ocean (2.21) in the Lp-setting, the study of the linearized problem
is crucial. Recall that the hydrostatic Stokes equations are given by

pHSEq

$

’

&

’

%

Btv `∇Hπs ´∆v “ f in Ωˆ p0, T q,

divH v “ 0 in Gˆ p0, T q

vp0q “ v0 in Ω,

(4.1)

where v denotes the horizontal velocity of the fluid, πs the surface pressure, f the
external force and v0 the initial horizontal velocity. We consider the cylindrical domain
for a, b P R with a ă b,

Ω “ Gˆ pa, bq Ă R3 with G “ p0, 1q ˆ p0, 1q,

where the bottom, upper and lateral part of the boundary δΩ are denoted by

Γa “ Gˆ tau, Γb “ Gˆ tbu and Γl “ BGˆ pa, bq.

Here and subsequently, px, yq P G stand for horizontal variables and z P pa, bq for the
vertical variable, with this notation,

∇H “ pBx, ByqT , divH v “ Bxv1 ` Byv2 and v :“
1

b´ a

ż b

a
vp¨, ¨, sq ds

whereas ∆ denotes the three dimensional Laplacian. Recall that the vertical velocity of
the fluid w is determined by the horizontal velocity v via the relation

wpt;x, y, zq “ wpvqpt;x, y, zq :“ ´

ż z

a
divH vpt;x, y, sq ds,

and that due to the hydrostatic approximation (2.11), Bzπ “ 0, the full pressure π is ac-
tually determined only by the surface pressure πs. The equations (4.1) are supplemented
by the boundary conditions

v, πs are periodic on Γl ˆ p0, T q,

v “ 0 on ΓD ˆ p0, T q,

Bzv “ 0 on ΓN ˆ p0, T q,

(4.2)

42
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where Dirichlet, Neumann, and mixed boundary conditions are given by

ΓD P tH,Γa,Γb,Γa Y Γbu, and ΓN P pΓa Y ΓbqzΓD.

In this chapter we are going to study the article by Giga et. al. [7], where they prove
that the hydrostatic Stokes operator admits a bounded H8-calculus. The chapter is
structured in four sections. In the first two sections, we follow Hieber et. al.’s [15] con-
struction of the hydrostatic Helmholtz and Stokes operators respectively. In particular,
we show that the negative hydrostatic Stokes operator ´Ap is sectorial of spectral angle
0 and generates an exponentially decaying analytic semigroup. Based on that, we con-
tinue with Giga et. al.’s [7] approach by rewriting the hydrostatic Stokes operator as a
perturbation of the Laplacian of the form

Ap “ ∆p `Bp, with Bpv :“ ´∇H∆´1
H divH

´

Bzv
ˇ

ˇ

Γb
´ Bzv

ˇ

ˇ

Γa

¯

.

Note that the boundary terms play an important role here since pure Neumann boundary
conditions yield Ap “ ∆2, i.e. the Laplacian and the hydrostatic Stokes projection Pp
commute. Finally, the third section 4.3 contains the main theorems of this work, we
prove that the hydrostatic Stokes operator admits a bounded H8-calculus and mention
some of the immediate corollaries.

Throughout this chapter, we follow the notation of [15] to model horizontally periodic
function spaces. Let m P N and ν P t0, 1u2, a smooth function f : Ω Ñ R is called ν-
periodic of order m on Γl “ BGˆ pa, bq if

Bαf

Bxα
p0, y, zq “ p´1qν1

Bαf

Bxα
p1, y, zq and

Bαf

Byα
px, 0, zq “ p´1qν2

Bαf

Byα
px, 1, zq,

for all α “ 0, ...,m. In particular if ν “ p0, 0q, then f is called periodic and if instead
ν “ p1, 1q, then f is called anti-periodic. (Anti)-periodicity on BG is defined in the same
way for smooth functions in G. Note that we only require periodicity in the horizontal
directions, and no assumption is made over the vertical axis. Using this notion, the
Bessel potential spaces of functions with periodic boundary conditions in the horizontal
directions are

Hs,p
perpΩq :“ tf P Hs,ppΩq | f is periodic of arbitrary order on Γlu, (4.3)

Hs,p
perpGq :“ tf P Hs,ppGq | f is periodic of arbitrary order on BGu. (4.4)

For s “ m natural, the spaces Hm,p
per pΩq and Hm,p

per pGq respectively coincide with the
Sobolev spaces

Wm,p
per pΩq :“ tf PWm,ppΩq | f periodic of order m´ 1 on BΓlu, (4.5)

Wm,p
per pGq :“ tf PWm,ppGq | f periodic of order m´ 1 on BGu. (4.6)

By theorem [33, Theorem 46.2], the spaces of smooth functions with periodic boundary
conditions in the horizontal directions

C8perpΩq :“ tf P C8pΩq | f is periodic of arbitrary order on Γlu, (4.7)

C8perpGq :“ tf P C8pGq | f is periodic of arbitrary order on BGu, (4.8)
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and dense in the respective Bessel potential spaces

Hs,p
perpΩq :“ C8perpΩq

}¨}Hs,ppΩq
and Hs,p

perpGq :“ C8perpGq
}¨}Hs,ppGq

. (4.9)

Indeed this can be made precise using periodic extensions (4.59), mollifying the exten-
sions, and restricting back.

Finally, for an open set M Ă Rn, we define the closed subspace

Lp0pMq :“ tu P LppMq :

ż

M
u dx “ 0u Ď LppMq. (4.10)

Remark 3. Since it is a closed subspace of a Hilbert space, L2
0pMq is a Hilbert space.

4.1 The hydrostatic Helmholtz projection

As mentioned previously, the basic idea of the proof is to adapt the construction of the
classical Helmholtz projection for the solenoidal subspace L2

σpΩq of L2pΩq. This is, we
intend to find a projection that will eliminate the pressure gradient

P2v :“ v ´∇Hπ, v P L2pΩq2, (4.11)

in other words, the existence of the hydrostatic Helmholtz projection depends on finding
a solution ∇Hπ of the Poisson problem

∆Hπ “ divH f on G, π periodic on BG, (4.12)

in the distributional sense. The solution operator f ÞÑ ∇Hπ is the closure operator in
L2pGq of

∇Hπ “ ´∇Hp´∆Hq
´1 divH f,

where ∆H denotes the two-dimensional Laplacian defined on H2,2
perpGq2 with inverse in

L2
0pGq. Note that although we have dropped the subindex of surface pressure in order to

simplify notation, as a result of the hydrostatic approximation the pressure is a function
of only two variables.

Proposition 4.1.1 ([15], Weak solvability of the Poisson problem). Let f P L2pGq2.
Then there exists a unique π PW 1,2

per pGq X L2
0pGq satisfying

xf,∇HφyL2pGq “ x∇Hπ,∇HφyL2pGq, φ PW 1,2
per pGq X L

2
0pGq. (4.13)

Furthermore, there exists a constant C ą 0 such that

}π}W 1,2pGq ď C}f}L2pGq, f P L2pGq2. (4.14)

Remark 4. Let us first observe that the theorem is actually equivalent to the unique solv-
ability of the Poisson problem in the distributional sense. Equation (4.12) is equivalent
to

ż

G

ˆ

B2π

Bx2
1

`
B2π

Bx2
2

˙

φ dx “

ż

G

ˆ

Bf1

Bx1
`
Bf2

Bx2

˙

φ dx, φ P C8perpGq (4.15)

which from the definition of distributional derivative can be rewritten as

´

ż

G

Bπ

Bx1

Bφ

Bx1
`
Bπ

Bx2

Bφ

Bx2
dx “ ´

ż

G
f1
Bφ

Bx1
` f2

Bφ

Bx2
dx, φ P C8perpGq, (4.16)

or in other words

x∇Hπ,∇HφyL2pGq “ xf,∇HφyL2pGq, φ P C8perpGq. (4.17)
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Proof. (Proposition 4.1.1) Let H :“ W 1,2
perpGq X L2

0pGq be our Hilbert space, with norm
}∇Hv}L2pGq. Let f P L2pGq2, the functional

F : φ ÞÑ xf,∇HφyL2pGq, φ PW 1,2
perpGq X L

2
0pGq,

is continuous in }∇Hφ}L2pGq since

|F pφq| “ |xf,∇HφyL2pGq| ď }f}L2pGq}∇Hφ}L2pGq.

By Riesz’ representation theorem, there exists a unique π PW 1,2
perpGq XL2

0pGq satisfying

xf,∇HφyL2pGq “ p∇Hπ|∇HφqL2pGq, φ PW 1,2
perpGq X L

2
0pGq. (4.18)

Setting φ “ π yields
}∇Hπ}2L2pGq ď }f}L2pGq}∇Hπ}L2pGq,

and thus }∇Hπ}L2pGq ď }f}L2pGq as desired.

This proposition allows us to clarify the precise meaning of (4.11).

Definition 4.1.2. Given v P L2pΩq2, let π P W 1,2
perpGq X L2

0pGq be the unique solution
of equation (4.13) with f “ v. The hydrostatic Helmholtz projection P2 is defined by

P2v :“ v ´∇Hπ. (4.19)

To see that it is indeed a continuous projection take v P L2pΩq2 and let π PW 1,2
perpGqX

L2
0pGq be the unique solution of (4.13) with f “ v, thus P2v “ v ´ ∇Hπ. We have

v´∇Hπ P L2pΩq2, and since π is independent of the vertical axis, v ´∇Hπ “ v´∇Hπ
follows. Consider now f “ v ´ ∇Hπ, the unique solution π1 P W 1,2

perpGq X L2
0pGq of

equation (4.13) satisfies

0 “ xv ´∇Hπ,∇HφyL2pGq “ x∇Hπ1,∇HφyL2pGq, φ P C8perpGq,

this is, π1 “ 0 necessarily. We conclude that

P 2
2 v “ P2pv ´∇Hπq “ P2v,

which proves that P2 is a projection on L2pΩq2 as desired.
The range of the hydrostatic Helmholtz projection

L2
σpΩq

2 :“ RanP2, (4.20)

will play an analogous role in the study of primitive equations to the solenoidal subspace
L2
σpΩq of L2pΩq for the Stokes equations. We begin by giving some useful equivalent

characterizations of L2
σpΩq

2. We denote by νBG the exterior normal vector field at BG.

Proposition 4.1.3 ([15], Proposition 4.3). The range of the hydrostatic Helmholtz pro-
jection L2

σpΩq
2 coincides with the following subsets of L2pΩq2:

a) X1 :“ tv P L2pΩq2 : xv,∇HφyL2pGq “ 0 for all φ PW 1,2
per pGqu

b) X2 :“ tv P L2pΩq2 : divH v “ 0, v ¨ νBG is anti-periodic of order 0 on BGu

c) X3 :“ V
}¨}L2pΩq, where

V :“ tv P C8perpΩq
2 : divH v “ 0 in G, supp v Ă Gˆ pa, bqu (4.21)
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Proof. (L2
σpΩq

2 “ X1) Take v P X1. By proposition 4.1.1 there exists a unique π P
W 1,2

perpGq X L2
0pGq such that equation (4.13) holds for f “ v. Since

0 “ xv,∇HφyL2pGq “ x∇Hπ,∇HφyL2pGq, φ P C8perpGq,

then π “ 0 and v is invariant under the projection P2v “ v, consequently v P L2
σpΩq

2.
Conversely, if v P L2

σpΩq
2 there must exist w P L2pΩq2 and π PW 1,2

perpGqXL2
0pGq solution

of (4.13) with f “ w such that v “ w ´∇Hπ. But π is independent of the vertical axis
z, thus v “ w ´∇Hπ “ w ´∇Hπ. Substituting in (4.13) we get

xv,∇HφyL2pGq “ xw ´∇Hπ,∇HφyL2pGq “ 0, φ PW 1,2
perpGq,

concluding that v P X1.
(X1 “ X2) Recall that we introduced the notion of trace for v ¨ νBG in theorem 3.4.3,

i.e. v ¨ νBG is a well defined element of B
1{2
2,2 pBGq

˚ via the relation

xdivH v, φyL2pGq “ xv ¨ νBG, φyB1{2
2,2 pBGq

´ xv,∇HφyL2pGq, φ PW 1,2
perpGq. (4.22)

Let now v P X1. Since in particular C8perpGq Ă W 1,2
perpGq, it is easy to check that

divH v “ 0 in the distributional sense

0 “

ż

G
v ¨∇Hφ dx “

ż

G
v1
Bφ

Bx1
` v2

Bφ

Bx2
dx

“ ´

ż

G

Bv1

Bx1
φ`

Bv2

Bx2
φ dx “

ż

G
divHpvqφ dx, φ P C8perpGq.

(4.23)

In order to prove anti-periodicity in each direction we first substitute divH v “ 0 in
(4.22) to obtain the useful relation

xv ¨ νBG, φyB1{2
2,2 pBGq

“ 0, φ PW 1,2
perpGq. (4.24)

Let us split the boundary by defining Gi “ GXtxi “ 0u for i “ 1, 2, where x1 and x2 are
x and y respectively. The idea of the proof is to extend one-dimensional functions defined

x1 :“ x

x2 :“ y

suppφ G

Figure 4.1: Extension of φ P C8c pG1q to G.

on Gi to G, where we have the property (4.24). Choosing an arbitrary φ P C8c pGiq, we
can extend it constantly along the direction xi and by abuse of notation, regard it as
φ P C8perpGq. Note that since φ is compactly supported in Gi it will vanish on the
boundary of the opposite direction BGzGi. Now substituting φ in equation (4.24) we get

xv ¨ νBG
ˇ

ˇ

txi“0u
, φyC8c pGiq ` xv ¨ νBG

ˇ

ˇ

txi“1u
, φyC8c pGiq “ 0, (4.25)
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where we used that φ
ˇ

ˇ

GXtxi“1u
“ φ

ˇ

ˇ

Gi
. We have thus proven that

v ¨ νBG
ˇ

ˇ

txi“0u
“ ´v ¨ νBG

ˇ

ˇ

txi“1u
,

i.e. v ¨ νBG is anti-periodic of order 0 on BG as desired. Conversely, let v P X2. From
anti-periodicity of v ¨ νBG and periodicity of φ, we have that in each direction

xv ¨ νBG, φyB1{2
2,2 pGXtxi“0uq

` xv ¨ νBG, φyB1{2
2,2 pGXtxi“1uq

“ 0, φ PW 1,2
perpGq.

Since divH v “ 0, substituting in (4.22) the proof is simple

xv,∇HφyW 1,2
perpGq

“ xv ¨ νBG, φyB1{2
2,2 pBGq

“

2
ÿ

i“1

xv ¨ νBG, φyB1{2
2,2 pGXtxi“0uq

` xv ¨ νBG, φyB1{2
2 pGXtxi“1uq

“ 0, φ PW 1,2
perpGq.

(4.26)

(X1 “ X3) Since V Ă X2 “ X1, it is clear that X3 Ď X1. In order to get equality,
we first claim that X˚1 “ X1. Indeed, it is immediate from the canonical inclusion that

X1 Ă L2pΩq “ L2pΩq˚ Ă X˚1 ,

thus it suffices to show X˚1 Ď X1. Given F P X˚1 , by the Hahn-Banach theorem it has an
extension to a functional on pL2pΩq2q˚, which we will represent by f P L2pΩq2. Moreover,
from the weak solvability of the Poisson problem, proposition 4.1.1, the projection P2f
onto X1 is determined independently of the way F is extended, proving our claim.

Suppose now that X3 ­“ X1, i.e. X3 is a proper closed subspace of X1. By the
Hahn-Banach theorem again, there exists a non-zero functional F P X˚1 vanishing on
X3, which by the above claim can be represented as f P X1. Summarizing, there exists
a non-zero functional f P L2pΩq2 such that

xf, vyL2pΩq “ 0, for all v P V,

xf,∇HφyL2pGq “ 0, for all φ PW 1,2
perpGq.

(4.27)

The main idea of the proof is to apply the Helmholtz decomposition [31, Section II.2.5],
i.e.

L2pGq2 “ L2
σpGq ‘HpGq with HpGq :“ tf P L2pGq2 ; Dπ P L2pGq : f “ ∇Hπu,

and to show that the respective pressure gradient ∇Hπ is zero, reaching a contradiction.
Note that f P L2pGq2 is independent of the z direction, which can be seen by taking

Bzv P V with v P V as a test function in (4.27)1. We can thus regard f “ f P L2pGq2 and
will first check that it is orthogonal to the solenoidal subspace L2

σpGq. In order to make
use of (4.27) starting with φ P C8per,σpGq, where C8per,σpGq :“ tφ P C8perpGq : divH φ “ 0u,

we want to construct a function in V “ tv P C8perpΩq
2 : divH v “ 0 in G, supp v Ă

Gˆ pa, bqu. Let χ be a cut-off function on the vertical interval, χ P C8c pa, bq, such that

ż b

a
χpzq dz “ b´ a. (4.28)
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We can now define v P V as

vpx, y, zq “ χpzqφpx, yq.

Indeed, clearly v P C8perpΩq
2 with supp v Ă Gˆ pa, bq and

divH v “ divH

ˆ
ż b

a
χpzqφpx, yq dz

˙

“ pb´ aqdivH φ “ 0.

Recall that f vanished in X3 (4.27)1, in particular

0 “ xf, vyL2pΩq “ xf, φyL2pGq, φ P C8per,σpGq. (4.29)

The Helmholtz decomposition in L2pGq2 now implies that there exists π PW 1,2pGq such
that ∇Hπ “ f .

Our next goal is to prove that π is actually the unique solution of the weak Poisson
problem (4.13). For π P W 1,2pGq, according to the generalized Green’s theorem 3.4.3,
we have

xπ, φ ¨ νBGyL2pBGq “ x∇Hπ, φyL2pGq, φ P C8per,σpGq. (4.30)

Moreover, since ∇Hπ “ f , from (4.29) we obtain that

0 “ xπ, φ ¨ νBGyL2pBGq “xπ, φ ¨ p´1, 0qyL2pGXtx1“0uq ` xπ, φ ¨ p1, 0qyL2pGXtx1“1uq

` xπ, φ ¨ p0,´1qyL2pGXtx2“0uq ` xπ, φ ¨ p0, 1qyL2pGXtx2“1uq

“

2
ÿ

i“1

xπ, φyL2pGXtxi“0uq ´ xπ, φyL2pGXtxi“1uq, φ P C8per,σpGq.

(4.31)

It follows that π is periodic on BG.
Note that we have actually proved that there exists π PW 1,2

perpGq such that

x∇Hπ,∇HφyL2pGq “ xf,∇HφyL2pGq “ 0, φ PW 1,2
perpGq.

In conclusion, π must be the unique solution of proposition 4.1.1, therefore π “ 0,
which in turn gives f “ 0. This contradicts the assumption F ­“ 0, hence proving the
proposition.

4.2 The hydrostatic Stokes operator

The hydrostatic Helmholtz projection allows us to define the hydrostatic Stokes operator,
analogous to the classical one. By applying the projection P2 to the hydrostatic Stokes
equations 4.1 we obtain the equivalent Cauchy problem

Btv ´A2v “ P2f, vp0q “ v0, (4.32)

where A2 “ P2∆. The operator A2 is called the hydrostatic Stokes operator and its
L2
σpΩq-realization is defined as

A2v :“ P2∆v, DpA2q :“ tv PW 2,2
perpΩq

2 : v
ˇ

ˇ

ΓD
“ 0, Bzv

ˇ

ˇ

ΓN
“ 0u X L2

σpΩq. (4.33)
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Giga et. al. established in their article [7] that the hydrostatic Stokes operator admits
a bounded H8-calculus. In order to prove this property, they refer to Hieber and
Kashiwara’s work [15], where it is shown that ´A2 generates a strongly continuous,
exponentially stable, analytic semigroup of angle 0. In this section we are going to focus
on the latter result and leave the bounded H8-calculus for the next section.

Before we begin with the proofs, note that our domain differs from Hieber and
Kashiwabara’s [15], who only considered ΓD “ Γa and ΓN “ Γb, but this does not carry
any further complexity and the same proof holds as long as ΓD ­“ H. However, in
the pure Neumann case we just have A2v “ ∆v for v P DpA2q, see theorem 4.3.5. In
particular, zero is an eigenvalue of A2. Since injectivity is required for sectoriality, we
will study the spectral properties of ´A2 ` µ instead, for some µ ą 0.

Let f P L2pΩq2 and λ P Σπ´ε :“ tλ P C : | argpλq| ă π ´ εu for some ε P p0,π{2q.
Consider the resolvent problem

#

λv ´∆v `∇Hπs “ f on Ω,

divH v “ 0 on G,
(4.34)

with boundary conditions

v, π are periodic on Γl,

v
ˇ

ˇ

ΓD
“ 0 and Bzv

ˇ

ˇ

ΓN
“ 0.

(4.35)

The proof of ´A2 generating an exponentially stable analytic semigroup will be divided
into two steps. We first have to prove the following resolvent estimate.

Theorem 4.2.1 ([15, Theorem 3.1]). Assume ΓD ­“ H. Let f P L2pΩq2 and λ P
Σπ´εYt0u for ε P p0,π{2q. Equations (4.34) and (4.35) admit a unique solution pv, πq P
W 2,2

per pΩq2 ˆW
1,2
per pGq X L2

0pGq. Moreover, there exists a constant C ą 0, depending only
on ε, such that

|λ|}v}L2pΩq ` }v}W 2,2pΩq ` }π}W 1,2pGq ď C}f}L2pΩq. (4.36)

The basic idea is to find a unique solution of the weak formulation of the problem
and then applying difference quotients to obtain the H2 ´ H1 estimate. Nevertheless,
let us start by proving a useful lemma to treat the weak formulation of the problem.

Lemma 4.2.2 (Ladyzhenskaya-Babuška-Brezzi theorem (LBB), [2, Section 12.2]). Let
V and W be two Hilbert spaces. Assume a : V ˆV Ñ C and b : V ˆW Ñ C to be bounded
sesquilinear forms. Suppose a is coercive and b verifies the Babuška-Brezzi condition, i.e.

<apϕ,ϕq ě α}ϕ}2V , ϕ P V and sup
ϕPV

|bpϕ, φq|

}ϕ}V
ě β}φ}W , φ PW, (4.37)

for some constants α ą 0 and β ą 0. Then for f P V ˚ the variational problem
#

apv, ϕq ` bpϕ, πq “ xf, ϕy, ϕ P V

bpv, φq “ 0, φ PW.
(4.38)

admits a unique solution pv, πq P V ˆW . Furthermore, for some C ą 0, the solution
satisfies the estimate

}v}V ` }π}W ď C}f}V ˚ . (4.39)
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Proof. Let Z denote the subspace of V defined by

Z “ tϕ P V : bpϕ, φq “ 0, φ PW u.

It is simple to check that Z is closed, therefore Z is a Hilbert space with the inner
product p¨|¨qV . Take a sequence tϕnunPN Ă Z converging to ϕ and an arbitrary φ P W ,
since the form b is bounded, then bpϕ, φq “ limnÑ8 bpϕn, φq “ 0, thus ϕ P Z. As a
consequence, V “ Z ‘ ZK and the solution v P V can be determined by testing only
against ϕ P Z. In other words, it suffices to show that there exists a unique v P Z such
that

apv, ϕq “ xf, ϕy, ϕ P Z, (4.40)

but since a is coercive, this is exactly the Lax-Milgram theorem for the continuous
functional f P V ˚. It remains to find π P W , which is uniquely determined by v as the
solution of the equation

bpϕ, πq “ ´apv, ϕq ` xf, ϕy, ϕ P V. (4.41)

Since the behaviour of bp9,¨q is trivial on Z we can rewrite the problem as

bpϕ, πq “ xg, ϕy, ϕ P ZK, (4.42)

where g P pZKq˚ is a continuous functional

|xg, ϕy| ď |apv, ϕq| ` |xf, ϕy| ď pCa}v}V ` }f}V ˚q}ϕ}V , ϕ P ZK

with Ca the continuity constant of a. We will start by proving the existence of solutions.
Take φ P W , the functional ϕ ÞÑ bpϕ, φq is continuous on ZK. Then by the Riesz
representation theorem, there exists a unique Tφ P ZK such that

bpϕ, φq “ pTφ|ϕqV , ϕ P ZK. (4.43)

The mapping T : φ ÞÑ Tφ is obviously linear and continuous

}Tφ}V “ }bp¨, φq}V ˚ “ sup
ϕPV

|bpϕ, φq|

}ϕ}V
ď Cb}φ}W ,

where the last inequality follows from the boundedness of b. Moreover, we claim that the
range of T is the whole space RpT q “ ZK. Since g P pZKq˚ is a continuous functional,
once again by the Riesz representation theorem there exists a unique w P ZK such that

xg, ϕy “ pw|ϕqV , ϕ P ZK.

In combination with T : W Ñ ZK being surjective and (4.43), there exists π P W such
that Tπ “ w P ZK and

xg, ϕy “ pTπ|ϕq “ bpϕ, πq, ϕ P ZK.

To prove the claim we will show the closedness of T and derive a contradiction if RpT q ­“
ZK. Take a sequence tTφnunPN converging to w in ZK, then tTφnun is a Cauchy sequence
and consequently tφnun is a Cauchy sequence as well since

}φk ´ φm}W ď
1

β
sup
ϕPZK

|bpϕ, φk ´ φmq|

}ϕ}V
“

1

β
sup
ϕPZK

pTφk ´ Tφm|ϕqV
}ϕ}V

“
}Tφk ´ Tφm}V

β
Ñ 0, when k,mÑ8.

(4.44)
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Since ZK is complete, there exists φ P ZK such that ϕn Ñ φ, but T is continuous, thus
Tφ “ w. If RpT q ­“ ZK, there would exist a nonzero element v P RpT qK such that

0 “ pTφ|vqV “ bpv, φq, φ PW,

but then v P Z, a contradiction. The solution is easily seen to be unique by the Babuška-
Brezzi condition. Suppose π1 and π2 are two solutions of equation (4.42), then

}π1 ´ π2}W ď
1

β
sup
ϕPV

|bpπ1 ´ π2, ϕq|

}ϕ}V
“

1

β
sup
ϕPV

|bpπ1, ϕq ´ bpπ2, ϕq|

}ϕ}V

“
1

β
sup
ϕPV

|gpϕq ´ gpϕq|

}ϕ}V
“ 0,

(4.45)

thus π1 “ π2 necessarily. Finally, the proof of inequality (4.39) is straightforward from
the construction of the solution

}v}2V ď
1

α
<apv, vq ď 1

α
|apv, vq| “

1

α
|xf, vy| ď

1

α
}f}V ˚}v}V , (4.46)

}π}W ď
1

β
sup
ϕPV

|bpϕ, πq|

}ϕ}V
ď

1

β
sup
ϕPV

|apv, ϕq| ` |xf, ϕy|

}ϕ}V
ď

2

β
}f}V ˚ . (4.47)

As mentioned previously the first step is to study a weak formulation of the problem
(4.34). Consider the spaces

V :“ tϕ PW 1,2
perpΩq

2 : ϕ “ 0 in ΓDu and W :“ L2
0pGq, (4.48)

which are closed subspaces of the Hilbert spaces W 1,2
perpΩq2 and L2pGq respectively, thus

Hilbert spaces with respect to the inherited inner product. If pv, πq is a classical solution
of (4.34), multiplying by pϕ, φq P V ˆW and integrating over Ω we obtain

#

λpv|ϕqL2pΩq ` p∇v|∇ϕqL2pΩq ´ pπ|divH ϕqL2pGq “ pf |ϕqL2pΩq, ϕ P V,

´pφ|divH vqL2pGq “ 0, φ PW,
(4.49)

where we applied Green’s identity 3.4.3 and the fact that

p∇v ¨ νBΩ|ϕqB1{2
2,2 pBΩq

“pBzv|ϕqB1{2
2,2 pBΩXΓbq

´ pBzv|ϕqB1{2
2,2 pBΩXΓaq

` p∇Hv ¨ νBG|ϕqB1{2
2,2 pBΩXΓlq

“ 0.
(4.50)

Conversely, if pv, πq is smooth satisfying (4.49), then it defines a classical solution of
(4.34). Note that if we test the second equation against constant functions φ ” c we
have

ş

G c divH v dx “ c
ş

BG v ¨ νBG “ 0 by the divergence theorem, independently of φ,
hence it is enough to test against functions in L2

0pGq.

Proposition 4.2.3. Assume ΓD ­“ H. Let V and W be defined as in (4.48). If f P V ˚,
then there exists a unique solution pv, πq P V ˆW to the weak resolvent problem (4.49).
Moreover, there exists a constant C ą 0 such that

}v}V ` }π}W ď C}f}V ˚ .
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Proof. We can rephrase the weak resolvent problem (4.49) as a mixed variational problem

#

aλpv, ϕq ` bpϕ, πq “ xf, ϕy, ϕ P V

bpv, φq “ 0, φ PW.
(4.51)

where aλpϕ,ψq “ λpϕ|ψqL2pΩq ` p∇ϕ|∇ψqL2pΩq and bpϕ, φq “ ´pφ| divH ϕq, for ϕ,ψ P V
and φ PW . Both forms are easily seen to be sesquilinear and bounded

|aλpϕ,ψq| ď |λ|}ϕ}L2pΩq}ψ}L2pΩq ` }∇ϕ}L2pΩq}∇ψ}L2pΩq

ď p1` |λ|q}ϕ}W 1,2pΩq}ϕ}W 1,2pΩq, (4.52)

|bpϕ, φq| ď }φ}L2pGq}divH ϕ}L2pGq ď }φ}L2pGq}ϕ}W 1,2pGq, (4.53)

where the boundedness of the divergence operator in G follows from

}divH ϕ}L2pGq “

˜

ż

G

ˇ

ˇ

ˇ

ˇ

Bϕ1

Bx1
`
Bϕ2

Bx2

ˇ

ˇ

ˇ

ˇ

2

dx

¸1{2

ď
?

2

˜

2
ÿ

i“1

ż

G

ˇ

ˇ

ˇ

ˇ

Bϕi
Bxi

ˇ

ˇ

ˇ

ˇ

2

dx

¸1{2

ď

˜

2
ÿ

i,j“1

ż

G

ˇ

ˇ

ˇ

ˇ

Bϕi
Bxj

ˇ

ˇ

ˇ

ˇ

2

dx

¸1{2

“ }ϕ}W 1,2pGq ď }ϕ}W 1,2pΩq.

(4.54)

By the LBB theorem 4.2.2, to prove the assertion it suffices to show that aλ and b are
respectively coercive and complying with the Babuška-Brezzi condition. Coercivity of
aλ follows from Poincaré’s inequality and the estimate |sλ` t| ě Cεps|λ| ` tq for s, t ě 0
and some constant Cε ą 0. Indeed take ϕ P V , then there exists a constant C ą 0 such
that

|aλpϕ,ϕq| “
ˇ

ˇ

ˇ
λ}ϕ}2L2pΩq ` }∇Hϕ}

2
L2pΩq

ˇ

ˇ

ˇ
ě Cp|λ|}ϕ}2L2pΩq ` }∇Hϕ}

2
L2pΩqq

ě Cp|λ|}ϕ}2L2pΩq ` }∇Hϕ}
2
W 1,2pΩqq.

(4.55)

The estimate can be shown to hold true by writing λ in polar coordinates λ “ reiα for
|α| ď π´ ε and developing

|λ` t|2 “ pr cosα` tq2 ` pr sinαq2 “ r2 cos2 α` t2 ` 2tr cosα` r2 sin2 α

“ r2 ` t2 ` 2tr cosα,
(4.56)

• if |α| ă π{2, then cosα ě 0 and

r2 ` t2 ` 2tr cosα ě r2 ` t2 ě
1

2
pr2 ` t2q “

1

2
p|λ|2 ` t2q;

• if |α| ą π{2, since cosα ď 0 and 2rt ď r2 ` t2, we get 2rt cosα ě pr2 ` t2q cosα
and consequently

r2`t2`2tr cosα ě pr2`t2qp1`cosαq ě
1

2
pr2`t2qp1`cospπ´εqq ě p|λ|2`t2q sin2

´ε

2

¯

.

To prove that the Babuška-Brezzi condition holds we will apply a similar technique to
proposition 4.1.3, proving it first for functions in G and extending it to Ω afterwards. Let
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φ PW “ L2
0pGq, then there exists ψ PW 1,2

0 pGq2 such that divH ψ “ φ and }ψ}W 1,2pGq ď

CpGq}φ}L2pGq, see [31, Section II.2]. In particular, the inequality

|pφ|divH ψqL2pGq|

}ψ}W 1,2pGq
“

}φ}2L2pGq

}ψ}W 1,2pGq
ě

1

CpGq
}φ}L2pGq, (4.57)

holds. We can now define a function defined in the whole space Ω as

ϕpx, y, zq “ χpzqψpx, yq,

where χ is a cut-off function 0 ď χ ď 1 in pa, bq taken as in (4.28). It is clear that ϕ P V ,
because we are actually imposing Dirichlet conditions in the whole boundary BΩ. We
can estimate the norm of ϕ by

}ϕ}V “

ż

Ω

˜

|ϕ|2 dx`
3
ÿ

i“1

ż

Ω

ˇ

ˇ

ˇ

ˇ

Bϕ

Bxi

ˇ

ˇ

ˇ

ˇ

2

dx

¸1{2

ď

˜

ż

Ω
χ|ψ|2 dx`

2
ÿ

i“1

ż

Ω
χ

ˇ

ˇ

ˇ

ˇ

Bψ

Bxi

ˇ

ˇ

ˇ

ˇ

2

dx` 2

ż

Ω

Bχ

Bz
|ψ|2 dx

¸1{2

“ pb´ aq1{2

˜

ż

G
|ψ| dx`

2
ÿ

i“1

ż

G

ˇ

ˇ

ˇ

ˇ

Bψ

Bxi

ˇ

ˇ

ˇ

ˇ

dx

¸1{2

“ CpΩq}ψ}W 1,2pGq.

(4.58)

Moreover,

ϕ “
1

b´ a

ż b

a
ϕp¨, ¨, zq dz “

1

b´ a

ż b

a
χpzqψp¨, ¨q dz “ ψ,

thus divH ϕ “ divH ψ. In conclusion, given φ P W we use the previous construction to
obtain the bound

1

CpGq
}φ}W ď

|pφ| divH ψqL2pGq|

}ψ}W 1,2pGq
ď CpΩq

|pφ|divH ϕq|L2pGq

}ϕ}V
“ CpΩq

|bpϕ, φq|

}ϕ}V
,

for some ϕ P V . In fact, this is a lower bound in the supremum and the Babuška-Brezzi
condition holds, completing the proof.

What is left to show are the H2 ´H1 estimates for the solution pv, πq. Let us first
outline some properties of difference quotients. Recall that if f : Rn Ñ R and h P Rzt0u,
the ith difference quotient of size |h| is the function Dh

i f : Rn Ñ R defined by

Dh
i fpxq “

fpx` heiq ´ fpxq

h
,

where ei is the unit vector in the ith direction. From now on, M stands for either Ω or
G. In order to treat difference quotients of functions f : M Ñ R we will make use of
periodical extensions Ef . Let Ω1 :“ G1 ˆ pa, bq with G1 :“ p´1{2, 3{2q2, we can extend
f : Ω Ñ R to Ω1 by

Efpx` j{2, y ` k{2, zq :“ fpx, y, zq, px, y, zq P Ω, j, k P t´1, 0, 1u. (4.59)

The same definition applies to f : G Ñ R, which by abuse of notation we will denote
Ef as well. Note that if f P W 1,2

perpMq, then Ef P W 1,2pM1q and }Ef}W 1,2pM1q
“

22}f}W 1,2pMq. Moreover, this extension is independent of vertical averaging, i.e. Ef “

Ef .
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Proposition 4.2.4 ([16, Appendix 4.C.]). Let i P t1, 2u and |h| ă 1{2. The difference
quotient has the following properties:

1. Commutativity with weak derivatives: if f, Bif P L
1
locpM1q, then

BiD
h
j f “ Dh

j Bif.

2. Integration by parts: if f, g P L2pMq, then

pf |D´hi pEgqqL2pMq “ pD
h
i pEfq|gqL2pMq.

3. Boundedness: if Bif P L
2pM1q, then

}Dh
i pfq}L2pMq ď }Bif}L2pMq.

4. Uniform boundedness: if f P L2pM1q and }Dh
i f}L2pMq ď C for all |h| ă 1{2 and

some C ą 0, then f PW 1,2pMq and }Bif}L2pMq ď C.

Proof. (1) Is an immediate consequence of the linearity of weak derivatives

BiD
h
j f “ Bi

ˆ

fpx` hejq ´ fpxq

h

˙

“
Bifpx` hejq ´ Bifpxq

h
“ Dh

j Bif.

(2) Is an easy computation as well

pf |D´hi pEgqqL2pMq “

ż

M
fD´hi pEgq dx “

1

h

ż

M
fpxqpEgpx´ heiq ´ Egpxqq dx

“
1

h

ż

M
Efpx1 ` heiqgpx

1q dx1 ´
1

h

ż

M
fpxqgpxq dx

“
1

h

ż

M
pEfpx` heiq ´ Efpxqqgpxq dx “

ż

M
Dh
i pEfqg dx

“ pDh
i pEfq|gqL2pMq.

(4.60)

(3) By an approximation argument we can assume f to be smooth. Then

fpx` heiq ´ fpxq “ h

ż h

0
Bifpx` teiq dt.

Applying Jensen’s theorem for convex functions to x ÞÑ |x|2 we obtain the inequality

|fpx` heiq ´ fpxq|
2 “

ˇ

ˇ

ˇ

ˇ

h

ż h

0
Bifpx` teiq dt

ˇ

ˇ

ˇ

ˇ

2

ď |h|2
ż h

0
|Bifpx` teiq|

2 dt.

Now, integrating over M and noting that if x PM , then x` tei PM1 for all |t| ď h, we
get

ż

M

ˇ

ˇ

ˇ

ˇ

fpx` heiq ´ fpxq

h

ˇ

ˇ

ˇ

ˇ

2

dx ď

ż

M1

|Bifpxq|
2 dx,

where we applied Fubini’s theorem. In conclusion, }Dh
i f}L2pMq ď }Bif}L2pM1q

as desired.

(4) Fix i. Since the set tD´hi f : 0 ă |h| ă 1{2u is bounded in L2pM1q, by Banach-
Alaouglu’s theorem there exists a subsequence phkqkě0 converging to 0 and a function
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gi P L
2pM1q such that Dhk

i f Ñ gi in L2pM1q when k Ñ 8. Take now an arbitrary
φ P C8c pM1q. For hk small enough we have

ż

M1

fD´hki φ dx “

ż

M1

´

Dhk
i f

¯

φ dx,

hence letting k Ñ8, since φ is smooth D´hki φ converges uniformly to Biφ and we get
ż

M1

fBiφ dx “

ż

M1

giφ dx.

We conclude that f is weakly differentiable with weak derivative Bif “ gi P L
2pM1q as

desired.

We can now proceed with the proof of theorem 4.2.1.

Proof. (Theorem 4.2.1) By proposition 4.2.3 there exists a unique solution pv, πq P V ˆW
to the weak resolvent problem (4.49). Let i P t1, 2u and choose D´hi pEϕq as a test
function in the variational problem 4.51, i.e. the first equation becomes

aλpv,D
´h
i pEϕqq ` bpD´hi pEϕq, πq “ pf |D´hi pEϕqqL2pΩq, ϕ P V.

By the integration by parts formula 4.2.4(2), we can rewrite it as

aλpD
h
i pEvq, ϕq ` bpϕ,D

h
i pEπqq “ pf |D

´h
i pEϕqqL2pΩq, ϕ P V. (4.61)

In particular, we can take ϕ “ Dh
i pEvq. Observe that substituting ϕ in the second

equation in the variational problem 4.51, we necessarily have

bpDh
i pEvq, D

h
i pEπqq “ bpv,D

´h
i Dh

i pEπqq “ 0.

Combining these results with the coercivity of aλ, proven in proposition 4.2.3, we get
the inequality

α}Dh
i pEvq}

2
V ď |aλpD

h
i pEvq, D

h
i pEvqq| ď }f}L2pΩq}D

´h
i Dh

i pEvq}L2pΩq

ď }f}L2pΩq}D
h
i pEvq}V .

(4.62)

where in the last equation we used boundedness of the difference quotients 4.2.4(3).
Thus the difference quotient of v is bounded by }Dh

i pEvq}W 1,2pΩq ď C}f}L2pΩq. We

can deduce the inequality on π by a similar approach, taking φ “ Dh
i pEπq. From the

Babuska-Brezzi condition for b and equation 4.61 we get

β}Dh
i pEπq}W ď sup

ϕPV

|bpϕ,Dh
i pEπqq|

}ϕ}V
“ sup

ϕPV

|pf |D´hi pEϕqqL2pΩq ´ aλpD
h
i pEvq, ϕq|

}ϕ}V

ď sup
ϕPV

}f}2}D
´h
i pEϕq}2 ` |λ|}D

h
i pEvq}2}ϕ}2 ` }∇Dh

i pEvq}2}∇ϕ}2
}ϕ}V

ď sup
ϕPV

}f}2}Biϕ}2 ` |λ|C}f}2}ϕ}2 ` C}f}2}∇ϕ}2
}ϕ}V

ď sup
ϕPV

}f}2}ϕ}V p1` C|λ| ` Cq

}ϕ}V
“ C 1}f}L2pΩq,

(4.63)
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for some constant C 1 ą 0, where we constantly applied properties of difference quotients
and the boundedness of the difference quotient of v. We have thus proven that the
difference quotients are uniformly bounded in h for i P t1, 2u, which leads to ∇Hv P
W 1,2

perpΩq2 and ∇Hπ P L2pGq2. Moreover, the resolvent problem (4.34) implies that
´B2

zv “ f ´λv`∆Hv´∇Hπ P L2pΩq2, hence v PW 2,2
perpΩq2 and π PW 1,2

perpGq as desired.
Finally, the inequality (4.36) is obtained taking ϕ “ v in the variational problem (4.51),
note that bpπ, vq “ 0, and applying the coercivity of aλ as in (4.55), this is

C|λ|}v}2L2pΩq ď |aλpv, vq| ď }f}L2pΩq}v}L2pΩq,

thus |λ|}v}L2pΩq ď C}f}L2pΩq.

We can now prove the main result of this subsection, that the hydrostatic Stokes
operator A generates an exponentially stable analytic semigroup in L2

σpΩq, which was
first shown by Hieber et. al. [15] and will be very helpful in the next section to prove
that A admits a bounded H8-calculus.

Theorem 4.2.5 ([15], Proposition 4.4). Assume ΓD ­“ H. The hydrostatic Stokes
operator A2 is invertible and generates a bounded analytic C0-semigroup pT2ptqqtě0 on
L2
σpΩq. Moreover, there exist constants C, β ą 0 such that

}T2ptqf}L2
σpΩq

ď Ce´βt}f}L2
σpΩq

, t ą 0. (4.64)

Proof. The hydrostatic Stokes operator A2 is clearly densely defined since V Ă DpA2q

and according to proposition 4.1.3 the completion of V in the L2-norm is the whole space
L2
σpΩq. Let now λ P Σπ´ε Y t0u for some ε P p0,π{2q and f P L2

σpΩq. Then there exists
v P DpA2q such that pλ ´ A2qv “ f if and only if the resolvent problem (4.34)-(4.35)
admits a unique solution pv,πq P W 2,2

perpΩq2 ˆW 1,2
perpGq X L2

0pGq. However, the latter is
true by theorem 4.2.1, thus Σπ´ε Y t0u Ď ρpA2q. Moreover, the bound (4.36) implies

sup
λPΣπ´ε

}λRpλ,A2q}LpL2
σpΩqq

“ sup
λPΣπ´ε

sup
fPL2

σ
}f}ď1

}λpλ´A2q
´1f}L2

σpΩq

“ sup
λPΣπ´ε

sup
fPL2

σ
}f}ď1

v“pλ´A2q
´1f

}λv}L2
σpΩq

ď C.

Note thatA2 is closed since 0 P ρpA2q. By the generation theorem for analytic semigroups
3.5.8, we have that A2 generates a bounded analytic semigroup of angle π{2 and we have
the inverse Laplace transform representation

T2ptqf “
1

2πi

ż

BΣν

eztRpz,A2qf dz, t ą 0, f P L2
σpΩq,

where BΣν is the upwards oriented contour line for any ν P p0,π{2q. Since 0 P ρpA2q and
the resolvent is open, there exists ε ą 0 such that Bp0, εq Ă ρpA2q. As a consequence,
the open sector of angle ν 1 P p0, νq and center ´β with β P p0, εq is contained in the
resolvent set of A2. In particular,

Σν1 Ă ρpA2 ` βq and sup
λPΣν1

}λRpλ,A2 ` βq} “ sup
λPΣν1

}λRpλ´ β,A2q} ď C.
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σpAq

ε

Σν

ν

Σν1

ν 1

Figure 4.2: Spectrum of a sectorial operator.

Therefore, A2 ` β generates a bounded analytic semigroup tTβptqutě0. The two semi-
groups are closely related

Tβptq “
1

2πi

ż

BΣν1

eztRpz,A2 ` βq dz “
1

2πi

ż

BΣν

epz`βqtRpz,A2q dz “ eβtT2ptq,

which proportionates the desired exponential stability

}T2ptqf}L2
σpΩq

“ }e´βtTβptqf}L2
σpΩq

ď Ce´βt}f}L2
σpΩq

4.3 H8-calculus of the hydrostatic Stokes operator

Giga et. al. [7] further showed that ´A2 actually admits a bounded H8-calculus making
use of perturbation techniques studied in section 3.7. This section is devoted to the
proof of this result and some immediate corollaries.

We begin with a restatement of the Cauchy problem (4.32). Averaging the resolvent
problem (4.34) vertically yields

λv ´∆Hv ´
´

Bzv
ˇ

ˇ

Γb
´ Bzv

ˇ

ˇ

Γa

¯

`∇Hπs “ f on G,

divH v “ 0 on G,
(4.65)

where we applied Leibniz’s integral rule for ∆Hv and the fundamental theorem of calculus
for B2

zv. Taking horizontal divergence we can rewrite it as the weak problem

∆Hπs “ divH f ` divH Bzv
ˇ

ˇ

ΓD
,

where we introduce the simplified notation for the boundary term since Bzv
ˇ

ˇ

ΓN
“ 0.

Solving this for ∇Hπs we obtain the characterization

∇Hπs “ ∇H∆´1
H divH f `∇H∆´1

H divH Bzv
ˇ

ˇ

ΓD
, (4.66)
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which inserted in the hydrostatic Stokes equations (4.1) provides

#

Btv ´∆v `∇H∆´1
H divH Bzv

ˇ

ˇ

D
“ f ´∇H∆´1

H divH f on Ω,

divH v “ 0 on G.
(4.67)

Applying the hydrostatic Helmholtz projection we obtain the equivalent problem

Btv ´ p∆`Bqv “ P2f, divH v “ 0, vp0q “ v0,

where
Bv :“ ´∇H∆´1

H divH Bzv
ˇ

ˇ

D
. (4.68)

Here and subsequently, we will study the resolvent problem

λv ´ p∆2 `B2qv “ P2f

where ∆2 denotes the L2pΩq-realization of the Laplacian with general boundary condi-
tions

∆2v :“ ∆v with Dp∆2q :“ tv P H2,2
perpΩq

2 : Bzv
ˇ

ˇ

ΓN
“ 0, v

ˇ

ˇ

ΓD
“ 0u, (4.69)

and B2 is defined for some δ P p0, 1{2q as

B2v :“ Bv, with DpB2q “ H1`1{2`δ,2pΩq2.

Before we state the main theorem let us first establish the H8-boundedness of the
L2pΩq-realization of the Laplacian, which is not only essential for the later perturbation
techniques but also of interest on its own. However, we shall first prove some impor-
tant reflection arguments, whose construction is adapted from Nau’s dissertation [27,
Proposition 7.16] and Krylov’s book [21, Lemma 8.2.1].

Lemma 4.3.1. Let a function u P H2,2
b.c.p0, 1{2q with

H2,2
b.c.p0, 1{2q :“ tu P H2,2p0, 1{2q : u

ˇ

ˇ

ΓD
“ Bu

ˇ

ˇ

ΓN
“ 0u.

On the one hand, define u via the odd extension to p0, 1q given by

upxq :“

#

upxq if x ď 1{2

´up1´ xq if x ą 1{2
(4.70)

if we impose
i) Dirichlet conditions u

ˇ

ˇ

tx“0u
“ u

ˇ

ˇ

tx“1{2u
“ 0 or;

ii) Neumann-Dirichlet conditions Bu
ˇ

ˇ

tx“0u
“ u

ˇ

ˇ

tx“1{2u
“ 0 in the trace sense.

On the other hand, define u via the even extension to p0, 1q given by

upxq :“

#

upxq if x ď 1{2

up1´ xq if x ą 1{2
(4.71)

if we impose
iv) Neumann conditions Bu

ˇ

ˇ

tx“0u
“ Bu

ˇ

ˇ

tx“1{2u
“ 0 or;

v) Dirichlet-Neumann conditions u
ˇ

ˇ

tx“0u
“ Bu

ˇ

ˇ

tx“1{2u
“ 0 in the trace sense.
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x

y

1{2 3{20 1 2

(a) Dirichlet boundary, odd-periodic ex-
tension.

x

y

1{2 3{20 1 2

(b) Other boundary values, even or an-
tiperiodic extensions.

Figure 4.3

Then u P H2,2
b.c.p0, 1{2q if and only if, we have u P H2,2

perp0, 1q for pure boundary conditions

and u P H2,2
antiperp0, 1q for mixed boundary conditions.

Proof. (i) We first prove the necessary condition for the Dirichlet case in detail. For a
visual understanding of why an odd periodic extension is required for Dirichlet boundary
conditions, we refer the reader to figure (4.3).

Let u P H2,2
perp0, 1q, then by density of smooth periodic functions there exists a se-

quence tvnun Ă C8perr0, 1s such that vn converges to u in } ¨ }H2,2p0,1q. Since u is odd with
respect to 1{2 by definition, it further holds that

´vnp1´ xq Ñ ´up1´ xq “ upxq.

Therefore, we can define

vn “
vnpxq ´ vnp1´ xq

2
,

which trivially converges to the extension u. These periodic smooth functions can be
evaluated on the boundary, in particular, we see that when restricted to the interval
p0, 1{2q they comply with Dirichlet boundary conditions

vnp0q “
vnp0q ´ vnp1q

2
“ 0 and vnp1{2q “

vnp1{2q ´ vnp1{2q

2
“ 0.

We only need to show that vn Ñ u, which is a simple matter of checking

}vn ´ u}p0,1{2q “ }vn ´ u}p0,1{2q ď }vn ´ u}p0,1q Ñ 0.

Finally, since tBvnun and tB2vnun are Cauchy sequences

}Bvn ´ Bvm}p0,1{2q “ }Bvn ´ Bvm}p0,1q Ñ 0,

}B2vn ´ B
2vm}p0,1{2q “ }B

2vn ´ B
2vm}p0,1q Ñ 0,

when n,mÑ8, we have that u P H2,2
b.c.p0, 1{2q as desired.

Next we prove the sufficient condition. Let u P H2,2
b.c.p0, 1{2q and take a defining

sequence twnun Ă C8b.c.r0, 1{2s. We can extend the functions twnun oddly as in (4.70),
which leads to the following definition of the derivative

Bwnpxq :“

#

Bwnpxq if x ď 1{2

pBwnqp1´ xq if x ą 1{2.
(4.72)
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Periodicity of order 1 is then an immediate consequence

wnp0q “ wnp0q “ 0 “ ´wnp1q “ wnp1q,

Bwnp0q “ Bwnp0q “ Bwnp1q.

Furthermore, equation (4.72) shows that tBwnun is a Cauchy sequence and obviously
wn Ñ u, thus u P H1,2

perp0, 1q and its derivative is given by

Bupxq :“

#

Bupxq if x ď 1{2

pBuqp1´ xq if x ą 1{2.
(4.73)

We can now deduce that the second derivative

B2upxq :“

#

B2upxq if x ď 1{2

´pB2uqp1´ xq if x ą 1{2,
(4.74)

is clearly in L2p0, 1q. We have therefore proved that u P H2,2
perp0, 1q.

(ii) The construction of the mixed Neumann-Dirichlet case is completely analogous,
for a visual understanding of why the extension u is odd and antiperiodic see figure (4.4).

x

y

1{2 3{20 1 2

(a) Neumann-Dirichlet boundary, odd-
antiperiodic extension.

x

y

1{2 3{20 1 2

(b) Other boundary values, even or peri-
odic extensions.

Figure 4.4

(iii) For the sake of clarity we will include a brief summary of the case of pure
Neumann boundary values, see figure (4.5). Let u P H2,2

perp0, 1q and take a defining

x

y

1{2 3{20 1 2

(a) Neumann boundary, even-periodic ex-
tension.

x

y

1{2 3{20 1 2

(b) Other boundary values, odd or an-
tiperiodic extensions.

Figure 4.5
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sequence tvnun Ă C8perr0, 1s such that vn Ñ u. Since u is even, it holds that

vnpxq :“
vnpxq ` vnp1´ xq

2
Ñ u, Bvn “

Bvnpxq ´ pBvnqp1´ xq

2
, (4.75)

and it complies with Neumann boundary values

Bvnp0q “
Bvnp0q ´ Bvnp1q

2
“ 0 “

Bvnp1{2q ´ Bvnp1{2q

2
“ Bvnp1{2q.

Following the same argumentation as in (i) we see that vn Ñ u and u P H2,2
b.c.p0, 1{2q,

thus the necessary condition is proven. For the sufficient condition let u P H2,2
b.c.p0, 1{2q

and take a defining sequence twnun Ă C8b.c.r0, 1{2s. Extend the functions twnun evenly
as in (4.71) leads to the derivatives

Bwnpxq :“

#

Bwnpxq if x ď 1{2

´pBwnqp1´ xq if x ą 1{2.
(4.76)

which comply with Neumann boundary conditions and show periodicity of order 1 of
the sequence

wnp0q “ wnp0q “ 0 “ wnp1q

Bwnp0q “ Bwnp0q “ 0 “ Bwnp1q.

Once again by the same argument as in (i) we conclude that u P H2,2
perp0, 1q.

(iv) The construction of the mixed Dirichlet-Neumann case is completely analogous,
for a visual understanding of why the extension u is even and antiperiodic see figure
(4.6).
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(a) Dirichlet-Neumann boundary, even-
antiperiodic extension.
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1{2 3{20 1 2

(b) Other boundary values, odd or peri-
odic extensions.

Figure 4.6

Lemma 4.3.2. Given f P L2pr0, 1s3q, there exists a unique solution u P H2,2pr0, 1s3q of
the partial differential equation

pI ´∆qu “ f in r0, 1s3 (4.77)

u (anti)periodic in xj for j “ 1, 2, 3. (4.78)
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Proof. By a periodic extension and a linear transformation of coordinates, we can re-
gard antiperiodic function as periodic functions and the problem reduces to finding
u P H2,2pT3q solving :

pI ´∆qu “ f, for f P L2pT3q. (4.79)

Since the Fourier transform on the torus F : L2pT3q Ñ l2pZ3q given by

Fpfqpkq :“ pfpkq :“

ż

T3

fpxqe´2πix¨k dx, k P Z3

defines an isometry, we can apply the Fourier transform to the problem (4.79) and find
solutions there, which will uniquely define our functions in L2pT3q. Recall that the
Fourier transform of a derivative obeys

zpBjfqpkq “

ż

T3

pBjfqpxqe
´2πix¨k dx “ p´2πikq

ż

T3

fpxqe´2πix¨k dx “ p´2πikq pfpkq,

thus the problem (4.79) becomes finding pu P l2pZ3q solving

p1` p2π|k|q2qpupkq “ pfpkq, for pf P l2pZ3q.

This is a trivial task since we can clear the coefficients of pu by

pupkq “
1

1` 4π2|k|2
pfpkq,

and recover u P L2pT3q uniquely from its Fourier series

upξq “
ÿ

kPZ3

1

1` 4π2|k|2
pfe2πik¨ξ, ξ P T3,

which converges because f P l2pT3q. To see that u P H2,2pT3q it suffices to show that its
mixed partial derivatives

{BjBrupkq “ ´4π2kjkrpupkq

also define a bounded series

upξq “
ÿ

kPZ3

´4π2kjkr
1` 4π2|k|2

pfe2πik¨ξ, ξ P T3.

Proposition 4.3.3. Let ν ě 0. Then the operator ´∆2 ` ν admits a H8-calculus on
L2pΩq of angle 0 provided ν ą 0. If ΓD ­“ H, then the above assertion holds true even
for ν “ 0.

Proof. By proposition 3.6.4 it suffices to show that the negative Laplacian ´∆2 is a
densely defined, positive, self- adjoint operator on the Hilbert space L2pΩq.

Density of the domain Dp´∆2q in L2pΩq follows immediately from the density of

V :“ tv P C8perpΩq : z ÞÑ vp¨, ¨, zq is compactly supported in pa, bqu
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in L2pΩq and the chain of inclusions V Ă Dp´∆2q Ă L2pΩq. Positivity holds trivially as
well since given u P Dp´∆2q, we have

p´∆2u|uq “ ´

ż

Ω

3
ÿ

j“1

B2u

Bx2
j

ru dx “ ´

«

3
ÿ

j“1

Bu

Bxj
ru

ff

BΩ

`

ż

Ω

3
ÿ

j“1

Bu

Bxj

Bru

Bxj
dx

“

ż

Ω

3
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

Bu

Bxj

ˇ

ˇ

ˇ

ˇ

2

dx ě 0,

(4.80)

where the vanishing of boundary terms in the last equality is possible by periodicity of
u in the lateral boundary Γl and Dirichlet-Neumann conditions in the vertical one, i.e.
either u “ 0 or Bzu “ 0 on BΩzΓl.

What is left to show is the self-adjointness of the negative Laplacian in L2pΩq. Let
H1,2
D pΩq denote the space of functions vanishing on ΓD,

H1,2
D pΩq :“ tv P H1,2

perpΩq
2 : v

ˇ

ˇ

ΓD
“ 0u.

Note that H1,2
D pΩq is closed in H1,2pΩq, thus it is a Hilbert space with respect to the

inner product } ¨ }H1,2pΩq. Let the mapping S be defined by

xSu, vy “ pu|vq ` pBu|Bvq (4.81)

from H1,2
D pΩq to its dual H1,2

D pΩq˚. The proof will be divided into two steps: first
we prove the self-adjointness of S´1 restricted to L2pΩq following Taylor’s trick in [32,
Chapter 8.2] and then show that the domains of its inverse and the L2-Laplacian ∆2

coincide by applying reflection arguments (see [21, Chapter 8]).
Let us first prove that S is bijective. Injectivity follows from its definition (4.81)

taking v “ u, then

}Su}H1,2pΩq˚}u}H1,2pΩq ě |xSu, uy| “ }u}
2
H1,2pΩq,

hence if Su “ 0, then u “ 0. Suppose that S is not surjective, namely that RpSqK ­“ H
in H1,2

D pΩq˚. Then there exists a nonzero element v P H1,2
D pΩq such that

xSu, vy “ 0 for all u P H1,2
D pΩq,

in particular, for u “ v we have that xSv, vy “ }v}H1,2pΩq “ 0, thus v “ 0, contradicting
our assumption. The uniquely determined inverse of S, denoted by

T :“ S´1 : H1,2
D pΩq˚ Ñ H1,2

D pΩq,

is self-adjoint when restricted to L2pΩq because S is symmetric. Indeed for simplicity
of notation we use the same letter T for the restriction T

ˇ

ˇ

L2pΩq
. Take ϕ,ψ P L2pΩq Ă

H1,2
D pΩq˚. Then there exist u, v P H1,2

D pΩq such that ϕ “ Su and ψ “ Sv, and conse-
quently

xTϕ, ψy “ xTSu, Svy “ xu, Svy

“ pu|vq ` pBu|Bvq

“ xSu, vy “ xSu, TSvy

“ xϕ, Tψy.

(4.82)
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Since the inverse of an injective self-adjoint operator on a Hilbert space is also self-
adjoint with dense domain, see for instance [30, Theorem 13.11], it follows that T´1 is
self-adjoint with dense domain RpT q.

Since T´1u “ pI ´ ∆2qu if u P Dp∆2q, it only remains to prove that the domains
of T´1 and the Laplacian ∆2 as defined in (4.69) coincide. By the definition of range
RpT q “ tTf : f P L2pΩqu, if we show that given f P L2pΩq there exists a unique
u P Dp∆2q such that u “ Tf , i.e. T´1u “ f , the theorem follows. The proof relies on
lemmas 4.3.1 and 4.3.2.

Note that in the current setting Dp∆2q imposes periodic boundary conditions in
the horizontal directions and Dirichlet-Neumann ones in the vertical one, i.e. given
f P L2pΩq we want to obtain a unique solution u P H2,2pΩq to the problem

T´1u “ f in Ω,

u
ˇ

ˇ

txj“0u
“ u

ˇ

ˇ

txj“1u
for j “ 1, 2, (4.83)

u
ˇ

ˇ

ΓD
“ B3u

ˇ

ˇ

ΓN
“ 0.

Thus it suffices to transform the vertical variable to the periodic/antiperiodic case, for
which we will use the reflection arguments in lemma 4.3.1. We can assume, by a linear
transformation of coordinates if necessary, that pa, bq “ p0, 1{2q.

We will start with pure Dirichlet boundary conditions. Let f P L2pΩq be arbitrary,
we can extend f oddly to r0, 1s3 in the following way

f̄pxq :“

#

fpxq if x3 ď 1{2

´fpx1, x2, 1´ x3q if x3 ą 1{2.
(4.84)

Since f̄ P L2pr0, 1s3q, there exists a unique solution ū P H2,2pr0, 1s3q to the problem
(4.77) with periodic boundary conditions in all three directions. Moreover, from the
properties of I ´∆2 we deduce that ´ūpx1, x2, 1´ x3q is also a solution

pI´∆qp´upx1, x2, 1´x3qq “ ´rupx1, x2, 1´x3q´p∆uqpx1, x2, 1´x3qs “ ´fpx2, x2, 1´x3q,

which by uniqueness yields that ū
ˇ

ˇ

x3
P H2,2

perp0, 1q. Now, by lemma 4.3.1 the solution

u
ˇ

ˇ

x3
P H2,2

b.c.p0, 1{2q complies with Dirichlet boundary conditions

u
ˇ

ˇ

x3“0
“ u

ˇ

ˇ

x3“1{2
“ 0,

therefore u P Dp∆2q. It remains to prove uniqueness of solutions in r0, 1{2s. Let v P
H2,2pΩq be another solution of (4.77), if we extend v and f oddly to r0, 1s3 by the same
method as (4.84), then the uniqueness of solution in r0, 1s3 implies uniqueness of u as
well, and the assertion follows.

The same conclusion can be drawn for pure Neumann boundary conditions, where
given f P L2pΩq the extension to r0, 1s3 is constructed evenly instead

f̄pxq :“

#

fpxq if x3 ď 1{2

fpx1, x2, 1´ x3q if x3 ą 1{2
(4.85)

In this case, the solution restricted to the vertical variable is ū
ˇ

ˇ

x3
P H2,2

perp0, 1q, thus lemma

4.3.1 yields that the restriction to r0, 1{2s, u P H2,2
b.c.p0, 1{2q complies with Neumann

boundary conditions
B3u

ˇ

ˇ

x3“0
“ B3u

ˇ

ˇ

x3“1{2
“ 0.
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The rest of the proof runs as before.
The only remaining concern is the case of mixed Dirichlet-Neumann boundary con-

ditions. It can be proved in much the same way, the only difference being that instead of
transforming the problem to periodic boundary conditions in all three variables, we use
the result of existence and uniqueness of solutions in lemma 4.3.2 with periodic boundary
conditions in horizontal variables x1 and x2, and antiperiodic in the vertical one x3. On
the one hand if ΓD “ Γa and ΓN “ Γb, then we extend f evenly to r0, 1s3. Restricted to
x3 the solution is u

ˇ

ˇ

x3
P H2,2

antiperp0, 1q, thus by lemma 4.3.1 we have

u
ˇ

ˇ

x3“0
“ B3u

ˇ

ˇ

x3“1{2
“ 0.

On the other hand, if ΓD “ Γb and ΓN “ Γa, then we extend f oddly to r0, 1s3.
Restricted to x3 the solution is u

ˇ

ˇ

x3
P H2,2

antiperp0, 1q, thus by lemma 4.3.1 we have

B3u
ˇ

ˇ

x3“0
“ u

ˇ

ˇ

x3“1{2
“ 0.

In summary, we have shown that S is a self-adjoint operator such that DpSq “ Dp∆2q

and Su “ pI ´ ∆2qu for every u P Dp∆2q, or in other words, that ∆2 is a self-adjoint
operator in L2pΩq as desired.

It follows that the domains of fractional powers of the Laplacian can be computed
using complex interpolation arguments.

Corollary 4.3.4 ([14, Proposition 4.1]). Let θ P r0, 1s with 2θ R t1{2, 3{2u. Then

Dpp´∆2q
θq “

$

’

’

&

’

’

%

tv P H2θ,2
per pΩq

2 : Bzv
ˇ

ˇ

ΓN
“ 0, v

ˇ

ˇ

ΓD
“ 0u, 3{2 ă 2θ ď 2,

tv P H2θ,2
per pΩq

2 : v
ˇ

ˇ

ΓD
“ 0u, 1{2 ă 2θ ă 3{2,

tv P H2θ,2
per pΩq

2u, 2θ ă 1{2.

(4.86)

Proof. We start with a simple characterization of the domain. Since ´∆2 admits a
bounded H8-calculus on L2pΩq, by theorem 3.6.5 we can express the domain of fractional
powers as a complex interpolation space

Dpp´∆2q
θq “ rL2pΩq, Dp´∆2qsθ.

Now, the result is known for C8-boundaries by theorem 3.3.8. Therefore, it suffices to
construct a C8-domain rΩ extending Ω such that Γa Ă rΓa, Γb Ă rΓb and rΓa, rΓb Ă rΩ. Such
rΩ is depicted in figure (4.7), which construction is due to Hieber et. al. [14]. Since Ω is

Ω

Γb

Γa

rΩ

ĂΓb

ĂΓa

Figure 4.7: Extension of Ω to rΩ.

compact in the topology induced by periodicity, i.e. identifying the lateral boundaries
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of G, Ω is compact with the topology of S1 ˆ S1 ˆ pa, bq. Consequently, there exists a
finite cover tUju

k
j“1 and a smooth partition of unity tϕju

k
j“1, ϕj : Ω Ñ r0, 1s, such that

suppϕj Ă Uj , and
k
ÿ

j“1

ϕj ” 1.

Let j P t1, . . . , ku, denoting by rΩj a copy of rΩ, taking Uj small enough we can identify

it with an open subset rUj of rΩj . We can now define a retraction/correctraction for
s P r0,8q by

S : Hs,2
per,b.c.pΩq Ñ

Àk
j“1H

s,2
b.c.p

rΩjq, R :
Àk

j“1H
s,2
b.c.p

rΩjq Ñ Hs,2
per,b.c.pΩq

v ÞÑ t
?
ϕjvu

k
j“1 u ÞÑ

řk
j“1

?
ϕjuj ,

where b.c. refers to boundary conditions as in (4.86). It follows easily that RSv “
Rpt

?
ϕjvujq “

ř

j ϕjv “ v. By theorem 3.2.18 we have the following relation between
interpolation spaces

rL2pΩq, Dp´∆2qsθ “ rRp
k
à

j“1

L2prΩjqq, Rp
k
à

j“1

H2,2
b.c.p

rΩjqqsθ

“ Rp
k
à

j“1

rL2prΩjq, H
2,2
b.c.p

rΩjqsθq

Finally, since the complex interpolation in the right hand side is defined for C8-domains,
by theorem 3.3.8 we conclude that

Dpp´∆2q
θq “ R

¨

˚

˚

˝

k
à

j“1

$

’

’

&

’

’

%

tv P H2θ,2prΩjq
2 : Bzv

ˇ

ˇ

ΓN
“ 0, v

ˇ

ˇ

ΓD
“ 0u, 3{2 ă 2θ ď 2,

tv P H2θ,2prΩjq
2 : v

ˇ

ˇ

ΓD
“ 0u, 1{2 ă 2θ ă 3{2,

tv P H2θ,2prΩjq
2u, 2θ ă 1{2.

˛

‹

‹

‚

“

$

’

’

&

’

’

%

tv P H2θ,2
per pΩq

2 : Bzv
ˇ

ˇ

ΓN
“ 0, v

ˇ

ˇ

ΓD
“ 0u, 3{2 ă 2θ ď 2,

tv P H2θ,2
per pΩq

2 : v
ˇ

ˇ

ΓD
“ 0u, 1{2 ă 2θ ă 3{2,

tv P H2θ,2
per pΩq

2u, 2θ ă 1{2.

We can now formulate the main theorem of this work.

Theorem 4.3.5 ([7], Theorem 3.1). Let ν ě 0. Then the operator ´A2 ` ν admits a
bounded H8-calculus on L2

σpΩq of angle 0 provided ν ą 0. If ΓD ­“ H, then the above
assertion holds true even for ν “ 0.

Proof. Let us first assume that ΓD ­“ H. Making use of perturbation techniques for
the H8-calculus the proof falls naturally into two parts. Firstly, by theorem 3.7.5 we
will show that ν ´∆2 ´ B2 admits a bounded H8-calculus for ν ě 0 sufficiently large.
Secondly, from the sectoriality of ´A2 and theorem 3.7.6 we will conclude that the
assertion holds true even for ν “ 0.
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From proposition 4.3.3 we already know that ´∆2 admits a bounded H8-calculus.
Since Dp∆2q Ă DpB2q, boundedness of B2 : Dp∆2q Ñ L2pΩq in Dp∆2q can be seen via
the following diagram

DpB2q
Bz
ÝÑ H1{2`δ,2pΩq2

¨|ΓD
ÝÝÑ Bδ

2,2pGq
2 ãÑ L2pGq2

´∇H∆´1
H divH

ÝÝÝÝÝÝÝÝÝÑ L2pGq2 ãÑ L2pΩq2.

Let v P H1`1{2`δ,2pΩq2, then there exists a periodic extension Ev P H1`1{2`δ,2pT3q2

and we can use the Fourier representation of Bessel potential spaces to obtain that the
derivative BzEv is bounded by

}BzEv}H1{2`δ,2pT3q2 “

›

›

›
F´1

”

p1` |k|2qp1{2`δq{2FpBzEvq
ı›

›

›

L2pT3q

“ 2π
›

›

›
p1` |k|2qp1{2`δq{22πkzFpEvq

›

›

›

l2pZ3q

ď 2π
›

›

›
F´1

”

p1` |k|2qp1`1{2`δq{2Fpvq
ı›

›

›

L2pT3q
“ 2π}Ev}H1`1{2`δ,2pT3q2 ,

(4.87)

where we applied Plancherel’s theorem and the inequality |k| ď p1` |k|2q1{2. Bounded-
ness of the trace operator follows from theorem 3.4.2. As a consequence, it is easy to see
that B2 is a lower order perturbation of ´∆2. Indeed note that by corollary 4.3.4 the
domain of the fractional Laplacian actually satisfies

Dpp´∆2q
1´θq ãÑ H2p1´θq,2

per pΩq2 ãÑ H1`1{2`δ,2pΩq2, (4.88)

whenever the second inclusion holds, this is, 2p1 ´ θq ą 1 ` 1{2 ` δ, thus θ ă 1{4 ´
δ{2. Combining (4.88) with the bounded invertibility of the Laplacian ∆2 and the
boundedness of the perturbation termB2, we obtain thatB2 is a lower order perturbation
of the Laplacian with

}B2v}L2pΩq ď C0}v}H1`1{2`δpΩq ď C1}p´∆2q
1´θv}L2pΩq, v P Dp´∆2q, (4.89)

for some constant C1 ą 0 and θ P p0, 1{4´ δ{2q, recall that δ P p0, 1{2q. Theorem 3.7.5
yields that ν ´∆2 ´B2 admits a bounded H8-calculus on L2pΩq of angle

ωH8pν ´∆2 ´B2q “ 0

for ν ě 0 sufficiently large.
Having disposed of this preliminary step, we can now return to the restriction ν´A2.

Note that through this work we have constructed ∆2 ` B2 as an extension of A2 from
the closed subspace L2

σpΩq to L2pΩq2, and the same conclusion can be drawn for the
resolvent. Let λ P ρp∆2 ` B2q and take w P L2

σpΩq, i.e. w “ P2f for some f P L2pΩq2.
Substituting the pressure gradient (4.66) in the resolvent problem (4.34):

#

λv ´∆v ´Bv “ P2f on Ω,

divH v “ 0 on G,
(4.90)

we have that v :“ pλ´∆2 ´B2q
´1P2f is the unique solution to the resolvent problem

#

λv ´∆v `∇Hπs “ f on Ω,

divH v “ 0 on G,
(4.91)
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In other words, pλ´∆2 ´B2q
´1 leaves the solenoidal subspace L2

σpΩq invariant with

ρp∆2 `B2q Ă ρpA2q and pλ´∆2 ´B2q
´1
ˇ

ˇ

L2
σpΩq

“ pλ´A2q
´1. (4.92)

The property of H8-calculus is preserved through invariant subspaces since

}fpν ´A2q}LpL2
σq
“ }f

´

pν ´∆2 ´B2q
ˇ

ˇ

L2
σ

¯

}LpL2
σq
“ }f pν ´∆2 ´B2q

ˇ

ˇ

L2
σ
}LpL2

σq

ď }fpν ´∆2 ´B2q}L2pΩq, f P H1pΣσq XH
8pΣσq

where we used (4.92) in the second equality. Consequently, ´A2 ` ν admits a bounded
H8-calculus on L2

σpΩq of angle

ωH8p´A2 ` νq ď ωH8pν ´∆2 ´B2q “ 0,

for ν ě 0 sufficiently large.
We now proceed with the second step, proving that ν ě 0 may be zero. This poses

no problem because we proved in theorem 4.2.5 that ´A2 is invertible and sectorial. The
constant operator ´ν is linear and bounded, hence Dpν ´A2q Ă Dp´νq “ L2

σpΩq and it
is a relative perturbation of ´A2. Since the addition

pν ´A2q ´ ν “ ´A2,

is invertible and sectorial, by theorem 3.7.6 we obtain that ´A2 admits a bounded
H8-calculus.

We now turn our attention to the case ΓD “ H. The definition 4.68 clearly forces
B2v “ 0. Moreover, it is known that ν ´ ∆2 admits a bounded H8-calculus on angle
0 on L2pΩq2 by proposition 4.3.3. Consequently, the above construction applies to this
case as well, which proves the theorem.

To conclude this work, we include to important corollaries that the bounded H8-
calculus of the hydrostatic Stokes operator A2 implies.

Corollary 4.3.6. Let θ P r0, 1s with 2θ R t1{2, 3{2u. Then

Dppν ´A2q
θq “

$

’

’

&

’

’

%

tv P H2θ,2
per pΩq

2 : Bzv
ˇ

ˇ

ΓN
“ 0, v

ˇ

ˇ

ΓD
“ 0u X L2

σpΩq, 3{2 ă 2θ ď 2,

tv P H2θ,2
per pΩq

2 : v
ˇ

ˇ

ΓD
“ 0u X L2

σpΩq, 1{2 ă 2θ ă 3{2,

tv P H2θ,2
per pΩq

2u X L2
σpΩq, 2θ ă 1{2.

(4.93)
for ν ą 0. If Γ ­“ H it holds even for ν “ 0.

Proof. Since ν´A2 admits a bounded H8-calculus, by theorem 3.6.5 we can express its
fractional powers as a complex interpolation space

Dppν ´A2q
θq “ rL2

σpΩq, Dpν ´A2qsθ,

and the rest of the proof is completely analogous to 4.3.4.

Corollary 4.3.7. For ν ą 0 the operator ν´A2 has maximal Lq-regularity. If ΓD ­“ H
then it holds true even for ν “ 0.

Proof. Since L2
σpΩq is a Hilbert space, the assertion follows from corollary 3.8.4.



Chapter 5

Conclusions and future directions

The main goal of this thesis was to reproduce the proof of the hydrostatic Stokes operator
´A2 admitting a bounded H8-calculus, which was the topic of chapter 4. Although the
main proof is short and concise, it relies on deep functional analytical theory which we
introduced in chapter 3.

In particular, we have been exposed to perturbation theorems for the H8-calculus,
section 3.7, and interpolation theory, section 3.2.3. These notions were taken for granted
in the main article but required an study of operator semigroups, section 3.5 and the
construction of interpolation spaces in order to make the work self-contained. Moreover,
we had to make precise the notion of trace for distributions, section 3.4, and interpolation
with domains, subsection 3.2.3, which allowed a neat introduction of the function spaces
treated throughout the work, section 3.3. Finally, we also included the notion of maximal
regularity, section 3.8, to understand the main corollary of the work, which is a conclusion
of the vector-valued Fourier multiplier theorem, section 3.1.2, and R-sectoriality, section
3.6.

Once introduced all the preliminaries in the Lp-setting, in chapter 4 we went through
Giga et. al.’s proof [7] of bounded H8-calculus for the hydrostatic Stokes operator ´Ap.
The definition of the hydrostatic Helmholtz projection and hydrostatic Stokes operator,
as well as the characterization of the hydrostatic solenoidal subspace L2

σpΩq and the
hydrostatic Stokes operator being invertible and generating a bounded analytic C0-
semigroup on L2

σpΩq, are an extension of Hieber and Kashiwabara’s proof [15]. Giga
et. al. take these notions for granted and hence are able to present a concise proof of
the bounded H8-calculus for the Lp-case. However, the aforementioned properties of
the solenoidal subspace LpσpΩq and the hydrostatic Stokes operator Ap differ from the
L2-case to Lp. Consequently, now that intuition is built on the L2-case, the next logical
step of this work would be to follow Hieber and Kashiwabara’s proof for the general
Lp-setting.

Finally, Giga et. al.’s proof is contained in section 4.3.5. Here we start by rewrit-
ing the hydrostatic Stokes equation as a perturbation of the L2-Laplacian and proving
H8-boundedness of the Laplacian. This is done through reflection arguments adapt-
ing Taylor’s [32], Krylov’s [21] and Nau’s [27] works. Although we only prove it for
the L2-case, Nau’s dissertation contains a generalization to the Lp-setting. Moreover,
the H8-calculus of the Laplacian provides a characterization of fractional powers of
the Laplacian, which also works in the general Lp-case, for this we followed [14]. The
main idea of the proof is show that B2 is a lower order perturbation of the Lapla-

69
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cian, which admits a bounded H8-calculus, and thus ν ´ ∆2 ´ B2 admits a bounded
H8-calculus for ν ě 0 large enough. We conclude the proof by applying that ´A2 is
invertible and sectorial, hence by perturbation theorems again, ν ě 0 may be zero. Once
H8-boundedness of the Lp-Laplacian and the invertibility of the Lp-hydrostatic Stokes
operator are proven, the proof of admitting a bounded H8-calculus should be a simple
generalization. We finish the work by showing that the hydrostatic Stokes operator ´A2

has maximal Lq-regularity.
Once maximal Lq-regularity is shown, we would still need to show the well-posedness

of the full nonlinear primitive equations. In this direction, in 2020 Giga et. al. published
a new article [8] simplifying Hieber and Kashiwabara’s original proof. We would also
like to recommend the interested reader Gries’ dissertation [10] on the works published
jointly with Giga et. al.
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