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Abstract

In 2016 Hieber and Kashiwabara showed that the three dimensional primitive equations
admit a unique, global, strong solution for all initial data in a closed subspace of the
Bessel space H*P?(Q) provided p > 6/5, being this the first result in the general LP-
setting. Their approach consisted in studying the properties of the hydrostatic Stokes
operator A, defined on the solenoidal subspace LE(Q) of LP(Q). In 2017 Giga et. al.
further proved that the hydrostatic Stokes operator A, admits a bounded H*-calculus,
obtaining maximal LY — LP regularity estimates for the linearized primitive equations in
a much simpler way.

In this work we will study Giga et. al.’s and Hieber and Kashiwabara’s works par-
ticularized for the L?-case as well as all the necessary literature to replicate the proofs.
The goal of the thesis is to present an extended version of Giga et. al.’s proof to make
it more accessible. Although the LP-case is not studied for lack of time, we differentiate
between the Sobolev-Slobodeckij, Bessel potential and Besov spaces to accentuate how
we could extend the proofs to the LP-setting.
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Symbols and notation

N = {0,1,2...} - non-negative integers

Z - integers

R - real numbers

R4 - positive real numbers Ry = (0, o)

C - complex numbers

K - scalar field (R or C)

x X y - cross product of z,y € R?

T <<y - xis much less than y for x,y € R

x -y - inner product of x = (z1,22,...,2n),y = (Y1,Y2,--.,Yn) € R™ given by

T Y :=T1Y1 +T2y2 + -+ Tnln

z| - euclidean norm of x = (x1,x2,...,2,) € R™ given b
) ) M y

2l i= (a3 + 2+ o)V

O(g(x)) - for g(x) real-valued, f(z) = O(g(z)) if there exist M > 0, xg € R, such that
|f(x)| < Ml|g(x)| forallz > xg

0f2 - boundary of 2 € R"

| - |x - norm in Banach space X

I -1y - LP-norm

(‘|") - inner product in Hilbert space H

(:|)q - inner product in L?(€)

— - continuous embedding

R - real part

L(X,Y) - space of bounded linear operators from X to Y
L(X) - space of bounded linear operators from X to K
C® - space of smooth functions

C} - space of bounded continuous functions

S - space of Schwartz functions

X* - dual Banach space

{-,+) - duality, for x € X and z* € X* given by

(x,x™) = a*(x)

x® - for x = (x1,x9,...,2,) € R" and a multiindex a = (a1, ag,...,a,) € N* we set
a . Qa1 .02 e
= aftag?

iv
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0“f - for some function f on R™ and a multiindex o we set
0°f = O g f

|z| - greatest integer less than or equal to x
C - complement



Chapter 1

Introduction

The primitive equations of the ocean, derived from the Navier-Stokes equations by as-
suming hydrostatic balance, constitute the fundamental model for geophysical flow. In
this work we consider the simplified model consisting of the momentum and continuity
equations, explicitly given by

ow+v-Vo+Vgrn—Av=f on Qx(0,7T),
0,m=0 on Qx(0,7T),
divv=0 on Qx (0,7),

v(0) =v9 on Q,

(1.1)

where Q := G x (a,b) is a cylindrical domain with G := (0,1)? and a < b. The velocity
of the fluid is v = (v, w) with v = (v1,v2) and w horizontal and vertical components of
v respectively, m denotes the pressure of the fluid and f the external force.

The mathematical analysis of primitive equations was initiated in 1992 by Lions,
Teman and Wang [25, 24], who proved that given initial data in L?, there exists a global
weak solution to the problem. Note that uniqueness of solutions in three dimensions is
still an open problem. In 1995 Ziane [36, 37] proposed studying the linearized problem
instead and showed H2-regularity for the solution of the resolvent problem. Based on
this result, Guillén-Gonzdlez, Masmoudi and Rodriguez-Bellido [11] proved in 2001 the
existence of a local, strong solution for initial data in H'.

In 2007 Cao and Titi [3] took a big step forward and proved the existence of a
unique, global, strong solution for arbitrary initial data in H'. In later works they
included modifications on the viscosity and diffusion, establishing global well-posedness
for initial data belonging to H?2.

These results were extended to the LP-setting in 2016 by Hieber and Kashiwabara
[15], assuming Neumann and Dirichlet boundary conditions on the upper and bottom
layers of the cylinder respectively. They studied the problem from the point of view of
evolution equations, seeing the linearized primitive equations as semi-linear parabolic
evolution equations in certain solenoidal subspaces of LP. Their proof starts with the
claim that the solution of the linearized equations is governed by an analytic semigroup
(T,(t))t=0 on the hydrostatic solenoidal subspace LZ() of LP(Q), see (4.20). Follow-
ing Sohr’s approach for the classical Navier-Stokes equations [31], they introduced the
hydrostatic Helmholtz projection, denoted F,, which eliminates the horizontal pressure
gradient Vs and has range precisely L2(£2). The generator of the (7,(t))i>0 semi-
group, A, = P,A, is called the hydrostatic Stokes operator and they proved that —A,
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CHAPTER 1. INTRODUCTION 2

is a sectorial operator of spectral angle 0, generating an exponentially decaying analytic
semigroup. Finally, adapting the Fujita-Kato approach for the Navier-Stokes equation
[20, 6], they constructed a unique, global strong solution to the nonlinear primitive equa-
tions for arbitrary initial data in the complex interpolation space [L2(Q2), D(A,)];, for
p € [6/5,00). Since [LZ(2), D(Ap)]1/p — H?PP(Q), for p = 6/5 large the result extends
to initial data having less differentiability properties than H?!.

In this work we are going to study the recent article by Giga et. al. [7] where it is
further proved that the hydrostatic Stokes operator admits a bounded H*-calculus. By
rewriting the hydrostatic Stokes operator A, as a perturbation of the Laplacian

Apv = Av+ Bv, Bv=-VyAy divy d.vl,,

they use perturbation theorems and the fact that Laplace operator A admits a bounded
H%-calculus to show sectoriality of A, and that it generates and analytic semigroup
on LZ(Q) in a much shorter way than Hieber and Kashiwabara. Moreover, multiple
corollaries are obtained immediately, such as maximal LY — LP-regularity and a charac-
terization of domains of fractional powers. As a consequence, in another recent article
by the same authors [8] they give a new proof of a unique, strong global solution for the
primitive equations for initial data in the real interpolation space (LZ(Q), D(Ap))1/q,q-

In particular, we will restrict the proof to the L?-setting. Although the perturbation
argument is the same in both cases, it relies on the hydrostatic Stokes operator A, being
invertible and sectorial with spectral angle 0 and the LP-realization of the Laplacian ad-
mitting a bounded H*-calculus. Both proofs can be found in Hieber and Kashiwabara’s
previous work [15] and Nau’s dissertation [27] respectively, but contain bigger mathe-
matical difficulties. However, being the goal of this work to understand Giga et. al.’s
article, we decided the L2-approach to be a good start.

1.1 Outline

The thesis is divided into three parts. In chapter 2 we introduce the relevant equations to
construct a model of the large-scale ocean and derive the primitive equations of the ocean
through the Boussinesq and hydrostatic approximations. We conclude the chapter by
stating the simplified linearization of the primitive equations, also called the hydrostatic
Stokes equations.

In chapter 3 we introduce the relevant preliminaries to understand Giga et. al.’s [7]
proof. Finally, in chapter 4 we show that the hydrostatic Stokes operator admits a
bounded H®-calculus. To this end, in section 4.1 we establish the weak solvability of
the Poisson problem

Apm =divg f on G, 7 periodic on G,
which will allow us to define the hydrostatic Helmholtz projection
Py =v—Vgr with RanP = Li(Q).

We also include a useful characterization of the hydrostatic solenoidal subspace LZ(2)
of L2(Q). In section 4.2 we define the hydrostatic Stokes operator

Agv = PyAv, D(As) = {ve W22(Q)* : v

per

2
rp — 0, azU‘FN = 0} a LE(Q)7



CHAPTER 1. INTRODUCTION 3

and show that it generates an exponentially stable analytic semigroup following Hieber
et. al. [15] for the p = 2 case. A construction for the LP-case can also be found in the
referenced article. The proof consists of two steps, first we show the resolvent estimate
(4.36) by finding a unique solution of the weak formulation of the resolvent problem

{)\v —Av+Vpgrs=f on €, (12)

divgo =0 on G,

for every A € ¥;_. U {0} through the Ladyzhenskaya-Babuska-Brezzi theorem and ap-
plying difference quotients. Second, we use the resolvent estimate to show that the
hydrostatic Stokes operator is sectorial and invertible, and apply the Laplace trans-
form representation to obtain the exponentially decaying bound. Finally, in section 4.3
we show that —As admits a bounded H*-calculus through perturbation arguments by
rewriting it as

Apv = Av + Bv, Bv=—-VyAp divy d.v|,.

We start by establishing H*-boundedness of the Laplacian through reflection arguments
and then apply the perturbation theorems of section 3.7 to obtain the desired result.
Although the assertion for the general LP-setting relies on —A, generating an exponen-
tially decaying analytic semigroup, the H®-boundedness of the LP-Laplacian is an easy
generalization of the LP-case and can be found on [27]. We finish the work including two
immediate corollaries of the H*-boundedness of the hydrostatic Stokes operator, an ex-
plicit characterization of the domains of fraction powers (—As3)? through Bessel potential
spaces and maximal LP-regularity estimates for the linearized primitive equations.

Our work ends at chapter 5 with a summary of the proof and possible future direc-
tions.



Chapter 2

Primitive equations

The primitive equations of the ocean are the standard model for the study of geophysical
flows. They are derived from the Navier-Stokes equations assuming hydrostatic balance
for the pressure in the vertical direction, justified by the difference of scale between the
depth of the ocean (~ 11km) and the width (10? to 10*km). In this chapter we provide a
brief explanation of the construction of the hydrostatic Stokes equations studied by Giga
et. al. in [7]. We will start by introducing the relevant equations to construct a model of
the large-scale ocean, while defining the basic concepts of oceanic fluid dynamics. In sec-
tions 2.1 and 2.2 we explain the Boussinesq and hydrostatic approximation respectively,
continuing with several simplifications. Finally, in section 2.3 we state the final form of
the hydrostatic Stokes equations we will study in the rest of the work. This chapter is a
compilation of several works [13, 12, 29]. The general theory on fluid dynamics and the
respective definitions are obtained from [35].

In general, the ocean is modeled as a slightly compressible fluid with Coriolis force.
The full set of equations of the large-scale ocean are: the momentum equation, the
continuity equation, the diffusion-transport equations for the temperature and salinity
and the equation of state. In what continues we will explain each of these equations.

We will start with the conservation of momentum. Newton’s second law of motion for
inertial frames of reference states that the acceleration of a body is equal to the net force
acting on it. Since we are interested in describing the flow relative to Earth’s surface, we
have to translate this law to a rotating frame of reference. Moreover, in case of fluids,
individual molecules cannot be followed and we instead consider an approximation by
a continuum, this is, the momentum per unit volume is pv, where p : R — R is
the density of the fluid and v : R? — R? the velocity. The resulting equation is the
momentum equation in a rotating frame, which describes how the velocity of a fluid v
responds to inertial and imposed forces, assumed to be the pressure and gravity:

dv
Pt
Here, 7 : R? — R is the pressure, g = (0,0, g) the constant gravity vector, w the angular

momentum, D is the molecular dissipation modeling the viscosity part of the velocity
changes by the anisotropic Laplacian

= —V7 — pg — 2pw x v+ Dv, (2.1)

D = Ay + pd?,  pu,p2 >0, (2.2)

and the Coriolis force 2pw X v is a fictitious force that arises from considering a non-
inertial coordinate system. Note that the acceleration is not simply the partial derivative

4



CHAPTER 2. PRIMITIVE EQUATIONS )

%‘t’ but the material derivative, which describes the change of momentum of the fluid
subject to space-time dependent velocity field and is defined as

4o,
dt = ot

where V is the covariant derivative.

Next is the conservation of mass. Although in classical mechanics mass is absolutely
conserved, in fluid-mechanics the fluid flows into and away from regions. Therefore, the
continuity equation describes the relation between the rate at which the mass enters and
leaves the system, taking into account the accumulation of masses within the system:

v-V, (2.3)

d
p div v+ £ = 0. (2.4)

The temperature and salinity of the ocean are modeled by diffusion transport equations

dl = D7rT + @Qr and @ = DgS + Qg, (2.5)
dt dt
where Dp and Dg are the heat and salinity diffusivities associated with the anisotropic
Laplacian (2.2) and Qr and Qg are sources of temperature and salinity respectively.
Finally, the equation of state. Note that the momentum and continuity equations in
three dimensions provide two equations but three unknowns (density p, pressure 7 and
velocity v). Consequently, in order to obtain a solution another equation is needed, an
equation of state. For seawater liquid such a model is not easily derivable, we usually
rely on semi-empirical equations. In our case, a priori we will just assume the density of
the ocean to be a general function of pressure, temperature and salinity

p=f(mT,585). (2.6)

The combination of equations (2.1)-(2.6) constitutes the set of equations governing
the dynamics of the large-scale ocean:

d
pd—‘;:—VW—pg—prxv—i—Dv,
dp
ar ="
dr (2.7)
— = D7T
dr T +QT)
ds
2 _D
T sS + Qs,

p=[f(xT,5).

Nevertheless, these equations are still mathematically complicated to study and spe-
cially computationally hard, so several simplifications are commonly considered which
will be studied in the following sections.

p div v +

2.1 Boussinesq approximation

The variations of density in the ocean are due to three effects: the compression of water
by pressure (A;p), the thermal expansion of water by temperature changes (App) and
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the haline contraction by salinity changes (Agp). However, these variations are relatively
little (~ 5%) around the ocean in comparison to the mean density and, accordingly, the
Boussinesq approrimation exploits this feature of the ocean to obtain a simpler equation
of motion. Here we will give a brief explanation of its consequences, but for a rigorous
justification of the approximation we refer the reader to [35].

Fixing pg as a reference value for the density, we may write

p=po+p(tzyx) with p << po, (2.8)

The appropriate equation of state that approximately evaluates the change in pressure,
temperature and salinity is the linear one

p=po(l = Br(T —Tp) + Bs(S — So)),

where [, Bg are the expansion coefficients and Ty, Sy the reference values of temperature
and respectively. Substituting (2.8) in (2.1) and dividing by po the momentum equation
can be written as

/ d 1 /
(1 + ,0> Y V- ﬁg — <1 + p) 2w X V 4+ V1 ARV + 120V,
po/ dit 2 Po Po

where v; = p1;/po is the kinematic viscosity. If p' << po, we can neglect the p’/py term
on the left and in the Coriolis force. However, the gravity term g is relatively big and
there is no reason to disregard it. Consequently, the equation of motion after Boussinesq
approximation takes the form

d 1
AU v ﬁg — 2w XV + VAV + 102V,
dt Po Po

The same substitution (2.8) applied to the continuity equation (2.4) gives

a/
a—Z+V-Vp'+podivv+p’divv=0,

where we already developed the material derivative (2.3). Dividing by py again, taking
p << p results in
div v = 0.

Finally, separating the velocity v = (v,w) : R® — R3 into its horizontal v = (v1,v2) and
vertical w coordinates we obtain the Boussinesq equations of the ocean:

( 1
ow+v-Vygv+w-0,v=——Vym—2w X v+ 11Agv + Vgéfv,
Po

1
w+v-Vyw+w-0,w = ——0,7 — ﬁg +1nAgw + Vgagw,
£o Po

(BEs) < divg v + d,w = 0, (2.9)
T +v-VgT +w-0,T — DT = Qr,
oS +v-VgS+w-0.5—DsS = Qg,
p = po(1 = Br(T —To) + Bs(S — So)).
In absence of subscript we will assume all the operators (e.g. V and A) to be 3-

dimensional, and we will denote by the subscript H (e.g. Ap) the 2-dimensional opera-
tors that refer only to horizontal coordinates.
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2.2 Hydrostatic approximation

As mentioned earlier, the difference of horizontal and vertical scale of the ocean is such
that the momentum equation of the vertical motion can be substituted by the hydrostatic
equation. A careful study of scales, see [29, Section II.3], shows that the aspect ratio
(reason between the vertical Z and horizontal L characteristic lengths) is small:

and related to this aspect ratio, the a priori viscosities
v =0(1), and vy =O0(e?),

lead to primitive equations with full viscosity, while lower orders would lead to only
partial viscosity. We define the scaled Boussinesq equations of the ocean, omitting
temperature, salinity and the Coriolis force for simplicity, by

6tv+v-VHv+w-6ZU—AHU—6§1)+VH7T=O,

20w +v-Vgw +w - d,w — Agw — 0%w) + 0,m = —pg, (2.10)
divg v + d,w = 0.

Letting € — 07 formally gives the hydrostatic approzimation for the vertical velocity by

o
—_— = — 2.11
5, 9, (2.11)

For a rigorous justification of the hydrostatic balance see [13, Section 1.14].

Replacing the moment equation for the vertical velocity by the hydrostatic approx-
imation in the Boussinesq equations, we obtain the so called primitive equations of the
ocean:

1
&v—l—v-VHU—i-w-&ZU—I—fVHW—&-%uxv—ulAHU—ugﬁgv:(),
Po

0:m = —pg,
(PEs) { divgv+d.w =0, (2.12)
0T +v-VygT +w-0,T— DrT = Qr,
oS +v-VgS+w- 0.8 — DsS = Qs,
p=po(l — Br(T —To) + Bs(S — So)).

2.3 Model situation

Temperature and salinity do not impose any added complexity to the problem, but
rather just complicate the mathematical analysis. Therefore, we will assume a simpler
isothermal scenario in our model, i.e. temperature and salinity are assumed to be con-
stant. By the same argument, we will neglect the Coriolis and gravity term from our
analysis and all constants are normalized to one. The resulting set of equations is

ovw+v-Vygv+w-d,v=—Vgrm+ Av,
o,m =0, (2.13)
divg v + d,w = 0.
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Moreover, we will assume the simplest domain possible for the ocean, the cylindrical
domain. Given a,b € R, we set the domain to be
Q=G x(a,b) cR® with G =(0,1) x (0,1),
and we denote the bottom, upper and lateral parts of the boundary of ) respectively by
', =Gx{a}, Thy=Gx{b} and T;=0G x (a,b).

Note that the boundary 02 is not smooth, but we will overcome this difficulty by assum-
ing lateral periodicity. The primitive equations of the ocean (2.13) can be supplemented
by diverse boundary conditions, following Giga et. al.’s approach [7], we will focus on
the mixed case

v, w, m are periodic on I'; x (0, 00), (2.14)

w=0 on (I'yuTy) x (0,00), (2.15)

v=0 on I'p x (0,00) and J,v =0 on I'y x (0,0), (2.16)
v(0;+,+,+) = vy on £, (2.17)

where Dirichlet and Neumann boundary conditions are given by the notation
I'pe {@7Favrbvra v Fb} and T'y = (Fa v I‘b)\FD~

In particular, in the new set of equations (2.13) the full pressure 7 : Q@ — R can be
determined from the surface pressure 75 : G — R. On the other hand, when substituting
the continuity equation for the vertical velocity by the hydrostatic approximation, we
lose an evolution equation for the vertical velocity. One of Lions et. al.’s [25] biggest
contribution, in their own words, was overcoming the difficulties caused by the absence
of an evolution equation for the vertical velocity w. Indeed, integrating the continuity
equation with respect to the vertical variable over (a, z) we obtain

w(t; 2,9, 2) — w(t; 2,9,a) = — f divir o(t; 2y, ) ds (2.18)

a

and substituting the bottom boundary condition w|F =0, cf. (2.15), we arrive at

w(t;z,y,z) =w)(t;z,y, 2) = —f divg v(t; x,y, s) ds. (2.19)

which gives the vertical component of the velocity in terms of the horizontal one. Anal-
ogously, integrating over the whole vertical interval (a,b) and substituting both the
bottom and upper boundary conditions for the vertical velocity we obtain that

1 b
divgw =0, with o(t;z,y):= bf v(t;x,y, s) ds. (2.20)

The simplified set of equations modeling the large-scale ocean is
0w +v-Vygv+w)d,v+Vygrns—Av=f on Qx(0,T),

divgm=0 on G x (0,7), (2.21)
v(0) =vy on
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where f : Q@ — R is a given external force and vy € R? the initial horizontal velocity.
The linearized version of the above set of equations is what we refer to as the hydrostatic
Stokes equations:

o+ Vgms—Av=f on Qx(0,7),

(HSEs) divy5=0 on G x (0,7), (2.22)
v(0) =vy on Q.



Chapter 3

Preliminaries

3.1 Vector-valued Fourier transform

This section is divided into two main parts. In the first subsection we have compiled
some notions about integration in Banach spaces and we introduce the vector-valued
Fourier transform. In the second section we summarize without proof basic facts about
R-boundedness and state the vector-valued Mikhlin multiplier theorem. We will only
touch a few basic aspects of the theory necessary to get a general understanding of the
H®*-functional calculus in section 3.6 and maximal regularity in section 3.8. However,
for the interested reader a thorough study of the field is carried out in [18, 19], a concise
introduction to R-boundedness and operator-valued Fourier multipliers can be found in
[22].

3.1.1 Introduction to the vector-valued setting

In order to work with vector-valued function spaces, we need to extend the notion of
integrability to vector-valued functions. This is done analogous to the scalar case, by
approximation of simple functions. Fix a measure space ({2, F, ) and a Banach space
X. Let f:Q —>Kand ze X, wedefine f®z: Q2 — K by

(f®x)(w) := flw)z.

Definition 3.1.1. A function g : 2 — X is called simple if there exist a finite number of
elements of the Banach space {z;}7_; = X and disjoint sets of finite measure {F;}7_; =
F, such that ¢ is a linear combination of the form

9= > 15®ux;. (3.1)
j=1

A function f : Q — X is called strongly measurable if it is a pointwise limit of a sequence
of simple functions (g, )n>1, i.e.

f(w) = lim g,(w), weq.

n—0o0

We can define the integral of simple functions as
n
J gdu =Y p(Fy)zj,
Q j:1

10



CHAPTER 3. PRELIMINARIES 11

and the triangle inequality implies

' [ gdu\ < [ gl a
Q X Q

Pointwise limit of simple functions is what makes the following definition of integration
in Banach spaces allowable.

Definition 3.1.2. A strongly measurable function f : Q@ — X is said to be Bochner
integrable with respect to p if there exists a sequence (g,)n>1 of simple functions g, :
) — X such that

n—ao0

iy | 1~ gullx du = 0.

In that case we define the Bochner integral of f by

f fdp = lim J Gn dp.
Q n—=90 Jo

Perhaps a simpler characterization is the following.

Proposition 3.1.3 ([18, Proposition 1.2.2]). A strongly measurable function f:Q — X
is Bochner integrable with respect to p if and only if

f 1l dyt < .
(9]

In this case we have

f] < e

Proof. To prove the sufficient condition let f be a strongly measurable function such
that {, | f|x < oo, then by definition there exists a sequence of simple functions (gn)n>1
such that g, — f pointwise. We can define a new sequence of simple functions by

Jr = ga<2) 119>

which converge to f pointwise as well. Since | f,,| < 2|f| and each f, is simple, by the
dominated convergence theorem we get that

i, [ 17~ fulx du=0.
n— Q

For the necessary condition let (g,)n>1 be a sequence of simple functions as in definition
3.1.2. Then for n large enough we get

f|\f|du<f \f—gnndwj lgu] dpt < 0.
Q Q Q

O]

The Bochner integral allows us to easily generalize many classical function spaces.
For example, the vector-valued LP-spaces, where we say that two strongly measurable
functions f : 2 — X and g : Q — X are in the same equivalence class if f(w) = g(w) for
p-almost all w € €.
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Definition 3.1.4. For 1 < p < o, we denote by LP(Q; X) the space of all strongly
measurable functions f : £ — X such that

f 112 du < .
[9]

For p = o, we denote by L*(; X) the space of all strongly measurable functions
f:Q — X for which there exists 7 > 0 such that u(|f| =) = 0.

Endowed with the norms

1/p
o = ( L 1715 du) and o) = esssup £l
we

the spaces LP(2; X), 1 < p < o are Banach spaces.

Before we define the vector-valued Fourier transform, we will introduce the vector-
valued Schwartz class and tempered distributions. All these notions are straightforward
modifications of their scalar counterparts, but we gather them here for the sake of clarity.

Definition 3.1.5. The Schwartz class of X-valued functions on R” is the space

SR™ X) = {f € CPR% X) 5 |flag i= |2 = 2°5° f(@) |pounszey < 0, Ve, B N}

The space of X-valued tempered distributions is defined by
S’ (R™ X) := L(S(R"); X).

Denoting by D(R"™; X) the space of X-valued smooth function with compact support
on R™, and the space of X-valued distributions D’(R™; X)) analogous to the tempered
distributions, we have the usual inclusions

DRY; X) - S(R™ X) and S'(R™X)— D'(R"; X).
Definition 3.1.6. An X-valued tempered distribution u € S'(R™; X) is called regular if
there exists a strongly measurable function f : R™ — X such that

u(p) = o f(@)p(z)dz, for all p e S(R™).

Note that, in particular, every Bochner integrable function f € L'(R"; X) defines a
regular distribution uy € S'(R™; X') by the identification

uplp) = | fle)elz)de, o e SERY).

By abuse of notation, we continue to write f to denote the regular distribution wuy.
We now have set the framework to define the vector-valued Fourier transform.

Definition 3.1.7. Let X be a complex Banach space. Given f € L*(R"; X), the Fourier
transform of f, F : LY(R™; X) — L®(R"; X), is defined by

~

F(f)(E) = f(§) = (zx)e M= dz, £ e R™

R
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Restricted to the Schwartz class S(R™; X), the Fourier transform is an isomorphism
whose inverse is given by

~

F Y () = flz) := . f(&em=ede, e R™.

And this property extends to the space of X-valued tempered distributions when we
define the Fourier transform here via duality. Given u € §’'(R"; X') we define the Fourier
transform of u by

Fu)(f) == u(F(f), [feSRY).

Many of the L!-properties of the scalar-valued Fourier transform continue to be true
in the vector-valued case, but in general the L?-results fail unless X is a Hilbert space.
For example, Plancherel’s theorem is essential in order to extend isometrically the scalar-
valued Fourier-Plancherel transform from L!'(R™) n L*(R") to L?*(R"™). However, the
same construction cannot be applied in the general vector-valued case since Plancherel’s
theorem only holds for Hilbert-valued functions. Furthermore, the following theorem is
true.

Theorem 3.1.8 ([18, Theorem 2.1.18], Kwapieii). For a Banach space X the following
assertions are equivalent:

i) the Fourier-Plancherel transform estends to a bounded operator on L*(R™; X);

i1) X 1is isomorphic to a Hilbert space.

3.1.2 R-boundedness and operator-valued Fourier multipliers

When trying to extend the Mikhlin multiplier theorem to the vector-valued setting we
encounter a similar problem.

Definition 3.1.9. Let 1 < p < o and let X and Y be complex Banach spaces. A
function m € L*®(R™; L(X,Y)) is called an operator-valued LP-Fourier multiplier if the
Fourier multiplier operator

Ton(f) := F Ymf), feSER"X),

extends uniquely to a bounded operator on LP(R™; X). In other words, T,,(f) € LP(R™;Y")
and there exists C' > 0 such that

1T ()l ze®nyyy < Clflorwe;x), feSR™X).

Note that the operator T),, : S(R"; X) — S'(R™;Y) is well defined because for f €
S(R™; X) the multiplication mf € L*(R";Y) defines a regular distribution in &'(R™;Y).
In particular, if X =Y is a Hilbert space J. Schwartz proved the following theorem.

Theorem 3.1.10 ([22, Theorem 1.6]). Let X be a Hilbert space. Assume that for the
function m € C*(R\{0}, L(X)) the sets

{m(u) : weR\{0}} and {um'(u) : uweR\{0}}

are bounded in L(X). Then the Fourier multiplier operator T,, extends to a bounded
operator on LP(R; X) for 1 < p < .
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Unfortunately, as in the case of the Fourier-Plancherel transform, G. Pisier proved
that if this theorem holds for a Banach space X, then X is isomorphic to a Hilbert
space. Consequently, if we want a more general multiplier theorem for a wider class of
multipliers and Banach spaces we need to change some assumptions. We will devote the
rest of this section to introduce the framework to state Weis’ operator-valued Mikhlim
multiplier theorem.

Definition 3.1.11. A Banach space X is called a UMD-space if the Hilbert transform

ERTI § f(y) ,
HO) = i Jo i res@X)

extends to a bounded operator on LP(R; X) for 1 < p < o0.

Definition 3.1.12. Let X and Y be Banach spaces. A family of operators F < L(X,Y)
is called R-bounded if for some p € [1,00) there exists a constant C' > 0 independent of
N = 1 such that we have

N N
Z enTnxn Z Enln
n=1 n=1

for any finite choice of x1,...,xy € X and T, ..., Ty € F, where {e,}2_; is a sequence of
independent, symmetric {—1, 1}-valued random variables on .

<C
LP(QY)

Lpr(;X)

The definition of R-boundedness is independent of p € [1,00), i.e. if F is R-bounded
for some p € [1,0), then it is for all p € [1, 00), this follows from the Kahane-Khintchine
inequality below.

Proposition 3.1.13 ([19, Theorem 6.2.4]). Let (¢,)n>1 be a sequence of independent,
symmetric {—1,1}-valued random variables on Q. Then for all 0 < p < q < 0 and all
finite sequences {l’n}g:l i any Banach space X, we have

N N
2, Enn 2, Endn
n=1 n=1

for some constant kg, > 0.

S Kgp
La(Q;X)

LP(Q:X)

Although the constant C' in definition 3.1.12 depends on p, for most purposes there
is no need to distinguish the p-dependence. The next two propositions are included to
get a general feeling of the relation between R-boundedness and Hilbert spaces.

Proposition 3.1.14. If F <€ L(X,Y) is a R-bounded family of operators, then F is
uniformly bounded.

Proof. 1t is a simple matter of checking the definition 3.1.12 for N = 1. If ¢ is a
symmetric {—1, 1}-valued random variable on 2, then

el o) = (EBle[)'P = (1PP(e = =1) +| = 1]PP(e = 1)) =1,
and therefore for every x € X and T' € F we have the uniform bound

|Tx]y = |eTe| ry) < lez]rox) = l]x-
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The converse is true if X and Y are Hilbert spaces.

Proposition 3.1.15. Let X and Y be Hilbert spaces. Then F < L(X,Y) is R-bounded
if and only if F is uniformly bounded.

Proof. We already proved the sufficient condition. For the necessary, let p = 2. Recalling
that the norm in a Hilbert space comes from an inner product we obtain that

N 2
Z endn®n
n=1

2

N N N
Z enTnxy = EQ(Z 5nTn~Tn| Z 5nTnxn)Y
Y n=1 n=1

n=1

=Eq
L2(QY)

N N
= Z Eqeie;(Tiwi|Tjz;)y = Z Eq| TnzalY
ij=1 n=1

N N
<C Z Eq|z.|% = C Z Eqeiej(@ilz;) x

n=1 ij=1
N N N 2 N 2
= CEQ(Z Enn Z entn)x = CEq Z enZnl| =C Z Enln ,
n=1 n=1 n=1 X n=1 L2(;X)

where we used that since the random variables {sn}fy:l are independent,
EqeiEqe; =0 ifi 4y
Eoee; = > L
Eqe; =1 ifi = j.
O

We can finally state the main theorem of this section, L. Weis’ celebrated vector-
valued multiplier theorem.

Theorem 3.1.16 (|22, Theorem 1.10]). Let X and Y be UMD spaces. Assume that for
m e CL(R\{0}, L(X,Y)) the sets

{m(u) : ueR\{0}} and {um/(u) : ueR\{0}}
are R-bounded. Then the Fourier multiplier operator
Tn(f) = F 7 (mf), feSER;X)

extends to a bounded operator T,, : LP(R; X) — LP(R;Y") for all p € (1,0).

3.2 Interpolation theory

In this section we introduce interpolation couples, and look more closely to real and com-
plex interpolation. However, we do not intend to cover more than the essential properties
for the self-containment of this work. For a more extensive study of Interpolation theory
we refer the reader to [26], [33] and [18], which constitute the basis of this introduction.

Definition 3.2.1. A couple of Banach spaces (X,Y") is said to be an interpolation couple
if both X and Y are continuously embedded in a Hausdorff topological vector space V.
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Proposition 3.2.2. If (X,Y) is an interpolation couple, then the spaces

XnY:={veV :veX and veY}
X+Y:={veV :v=x+y with ze€X, yeY}.

are Banach spaces with the respective norms

v xny :=max{[v]|x, [v]y}, (32)
lolx+y == inf Alz]x +fyly}-
Y=v

zeX, yeY

Proof. We start with X nY. It is evident that ||- | x~y defines a norm, and we only need
to show completeness. For this purpose let (v,)n>1 € X n'Y be a Cauchy sequence.
From the definition of the norm it follows (v,,),>1 is a Cauchy sequence in X and Y as
well, therefore there exist limits in X and Y respectively. However, since X and Y are
continuously embedded in a Hausdorff space V, the limits coincide, where we will denote
the common limit by v. We thus have that v,, — v both in X and Y, and consequently
also in the intersection X n'Y.

For | - |x+y the only non-trivial norm property is point-separation. Assume
|vn|x+vy = 0, since the norm is taken as an infimum there exist sequences (2, )p>1 € X
and (yn)n>1 < Y such that v = x, + y, for all n € N and |z, | x + [|yn|]ly — 0. However,
X and Y are continuously embedded in the Hausdorff space V, v = x,, + y, — 0 in
V, thus v = 0. Recall that completeness is equivalent to every absolutely convergent
series in X + Y converging in X + Y. Let (v,)n>1 € X + Y be absolutely convergent
D=1 |vn]x 1y < 00. By the infimum in the definition of the norm, we can find sequences
(n)n=1 € X and (yp)n>1 S Y such that

Up =Tp +Yn and |zplx + lynlly <27 + |onlx+y, neN.

This gives that both >} _, [z, |x and Y}, [yally are absolutely convergent sequences of
the Banach spaces X and Y respectively, thus the limits z = >, _; x, and y = >} - yn
exist. Defining now v, = x + y, we get that

N
v — Zvn = Z Tn + Yn <27N+ Z HUnHX+Y7
n=1 X+Y n=N+1 X+Y n=N+1
therefore letting N — o0 we conclude that v = >} _; v, in X +Y as desired. O

Definition 3.2.3. Let (X,Y’) be an interpolation couple. An intermediate space is any
Banach space E such that
XnY >FE<—X+Y.

Interpolation theory is the study of spaces that are in certain sense intermediate to
X and Y. To begin with, we would like to guarantee that continuous functions in X
and Y are also continuous in any intermediate space E. The precise meaning of this is
contained in the following definition.

Definition 3.2.4. Let (X,Y) be an interpolation couple. An interpolation space be-
tween X and Y is any intermediate space F such that for every linear operator T :
X +Y — X +Y whose restriction to X belongs to £(X) and whose restriction to Y
belongs to L(Y'), then T}E € L(E).
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3.2.1 Real interpolation

Given an interpolation couple (X,Y) we will define real interpolation spaces by the
K-method which assigns to each § € (0,1) and 1 < p < 00 an interpolation space Xg ,,.
Fort > 0 and v € X +Y we define the K-functional:

K(t,v; X,Y):= inf {|z|x +t]y]|v}.
v=r+y
reX, yeY

If it does not lead to confusion we will simply write K (¢, z) instead. Note that K(1,-) =
| |lx+y and K(¢,-) is a norm in X + Y for every ¢ > 0, equivalent to | - | x4y

Definition 3.2.5. Let 0 € (0,1), 1 < p < c0. We define real interpolation spaces as

dt
Yo, i ={ve +Y  :t—t t,v) € 4 ),
X, Y)op X+Y 'K LP(Ry, —

endowed with the norm
. —0
ol kv, = 1K 0) o, ) (3.4)

These are indeed interpolation spaces between X and Y. Givenv e X +Y and ¢t > 0,
from the inequality

min{1, t}[v]x 4y < K(t,v) < min{l, t}v]x~y

and the independence of the norms ||-| x~y and |-||x+y from ¢ it is inferred that (X,Y)g,
is an intermediate space

XY = (X,Y)s, — X +Y. (3.5)

Consider now a linear operator T' : X +Y — X +Y such that T|, € £(X) and
T‘Y € L(Y) with norms
ITzxy=Ax and [Tz = Ay.

Without loss of generality we can assume Ay + 0. Fix v € (X,Y)p, and take z € X,
y €Y such that v =z +y. If t > 0, then

Ay
(Taly +d7yly < Ax (Jels + 55tluly ).

or equivalently

A
K(t,Tv) < AxK <Yt,v> .
Ax

Using this inequality we can show that T‘ (XY )0 is continuous
’ P

* e (® A Pt
p _ -0 D —6 Y
HTU”(X,Y)QJ, = L [t K(t,Tv)] ; < Jo [t AxK (tAX,v>] -

Ay \ % _o p ds (1=0)p 40p) 1P
= Ax (AX> L [sT"K(s,v)] o = Ax AV vllixy,

0,

Where we used the change of variable s = tAy/Ax. In conclusion, T ‘ (XY, ©
’ P
L((X,Y)p,) with norm
1-6
1Tl cx v, < A% A% (3.6)
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Remark 1. In particular, let y € X nY and take the operator T': K+K — X +Y such that
T: X+ Ay in (3.6). If we follow the same prove by choosing Ax = Tk y) = lly]x
and Ay = |T[zxk,y) = |yly instead we get the inequality

19l cxvyon = 1Tl xv)0n < COIE WIS, yeX Y.

Proposition 3.2.6. Let§ € (0,1) and 1 < p < 0. The real interpolation space (X,Y )y
is a Banach space endowed with the norm (3.4).

Proof. Take a Cauchy sequence (vy,)n>1 in (X,Y)p,, we can denote the limit of (v, )n>1
in X +Y as v. Given € > 0, choose N > 1 such that |v, — v (xy),, < € for all
n,m>= N. If m>=n > N we can apply the triangle inequality

(e 7) e (] 1m0 =) "’

0 0

o0 o dt 1/p
<eto—valewr ([ @)
0

where in the last inequality we applied the property K (t,y) < max{l,¢}|y[ly+x. Since
U — v in X +Y when m — o we get that

lv—vnl(xy),, <€ foral n=N,

with N sufficiently large, thus (v, )n>1 converges to € (X,Y)g,, in (X,Y ), as desired.
O

Since both X* and Y* are continuously embedded in (X nY')*, taking as the ambient
Hausdorff space V = (X nY)* we see that (X™*,Y™) is an interpolation couple. Therefore,
the following characterization of duality of interpolation spaces is rather expected.

Theorem 3.2.7 ([26, Theorem 1.18]). Let 1 <p < oo. If X nY is dense in X and Y,
then for each 6 € (0,1) we have

1 1
((X, Y)g’p)* = (X*,Y*)gm/, where 5 + ]? =1.

3.2.2 Complex interpolation

The construction of complex interpolation spaces is less intuitive than real interpolation,
but nevertheless they will be very useful to treat fractional exponents of operators. Take
the open strip S in the complex plane

S:={zeC : 0<Rz<1},

and let S be its closure.

Definition 3.2.8. We denote by F(X,Y) the complex vector space of all functions
f:S— X +Y such that

(i) FEH(S; X +Y)nCy(S; X +Y);

(i) t— f(it) € Ch(R; X), t — f(1 + it) € Ch(R;Y);
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(iii)

| fl7x,yy = max{sup | f(it)| x, sup [ f(1 + it)[y} < co. (3.7)
teR teR

As expected, F(X,Y) is a Banach space endowed with the norm (3.7). However
for its proof we will need the maximum principle for strips in general Banach spaces
X. Remember that the scalar-valued maximum principle stated that if f is a nonzero
holomorphic function on a bounded connected open subset 2 of the complex plane C,
continuous up to the boundary of 2, taking complex values then |f| attains its minimum
value on the boundary of 2. We state the generalization of the theorem for general
complex Banach spaces in the following lemma.

Lemma 3.2.9 (Maximum modulus principle for strips). Let f : S — X be holomorphic
in S and continuous in S. Then

£ ©)lx < maX{StuBIg ||f(i7f)HX,iqu§ [f(1+it)|x} for every &€8S.

Proof. We will start by proving it for a general bounded open connected subset (2 of
the complex plane C. The proof relies on writing the theorem in terms of a general
scalar product. From the Riesz theorem we know that there exists x* € X* such that for
every & € 0 we can write | f(€)|x = {f(£),z*) with ||#*||x* = 1. The complex function
z — {(f(z),z*) is nonzero, holomorphic on Q and continuous on €2, we can thus apply
the maximum principle to get that

7€)l = KF€), ™) < max [(f(2), 2] < max | f(2)x, €€t

The proof for unbounded strips .S follows analogously applying the Hadamard three-lines
theorem instead. O

Proposition 3.2.10. F(X,Y) is a Banach space endowed with the norm (3.7).

Proof. Take (fy)n>1 a Cauchy sequence in F(X,Y). Let £ € S, by the maximum mod-
ulus principle for strips 3.2.9 we have the bound

1Fa(€) = Fn(©)lx 1y < max {iz%é’ [ = Fu)i8)lx sy sup | (fo — fi) (1 + z’t>|x+y}

teR

teR

= an(f) - fm<§)“]-'(X,Y)

Thus for every £ € S there exists f(§) = limyo fn(§) in X + Y. Since the limit is
uniform f € H(S; X +Y) n Cy(S; X +Y) and consequently f € F(X,Y). Moreover,
t — fn(it) and t — f,(1+it) converge in Cy(R; X) and C(R;Y') respectively, so f,, — f
in F(X,Y) as desired. O

< max {sup I = S0, sup (5 = F) 1+ z‘tw}

Definition 3.2.11. Let 6 € [0,1]. We define complez interpolation spaces as
[X,Y]o :={f(0): feF(X,Y)},
endowed with the norm

leliaty = _inf | Iflmcer) (33)

fO)=2
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They are indeed interpolation spaces between X and Y and the proof is analogous
to the real case. We will start by proving that they are intermediate spaces.

Lemma 3.2.12. Let 6 € (0,1), then
XnY S [X,)Y]p—X+Y.

Proof. For the first embedding consider x € X n'Y, the constant function f(z) := =
is obviously holomorphic in S and bounded in S with ¢ — f(it) € Cy(R; X) and t
f(l+it) e Cp(R;Y), thus fe F(X,Y) and f(f) = z € [X, Y]y with

lzlixy1e < IflFeeyy < max{fe]x, |zly} = l2lxay-

For the second embedding take = € [X,Y]y, then by definition there exists f €
F(X,Y) such that f(0) = x. By the maximum modulus principle for strips 3.2.9:

\MWX+Y'<\UT%HX+Y’<1naX§%ng@®HX+Y7iﬁgﬂfﬂ~+iﬂﬂx+y}
S €

< max{sup | f(it)|x, sup [ f(1 +it)|v} = |l vy,
teR teR

taking te infimum of all admissible f € F(X,Y") gives the continuous embedding X +Y
[X7 Y]O O

Theorem 3.2.13. Let 0 € (0,1). The spaces [X,Y |g are interpolation spaces.

Proof. Consider a linear operator 7" : X + Y — X + Y such that T‘X e L£(X) and
T‘Y € L(Y) with norms

ITlzx)y=Ax and [T|zyy = Ay

Without loss of generality we can assume Ax, Ay £ 0. If = € [X,Y]p, then there exists
feF(X,Y) such that f(0) = x. We are going to define g: S — X +Y by

g(z) = (fé)z_e Tf(z), zeS.

Defined this way g is bounded in the boundary of the strip S:
< AYPAG Ax| f(it) | x = A AV fl1x

Ay )0 '

<Ay) Tf(it) .
1+it—0

<‘2§) Tf(1+it)

=AY AV F (L + ity

lg(it)|x <

0 . (3.9)
< AVOAST Ay | £ (1 +it) |y

Y

lg(X + i)y <

Since f € F(X,Y) and T is continuous, g € F(X,Y). And the above norms imply that
l9llFx,y) = max{sup |g(it)[x, sup |g(1 + it)]v}
teR teR

< Al A maxcfsup | £(it) . sup |F(1+ )y} = AP AL flrcr.
€ €
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Moreover, g(0) = Tf(0) = Tz, so Tx € [ X, Y]y with norm

1Tzl x,y), = fe]_i_?)g - 1l 7xyy < lglFeeyy < A PAY | flre-

f(O)=x

Taking the infimum over all f € F(X,Y’) we conclude that T‘[X ¥, € L([X,Y]p), with
norm

IT) e < Ax PAY

O

We can generalize the above proof by considering the domain and range of the
bounded linear operator 1" belonging to two different interpolation spaces to obtain
the following stronger statement.

Proposition 3.2.14. Let (Xg, X1) and (Yp, Y1) be two complex interpolation couples. If
a linear operator T : Xo+X1 — Yo+Y) belong to L(X;,Y;) for j € {0,1}, then the restric-
tion of T' to the complex interpolation space [Xo, X1]o belongs to L([Xo, X1]e, [Yo, Y1]e)
for every 6 € (0,1). Moreover,

1T 20 X000, v110) < (T 2cxoxe) " 2 UT e xn))’-

Proof. Follow the proof of theorem 3.2.13 taking Ax = T z(x,,v,) and Ay = || z(x, 1)
instead.

We can now prove that complex interpolation spaces are Banach spaces.

Proposition 3.2.15. Let 6 € (0,1). The complex interpolation space [X,Y |y is a Ba-
nach space endowed with the norm (3.8).

Proof. Take an absolutely convergent sequence (zy,)n>1 in [X,Y]y. For every z;,, we can
find g, € f(X, Y) such that gn(e) = zp and HgnH}"(X,Y) < ||$’|[X,Y]9 +27". Then (9n)n21
is absolutely convergent in F(X,Y) and let g = >, g, be the limit. If we define
x = g(0), we have that

0 0 0
—-N
=Y <| Y o <2+ Y Jealpor:
n=0 [X7Y]0 n=N+1 ]:(ny) n=N+1

which from absolute convergence of (z,,)n>1 converges to 0 when N — 0. We conclude
that © = >,z in [X,Y]y. O

The following simple properties are a direct consequence of the definition of complex
interpolation spaces and give us a flavor of how they work.

Proposition 3.2.16. Let 6 € (0,1) and 0 < 61 < 03 < 1, then
(i) [X.Y]p = [Y, X]1-0;
(ii) if X =Y, then [ X, X]p = X;

(111) if Y < X, then [X,Y]g, — [X,Y]q,-
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Proof. For (i) note that f € F(X,Y) if and only if f(1—-) € F(Y, X), with equal norms

—  inf i)l x. 1+ it
el = ot e {sup (i) sup 171+ i)l
f(0)=z
= inf max<sup|f(1—it)|x,sup|f(—it }: x .
oHn fsup 170 = 0. sup 1Dl = lelivon

For (i7) we use the maximum modulus principle for strips 3.2.9. Take x € [X, X ]y, then
theres exists f € F(X, X) such that f(f) = z and

|zl x = [f(0)llx < max{sup | f(it)|x,sup | f(1 +it)|x} = | flFxx)
teR teR

taking the infimum of all such f € F(X, X) we obtain |z|x < |z]x x],- For the reverse
take x € X, then the constant function g : z — z with z € S is in F(X, X) with g(0) = =
SO

Izl x,x1, < l9l7x,x) = |7]x-

For (iii) we claim that if X < Y then [X,Y]g, — [X,Y]s,. Take z € [X,Y]q,, then we
can choose f € F(X,Y) such that f(6;) = x and

Ifl7ex,yy < HJ«"H[X,Y]Q1 +e.
Let A :=01/02 < 1, then 0; = A0y and we define the function
9(2) = f(B22)e" ).
We have that g € F(X,[X,Y]y,) since
. . _ 422
sup [ g(it)| x = sup | £(it)e" " | x < e[ fllrxy),
teR teR

< ef|flrxy)

. . i 2_\2
sup [g(1 + it) | x.y,, = sup |£(02 + it)e? 0Ny
teR teR

thus
l9l7exxv10,) < € (Izlxyy,, +2)-

Note that if X < Y, then X — [X,Y ]y, and consequently
[X, [X, Yo, Ix = [[X, Y]y, [X, Y]o, 11 = [X, Y],
where the last equality follows from (ii). Now since g(\) = f(61) = z, the claim follows
Izl v10, < 12lix 10,10 < 1917 x0v0,) < 121y, -
Finally, if Y « X we can use the claim and (i) to prove the proposition

[X7 Y]92 = [Y7 X]1*92 - [Y7 X]1*91 = [X, Y]92'
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3.2.3 Interpolation with domains

To finish the section on interpolation we will include some tools to construct interpolation
spaces with domains. They are included in a rather abstract setting following [23] in
order to apply it for the construction of Bessel and Besov spaces in section 3.3, as
well as to characterize the domains of the fractional Stokes operator, corollary 4.3.6, by
retraction and coretraction arguments.

Definition 3.2.17. Let X and Y be two Banach spaces. An operator R € £L(X,Y) is
said to be a retraction if there exists an operator S € L(Y, X)) such that

RS=1 in L(Y)Y),
holds. In this case, S is said to be a coretraction.

The following theorem will allow us to characterize unknown interpolation spaces in
terms of known ones via retraction/coretraction arguments.

Theorem 3.2.18 ([23, Lemma 5.3]). Let (Xo,X1) and (Yo,Y1) be two interpolation
couples and let Xg = [Xo, X1]g and Yy = [Yy, Y1]g for a given 0 € (0,1). Let

S e E((Yo, YI), (Xo,Xl)) and Re€ E((Xo,Xl), (}/0, Yl)),

be operators such that the restrictions S € L(Y;, X;) are coretractions, with corresponding
retractions R € L(X;,Y;) and RS = I onY; for j € {0,1}. Then SR defines a projection
on Xg and R is an isomorphism from SR(Xy) onto Yy with inverse S. Moreover, the
following estimates hold

Cs'15ylx,

lyly, < CrlSylx,, v e€ Yo,
C}ElquHYo <

CsﬂRxHyg, T € Xg

AN/

Iz x,
where Cr = maxXje(o,1} |\R||£(Xj,yj) and Cs = maxje(g 1 |‘SH£(Xj7yj).

Proof. Since RS = I in both Yy and Y7, from the definition of complex interpolation
it is clear that RS = I in Yy as well, and consequently (SR)?> = S(RS)R = SR is a
projection. The upper bounds follow from proposition 3.2.14. To finish the proof it
suffices to show the lower bounds, which for the coretraction S is an easy calculation

lylly, = 1RSYly, < CrlSylx,, veYe,
and for the retraction R note that if z := SRu e SR(Xy), then
|z|x, = |SRSRu|x, < Cs|RSRully, = Cs|Rz|y,-
O

In particular, theorem 3.2.18 is very useful to treat interpolation spaces with bound-
ary. We will start with some notation.

Definition 3.2.19. Let F — D'(R"; X) be a Banach space. We define the factor space
to an open set 2 € R" as

F(Q):={feD'(R";X) : IgeF, f=g|y},

and the norm

| e() = nf{lglr : gl, = f}-
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Definition 3.2.20. We say that E is an extension operator for F(Q) if
i) for all f e F(Q), (Ef)|Q = f;
ii) E: F(Q2) — F is bounded.

We can now prove the main theorem of this section.

Theorem 3.2.21 ([23, Lemma 5.4]). Let F°, F' — D'(R™; X) be two Banach spaces.
For 6 € (0,1) let
F9 = [F° F1,.

Let Q € R™ be an open set and define the factor F(Q) as in definition 3.2.19. If there
exists an extension operator E for F*(Q2) for s € {0,1}, then

[FO(Q), F'(Q)]y = F*(Q)
and there exists C' only depending on the norms of the extension operator such that
C S lro) < 1fliro),rr@s < 1flFo)-
Moreover, E is an extension operator for F?(Q).

Proof. The exists an extension operator F for F'*(Q2) for s € {0, 1} by hypothesis, hence
we can define the retraction R : F¥ — F*(Q) by Rf = f ’Q and corresponding core-
traction S : F*(2) — F* by S = E. Both operators are bounded by construction with
|R| <1 and ||S| < C, where C is the boundedness constant of the extension operator.
From theorem 3.2.18 we get that if f € [F°(Q), F1(2)]y, then

C NS lpo) < CTHEFlpo < |frog), ),
Conversely, if f € F?(Q2) we can choose g € F? such that Rg = g‘g = f and we get

I lFo),rrs < l9lFo,r1, < l9lpe,

taking the infimum over all g the inequality follows. To prove the assertion note that the
extension operator F : FG(Q) — FY is bounded by the above inequalities. Moreover, for
f e F°(Q) n F1(Q) the extension operator (Ef)|Q = f by hypothesis, and this extends
to all F%(Q) by density [33, Theorem 1.9.3]. O

3.3 Function spaces

We assume the reader is familiar with distributions and Fourier transform results on the
scalar-valued setting, for a general reference consult [9].

Recall that the derivative of a tempered distribution f € S’(R™), with respect to a
multiindex « € N”, is defined via duality

(p,0%f) = (=1)N%, f), e SR

A tempered distribution f is called regular if there exists a measurable function g such
that

lp, )= J;W g(z)p(x) dx, for allp € S(R™).
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In particular, every f e L'(R") defines a regular distribution u ¢ setting

o= | alota) do.
If there is no room for confusion we will denote uy by f. Finally, if the distributional

derivative of a tempered distribution is regular, we call 0 f the weak derivative of f.

Definition 3.3.1. Let m € N and 1 < p < 0. We define the Sobolev space of m-times
weakly differentiable, LP-integrable functions in R™ as

W™P(R") := {f e S'(R") : 0*f e LP(R") for alla e N" : |a| < m}.
It is a Banach space equipped with the norm

|flwmany = >, 107 fl o gn)-

lal<m

We can define Sobolev spaces in smooth domains 2 € R” directly by substituting
the tempered distributions for general distributions

W™P(Q) = {feD'(Q) : °fe LP(Q) for alla e N” : |a| < m}. (3.10)

However, in the hydrostatic Stokes equation we will be treating a non-smooth domain
where we are interested in requiring boundary conditions to our functions. With this in
mind, it is simpler to define our function spaces in domains through extension/restriction
operators.

Definition 3.3.2. Let m e N and 1 < p < 0. Let 2 € R" be an open set. We define
the Sobolev space of m-times weakly differentiable, LP-integrable functions in (2 as

W™P(Q) == {f e D'(Q) : 3ge W™P(R") with g|, = f},
where the extension is taken in the distributional sense.

Although for bounded C*°-domains both definitions coincide for Sobolev spaces, for
more complicated spaces we cannot expect an inner description of the type (3.10) to
exist [34, Section 3.1.2]. Every smooth compactly supported function has clearly an
extension to the real space, and we have the embeddings

D(Q) — W™P(Q) < D'(9).

The completion of smooth functions C°(Q2) on the | - [[yym»q)-norm provides us with
the space of Sobolev functions with trace zero

W) = CE(@) e,

which is in general different from W"™P(§2). This notation allows us to define negative
order Sobolev spaces via duality in the following way.

Definition 3.3.3. Let me N and 1 < p < o0. Let 2 € R" be an open set. We define
the Sobolev space of order —m and integrability p’ on € as

, 1 1
WP = (WP())*,  where . + v =1
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Definition 3.3.4. Let m e N, s € (m,m + 1) and 1 < p < c0. We define the fractional
Sobolev space or the Sobolev-Slobodeckij space W*P on R™ as the real interpolation space

WEP(R™) := (W™P(R"™), W TLP(R™))g,, with 6§ = s — m.

We can define Sobolev-Slobodeckij spaces in domains through factors as in theorem
3.2.21 as long an extension exists for WP(R") and W™*LP(R™). Note that this char-
acterization coincides with definition 3.3.2. We can take a complex interpolation instead
of a real one and define the following space.

Definition 3.3.5. Let me N, # € (0,1) and 1 < p < c0. We define the Bessel potential
space of order s = m + 6 and integrability p in R" as the complex interpolation space

HPP(R™) = [W™P(R™), WP (R™)],.

As for Sobolev-Slobodeckij functions, we can define Bessel potential spaces in do-
mains through extension operators. Moreover, if the domain is good enough we can
impose boundary conditions.

Definition 3.3.6. Let Q2 < R" be a bounded C*-domain. Let {B; }?ZO be a finite family
of k € N differential operators on 0f2 such that

Bif(z) = )] bja(@)(df)|,g, for j=0,1,..k, (3.11)

lal<y

where b; , : 02 — R. For s > 0 and 1 < p < o0 the Bessel potential spaces with boundary
conditions (3.11) are defined as

S S y 1
i (9) = {feH’p(Q)  Biflog =0 for J+p<8}‘ (3.12)

For the proper meaning of trace in Bessel spaces we refer the reader to section 3.4.
Following Hieber’s notation [15], a smooth function f : [0,1]" — R is said to be
periodic of order m if
o f o f
al‘ia(xl’ ooy Li—1, 07 Tit1s -0 J:n) = axia(l‘la sy Li—1, 17 Tit1s -0y xn))
for every ! = (21, ..., Ti—1, Tit1, ., Tn) € [0,1]"71 all || < m and 1 < i < n. However,
with the above notation we can extend periodicity to Bessel functions by choosing an
adequate family {B; }fzo of differential operators on 0f2.

Definition 3.3.7. A Bessel function f € H*P([0,1]") is said to be periodic of order |s|
if fe HZP([0,1]™) where
B = {(&af)]{xizo} — (8af)]{xi:1}, i=1,2,...,n, |af <2s}.

Finally, the complex interpolation of Bessel functions on domains with boundary
conditions is again a Bessel function as expected.

Theorem 3.3.8 ([33, Section 4.3.3]). Let < R™ be a bounded C*-domain. Let the
famaly {Bj}le be as in definition 3.3.6. Let m >k, 1 <p <o and 0 € (0,1). Then

(L9, () = HE (@), j+ < mé.
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Definition 3.3.9. Let m e N, s € (m,m + 1) and 1 < p,q < c0. We define the Besov
space B, , on R™ as the real interpolation space

B, (R") := (W™P(R"), Wmﬂ’p(R"))g’q with 6 = s —m.
Moreover, we can define them for negative exponents as
Bz;fq,(R”) = (B, ,(R™))*.

Attending to theorem 3.2.7, we can rewrite the dual spaces of real interpolation
spaces by developing

Bp—/:sql(Rn) _ [( m,p’(Rn),WerLp/ (Rn>)6,q’]*
= (W @), (W @) (3.13)

0,q
= (W™P(R™), WL (R™))g

Therefore, for me N, s € (m,m+ 1) and 1 < p,q < 0, the Besov space of order —s < 0
in Q€ R" is

B2, (Q) = (W ™P(Q), W ™" 1P(Q))g, with 6 =s—m,

?'.q

as long as extension operators exist for W~=""?(Q) and W~""12(Q).

3.4 Traces

Given a bounded Lipschitz domain €2, boundary values of smooth functions can be point-
wise defined as continuous functions in 0€2. However, for LP-functions the restriction to
the boundary does not make sense in the usual way. In the following chapter we are going
to introduce a short overview of how functional analytical methods can be employed to
overcome the problems of defining traces of Sobolev spaces. Although the text is largely
based in Sohr’s book [31] difficult proofs of important theorems, avoided in the text for
simplicity, are cited properly through the chapter.

We start by extending the concept of trace for continuous functions to Sobolev func-
tions.

Theorem 3.4.1 ([1, Theorem 7.39]). Let Q@ < R™, n > 2, be a bounded Lipschitz domain.
Let 1 < p <o and m € N. Then there exists a bounded and surjective operator

m—1
F : Wm’p(Q) — Bp,p p(&Q) (314)
U — Tu
such that
Tu =y, for allue C*(Q). (3.15)

We call this operator the trace operator.

Notation (3.15) is used for all u € W™P(Q) as long as it does not lead to confusion.

_1
In particular, surjectivity of the trace operator implies that for every g € B;: » T (09)
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there exists at least one u € W™P(Q) such that g = u oq- Furthermore, u € W™P(Q)
can be chosen in a way such that the map

m—1
E: Bp,"(0Q) — Wm™PQ) (3.16)
g — u with g = u’aQ

is bounded. This map is called extension operator E, which by definition has the property
I'Eg=g.

Note that this is consistent with definition 3.2.20, and consequently the interpolation
spaces in domains from section 3.3 are well defined.

Remark 2. The trace operator allows us to generalize Green’s theorem initially given for

ue C®() and v e CP(Q)™:
(u|divo)g = (u|veg - v)ea — (Vulv)aq, (3.17)

where vpq is the outer unit normal on 0€). Using the density of smooth functions and
the continuity of the trace operator, we can extend the equation to u € W™P(Q2) and
v e WP (Q)", with p/ = z%’ so that (u|vag - v)aq is still well defined as a surface
integral with

m—1 .
uly € Bpp P(09) and v vl € By 7 (99). (3.18)

The trace theorem generalizes to Besov spaces following the same technique as for
Sobolev spaces.

Theorem 3.4.2 ([1, Theorem 7.43]). Let Q@ < R™, n > 2, be a bounded Lipschitz domain.
Let 1 < p,q < o0 and s > 1/p. Then there exists a bounded and surjective operator

s 1
I': By, (Q) — Bpg"(0Q) (3.19)
u — Tu
such that
Tu =uly, for allue C*(Q). (3.20)

However, when treating the hydrostatic Stokes operator we are going to deal with
regular distributions, meaning that we are interested in extending the Green’s theorem
further. Let 2 € R™ be a bounded Lipschitz domain and define

E,(Q) = {ve LP(Q)" : divee LP(Q)},

where the divergence is taken in the distributional sense. E,(2) is a Banach space
equipped with the norm

. 1
[l 0 = (0] + | divol2)'?,

and clearly W1P(Q)" < E,(Q2). We can define a generalized trace for functions in E, ().
: -2
Let u = Eg € W1 (Q) such that u’m =g€eB, () andve WLHP(Q)". Substituting
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uw and v in (3.17), using Holder’s inequality and the continuity of the extension operator
we get that

|(ulvoq - v)oal < |Eglly | divol, + [VEglylvlp < [Eglyrm g lvlp + [ divelsp)

<Clgl -z Jvlg,@ (3.21)

p'.p’

1—4
We can therefore see u — (u|vpn - v)sq as a continuous functional in Bp, pfl (0Q) for every

ve WLP(Q). In other words, (-|van - v)aq € Bp_,zl,/p(&’Q) for every v e WHP(Q). Moreover,
from equation (3.21) we can deduce that

WP(Q) - B,,"(00)

v = (-|lraq - v)aa (3.22)

is continuous in the | - || g, q) norm.
Since smooth functions are dense in E,(£2) we can extend the map (3.22) to conclude
that there exists a generalized trace operator

Ty : Ey(Q) — B, P (0Q)

such that

Tyv = (|van - v)aq  forve C*(Q)".
We will once again make use of the notation I'yv = vpq - U|6Q for every v e E,(2).

Theorem 3.4.3 ([31, Lemma 1.2.3], Green’s generalized theorem). Let Q@ € R", n > 2,
be a bounded Lipschitz domain with boundary 0. Let 1 < p < o0 and p’ = p%. Then

I
for all ue WHP(Q) and v € Ey(Q),
(u| divw)q = (ulreq - v)ea — (Vulv)gq, (3.23)

where (u|vaq - v)oq is well defined in the sense of generalized trace with

voq * U

0

—1/p 1-1
0 €BYP(0Q) and g, € Byy” (09).

3.5 Operator semigroups

Given a Banach space X and an unbounded linear operator A : D(A) € X — X, we are
interested in solving the abstract Cauchy problem

u'(t) = Au(t), tel0,T],

3.24
u(0) =z , ( )

(ACP) {

where x € X is the initial value and u : [0,7] — X the unknown solution. In this section,
we will build intuition for the framework of the solutions starting from the scalar field.
The presented notes are a summary of the classical work by Engel and Nagel [5] combined
with [4] and [19].
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The problem (3.24) has an easy answer in the scalar field X = C if the associated
operator A is a matrix A € M, (C). Here the unique solution is given by the matrix
exponential
3tk Ak

| Y
= K

etA _

which is well-defined because the truncated sums of the series form a Cauchy sequence.
Moreover, the map ¢t — e has some interesting properties:

i) for t =0, t — e is continuous;

ii) fort,s >0, t — e!4 satisfies the semigroup properties, i.e.

4 =T and el+9A4 = ¢tAesA, (3.25)

Attending to the second property, the family of bounded operators (etA)t>0 is called the
semigroup generated by the matriz A. Let us now study the behavior of the solution at
infinity. A continuous semigroup (e*4);> is called stable if

lim [e| = 0.
t—00
And Liapunov’s theorem [5, Theorem 2.10] states that for continuous semigroups gen-
erated by matrices A € M, (C), stability is equivalent to all eigenvalues of A having
negative real part. In other words, we can characterize the stability of a semigroup
through the spectral properties of its generator.

Consequently, it is not surprising that spectral theory plays a big role in the study
of solutions of abstract Cauchy problems in general Banach spaces X. We will start by
recalling some notions.

Definition 3.5.1. We call resolvent set of A, denoted p(A), to the set of complex scalars
A € C such that A— A has a bounded two-sided inverse, i.e. there exists a bounded linear
operator B on X such that Bx € D(A) for all x € X and

(A—-A)B=BW\—-A)=1.

In this case, we call B the resolvent operator associated with A and we write
R\ A):=B=(\-A)"1

The spectrum of A, denoted o(A), is defined as o(A) := C\p(A).

The following basic properties of spectrums and resolvents of unbounded operators
can be found in any introductory book to Functional Analysis, see for instance [30,
Chapters 12-13]. We gather them here without proof for the sake of clarity.

Proposition 3.5.2. Let A be an unbounded operator in X.

i) If the resolvent set p(A) is nonempty, then A is closed. Recall that an unbounded
operator is closed if whenever x, — x in X and Az, — y in'Y, then x € D(A)
and Ax = y. In particular, every bounded operator A is closed.

it) The resolvent set p(A) is open.

i11) The resolvent identity holds, i.e. if \,u € p(A), then

R(AA) — R(p, A) = (0 — A)R(A, A)R(p, A).
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iv) If A is bounded, its spectrum is contained in the open ball B(0, |Al).

For general Banach spaces X and linear bounded operators A, we can still define
exponentials through the Dunford functional-calculus for holomorphic functions. More
precisely, by the last property of proposition 3.5.2 there exists a bounded open set 2 <€ C
such that the spectrum of A is contained in 2, o(A4) € , and a suitable contour I" in
) with winding number one around every point of the spectrum o(A), such that the
integral

1

tA tz

= — R(z,A)d 3.26
i | R( ) as (3.26)
converges. Moreover, it defines a bounded operator on X and its definition does not
depend on the particular choice of contour I'. Recall that Dunford functional-calculus
is actually well-defined for every holomorphic function in the open set €2, f € H(),

through
1

" 2mi

f(A): Lf(z)R(z,A) dz.

It is an easy calculation to see that the matrix exponential defined this way is a solution
of the abstract Cauchy problem (3.24).

Proposition 3.5.3 ([5, Proposition 3.5]). Let A be a bounded operator on a Banach
space X. Let (e)i=0 be a a family of operators defined by equation (3.26). Then

i) the family (e!Y)y=0 is a uniformly continuous semigroup, i.e. has the semigroup

properties (3.25) and t — 4

ii) the mapping t — et

is continuous with respect to the operator topology

A s differentiable and satisfies the differential equation

oetd = Aetd, t>0.

Furthermore, the converse is also true. Every uniformly continuous semigroup is of
the form (e!4);>o for some bounded operator A € £(X), determined uniquely by the
derivative of the semigroup at ¢ = 0. In conclusion, if A is a bounded, the mapping
t4 is actually the unique solution to the abstract Cauchy problem 3.24.

Stability in general Banach spaces is characterized through the following notion.

t—e

Definition 3.5.4. A semigroup (7'(t)):=0 on a Banach space X is called uniformly
exponentially stable is there exists constants € > 0, M > 1 such that

IT@)| < Me™®t, t>0.
For uniformly continuous semigroups, uniform exponential stability is equivalent to
liny [7(0)] 0.

Finally, we would like to generalize solutions for unbounded operators A. Since
uniformly continuous semigroups uniquely characterize solutions to the abstract Cauchy
problem (3.24) with bounded generators A, we need a weaker notion of semigroup for
our purpose.

Definition 3.5.5. A family (7'(¢));=0 of bounded linear operators on a Banach space
X is called a strongly continuous semigroup or Cy-semigroup if it satisfies the following
properties:
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i) T(0) =1
ii) T(t)T'(s) =T(t +s) for all t,s = 0;
iii) Pn(l) |T(t)r — 2| =0 for all z € X.
The generator of the family (T'(¢))¢>0 is the linear operator (A, D(A)) given by

D(A):={re X : %g% %(T(t)x — x) exists in X}, (3.27)
Az = Jim %(T(t)x —2), zeD(A). (3.28)

It turns out that the generator (A, D(A)) is a closed and densely defined operator
uniquely determined by the Cy-semigroup. Moreover, strong continuity implies contin-
uously differentiability of the orbits ¢ — T'(t)x if z € D(A), with

T(t)re D(A) and &T(t)x = AT(t)x =T(t)Az, t=0.
Consequently, for initial values z € D(A) the function
u(t) :==T(t)z, t=0,

solves the abstract Cauchy problem (3.24).

There is a special class of unbounded operators for which the respective Cy-semigroup
can be characterized as a general form of the Dunford integral (3.26). Given w € (0, ),
a sector of angle w is given by

Yo :i={r e C\{0} : |arg(z)| < w},
where the argument is taken in (—7r, 7).

Definition 3.5.6. A linear operator (A, D(A)) is called sectorial of angle w if 0(A) < X,
and
M, := sup |zR(z,A)| < 0.
2eC8,,
We will also use the notation
Cu 1= sup [AR(z, A)|.
2eC2
We call A sectorial if it is sectorial for some angle w € (0, 7). The infimum w for which
A is w-sectorial is called the angle of sectoriality of A and denoted by w(A).

Now the exponential function can be properly defined for the w-sectorial operator A
by the Cauchy integral

1
zA zZA
= — R(A, A)dA .2

where the contour I' is taken as the boundary of a sector ¥, for some v € (w, 7).

Definition 3.5.7. A Cp-semigroup (7'(t))i>0 of bounded linear operators on a Banach
space X is called analytic on the sector 3, if for all x € X, the function t — T'(t)z
extends analytically to X, and satisfies

lim 7T'(2)x = x.

2EX,
z—0

We call (T'(t))i=0 an analytic Co-semigroup if (T'(t))i=0 is analytic on ¥, for some w €
(0,7). Moreover, if the family (7(¢)):>0 is uniformly bounded we call it a bounded
analytic Cy-semigroup.
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\ o(4)

Figure 3.1: Spectrum of a sectorial operator.

It is a simple matter of checking that the exponentials defined by equation (3.29)
form a bounded analytic Co-semigroup (e*4);=0, see [5, Proposition 4.3].

We may now state the main theorem of this chapter, it gives a characterization of
bounded analytic Cy-semigroups fundamental to solve the hydrostatic Stokes equation.

Theorem 3.5.8 ([19, Theorem G.5.2]). For a closed and densely defined operator A on
a Banach space X the following are equivalent:

(1) A is sectorial of angle w € (0,7/2);

(2) —A generates a bounded analytic Co-semigroup (T'(t))i=0 on X.

3.6 R-boundedness and bounded H*-calculus

In this section we are going to develop a functional calculus for sectorial operators taking
the Dunford functional calculus as inspiration. The main problem is that the Cauchy
integral defined for the matrix exponential in (3.29) does not necessarily give a bounded
operator if we take an arbitrary bounded holomorphic function f € H®(X%,) instead
of the exponential. Furthermore, the space of functions such that f(A) is a bounded
linear operator does not admit an explicit characterization. Here we are going to limit
ourselves to the definitions of the prerequisites to understand the H®-calculus and some
immediate properties, but the full construction is carried out in [19] and [22].

In order to ensure the convergence of the Dunford integral, the first step is to restrict
ourselves to a smaller class of functions that have certain decay properties on zero and
infinity.

Definition 3.6.1. Let 1 < p < o0 and o € (0,71). We define the Hardy space of order p
as:

HP(EU) = {f Y, —C : HfHHp(EO_) = |Sl‘1p Ht — f(eiut)HLP(R_'_,%) < OO}
vi<o

For functions f € H'(X,) is easy to see that the operator f(A) defined by the

generalized Dunford integral
1
f(A) = o f(Z)R(Z,A) dz, ve (W(A)70)7
211 0%,

is bounded. Take v € (w(A), o) arbitrary and consider the contour 0%, oriented “down-
wards” such that the spectrum of A is on the left-hand side, then we can bound the
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integral by
M,

|dz|
27t o5,

M,
H < TT:HfHHl(ZUy

[F(A)] < f(2)

Taking the infimum over all v € (w(A), o) we get that the operator f(A) is bounded

M,
If(A)] < %HfHHl(ZU)'

The next step is to restrict ourselves to H'(X,) n H*(X,) and extend the calculus
to H*(X,) by approximation arguments, if this extension is possible depends on the
properties of the sectorial operator A.

Definition 3.6.2. Let A be a sectorial operator on X and o € w(A), ). Then A is said
to admit a bounded H*(3,)-calculus if there exists a constant C' > 0 such that

[F (A< Clflws  feH (Se) 0 HO(Z,).
We define the angle of H*-boundedness as
wp»(A) := inf{o € (w(A4),n) : A has bounded H* (X, )-calculus}.

Finally, we say that A admits a bounded H*-calculus if there exists o € (w(A), ) such
that A admits a bounded H* (3, )-calculus.

The following couple of examples are going to help us understand the H*-functional
calculus and provide the basis to prove that the Laplacian in chapter 4 admits a bounded
H%*-calculus.

Proposition 3.6.3 ([19, Proposition 10.2.22]). Let 0 € (0,m) and 1 < p < . Let
(X, 9, u) be a finite measure space and m : X — C a measurable function taking

values in X, p-almost everywhere. Consider the pointwise multiplication operator My,
on LP(X) given by

M (9)(z) := m(z)d(z), ¢€LP(X), zeX (3.30)
D(My,) = {¢ € LP(X) : mo e LP(X)}. (3.31)

Then M, admits a bounded H* (3, )-calculus on LP(X).
Proof. Let z € (X, then z € p(M,,) and the resolvent
R(z, Mu)(z) = (2 — m(2)) " (z).

Take v € (w(My,),0). For fe H'(X,) n H®(X,) and ¢ € LP(X) Dunford’s integral is
well-defined with

1

F(Min)g(z) = 5| f(2)R(z Mn)o(x) d=
. 2y (3.32)
= 5= | FE)(E = m(@) o) dz = f(m(@))é()
v Joz,

for p-almost all x € X. Thus |f(Mn)| < ||f|w and M, admits a bounded H*(%,)-
calculus on LP(X). O
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Proposition 3.6.4 ([19, Proposition 10.2.13]). Let A be a densely defined, positive, self-
adjoint operator on a complexr Hilbert space H. Then A admits a bounded H™-calculus
of angle wgx(A) = 0.

Proof. By the spectral theorem for positive, self-adjoint operators [28, Theorem VIII.4],
there exists a finite measure space (X, .o, i), a measurable function m : X — [0, 00) and
a unitary transformation U : H — L?(X) such that

A=U""'M,U,

where M, is as in equation (3.30) for p = 2. Since A is injective, m is strictly positive
p-almost surely. By proposition 3.6.3, M, admits a bounded H®-calculus of angle 0
on L?(S). Finally, since bounded H®-calculus is preserved under similarity transforms
because

(z—UM, )= U U2-U M, U) = U (2 — M,) U,
we conclude that A admits a bounded H*-calculus with angle wg«(A) = 0. O

In particular, the bounded H%-calculus allows us to define the fractional powers of
sectorial operators.

Theorem 3.6.5 ([4, Theorem 2.5]). If A is admits a bounded H*-calculus on X, then
D(A®) = [X,D(A)]a forall ac€(0,1).

Similar to the case of the vector-valued Mikhlin multiplier theorem 3.1.16, in order to
derive properties of vector-valued operator families uniform boundedness is not enough
and we need to make use of R-boundedness. We will finish this section introducing
R-sectoriality and stating the relation between R-boundedness of the H®-functional
calculus.

Definition 3.6.6. A sectorial operator A is called R-sectorial if there exists o €
(w(A), ) such that the family of resolvents

{zR(z,A) : ze(Z,}
is R-boundend.

Definition 3.6.7. Let A be a sectorial operator admitting a bounded H*-functional
calculus. We say that A admits a R-bounded H*-calculus if the functional calculus

{f(A4) : fe H?(Z,), |flo <1}

is R-bounded. The set of operators A admitting a R-bounded H%*-calculus on X is
denoted by RH*(X).

Theorem 3.6.8 ([19, Theorem 10.3.4]). If a Banach space X is good enough and A
admits a bounded H® -calculus, then

i) A is R-sectorial and;

it) the full H*-calculus of A is R-bounded.

For the proper definition of good enough in this context see the referred literature.
For all practical purposes in the following chapters, LP(€2) as a LP space with values in
a Hilbert space is indeed good enough.
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3.7 Perturbation theorems

In this section we study permanence properties of sectorial operators under additive
perturbations. We will touch only a few aspects of the theory relevant for the proof of
the main theorems in chapter 4. For a deeper discussion of perturbation results of the
H%*-calculus we refer the reader to [22].

Definition 3.7.1. Let A : D(A) € X — X be a generator of a Cy-semigroup and
consider a second operator B : D(B) € X — X. Then the sum A + B is defined as

(A+ B)x:= Az + Bx in D(A+ B):=D(A) nD(B).
If the sum A + B generates a Cy-semigroup again, we say that B is a perturbation of A.

Note that the domain D(A + B) might be trivial in general. Even in the simplest
case B = —A, the sum A + B is the zero operator. Therefore, we need to add more
requirements to the perturbation term in order to obtain properties such as sectoriality
or H®-boundedness of the functional calculus. The following theorem ensures at least
the sectoriality of the sum.

Theorem 3.7.2 ([4, Theorem 1.5]). Let A: D(A) € X — X be a sectorial operator and
let B: D(B) € X — X be a perturbation subordinated to A, i.e., D(A) < D(B) and

| Bx| < b|Az|, xe D(A), (3.33)

for some constant b = 0. Then b < 1 implies that the sum A + B is closed, densely
defined and N(A + B) = {0}. Moreover, A + B is sectorial with spectral angle

w(A+ B) < inf{oc > w(A) : bC,(A4) < 1}.

Proof. We first show closedness. Let x,, — = and (A + B)x,, — 2, we want to prove
that © € D(A+ B) = D(A) and z = (A + B)z. From the definition of subordinate
perturbation (3.33) it is easy to check that {x,}, defines a Cauchy sequence

(A+ B)
(A+ B)

Ty — Tm)|| + | B(Tn — Tm)||

|A(@n = 2m)| <
< Ty, — Tm)| + b|zn — zm| — 0.

H (
H (
Since A is closed, this implies that z € D(A) and Az, = z, thus the sequence {x,}, is
convergent in D(A). We conclude that D(A) is a Banach space with respect to the graph
norm | - | pca), hence A+ B is closed. To prove injectivity assume that (A + B)x = 0, it
is immediate from the bound (3.33) that Az = 0, which by injectivity of A implies that
x = 0. Finally, to show sectoriality take v € (w(A4),7) and let X\ € (X,. Then \ € p(A)
and we have

A= (A+B)=(1-BM\-A)"H(\-A),
hence A\ — (A + B) is invertible whenever |[B(A — A)~!| < 1, with inverse
A=—A+B)t=0-ATa-BHL-4)"HL (3.34)

Consider v > w(A) such that bC,(A) < 1, then using the above characterization for
A € (X, we obtain the bound

A=A M (4)

XA = (A4 B < T g AT S T b0, (A)
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where the lower bound of the denominator is evident from
IBO\= A)~1] < bJA — A) 71| < bC(A) < 1.
O

An immediate consequence of the above theorem is the following corollary, where
assuming a more general perturbation we prove sectoriality of the right shift 4 + A+ B
for some p© = 0.

Corollary 3.7.3 ([4, Corollary 1.6]). Let A: D(A) € X — X be a sectorial operator
and let B: D(B) € X — X be a relative perturbation of A, i.e., D(A) < D(B) and

|Ba| < alz] + blAz], =z e D(A), (3.35)

for some constants a,b = 0. Then there exists by > 0 such that the sum u+ A+ B is
sectorial whenever b < by and pu = 0 is large enough.

Proof. Consider 0 > w(A) and X € (X, < p(A4). Repeating the argument (3.34), from
the hypothesis (3.35) we get the bound

Mo (A)

IBO=A)7 <al(A= A7 + AN - A) ' <a o bCs(A),
hence A — (A + B) is invertible provided
M, (A)
bCr(A) <1 d =
Cy(A) <1 and |\ > o al—ng(A)
In other words, A — (o + A + B) is invertible for all X € (%, O]

Note that (3.35) is equivalent to the graph norm | - [p4) if a,b > 0. Since
(X,D(A))a1 — D(A%) for o € (0,1), see [26, Proposition 4.7], we could further ask
if sectoriality holds for perturbations of lower order type like

|Bz|| < a|z| + b|A%z|, =€ D(A®). (3.36)

Turns out that the answer is affirmative whenever « € [0, 1), even without applying any
restriction to a,b = 0.

Theorem 3.7.4. Let A: D(A) € X — X be a sectorial operator and let B : D(B) <

X — X be a lower order perturbation of A, i.e., D(A) ¢ D(B) and inequality (3.36)

holds for arbitrary constants a,b = 0. Then the sum u + A + B is sectorial whenever
€ [0,1) and p = 0 is large enough.

Proof. Let o € (0,1) be such that inequality (3.36) holds. Since (X, D(A))a,1 — D(A®)
there exists a constant C' > 0 such that we can rewrite (3.36) equivalently as

| Bz < (a +b)||z| peasy < Cla+ )|zl (x,p(a))as-

We may now bound the norm in the real interpolation space following the same reasoning
as in remark 1 by
1—
|Ba|l < Cla+ b2l el
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Further, multiplying/dividing by ¢ and applying Young’s inequality we get

B2l < C(a+b) (/01— a)alx +eale] puy)) = Cen

lz|x + C(a + bea| Az | x,

for some constant C g > 0. As ¢ is arbitrary small, taking ¢ < 1/(C(a + b)a) we see
that B is a relative perturbation of A and the assertion follows from corollary 3.7.3. [J

Moreover, for perturbations of lower order type the following permanence of func-
tional calculus for sectorial operators is true.

Theorem 3.7.5 ([22, Proposition 13.1]). Let A : D(A) € X — X be an invertible,
sectorial operator admitting a bounded H* (X )-calculus on X. Let ¢ € (0,1) and suppose
that B : D(B) € X — X is a lower order perturbation of A of the type

| Bz| < O A x|,

where C > 0. Then the sum u + A + B admits a bounded H* (3, )-calculus on X for
w = 0 sufficiently large.

Proof. From theorem 3.7.4 we can assume, possibly by a right shift, that A + B is
sectorial. For A € (¥,44p) we can rewrite the resolvent as

R\ A+ B) = R(\A) + R(\, A+ B)BR(\, A)
(A, A) + R(\, A+ B)BA> 1AIOR(), A) (3.37)
(A, A) + M(N).

R
R

Let 0 > w(A+B) and f e H'(X,) n H®(%,). For every v € (w(A+ B), o), by the above
characterization, we can write

FA+B) = F(A) + o | F0M0) an

where f(A) is bounded because A admits a bounded H®-calculus. Moreover, we can
estimate the integrand by

0 8 1-6
MMA MV,ACV,A

My a+B _
e i O < CllfleMyars

Al

[F)M N <[ f]le0 |BA*

where we applied remark 1 in the second inequality, with x = R(\, A), to get

)

M
[ATROA)| < CIRO APARR, A < 20170

Taking the infimum over all v € (w(A + B, o) the integral converges absolutely and its
norm is bounded by < | f||oc- O

One last result about lower order perturbations is needed in order to prove the main
theorem of the work. The next proposition characterizes how much we can modify the
sum of two operators A + B without losing the functional calculus.
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Proposition 3.7.6 ([4, Proposition 2.7]). Let A : D(A) € X — X be a sectorial
operator and B : D(B) € X — X a lower order perturbation of A of the type

| Bl < alx] + b A%,z e D(A),

for arbitrary constants a,b > 0 and o € [0,1). Assume that A + B is sectorial and
invertible. Then h(A) € L(X) implies h(A + B) € L(X) for any h € H*(X,), where
o>w(A),w(A+ B).

Proof. Let f = th with ¥(\) = A(1 4+ X\)~2. For special properties of 1 € H'(XZ,) n
H®*(X,) see [4, Section 2.1]. Then

h(A+B) =9y Y (A+B)f(A+B)=2+A+B+(A+B) " YHf(A+B)
=2+ A+BI+A) M I+A)+(A+B)"H)f(A+B)
=(2+BI+A) ' +[I+BI+A)NA+(A+B)Hf(A+ B).

From invertibility of A + B and sectoriality of A, both (A + B)~! and (I + A)~! are
bounded. Since f € H'(X,) n H*(X,), the only point remaining concern is the bound-
edness of Af(A+ B). Let v e (w(A + B), o), from the resolvent equation (3.37) we get

that
1
Af(A+ B) = Af(A) + — FOAN=A)IB(A—A—B)~tdx.
2m oY,
The first term Af(A) = Ap(A)h(A) is bounded because h(A) is bounded by hypothesis,
and the same computation as in theorem 3.7.5 proves that the integral is absolutely

convergent. U

3.8 Maximal regularity

As mentioned in the introduction, in order to analyze the full nonlinear problem it is
enough to consider its linearized part. Although it is not our purpose to study the exact
construction of solutions to the full nonlinear problem -which is done via fixed point
arguments from the solutions to the linearized problem-, this construction is tightly
linked to the property of maximal regularity. In this section we will state some basic
properties of maximal Li-regularity and give an intuition behind the relation between
maximal Li-regularity and the bounded H*-calculus of an operator. However, the proofs
of these theorems exceed the scope of this work and we refer the interested reader to
[22, 17].

Let X be a Banach space and A a closed operator in X. For 1 < ¢ < o and
0 < T < oo, consider the abstract Cauchy problem

u'(t) + Au(t) = f(t), te (0,T)

0) -, (3.38)

If fe L90,T;X), from f = u' + Au it is clear that the solution w and Au cannot be
more regular than the external force f. Therefore, maximal regularity refers to the best
scenario, when u and Au have the same regularity as f.
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Definition 3.8.1. Let ¢ € [1,00] and 0 < T < o0. A closed linear operator A has
mazximal L-regularity in (0,T) if for each f e L2(0,T; X), the equation (3.38) admits a
unique solution u satisfying

we LI(0,T; D(A)) n WH4(0,T; X),
and there exists a constant C' > 0 such that

lull oo, 7 DAy w0, x) + AU Lo x) < CllfllLao,r:x)-

We will often write “maximal Le-regularity (for all ¢)”, this is because for a closed and
densely defined operator A in X, A having maximal L%-regularity for some ¢ € [1, 0]
implies A having maximal L?-regularity for all g € (1, 00).

The next bundle of classical theorems uncovers the relation between maximal L9-
regularity and semigroup theory. For the remainder of the section, A is assumed to be
closed and densely defined in X.

1. Dore’s theorem: If A has maximal L9-regularity in a bounded interval (0,7),
with 0 < T < o0, then —A generates an analytic Cp-semigroup on X. On the
other hand, if A has maximal L4-regularity in the positive real line R, , then —A
generates a bounded analytic Cyp-semigroup on X.

2. De Simone’s theorem: In particular, if X is a Hilbert space the reverse also
holds true.

3. Kalton-Lancien: If X has an unconditional basis and every generator of a
(bounded) analytic Cp-semigroup on X has maximal Li-regularity in (0,7 (re-
spectively R, ), then X is isomorphic to a Hilbert space.

As one would imagine, maximal Li-regularity in the positive real line implies maximal

Li-regularity in every bounded interval (0,7") with 0 < T' < oo. However, the converse
is nontrivial and contained in the following theorem.

Theorem 3.8.2 (Dore-Kato). Let ¢ € [1,0] and suppose that A is a densely defined
closed operator which has mazximal LP-reqularity in a finite interval (0,T) with 0 < T <
0. If —A generates a uniformly exponentially stable semigroup {S(t)}i>0, i.e.

[S#)| < Me™“t,  with M >1, w >0,
then A has mazximal L-regularity in R .

One final remark regarding the initial data in the Cauchy problem (3.38). We can
of course instead consider the inhomogeneous Cauchy problem

u'(t) + Au(t) = f(t), te(0,T)

4(0) = w0 (3.39)

as long as the initial data satisfies

ug € (X, D(A))1/q,q» Where ql/ + (1] =1
Although chapter 4 focuses solely in the L? case, we will be following Giga et. al.’s
proof for the general LP-case [7], thus it is of interest to ask whether a form of De Simone’s
result extends for general Banach spaces. Turns out that R-boundedness 3.1.12 offers
a powerful tools to deal with the present situation. The main theorem of this section
is a consequence of the operator-valued Fourier multiplier theorem 3.1.16, the following
provides a necessary and sufficient condition for maximal regularity in UM D spaces.
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Theorem 3.8.3 ([22, Theorem 1.11]). Let A be a generator of a bounded analytic semi-
group on a UM D-space X. Then A has maximal Li-reqularity in Ry for one (all)
g€ (1,00) on X if and only if,

{AR(M\A) : Ne Xy}
is R-bounded for some o < m/2.

Corollary 3.8.4. If A admits a bounded H®-calculus of angle o < /2 on a UMD
space X, then A has maximal L-regularity in Ry on X for all g € (1,00).



Chapter 4

Hydrostatic Stokes operator in L?

In order to construct a unique, global strong solution for the non-linear equations mod-
eling the large-scale ocean (2.21) in the LP-setting, the study of the linearized problem
is crucial. Recall that the hydrostatic Stokes equations are given by
ow+Vyms —Av = f in Qx (0,7),
(HSE) divgo =0 in Gx (0,7) (4.1)
v(0) = v in Q,
where v denotes the horizontal velocity of the fluid, ws the surface pressure, f the

external force and vy the initial horizontal velocity. We consider the cylindrical domain
for a,b € R with a < b,

Q=G x(a,b)cR® with G =(0,1) x (0,1),
where the bottom, upper and lateral part of the boundary 62 are denoted by
I, =Gx{a}, Tp=Gx{b} and TI|=0G x (a,b).

Here and subsequently, (z,y) € G stand for horizontal variables and z € (a,b) for the
vertical variable, with this notation,

1 b
V= (&r,&y)T, divgv = 0zv1 + 0yv2 and v := - aj v(s -, 8)ds

whereas A denotes the three dimensional Laplacian. Recall that the vertical velocity of
the fluid w is determined by the horizontal velocity v via the relation

z

w(t;z,y,z) = w)(t;z,y,2) = —J divg v(t; z,y, s) ds,

a

and that due to the hydrostatic approximation (2.11), d,m = 0, the full pressure 7 is ac-
tually determined only by the surface pressure mg. The equations (4.1) are supplemented
by the boundary conditions

v, g are periodic on T’y x (0,7,
v=0onTp x (0,7), (4.2)
0,v=00nTyN x (0,7),

42
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where Dirichlet, Neumann, and mixed boundary conditions are given by
FDE {@,Fa,Fb,FauFb}, and FNE (FauFb)\FD.

In this chapter we are going to study the article by Giga et. al. [7], where they prove
that the hydrostatic Stokes operator admits a bounded H%-calculus. The chapter is
structured in four sections. In the first two sections, we follow Hieber et. al.’s [15] con-
struction of the hydrostatic Helmholtz and Stokes operators respectively. In particular,
we show that the negative hydrostatic Stokes operator —A,, is sectorial of spectral angle
0 and generates an exponentially decaying analytic semigroup. Based on that, we con-
tinue with Giga et. al.’s [7] approach by rewriting the hydrostatic Stokes operator as a
perturbation of the Laplacian of the form

A, =A,+ By, with Bpv:= —VHA[Z[1 divy (0zv|rb — azv|ra> .

Note that the boundary terms play an important role here since pure Neumann boundary
conditions yield A, = Ay, i.e. the Laplacian and the hydrostatic Stokes projection P,
commute. Finally, the third section 4.3 contains the main theorems of this work, we
prove that the hydrostatic Stokes operator admits a bounded H*-calculus and mention
some of the immediate corollaries.

Throughout this chapter, we follow the notation of [15] to model horizontally periodic
function spaces. Let m € N and v € {0,1}?, a smooth function f : Q — R is called v-
periodic of order m on I'j = 0G x (a,b) if

[0} [0} (63 (63

gx‘i(o,y,z) = (—1)”1233‘2(1,%2) and (;y“of(:c,o,z) = (—1)”2(2y£(:c, 1,2),
for all @ = 0,...,m. In particular if v = (0,0), then f is called periodic and if instead
v = (1,1), then f is called anti-periodic. (Anti)-periodicity on 0G is defined in the same
way for smooth functions in G. Note that we only require periodicity in the horizontal
directions, and no assumption is made over the vertical axis. Using this notion, the
Bessel potential spaces of functions with periodic boundary conditions in the horizontal
directions are

HyR () == {f € H*P(Q) | f is periodic of arbitrary order on I';}, (4.3)
HE(G) = {f e H*P(G) | f is periodic of arbitrary order on 0G}. (4.4)

For s = m natural, the spaces Hper (2) and Hper (G) respectively coincide with the
Sobolev spaces

Woe () == {f e W™P(Q) | f periodic of order m — 1 on oI';}, (4.5)
Woel (G) := {f e W™P(G) | f periodic of order m — 1 on 0G}. (4.6)

By theorem [33, Theorem 46.2], the spaces of smooth functions with periodic boundary
conditions in the horizontal directions

Cper(Q) := {f € C*(Q) | f is periodic of arbitrary order on T}, (4.7)
Cer(G) := {f € C*(G) | f is periodic of arbitrary order on G}, (4.8)
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and dense in the respective Bessel potential spaces

=l lmsr@ =z re

HEP(Q) = C2,(Q) and HS2(G) := C%,.(G)

per per per per

(4.9)

Indeed this can be made precise using periodic extensions (4.59), mollifying the exten-
sions, and restricting back.
Finally, for an open set M < R", we define the closed subspace

LE(M) = {ue LP(M) - fMu da = 0} < LP(M). (4.10)

Remark 3. Since it is a closed subspace of a Hilbert space, L(Q) (M) is a Hilbert space.

4.1 The hydrostatic Helmholtz projection

As mentioned previously, the basic idea of the proof is to adapt the construction of the
classical Helmholtz projection for the solenoidal subspace L2 () of L?(£). This is, we
intend to find a projection that will eliminate the pressure gradient

Pyw:=v—Vyn, wvelL*Q)? (4.11)

in other words, the existence of the hydrostatic Helmholtz projection depends on finding
a solution Vg7 of the Poisson problem

Apm =divg f on G, 7 periodic on G, (4.12)

in the distributional sense. The solution operator f — Vg is the closure operator in
L?*(Q) of

Vur = =Vg(-Ap)~ " divy f,
where Ay denotes the two-dimensional Laplacian defined on ]'17323(6’)2 with inverse in
Lg(G). Note that although we have dropped the subindex of surface pressure in order to
simplify notation, as a result of the hydrostatic approximation the pressure is a function
of only two variables.

Proposition 4.1.1 ([15], Weak solvability of the Poisson problem). Let f € L?(G)2.
Then there exists a unique ™ € Wpir(G) n L3(Q) satisfying

.V = Vam Vuad)rra), ¢€Wyr(G)n Li(G). (4.13)
Furthermore, there exists a constant C > 0 such that
Imlwiz) < Clflrze).  feLP(G)% (4.14)

Remark 4. Let us first observe that the theorem is actually equivalent to the unique solv-
ability of the Poisson problem in the distributional sense. Equation (4.12) is equivalent

’r % ofi  ofs B
32 Tz )de=| (5t )¢d c2.(@ 415
J;}' ((93:% * 8x%> ¢ . J; (03:1 + 6332) (Z) L, ¢ € per( ) ( )
which from the definition of distributional derivative can be rewritten as
or 09 Im 0¢ op 0 o
Rl o e e e il B e E s 4.1
G 01 01y * 0xo 02 o J;; h ox1 + 0x9 T, ¢E€ Oper(G)7 (4.16)

or in other words

(Vum,Vad)rze = Vad)rzc), ¢ € CoulG). (4.17)
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Proof. (Proposition 4.1.1) Let H := Wgé%(G) n L(G) be our Hilbert space, with norm
|V Y] 12(c)- Let f e L*(G)?, the functional
F:¢—f,Vud)rec), ¢ Whi(G)n L(G),

is continuous in |V ¢z since
[F(@) = K, Va2l < 1fle2) IVESl 12()
By Riesz’ representation theorem, there exists a unique 7 € Wgé% (G) N L3(G) satisfying

{:Vudyrze) = (Var|Vad) 2y, ¢ € Woi(G) n Li(G). (4.18)

Setting ¢ = 7 yields
IVumlZz) < 1fl2@)Varle,
and thus |[Vg7|r2q) < | flr2(q) as desired. O

This proposition allows us to clarify the precise meaning of (4.11).

Definition 4.1.2. Given v € L2(Q)2, let m € Wper(G) n L2(G) be the unique solution
of equation (4.13) with f = . The hydrostatic Helmholtz projection P» is defined by

Py :=v—Vpgm. (4.19)

To see that it is indeed a continuous projection take v € L2(Q2)2 and let 7 € Wper(G) n
L3(G) be the unique solution of (4.13) with f = v, thus Pov = v — Vgm. We have
v—Vyme L?(Q)?, and since 7 is independent of the vertical axis, v — Vg7 =7 — Vg7
follows. Consider now f = & — Vg, the unique solution 7' € Wper(G) n L(G) of
equation (4.13) satisfies

0= <§ — Vg, VH¢>L2(G) = <VH7T/7 vH¢>L2(G’)7 pe per( )
this is, 7’ = 0 necessarily. We conclude that
Piv = Py(v — Vyn) = Py,

which proves that P, is a projection on L?(£2)? as desired.
The range of the hydrostatic Helmholtz projection

L(Q)? := Ran P, (4.20)

will play an analogous role in the study of primitive equations to the solenoidal subspace
L2(Q) of L%() for the Stokes equations. We begin by giving some useful equivalent
characterizations of L2(2)2. We denote by vac the exterior normal vector field at 0G.

Proposition 4.1.3 ([15], Proposition 4.3). The range of the hydrostatic Helmholtz pro-
jection LZ(Q)? coincides with the followmg subsets of L?(Q)%:

a) X1:={veL*(Q)? : @, Vud)r2q) =0 forall ¢e Wple%(G)}

b) Xy :={ve L?(Q)? : divgv =0, U Vo 18 anti-periodic of order 0 on 0G'}

c) Xz:= VH'HLQ(Q), where

={ve per(ﬁ)Q c divgw =0 in G, suppvc G x (a,b)} (4.21)
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Proof. (LZ()*
Wpir(G) n L3(G

X1) Take v € X;. By proposition 4.1.1 there exists a unique 7 €
such that equation (4.13) holds for f = v. Since

¢)
0=, Vud)r2c) = Vum,Vud)r2c), ¢€ Coul(G),

then m = 0 and v is invariant under the projection Pov = v, consequently v € L%(Q)Q.
Conversely, if v € L2(€2)2 there must exist w € L2(2)? and 7 € Wpar(G) n L2(G) solution
of (4.13) with f = w such that v = w — V7. But 7 is independent of the vertical axis
z, thus T = w — Vym = w — V. Substituting in (4.13) we get

@, Vad)rxa) = W — Vum,Vadyrae =0, ¢ Wi (G),

concluding that v e X;.
(X1 = X2) Recall that we introduced the notion of trace for - vy in theorem 3.4.3,

ie. U- g is a well defined element of B;/; (0G)* via the relation
dive 0, 9)r2(q) = V- veg, ) BY2(0c) ~ @, Va2, ¢€Wha(G). (4.22)

Let now v € X;. Since in particular C,(G) < Wair(G), it is easy to check that
divyg v = 0 in the distributional sense

OZJ v-Vygo dxzf vl—(b—i-vQ 0¢ dx
G G 6 I (9:1;2
(4.23)
—— [ o+ 20 do= [ dvumods, 0eCLO)
= Gaxl ax2 xTr = G vgl(v X, per

In order to prove anti-periodicity in each direction we first substitute divg v = 0 in
(4.22) to obtain the useful relation

<5 * VoG, ¢>B;/22(6G) = 07 ¢ € Wée%( ) (424)

Let us split the boundary by defining G; = G n {x; = 0} for i = 1,2, where 21 and x4 are
x and y respectively. The idea of the proof is to extend one-dimensional functions defined

T =Y

Ql

supp ¢

T1:=2T

Figure 4.1: Extension of ¢ € C(G1) to G.

on G; to G, where we have the property (4.24). Choosing an arbitrary ¢ € C(G;), we
can extend it constantly along the direction x; and by abuse of notation, regard it as
¢ € Cpor(G). Note that since ¢ is compactly supported in G; it will vanish on the

boundary of the opposite direction 0G\G;. Now substituting ¢ in equation (4.24) we get

(v - Vac\{xizo}, $cr(cy) + T voc(y, _yy, DezGy =0, (4.25)
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where we used that d)‘Gn{x:l} = gb’G_. We have thus proven that

(s V‘?G‘{xFO} = —U- VaG‘{xi=1}’

i.e. U-vyq is anti-periodic of order 0 on dG as desired. Conversely, let v € X5. From
anti-periodicity of U - vog and periodicity of ¢, we have that in each direction

<6 VoG, ¢>B;{22(Gm{zi:0}) + <6 VoG, ¢>B;{22(Gm{x¢:1}) =0, ¢e€ W;}e%( )
Since divy T = 0, substituting in (4.22) the proof is simple

(w, VH¢>W$£(G) = (U vag, ¢>B;/22(6G)

2
= Z@ VoG, ¢>B;’/22(Gm{xi:0}) + {7 - vaq, ¢>B§/2(Gm{zi:1}) (4.26)

- d)erQ( )

per

(X1 = X3) Since V < Xy = Xy, it is clear that X3 € X;. In order to get equality,
we first claim that X7 = X;. Indeed, it is immediate from the canonical inclusion that

X, c L3(Q) = L*(Q)* < X7,

thus it suffices to show X} < X;. Given F' € X{, by the Hahn-Banach theorem it has an
extension to a functional on (L?(Q)?)*, which we will represent by f € L?(Q)2. Moreover,
from the weak solvability of the Poisson problem, proposition 4.1.1, the projection Psf
onto X7 is determined independently of the way F' is extended, proving our claim.

Suppose now that X3 + Xj, i.e. X3 is a proper closed subspace of X;. By the
Hahn-Banach theorem again, there exists a non-zero functional F' € X| vanishing on
X3, which by the above claim can be represented as f € X;. Summarizing, there exists
a non-zero functional f € L?(2)? such that

(v =0, forallveV,

_ 4.27
<fa VH¢>L2(G) =0, forall ¢ € Wple%(G) ( )

The main idea of the proof is to apply the Helmholtz decomposition [31, Section I1.2.5],
i.e.

L2(G)? = L2(G)®H(G) with H(G):={feL*G)*; Ine L*(G) : f=Vynr},

and to show that the respective pressure gradient Vg7 is zero, reaching a contradiction.

Note that f € L?(G)? is independent of the z direction, which can be seen by taking
0.v € V with v € V as a test function in (4.27);. We can thus regard f = f € L*(G)? and
will first check that it is Orthogonal to the solenoidal subspace L2(G). In order to make
use of (4.27) starting with ¢ € C%, ,(G), where C%, ,(G) := {¢ € C2.(G) : divy ¢ = 0},
we want to construct a function in V' = {v € C2.(Q)* : divgs = 0in G, suppv

G x (a,b)}. Let x be a cut-off function on the vertical interval, x € C%(a,b), such that

Jb x(z)dz =b—a. (4.28)

a
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We can now define v € V as

U(l‘, Y, Z) = X(Z)gb(l" y)

Indeed, clearly v e C%, (€2)? with suppv < G x (a,b) and

divy 7 = divy < J o E)be.y) dz) — (b—a)divy 6 = 0.

a

Recall that f vanished in X3 (4.27)1, in particular

0={f,v20) = D12c) ¢ € Coor o (G). (4.29)

The Helmholtz decomposition in L?(G)? now implies that there exists 7 € WH2(G) such
that Vgm = f.

Our next goal is to prove that 7 is actually the unique solution of the weak Poisson
problem (4.13). For 7 € W12(@), according to the generalized Green’s theorem 3.4.3,
we have

(m,¢-vaayr2oc) = (VHT, O)12(G), ¢ € Coer o (G). (4.30)

Moreover, since Vg = f, from (4.29) we obtain that

0 =<(m ¢ voc)rzoa) =(m, ¢ (—=1,0))12(Gfei=0}) T <T@ (1,0))12(Gn{a1=1})
+ <7Tv ¢ (07 _1)>L2(Gﬁ{x2:0}) + <7T, ¢ (07 1)>L2(G’m{x2:1})
2
= 2<7T7 ¢>L2(Gﬁ{xi=0}) - <7[', ¢>L2(G’m{xi=1})’ ¢E Cg%r,a<é)'
i=1
(4.31)

It follows that 7 is periodic on 0G.
Note that we have actually proved that there exists 7 € Wgé%(G) such that

(Vum,Vadree = Vadae =0, ¢ Wi (G).

In conclusion, m must be the unique solution of proposition 4.1.1, therefore © = 0,
which in turn gives f = 0. This contradicts the assumption F' 4 0, hence proving the
proposition. O

4.2 The hydrostatic Stokes operator

The hydrostatic Helmholtz projection allows us to define the hydrostatic Stokes operator,
analogous to the classical one. By applying the projection P» to the hydrostatic Stokes
equations 4.1 we obtain the equivalent Cauchy problem

opv — Agv = Pof, v(0) = v, (4.32)

where Ay = PoA. The operator As is called the hydrostatic Stokes operator and its
LZ(Q)-realization is defined as

Agv := PyAv,  D(Ay) := {ve W22(Q)? : v

per

r, =0, 00l =0} N L3(Q).  (4.33)
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Giga et. al. established in their article [7] that the hydrostatic Stokes operator admits
a bounded H%®-calculus. In order to prove this property, they refer to Hieber and
Kashiwara’s work [15], where it is shown that —As generates a strongly continuous,
exponentially stable, analytic semigroup of angle 0. In this section we are going to focus
on the latter result and leave the bounded H*-calculus for the next section.

Before we begin with the proofs, note that our domain differs from Hieber and
Kashiwabara’s [15], who only considered I'p = T, and I'y = I'y, but this does not carry
any further complexity and the same proof holds as long as I'p + (. However, in
the pure Neumann case we just have Asv = Av for v € D(Asg), see theorem 4.3.5. In
particular, zero is an eigenvalue of A,. Since injectivity is required for sectoriality, we
will study the spectral properties of —Ao + p instead, for some p > 0.

Let fe L?(Q)2 and A e ¥, . := {Ae C : |arg(\)|] < 7 — &} for some ¢ € (0,7/2).
Consider the resolvent problem

A —Av+V = on €,
e (4.34
divgo =0 on G,
with boundary conditions
v, w are periodic on I,
(4.35)
U’FD =0 and 8Zv|FN = 0.

The proof of — Ay generating an exponentially stable analytic semigroup will be divided
into two steps. We first have to prove the following resolvent estimate.

Theorem 4.2.1 ([15, Theorem 3.1]). Assume I'p + . Let f € L*(Q)? and X\ €
Yr_cu{0} fore e (0,71/2). Equations (4.34) and (4.35) admit a unique solution (v, ) €
WA Q)2 x Wpet(G) N L3(G). Moreover, there exists a constant C > 0, depending only
on €, such that

Alvlz2@) + [vlw22@) + I7lwree) < Clflz2 @) (4.36)

The basic idea is to find a unique solution of the weak formulation of the problem
and then applying difference quotients to obtain the H? — H' estimate. Nevertheless,
let us start by proving a useful lemma to treat the weak formulation of the problem.

Lemma 4.2.2 (Ladyzhenskaya-Babuska-Brezzi theorem (LBB), [2, Section 12.2]). Let
V and W be two Hilbert spaces. Assumea:V xV — C andb: V xW — C to be bounded
sesquilinear forms. Suppose a is coercive and b verifies the Babuska-Brezzi condition, i.e.

b(ep,
Ra(p, ) = alols, ¢V and sup| (0, 9)l

o = Plelw, ¢ew, (4.37)
eev  lelv

for some constants a > 0 and 8 > 0. Then for f € V* the variational problem

{Q(U,(p)-i-b(go,ﬂ') :<f7(,0>7 peV

b(v,¢) =0, peW. (4.38)

admits a unique solution (v,7) € V. x W. Furthermore, for some C > 0, the solution
satisfies the estimate
[vlv + 7w < Clfllvs. (4.39)
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Proof. Let Z denote the subspace of V' defined by
Z={peV :blp,¢)=0, ¢eW}

It is simple to check that Z is closed, therefore Z is a Hilbert space with the inner
product (+|-)y. Take a sequence {@y,}neny © Z converging to ¢ and an arbitrary ¢ € W,
since the form b is bounded, then b(p, ¢) = lim, o b(pn,¢) = 0, thus ¢ € Z. As a
consequence, V = Z @ Z* and the solution v € V can be determined by testing only
against ¢ € Z. In other words, it suffices to show that there exists a unique v € Z such
that

(I(U, 90) = <fa 90>7 peZ, (440)

but since a is coercive, this is exactly the Lax-Milgram theorem for the continuous
functional f € V*. It remains to find © € W, which is uniquely determined by v as the
solution of the equation

blp,m) = —a(v,0) +{f,9), yeV. (4.41)
Since the behaviour of b(;-) is trivial on Z we can rewrite the problem as
b(p,m) = (9. 0), weEZ", (4.42)

where g € (Z+)* is a continuous functional

Kg: oI < la(v, )| + [{f, @) < (Callvllv + Iflve)lelv, wez*

with Cq the continuity constant of a. We will start by proving the existence of solutions.
Take ¢ € W, the functional ¢ — b(p,¢) is continuous on Z+. Then by the Riesz
representation theorem, there exists a unique T'¢ € Z+ such that

b(p. ) = (Tlp)v, @eZ™. (4.43)
The mapping 7' : ¢ — T'¢ is obviously linear and continuous
by, ¢
Toll = b @) lvs = sup P2 < gy,
vev  llelv

where the last inequality follows from the boundedness of b. Moreover, we claim that the
range of T is the whole space R(T) = Z*. Since g € (Z1)* is a continuous functional,
once again by the Riesz representation theorem there exists a unique w € Z+ such that

{g,0) = (wp)v, ezt

In combination with 7' : W — Z1 being surjective and (4.43), there exists 7 € W such
that Tm = w € Z+ and

{g,¢) = (Tmlp) =b(p,m), weZ"

To prove the claim we will show the closedness of T" and derive a contradiction if R(T) +
Z1. Take a sequence {T'¢,, }nen converging to w in Z+, then {T'¢,, },, is a Cauchy sequence
and consequently {¢y}, is a Cauchy sequence as well since

165 — bmllw < & sup 2P =)l _ L (T = Tomlp)y
m B peZt HSOHV ﬁ peZ L HQDHV (444)
_ ”T¢k - T¢mHV

— 0, when k,m — 0.

B



CHAPTER 4. HYDROSTATIC STOKES OPERATOR IN L? 51

Since Z* is complete, there exists ¢ € Z+ such that ¢,, — ¢, but T is continuous, thus
Té =w. If R(T) + Z*, there would exist a nonzero element v € R(T)" such that

0= (T¢|U)V = b('l), ¢)7 peWw,

but then v € Z, a contradiction. The solution is easily seen to be unique by the Babuska-
Brezzi condition. Suppose 71 and 7o are two solutions of equation (4.42), then

1 b(m —m2,0)] 1 |b(mr1, ) — b(m2, )|

|1 — m2|w < < sup ————— = —sup
B pev leollv B pev leollv (4.45)
) B .
~ L l9(e) —g(o)| _ 0.
B eV lelv

thus 71 = 79 necessarily. Finally, the proof of inequality (4.39) is straightforward from
the construction of the solution

1 1 1 1
v[3 < a%a(vav) < E\“(%”)’ = a|<f7 v)| < EHfHV*HUH% (4.46)
1 b(p,m)| 1 la(v, )| + [{f, )] _ 2
m|w < —sup ———— < —su < =|flv=- 4.47
Imlw < S0 ol <B52 T Jelv gl v (447)

O]

As mentioned previously the first step is to study a weak formulation of the problem
(4.34). Consider the spaces

Vi={pe Wpléf(Q)Q cp=0inTp} and W :=L3(Q), (4.48)

which are closed subspaces of the Hilbert spaces Wgé% (2)? and L?(G) respectively, thus
Hilbert spaces with respect to the inherited inner product. If (v,7) is a classical solution
of (4.34), multiplying by (¢, ¢) € V x W and integrating over {2 we obtain

Alp)r2) + (VUIVY) 2) — (7| dive @) 12(a) = (fl0) 2 @) pevV, (4.49)
—(¢|divy v)2(q) = 0, peW,
where we applied Green’s identity 3.4.3 and the fact that
(Vo ”99|¢)B§{§(aﬂ) :(@U‘@B;g(anmrb) B (82”|‘P)B§{§(aﬂnra) (4.50)

+ (Vgv- l/aG‘SO)B;/;(anFz) =0

Conversely, if (v,7) is smooth satisfying (4.49), then it defines a classical solution of
(4.34). Note that if we test the second equation against constant functions ¢ = ¢ we
have SG cdivgovder = cgaaﬁ- voa = 0 by the divergence theorem, independently of ¢,
hence it is enough to test against functions in L3(G).

Proposition 4.2.3. Assume I'p &+ . Let V and W be defined as in (4.48). If f € V*,
then there exists a unique solution (v,7) € V- x W to the weak resolvent problem (4.49).
Moreover, there exists a constant C' > 0 such that

[vllv + 7w < Clf]v=.



CHAPTER 4. HYDROSTATIC STOKES OPERATOR IN L? 52

Proof. We can rephrase the weak resolvent problem (4.49) as a mixed variational problem

{a,\(v, ©) +b(p,m) ={f, ), eV (4.51)

b(v, ¢) = 0, beW.

where ax(p,v) = Me[Y) r2) + (V| V) 2(q) and b(p, ¢) = —(¢|divy @), for p,p e V
and ¢ € W. Both forms are easily seen to be sesquilinear and bounded

lax(e, V)| < M@l 2@l ?le@) + Vel VY220
< (L+ [ADlelwre@ lelwrz@), (4.52)
(¢, 9)| < D2l dive Dl z2a) < |9llL2(6) el (4.53)

where the boundedness of the divergence operator in G follows from

v (5] <127

2 1/2
i,j=

By the LBB theorem 4.2.2, to prove the assertion it suffices to show that ay and b are
respectively coercive and complying with the Babuska-Brezzi condition. Coercivity of
ay follows from Poincaré’s inequality and the estimate [sA +t| = C:(s|\| + t) for s, = 0
and some constant C. > 0. Indeed take ¢ € V', then there exists a constant C' > 0 such
that

o%; |°
ox;

%1 0P
5%1 8%2

(4.54)
6xj

(e, 0)| = Mlelizq) + IVl 2(0)| = CUMIRIZ2 () + IVECI2(0) (4.55)

CIAlel 72 + IVESIH120)-

The estimate can be shown to hold true by writing A in polar coordinates A\ = re’® for
|a| < 7T — ¢ and developing

IAN+1t? = (rcosa+t)? + (rsina)? = 12 cos® a + t2 4 2tr cos o + r? sin® o

4.56
=r +t2+2trcosa, ( )

o if |a| < m/2, then cosa > 0 and

—_

1
r2 412 4 2rcosa = r? + 2= —(r? +12) = §(|)\|2 + t%);

\V)

e if o] > m/2, since cosa < 0 and 2rt < 72 + t2, we get 2rtcosa = (r? + t?)cosa
and consequently

1
r2 424 2tr cosa = (r2+t?)(14cosa) = 2(T2+t2)(1+COS(7’[—5)) > (|\|?+t?) sin? (g

N—

To prove that the Babuska-Brezzi condition holds we will apply a similar technique to
proposition 4.1.3, proving it first for functions in G and extending it to ) afterwards. Let
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¢ e W = L3(G), then there exists ¢ € I/Vol’z(G)2 such that divy ¢ = ¢ and [¥[y12(q) <
C(G)|#lL2(c), see [31, Section I1.2]. In particular, the inequality

(@l diver ¥) 2| _ 16172
1¥wrea) 1¥lwrea)

1
holds. We can now define a function defined in the whole space €) as

o(r,y,2) = x(2)¢(z,9),

where y is a cut-off function 0 < y < 11in (a,b) taken as in (4.28). It is clear that p € V,
because we are actually imposing Dirichlet conditions in the whole boundary 02. We
can estimate the norm of ¢ by
9 1/2
dm)

3
= 2dr + f
lellv L (Isol ;=1 .
9 9 1/2
oY ox
2 E A2 4.58
< <LX|¢’ d +Z-:1 Jax‘al‘i do QJQ az|¢| dx) ( )

2
0
= (b—a)'? (L ] da + ) L ‘8@“-
i=1 v

dp
6362-

1/2
dﬂ?) = C( Q) [Yllwr2q)-

Moreover,

Cp— JbSO(',',Z)dz: : fbx<z>w<-,->dz:w,

b—al, b—al,
thus divg @ = divg ¥. In conclusion, given ¢ € W we use the previous construction to
obtain the bound

1 (@l dive ¥) o)l

R (z) <
@ " < e

(Al dive ©)|12(q)
lellv

[b(, 0|
lelv

<C(Q)

=C(Q)

for some @ € V. In fact, this is a lower bound in the supremum and the Babuska-Brezzi
condition holds, completing the proof. O

What is left to show are the H? — H! estimates for the solution (v, 7). Let us first
outline some properties of difference quotients. Recall that if f : R™ — R and h € R\{0},
the ith difference quotient of size |h| is the function D! f : R" — R defined by
where e; is the unit vector in the ¢th direction. From now on, M stands for either €2 or
G. In order to treat difference quotients of functions f : M — R we will make use of
periodical extensions Ef. Let Q1 := G1 x (a,b) with Gy := (—~1/2,3/2)?, we can extend
f:Q—RtoQ by

Ef(x+7/2,y+k/2,2) := f(x,y,2), (z,y,2)€Q, jke{-1,0,1}. (4.59)

The same definition applies to f : G — R, which by abuse of notation we will denote
Ef as well. Note that if f € Wpi(M), then Ef € WH(My) and |Ef|wr2n) =
22| flw12(ar)- Moreover, this extension is independent of vertical averaging, i.e. Ef =
7.
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Proposition 4.2.4 ([16, Appendix 4.C.]). Let i € {1,2} and |h| < 1/2. The difference
quotient has the following properties:
1. Commutativity with weak derivatives: if f,o;f € L}, .(My), then

oD f = Dhoif.
2. Integration by parts: if f,g € L>(M), then
(fID;™(E9) 2y = (DMEL)9) 12m
3. Boundedness: if 0;f € L*>(My), then
||Dzh(f)HL2(M) < N0if 2 (ar

4. Uniform boundedness: if f € L*(My) and HD?fHLz(M) < C for all |h| < 1/2 and
some C > 0, then f e WY2(M) and |0 f| 2y < C.

Proof. (1) Is an immediate consequence of the linearity of weak derivatives

oDl f = 6, <f($+h€j)—f(~’f)> _ Oif (z + hej) — 0if (x) — Dhayf.

h h

(2) Is an easy computation as well

(1D (Eg)) 2o f /Dy (Eg) dz f f(2)(Eg(x — he;) — Eg(z)) da

hf Ef(x' + hey)g dx—J f(z w60
~ [ B+ he) - B gt dr = jM DI(E g ds
= (D?(Ef)‘g)LQ(M)

(3) By an approximation argument we can assume f to be smooth. Then

h
Pz + hes) — fz) = hJO 0if (x + ter) dt.

Applying Jensen’s theorem for convex functions to = +— |x|? we obtain the inequality

2

h h
e+ he) = foF = b [ st tead < st + e
0 0

Now, integrating over M and noting that if x € M, then x + te; € M, for all |t| < h, we
get

f ’f(ﬂ?Jrhei)—f(m)
M

2
h dz < J 10: f ()]? da,

where we applied Fubini’s theorem. In conclusion, | D! f| - () < [0if [ z2(ary) as desired.

(4) Fix i. Since the set {D;"f : 0 < |h| < 1/2} is bounded in L?(M;), by Banach-
Alaouglu’s theorem there exists a subsequence (hy)r>o converging to 0 and a function
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gi € L*(My) such that D?kf — g; in L?(My) when k — oo. Take now an arbitrary
¢ € CP(My). For hy small enough we have

D™ da = J

My

(Dif) o da,

M,

hence letting k — 00, since ¢ is smooth D, h’“gb converges uniformly to d;¢ and we get

fo;pdx = J g;¢ du.
M M

We conclude that f is weakly differentiable with weak derivative 0;f = g; € L>(M;) as
desired. O

We can now proceed with the proof of theorem 4.2.1.

Proof. (Theorem 4.2.1) By proposition 4.2.3 there exists a unique solution (v, 7) € VxW
to the weak resolvent problem (4.49). Let i € {1,2} and choose D;"(Ey) as a test
function in the variational problem 4.51, i.e. the first equation becomes

ax(v, D; M (Ep)) +b(D; " (Bp), ) = (f|D;"(Ep)) 120y, # €V
By the integration by parts formula 4.2.4(2), we can rewrite it as
ax(D{'(Ev), ¢) +b(p, D} (Em)) = (fID;*(E9))2), we V. (4.61)

In particular, we can take ¢ = D?(Ev). Observe that substituting ¢ in the second
equation in the variational problem 4.51, we necessarily have

b(D!(Ev), DM ET)) = b(v, D; "D ET)) = 0.

Combining these results with the coercivity of ay, proven in proposition 4.2.3, we get
the inequality

a| D} (E0)[} < lax(D(Bv), D} (Ev)| < || fll 12| D; " DI (B)| 120

A (4.62)
< [ fllpz 1D (Ev)|v.

where in the last equation we used boundedness of the difference quotients 4.2.4(3).
Thus the difference quotient of v is bounded by ||D!(Ev)|w12@q) < C|f[r2@). We
can deduce the inequality on 7 by a similar approach, taking ¢ = D?(En). From the
Babuska-Brezzi condition for b and equation 4.61 we get

b(p, DIME Dy ME — ax(DMEw),
ﬁHDZz(ETr)HW < sup | (907 i ( 77))| = sup ’(f‘ 3 ( @))LZ(Q) )\( ( ) 80)’
eV HSOHV eV H()OHV
< sup |£ 21 27" (E@)ll2 + D! (EY) |2l ¢l2 + [VDE(ED) |2 Vel
peV lellv
< sup IfllzlGsell2 + IMCIIfll2llel2 + Clfl21 Vel
peV lellv
fl2lelv(+CIA|+C
< sup H HQH HV( ‘ ’ ) _ C/HfHLQ(Q)a
pel lellv

(4.63)



CHAPTER 4. HYDROSTATIC STOKES OPERATOR IN L? 56

for some constant C’ > 0, where we constantly applied properties of difference quotients
and the boundedness of the difference quotient of v. We have thus proven that the
difference quotients are uniformly bounded in h for i € {1,2}, which leads to Vyv €
War(Q)2 and Vgm € L2(G)2. Moreover, the resolvent problem (4.34) implies that
—020 = f— X+ Agv—Vyr e L2(Q)2, hence v € Wre(Q)? and m € Wi (G) as desired.
Finally, the inequality (4.36) is obtained taking ¢ = v in the variational problem (4.51),
note that b(w,v) = 0, and applying the coercivity of ay as in (4.55), this is

C‘)“HUH%Q(Q) < lax(v,v)| < | flez lvlze @)
thus [A|[[v]z2) < C[f]r2()- O

We can now prove the main result of this subsection, that the hydrostatic Stokes
operator A generates an exponentially stable analytic semigroup in L%(Q), which was
first shown by Hieber et. al. [15] and will be very helpful in the next section to prove
that A admits a bounded H*-calculus.

Theorem 4.2.5 ([15], Proposition 4.4). Assume I'p 4 &. The hydrostatic Stokes
operator As is invertible and generates a bounded analytic Cy-semigroup (To(t))i=0 on
LZ(Q). Moreover, there exist constants C, 3 > 0 such that

IT2(t) 1120y < Ce ™ f 2y ¢ > 0. (4.64)

Proof. The hydrostatic Stokes operator Asg is clearly densely defined since V < D(Aj)
and according to proposition 4.1.3 the completion of V in the L?-norm is the whole space
L2(Q). Let now A € Y. U {0} for some ¢ € (0,7/2) and f € LZ(2). Then there exists
v € D(Ag) such that (A — A2)v = f if and only if the resolvent problem (4.34)-(4.35)
admits a unique solution (v,7) € Wiz ()2 x Wpa(G) n L2(G). However, the latter is
true by theorem 4.2.1, thus ¥,_. U {0} < p(A2). Moreover, the bound (4.36) implies

sup ”)‘R()HA?)HL(L%(Q)) = sup sup [|A(A —A2>_1f“L§(Q)
)\Gzn—a )‘EZTC—E fEL%

I£l<1

= sup sup H)\UHLg(Q) < C.
AeZn_c feL2 7
I£l<1
v=(A—A2)"'f

Note that As is closed since 0 € p(Az). By the generation theorem for analytic semigroups
3.5.8, we have that A, generates a bounded analytic semigroup of angle 71/2 and we have
the inverse Laplace transform representation

1

=5 |y e R(z, Ap)fdz, t>0, feLi(Q),

Ta(t) f

where 0%, is the upwards oriented contour line for any v € (0,71/2). Since 0 € p(A3) and
the resolvent is open, there exists ¢ > 0 such that B(0,e) c p(A43). As a consequence,
the open sector of angle v/ € (0,v) and center —(3 with 8 € (0,¢) is contained in the
resolvent set of As. In particular,

Yy < p(A2+B) and  sup [AR(A, Az + B)| = sup [AR(A - B, A2)| < C.
)\EZV/ )\EEU/
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Figure 4.2: Spectrum of a sectorial operator.

Therefore, Az 4+ 3 generates a bounded analytic semigroup {73(t)};>0. The two semi-
groups are closely related

1 1
Ts(t) = o7 o e R(z, Ay + ) dz = 573 o eCHOIR(2, Ag) dz = P15 (1),

which proportionates the desired exponential stability

IT2() f 220y = He_’BtTB(t)fHLg(Q) < Ce—’BtHfHLg(Q)

4.3 H®-calculus of the hydrostatic Stokes operator

Giga et. al. [7] further showed that —As actually admits a bounded H*-calculus making
use of perturbation techniques studied in section 3.7. This section is devoted to the
proof of this result and some immediate corollaries.

We begin with a restatement of the Cauchy problem (4.32). Averaging the resolvent
problem (4.34) vertically yields

Xo = At — (0.0]y, 0l ) + Vam = on G, (4.65)
divgr =0 on G,

where we applied Leibniz’s integral rule for A v and the fundamental theorem of calculus
for 0?v. Taking horizontal divergence we can rewrite it as the weak problem

Apms =divy f + divy 6ZU|FD,

where we introduce the simplified notation for the boundary term since 0ZU|FN = 0.
Solving this for Vs we obtain the characterization

Vums = VaAy' divy [+ VuAy' divy 0.0 (4.66)
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which inserted in the hydrostatic Stokes equations (4.1) provides

0w — Av + VA divg 0|, = f = VA divg f on Q,
(4.67)
divgo =0 on G.
Applying the hydrostatic Helmholtz projection we obtain the equivalent problem
ov—(A+ B)v=Pf, divgv =0, v(0)= v,
where
Bv = —VHAI_Jl divy 6ZU|D. (4.68)

Here and subsequently, we will study the resolvent problem
v — (AQ + BQ)U = ng

where Ay denotes the L?(Q)-realization of the Laplacian with general boundary condi-
tions

Agv:=Av with D(Ay) := {ve HX2(Q)?: (9ZU|FN =0, U|FD = 0}, (4.69)

per

and Bj is defined for some ¢ € (0,1/2) as
Byv:= Bu, with D(By) = H'"1/2+52()2,

Before we state the main theorem let us first establish the H*-boundedness of the
L?(9)-realization of the Laplacian, which is not only essential for the later perturbation
techniques but also of interest on its own. However, we shall first prove some impor-
tant reflection arguments, whose construction is adapted from Nau’s dissertation [27,
Proposition 7.16] and Krylov’s book [21, Lemma 8.2.1].

Lemma 4.3.1. Let a function u € Hgf (0,1/2) with

H22(0,1/2) = {ue H*2(0,1/2) : ul. = dul. =0},

On the one hand, define T via the odd extension to (0,1) given by

u(z) ifz<1/2
u(x) = @) f / (4.70)
—u(l—z) if x>1/2
if we impose
i) Dirichlet conditions u|{x:0} = u|{m:1/2} =0 ory
it) Neumann-Dirichlet conditions 8u‘{I=0} = u|{$=1/2} = 0 wn the trace sense.
On the other hand, define u via the even extension to (0,1) given by
f x < 1/2
u(x) := v Z.f =<1/ (4.71)
u(l—z) if x>1/2

if we impose
iv) Neumann conditions &u‘{xzo} = 0u‘{x:1/2} =0 or;

v) Dirichlet-Neumann conditions uf{xzo} = 8u|{x:1/2} = 0 wn the trace sense.
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| | |
(a) Dirichlet boundary, odd-periodic ex- (b) Other boundary values, or an-
tension. tiperiodic extensions.
Figure 4.3

Then u € HI?CQ (0,1/2) if and only if, we have T € Hgé%(o, 1) for pure boundary conditions

and w e H>?

antiper (05 1) for mized boundary conditions.

Proof. (i) We first prove the necessary condition for the Dirichlet case in detail. For a
visual understanding of why an odd periodic extension is required for Dirichlet boundary
conditions, we refer the reader to figure (4.3).

Let w e Hg(fr((), 1), then by density of smooth periodic functions there exists a se-
quence {v, }n, © Cpe,[0, 1] such that vy, converges to @ in || g22(g,1). Since @ is odd with
respect to 1/2 by definition, it further holds that

—vp(l —2) - —u(l — z) = u(x).

Therefore, we can define
_ T)n(LU) - Un(l - 33)
Un = >
2
which trivially converges to the extension w. These periodic smooth functions can be
evaluated on the boundary, in particular, we see that when restricted to the interval

(0,1/2) they comply with Dirichlet boundary conditions

Bn(0) = <0>2<1> _0 and m(1/2) = vn<1/2>;vn<1/2> o

We only need to show that 7, — u, which is a simple matter of checking

[on — ul(0,1/2) = [P0 — Tl (0,1/2) < [0 — ll(0,1) — O
Finally, since {00, }, and {0?T,}, are Cauchy sequences

10Ty, — Vm(0,1/2) = 10U — OV (0,1) = O,

”626n - a2ﬁm‘|(0,1/2) = Ha2@n - 62EmH(O,l) — 0,

when n, m — 00, we have that u € HI?C? (0,1/2) as desired.

Next we prove the sufficient condition. Let u € HbQC2 (0,1/2) and take a defining
sequence {wy,}, < Cy° [0,1/2]. We can extend the functions {w,}, oddly as in (4.70),
which leads to the following definition of the derivative

owp(z) if 2<1/2

(Gwn)(1 — ) if = > 1/2. (4.72)

0wy (x) := {
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Periodicity of order 1 is then an immediate consequence

W (0) = w, (0) = 0 = —wy(1) = @y(1),
0,(0) = wn(0) = 0w, (1).

Furthermore, equation (4.72) shows that {0w,}, is a Cauchy sequence and obviously
Wy, — U, thus w e ngl,ézr((), 1) and its derivative is given by

0 if v <1/2
ou(z) := we) o<l (4.73)
(Ou)(1 —z) if z>1/2.
We can now deduce that the second derivative
02 if 2 <1/2
0%t(x) := ) we) iw<d/ (4.74)
—(0“u)(1 —=z) if x> 1/2,

is clearly in L?(0,1). We have therefore proved that u € Hg’e%(O, 1).
(74) The construction of the mixed Neumann-Dirichlet case is completely analogous,
for a visual understanding of why the extension @ is odd and antiperiodic see figure (4.4).

(a) Neumann-Dirichlet boundary, odd- (b) Other boundary values, or peri-
antiperiodic extension. odic extensions.
Figure 4.4

(7i7) For the sake of clarity we will include a brief summary of the case of pure
Neumann boundary values, see figure (4.5). Let uw € Hgﬁ(O,l) and take a defining

|

|
(a) Neumann boundary, even-periodic ex- (b) Other boundary values, or an-
tension. tiperiodic extensions.

Figure 4.5
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sequence {vy}, < C%

er[0, 1] such that v, — . Since % is even, it holds that

() + v, (1 — )
2

—T, v, = a”"(x)"(gvn)(l'_:”), (4.75)

Up(x) :=
and it complies with Neumann boundary values
~ 0vp(0) — dup(1)

55..0) — 2 o fml1/2) - 20, (1/2)

= 07,(1/2).

Following the same argumentation as in (i) we see that v, — u and u € Hgﬁ((), 1/2),
thus the necessary condition is proven. For the sufficient condition let u € H, 2_ c2 (0,1/2)
and take a defining sequence {wy}, < C}%, [0,1/2]. Extend the functions {wy}, evenly
as in (4.71) leads to the derivatives

(4.76)

_ o owp(x) if £ <1/2
T () 1= {—(awn)u —2) if x> 1/2,

which comply with Neumann boundary conditions and show periodicity of order 1 of
the sequence

W (0) = wn(0) = 0 = Wy (1)
0,(0) = dwn(0) = 0 = dw,(1).

Once again by the same argument as in (i) we conclude that u € HS@%(O, 1).

(iv) The construction of the mixed Dirichlet-Neumann case is completely analogous,
for a visual understanding of why the extension @ is even and antiperiodic see figure
(4.6).

y ‘ ‘ ‘ y
b e 2o o spoz o

(a) Dirichlet-Neumann boundary, even- (b) Other boundary values, or peri-
antiperiodic extension. odic extensions.
Figure 4.6

O]

Lemma 4.3.2. Given f € L?([0,1]?), there exists a unique solution u € H>2([0,1]3) of
the partial differential equation

(I-Au=f in [0,1]? (4.77)
u  (anti)periodic in x; forj =1,2,3. (4.78)
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Proof. By a periodic extension and a linear transformation of coordinates, we can re-
gard antiperiodic function as periodic functions and the problem reduces to finding
u e H?%(T?) solving :

(I —A)u=f, forfeL*T?). (4.79)

Since the Fourier transform on the torus F : L?(T?) — [2(Z3) given by

~

FUE) = F0)i= [ flre ek o, ke z?

defines an isometry, we can apply the Fourier transform to the problem (4.79) and find
solutions there, which will uniquely define our functions in L?(T?). Recall that the
Fourier transform of a derivative obeys

~

@) = | @)@t da = (2mik) [ fla)e % da = (2mik) (R,

thus the problem (4.79) becomes finding 4 € I2(Z?) solving
(1+ (2nlk])?)a(k) = f(k), for fei*(Z°).

This is a trivial task since we can clear the coefficients of u by

1 ~

(k) = T g )

and recover u € L?(T?) uniquely from its Fourier series

1 2 omik-€ 3
kez3

which converges because f € [2(T?). To see that u € H?2(T?) it suffices to show that its
mixed partial derivatives

0j0ru(k) = —4rk;k,. (k)

also define a bounded series

—4%kjkr 2 ok 3
kez3

O]

Proposition 4.3.3. Let v > 0. Then the operator —Ag + v admits a H*-calculus on
L2() of angle 0 provided v > 0. If T'p + (J, then the above assertion holds true even
forv =0.

Proof. By proposition 3.6.4 it suffices to show that the negative Laplacian —As is a
densely defined, positive, self- adjoint operator on the Hilbert space L?(£2).
Density of the domain D(—As) in L?(Q) follows immediately from the density of

Vi={ve Cp(Q) : z— (-, 2)is compactly supported in (a,b)}
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in L2(Q) and the chain of inclusions V < D(—A3) < L?(Q). Positivity holds trivially as
well since given u € D(—As), we have

A m——ji”a |y g +J§Mﬂd
U|U) = o - 6952“ T = xju . o 0xj6xj x

=t i= i= (4.80)
3 au 2
= J Z —| dx =0,
o= 0x;

where the vanishing of boundary terms in the last equality is possible by periodicity of
u in the lateral boundary I'; and Dirichlet-Neumann conditions in the vertical one, i.e.
either u = 0 or d,u = 0 on IQ\I';.

What is left to show is the self-adjointness of the negative Laplacian in L?(£2). Let
Hll)’z(Q) denote the space of functions vanishing on I'p,

Hp*(Q) == {ve HyZ(Q) : vf. =0}

per

Note that HBZ(Q) is closed in H'2(12), thus it is a Hilbert space with respect to the
inner product | - |z12(q). Let the mapping S be defined by

{(Su,v)y = (u|v) + (dulov) (4.81)

from HB2(Q) to its dual HEQ(Q)*. The proof will be divided into two steps: first
we prove the self-adjointness of S~1 restricted to L?(€2) following Taylor’s trick in [32,
Chapter 8.2] and then show that the domains of its inverse and the L2-Laplacian A
coincide by applying reflection arguments (see [21, Chapter §]).

Let us first prove that S is bijective. Injectivity follows from its definition (4.81)
taking v = u, then

|Sul 2@y [ull 2@y 2 [$Su, w] = [ullz @),

hence if Su = 0, then u = 0. Suppose that S is not surjective, namely that R(S)* + ¢
in Hll)’Q(Q)*. Then there exists a nonzero element v € Hé’z(Q) such that

(Su,vy=0 forallue Hjlj’z(Q),

in particular, for u = v we have that (Sv,v) = |v|g1.2() = 0, thus v = 0, contradicting
our assumption. The uniquely determined inverse of S, denoted by

T:=S"1: HA(Q)* — H5(Q),
is self-adjoint when restricted to L2(2) because S is symmetric. Indeed for simplicity
of notation we use the same letter T" for the restriction T‘LZ(Q). Take o, € L?() <
HBQ(Q)*. Then there exist u,v € HgQ(Q) such that ¢ = Su and ¢ = Sv, and conse-
quently
T,y ={TSu,Svy = {u, Sv)
= (ulv) + (u|ov)
= (Su,v)y = (Su, TSv)
= <<)07 T¢>

(4.82)
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Since the inverse of an injective self-adjoint operator on a Hilbert space is also self-
adjoint with dense domain, see for instance [30, Theorem 13.11], it follows that 7! is
self-adjoint with dense domain R(T').

Since T~ !'u = (I — Ag)u if u € D(Ay), it only remains to prove that the domains
of T71 and the Laplacian Ay as defined in (4.69) coincide. By the definition of range
R(T) = {Tf : f e L*Q)}, if we show that given f € L?(Q) there exists a unique
u € D(Ay) such that u = Tf, i.e. T~ 'u = f, the theorem follows. The proof relies on
lemmas 4.3.1 and 4.3.2.

Note that in the current setting D(Aj) imposes periodic boundary conditions in
the horizontal directions and Dirichlet-Neumann ones in the vertical one, i.e. given
f € L*(Q)) we want to obtain a unique solution u € H*?(Q) to the problem

T lu=f in €,

u|{1j:0} = u|{xj:1} for j = 1527 (483)

U|FD = 6’3u|FN = 0.

Thus it suffices to transform the vertical variable to the periodic/antiperiodic case, for
which we will use the reflection arguments in lemma 4.3.1. We can assume, by a linear
transformation of coordinates if necessary, that (a,b) = (0,1/2).

We will start with pure Dirichlet boundary conditions. Let f € L?(Q2) be arbitrary,
we can extend f oddly to [0,1]% in the following way

f(x) ifrs <1/2

f(@):= {—f(acl,acg, 1—mg) ifxs>1/2. (4.84)

Since f e L%([0,1]?), there exists a unique solution @ € H?*2([0,1]?) to the problem
(4.77) with periodic boundary conditions in all three directions. Moreover, from the
properties of I — Ag we deduce that —u(x1,x2,1 — x3) is also a solution

(I-A)(—u(x1,x2,1—23)) = —[u(z1, z2, 1 —23)—(AU) (21, 22, 1 —23)] = —f(x2, 22, 1—23),

which by uniqueness yields that ﬁ‘zg € Hg’e%((), 1). Now, by lemma 4.3.1 the solution
u‘% €eH 5_ 02 (0,1/2) complies with Dirichlet boundary conditions

u‘x3=0 = u’a:3=1/2 =0,

therefore u € D(Ag). It remains to prove uniqueness of solutions in [0,1/2]. Let v €
H?2(Q) be another solution of (4.77), if we extend v and f oddly to [0, 1]® by the same
method as (4.84), then the uniqueness of solution in [0, 1]® implies uniqueness of u as
well, and the assertion follows.

The same conclusion can be drawn for pure Neumann boundary conditions, where
given f € L?(Q) the extension to [0,1]? is constructed evenly instead
_ { f(x) if g < 1/2

f(@):= flx1, 0,1 —x3) ifxg>1/2 (4.85)

In this case, the solution restricted to the vertical variable is ﬂ‘xg € Hgé%(o, 1), thus lemma

4.3.1 yields that the restriction to [0,1/2], u € H;?(0,1/2) complies with Neumann
boundary conditions

‘93“‘@,:0 = agu’xgzl/? = 0.
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The rest of the proof runs as before.

The only remaining concern is the case of mixed Dirichlet-Neumann boundary con-
ditions. It can be proved in much the same way, the only difference being that instead of
transforming the problem to periodic boundary conditions in all three variables, we use
the result of existence and uniqueness of solutions in lemma 4.3.2 with periodic boundary
conditions in horizontal variables 1 and z9, and antiperiodic in the vertical one x3. On
the one hand if I'p = ', and I'y = Ty, then we extend f evenly to [0,1]3. Restricted to

x3 the solution is ﬂ|x3 € ng’l%iper((), 1), thus by lemma 4.3.1 we have

u‘ = 53u’ 0.

x3=0 z3=1/2

On the other hand, if I'p = T, and 'y = T, then we extend f oddly to [0,1]3.

Restricted to x3 the solution is U’xd € Hjjiper(o, 1), thus by lemma 4.3.1 we have

63“‘%:0 = “’x3=1/2 = 0.

In summary, we have shown that S is a self-adjoint operator such that D(S) = D(Az)
and Su = (I — Ag)u for every u € D(Ag), or in other words, that Ay is a self-adjoint
operator in L?(12) as desired. O

It follows that the domains of fractional powers of the Laplacian can be computed
using complex interpolation arguments.

Corollary 4.3.4 ([14, Proposition 4.1]). Let 6 € [0,1] with 26 ¢ {1/2,3/2}. Then

{ve Hpl2(Q)? : duvfp =0, 0 =0}, 3/2<20<2,

per
D((-Ay)?) = {ve Hpl2(Q)? : o =0}, 1/2<20<3/2, (4.86)
{ve HE2(Q)?}, 20 <1/2.

Proof. We start with a simple characterization of the domain. Since —As admits a
bounded H®-calculus on L?(2), by theorem 3.6.5 we can express the domain of fractional
powers as a complex interpolation space

D((=A2)") = [L*(9), D(~Aa)]p.

Now, the result is known for C*-boundaries by theorem 3.3.8. Therefore, it suffices to
construct a C®-domain 2 extending 2 such that 'y c 'y, 'y, c I’y and 'y, I'y, < Q. Such
() is depicted in figure (4.7), which construction is due to Hieber et. al. [14]. Since  is

| |
3 \\\ Iy Fb/// 3
| |
| @ la
| |
| |

Figure 4.7: Extension of {2 to Q.

compact in the topology induced by periodicity, i.e. identifying the lateral boundaries
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of G, Q is compact with the topology of S* x S! x (a,b). Consequently, there exists a
finite cover {Uj}?:1 and a smooth partition of unity {¢; };?:1, @; : 2 — [0, 1], such that

k

supp ¢; < Uj, and Z pj=1.
j=1

Let j e {1,...,k}, denotlng by Q a copy of Q taking U; small enough we can identify

it with an open subset U i of Q We can now define a retraction/correctraction for
s € [0,00) by

2 2 2 2
S: H;erbc(Q) - @j 1H$ ( ) R @j 1H$ ( ) - H;erbc(ﬂ)
v = {\/%”}j:l u = 21:1 VP55
where b.c. refers to boundary conditions as in (4.86). It follows easily that RSv =

R({,/@jv};) = X pjv = v. By theorem 3.2.18 we have the following relation between
interpolation spaces

Finally, since the complex interpolation in the right hand side is defined for C*-domains,
by theorem 3.3.8 we conclude that

{ve H?2(Q;)? D0l =0, 0, =0}, 3/2<20<2
D(-A)")=R|P {ve H?2(Q;)? - v, =0}, 1/2<20<3/2,
{ve H?2(Q;)?}, 20 <1/2.
{ve HYZ(Q)? : dwvfp =0, 0 =0}, 3/2<20<2

per
= {ve Hye?(Q)? : ol =0}, 1/2<20<3/2,
{ve H222(Q)?%), 20 <1/2.

per

We can now formulate the main theorem of this work.

Theorem 4.3.5 ([7], Theorem 3.1). Let v = 0. Then the operator —As + v admits a
bounded H®-calculus on LE(Q) of angle O provided v > 0. If T'p + (&, then the above
assertion holds true even for v = 0.

Proof. Let us first assume that I'p + ¢§. Making use of perturbation techniques for
the H®-calculus the proof falls naturally into two parts. Firstly, by theorem 3.7.5 we
will show that v — As — By admits a bounded H*-calculus for v > 0 sufficiently large.
Secondly, from the sectoriality of —As and theorem 3.7.6 we will conclude that the
assertion holds true even for v = 0.
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From proposition 4.3.3 we already know that —As admits a bounded H%®-calculus.
Since D(Ag) < D(Bs), boundedness of By : D(Ag) — L?(2) in D(As) can be seen via
the following diagram

—Vy Ay divy
—_—

D(By) & mV2H2(0)2 2, BI L (G)2 < 12(G)? [2(G)? — L2(Q)2.

Let v € H'1/2+32(0)2 then there exists a periodic extension Fv e H*1/2+5:2(T3)2
and we can use the Fourier representation of Bessel potential spaces to obtain that the
derivative 0, FEv is bounded by

|0-Bolsiavsarsp = |[F7 | (14 K20+ F (2. Bo)|

L2(T3)
—on H(l + |k[2) 120200k F(B)

12(23)
<om | F7| (L4 R 202 () |

= 27[‘|EUHH1+1/2+5,2(T3)2 ,
(4.87)

L2(T3)

where we applied Plancherel’s theorem and the inequality |k| < (1 + |k|?)"/2. Bounded-
ness of the trace operator follows from theorem 3.4.2. As a consequence, it is easy to see
that Bs is a lower order perturbation of —A,. Indeed note that by corollary 4.3.4 the
domain of the fractional Laplacian actually satisfies

D((—Ag)l_e) AN H2(1_9)’2(Q)2 < H1+1/2+6’2(Q)2, (4.88)

per

whenever the second inclusion holds, this is, 2(1 —60) > 1+ 1/2 + ¢, thus 0 < 1/4 —
9/2. Combining (4.88) with the bounded invertibility of the Laplacian Ay and the
boundedness of the perturbation term By, we obtain that By is a lower order perturbation
of the Laplacian with

| B2vl r2(0) < Collvlgrenmis ) < Cill(=A2) 0] 12(),  ve D(-Ay), (4.89)

for some constant C; > 0 and 6 € (0,1/4 — §/2), recall that 6 € (0,1/2). Theorem 3.7.5
yields that v — Ay — By admits a bounded H®-calculus on L?(Q2) of angle

WHCVJ(Z/ — AQ —Bg) =0

for v = 0 sufficiently large.

Having disposed of this preliminary step, we can now return to the restriction v — As,.
Note that through this work we have constructed As + By as an extension of Ay from
the closed subspace LZ(2) to L?(Q2)?, and the same conclusion can be drawn for the
resolvent. Let A € p(Ag + Bs) and take w € LZ(2), i.e. w = Paf for some f € L%(Q)2.
Substituting the pressure gradient (4.66) in the resolvent problem (4.34):

{ A—Av—Bv=PFf on §2, (4.90)

divgo =0 on G,

we have that v:= (A — Ay — Bg)_ng f is the unique solution to the resolvent problem

{ M —Av+Vgms=f  on Q, (191)

divgov =0 on G,
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In other words, (A — Ay — B2) ™! leaves the solenoidal subspace LZ((2) invariant with

p(AQ + BQ) C p(AQ) and ()\ — AQ — Bg)_l‘Lg(Q) = ()\ — AQ)_l. (492)

The property of H®-calculus is preserved through invariant subspaces since

(v = 42) | gzzy = I (0 = B2 = Bo)l 2 ) lequzy = 1 (v = Ao = Ba) |2 |z
<= 20— By, f € H(S) n H*(S,)

where we used (4.92) in the second equality. Consequently, —Ay + v admits a bounded
H%-calculus on LZ((2) of angle

whge(—A2 +v) Swpgo(v — Ay — By) =0,

for v = 0 sufficiently large.

We now proceed with the second step, proving that v = 0 may be zero. This poses
no problem because we proved in theorem 4.2.5 that —As is invertible and sectorial. The
constant operator —v is linear and bounded, hence D(v — A3) = D(—v) = L2(Q) and it
is a relative perturbation of —As. Since the addition

(U—Ag) — UV = —AQ,

is invertible and sectorial, by theorem 3.7.6 we obtain that —A, admits a bounded
H*-calculus.

We now turn our attention to the case I'p = ¢J. The definition 4.68 clearly forces
Byv = 0. Moreover, it is known that v — As admits a bounded H%*-calculus on angle
0 on L?(02)? by proposition 4.3.3. Consequently, the above construction applies to this
case as well, which proves the theorem. ]

To conclude this work, we include to important corollaries that the bounded H*-
calculus of the hydrostatic Stokes operator As implies.

Corollary 4.3.6. Let 6 € [0, 1] with 260 ¢ {1/2,3/2}. Then

{ve H?2(Q)? - 6zv‘FN =0, ’U‘FD =0} N LA(Q), 3/2<20<2,

per
D((v — A9)?) = {ve Hpl2(Q)? : ol =0} nLE(Q), 1/2<20<3/2,
{ve HE2()?} A LI(Q), 20 <1/2.

(4.93)
forv>0. IfI" & (J it holds even for v = 0.

Proof. Since v — Ay admits a bounded H*-calculus, by theorem 3.6.5 we can express its
fractional powers as a complex interpolation space

D((v — A2)?) = [LE(Q), D(v — A3)]s,

g

and the rest of the proof is completely analogous to 4.3.4. O

Corollary 4.3.7. For v > 0 the operator v — Ao has mazximal Le-regularity. If U'p + &
then it holds true even for v = 0.

Proof. Since LZ((2) is a Hilbert space, the assertion follows from corollary 3.8.4. O



Chapter 5

Conclusions and future directions

The main goal of this thesis was to reproduce the proof of the hydrostatic Stokes operator
—As admitting a bounded H*-calculus, which was the topic of chapter 4. Although the
main proof is short and concise, it relies on deep functional analytical theory which we
introduced in chapter 3.

In particular, we have been exposed to perturbation theorems for the H®-calculus,
section 3.7, and interpolation theory, section 3.2.3. These notions were taken for granted
in the main article but required an study of operator semigroups, section 3.5 and the
construction of interpolation spaces in order to make the work self-contained. Moreover,
we had to make precise the notion of trace for distributions, section 3.4, and interpolation
with domains, subsection 3.2.3, which allowed a neat introduction of the function spaces
treated throughout the work, section 3.3. Finally, we also included the notion of maximal
regularity, section 3.8, to understand the main corollary of the work, which is a conclusion
of the vector-valued Fourier multiplier theorem, section 3.1.2, and R-sectoriality, section
3.6.

Once introduced all the preliminaries in the LP-setting, in chapter 4 we went through
Giga et. al.’s proof [7] of bounded H *-calculus for the hydrostatic Stokes operator —A,.
The definition of the hydrostatic Helmholtz projection and hydrostatic Stokes operator,
as well as the characterization of the hydrostatic solenoidal subspace L2(Q) and the
hydrostatic Stokes operator being invertible and generating a bounded analytic Cy-
semigroup on LZ((2), are an extension of Hieber and Kashiwabara’s proof [15]. Giga
et. al. take these notions for granted and hence are able to present a concise proof of
the bounded H®-calculus for the LP-case. However, the aforementioned properties of
the solenoidal subspace LZ(Q) and the hydrostatic Stokes operator A, differ from the
L?-case to LP. Consequently, now that intuition is built on the L?-case, the next logical
step of this work would be to follow Hieber and Kashiwabara’s proof for the general
LP-setting.

Finally, Giga et. al.’s proof is contained in section 4.3.5. Here we start by rewrit-
ing the hydrostatic Stokes equation as a perturbation of the L?-Laplacian and proving
H®*-boundedness of the Laplacian. This is done through reflection arguments adapt-
ing Taylor’s [32], Krylov’s [21] and Nau’s [27] works. Although we only prove it for
the L2-case, Nau’s dissertation contains a generalization to the LP-setting. Moreover,
the H®-calculus of the Laplacian provides a characterization of fractional powers of
the Laplacian, which also works in the general LP-case, for this we followed [14]. The
main idea of the proof is show that By is a lower order perturbation of the Lapla-

69
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cian, which admits a bounded H%-calculus, and thus v — Ay — By admits a bounded
H®-calculus for v > 0 large enough. We conclude the proof by applying that —As is
invertible and sectorial, hence by perturbation theorems again, v = 0 may be zero. Once
H%*-boundedness of the LP-Laplacian and the invertibility of the LP-hydrostatic Stokes
operator are proven, the proof of admitting a bounded H*-calculus should be a simple
generalization. We finish the work by showing that the hydrostatic Stokes operator — Ao
has maximal L%-regularity.

Once maximal L4-regularity is shown, we would still need to show the well-posedness
of the full nonlinear primitive equations. In this direction, in 2020 Giga et. al. published
a new article [8] simplifying Hieber and Kashiwabara’s original proof. We would also
like to recommend the interested reader Gries’ dissertation [10] on the works published
jointly with Giga et. al.
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