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E X E C U T I V E S U M M A R Y

Scientists believe Artificial Intelligence (AI) will play a dominant role in solving
global warming, by e.g. tracking greenhouse gas emissions and optimizing energy
markets [Rolnick et al., 2019; Vinuesa et al., 2020]. AI can also be implemented for
other future problems, such as reducing healthcare cost and improving the quality
of education [Kalis et al., 2018; Dwivedi et al., 2019; Königstorfer and Thalmann,
2020; Rangaiah, 2020]. AI has already been implemented in most sectors and has
promising application in many more. AI is a concept with a varying definition, but
a broadly accepted definition is that a system is intelligent when a person cannot
distinguish the different between another human and the system [Haenlein and Ka-
plan, 2019].

However, broadly applying AI also has a negative impact on society. Recent stud-
ies reported on the growing carbon footprint of AI applications and researcher are
expressing their concerns about the footprint of AI [Vinuesa et al., 2020; Hoa, 2020].
Especially deep learning (DL) is a field of study within AI that requires a lot of
computational power, so consumes a lot of energy, and therefore produces a lot
of carbon dioxide [Li et al., 2016; Pouyanfar et al., 2018; Strubell et al., 2019]. The
advantages of DL are that it can process raw input data and can identify complex
patterns based on deeper layers in the data [Lecun et al., 2015]. These advantages
enable faster and more accurate problem solving. The application of DL is expected
to grow, since it is expected to become the dominant big data analysis method in
many industries and the computational demand of the state-of-the-art DL models
grows exponentially [Amodei and Hernandez, 2018; Choudhary and Linden, 2020;
Sicular and Vashisth, 2020].

Ideally, the energy consumption of DL models would be traceable to determine
which models and applications consume most energy and how this can be reduced.
However, in reality the problem is that the energy consumption of DL models is very
hard to track. Consequently, there is no awareness about the energy consumption
of these models and therefore no direct incentive to limit the energy consumption.
The objective of this research is to identify the restrictions that arise when trying to
account the energy consumption of developing deep learning models in data cen-
ters. The main research question is therefore:

What are the restrictions on accounting the energy consumption of building, train-
ing, and maintaining Deep Learning models in data centers?

To answer the main research question, four exploratory case studies have been com-
pared with a cross-case analysis, to make robust conclusions on the availability of
information [Creswell, 2003; Yin, 2018]. Next, the qualitative data of these case stud-
ies has been analysed by coding restrictions and by grouping them, to identify the
restrictions on accounting the energy consumption [Auerbach and Silverstein, 2003].
Then, these findings have been validated with expert in-depth interviews and the
qualitative data of these in-depth interviews have been analysed to identify addi-
tional restrictions.

The cross-case analysis revealed that there is little information available across the
cases to account the energy consumption of training DL models. The cross-case anal-
ysis consisted of four cases, in which a DL models have been built and trained. The
process to find and train the final and best model architecture was often unstruc-
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tured and poorly documented. So, the minimal required information to determine
an estimation of the energy consumption of the process was available in only two
of the four cases. The outcomes of these energy consumption estimations were rel-
atively low, partly because the method underestimates the energy consumption of
the cases and partly because the DL applications in the cases were relatively sim-
ple. Moreover, the cross-case analysis identified the stakeholders and their current
roles in energy accounting the training of DL models. This revealed that most stake-
holders do not take an active role in the energy accounting, besides the scientific
community.

The qualitative data analysis of the case studies revealed nine groups of restric-
tions, aggregated from more detailed restrictions shared in the interviews. These
restrictions can be classified into three categories based on the causes of the restric-
tions in the interviews. These categories describe the causes of the restrictions, but
can also be used to formulate solution directions to overcome the restrictions. The
three categories are Organizational, Social, and Technical.

From these nine restrictions, eight have been validated by the expert in-dept inter-
views. The experts have been divided into three perspectives, namely the govern-
mental, the scientific, and the service provider. However, these restrictions are not
validated. The eight validated restrictions from the case studies and corresponding
categories are:

• Complexity of Deep Learning (Social & Technical)

• Innovative stage of Deep Learning (Social & Technical)

• Lack of incentive to determine energy consumption
(Organizational & Social)

• Lack of model developers’ energy accounting knowledge
(Organizational & Social)

• Lack of societal awareness (Organizational & Social)

• Lack of systematic evaluation of models (Organizational)

• Long and diverse training time (Organizational & Technical)

• No hardware details available (Organizational & Social)

To conclude, building, training, and maintaining Deep Learning models proved
to be an unstructured process, which resulted in scattered information regarding
the energy consumption of these models. This makes it really hard to account the
energy consumption of training these models. Also, the stakeholders pay little at-
tention to the energy consumption of the models. They have no direct incentive to
account or reduce the energy consumption and/or they are not aware that remote
servers consume significant amounts of energy. The restrictions on accounting the
energy consumption of training Deep Learning models can be overcome by pro-
viding options for the stakeholders to educate themselves, stimulating interaction
among stakeholders, and creating a structure for the stakeholders to organize them-
selves and the information required for energy accounting. This provides the stake-
holder with the means they need to cope with the technical complexity of Deep
Learning.

Concrete policies to overcome the validated restrictions are to (i) set standards on
what and how to communicate the energy consumption of service providers to
the model developers, (ii) set standards on what is high, normal, and low energy
consumption for certain DL architectures and applications, (iii) develop and issue
certificates that require logging of all training hours, and (iv) develop a knowledge
sharing platform for best practices of (DL) technologies and the energy consumption
of these technologies.
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1 I N T R O D U C T I O N

1.1 motivation for deep learning

In 2018, the world’s leading climate scientists presented a report with a clear mes-
sage; We need urgent change to cut the risk of extreme heat, drought, floods, and
poverty caused by climate change [Watts, 2018]. If the world does not reduce its
emissions, global warming is likely to reach 1,5 degrees of Celsius by 2030 what
will cause risks to health, livelihoods, food security, water supply, human security,
and economic growth [IPCC, 2018]. Many scientists believe artificial intelligence
(AI) can play a prominent role in mitigating global warming [Rolnick et al., 2019;
Vinuesa et al., 2020]. It might prevent climate change by, inter alia, tracking the
source of greenhouse gas emissions and optimizing the fluctuating energy market
with new sustainable energy sources.

The definition of AI varies between scientists and over time, but a broadly accepted
test to determine whether a system is intelligent is the Turning Test [Haenlein and
Kaplan, 2019]. This test states that a system is intelligent if a human cannot distin-
guish the difference between another human and the system. Section 3.1.1 elabo-
rates on the definition of AI. Besides reducing greenhouse gas emissions, AI is ap-
plied in many different sectors in the recent years. It has promising application in
sectors such as healthcare, education, finance, manufacturing, retail, supply chain,
and utilities [Kalis et al., 2018; Dwivedi et al., 2019; Königstorfer and Thalmann,
2020; Rangaiah, 2020]. AI can assist in surgeries, design a customized learning pro-
file for students, and determine the creditworthiness of banks’ customers in minutes.
In other words, it will be involved in almost every part of our future lives. However,
facilitating all these changes with AI comes at a cost.

Recent studies reported on the growing carbon footprint of AI applications and
more researchers are expressing their concerns that AI is not only for the good [Vin-
uesa et al., 2020; Hoa, 2020]. In 2019, Strubell et al. published a report about the
life cycle assessment for training several common state-of-the-art AI models. They
concluded the whole process of training one model could emit up to 284.000 kg of
CO2, which is the equivalent of the combined emissions of 5 US cars in their life-
times (including fuel and production) or the sum of 315 single-person round-trip
flights between New York and San Francisco (approximately 6 hours) [Strubell et al.,
2019; Hoa, 2019b].

Within the field of AI there is one field of study that requires most computational
power and therefore consumes most energy and produces most emissions, namely
deep learning (DL) [Li et al., 2016; Pouyanfar et al., 2018]. DL is often used inter-
changeably with machine learning (ML), but ML is a broader field of study contain-
ing DL and ML is in turn a field of study within AI (see Figure 1.1). Where ML ’learns’
from carefully selected input and output, DL can process raw data and can identify
complex patterns based on deeper layers in the data [Lecun et al., 2015]. This re-
duces the engineering by hand, but demands more data and computational power.
Moreover, the neural networks of ML models contain some hidden layers and DL

models in general more than 3, up to thousands of layers Dimiduk et al. [2018]. AI

and DL are explained and defined in more detail in Section 3.1.2.
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2 introduction

Figure 1.1: A visualisation of DL being a field of study within ML and ML in turn being a
field of study in AI.

Moreover, DL might contribute significantly to climate change, since the amount of
application in different industries and the demand for computing power of new DL

models is growing rapidly. Firstly, Choudhary and Linden [2020] expect DL to be
the dominant big data analysis method over other ML methods by 2022. Industries
impacted by DL include healthcare, transportation, national security, military, crim-
inal justice, cities, finance, and social media [Sicular and Vashisth, 2020]. Secondly,
the demand for computational power of state-of-the-art DL models is rising faster
than ever before [Hoa, 2019a]. Amodei and Hernandez [2018] reported that the
demand for computational power in the largest DL training runs increased exponen-
tially with a doubling time of 3.4 month. This resulted in an increase of a factor
300.000x in the years between 2012 and 2018.

To put this doubling time in perspective, Moore’s law was the norm for years and
stated that the number of transistors on a integrated circuit doubles every two years.
The number of transistors does not relate linearly to the computational power of
CPUs or GPUs, but it does affects the computational power. More important, the
computational demands of state-of-the-art DL models develop a lot faster than the
hardware, resulting in a growth in the number of data centers and energy consumed
by these data centers.

1.2 problem statement and relevance
Ideally, the energy consumption of DL models would be traceable to determine what
models and applications consume most energy and how this can be reduced. This
provides insights for modellers into what effects their model decisions have, insides
for product owners into what the impact of their product is, and provides decision
makers with handles to limit the energy consumption of these models. However,
in reality the problem is that the energy consumption of DL models is very hard to
determine, due to many restrictions. Consequently, there is no awareness about the
energy consumption of these models and therefore no incentive to limit the energy
consumption.

1.2.1 Societal and scientific relevance

The problem, as stated above, is relevant to society, since researchers recently re-
ported on the significant contribution of DL models to CO2 emissions [Strubell et al.,
2019]. This contributes to global warming with many significant societal risks, as
described in section 1.1. It is therefore relevant that the energy consumption of DL

models and the CO2 emissions linked to it can be accounted.
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The scientific relevance of the problem described above is to formulate and vali-
date a method that can be used to determine the energy consumption of DL models,
because there is no straight-forward way to determine it [Garcı́a-Martı́n et al., 2019].
Moreover, since there is no straight-forward method, it is scientifically relevant to
understand what restrictions limit the energy accounting of DL models in practice.

1.3 research objective and main research ques-
tion

The objective of this research is to identify the restrictions that arise when trying to
account the energy consumption of developing deep learning models in data cen-
ters. The main research question corresponding with this research objective is:

What are the restrictions on accounting the energy consumption of building, train-
ing, and maintaining deep learning models in data centers?

1.4 epa suitability
Within the master program of Engineering and Policy Analysis (EPA) is a clear fo-
cus on how decision makers can tackle grand challenges. When thinking of grand
challenges, one is often referred to the Sustainable Developments Goals (SDGs) of
the United Nations, since these goals represent the biggest challenges of today’s
society [Vinuesa et al., 2020]. One of these goals (Goal 13: Climate Action) is take
urgent action to combat climate change and its impacts [Department of Economic
and Social Affairs, 2019]. This is related to the aim of this research, since this re-
search strives to contribute to the accountability and transparency of the energy
consumption of training Deep Learning models in data centers. The goal of in-
creasing the accountability and transparency is to create more awareness about the
environmental impact of training Deep Learning models to eventually reduce its
impact.

1.5 outline of the thesis
To answer the main research question, Chapter 2 presents the scientific approach
that is followed. Next, Chapter 3 explains the literature about what Artificial Intelli-
gence and Deep Learning are and what metrics can be used to express the computa-
tional power of the two. Chapter 4 also elaborates on literature about the methods
to account the energy consumption of training deep learning models. Chapter 5 de-
scribes the case studies that are used in this thesis and analyses the information in
the different cases what is available to account the energy consumption. Chapter 6

presents the identified restrictions from the case studies and shows what restrictions
are identified in what case studies. Chapter 7 validates the identified restrictions
with in-depth interviews with experts and presents additional restrictions brought
up by in the in-depth interviews. Chapter 8 discusses the thesis results by interpret-
ing the results in the literature, discussing the impact of the results, and explaining
the limitations. Chapter 9 eventually answers the sub-research question, concludes
on the main research question, suggests policy considerations, explains the contri-
bution to society and science, and recommends on further research.





2 R E S E A R C H A P P R OA C H

This chapter presents the approach that is used to answer the main research ques-
tion as presented in section 1.3. Also, this chapter describes the sub research ques-
tions that are formulated to answer the main research question and the methods
that are used to answer these sub research questions. Finally, this chapter presents
how the approach and research questions relate to each other in the research design.

To determine what research approach is appropriate for a research project, Creswell
[2003] described three different elements of the project. These elements are:

1. What knowledge claims are being made by the researchers, i.e. what assump-
tions have the researchers about how and what they will learn?

2. What strategies of research fits the knowledge claims?

3. What methods of data collection and analysis will be used for the research
strategy?

For the knowledge claims, this research mainly has characteristics of constructivism
as described by Creswell [2003], which is a perspective that focuses on the subjec-
tive view of the participants. So, for this research project the focus is on what kind
of information is available for the participants to account the energy consumption,
rather than what is the actual content of the information. Also, the focus is on
what the participants perceive and name as restrictions on accounting the energy
consumption, rather than what actually were the restrictions. The next section de-
scribes the strategy or approach that fits this knowledge claims and will describe
the methods of data collection according with the strategy.

2.1 qualitative approach
The strategy in-line with constructivism is the qualitative research approach [Creswell,
2003]. First, multiple case studies are investigated to explore what information is
available in practice when DL models are developed and to determine to what ex-
tent the energy consumption of the cases can be accounted. Next, the interviews of
the case studies and the in-depth interviews are analysed to identify and validate
the restrictions on accounting the energy consumption for training DL models.

2.1.1 Exploratory case studies

Yin [1984] described a case study as an empirical research project, which:

• investigates a contemporary phenomenon within its real-life context: when

• the boundaries between phenomenon and context are not clearly evident; and
in which

• multiple sources of evidence are used.

These characteristics described by Yin [1984] are applicable on this research project,
since (i) this case study investigates the energy consumption of DL models that is

5
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actually consumed in data centers, (ii) it is unclear what part of the energy consump-
tion of data centers can be attributed to DL models, and (iii) part of the information
can be found in literature but this information is insufficient, as section 2.2 describes.

The case study approach is typically used to gain insight into a program, an event,
an activity, a process, or (an) individual(s) that are bound by time and activity
[Creswell, 2003; Verschuren and Doorewaard, 2010]. Case studies can be explana-
tory, descriptive, and exploratory or a combination since they are not mutually
exclusive [Schell, 1992; Yin, 1998]. Explanatory case studies focus on explaining the
occurrence of a phenomena, descriptive case studies on describing certain phenom-
ena after observing and analysing it, and exploratory case studies on exploring a
new field of studies and opening up research possibilities.

Case descriptions

The case studies in this research project investigation is an exploratory case study,
since it aims to reveal what knowledge is known about the process of training a DL

model in practise. First, four different cases will be investigated to discover what
information is available in the different cases. These cases all used DL models to
solve a problem and trained the DL models in different ways.

The cases of this cross-case analysis were selected based on availability within the
time-span. Since the multiple case study design is only a part of the research project
with a limited time, all cases that were at-hand are used. Chapter 5 describes the
different projects and problems that were solved with DL.

Cross-case analysis

The aim of this research project is to identify restrictions on the energy consumption
of various DL models, so the method needs to be robust, i.e. applicable for many
cases. The evidence of a multiple-case study design is considered to be more robust
than the evidence of a single-case study design [Yin, 2018]. Therefore, this research
project examines multiple-case studies.

The case studies in this research project are conducted and reported individu-
ally and later on compared with each other. The case study interviews are semi-
structured, so it is able to compare the different cases and ask questions outside
the line of questioning if it is relevant. The multiple case study design is based on
Figure 2.5 of Yin [2018] and presented in Figure 2.1. Before starting with the case
studies, a theory needs to be developed based on the existing literature. Once this
theory is developed, the cases can be selected and the data collection protocol can
be designed. Next, the interviews of the different case studies can be conducted
and the case studies need to be reported individually, to identify patterns within
each case study. After conducting all the case studies, cross-case conclusions can be
drawn, the initially theory can be modified, and a cross-case report can be written.

Figure 2.1: Multiple case study design, adjusted from Yin [2018]
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2.1.2 Qualitative data analysis

To analyse the interviews of the case studies and the in-depth interviews, the qual-
itative data analysis process of Auerbach and Silverstein [2003] is used. They de-
scribe three phases and six steps to analyse the data by coding the interviews and
constructing a theory. The three phases of Auerbach and Silverstein [2003] are (I)
Making the Text Manageable, (II) Hearing what was said, and (III) Developing the-
ory. In total these three phases consist of six steps for constructing a Theoretical
Narrative from text, these steps are listed below:

1. Explicitly state your research concerns and theoretical framework

2. Select the relevant text for further analysis, by reading through your raw text
with Step 1 in mind and highlighting relevant text.

3. Record the repeating ideas by grouping together related passages of relevant
text.

4. Organize themes by grouping repeating ideas into coherent categories.

5. Develop theoretical constructs by grouping themes into more abstract con-
cepts consistent with your theoretical framework.

6. Create a theoretical narrative by retelling the participant’s story in terms of
theoretical constructs.

Data analysis process

In this research process, the steps as describes above are executed multiple times.
First, the case study interviews are coded with the research concerns and theoretical
framework in mind. Second, these codes are grouped into coherent categories and
more abstract themes. Third, these themes are validated with in-depth interviews
from different fields. The found restrictions are validated explicitly by asking the
experts’ opinions about them and implicitly by coding the in-depth interviews. This
process validates or invalidates the restrictions that are initially identified in the case
studies and compliments the list with additional restrictions.

In-depth interviews

The interviews of the case studies are semi-structured and based on a line of ques-
tioning to identify the available information about the energy consumption of the
projects. The in-depth interviews use the identified restriction from the case studies
as a structure. Therefore, the in-depth interviews are less structured than the case
studies, but not unstructured.

The selected interviewees are stakeholders that are identified in the case studies.
The persons eventually approached is based on the network of the researcher and is
extended with the snowball-approach. This means that every interviewee is asked
for somebody else who might add information to the research project. Ideally this
process is continued until the restrictions are validated from different perspectives
and no new restrictions are identified. However, a complete analysis according to
this setup turned out to be too time consuming and can therefore not be fulfilled
within the limited time.

2.2 sub-questions and methods
This section presents the different sub-questions that fit the methods, as presented
above. This section discusses for each sub-question the method and data required
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to answer the question.

The first chapter briefly touches upon the lack of information to determine the
computational power of AI and DL models. And, since the computational power of
a model is related to its energy consumption, the first step of this research project
is to determine what metric can be used to determine the computational power. To
do so, a literature review is conducted to present the different metrics that are al-
ready used, what assumptions are made to use these metrics, and eventually what
metric defines the computational power of DL models best. Chapter 3 describes the
literature review to answer the first sub-research question:

1. What metrics can be used to define computational power of Deep Learning
models?

The second research question focuses on the methods that are already available
to account the energy consumption of AI and DL models. Also, the answer to this
question reveals the limitations of existing methods. A literature review is con-
ducted to identify these accounting methods and limitations. Chapter 4 discusses
this literature review and the corresponding sub-question is:

2. What methods are available to account the energy consumption of training
Deep Learning models?

Once the information from literature provides for the energy accounting of DL mod-
els has been identified, it needs to be determined whether that information is useful
in practice. So, the next step is to discover what information is available in real case
studies, compare this information with the literature, and determine how the en-
ergy consumption of DL models can be accounted, what the limitations are of the
energy accounting, and what other stakeholders are involved. To discover this, mul-
tiple case studies are conducted, analysed, and compared with literature. Chapter
5 discusses the cases studies and the analysis. The corresponding sub-question is:

3. To what extent can the energy consumption of training Deep Learning mod-
els be accounted in practice?

To discover what factors restrict the energy accounting of developing DL models,
the interviews of the case studies are analysed and coded. The output of this pro-
cess is a list with restrictions that are identified explicitly and implicitly. This list is
then validated with experts via in-depth interviews and afterwards again coded to
identify again the restrictions that are named explicitly and implicitly. The coding
of these interviews is conducted with the software ATLAS.ti 9. This software is a
powerful workbench for the qualitative analyse of large quantities of textual data
[ATLAS.ti, 2020]. The corresponding sub-question is:

4. What are the restrictions on the energy accounting for developing Deep Learning
models?

2.3 research design
Below presents in Figure 2.2 is the research design of this research project. It visu-
alises the different methods and sub questions in order of execution to give a full
oversight of the research.



2.3 research design 9

Figure 2.2: Full research design of the research project.

Once the research problem has been identified, the research consists of three main
components, namely the literature review, the cross-case analysis, and the qualita-
tive data analysis. First, the literature is used to explore the computational power
of DL models (Chapter 3) and to explore how this can be used to account the energy
consumption of these models (Chapter 4). Next, multiple case studies are executed
and compared to explore what information is available at the case studies and how
this can be used to account the energy consumption of DL models (Chapter 5). Then,
these case study interviews are used to identify the restrictions on what makes it
so hard to account the energy consumption in practice (Chapter 6). Next, these
findings are validated and supplemented with in-depth interviews (Chapter 7). Fi-
nally, conclusions can be drawn, limitations can be listed and future research can
be suggested (Chapter 8 and 9).





3 C O M P U TAT I O N A L P O W E R O F D E E P
L E A R N I N G

This chapter presents computation power metrics for DL and therefore answers the
first sub-question as presented in section 2.2. The correlated sub-question is: What
metrics can be used to define computational power of Deep Learning models? First, the
chapter presents a definition of DL and how it differs from AI. Next, the section de-
scribes different metrics as defined in literature to determine computational power
of AI models and DL models. Finally, this chapter answers the sub-question as stated
above.

3.1 what is deep learning?
Chapter 1 already briefly discusses how DL is a field of study within AI. To elabo-
rate on the differences between AI and DL, this section first presents how literature
defines AI. Next, DL is defined to stress the differences.

3.1.1 Artificial Intelligence

The first notion of Artificial Intelligence (AI) dates back to over 200 years ago, when
a chess playing machine named “the Turk” was invented [Buchanan, 2005]. This
machine fooled people to let them think it had a mind of its own. Modern AI con-
cepts found its origin during the second world war, when computers were invented.
After the second world war, Alan Turning introduced the Turning Test to determine
whether an artificial system has intelligence [Haenlein and Kaplan, 2019]. This test
stated: “If a human is interacting with another human and a machine and unable to
distinguish the machine from the human, then the machine is said to be intelligent.”
After those years, scientists made tremendous improvements in the development of
AI and in the 1980s the first commercial parties got involved [Kaplan, 1984]. Back
in the 1980s, AI was defined by applications such as pattern analysis, computer
science, and cognitive psychology [van den Besselaar and Leydesdorff, 1996]. How-
ever, it was nearly impossible to extensively apply these techniques, due to a lack
of computational power and available data. In recent years, these two bottlenecks
improved tremendously and scientists and commercial parties were able to practise
and improve the AI techniques.

The fact that the meaning of AI changed so much over time, already reveals how
subjective the concept is. Within the scientific community is therefore no general
agreement about the definition of AI [Kok et al., 2009; Vinuesa et al., 2020]. In 2018,
the European Commission defined AI with a broad term, namely:

Systems that display intelligent behavior by analyzing their environment and taking ac-
tions – with some degree of autonomy – to achieve specific goals.

However, the above definition is too broad to be used as an overarching defini-
tion, since concepts as intelligent and some degree of autonomy are subject of many
discussions and can cause a lot of confusion [Kok et al., 2009]. Therefore, literature
often describe capabilities or skills a computer or model should posses to be called
AI. Kok et al. [2009] defined four skills, based on logic that these skills are necessary
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to pass the Turning Test. So, what skills are necessary for a person to not be able to
distinguish a computer from a human [Haenlein and Kaplan, 2019]. The four skills
that AI would need at least according to Kok et al. [2009] are:

• Natural language Processing (NLP): able to communicate in a natural language
like English.

• Knowledge representation: able to have knowledge and store knowledge.

• Automated reasoning: able to reason based on stored knowledge.

• Machine learning: able to learn from its environment.

Vinuesa et al. [2020] elaborated on these skills and broadened the skills to some
extent. They specified six capabilities of which software should have at least one to
be called AI. These capabilities are:

• Perception (audio, visual, and tac-
tile)

• Decision-making

• Prediction

• Automatic knowledge extraction
and pattern recognition

• Interactive communication

• Logical reasoning

These capabilities touch a large amount of sub-fields in different research areas, in-
cluding machine and deep learning [Vinuesa et al., 2020]. This last list of capabilities
is the definition of AI as used in this report.

3.1.2 Definition of Deep learning

As described in the introduction, DL is a field of study within the field of study of
machine learning and machine learning in turn is a field of study within AI (Figure
1.1). DL can be perceived as one of the technique to realise the AI capabilities.

DL basically means that a model is provided with the input and output, but de-
termines the relation between the input and output itself [Pouyanfar et al., 2018].
These relations are determined by different parameters or nodes in different layers
between the input and output and together form the neural network (see Figure 3.1).
These layers between the input and output are the hidden layers, since the model
determines these parameters and are often unknown to the modellers. This is also
where Dimiduk et al. [2018] differ ML and DL. They state that ML neural networks
use one-to-three hidden layers and DL neural networks have tens-to-thousands.

Figure 3.1: Visualisation of a neural network from Bre et al. [2018]
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Scientifically, Pouyanfar et al. [2018] state that DL uses multiple layers to represent
different structures of data to build computational models. In other words, DL

discovers complex structures in big data sets to indicate how a model should change
its internal parameters, which are used to calculate the outcomes of each layer based
on the outcomes of the previous layer [Lecun et al., 2015]. There are different DL

networks that can be applied to discover the complex structures in the data, i.e. the
architecture of the neural network. In Table 3.1 is a list of different common DL

network architectures presented with related descriptive key points, reviewed and
presented by Pouyanfar et al. [2018].

Table 3.1: Different types of common Deep Learning Network Architectures with key points,
presented by Pouyanfar et al. [2018]

Deep Learning Network Architectures Descriptive Key Points

Recursive Neural Network (RvNN)
Uses a tree-like structure,
Preferred for NLP

Recurrent Neural Network (RNN)
Good for sequential information,
Preferred for NLP & speech processing

Convolutional Neural Network (CNN)
Originally for image recognition,
Extended for NLP, speech processing,
and computer vision

Deep Believe Network (DBN)
Unsupervised learning
Directed connections

Deep Boltzmann Machine (DBM)
Unsupervised learning
Composite model of RBMs
Undirected connections

Generative Adversarial Network (GAN)
Unsupervised learning
Game-theoretical framework

Variational Autoencoder (VAE)
Unsupervised learning Probabilistic
graphical model

There are many different architectures developed over recent years for specific ap-
plication, but convolutional and recurrent neural networks are the most widely
adopted architectures and most easily applicable by industries [Li et al., 2016; Sic-
ular and Vashisth, 2020]. Industries impacted by DL include healthcare, transporta-
tion, national security, military, criminal justice, cities, finance, and social media.

3.2 how to define computational power?

This section is divided into two parts. The first part describes some metrics that can
be used to express computational power of AI models. This knowledge is required
to understand why it is hard to determine the computational power of DL mod-
els. The second section will explain different metrics to express the computational
power of these models.

3.2.1 Computational power metrics

Literature provides different metrics to express computational power of AI. Hender-
son et al. [2020] summarizes a list with different computational metrics that can be
used to account the energy consumption of AI models. The section below describes
the computational metrics and explains what influences these metrics.
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Metric A: Floating Point Operations

The computational power of computational models is typically measured and re-
ported in the number of floating point operations (FPO), what provides an estima-
tion of the work required to generate a result and can be used to estimate the energy
consumption of a model [Howard et al., 2017; Sandler et al., 2018; Schwartz et al.,
2019]. A FPO (i.e. Mult-Adds or Madds) is computed analytically by an addition
or a multiplication in the model. Advantages of using FPO are (i) that it directly
computes the amount of work done by a machine and this can be linked to the
amount of energy that is consumed, (ii) it facilitates fair comparison between differ-
ent approaches, and (iii) it is strongly correlated with the running time of the model.

To determine how much computational power is used by a model at a moment
in time, the computational power is expressed per unit of time. Therefore, it is not
reported in FPO, but in FLOPS that stands for floating point operations per second,
i.e. FPO per second [Sun et al., 2020]. Amodei and Hernandez [2018] expand this
measure for AI models to petaFLOPS-day, since AI models can run for days, weeks
or months with different peaks in computational demand. Therefore, this metric
reports the average number of FLOPS during one day.

There are several methods to determine the amount of FPOs that is consumed by
an AI models. Schwartz et al. [2019] describe the first by presenting a method that
uses several software packages to compute FPO in various neural network libraries.
However, these are not broadly available and none of the packages contain all build-
ing blocks required to determine the FPOs of all modern AI models. Amodei and
Hernandez [2018] describe two methods to calculate the number of peta-FPOs and
petaFLOPS-day. The first method is based on the counted operations in the model
and the second on the running time of the Graphical Processing Unit (GPU). Impor-
tant to note is that these two methods are not intended to be precise, but are meant
to be correct within a factor of 2 to 3. Counting the operations in a model is partic-
ular easy to apply when the number of operation in a forward pass is provided, it
can then be calculated by multiplying the following variables:

• Number of add-multiplies per for-
ward pass

• 2 FLOPS per add-multiply
(fixed variable)

• 3 for forward and backward pass
(fixed variable)

• Number of examples in data set

• Number of epochs, i.e. number of
times the weights of the network
are changed [Vijay, 2019].

The amount of add-multiplies per forward pass depend on several characteristics of
the AI models as presented by Amodei and Hernandez [2018]. Important character-
istics to consider are the architecture of the models, the number of nodes in the hid-
den layers, and the required accuracy of the model [Lottick et al., 2019; Henderson
et al., 2020]. The precise relations between these variables and the add-multiplies
per forward pass are not defined. However, Howard et al. [2017] show that the
accuracy of a DL model is correlated with the logarithm of the total number of FPOs.
So, a higher required accuracy results in an exponential increase in total number of
FPOs.

Calculating the number of FPOs based on the GPU time can be done by multiply-
ing the following variables [Amodei and Hernandez, 2018]:
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• The number of used GPUs

• The FLOPS per GPU

• Total run-time of the model

• Estimated utilization of the GPUs

However, this method requires a lot of information about the hardware that is used,
which is not always fully available. The FLOPS per GPU and the estimated utilization
of the GPU are constantly changing during a training run and are hard to fully map
[Amodei and Hernandez, 2018]. Moreover, the number of FPOs is not dependent
on all variables above, but the variables above are dependent on each other. For ex-
ample, the number of FPOs does not increase when the utilization increases, instead
the run-time probably decreases. Therefore, these variables do not determine the
number of FPOs.

To conclude, the following non-exhaustive list of concepts determines the amount
of FPOs executed by a considered model :

• Add-multiplies per forward pass

• Architecture of the neural network

• Number of nodes in the hidden layer

• Required accuracy

• Size of the example data set

Metric B: Number of parameters

Howard et al. [2017] and Sandler et al. [2018] express computational power by a
combination of the number of parameter and the number of FPOs. In both research
projects, the number of parameters was defined by the input image resolution and a
width multiplier defined by Howard et al. [2017]. This multiplier thins the network
at each layer and reduces the number of hidden layers, to simplify the network
and let it consume less computational power while maintaining accuracy. However,
Lottick et al. [2019] present that different amounts of parameters for training dif-
ferent types of architectures show different and seemingly unpredictable accuracy.
Some architectures increase in accuracy when being trained with more parameters,
but most show a varying accuracy when adding parameters.

Therefore, it is hard to compare the computational power of different types of ar-
chitectures based on solely the number of parameters. However, the section de-
scribes that the number of parameters is required to determine the number of add-
multiplies per forward pass, which in turn is requires to determine the number of
FPOs that are required for training a model. Concluding, the number of parame-
ters on itself is a poor metric to express computational power, but can be used to
determine Metric A.

Metric C: CPU/GPU utilization

To compare the performances of different approaches to train AI models, Assran
et al. [2019] report the utilization of the GPU and CPU together with the power drawn
by the two processing units. The objective of the research project is to optimize the
hardware usage. So, the computational power in this research project is expressed
in how efficient the model uses the hardware at hand. Dalton et al. [2019] con-
ducted a research with a comparable objective; optimizing the utilization of the
GPU. The computational power was therefore also expressed in the utilization of
the GPU. The biggest limitation of this metric is the hardware dependency. To com-
pare different models with this metric would require the models to run on the exact
same hardware. This is inconvenient for comparing different models with different
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architectures, since types of models benefit from different hardware [Garcı́a-Martı́n
et al., 2019].

Related to the CPU or GPU utilization is the metric defined as CPU or GPU-hours.
Soboczenski et al. [2018] reported their computational power in CPU or GPU-hours
to compare the results of applying different methods. This metric has limitations re-
porting the computational power of different models due to two reasons. First, like
the utilization of CPUs and GPUs this metric is highly dependent on the hardware
that the model uses. Second, CPUs and GPUs do not have a linear efficiency, i.e. 10

servers running at 10% do not produce the same computational power as 1 server
at 100% [Barroso and Hölzle, 2007]. The metric CPU or GPU-hours does therefore not
provide enough information to properly compare different models.

3.2.2 Implications for deep learning

For a variety of fields of study within AI, including the field of DL, there is a distinc-
tion between the computational power consumed by inference and training. Train-
ing a DL model consists of finding the right weights to the nodes in the neural
network and inference is the forward propagation in the network once the weights
have converged [Sebastian et al., 2019]. However, as mentioned in the introduction,
this report only focuses on the training of DL models. Because, inference is a less
demanding in computational power, but harder to track Schwartz et al. [2019].

Tensor Processing Unit

Another implication for DL models is the development of another processing unit,
namely the Tensor Processing Unit (TPU). This unit is specially developed for DL

models [Google, 2020]. Section 3.2 only describes the utilization of the CPU and GPU,
but for some application a TPU can outperform them. Wang et al. [2019] report a
speedup between the 3x and 6,8x when using TPU instead of a GPU for commonly
used DL models.

However, the TPU is highly optimized for large batches and Convolutional Neu-
ral Networks, where the GPU is more flexible and more programmable for irregular
and often smaller computations [Wang et al., 2019]. TPUs should be used for models
with large to very-large batch sizes that train for weeks or months and do a lot of
matrix computations [Google, 2020]. So, it might be possible that the utilization of
the TPU should be considered when defining the computational power of DL models,
but TPUs are beneficial for only a particular type of DL models and therefore used
less.

Field Programmable Gate Arrays

Besides TPUs, Field Programmable Gate Arrays (FPGA) offer a solution to speed up
DL training, when comparing to GPUs [Hwang, 2018]. The difference between FPGAs
and CPUs or GPUs is that FPGAs do not run programs in stored memories. They are
a collection of connected logic blocks that can be adjusted by a programmer [Xilinx,
2020]. This enables FPGAs to be 2.3x to 3x faster than GPUs in training DL models,
which is not faster than the TPUs [Simon, 2017; Wang et al., 2019]. Moreover, the
high level of customizability makes it hard to compare and evaluate different neural
network architectures with different FPGAs [Hwang, 2018]. Finally, FPGAs are less
programmable, since the FPGA are customized for specific operations [Hwang, 2018].
This makes them less attractive for data centers or service providers. Therefore,
FPGAs are less applied for modern DL training and are TPUs preferred. FPGAs are
therefore not taken into account in this research project.
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3.3 sectional conclusion
This section aims to answer the first sub-research question as mentioned in section
2.2. This question is:

What metrics can be used to define computational power of Deep Learning models?

To fully understand the concept of DL, the first part of this chapter describes the
difference between AI and DL. AI can be summarized by a set of capabilities systems
can have that simulate human skills. DL is a field of study within AI, which imitates
the human brain by simulating a neural network. This technique enables computa-
tional models to discover complex structures in data.

As mentioned in section 3.2.1, training DL model requires a vast amount of com-
putational power with different peaks during a run-time. Therefore, it is less conve-
nient to report the number of FPOs required for a result, as it gives no indication the
hardware required to process the peak demands. A more convenient metric would
be FLOPS-day in combination with the total run-time, since it provides insight in
the computational power demand at a moment in time and the total computational
power demand to acquire a result. Also, CPU, GPU, and TPU utilization could be a
metric to express the computational power of DL models combined with the run-
time of the training, to provide information about the capacity of the hardware.

To conclude, there is no one straightforward metric that completely defines the
computational power of DL models. It might therefore be useful to report on FLOPS

as well as on GPU utilization for a full image of the model training. However, FLOPS

are hard to retrieve when programming, so the utilization of the processing unit(s)
is the preferred metric.





4 E N E R GY C O N S U M P T I O N O F D E E P
L E A R N I N G I N DATA C E N T E R S

To determine the energy consumption of DL models, literature provides different
methods. The corresponding sub-research question is: What methods are available to
account the energy consumption of training Deep Learning models? The first part of this
chapter will describe different methods for accounting the energy consumption of
DL models. The second part describes complications that arise when accounting the
energy for models that run in data centers.

4.1 energy analysis methods
To compare the energy consumption of different products and services, Blok and
Nieuwlaar [2021] present the life-cycle energy analysis. They make a distinction
between the energy that is directly consumed in the process and energy that is con-
sumed before the process. For example, in case of a server they make a distinction
between the energy that is consumed by the server and the energy it cost to pro-
duce the server. Dayarathna et al. [2016] concluded that the energy consumption
of producing IT-equipment can be neglected when comparing it to the total energy
consumption of the IT-equipment’s life-span. So, this research project focuses on
the energy that is consumed by the IT-equipment.

Blok and Nieuwlaar [2021] propose four methods to determine the direct energy
consumption of various processes. These methods are:

• It can be derived from data provided by companies;

• It can be derived from statistical data;

• It can be calculated based on the equipment that is used for the process and
the data of this equipment;

• It can be measured directly.

The first and the second methods are hard to execute, since there is a lack of data
and a lack of modelling capabilities for energy analysis of data components [Lei,
2020]. IT equipment and data center cooling and power provisioning infrastruc-
ture are not adopted consistently or in high dimensions in current energy analysis
models. However, calculating the energy consumption based on the equipment and
measuring the energy consumption directly is possible. Calculating the energy con-
sumption can be done afterwards with retrieved information or estimations from
the training runs, but measurement is only possible while training.

4.1.1 Literature selection

To investigate the different methods that are available for calculating and measur-
ing the energy consumption of training DL models a literature reviews is conducted.
The literature used in this review derives from relevant papers that tried to account
the energy consumption of DL models. The papers provide methods with differ-
ent level of details and therefore different levels of accuracy. Section presents and
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describes two methods with different levels of detail to calculate the energy con-
sumption of training DL models. Section 4.3 presents and describes two related
methods to measure the energy consumption from interfaces of the hardware.

4.2 calculating energy consumption
Calculating the energy consumption is the first method to determine the energy
consumption of DL models. This section presents two methods from literature. The
first focuses on how software programs consume energy and the second focuses on
the peak performance of the main processing unit.

4.2.1 Method A: Software energy consumption

Garcı́a-Martı́n et al. [2019] summarize a general method to determine the energy
consumption of software and this section presents this method. To determine the en-
ergy consumption of the software, they make a difference between the static power
and the dynamic power. The static power, i.e. the leakage power, is the power con-
sumed when there is no software activity on a circuit. The dynamic power is the
power consumed by a circuit when the software is active. The dynamic power can
be calculated with the formula:

Pdynamic = α × C × V2
dd × f (4.1)

With dynamic power (Pdynamic) in Watt, the activity factor (alpha) as representing
percentage of the hardware that is active, the capacitance of the capacitor (C) in
Farad, the voltage (Vdd) in Volt, and the clock frequency (f) in Hertz. Then, to calcu-
late the energy consumption of the dynamic power of the circuit, the integral of the
dynamic power over a period of time can be calculated. This results in the energy
to perform a task in joules (J). This is considered to be the main variable, since it
relates directly to money spend on computations.

Besides the energy consumption of the circuit it is also possible to determine the
energy consumption of a program. To determine this, first the total execution time
of a program needs to be calculated using the following formula:

Texecution = IC × CPI × Tc (4.2)

With the number of instructions (IC), the average number of clock cycles per in-
struction (CPI), and the machine cycle time (Tc). The total energy consumption of a
program can be calculated with the formula:

E = IC × CPI × EPC (4.3)

With the energy per clock in EPC and EPC is a proportional constant of C X V2

dd in
formula 4.1. This means that the discharging and charging of the capacitor on the
circuit is not equal to but in proportion with the energy per clock.

This method gives an oversight of the variables and calculations that need to be
available and executed to determine the energy consumption of a program. So,
this could also be used to calculate the energy consumption of a DL model. How-
ever, this is also a limitation of the method, since it would require a lot of detailed
information about the hardware and the instructions of the programs. Moreover,
Garcı́a-Martı́n et al. [2019] explain that measuring the execution time does not give
a realistic view of the energy consumption, since some instructions take more time
to execute and other consume more computational power, i.e. more FPOs.
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4.2.2 Method B: Peak performance of main processing unit

Lacoste et al. [2019] reported a method to determine the approximate CO2 footprint
of training or running a model, with input variables the run-time, the type of GPU

used, and geographical zone of the server. Beside these input variables, they col-
lected public information available on the energy consumption of the hardware, the
location of the providers’ region of compute, the region’s CO2 equivalent emissions
per kWh, and the potential offset bought by the provider.

As part of calculating the carbon footprint, the method of Lacoste et al. [2019] can
be used to calculate the energy consumed by the model in kWh. This calculation is
based on run-time of the model and the processing power of the selected process-
ing unit as input variable. The processing power is based on the theoretical peak
performance of the processing unit, considering the Thermal Design Power (TDP).
The TDP is the highest power consumption of the processing unit that can sustain
over a longer period, without damaging the CPU or GPU [Intel, 2007]. It is not the
absolute maximum power of the hardware, since processor units can have a higher
peak performance during a short period of time. Lacoste et al. [2019] used a basic
formula to calculate the energy consumption of a model, namely:

Etotal =
P × Trun

1000
(4.4)

With total energy (Etotal) in kWh, Power (P) in Watt considering the TDP of the main
processing unit, and the run time (Trun) in hours.

However, formula 4.4 only provides an estimation of the energy consumed by a
DL model. Lacoste et al. [2019] state themselves that the method is only a starting
point, with the main limitation that the estimation is based on the theoretical peak
performance of the processor units. While in reality the performance of the pro-
cessor units varies during a model run [Amodei and Hernandez, 2018]. Another
limitation is the assumption that energy is only consumed by the hardware to com-
pute, while in reality a significant part of the consumed energy is converted to waste
heat [Strubell et al., 2019]. This is expressed in the Power Usage Effectiveness (PUE),
which represents the total energy consumption divided by the energy consumed of
the IT-equipment.

4.3 measuring power draw of hardware
In the section above, Lacoste et al. [2019] only considers the energy consumption of
the main processing unit at its theoretical peak performance. This is because GPUs
can provide more computational power than CPUs and most DL models rely mainly
on GPUs for fast training [Li et al., 2016]. However, Li et al. [2016] reported that even
in idle state the CPUs consume a significant amount of power. In general, 22% to
40% of total energy consumption is used by the CPU. Besides, the Dynamic Random-
Access Memory (DRAM) consumes a relatively small amount of energy (11%) when
a DL model is based on CPU-framework. Therefore, the GPU, CPU, and DRAM need
to be considered when determining the energy consumption of trainingDL models
in more detail. The measurement methods provided by literature also take these
hardware components into account.

4.3.1 Method C-1: Hardware power draw

Strubell et al. [2019] and Lottick et al. [2019] present similar methods to calculate the
energy consumption of DL models with the power related information of the CPU

and GPU. Strubell et al. [2019] aim to quantify the approximate financial and envi-
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ronmental costs of successful DL models for NLP and to reduce these costs. Lottick
et al. [2019] aim to provide individual computer science researchers with industrial
level analyses on measuring the energy consumption and carbon footprint of their
model use.

Both research projects use the Running Average Power Limit (RAPL) interface of
Intel to calculate the average power consumption of the CPU and DRAM. To sam-
ple the average GPU’s power draw, both research projects use the NVIDIA Systems
Management Interface (SMI). The sum of these power draws is then multiplied by
the running time of the model to derive the model energy consumption. Also, both
take into account the PUE of the power draw of the hardware. The formula for this
methods is formulated as:

Etotal = PUE
Trun(Pgpu + Pcpu + Pdram)

1000
(4.5)

With total energy (Etotal) in kWh, the run time (Trun) in hours, and the average
Power (Presource) in Watt per hardware resource. The PUE is dimensionless, but
Strubell et al. [2019] consider a coefficient of 1,58 and Lottick et al. [2019] of 1,25.

Wolff Anthony et al. [2020] use a similar method to determine the energy consump-
tion. They split the training time of the model into specific time block, to determine
the actual carbon intensity with the time block. Such a time block is called an epoch.
The given formula by Wolff Anthony et al. [2020] is presented below. Note that the
formula is very similar to formula 4.5.

Etotal = PUE ∑
epoch

∑
device

PdeviceTepoch

1000
(4.6)

With total energy (Etotal) in kWh, the run time per epoch (Tepoch) in hours, and the
average Power per device (Pdevice) in Watt per hardware resource. The PUE is ddi-
mensionless and assumed to be 1,58, like Strubell et al. [2019].

One difference between two research projects is that Lottick et al. [2019] differen-
tiate between total power draw and the extra power draw to process a model. This
is determined with the average base line power of the hardware, i.e. the idle power
draw. The average power to process a model is therefore defined as Average total
power - Average baseline power.

The method described above has several limitations. First of all, the interfaces that
are used to determine the power draw of the different hardware components are
only available for two manufactures, namely Intel and NVIDIA. Both are considered
to be dominant players in the market for respectively CPUs and GPUs, but there are
many more and especially when considering customized hardware [Hwang, 2018].
The second limitation is the required access to the hardware’s interfaces, which is
relatively easy to access if owned but might face difficulties if not. Finally, this
method is limited as it only considers the average power draw of the hardware over
a period of time. Although Lottick et al. [2019] pay attention to the idle power con-
sumption, both research project do not touch upon the utilization of the hardware.

4.3.2 Method C-2: Utilization of the hardware per process

Henderson et al. [2020] present a method that not only take into account the dif-
ferent hardware components, but also the utilization of the hardware per process.
They present this method and a related framework to provide a simple interface
for tracking real-time energy consumption and carbon emissions. The goal of their
paper is to propose strategies to mitigate carbon emissions and reduce energy con-
sumption. Similar to the previous approach by Strubell et al. [2019] and Lottick
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et al. [2019], this approach uses the RAPL interface of Intel and NVIDIA’s SMI to
retrieve information about the power draw of the GPU, CPU, and DRAM.

The difference between this research projects and the previous is what informa-
tion is retrieved from the interfaces. Henderson et al. [2020] track the energy con-
sumption based on the utilization of the CPU and GPU per process. The energy
consumption per process is determined by the average power draw of the hard-
ware components, multiplied by the run-time of a process and a percentage for the
utilization of the hardware that was dedicated to this process. Next, the energy
consumption of all processes are added and multiplied by the PUE. The formula is
presented below.

etotal = PUE ∑
p

Tp(UgpuPgpu + UcpuPcpu + UdramPdram)

1000
(4.7)

With total energy (etotal) in kWh, the utilization of the resource per process (Uresource)
in percentages, the average power draw of the resource (Presource) in Watt, and the
running time of the process (Tp) in hours. Henderson et al. [2020] assume the same
coefficient for PUE as Strubell et al. [2019], namely 1,58.

The limitations of this method is partly similar to the previous method, since this
method is also dependent on Intel and NVIDIA and it requires full access to the
hardware. Another limitation is the assumption that the computational power of
the hardware increases linearly with the energy consumption of the hardware. Bar-
roso and Hölzle [2007] reported that hardware becomes more efficient when ap-
proaching the maximum computational power.

4.4 method overview
The previous sections describe various strengths and limitations of accounting the
energy consumption for training DL models. Here, these considerations are summa-
rized in the table below. The sections above show a division between the calculation
approach (Method A & B) and the measurement approach (Method C-1 and C-2).
This division of approaches corresponds with the distinction of techniques made
by Garcı́a-Martı́n et al. [2019], named respectively the simulation technique and the
performance monitoring counters (PMC) technique. The table below presents an
overview of the methods from the literature and the strengths and limitations of
the four methods.
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Table 4.1: The methods described by literature to account the energy of training DL models
Method Literature Characteristics

A: Software
energy
consumption

Garcı́a-Martı́n
et al. [2019]

Strengths
• Detailed calculation of different
parts of the hardware
Limitations
• The required information is
very detailed;
• The measuring of some
variables is not realistic

B: Peak
performance
main processor

Lacoste et al.
[2019]

Strengths
• Only basic information required
about the hardware and training runs
Limitations
• Strong overestimation of the
main processing unit;
• Neglection of varying processor
performances;
• Only main processing unit
accounted;
• Idle power is not accounted

C-1 Hardware
power draw

Lottick et al.
[2019];
Strubell et al.
[2019];
Wolff Anthony
et al. [2020]

Strengths
• Multiple processing units are
accounted;
• the idle power can be accounted
Limitations
• No retrospective measurement;
• Access to hardware interface is
required

C-2 Utilization
per process

Henderson et al.
[2020]

Strengths
• Multiple processing units are
accounted;
• The utilization of the hardware
components per process can be accounted
Limitations
• No Retrospective measurement
• Access to hardware interface is
required;
• Idle power cannot be accounted

4.5 sectional conclusion

This section aims to answer the second sub-research question as mentioned in Sec-
tion 2.2. This question is:

What methods are available to account the energy consumption of training Deep Learn-
ing models?

This chapter presents the four methods for energy accounting that are identified in
literature. The first method is a detailed calculation about the energy consumption
of programs on circuits. The second is an estimated calculation that only requires
basic input data about the hardware and the training. The third method is measur-
ing the power draw of the different processing units. The fourth is measuring the
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utilization of different processing units per process.

The two methods that measure the energy consumption are very detailed and com-
plete approaches, but are not applicable after the model has been trained. The
Method A also calculates the energy consumption in detail, but proved to be unre-
alistic and requires a lot of information about the hardware and programs. So, it is
most realistic to use Method B to determine the energy consumption of DL models,
although this only provides an estimation.

But, the method as presented in Formula 4.4 can be extended by adding the PUE.
Since this value might be unknown the default value of the PUE is 1,58, like Strubell
et al. [2019] and Henderson et al. [2020] assume. The correlating formula is:

etotal = PUE
P × Trun

1000
(4.8)

With total energy (etotal) in kWh, Power (P) in maximum Watt considering the TDP

of the main processing unit, PUE dimensionless with a default of 1,58, and the run
time (Trun) in hours.





5 M U LT I P L E C A S E S T U DY A N A LY S I S

This chapter aims to answers the following sub-research question: To what extent
can the energy consumption of training Deep Learning models be accounted in practice? To
answer this question, the first section describes the different cases for which this
question is considered, the model that is used in the case, and additional remarks
made by the interviewees. The next section analyses the cases and presents the
information that is available to calculate the energy consumption of DL models.

5.1 case reports
This section describes each case study individually. The description of the case
study is structured based on the semi-structured questions in Appendix A. So, the
case studies are divided into the case and model description. The description below
are based on the interviews that are transcribed in Appendix E.

5.1.1 Case study 1: Situation recognition in slaughterhouse

The description below is based on the interviews in section E.1. The two intervie-
wees have the roles of project manager and model developer.

Case description

The goal of the Deloitte project was to improve the animal welfare in slaughter-
houses in the Netherlands. The project aimed to improve animal welfare by ana-
lyzing camera footage from the slaughterhouse and to train a model to recognize
undesired situations. These situations where then viewed by employees, who then
had to decide who did what wrong.

The project originated from one of the partners at Deloitte, who was the client of
the product. The old process was inefficient, since employees had to watch random
and often useless camera footage. The first application of the model was in a pig
slaughterhouse and the client was an alliance between the slaughterhouse and an
animal welfare organization with a common goal increase the animal welfare.

Model description

The goal of the model itself was to identify undesirable situations in slaughter-
houses. To achieve this goal, the model consisted of three layers. The first layer
focused on the general identification of objects on the camera footage. This was
partly done with pre-trained models, but needed additional training. This layer is
mainly used to distinguish what is useful and to identify animals from other ob-
jects in the footage. The second layer was used to identify what were undesired
situations. So, what have to happen with the identified objects to be labeled as an
undesirable situation. For example, when one of the objects, in this case pigs, was
left behind from other objects. The final layer was used to upload the footage of the
undesired situation to a platform for employees to check it.

27



28 multiple case study analysis

To find the best architecture for the model, the performance of different architec-
tures was evaluated based on the mean average precision with intersection over
union evaluation with a threshold of 0.5. So, from the predicted box by the model,
at least half of the predicted box had to overlap with actual footage of the object.
To find the best performing architecture, 6 or 7 different architectures where tested
with each 5 or 6 different configurations. This means that in total 30 to 42 different
configurations were tested and each configuration ran until a number of configura-
tions were completed, what took between the 12 and 16 hours. Eventually, Faster
R-CNN ResNet101 proved to be the best performing architecture.

These configurations were all executed by the service provider Azure of Microsoft
in a virtual instance, named Standard NC6. The hardware underneath this virtual
machine was half a NVIDIA Tesla K80, which contains 2 GPUs. The selected region
for the this virtual instance was West-Europe and for Azure this is in Belgium. But
there was no information available about the PUE of the data center.

Logically, most information about the model could be found at the technical model
developer. The project manager had basic information about the model and de-
scribed its process as: ”The model has been thought to recognize objects on image
and to distinguish what is happening on image. Then it has been taught what is
an good situation and what is potentially a wrong situation.” All other information
about the model was provided by the model developer.

Additional remarks

The project is perceived by the model developer to be efficient, since the cost for
training the model was already minimized and therefore is the GPU not excessively
used. The virtual machine was not constantly occupied, so the GPU was only re-
served during training. Also, it is stated by the developer that information from
the data center or service provider about the energy consumption would not have
reduced the energy consumption. He stated that all configuration runs were nec-
essary for the final result. Finally, a structure is proposed to compensate for the
carbon footprint of the models and charge these costs to the customer to increase
awareness among clients and modellers.

5.1.2 Case study 2: Bank’s Credit

The description below is based on the interviews in Appendix E.2. This project con-
tained sensitive information, therefore not all details are provided. The interviewees
had the roles of IT architect and model developer.

Case description

The goal of the project is for a bank to offer a proposition for a loan to the client
within 10-20 minutes that is a good and appropriate offer. Normally, clients would
have to apply for a loan at a bank, the bank would have to take a look at the ap-
plication and would do a proposition for a loan. This process would take some days.

This project originated from a changing need of the client that the bank identi-
fied. Clients wanted to receive the information about their loan faster. Speed was
important for the project, since clients want clarity about their credit rapidly. Also,
the information a client had to feed to the model needed to be hands-on available.
So, basic information about who you are and the bank should be able to fill in the
rest with your permission.
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Model description

The goal of the model itself was to determine whether a loan could be offered to
the client and if so, what kind of loan and how much can be loaned. The input data
were long series of millions of historic loan offers of many years. To offer the loan,
the model used two applications of DL. These applications are NLP and XG Boost,
the latter is a sub-form of random forest that enables the model to learn and im-
prove its own performance. Advantages of using XG boost are its speed, flexibility
for input data, possibility to customize, and good performance [Chen and He, 2021].

The model was evaluated based on technical and non-technical key performance
indicators. The most important evaluation parameter for the model was again the
speed, since the result was requested within nanoseconds. Moreover, the technical
operation can be evaluated based on several parameters, e.g. distribution of false-
positive. However, the model should not be over-fitted to the data, since it is costly
in training and an undesired outcome. But to determine what is sufficient, more
non-technical people need to be involved to judge the outcomes. Also, in the market
of banks economic parameters are used to determine whether outcomes are repre-
sentative for an economy. Such less model-technical parameters and the judgement
of experts then determine a threshold for the technical parameters.

To eventually reach the determined threshold, the model trained for 5 to 10 weeks.
What architecture was used for the model cannot be elaborated on, but there are
only a few tested to find the best performing. The architecture was chosen before
training. The model is trained on internal servers with the use of an intermediate
platform and what hardware is used can be guessed, but not said with complete
certainty. The reason for internal training was confidentiality.

Additional remarks

Due to the nature of the bank’s market the model required a high level of explain-
ability, which is extraordinary for DL models. This explainability was required to
justify the model towards regulators of the bank and authorities. Eventually, they
succeeded to trace changes in outcomes to a small set of parameters.

Energy wise, the training is expected to be inefficient, since the energy consump-
tion is not taken into account in the evaluation. Also, taking into account the energy
consumption might limit the potential of AI and DL. The focus is still much more
on can we do it. Often when something seems impossible, people want to use DL.
But it turns out to complex to create a good model, with data of high quality that is
representative for reality. People first need to trust the technique before next steps
such as the energy consumption are considered. Nevertheless, energy accounting
is perceived as very relevant and interesting to present to the bank.

Another remark is that there are several movements in the world of DL models,
especially when looking at innovation. One focuses on personal data rich models to
identify patterns. Another focuses on privacy protection of personal data. However,
the sustainability story linked to the Paris Agreement is one that nobody is paying
attention to and nobody is linking sustainability and data yet. This is perceived as
unique in the world of DL and very relevant for clients.

5.1.3 Case study 3: Ericsson Product information assistant

The description below is based on the interview in Appendix E.3. The interviewee
was one of the model developers.
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Case description

The goal of the Ericsson project was to develop a tool that provides all information
for field engineers that have to do repairs on inconvenient and dangerous places.
Normally, field engineers would climb up a mast for installation, troubleshooting,
exchanging, or upgrading of software or hardware and were in need of some addi-
tional information. Before, it was a time consuming activity to climb down, so this
project started. The discussion about the project started 5 years ago and back then
were only high hopes about the technology. Only in recent years the project really
flourished due to new techniques. Especially the speech-to-text and text-to-speech
models of Google were important developments.

Model description

The goal of the model itself was to provide, information for the field engineers. So,
a knowledge based model was constructed to structure the distributed data. For
this Knowledge Base model are newer DL models used, but cannot be elaborated
on. Models similar to Transformer, XLNet, and BERT. Questions could be linked to
text in documents. To handle the dialogue pipeline, a classifier was trained on pub-
licly available conversational data, as well as their own conversational data. This
enables the model to follow the steps, be flexible, and react on the user if it states
things in differently. Different models were used to test this process. Eventually one
was chosen that seemed to perform best, with a test data set of 20 to 50 different
sections and a few questions.

The training time is perceived as little. Small parts of the training were partly exe-
cuted on laptops. Bigger parts were trained on internal servers of Ericsson. There is
no clear overview of all training. A virtual machine was set-up and allocated to the
team within an internal cloud of Ericsson, but the data about hardware underneath
the virtual machine is unavailable. The energy consumption is not accessible, but
there is some control on it since teams only have limited access to computational
power, what is linked to the energy consumption. So, there is some control on the
energy that is consumed by the models, but no direct monitoring. However, the
trained models are no huge models, e.g. no full transformer model with billions of
data points.

Additional remarks

First, it is stressed that energy consumption is normally a requirement for all Eric-
sson projects, but it has no special priority in training of models. Second, it was
important for Ericsson to keep the model on internal servers, since the data that
was used could not leave the premises. Since this information is classified.

5.1.4 Case study 4: Asphalt damage detection

The descriptions are based on the interview in Appendix E.4. The interviewee was
one of the model developer.

Case description

The goal of the Arcadis project was to automate the damage detection of the asphalt
of Dutch roads. Normally, road inspectors had to watch video of roads and had to
visit locations to inspect the asphalt. This could be dangerous for high-speed roads,
labor-intensive, and subjective for different inspectors, since it can be hard to detect
small damages. The output of the project for the clients is a map that indicates the
road quality per segment of road. This project orginitated from 2018 and started
internally at Arcadis, since they did jobs for various clients on roads and noticed
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the problems stated above and the fact that road inspectors already used video
footage. Image and video recognition were upcoming by then and it was easier to
use on-location supercomputers over cloud.

Model description

The goal of the model was to identify damages in the asphalt of roads, based on
video footage of vehicles driven over these roads and filming the road. The model
consists of a pipeline that loads the data of the client into the model. Next, the im-
age recognition model identifies the damages in the asphalt. These damages then
need to be translated into the standard and methodology of the client. Finally, the
status of the roads need to be visualized on a maps per segment of road.

To find the best architecture, it is estimated that a little under 100 configurations
with different architectures were tested. Eventually is decided to use a Tensorflow
Mask RCNN. Every configuration ran about 2,5 day and 175.000 steps. To evalu-
ate what architecture and configuration worked best, the configurations were tested
with a validation set of images of different roads and different damages. This set
was also evaluated by different road inspectors, to erase the subjectivity between
them. These configurations were all trained on one of the two supercomputers lo-
cated at Arcadis. Both have two GPUs, which is the GeForce RTX 2080. So, in total
there were 4 of these GPUs available. The model training only used 1 of these.

Additional remarks

First, the supercomputers used for the model training might consume a lot of en-
ergy, but Arcadis almost certainly compensates the produced carbon of the building.
Second, they chose a on-location supercomputer over a cloud based service, since
it was easier to realise in 2018. But, they now work partly in the cloud or at least its
in the test phase. Thirdly, there is a pretty good understanding of how the energy
consumption of the model training can be accounted. The guess is to retrieve data
about the server and combine it with run-time of the model.

5.2 cross-case analysis
This section analyses the cases and compares the cases with each other. The first
section compares the information that is available in the different cases for energy
accounting. The second section implements the energy accounting method that is
available with the available information. The third section describes the limitations
and restrictions that occur from this method.

5.2.1 Cross-case overview

The table on the next page presents an overview of the available information per
case about the project, the model, and the information that can be used for energy
accounting.
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Table 5.1: Overview of the information available in the different case studies.
Case study 1:
Slaughtery

Case study 2:
Bank’s credit

Case study 3:
EPIA

Case study 4:
Asphalt damages

Purpose of
the model

Recognize animal
unfriendly
situations

Provide a fast loan
offer to clients

Provide information
for engineers &
interact with them

Recognize damages
in road asphalt with
more accuracy and
more consistent than
road inspectors

Input data Camera footage
Long series of
historic loan offers

Text documents and
instructions of
different products

Video-footage of
roads

Process to
decide on
architecture

6 to 7 architectures
were tested with 5

to 6 different
configurations per
architecture

From the beginning
one architecture is
chosen and built

Several neural
networks were
tested, but not one
that tremendously
outperformed the
others

Tested little under
100 configurations

Decided
architecture

Faster R-CNN
ResNet101

Known, but
confidential

Known, but
confidential

Tensorflow masked
Faster RCNN

Deep
learning
applications

Image/video
recognition

Knowledge Base
model with NLP

Knowledge Base
model with NLP

Image/video
recognition

Training
time

12 to 16 hours per
configuration, so
360 to 672 hours

5 to 10 weeks Few days of training

2,5 days per
configuration, so
little under 250

days.
Service
provider

Azure Internal Internal Internal

Hardware
Half a NVIDIA Telsa
K80

Unknown
Uknown, but can be
retrieved

GeForce RTX 2080

Location of
hardware

Data center in
West Europe

At the Bank At Ericsson At Arcadis

Energy
consumption
of the model

Uknown, but run-
time as the best proxy
to determine
energy consumption

Uknown, but
perceived to be
inefficient as it has
no priority

Uknown, but
limited amount
of computational
power is allocated
per team

Unknown, but run-
time as the best
proxy to determine
energy
consumption
combined with
GPU details

5.2.2 Remarks about the case studies

Below are the most important remarks listed from the table above with the overview
of the case studies.

Division in type of cases

It can be concluded that the cases roughly consist of two types of DL models, namely
Image/video recognition (Cases 1 & 4) and a Knowledge Base model that uses NLP

(Cases 2 & 3). When continuing this division of case studies, it is noteworthy that
the Knowledge Base models consist of more confidential and unknown information.
An explanation for this separation in confidentiality could be that the input data of
the Knowledge Base models is more confidential. This input is in case 2 loan offers
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of previous bank customers and in case 3 detailed documents and instructions of
Ericsson products.

Ambiguous process to final architecture

In 3 of the 4 cases, the process to decide on the final architecture was ambiguous and
not well documented. Often, model developers just tried several possibilities that
might work with the given input data and desired outcomes. Therefore, the number
of tested architectures in the three case studies are only an estimation Besides, it is
possible that in case study 2 smaller models were tested, but were not named in the
interviews as the training time was only a fraction of the final training time. Also,
the final architecture was often chosen on best performance, however in none of the
project was a notion of the consideration that an architecture could be good enough
for a given purpose. Defining this ’good enough’ performance could significantly
reduce the number of tested architectures.

Internal over service provider

A third remark is that most (3 of the 4) cases still use internal servers over a service
provider. The two Knowledge Base projects explained that the reason for internal
servers was confidentiality of the input data and project. The reason for the third
case study was the practicality of a internal server over service provider, since they
had more experience on the internal server .

Little hardware knowledge

Fourth, in two of the four project the used GPU was unknown and in all cases it
was unknown what the CPU and DRAM were. Also, only case study 1 had some
details about the hardware locations, since they used a service provider to train the
DL models. For the other three case studies, the location of the hardware was intern,
but there was no information available about the energy efficiency of the hardware
location.

Unknown energy consumption

Finally, none of the case studies had numbers about the energy consumption of the
DL models or the used hardware. Two case studies (Cases 1 & 3) could determine
the run-time as a proxy for the energy consumption. At case 2 the main remark was
that the training was probably inefficient, but had no knowledge on how to improve
the efficiency. Case 4 was the only to mention that the energy consumption could
be determined based on the run-time of the model and the details of the GPU.

5.3 energy accounting of the cases
This section strives to determine the energy consumption of the case studies for
which at least some information was available. Important to note is that the calcula-
tions are based on the limited available information and only based on the energy
use of the GPU. Therefore it would be more accurate to state that the calculation is
an estimation of the energy use of the GPU. The first section below describes the
calculations that are executed and the second section discusses the implications of
the outcomes.

5.3.1 Calculations

In Section 4.5 is formula 4.8 presented to calculate the energy consumption of the
peak performance of the main processing unit. This formula requires the PUE, train-
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ing time, and type of hardware. The former is not required from the case studies,
since literature provides an approximate default value and the latter can be used to
search the peak performance online. With the approximate numbers from the case
studies it is possible to calculate an estimation of the energy consumption of case
studies 1 and 4. The calculation is executed in Appendix B.

Appendix B elaborates on the calculations with the available knowledge and some
additional sources to retrieve data about the processing units and the data center.
Case studies 1 and 4 consumed an estimated energy of respectively between 122 to
226 kWh and 2.038 kWh. This is the average yearly energy consumption of respec-
tively one LED-television and 8,5 fridges.

5.3.2 Implications

The energy consumption of the case studies are relatively low compared to the re-
search of Strubell et al. [2019]. However, this does not mean it is not relevant to
reconsider. Because, as mentioned before, these numbers are a strong underestima-
tion of the actual consumed energy. Moreover, although the energy consumption of
the case studies is less than expected, the case studies show that energy consump-
tion is not considered in any of the cases and therefore can be assumed that the
energy consumption could be reduced. This energy saving might be low on one
case study, but when considering that there are many similar cases, this saving can
become a significant share.

5.4 stakeholder identification
This section provides an overview of the different stakeholders that are identified
and their current role in accounting the energy consumption of DL models. The
stakeholders are identified in the case study interviews and the in-dept expert inter-
views, see Appendices E and F. Important to note is that the overview of stakehold-
ers is not a complete overview, but merely those identified in the interviews. The
stakeholder with an asterisk (*) are stakeholders that are not questioned personally,
but are discussed by other stakeholders.
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Table 5.2: Overview of the identified stakeholders in the interviews.
Stakeholder Current role

Client
Little to no attention to minimizing energy consumption
of their project.

Customer*
Little to no attention about the energy consumption of
the services they consume.

Model developer
Little attention or incentive to minimize the energy
consumption, except for cost for compute.

Service providers
Double incentive to maximize rented server-hours and
to maximize the usage of the servers.

Data centers*
Maxime the number of servers to rent within the
limited power supply.

Ministry of Economic
Affairs and Climate

Focussed on minimizing energy leakage in data centers.

Frans Timmermans’
council of European
Green Deal

Focussed on making data centers as sustainable as
possible and finding ways to limit the energy
consumption of the IT-sector.

Machine learning
scientific community

Finding ways to increase efficiency of machine learning
and to account energy based on variables that are
unavailable in the case studies.

The current roles of the identified stakeholders reveal the lack of focus on the energy
consumption of training DL models. The machine learning scientific community is
the only stakeholder who is actively increasing efficiency of ML and has knowl-
edge on how to account the energy. Overall it shows that most stakeholders are not
fulfilling an active role in accounting the energy consumption of training DL models.

Customers and client could create an incentive by adding it to the requirements
for services and product, but they have little attention to it. Model developers, ser-
vice providers and data centers could create some awareness by adding the energy
consumption as an additional service. But, the model developers have no incentive
since it is not a requirement by the client and the service providers and data centers
have an opposite incentive to maximize the rented server-hours and not publish
the . And, governmental agencies could create an incentive by setting up specific
policies regarding the publication of the energy consumption of services. However,
these agencies mainly focus on policies to the energy consumption of the hardware
rather than the software that runs on the hardware.

5.5 sectional conclusion

This section aims to answer the second sub-research question as mentioned in Sec-
tion 2.2. This question is:

To what extent can the energy consumption of training Deep Learning models be accounted
in practice?

This chapter presents the different projects, which are used to explore the infor-
mation that is available to account the energy consumption of DL models. The case
studies present how limited the available information is. The energy consumption
can be determined for only two of the four case studies, since crucial information
is unknown or confidential. For the projects that have the required information, the
energy consumption can only be estimated based on the peak performance of the
GPUs. The estimated energy consumption of the case studies was relatively low, but
is still considerable since the consumption is a strong underestimation and there is
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a big saving potential.

Finally, this chapter describes the stakeholders that are identified in the interviews
with their current roles. These roles present the lack of awareness among the stake-
holders about the energy consumption of DL models and the lack of incentive these
stakeholders have to account the energy consumption of training DL models.



6 I D E N T I F Y I N G C A S E S T U DY
R E S T R I C T I O N S

This chapter aims to answers the following sub-research question: What are the
restrictions that limit the energy accounting for Deep Learning models? To answer this
question this chapter first discusses the research concerns and theoretical framework
that are necessary to understand the identification of the restrictions. Second, this
section presents the restrictions that are identified in the case studies. Third, the
restrictions are categorized based on the causes and possible solution directions.
Finally, this chapter analyses how the restrictions are divided in the different case
studies.

6.1 coding preparations

As stated in Section 2.1.2, the researcher needs to explicitly state his or her research
concerns and theoretical framework before coding the interviews. Auerbach and
Silverstein [2003] explain the research concern as what it is that you want to learn
about and why you want to learn it. Stating the research concerns helps the reader
understand the coding of the text and for the researcher to keep the same focus
when evaluating the different interviews. The research concern of this coding pro-
cess is:

The factors that restrict energy accounting of training deep learning models, to eventually
lift these restrictions and reduce the energy consumption of these models.

Stating the theoretical framework explains the subjectivity of the researcher to make
the coding process as a whole more objective [Auerbach and Silverstein, 2003]. Be-
cause, explaining the subjectivity of the researcher provides an understanding of
the decision to code certain parts of the text and this understanding provides other
researchers the opportunity to evaluate these coding decisions. This eventually
strengthens the objectivity of the process. The theoretical framework is explained
as:

The set of beliefs about processes with which you approach your research study.

The theoretical framework of this research project is based on the literature and
the outcomes of the case study analyses of respectively Chapters 4 and 5. Literature
showed that methods exist to account the energy consumption, but the case studies
proved that there is little to no information available to apply these methods. Also,
the identified stakeholders and their roles in the previous chapter present that most
stakeholders have no active role in the energy accounting of training DL models.

So, the belief to approach this research study is that there is a lack of informa-
tion in these case studies and the stakeholders do not have an active role in the
energy accounting. By coding the interviews, qualitative data analysis is used to
identify the restrictions that are at the roots of these beliefs.

37
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6.2 case study restrictions

This section presents the restrictions that are identified by coding the case study
interviews. This section discusses nine restrictions individually that are grouped
from a long list of restrictions with examples from the interviews.

The coding process was executed per case study with the research concern in mind,
as Auerbach and Silverstein [2003] suggest. First, all possible restrictions in the
transcribed text were highlighted in the interview(s). Next, the top ’blank’ restric-
tion was labelled with a code. Then, all blank restrictions were compared whether
they could be labelled with the same code. This process repeated until all codes
were labelled. Then, all the codes were grouped into the restrictions discussed in
next section. Appendix C provides a full overview of all coded restrictions that are
underlying the grouped restrictions described in this chapter.

6.2.1 Explanation of the identified restrictions

This section discusses the restrictions that are identified in the case studies in alpha-
betical order. The list of these restriction is:

• Complexity of Deep learning

• Innovative stage of Deep learning

• Lack of incentive to determine en-
ergy consumption

• Lack of societal awareness

• Lack of systematic evaluation of
models

• Long and diverse training time

• Model developers’ energy account-
ing knowledge

• No hardware details available

• Updating model over time

Below is per restriction explained what the restrictions are and from what aspects
they are constructed. Also, each restriction has two quotes and these quotes elabo-
rate on what factors have caused these restrictions to appear in the case studies.

Complexity of Deep learning

DL is a relatively new and complex technique to solve problems, and therefore not
always fully understood. Different DL architectures show varying behaviour with
different configurations when training the models. Also the combination of archi-
tecture and hardware can influence the efficiency of the training. This is often not
well understood by the model developers and therefore, many different architec-
tures and configurations are tested before the best performing model is found.

”Different architectures have been tested to check which one delivered the best results.”
- Appendix E.1

”It’s actually all still quite new and the models are not always well understood” -Appendix E.2

The quotes above are from a model developer and a IT architect in two different
case studies. These quotes show that the DL is a complex technique that is often not
fully understood by the stakeholders that use it. The complexity is partly caused by
characteristics of the technology and partly caused by the lack of knowledge of the
stakeholders. So, the restriction has social and technical causes.
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Innovative stage of Deep learning

A second restriction is the innovative stage of DL models. Most projects indicated
that some part of the model or project was confidential and could not be published.
This is attributed to the innovativeness of the technique that creates a value to not
share insights. This restricts the ability to account the energy consumption as it
limits the available information, as seen in Section 5.2.1. Also, within projects the
available DL techniques changes and improve, which provides new opportunities
but makes the training process less transparent. Finally, since the technique is so
new the focus is more on understanding and realising the technique, instead of
mapping and mitigating its side effects.

”I think that people first need to have some trust in the techniques before one will do the
next step and will ask what does it do with the energy.” - Appendix E.2

”The discussion about the project started around 5 years ago and back then they had some
high hopes about the technology, but only in recent years it really kicked of due to new tech-
nologies.” - Appendix E.3

The quotes above are from two model developers from two different case studies.
The first quote shows that innovative techniques need to be understood by stake-
holder before they will consider negative side effects of the techniques. The second
quote shows that the DL techniques changes in only a few years, which influences
the projects. So, the restriction has social and technical causes.

Lack of incentive to determine energy consumption

This restriction derives from the lack of awareness about the power cost and the lack
of priority to reduce energy consumption. Projects often have incentives to make
processes efficient to minimize costs for the servers, but there is no incentive to de-
termine or minimize the energy consumption of the training. Although the increase
in efficiency and minimization in energy are often linked, it is an restriction on the
energy accounting that this is no stand-alone incentive.

”The consideration to scale down (...) was the efficiency of the whole process.” - Appendix E.2

”(...) the supercomputers might consume a lot of energy, but they are located in the building
(...) and the CO2 emissions of the building are compensated.” - Appendix E.4

The quotes above are from an IT architect and a model developer from two dif-
ferent case studies. The quotes show that there are other incentives within the
organization or personally, which have higher priority when developing DL models,
than the energy accounting.

Lack of model developers’ energy accounting knowledge

This restriction appears in all investigated cases and arises from the lack of knowl-
edge of model developers about the consumed energy of their DL model training.
Also, it covers the lack of knowledge on how to reduce the energy cost of the mod-
els they develop and train.

”I would also find it difficult to act on it. I would not directly know how to reduce it,
since I don’t have to tools for that. I can figure out a lot about the model, but I can’t monitor
the energy consumption. - Appendix E.2

”How much energy is consumed is unknown, but its probably a lot.” - Appendix E.4
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The quotes above are from two model developers of two different case studies. It
shows the lack of knowledge about the energy consumption of the models and the
lack of tools to account the energy consumption. This lack of knowledge and tools
can be caused by the organization or individuals that do not pay attention to the
energy consumption.

Lack of societal awareness

This restriction mainly derives from the lack of awareness of the clients. Clients are
often not aware of what kind of technique DL is while asking for it and/or they are
not aware of the energy consumption of the training of DL models. It also covers
the lack of awareness of society in general, with the assumption that societal aware-
ness will eventually increase the client’s awareness and creates an incentive for the
model developers to reduce the energy consumption.

”The sustainability story (...) is one that nobody is paying attention to and nobody links
sustainability and data yet.” - Appendix E.2

”In general, energy consumption is a requirement for projects, but for this project it was
not a big deal.”- Appendix E.3

The quotes above are from two model developers of two different case studies. The
quotes show the general lack of interaction among the stakeholders about the link
between sustainability and data. And, it shows the lack of attention within organiza-
tions to account the energy consumption of DL models, while energy consumption
is relevant in other parts of the organization.

Lack of systematic evaluation methods

This restriction arises from different evaluations by different people in different
projects. A good result of the models is often not just determined by technical KPIs,
but also by human judgement. This can cause subjective evaluation of the models,
since one or more human(s) has/have to decide what is good and bad result of the
model. Also, there is no overarching systematic evaluation method to determine
what a good result is for training a DL model.

”It turns out to be quite complex (...) to collect data to train and to say with the train-
ing outcomes that a model is a good idea.” - Appendix E.2

”We had different models in place and we just picked the one that seemed to got the best
results of understanding their questions and test data.” - Appendix E.3

The two quotes above are from two model developers from two different case stud-
ies. The quotes show that there is a lack of organization to systematic evaluate the
outcomes of the models and to determine whether a model is good (enough).

Long and diverse training time

This restriction derives from the training process of DL models. Often many differ-
ent architectures with many different configurations are tested before the best one
is found and this process is often not carefully documented. Also, once the best
configuration is found, many models need additional training to keep the model
up-to-date with new input data. This can create an ambiguous process of many
forgotten training hours.

”5 to 10 weeks for the initial training and biggest start (...) training is never finished.
So, you’re going to keep updating after that.” - Appendix E.2
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”(...) when they tried fine tuning the models, they spent a few days training (...) that
wasn’t really enough to improve the models.” - Appendix E.3

The quotes above are from two model developers from two different case stud-
ies. The first quote shows that the technique of DL requires continuous training
for the models to be up to date. The second quote shows that the training process
can contain many training-hours without any results. This requires a structured
organization to collect all the data about the energy consumption of training.

No hardware details available

This restrictions derives from the lack of details available for the model developer.
This could be caused by an organizational structure with distributed knowledge
or by the hardware data simply not being available for an organization. Also, the
use of development software, service providers, or virtual machines can create an
additional layer of infrastructure that makes it harder to identify the underlying
hardware.

”An intermediate platform is used for training the model and storing the data. (...) Ex-
actly what hardware is underneath is hard to say.” - Appendix E.2

”It would be difficult to find that information even if we had a week or two and that was part
of the requirements.”- Appendix E.3

The quotes are from two model developers from two different case studies. The
quotes show that a lack of interaction among stakeholders and lack of organization
or too much layers in an organization can results in a lack available hardware details
for the model developers and therefore also for other stakeholders.

Updating model over time

In two case studies the interviewees indicated that the DL model itself, the scope of
the model, and the complexity of the model changed over time. This can create a
complex history of training runs for different parts and products of the model for
different clients. Also, input data can change over time, which require more effort
to retrieve valuable outcomes. Eventually this can create a non-transparent image
of the energy that is consumed by training a model.

”And sometime in the last six months, the model was updated to support a little more
products and sectors, and you also see now the model has become a little bit more complex.”
- Appendix E.2

”Some preconditions depend on which customer (...). One wants it delivered this way and
the other on those methodologies. They differ. The input images can also be different. ”
- Appendix E.4

The quotes are from an IT architect and a model developer of two different case
studies. The quotes show that the restriction is caused by a lack of organization
among the stakeholders to use similar outcomes or standards and by changing de-
mands of customers, what leads to a more ambiguous training process to account
the energy.
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6.3 categorization of the restrictions
The restrictions can be classified into three categories, namely organizational, so-
cial, and technical restrictions. These three categories derive from the seven points
of view that are used in the RISMAN method to perceive projects and identify risks
[van Well-Stam et al., 2011]. The other four described categories are areal, financial,
legal, and policy.

The previous section discussed the restrictions and the underlying quotes, which
show what causes the restrictions and how they are caused. The table below
presents an overview of the categorization of the restrictions, which are briefly dis-
cussed in the previous section. The sections below the table explains the three
categories that cause the restrictions and discusses briefly a possible solution per
category and per restriction. These solution direction are based on the causes ex-
plained above.

Table 6.1: Overview of the categorization of the restrictions.
Restrictions Organizational Social Technical
Complexity of deep learning 0 1 1

Innovative stage of deep learning 0 1 1

Lack of incentive to determine energy
consumption

1 1 0

Lack of modeler developers’ energy
accounting knowledge

1 1 0

Lack of societal awareness 1 1 0

Lack of systematic evaluation
methods

1 0 0

Long and diverse training time 1 0 1

No hardware details available 1 1 0

Updating model over time 1 1 0

Totals 7 7 3

6.3.1 Organizational

This category contains the restrictions that are caused by organizational structures
or a lack of organization. To solve the restrictions in this category, the structure of
the organization should be changed or a structure needs to be set-up. Within this
category seven restrictions with possible solutions exist:

1. Lack of incentive to determine energy consumption; provide an incentive
top-down in the organization to stimulate the energy accounting.

2. Lack of model developers’ energy accounting knowledge; develop a struc-
ture for education and tools within the organization to account the energy.

3. Lack of social awareness; report as an organization the energy consumption
of the DL that are used and stress the importance of the energy accounting.

4. Lack of systematic evaluation methods; develop a general approach to eval-
uate outcomes of models within the organization.

5. Long and diverse training time; set-up protocols to document all training-
hours or server-hours of DL models and tools to account the energy.

6. No hardware details available; use standardized layers in an organization
that provides hardware information to the users.
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7. Updating model over time; create predefined outcomes by a model in a orga-
nization that can be modified for different customers or stakeholder to limit
the amount of updates.

6.3.2 Social

This category contains the restrictions that are caused by (lack of) social interactions
or lack of knowledge of the stakeholders. The restrictions in this category are rela-
tively easy to solve on the short term, since the actors can be educated and processes
can be adjusted. Within this category seven restriction with possible solutions exist:

1. Complexity of deep learning; educate stakeholders about how to cope with
the complexity to help them understand DL.

2. Innovative stage of deep learning; educate stakeholders in an early stage
about the negative side effects of existing DL techniques and new techniques.

3. Lack of incentive to determine energy consumption; stimulate interaction
among stakeholders about the energy consumption of DL models and stress
the importance of energy accounting.

4. Lack of model developers’ energy accounting knowledge; provide stake-
holder the opportunity to learn about energy accounting and let them share
experiences.

5. Lack of societal awareness; educate stakeholders about the energy consump-
tion of training DL models and stimulate interaction about the subject..

6. No hardware details available; stimulate interaction among stakeholders to
share hardware details and experiences of best practices.

7. Updating model over time; stimulate interaction between stakeholders about
requirements of models and align these requirements.

6.3.3 Technical

This final category consists of restrictions that are caused by technical characteris-
tics of DL models. These restrictions are relatively hard to solve and therefore the
emphasis is more on mitigating the restrictions rather than solving them. Within
this category three restriction with possible solutions exist:

1. Complexity of deep learning; gather information of best practices to map and
reduce the complexity of training DL models.

2. Innovative stage of deep learning; map the functionalities of existing and
new DL techniques to keep track of new opportunities.

3. Long and diverse training; reconsider what training is required for a desired
result and schedule and document these hours.

6.4 overview per case study
This section presents how the different restrictions that are described in the previ-
ous section are distributed over the case studies and discusses remarks about the
distribution of the restrictions. The table below provides an overview of what re-
strictions are coded in the case studies. The results are binary, so 1 if the restriction
was named in an interview and 0 if not. The three lower rows of the table provide
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the sums of the categories of the restrictions in the case studies. This can help iden-
tified if a category is over represented in case studies.

Appendix D.1 provides an overview of how often the restrictions are named per
case study. This table is not used here, since it gives a distorted presentation of the
results. Some case studies had more and longer interviews, which results in more
notions of some restrictions.

Table 6.2: Binary overview of what restrictions are identified in what projects.

Restrictions O S T

Case
study 1:
Slaughter
house

Case
study 2:
Bank’s
credit

Case
study 3:
EPIA

Case
study 4:
Asphalt
damages

Complexity of
deep learning

0 1 1 1 1 0 1

Innovative stage
of deep learning

0 1 1 1 1 1 0

Lack of incentive to
determine energy
consumption

1 1 0 0 1 0 1

Lack of modeler
developers’ energy
accounting
knowledge

1 1 0 1 1 1 1

Lack of societal
awareness

1 1 0 1 1 1 0

Lack of systematic
evaluation methods

1 0 0 0 1 1 1

Long and diverse
training time

1 0 1 1 1 1 1

No hardware details
available

1 1 0 1 1 1 0

Updating model
over time

1 1 0 0 1 0 1

Totals 7 7 3 6 9 6 6

Totals
Organizational 4 7 5 5

Social 5 7 4 4

Technical 3 3 2 2

Remark about the case studies

The first remark is that case study 2 ticks the boxes of all restrictions, while the other
case studies all have 6 restrictions spread differently. Explanations for this remark
are that (i) the case study had two interviewees, (ii) that the two interviewees both
were technical involved in the model, and (iii) that the two interviewees exchanged
more information. Case studies 3 and 4 had only one interviewee. Case study 1

had only 1 interviewee who was technically involved. All together it explains the
high total restrictions, but important to note is that there is no restrictions that is
only named by case study 2.

The categorization of the restrictions over the case studies shows an equal distribu-
tion over the different case studies, comparable with the total number of restrictions
identified in the case studies.
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Remarks about the restrictions

The two restrictions Long and diverse training time and Model developer’s energy ac-
counting knowledge have been identified in all case studies. This already indicates
that these restrictions are important in case studies, since they are identified sep-
arately in all case studies. The restriction Lack of incentive to determine energy con-
sumption is one of the two restrictions that is only named twice in the case studies.
This might indicate that the restriction is less valid for cases in general. However, it
should be noted that this restriction is linked to the restriction Lack of social awareness
and some of the underlying restrictions from the analysis are very similar. There-
fore, this restriction is assumed to be significant. The restriction Updating model over
time is the other restriction that is only identified in two of the four case studies.
This restrictions is not linked to another restrictions and might therefore be less
valid for cases in general.

6.5 sectional conclusion
This section aims to answer the second sub-research question as mentioned in Sec-
tion 2.2. This question is:

What are the restrictions on the energy accounting for Deep Learning models?

This chapter first provides an overview of the nine restrictions that have been iden-
tified in the case studies and explains what the different restrictions are. For each
restriction, there are two examples directly from the interviews and an explanation
what the causes for that restriction are. Second, this chapter categorized the restric-
tions into three categories, namely organizational, social, and technical. Next, a
binary overview is presented of the restrictions identified in the case studies. Spe-
cial remarks about this overview is that one case study identifies all restrictions,
two restrictions have been identified in all case studies, and two restrictions are
identified in only 2. At each restrictions the categories are listed, these categories
are organizational, social, and technical. Below an overview of all the restrictions
and the categories of the restrictions is given:

• Complexity of Deep learning (Social, Technical)

• Innovative stage of Deep learning (Social, Technical)

• Lack of incentive to determine energy consumption (Organizational, Social)

• Lack of model developers’ energy accounting knowledge (Organizational, So-
cial)

• Lack of societal awareness (Organizational, Social)

• Lack of systematic evaluation of models (Organizational)

• Long and diverse training time (Social, Technical)

• No hardware details available (Organizational, Social)

• Updating model over time (Organizational, Social)

The next chapter validates with experts whether these restrictions can be general-
ized.
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This chapter presents an overview of the experts of the in-depth interviews and
the validation of the restrictions that are found in the previous chapter. Also, this
chapters presents additional restrictions that are found outside the case studies.

7.1 validation of the case study restrictions

To validate the restrictions, this section first explains the interviewees. Then, it
presents how the different perspectives validated the restriction that were found in
the previous chapter.

7.1.1 Categorization of interviewees

The experts who are interviewed are listed by role and organization in Table 7.1.
The table also shows that the interviewees can be categorized into three perspec-
tives, namely the governmental, scientific, and service provider. Important to note
is that the categorization is added after the interviewees were identified. This cate-
gorization improves the clarity of the validation of the restrictions. Appendix F pro-
vides more details about the interviewees and the transcription of the interviews.
Below the table is explained what the perspective is and why they are relevant.

Table 7.1: Categorization of the roles of the interviewees.
Perspective Role Organization

Governmental
Senior Advisor
ICT

Netherlands Enterprise Agency
(RVO)

Member of Cabinet
Frans Timmermans’ Team of
the European Commission

Scientific Assistant professor
Carnegie Mellon University
at Language Technologies
Institute

Associate professor

Delft University of Technology
at Faculty of Electrical
Engineering Mathematics and
Computer Science

Assistant professor

Delft University of Technology
at Faculty of Electrical
Engineering Mathematics and
Computer Science

Service
provider

Program manager
Machine learning team
at Service Provider

Cloud Architect
Technology Strategy &
Transformation team at
Deloitte Netherlands
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Governmental perspective

This perspective derives from the responsibility the government has to reduce global
warming. Chapter 1 explains the societal relevance of the problem and therefore
it is relevant to examine the perspective of the Dutch government and European
Commission.

Scientific perspective

This perspective derives from the literature that proved in Chapter 4 and 5 to pro-
vide insufficient tools to calculate the energy consumption of DL training. Therefore,
it is valuable to evaluate the restrictions with the scientific community to confirm
whether the literature lacks tools for model developers in practice.

Service provider perspective

This perspective derives from the dominant role service providers proved to play in
accounting the energy consumption of training DL models. More and more training
is executed on cloud services and without the perspective of the service providers,
no complete image can be drawn.

7.1.2 Validated initial restrictions

This section discusses the validation of the restrictions that have been identified in
the case studies. The table below presents an overview of what restrictions were
validated in total by the different perspectives. The results are binary, so 1 if one of
the interviewees validates the restriction and 0 if not. The lower rows of the table
sum the categories per perspective.

Appendix D.2 provides a full overview of how often the restrictions are validated
in the individual interviews. This table in Appendix D.2 is not used in this section,
since some interviews resulted in more text and therefore more validations of the
same restrictions.

Categories of the case study restrictions

The categories in the table below are the categories that have been identified in the
previous chapter. This does not mean that the identified restrictions do not have
areal, financial, legal, or policy causes, but these other categories are not identified
in the case studies and the in-depth interviews focused on validating the findings
from Chapter 6.
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Table 7.2: Binary overview of what restrictions are identified in what projects.

Restrictions O S T

Governmental
perspective

Scientific
perspective

Service
provider
perspective

Complexity of
deep learning

0 1 1 0 1 1

Innovative stage
of deep learning

0 1 1 1 1 1

Lack of incentive to
determine energy
consumption

1 1 0 1 1 1

Lack of modeler
developers’ energy
accounting
knowledge

1 1 0 0 1 1

Lack of societal
awareness

1 1 0 1 1 1

Lack of systematic
evaluation methods

1 0 0 0 1 1

Long and diverse
training time

1 0 1 0 1 0

No hardware details
available

1 1 0 1 1 1

Updating model
over time

1 1 0 0 1 0

Totals 7 7 3 4 9 7

Totals
Organizational 3 7 5

Social 4 7 7

Technical 1 3 2

Opposed perspectives

The first remark about the validation by the different perspectives is the relatively
low number of validated restrictions by the governmental perspective. The scien-
tific and service provider perspective validate 9 and 7 of the restrictions, but the
governmental only 4. This can be attributed to to the varying knowledge among
the stakeholders about the technique of DL. This is confirmed by the varying sums
of the technical category per perspective.

In contrary to the previous remark, the second remark is about the full validation
of the scientific perspective. Although the service provider perspective only vali-
dated two restrictions less, it is remarkable that the scientific perspective validated
all. An explanation for this validation is the extensive knowledge of the scientific
interviewees about DL, which is opposing the DL knowledge of the governmental
interviewees.

Less valid restrictions

Almost all restrictions are validated by at least two perspectives, but the Long and di-
verse training time is one of the restrictions that is only validated by one perspective.
Not being validated by the governmental perspective is not that remarkable since it
requires basic knowledge about how DL is trained, but not being validated by the
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service provider is remarkable. An explanation can be that the service provider per-
ceive more training time not as a restriction, but as positive since it might provides
more revenue. It is extra remarkable that this restrictions is validated by only one
perspective, since the restriction is coded in every case study. The second restriction
that is only validated by the scientific perspective is Updating model over time. This
is less remarkable as it was only named in two case studies.

Fully validated restrictions

Three restrictions found in the case studies are validated by all perspectives. Lack
of societal awareness and No hardware details available are not very remarkable, since
they were identified in three of the four case studies. However, Lack of incentive to
determine energy consumption is identified in only two case studies and with a very
low count in number of notions (see Appendix D.1). An explanation could be that
the case study interviewees were less willing to elaborate on missing incentives as
it might affect their daily work and reputation. Nevertheless can be concluded that
it is a valid restriction.

7.2 identification of the additional restrictions
Besides the restrictions that have been identified in the case studies, additional re-
strictions have been identified in the in-depth interviews. First, these restrictions
have been explained in more detail. Second, the restrictions have been categorized,
similar as in the previous chapter. Finally, an overview is provided with the addi-
tional restrictions and the perspective in which they are identified.

7.2.1 Explanation of the additional restrictions

The six additional restrictions identified in the in-depth interviews are not validated,
but independently named by the interviewees. Below presents these six additional
restrictions.

Conflicting interests at service provider & data center

This restriction refers to two conflicting interests of service providers and to some
extent data centers. One interest is to train DL models or execute functions as effi-
cient as possible, so they can process the requests of as many customers as possible.
However, another interest for them is to let users use compute as much as possible,
so they can rent out more servers. This creates an incentive for the service providers
and data centers to not provide insight into the energy consumption of the rented
server, so customers will not limit their use.

”(...) then they (data centers that lease spaces for servers) have an interest in having as
many customers as possible who want that. It’s basically up to the customer to say: I don’t
need a whole corridor (of servers) anymore” - Appendix F.1

”I agree there is a conflicting interesting (...) some people in the business simply want
our customers to run massive training jobs all day, every day.” - Appendix F.3

The two quotes above are from the governmental perspective and the service provider
perspective. The quotes provide the insight that the conflicting interest is caused by
the earning model of the organization, so the structure of the organization. And,
that the restriction is caused by the method of interaction between the different
stakeholders.
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Lack of energy accounting tools at service provider

This restriction derives from the interviews with the service provider perspective,
where is indicated that the service providers do not have a tool to properly measure
the energy consumed by services they provide. They stress that the necessary data
probably is available within the organization, but that it needs to be structured and
combined. This process of developing a tool has started. Without this tools, energy
accounting at service providers remains estimations, since most of the information
is confidential.

”There must be some data somewhere, (...) where you get insight into the consumption
of such a server in AWS or Azure.” - Appendix F.3

”I have actually the equivalent of a dissertation on ways that we can do it (accounting
the energy consumption). We just need to measure it first.” - Appendix F.3

The two quotes are from two different interviewees from the service provider per-
spective. The quotes show that the restriction is not caused by technical difficulties,
but by organizational. The quotes show that the information is somewhere avail-
able, but just need to be structured.

Lack of governmental enforcement tools

This restriction derives from the lack of tools by the government to create incentives
for model developers or clients to reduce the consumed energy by training the DL

models. The Dutch government mainly focuses on running the existing servers as
efficiently as possible, but not on the services that run on the servers. Controlling
this input is nearly impossible and undesired by the Dutch government.

”(...) it’s also very difficult to enforce, because you have the recognized measures list that the
technology (...) pays for itself within five years and that companies have to apply it. That’s
very difficult to legislate that in terms of software.” - Appendix F.1

”So, there are people in Digi-connect working with us, with the sector also, to look at: How
can we arrive at the same measurement method, because every week some tech company
comes up to me (...) and I can do very little with it, because everyone uses a different
methodology (...)” - Appendix F.1

The two quotes are from two interviewees from the national and European gov-
ernmental perspective. The former quotes shows that it is hard to create policy
for the technology. So, this restrictions has policy and technical causes. The lat-
ter shows a lack of organization in the measurement methods at the governmental
agencies and the lack to translate it into a policy.

Lack of scientific tools to account energy consumption

This restrictions derives from the limited availability of scientific tool to calculate
and measure the energy consumption of training DL models. Although there are
several methods to calculate or measure the energy consumption, there is not one
straight-forward methods to apply in science.

”You could take a relatively simple model and then the energy consumption would still
be complex. But, that’s complex for almost all models.” (- Appendix F.2

Usually the averages are used to determine the capacity of the hardware over a whole bunch
of iterations and then you average the estimations. So, you get more or less stable estimates,
hopefully. But yeah, it does vary per batch. - Appendix F.2
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The two quotes above are from two interviewees in the same interview of the scien-
tific perspective. The quotes show that the energy accounting is technically complex,
regardless of the model you are using. And, they show that the best calculations
are still estimations of the average energy consumption, so that there is no precise
technical method to calculate it.

Limited information provided by service providers

This restriction derives from the confidentiality of much of the information that
is required to account the energy consumption of training DL models. Different
service providers compete on different levels with each other and the energy con-
sumption and energy cost is one of these levels to gain advantages over competitors.

”I have come across very little from service providers in terms of dashboards and reports
about how, as a customer, you have insights into what energy consumption underlies (..)”
- Appendix F.3

”if you publish results about the AWS energy consumption is dramatic (...) I can imag-
ine they want to do their own research first and if they like it, they publish it very nicely and
if they don’t like it, they don’t publish it.” - Appendix F.3

Both quotes above are from one interviewee with the service provider perspective.
The quotes show that there is little information sharing or social interaction among
the stakeholders and there is no organization to report the information among the
stakeholders.

Separation between science and society

This restriction derives from the different focus of science and society on DL models
and energy accounting. Many of the tools and input metrics used in the scientific
community is not known or not relevant for the model developers in practice. Sci-
ence is likely to focus on FLOPS, where the model developers in society mainly focus
on the GPU utilization. This restricts the energy accounting in society, since many of
the tools from the scientific community cannot be used.

” I found some very shallow way of computing that from looking at the number of float-
ing operations. And then, you know, at certain GPU support a certain number of floating
operations per Watt and then you can compute an approximate estimate of how much it
would take to train a certain network, if you know the number of floating operations the
network takes.” - Appendix F.2

”That is useful, because we sit in our ivory tower smoking our pipe, thinking a lot. But,
it’s nice to talk to people because sometimes interesting problems appear that you don’t think
of staring outside of the ivory tower.” - Appendix F.2

Both quotes above are from one interviewee with the scientific perspective. The
first quote is an explanation of their scientific method to calculate the energy con-
sumption, but the case studies showed that this method is not applicable in prac-
tice. Although the second quote is intended jokingly, it confirms the restrictions
that there is a social division between science and society. Both quotes show the
restriction is caused by a lack of interaction of the stakeholders.
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7.2.2 Categorization and overview of the restrictions

The additional restrictions are categorized similar to the categorization in Section
6.3. However, one additional restrictions is categorized into a category besides
the organizational, social, and technical categories, namely policy. This category
contains restrictions that are directly caused by a lack of proper policies by gov-
ernmental institutions. The table below present an overview of what perspectives
identified what additional restrictions and the categories of the restrictions.

Table 7.3: Binary overview of what additional restrictions are identified by what perspective.

Restrictions O P S T
Governmental
perspective

Scientific
perspective

Service
provider
perspective

Conflicting interests
at service provider &
data center

1 0 1 0 1 0 1

Lack of energy
accounting tools at
service provider

1 0 0 0 0 0 1

Lack of governmental
enforcement tools

0 1 0 1 1 0 0

Lack of scientific tools
to account energy
consumption

0 0 0 1 0 1 0

Limited information
provided by service
providers

1 0 1 0 0 0 1

Separation between
science and society

0 0 1 0 0 1 0

Totals 3 1 3 2 2 2 3

The sparse table above shows that each perspective added two or three potential
restrictions. Also, it show little overlap over the different perspectives. There is
only one restriction that is identified in two instead of one perspective, namely Con-
flicting interest at service provider & data center. The categorizations are also sparse,
since the restrictions had causes in only one or two categories.

7.3 sectional conclusion

This chapter focuses on the question whether the restrictions identified in Chapter 6

are validated by experts from different perspectives and it describes the additional
restrictions found in the in-depth interviews.

To validate the restrictions from the case studies, in-depth interviews were con-
ducted with experts from three perspectives, namely governmental, scientific, and
service provider. From these perspectives the governmental was less familiar with
DL, which noticeable in the number of validated restrictions. All restrictions from
the case studies were validated at least once. Only two restrictions were validated
only once. The first one was identified in all case studies and is therefore assumed
to be valid with a validation from one perspective. The other restrictions was only
identified in two case studies and is therefore less valid. This restriction is Updating
model over time. All other restrictions are validated.
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In the in-depth interviews, six other restrictions have been identified. One restric-
tions was identified separately in two perspectives, but all other restrictions were
identified in one perspective. These restrictions cannot (yet) be marked as valid re-
strictions for the case studies. Therefore, they are not taken into account in further
research. The restrictions were categorized in the four categories of which one was
new, compared to the previous chapter, namely policy.



8 D I S C U S S I O N

8.1 reflection of the results on the literature
Chapters 3 and 4 provide an overview of the literature about metrics to express
computational power and about methods to account the energy consumption of DL

models. The literature presents to what extent it is possible to determine the en-
ergy consumption. However, besides the methodological limitations the literature
describes little about what makes it so hard to account the energy consumption of
DL models. The literature review in this thesis describes extensively the different
metrics to express computational power and energy accounting methods. It also
provides a clear overview of the strengths and limitations of the energy accounting
methods that can be used.

Also, the methods in the literature for energy accounting all focus on nearly ideal
cases. This research projects provides insights into real world cases where a lot of
the information is not available for the model developers. The energy accounting
methods in literature spend little attention to the training of DL models at service
providers and the roles of the different stakeholders in the energy accounting pro-
cess. This research projects examines what information is available when training
these models at service providers, which stakeholders are involved, and which re-
strictions play a role in the energy accounting.

Moreover, this research project provides to some extend the restrictions on the ap-
plication of scientific accounting methods in real world cases. The results of this
thesis are an extension to the literature on what problems can be perceived for
stakeholders outside the scientific community. For example, the scientific perspec-
tive validated that the complexity of DL can be a restriction for the stakeholders, but
also stressed it was less relevant in the scientific community.

To conclude, there are three main points to interpret the results in the literature.
First of all, this thesis reviews the literature of different energy accounting methods
for training DL models and discusses the strengths and limitation of the methods.
Second, the results of this thesis reveal that the data available in cases from litera-
ture possess a lot more information than real world cases. Third, the results of this
thesis add to literature problems that stakeholders can encounter, when applying
the energy accounting methods.

8.2 reflection on the results
Chapter 5 reveals that there is little information available in the case studies to ac-
count the energy consumption of DL models. These findings say something not only
about the case studies, but also about the complexity of the information gathering
and the lack of transparency of information in the industry. Many stakeholders are
afraid to share information because it might contain sensitive information. More-
over, this research project presents the stakeholder identification, in which most
stakeholder have no active role in energy accounting. Many stakeholders point to
others within or outside their organization, when being asked about the energy
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consumption of the training of DL models. This results in a situation where nobody
takes responsibility and no action is taken. It is up to the governmental institutions
to set the rules of the game and to stimulate the interaction and knowledge shar-
ing, up to the clients to demand information about the energy consumption of the
product or services they pay for, up to the service providers to provide straightfor-
ward numbers about the energy consumption to the model developers, and up to
the model developers to document and summarize the energy consumption of the
product or services.

Chapter 6 presents the identified restrictions on the energy accounting of training
the DL models from the case studies. These restrictions reveal the dispersion of the
information to account the energy consumption across the stakeholders and the un-
awareness of most stakeholders. The stakeholders do not give each other incentives
to account the energy consumption and for some of them it saves time and money
to not name it.

Chapter 7 validates the restrictions identified in the case studies with three dif-
ferent perspectives, namely governmental, scientific, and service provider. The gov-
ernmental perspective reveals the difficulty for governmental institutions to form
policies on the energy accounting of training DL models. For them, the focus is on
the efficiency of the supply side of computational power, i.e. the servers in data
centers. Logically, since the energy consumption of these servers can be clearly
measured and optimized. It is harder and more subjective to find and measure the
efficiency of DL models. The scientific perspective revealed the gap between society
and science. Most of the research studies use metrics that are irrelevant for the
stakeholder and cost a disproportionate amount of effort compared to the benefits.
The service provider perspective revealed that there is some attention to the energy
accounting of the services they offer, but it is still in its infancy. Also, it revealed that
it is an organizational and social challenges, rather than a technical challenges to ac-
count the energy consumption. This suggests that the service providers are mainly
afraid to share the information, but it would benefit the stakeholders to share this
information.

8.3 policy considerations
There are several policy consideration to educate stakeholders, stimulate interaction
among stakeholders, create a structure for the stakeholders to organize themselves,
and mitigate the technical complexity. The policy advise provides a number of poli-
cies that can be applied on a national or European scale. It is up to the decision
makers to decide what policies are desirable to implement.

The first policy to consider is setting standards for the service providers on what
and how to communicate the energy consumption of the services they offer. This
policy stimulates the interaction between service providers and model developers
and structures the interaction. It is valuable to divide the energy consumption into
the energy consumption of the training itself and the overhead energy cost. This
separation provides transparency about the energy consumption and the efficiency
of the services. However, the service providers are reluctant with sharing this data,
since they claim that the data needs to remain a confidential. Therefore, the de-
cision makers should assess what interest is more important. This policy can (i)
improve the model developers’ energy accounting knowledge, contribute to a sys-
tematic evaluation method, (ii) make the energy consumption of long and diverse
training time more opaque, and (iii) provide more details about the hardware and
the energy consumption of the hardware.
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The second policy to consider is to provide standards about what energy consump-
tion is perceived to be ’high’, ’normal’, and ’low’ for certain applications of DL. This
policy contributes to the stakeholders’ knowledge about energy consumption and
stimulates interaction among stakeholders about the topic. Decision makers should
decide with the stakeholders how the energy consumption should be perceived as
’high’, ’normal’, and ’low’. This policy can (i) provide an incentive to determine
the energy consumption for model developers, clients, and customers, (ii) improve
the model developers’ energy accounting knowledge, and (iii) increase the social
awareness about the energy consumption of these models.

The third policy to consider is to develop a certificate for green computing for
model developers and clients. This certificate would require the model developers
to keep a log of the total hours of training and the total energy consumption of
these training hours. This policy structures the documentation of training hours
and its energy consumption between the stakeholders and enhances the interac-
tion among the stakeholders. Decision makers should decide on the conditions to
receive the certificate. The conditions could be to just log the training hours and
energy consumption of these hours or could be more strict and could demand more
measures to reduce the energy consumption of the models. It would be convenient
to issue the certificates to companies that applied the required protocols, instead of
assessing individual cases. This policy can (i) provide an incentive to determine the
energy consumption for model developers and clients, and (ii) improve the struc-
ture and documentation of the long and diverse training hours.

The final policy to consider is to develop a knowledge sharing platform where
model developers and clients can share best practices about new (DL) technologies
and the energy consumption of these technologies. This policy contributes to stim-
ulating the interaction among the stakeholders, enhancing their knowledge, and
documenting the different and new DL techniques and the corresponding energy
consumption. Decision makers should decide on the level of generalizability of the
the platform and should stimulate stakeholders and organization to participate on
the platform. The certificate of the previous policy could be linked to the platform
to stimulate or oblige stakeholders to participate. This policy can (i) reduce the com-
plexity of DL by documenting the different techniques, (ii) enhance the knowledge
of new and innovative DL techniques, (iii) improve the model developers’ energy
accounting knowledge,(iv) increase social awareness, and (v) provide more informa-
tion about the energy consumption of hardware and what combination of hardware
and model architecture perform best.

To conclude, to overcome all validated restrictions revealed in this thesis, there are
four policies that could be implemented. These four policies are:

• to set standards on what and how to communicate the energy consumption
of service providers to the model developers;

• to set standards on what is high, normal, and low energy consumption for
certain DL architectures and applications;

• to develop and issue certificates that require logging of all training hours, and;

• to develop a knowledge sharing platform for best practices of (DL) technolo-
gies and the energy consumption of these technologies

8.4 limitations of the research
There are several limitations to this thesis. The first limitation is that the cases
studies only consisted of one or two interviewees, where two is assumed to be
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the absolute minimum for a clear image of the cases by Yin [1984]. This might
have caused the case studies in this thesis to be a weak representation of reality.
However, the case studies with two interviews revealed that the second intervie-
wee knew little about the energy consumption of training DL models. Despite of
the this second interviewee being a project manager or an IT architect. Moreover,
finding additional participants for the case studies turned out to be difficult, since
many potential interviewees were unwilling to participate. They perceived their
own knowledge about DL, training DL, and/or the energy consumption of the train-
ing insufficient to participate. Besides the case studies, this problem also occurred
with the in-depth interviews. Potential interviewees argued that they had little to
no knowledge about the energy consumption of DL or the energy consumption of
any service in data centers. Other potential interviewees were not willing to par-
ticipate, since they were not allowed to be interviewed about the subject due to
confidentiality.

The second limitation is the selection of case studies and interviewees. Ideally
these case studies would represent a variety of cases and the interviewees would
represent a variety of experts. In this research project, the case studies and intervie-
wees used were at hand within the limited time for this thesis. For the case studies,
this resulted in only two types of DL applications, namely Knowledge Base and
Image/video recognition. For the in-depth interviews, this resulted in only one in-
terview with a service provider and for the governmental perspective interviewees
that were not specialised in DL models. Therefore, the case studies and interviewees
are not a complete representation of all cases or all involved experts. So, the valida-
tion of the case study restrictions could be more deepened with more interviewees
and more perspectives.

The third limitation is that the interviews and coding of the interviews are con-
ducted by only one investigator. Ideally, the interviews and its coding would have
been executed by multiple investigators to make it less biased. Auerbach and Silver-
stein [2003] explain how multiple investigators can significantly decrease the bias of
coding the interviews. However, this was not possible due to the individual nature
of this thesis.
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R E C O M M E N DAT I O N S

In this chapter, we summarise the sub-research questions and conclude on the main
research questions. The table below presents the sub-research questions and in
which chapters these questions were addressed.

Table 9.1: Sub-research questions.
Question Chapter
1. What metrics can be used to define computational power of
Deep Learning models?

3

2. What methods are available to account the energy consumption
of training Deep Learning models?

4

3. To what extent can the energy consumption of training Deep
Learning models be accounted in practice?

5

4. What are the restrictions on the energy accounting for
developing Deep Learning models?

6 & 7

First, we answer the sub-research question from the table. Next, we conclude on
the main research question and explain the relevance of the research project. Finally,
the recommendations for further research are presented.

9.1 answers to sub-research questions

Question 1 - What metrics can be used to define computational power of Deep Learn-
ing models?

There is no straight-forward metric to define the computational power of Deep
Learning models. Training Deep Learning models requires a vast amount of com-
putational power with a varying demand during the run-time, which can be days
or weeks. Because of this long run-time, it is less convenient to only report the total
number of computations that is required to produce a result, the so-called floating
point operations.

The hardware must be able to process peaks in the computational demand, so it
is valuable to express the average speed of the computations over a period of time.
It is common to measure this in floating point operations per second-day, which is
the average over a day of the number of floating point operations that is processed
by the hardware per second. Since this metric is very dependent on the hardware
that is used to process the floating point operations, it is also common to express
the utilization of the processing units. A benefit of this metric, compared to the
previous, is that it can be directly linked to the energy consumption of the compu-
tations and is easier to retrieve.

To conclude, the average number of floating point operations per second over one
day combined with the utilization of the processing units can be used to define the
computational power of Deep Learning models. However, the utilization of the pro-
cessing is a more convenient metric to define computational power, since it is more
accessible and directly linked to energy consumption.
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Question 2 - What methods are available to account the energy consumption of train-
ing Deep Learning models?

Four methods have been investigated that can calculate or measure the energy con-
sumption of training Deep Learning models. The methods that measure the energy
consumption can be applied in future cases and use the utilization of different pro-
cessing units to account the energy consumption of training Deep Learning models.
However, this utilization can not be retrieved after training the models.

The calculation methods have two different approaches, one very detailed and one
general estimation. The detailed method requires very detailed information about
the hardware, such as the capacitance of the capacitor on the hardware circuit. So,
this method is inconvenient to apply on the training of Deep Learning models. The
second method is to calculate the energy consumption based on the peak perfor-
mance of the main processing unit and the total run-time. This method creates
an incomplete indication of the energy consumption, but it can be adjusted with
adding the Power Usage Effectiveness.

To conclude, the peak performance of the main processing unit and the total run-
time is the best applicable method to account the energy consumption of training
Deep Learning models. This method does not fully account the energy consump-
tion, but is the best available method to account the energy in practice.

Question 3 -To what extent can the energy consumption of training Deep Learning
models be accounted in practice?

Four case studies have been investigated to explore what information is available
to account the energy consumption of training Deep Learning models. Generally,
there was very little information available to account the energy consumption of the
models that were developed. The process to find and train the final model architec-
ture was often unstructured and not well documented.

Only two of the four cases provided the crucial information to account the energy
consumption of the training process. This crucial information was the graphical pro-
cessing unit that was used for the training and total training time of the different
model architectures. This information can be used to provide an (under) estimation
of the energy consumption of training the models. In the other two cases, this infor-
mation was unknown or confidential. The energy consumption of the case studies
was relatively low, but this is an underestimation of the actual energy consumption.
Also, the case studies present that the energy consumption of training Deep Learn-
ing models is often not considered and there are steps to be made.

Moreover, the case studies identify the stakeholders, which can or should play a
role in accounting the energy consumption of training Deep Learning models. How-
ever, the stakeholder identification presents that none of the stakeholders take an
active role in the energy accounting of training Deep Learning models, besides the
scientific community.

To conclude, the ability to perform the accounting of the energy consumption of
the training in practice is hampered by various factors. For all four cases, detailed
energy accounting turned out to be impossible due to missing information. Also,
the case studies identify the different stakeholders and their (lack of) current role in
energy accounting the training of Deep Learning models.
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Question 4 - What are the restrictions on the energy accounting for developing Deep
Learning models?

The case study interviews revealed nine restrictions. To arrive at these restrictions,
we aggregate more detailed restrictions from the transcripts of the interviews. These
restrictions are classified into three categories, based on the causes of the restrictions
in the transcripts. These categories describe the causes of the restrictions, but can
also be used to formulate solution directions to overcome the restrictions. The table
below presents the restrictions and corresponding categories.

Table 9.2: Categorization of the restrictions.
Restrictions Organizational Social Technical
Complexity of deep learning 0 1 1

Innovative stage of deep learning 0 1 1

Lack of incentive to determine energy
consumption

1 1 0

Lack of modeler developers’ energy
accounting knowledge

1 1 0

Lack of societal awareness 1 1 0

Lack of systematic evaluation
methods

1 0 0

Long and diverse training time 1 0 1

No hardware details available 1 1 0

Updating model over time 1 1 0

Totals 7 7 3

The restrictions and categories of the restrictions are relatively equally distributed
over the different case studies. Each restriction is identified in two to four case stud-
ies and there is no category over or under represented in any of the case studies.

To validate the findings of the case studies, in-dept interviews have been conducted
with experts of three different perspectives, namely governmental, scientific, and
service provider. These experts validated all restrictions, except for Updating model
over time. Also, these experts identified six additional restrictions classified into four
categories instead of three. The table below presents the additional restrictions and
corresponding categories.

Table 9.3: Categorization of the additional restrictions.

Restrictions Organizational Policy Social Technology
Conflicting interests at service
provider & data center

1 0 1 0

Lack of energy accounting
tools at service provider

1 0 0 0

Lack of governmental
enforcement tools

0 1 0 1

Lack of scientific tools to account
energy consumption

0 0 0 1

Limited information provided
by service providers

1 0 1 0

Separation between science and
society

0 0 1 0

Totals 3 1 3 2
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Most of the additional restrictions are identified by only one of the expert perspec-
tives. Therefore, these additional restrictions have not been validated.

9.2 conclusion on main research question

In this section, we conclude on the main research question. This question is:

What are the restrictions on accounting the energy consumption of building, train-
ing, and maintaining Deep Learning models in data centers?

Eight restrictions have been identified and validated the case studies and in-dept
interviews of this research project. These restrictions can be categorized, based on
the causes of the restrictions and possible solution direction to overcome them. The
restrictions that have been identified in the case studies and validated by the experts
are mainly categorized as organizational and social. This does not mean that the
restrictions cannot be caused by other factors, but no other factors were identified
in this research project. These identified restrictions and corresponding categories
are:

• Complexity of Deep Learning (Social & Technical)

• Innovative stage of Deep Learning (Social & Technical)

• Lack of incentive to determine energy consumption
(Organizational & Social)

• Lack of model developers’ energy accounting knowledge
(Organizational & Social)

• Lack of societal awareness (Organizational & Social)

• Lack of systematic evaluation of models (Organizational)

• Long and diverse training time (Organizational & Technical)

• No hardware details available (Organizational & Social)

To conclude, building, training, and maintaining Deep Learning models proved
to be an unstructured process, which resulted in scattered information regarding
the energy consumption of these models. This makes it really hard to account
the energy consumption of training these models. Also, the stakeholders pay little
attention to the energy consumption of the models. They have no direct incen-
tive to account or reduce the energy consumption and/or they are not aware that
remote servers consume significant amounts of energy. The restrictions on account-
ing the energy consumption of training Deep Learning models can be overcome by
providing options for the stakeholders to educate themselves, stimulating interac-
tion among stakeholders, and creating a structure for the stakeholders to organize
themselves and the information required for energy accounting. This provides the
stakeholder with the means they need to cope with the technical complexity of
Deep Learning. Concrete policies to overcome the validated restrictions are to (i)
set standards on what and how to communicate the energy consumption of service
providers to the model developers, (ii) set standards on what is high, normal, and
low energy consumption for certain DL architectures and applications, (iii) develop
and issue certificates that require logging of all training hours, and (iv) develop a
knowledge sharing platform for best practices of (DL) technologies and the energy
consumption of these technologies.
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9.3 relevance of the research

9.3.1 Scientific contribution

First of all, this research project provides a systematic approach to analyse what
information is available about the energy consumption of new technologies in real
cases and what factors make it so hard to determine the energy consumption of
these new technologies. This research project focused on training of DL models, but
the combination of case studies with few interviews and validation by experts with
different perspectives can be applied to other technologies as well. Normally, a case
study with a low amount of interviews is perceived to not describe the case study
very well and to give a biased view of the case study. However, when investigating
the energy consumption of a very specialised new technology, there may not be
many interviewees with knowledge about the energy consumption or interviewees
that are willing to be participate. So, this thesis offers a systematic approach with
multiple case studies and a multi-perspective validation to cope with this problem.

Second, this research project provides an overview of the literature on the differ-
ent methods to account the energy consumption of training DL models. The liter-
ature review provides a clear overview of the different available methods and the
strengths and limitations of these methods to calculate and measure the energy
consumption of training DL models. It also provides guidance to decide on which
method can be applied given a certain amount of information in a case study.

Third, this research project explores the difficulties of energy accounting on real
world cases with a multi-stakeholder perspective. Where literature focuses on the
technical feasibility of energy accounting methods, this research project also takes
into account the different stakeholders, how the stakeholders are organized, and
what restricts these stakeholders from accounting their energy consumption. This
strongly contributes to lifting the energy accounting of training DL models out of
experimental environments of scientists into the real world with clients, customers,
service providers, data centers, and governmental institutions to take into account.

Fourth, this research project provides an overview of the restrictions that limit
the energy accounting of training DL models. The restrictions provide clear and
grounded starting points for the scientific community to further investigate and en-
able the energy accounting. Also, the research project suggests the categories of so-
lutions to overcome these restrictions. These categories are: to develop or strengthen
the organizational structure between stakeholders, stimulate the social interaction
and knowledge sharing among stakeholders, and document and mitigate the tech-
nical (im)possibilities of accounting the energy consumption of training DL models.
Concrete possible solutions for these categories are to develop standards on what
and how to communicate the energy consumption of service providers to the model
developers, set standards on what is high, normal, and low energy consumption for
certain DL architectures and applications, develop and issue certificates that require
logging of all training hours, and develop a knowledge sharing platform for best
practices of (DL) technologies and the energy consumption of these technologies.

9.3.2 Societal contribution

The identification of the restrictions on accounting the energy consumption of train-
ing deep learning model is a first step to create awareness among model developers.
Some of the restrictions can already be solved if model developers are more aware
of the restrictions and actively fight them. By overcoming these restrictions it will
be possible to account the energy consumption and reduce the energy consump-
tion of training deep learning models. If training DL models consumes a significant
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amount of energy in the (near) future, this research project will contribute to society
by reducing the carbon dioxide produced by training these models. With a signifi-
cant contribution to the energy demand from training DL models, this contribution
will reduce global warming.

Moreover, this thesis provide three categories of solution directions to overcome
the identified and validated restrictions. These categories are Organizational, So-
cial, and Technical. The thesis even presents four concrete policies, which can be
implemented by national or continental institutions to overcome the restrictions.
These policies are:

• to set standards on what and how to communicate the energy consumption
of service providers to the model developers;

• to set standards on what is high, normal, and low energy consumption for
certain DL architectures and applications;

• to develop and issue certificates that require logging of all training hours, and;

• to develop a knowledge sharing platform for best practices of (DL) technolo-
gies and the energy consumption of these technologies

9.4 recommendations for further research
This research project provides many directions for further research. Below are six
recommendations for the most relevant further research, but many more recommen-
dations are possible. The first recommendation is to investigate case studies with
other types of DL application and to validate the findings of this thesis. The case
studies in this research project only consisted of knowledge base and image/video
recognition applications. Most relevant case studies with other types of DL applica-
tion to be investigated are NLP and speech recognition. The literature and interviews
showed that both application can consume a lot of energy, especially NLP.

The second recommendation is to investigate other case studies about training ML

application and case studies about the inference of both ML and DL, instead of only
case studies about training DLapplications. ML and inference were out of the scope
for this research, but relevant ML applications to investigate are optimization and
statistical analysis. Relevant research about inference investigates the restriction on
energy accounting in data centers, on device, and in the edge. The literature showed
that ML consumes in general less energy than DL, but that ML is applied more often.
The literature and the interviews revealed that the total energy consumption of in-
ference is higher than the energy consumption of training the models, but it is also
a lot harder to fully account than the training.

The third recommendation is to examine the categories of the restrictions in more
detail. The categories of the validated restrictions are based on the causes identified
in the case studies. However, the restrictions can have additional causes from those
identified in the case studies. For example, it is possible that Lack of incentive to deter-
mine energy consumption also has policy causes while this is not identified in the case
studies, probably because the government has little policy on the reduction of the
energy consumption of software. Other possible categories are areal, financial, and
legal. It is therefore relevant to further investigate these categories of restrictions to
create a complete image of the causes and solution directions per restriction and to
explore what are the (best) solutions to overcome the restrictions.

The fourth recommendation is to investigate the effects of the policy considerations
on the restrictions and eventually on the energy consumption. Firstly, the effects
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of the policies on the restrictions should be determined and what the effects are of
overcoming the restrictions on the energy consumption. Secondly, the policies can
be modeled to explore the effects of the policies on the long term and to compare the
effects of the different policies. These policies can be modeled with an agent-based
model to emphasize the heterogeneity of the stakeholders. Also, these policies can
be modeled with system dynamics to aggregate the heterogeneity of the stakehold-
ers and emphasize the delayed information feedback in the system. However, it is
important to gather the required information before modelling the system, since a
lot of the data is unknown about how often a model trained, how much energy it
consumes, and how much energy is consumed in data centers.

The fifth recommendation is to prioritize the restrictions to determine what fac-
tors restrict energy accounting most and to determine what solution will have most
impact. The research for this thesis started prioritizing the restrictions. However,
these results are not published in this thesis, since the data collection process was
too time consuming due to time limitations. Some of the experts were already asked
to rank the restrictions from not relevant to very relevant. It would be very useful
to further investigate this ranking of restrictions by experts.

The final recommendation is to validate the six additional restrictions identified
in the in-depth interviews. It is interesting to investigate whether these restrictions
are relevant for the case studies and whether the restrictions are visible for the case
studies. It is also relevant to investigate what effect they have on the case studies.
And, if the restrictions are not identified or validated in the case studies, to explore
who is responsible for these restrictions. The validation can be executed by vali-
dating the restrictions with the interviewees of the used case studies and in-depth
interviewees in this thesis or other case studies and experts.
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A S E M I -S T R U C T U R E D Q U E S T I O N S

This appendix gives an overview of the questions for the semi-structured interviews.
The interviews themselves will deviate, as other or additional questions might occur
more relevant during the interviews. Below is the list with questions first presented
in English and followed by a Dutch version for Dutch interviewees.

a.1 english questions

Project related

• What was the question of the client?

– What was the problem the client addressed?

– What were the requirements of the client?

– Where there any additional wishes?

– Were there any conflicting interests in the request?

– To what extend did the client mention the energy consumption of the
solution?

• How would you describe the client?

– What is the sector of the client?

– How much experience had the client with deep learning models?

• What stakeholders were involved in the problem?

Model related

• What was the purpose of the model?

– What deep learning applications are applied? (e.g. NLP, speech to text,
or object recognition)

• What were the design considerations?

– What was the neural network architecture, and why this one?

– Is the model designed from scratch or with pre-trained models?

• What was the input data?

– What were dimensions of the input data?

• What was the desired result of the model?

– What was the desired accuracy?

• What was the training time of the model?

• What information was available from the service provider for training the
model?

– Which service provider is used?
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– What information was known about the data center that was used?

* Was the Power Usage Effectiveness known?

* Was the location known?

– What information was known about the hardware that was used?

* What hardware was used?

* What was the computational power of the hardware? (E.g. in TFLOPS)

* What was the efficiency of the hardware? (E.g. in GFLOPS/Watt)

• To what extent is known how much energy is consumed by the model?

a.2 dutch questions

Project gerelateerd

• Wat was de vraag van de klant?

– Wat was het probleem dat de klant aandraagde?

– Wat waren de eisen van de klant?

– Wat waren additionele wensen van de klant?

– Waren er tegengestelde belangen in de aanvraag?

– In hoeverre was de klant geı̈ntresseerd in de energy consumptie van het
model?

• Hoe zou u de klant beschrijven?

– In welke sector is de klant actief?

– Hoeveel ervaring had de klant met deep learning modellen?

• Welke stakeholders waren betrokken bij het probleem?

Model gerelateerd

• Wat was het doel van het model?

– Welke deep learning vormen zijn toegepast?

• Wat waren de ontwerp overwegingen?

– Wat was de neurale netwerk architectuur en waarom is voor deze gekozen?

– Is het model ontworpen vanaf niks of gebasseerd op een voor getraind
model?

• Wat was de gebruikte data?

– Welke dimensies had de gebruikte data?

• Wat was het gewenste resultaat van het model?

– Wat was de gewenste preciesie van het model?

• Wat was de training-tijd van het model?

• Welke informatie is beschikbaar vanuit de serviceprovider voor het trainen
van het model?

– Welke serviceprovider is gebruikt?

– Welke informatie was bekend over het gebruikte datacenter?



a.2 dutch questions 73

* Was de gebruikte Power Usage Effectivess bekend?

* Was de locatie van het datacenter bekend?

– Welke informatie was bekend over de gebruikte hardware?

* Welke hardware is gebruikt?

* Wat was de computer kracht van de hardware? (bijv. in TFLOPS)

* Wat was de efficiëntie van de hardware? (bijv. in GFLOPS/Watt)

• In hoeverre is bekend hoeveel energie is verbruikt door de model training?





B E N E R GY A C C O U N T I N G O F T H E
P R O J E C T S

The method as formulated in Chapter 4 to calculate the energy consumption of DL

models is:

etotal = PUE
P × Trun

1000
(B.1)

With total energy (etotal) in kWh, Power (P) in maximum Watt considering the TDP

of the main processing unit, PUE dimensionless with a default of 1,58, and the run
time (Trun) in hours.

This Appendix calculates the energy consumption of the slaughtery and asphaly
damage project, since only these two projects have sufficient information to calcu-
late an estimation.

b.1 slaughtery
The location of the hardware is a Data Center of Azure in West Europe. This data
center is located in The Netherlands and build in 2010 [Microsoft Azure, 2021]. In
2015, Microsoft published a fact sheet where it stated that the average PUE of data
centers of Microsoft is 1,125. Although the construction and the determination of
the average PUE differ 5 years and it has been over 5 years, it is assumed to be an
indication of the correct PUE. The hardware used for the training was a NVIDIA
Telsa K80. The TDP of the GPU is 300Watt [TechPowerUp, 2020]. This is assumed to
be the constant power draw of the GPU. The total training time of the different ar-
chitectures is 360 to 672 hours, so these two extremes are calculated. The estimation
of the energy consumption of this model training is:

etotal = 1, 125
300 × (360 − 672)

1000
= 122 − 226kWh (B.2)

The energy consumption of 122 to 226 kWh is relatively low, and comparable with
the average yearly energy consumption of a LED television [Milieu Centraal, 2021a].

b.2 asphalt damage
The location of the hardware is at Arcadis, so the PUE is assumed to be the default,
namely 1,58. The hardware used for the training was the GeForce RTX 2080. The
TDP of the GPU is 215Watt [TechPowerUp, 2021]. This is assumed to be the constant
power draw of the GPU. The total training time of the model was assumed to be
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little under 250 days, so little under 6000 hours. The estimation of the energy con-
sumption of this model training is:

etotal = 1, 58
215 × 6000

1000
= 2.038kWh (B.3)

The energy consumption of 2.038 kWh is significantly higher than the energy con-
sumption in the slaughtery. It is the equivalent of the average yearly energy con-
sumption of 8,5 fridges [Milieu Centraal, 2021b].



C O V E R V I E W O F T H E G R O U P E D
R E S T R I C T I O N S

The restriction in all the interviews are coded and analysed with ATLAS.ti. This
first section briefly describes the restrictions that are identified in the case studies
and presents the identified codes that are underlying to the grouped restrictions.
The second part shows a table with all identified codes and the grouped codes that
resulted into the restrictions presented in Sections 6.2 and 7.2.

c.1 case studies’ restrictions
In the table on the next page are the 37 codes found in the four case studies. These
37 codes are clustered into ’Code Groups’.

Table C.1: Overview of the restrictions found in the case studies with descriptions.
Restriction Description

Complexity of deep
learning

Deep Learning is a complex technique that is not
always fully understood, which makes it hard to trace
its energy consumption.

Innovative stage of deep
learning

Deep learning is still a new technique and is still
changing over time. New techniques are continuously
developed.

Lack of incentive to
determine energy
consumption

Different stakeholders have a lack of incentive to
account the energy consumption of deep learning
models.

Lack of societal
awareness

Lack of awareness in society and at the client about
energy consumption of training DL models.

Lack of systematic
evaluation method

There is no clear to goal to train the deep learning
models and to determine once the models are done
training.

Long and diverse training
time

The training process is a long and often never-ending
process, resulting in a changing energy
consumption.

Model developers’ energy
accounting knowledge

Model developers have no or insuffient knowledge
about how to account the energy consumption or on
how to reduce the energy consumption.

No hardware details
available

Lack of details about the hardware that is used to
train the models.

Updating model over time
The scope of the model changes over time, which
can make it non-transparent what the energy
consumption is of what part of the model.
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Table C.2: The codes identified in the case study interviews, grouped into 9 categories. Codes
that appear in multiple groups are marked with *.

Identified code Code Groups
Lack of knowledge about what architecture to use Complexity of Deep learning
Explainability for regulator
Understanding of the DL technique
Complex model landscape
Lack of knowledge about DL of project manager
Confidentiality of the project Innovative stage of DL
Fast evolving DL technique
Too innovative technique

Lack of priority at energy consumption
Lack of incentive to determine
energy consumption

Lack of society’s awareness Lack of societal awareness
Lack of knowledge of the client about DL
Lack of client awareness
Client’s anxiety about new technology
Unknown goal for model Lack of systematic evaluation

methodLack of evaluation tools for model results
Distributed information in the project
Evaluation by different (kind) of people
Extra training for changing model Long and diverse training time
Pre-trained models often needs additional training
Training of many different configurations
Training tries to improve
Long initial training time
Never-ending training
Proper training data
Lack of modeler’s awareness Modeler developers’ energy accounting

knowledgeLack of knowledge about energy accounting
Lack of knowledge about energy efficiency of models
Lack of knowledge about hardware No hardware details available
Non-transparancy of Virtual machines
Lack of knowledge about datacenter
Layers of infrastructure
Distributed information about hardware
Different functionalities with different compute Updating model over time
Different needs of different customers
Changing input data
Changing model complexity
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c.2 in-depth interviews’ restrictions

Table C.3: Overview of how all identified codes are grouped into final restrictions.
Identified code Code Groups
Understanding of the DL technique Complexity of

deep learningLack of knowledge about DL of project manager
Lack of knowledge about what architecture to use
Experts are better at choosing hyperparameters
Complex model landscape
Flexibility of deep learning makes the technique
complex
Explainability for regulator
Need for justification within service provider Conflicting interests

at service provider
& data center

Incentive of datacenters to rent as much servers
as possible
Conflicting incentives within service providers
to account
No incentive to reduce CO2 footprint at Alibaba
Other pricing model of service provider that only
provides run-time
Lack of priority about energy accounting at service
providers
Conflicting interest of service provider to rent many
servers and optimize server use
Mixed interest of serviceproviders to optimize servers
and use as much
Basic pricing model of service provider is only server
per hour
Too innovative technique Innovative stage of

deep learningNew more complex deep learning techniques are
applied
Confidentiality of the project
Fast evolving DL technique
Lack of information about energy consumption
service provider indicates thats in a young stage
Energy accounting data exists just not clear
where it is

Lack of energy
accounting tools
at service provider

Incapabel of measuring energy consumption
Lack of existing method for energy accounting
at service providers
Lack of reserach into energy accounting by
service provider
Governmental focus is on energy efficiency
measures*

Lack of governmental
enforcement tools

Lack of tools for government to enforce measures
Subsidies do not take into account the side effect
of energy consumption
Little awareness at government about the energy
costs
No laws or subsidy to reduce the energy
consumtpion of software
Lack of consistent method for government to
compare energy consumption
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Identified code Code Groups

Lack of awareness of power cost in general
Lack of incentive to
determine energy
consumption

Lack of awareness about energy consumption of
server use
No incentive from hardware restrictions to limit
lines of code
Lack of priority at energy consumption
No priority at green software
Lack of awareness about importance of energy
consumption
Lack of awareness about energy cost of more
accuracy

Lack of modeler
developers’ energy
accounting knowledge

Lack of knowledge about energy accounting
Lack of modeler’s awareness
Lack of knowledge about energy efficiency of
models
Reporting of numbers that do only partly relate
to energy consumption
Corrupted data is processed different, but
unclear how much energy that consumes

Lack of scientific tools
to account energy
consumption

Implementation of the model has a big effect on
the energy consumption, but is often not reported
Even simple model have complex energy
accounting
Lack of tool to account energy of DL models
Existing scientific tools only provide estimations
GPU optimizations are different on different
GPUs
Lack of understanding of easier estimates
Tool of Lacoste as a best estimation
Energy consumption is very dependeing on
hardware and implementation
Input data combined with memory and architecture
all have its effect on the energy consumption
Implementation of the framework has a big and
non-transparent effect on energy consumption
Only average energy consumptions used.
Governmental focus is on energy efficiency
measures*

Lack of societal
awareness

Little attention about the effect of efficient
software in Amsterdam economic board
Little societal attention for green software
No societal awareness about energy
consumtpion of computers
Lack of knowledge of the client about DL
Smaller clients have less priority at energy
accoutning
Lack of society’s awareness
Lack of client awareness
Client’s anxiety about new technology
The scientific community is not really aware
of the energy consumption of deep learning
No current demand for energy accounting
of cloud services
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Identified code Code Groups
No clear agreements on who reports what
energy numbers

Lack of systematic
evaluation methods

Evaluation by different (kind) of people
Lack of evaluation tools for model results
Unknown goal for model
Distributed information in the project
Different invoices from service providers
for different services
Lack of standardized energy performance
Lack of transparency on power cost of
cloud services by serviceproviders

Limited information
provided by service
providres

Biased information from service providers
about energy consumption
Service providers not willing to share data
about energy consumption
Very little information from service
provider about energy consumption
Pre-trained models often needs additional
training

Long and diverse
training time

Never-ending training
Different re-training needs for different
models
Extra training for changing model
Long initial training time
Training of many different configurations
No reporting of previous experiments
Proper training data
Training tries to improve
Non-transparancy of Virtual machines No hardware details

availableDistributed information about hardware
Lack of knowledge about hardware
Limited access to energy accounting data
Lack of information on higher scale
Increased complexity of using cloud
provider
Organizational constraint of dispersed
data at service provider
Incomplete information about training
due to confidentiality
Layers of infrastructure
Lack of knowledge about datacenter
The ICT infrastructure is non-transparent
about energy consumption.
Only limited information is available
from the hardware
Increased complexity at a higher level
Science uses numbers that are
unavailable in practice

Seperation between
science and society

Difference in focus and jargon between
science and practice
Seperation between the scientific world
and practice
Changing model complexity Updating model

over timeDifferent needs of different customers
Changing input data
Different functionalities with different
compute





D Q U A N T I TAT I V E O V E R V I E W O F
R E S T R I C T I O N S

This appendix present the quantification of the identification of the restrictions in
the case studies and the validation of the restrictions in the in-depth interviews.

d.1 case studies’ restrictions
This section presents the quantification of how often each restriction is identified in
the different case studies. Most of the restrictions were identified implicitly, since
the case study interviews aimed to discover what information is available to account
the energy consumption of training DL models (see Appendix A for the questions).

Table D.1: Overview of the restrictions in absolute numbers per case study.

Restrictions
Project 1:
Slaughter
house

Project 2:
Bank’s
credit

Project 3:
EPIA

Project 4:
Asphalt
damages

Totals

Changing model
over time

0 4 0 2 6

Complexity of
Deep learning

4 9 0 2 15

Innovative stage
of DL

1 10 4 0 15

Lack of incentive
to determine
energy
consumption

0 1 0 2 3

Lack of societal
awareness

4 2 1 0 7

Lack of systematic
evaluation of
models

0 10 2 2 14

Long and diverse
training
time

2 8 3 1 14

Modeler developers’
energy accounting
knowledge

6 4 2 1 13

No hardware
details available

2 6 10 0 18

Totals 19 54 22 10 105
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d.2 additional restrictions
This section presents the quantification of how often each restriction is validated
by the different interviewees. This could be implicitly or explicitly. The first two
interviewees are the governmental perspective, the second two interviewees are the
scientific perspective and the final two interviewees are the service provider perspec-
tive. More details about their roles and organization can found at the transcripts of
the interviews, in Appendix E.

Table D.2: Quantification of how often the different restrictions were validated explicitly and
implicitly by the interviewees.

1. Hartkamp 2. Mes 3. Strubell
4. Van
Gemert
& Pintea

5. Anony-
mous

6. Van
den
Bosch

Totals

Complexity of deep
learning

0 0 2 2 3 0 4

Conflicting interests
at service provider
& data center

2 0 0 0 3 4 2

Innovative stage of
deep learning

0 3 0 1 2 1 4

Lack of energy
accounting tools at
service provider

0 0 0 0 5 1 0

Lack of governmental
enforcement tools

5 2 0 0 0 0 7

Lack of incentive to
determine energy
consumption

4 0 2 0 1 0 6

Lack of modeler
developers’ energy
accounting knowledge

0 0 3 0 1 0 3

Lack of scientific tools
to account energy
consumption

0 0 3 11 0 0 14

Lack of societal
awareness

5 2 1 1 1 2 9

Lack of systematic
evaluation methods

0 0 1 0 0 2 1

Limited information
provided by service
providres

0 0 0 0 1 3 0

Long and diverse
training time

0 0 3 0 0 0 3

No hardware details
available

2 0 6 1 1 1 9

Seperation between
science and society

0 0 0 3 0 0 3

Updating model
over time

0 0 1 0 0 0 1

Totals 18 7 22 19 18 14 66



E T R A N S C R I P T O F T H E C A S E S T U D I E S

This appendix contains the transcribed reports of the interviews that are conducted
for the case studies. The table below presents an overview of the different intervie-
wees, their roles, and the projects they worked on.

Table E.1: Oversight of the interviewees of the case studies.
Name Case study Role

Vincent Bolwerk
Situation recognition -
Slaughterhouse

Model developer

Anne-Louise Meijer
Situation recognition -
Slaughterhouse

Project manager

Dirk Boersma
Credit provider -
Bank

Technical
project manager

Ernst Fluttert
Credit provider -
Bank

IT architect

Andreas Soderlund
Product Information
Assistant - Ericsson

Model developer

Jasper Keij
Asphalt damage
detection - Arcadis

Model developer

The interviews are transcribed individually and in this appendix grouped per case
study. At the individual interviews is noted whether the original interview was
conducted in English or Dutch and translated afterwards.

e.1 situation recognition - slaughterhouse

e.1.1 Model Developer

The original interview was conducted in Dutch and is translated to English.

The interview:

The project was of a customer who wanted to monitor the animal welfare of the
animals in slaughterhouses using video cameras that hang in the slaughterhouses.
These cameras hang in the slaughterhouses for an animal welfare certificate of the
meat by the slaughterhouse to customers. However, in general the camera footage
is not used, since it takes too much man hours for the client to check all footage.
Therefore, the client asked for the project weather this camera footage could be
monitored more efficient with the use of Artificial Intelligence. An example of an
undesired situation that needed to be detected is when an animal gets excluded
from the group and experiences a lot of stress. So, this needed to be identified.

The customer was a special alliance between a slaughterhouse and an animal wel-
fare organization. Because of the nature of the two parties there were some conflict-
ing interests, but it was a joined project. The customer had no experience whatso-
ever with Artificial intelligence or Deep Learning and therefore asked Deloitte to
help.

85



86 transcript of the case studies

The aim of the model was to identify undesirable situations in the slaughterhouses,
as mentioned before. The model consisted of several layers of models. First of all,
different objects were recognized and with the use of transfer learning the model
was ‘thought’ what objects needed to be filtered out of the video footage. This was
not fully possible with a pre-trained model, since not all objects could be filtered
with the pre-trained model. However, it was used to filter what was and was not
interesting for the model. Next, a model is trained to distinguish the animals from
other objects in the footage. Second, The model filtered undesired situations from
normal situations by recognizing that, for example, one of the objects (or animals)
was les behind from the other objects. Finally, the undesired images were uploaded
to a platform to check for employees.

For the architecture, different architectures have been tested to check which one
delivered the best results. This have been 6 or 7 different architectures until the
‘best’ one was found. Eventually the best performing architecture was Faster R-
CNN ResNet101 within TensorFlow of Google. For each architecture, 5 or 6 dif-
ferent configurations have been tested. So, eventually about 40 different versions
have been tried before was decided to go with the Faster R-CNN. Each version or
configurations ran between 12 and 16 hours and the models ran until a number of
iterations were completed. So, the length of the training was based on the number
of iterations and the performance was evaluated based on the Mean Average Preci-
sion with Intersection over Union (IoU) evaluation with a threshold of 0.5.

For training the model, a virtual instance of Azure is used. The instance used is:
STANDARD NC6. It was possible for them to select the region of the datacenter in
which the hardware of the virtual machine was located. They selected West-Europe
and after checking it online, this data center is located in Belgium. It is also known
what hardware was used to power the virtual machine. They used a NVIDIA Tesla
K80. This equipment consists of two GPU’s, but for the training they and the virtual
machine, they only used half a NVIDIA Tesla K80, so only 1 of the 2 GPU’s. About
the energy consumption or the energy efficiency of the datacenter was no informa-
tion available. Also not the Power Usage Efficiency (PUE) of the used datacenter.
He indicates that this information might be accessible online, but he did not noticed
it anywhere or searched for it online.

Besides the run-time of the model is not a lot known about the energy consump-
tion of the model, since it was not noticed anywhere. Eventually they received a
bill from Azure which indicated the hours of compute and this number of hours
provided some indication of the order of magnitude for the computational power,
but no other details.

To evaluate on the decisions that have been made during the project. During the
project there were not a lot of aspects that could have been more efficient to safe
energy. The costs for training the model was minimized and therefore is the GPU
not excessively used. For the virtual machine, the hardware and GPU were not con-
stantly used, occupied or reserved. Only when a new architecture or configuration
was ready, the virtual machine was turned on and the model was trained.

When the data center would have stated more clearly what the energy consump-
tion was, for example per hour, then they would probably not have executed less
iterations, less runs or less configurations, since these were all necessary to achieve
the final result. There was no short-cut to retrieve the information.

An option that might be possible is to compensate the energy consumption and
carbon footprint of the model and to charge these costs to the client to increase the



e.1 situation recognition - slaughterhouse 87

awareness of the client about the question or project they requested and the effects
of this question or project. It can also be used to make other model developers more
aware about the effects of using Deep Learning or Artificial Intelligence models.

e.1.2 Project manager

The original interview was conducted in Dutch and is translated into English.

The interview:

During the project a tool was developed, an AI tool, which Deloitte developed
themselves. So that’s an asset that didn’t exist yet of which the assignment man-
ager saw that there was a gap in the market and that there wasn’t yet a smart way
of using cameras from slaughterhouses. So, these cameras record images, but are
randomly viewed and checked. Now she wants to make a smart camera out of that,
which didn’t exist yet. And since you obviously have to develop a product before
you go to customers and try to sell it, you have to develop it first. So, first is within
Deloitte impact foundation that asset tool developed. It was checked several times
within the mill that you go into. Adjusted again, checked, and when minimum
variable product came out of that, the partner, who helped us develop the tool at
the time, then became the customer. So they were happy with the product that
was developed and they said, okay, now I would like to see it implemented. So we
implemented AI-driven surveillance cameras at the customer and made sure that
the adoption of the tool went well, that employees actually use it and that above
all the goal is also achieved, which is ultimately improving animal welfare within a
slaughterhouse. So you not only want the tool to be used or people to understand
how the dashboard works. But you also want them to make the necessary changes
afterwards if they see that they are not complying with animal welfare rules. So
that was also an important point in the project, because it’s really nice that it all
works. But how do we ensure that it actually improves animal welfare? Because
that is the whole reason we are doing this.

There was no question from the customer, since there was no customer. This was an
idea that a partner had. The partner of the project in question is vegan himself and
very involved in animal welfare and animal rights and so on. He suddenly got the
idea. Why don’t we do something with that? Because images are regularly leaked
in the media about what goes on in slaughterhouses and often quite violently. So
you see that people working in slaughterhouses are mistreating animals or treating
them in a brutal way. And then he looked into it. He looked into: How does the
whole process work now? And what is the control that is done by the government?
And it was just minimal. So he actually saw more of an opportunity on the market
to develop a tool like that.

And how the first process goes; you do need to have a partner within Deloitte
for the development, because it’s not just the camera, the camera also needs to
be taught through machine learning when a deviation occurs, when does animal
welfare come into play, and for that you do need a partner to actually make room
available to develop it and that partner eventually became the customers.

There were in general no additional requirements for the project, because it was
really in the development phase. The idea though is that this project and this tool
can be used on a lot of different things and at least animal welfare. I know that also
an idea is emerging to maybe implement this at the airport to see what the queues
are on the runway. It’s just more actually the broad deployment of smart cameras
and that can be for any purposes. And if we’re going to exploit that then I think
customers themselves will come up with a requirements list of what they want it to
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meet.

The implementation at the slaughterhouse went well. As with many projects, but I
think this is really the classic textbook example of workers who are afraid that tech-
nology is going to take over their jobs, because it’s also a lot of practically trained
people who are doing those jobs. On the other hand, it’s really just another example
of AI, the machine thinks for itself and takes work off your hands. There was some
resistance in that respect, so you have to introduce it very well. Mainly, we put the
focus on animal welfare and showed a lot of understanding and indicated to that
employee: we understand that you have to watch half an hour of camera footage a
day then, and this will not change. They’re still watching a half hour of footage a
day, but instead of randomly grabbing a half hour clip. They get seven times eight
minutes of footage, where maybe something animal-unfriendly happened. So you
make much more efficient use of the time they were spending on that task. Im-
plementation in any project you have to apply and tailor to your target audience.
Those are people who are very used to routine work. And haven’t studied very
long, so you just have to explain very little by little and in the end that went well.
But we’ve actually all figured it out now.

But we have now actually found out in the final phase of the project that the most
exciting part is whether they are going to use it in the right way. Such a training is
very nice, but still there is the doubt about is it arrived right, are we going to have
them use it the right way. Because at some point you can then assign actions if you
see something that’s not okay that happens and you see person A doing that. So
then you can kind of put tag there. And then people sign of: I see here that this and
this is going wrong and then you tag for example a manager and say take action.
They started to see it as a game. Now I’m going to tag that, now I’m going to tag
that. It’s very difficult to control when you deliver a project like that. The adoption
of a new tool just takes a very long time. It’s not a matter of a couple of training
sessions and then you can’t assume that it’s going to do well. In fact, we’re working
on that right now with after the track design where we’re checking in so maybe
monthly or weekly to see if everything is going well with used and the use of the
tool is also good.

The slaughterhouse was involved in making the model, in the sense that they had
the camera footage.They are mainly involved in mapping out the process that is
being filmed and also explaining to us, where there might be some critical points,
things that you might not think about yourself, because you don’t know the pro-
cess well enough. I don’t know exactly what you know about the context, but so
it’s about pig slaughterhouses. I was honestly surprised at how many pigs are in-
volved, so many. Daily that trucks are unloading pigs on the assembly line. So
things where you think, the pigs you want to get from A to B and then you want to
get them there as easily and as well as possible. But in practice: in ten minutes the
next load will be ready and another hundred pigs will be unloaded from a truck
through a narrow corridor, so in ten minutes that corridor just has to be clear. We
wish we had time to supervise all the pigs properly and with respect for animal
welfare. But we don’t have that, because in 10 minutes there will be another truck.
So you really need the customer very much to understand the process properly.
Because you have to understand it completely, from A to Z, if you really want to
develop an efficient tool for this.So we were also very closely involved and in daily
contact with people like Vincent, who created the model.

When the project was set up, there were many stakeholders involved, especially
with animal welfare from their perspective. So animal protection. IKEA hooked up
at one point because IKEA Food solutions is so big with their food branch. That’s
just super big. So for example, all the Swedish meatballs that they have on the
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shelves really come from their own slaughterhouses. They just really have clear sup-
pliers, are quite a frontrunner on that, and they did have ideas. IKEA is more like
a sparring partner to exchange knowledge and Eyes on Animals is also a nonprofit
organization that deals with animals. Specific more on slaughterhouses. Because
animal protection is of course very broad and Eyes on Animals is more concerned
with animals in the food supply chain. Those were still important stakeholders at
the time it was developed. But when you enter the implementation phase - and
you start dealing with how does regulation fit into the picture, then you’re with the
NVWA, so that’s the food and commodity authority. And then you’re looking at
the government as well. You also need to have contact with those people in order
to be able to say ”we’re working on this” and to see if it’s possible to ensure that
the NVWA carries out more frequent inspections or carries out inspections in a dif-
ferent way at slaughterhouses. So government, especially from a regulatory point
of view.

It was the partner’s initial idea to use deep learning for this project, but he didn’t
know anything about it. The funny thing was, he read an article that was about the
future of the food chain and consumer behavior when it comes to buying food. In
it, someone outlined in that article: what if we applied AI surveillance in slaugh-
terhouses later on. Then he took that concrete idea and thought doesn’t it already
exist then and then he did a lot of research. Then he said: if nobody is doing it,
then why don’t we do it. So actually the idea was kind of proposed, and only after
he started doing research after that did he find out that it just didn’t exist at all yet.

Probably the energy consumption of the model is not mentioned by the partner
in the initial idea, no probably not. I do think it’s a good question. He does think
things through very well, so I can hardly imagine that that didn’t occur to someone
somewhere. That may have gone through his head very quickly. Maybe it did, and
then he ended up switching with people from Deloitte technology. I don’t dare say
no and I don’t dare answer for him either. Let’s put it this way, if it was even a little
known that it is a thing. I speak for myself for me it is not known, maybe for other
people. Then I can’t imagine, that that doesn’t go through your mind. That you
don’t take that into account somewhere.

To the extent that I know what the model does is that model it has been taught
to recognize objects on image and distinguish between what is happening on image
and then it has been taught what is an image that you want to see so is a good situ-
ation and what is potentially a wrong situation. Based on animal welfare, because
of course you can set that, or make that different.

My role within the project is project manager. The project consists mainly of peo-
ple from analytics and cognitive working on the model, so also someone working
on the dashboard, a few more senior partners. And what my role in that is actu-
ally to coordinate everything. So I lead the weekly stand-up meeting of the whole
team and all the things that come along that are not IT/tech related, just to call it
very broad. So press release, communication, a bit of adoption you could also call
change management. I also created the training kit for the end users and facilitated
the training sessions for the end users, so basically all the content that we have that
Vincent and other colleagues have created. Translating that into something that is
understandable for an end-user who has no knowledge at all about the model and
drawing up a bit of an adoption plan of how are we going to ensure that they make
good use of it and a bit of aftercare as well. More of the soft skills so to say and
mainly contact with the client.

About the energy consumption of the model I find it hard to say anything, how
it works I don’t really know exactly. In my mind it’s something that all takes place
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on the cloud, so it’s not in a box somewhere. I actually wouldn’t know what the
energy consumption of software is, I’m sure it’s a lot. But I wouldn’t know exactly
how much that is and how that translates. I do know that, for example just in
terms of storage space for images and maybe also for the model, that we do pay
something for that and that’s really a monthly fee. So you, you do pay for that
space.

e.2 bank’s credit

e.2.1 Technical project manager

The interview was conducted in Dutch and is translated to English.

The interview:

I’ll just see if I can summarize the project nicely. Actually the question from the
party where this came from, and that’s a bank, says the customers’ need changes.
Customers want to get in touch with their bank more often from a phone or an
iPad or something similar and do their banking from there. What this was about:
Actually, customers also want very easy access to credit, to a loan. And we, as a
bank, want to go a step further and realize the wishes of today’s customers, but
also with a glance at the future. That actually means that you, as a bank, have to
ensure that you get into the environment of that customer, so really get on his or
her phone, get on his or her tablet. That it is possible for customers to know this
credit themselves without too much fuss. If you order something online, you’re also
happy when you’re not asked what you want, but just asked a few questions. Yes,
that’s actually what the landscape is all about now, that you say as a customer at a
bank you just want to (i) build a relation with your bank, (ii) assume that the banks
know a lot about you, so you don’t want to be asked twice, and (iii) you want to
receive a good offer, an appropriate offer. That has actually been the goal of this
project to realize that for that bank.

Specific requirements of the customer were speed. Within fifteen minutes the client
had to know whether he or she could borrow money, which is different from hav-
ing money within fifteen minutes, but in fifteen minutes the client wanted clarity,
can I have this money, yes or no, that was actually the single dimension. The most
important one.

About the other requirements that came into play in the project. You have to imag-
ine that it is a very large project on which about 100 people work at its peak. And
if we move on to the model, which is actually a subsection of such a project. You
have to imagine that part of the project also involves a lot of designers designing a
website with the orange button or the yellow button on the left, at the top or right
below, etc. But when we look to this piece of relevant model, you actually look at:
What is relevant in such a type of trajectory is? It is relevant to serve a purpose with
a model, a purpose that can serve the client and the bank as well obviously. You
want the model not to be a delay because you only have 15 minutes. The model has
to be quick to run and ‘quick’ means we talk about Nano seconds.

So, the turnaround of that model has to be super-fast. It also has to be easy to
implement in the architecture, but ultimately the most relevant is the data collec-
tion that the model needs. This data collection has to be able to come naturally
from your solution.

To give an example, if the model needs you to fill in your 12 ancestors, it doesn’t
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help you. You probably have to search for that information for half a year before
you can run this. So, the model has to be able to run on data that is hands-on
available to you. That’s either because you have it, or because the bank can already
use it, with your permission.

Unfortunately, I can’t say more about the bank that set up the project, and I can’t
say how much experience the bank has with deep learning models. However, they
did need additional knowledge. That’s why Deloitte was approached for the assign-
ment. You see anyway that a lot of deep learning models are currently created in
collaboration and you see deep learning models very much still in living lab envi-
ronments. Anyway, this was one of the first times that such a model was used in a
real process.

In the client’s request, energy consumption was not mentioned. However, as in-
dicated in the previous conversation he thinks the idea is very interesting, although
he never thought about it.

If we would have had to take it into account, I would also find it difficult to be
able to act on it. I would not directly know how to reduce it, since I don’t have the
tools for that. I can figure out a lot about the model, but I cant monitor the energy
consumption. I don’t know what adjustments affect the energy consumption in
what direction.

The project involved the customers, the bank, and Deloitte. Other than that, there
are no additional external parties for information or anything similar. I think that’s
also one of the advantages of Deloitte, there is so much knowledge available. Un-
beatable for other parties.

About the model, before was indicated that the model needed to be able to offer
credit to the customers within a short time. To achieve this, the model consists of
different forms of Deep Learning, a combination of different aspects. One aspect is
natural language processing. Another is called XG Boost, which is a sub-form of
random forest. Those two are the main drivers of the model.

For the design considerations, there were a couple of key things. As mentioned,
one of them is that the model has to fit into an environment and another is that the
model content has to meet quality standards of which one of the most important is
the regulatory side. Also, an important factor is that the model needs to be explain-
able and understandable. It also has to be flexible, so it can be adapted over time.

About the explainability, we know how the model works. We cannot explain quickly
the model for 100%, but we can see in the results that it’s probably caused a bit more
by one part and a less be another part. This already helps tremendously. For exam-
ple, when we see the results of the model with X parameters, we can state that the
result is mainly caused by a set of two or eight parameters. Because you want to
work in a big process, of course there are many more stakeholders and the model
is the engine of the solution. So, you have to be able to trust the model at all times
and in order to trust it, explainability helps. If that is not possible, the environment
will trust it less and if the model is not trusted, a model is not used. That was a
condition of the client.

I think the most important thing in terms of data usage is that it should not contain
an infinite amount of variables, which in turn means that you will probably end up
with variables that are not available in your total solution. So you also want to work
only with data that is available or expected to become available in the short term.
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Unfortunately, nothing can be said about the architecture used.

For the input data, different data sources play a role. So, you have the bank’s own
data, you now have the transaction data available for the bank with open banking
and some data that is collected elsewhere. However, elsewhere cannot be explained
in more detail. To see if a model produced a good result, so when does that model
actually work. To determine a good result, you have different possibilities of course.
Just from the real technical operation you have a number of parameters that you
can look at. For example how the distribution of False positives is divided.

However, again it is important that you come up with the people around the model
to a score that is understandable by several people. Because you also want to avoid
that the model keeps developing if an expert doesn’t think it’s good enough. If
you’re going to build a model in a total solution, it means that the model has to
score just more than sufficient. But the difference between just more than sufficient
and a ten is in work hours really a lot. So you actually want to look for that just
more than sufficient or slightly better than that, but not for a ten. To do so, you need
to involve people into the end-solution that can judge what is sufficient. If you only
focus on the technical parameters, you won’t get there. What actually is used a lot
in the market for these models: you start looking at a parameter, e.g. the Gini coef-
ficient, and then you’re together going to determine some sort of threshold. What
should be the minimum and that is what you are going to strive for. Eventually
you’re then going to determine based on this KPI and some technical KPIs whether
the model is good. But when you look at how that model works, when you are go-
ing to work with models and certainly with those models. Those are never finished.
So, you’re going to keep updating after that. You create a job or multiple jobs and
that job is to maintain and improve the model. But you want to keep an eye on
whether it continues to perform and you do that on those KPIs. As mentioned. So
its also a kind of risk analysis for the bank, what is an acceptable margin of error
and the KPIs are adjusted to it. Also by testing on all kinds of datasets, but that’s
how you get there.

Regarding the training time of the model so far. The training time was about several
week. A little more than 5 weeks eventually. 5 to 10 weeks for the initial and biggest
start. But from there, smaller adjustments over time.

There is a protocol for the additional training of the model. However, this is re-
lated to the application of the model. So, on day one the model can be used for the
initial idea, but on day 90 you might want to use it for more things. So, that triggers
the need for another training, but purely due to change of scope and not because
the model required additional training. That gets mixed up a little bit. So I can’t
say exactly when, in fact we always took advantage of the improvement moments
that were scheduled. But that was more because the improvement moments were
already there than because we had to train.

And finding the optimum training strategy is also quite difficult, because you don’t
want to train too much. Well, that’s very easy to achieve, by not training. You don’t
want to train too little and that’s very difficult to say what is too little, so to speak.
The training of the model was done internally at the bank and of course, the data
is stored in a solution. That solution ultimately belongs to an external party. What
hardware is used to store that data, if I had to guess, I think I’d come pretty close.
But I can’t say for sure what hardware was used for training.

An intermediate platform is used for training the model and storing the data. Which
platform it is cannot be mentioned. Exactly what hardware is underneath it is hard
to say, but it can probably be retrieved. So, I do think it can be found. I thought I’ll
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look it up briefly, but I can’t find data right now.

But at least a service provider was not directly used for training the model. And of
course, the model is trained in one environment and the end-solution is eventually
stored in a different environment. So, the location of the end-solution is not the
same as the intermediate platform. In training most data is consumed, since it used
long series of millions of records of many years. So, that has been heavy, interest-
ing to discover the different findings, and to combine the datasets. But that’s in a
different environment and les familiar to me.

However, I’m pretty sure that there is inefficient training there, if you look from
an energy consumption perspective. That’s not taken into account and I think that
is in general very little done. You’re the first person who brought it to my attention
and I’ve been in this type of model for about 3.5 years now, so I’ve been in the
larger companies since the beginning, but energy... I think the focus right now is
still very much on can we do it. There’s a lot of promise in AI and in those types of
models. And people say, if something is impossible, they use those kinds of models.
However, it turns out to be quite complex to do that; to collect the data to train and
to say with the training outcomes that a model is a good idea. Because, the data
you have often varies in quality over the years. So, is the training outcome repre-
sentative or will reality be better or worse than the training runs. However, I think
that people first need to have some trust in the techniques before one will do the
next steps and will ask what does it do with the energy? But when we now say en-
ergy is one of the parameters to consider, that comes at the expense of development.

Its certainly interesting to look at energy consumption, because I think it runs out of
control in the cloud. Also, I think it is also super interesting to talk again in a year
and then also talk to some of my customers, to go a little deeper into that. I also
think that my customers really like it to have this conversation. Especially with the
tech heavy people, as they’re not really thinking about the energy consumption. I
did hold back a little bit on the details about the neural network. So if you’re really
totally stuck on these things and it was too high over, let me know. Then I might be
able to go into more detail.

You see a lot more coming up now on the sustainability side as well. So you have
some moving streams now, especially when I look in innovation. The one side is
very much about searching a lot of information about people and that happens with
the heavy processing. I call it the fun models, since really a lot of data is thrown
at the model to see; this is good, this is bad, and lets try something else. The other
stream focusses on the privacy part of the information and what can and cannot
be shared. However, the sustainability story with the Paris energy agreement is
one that nobody is paying attention to and nobody links sustainability and data yet.
What you’re doing is pretty unique in my world. I also think that it can be much
more interesting for our customers as it is now.

e.2.2 IT Architect

The interview was conducted in Dutch and is translated to English.

The interview:

Interview Ernst Fluttert – Bank 2 So I’ve been working on the project for almost
two years. That’s a forward-thinking, innovative way of getting financial products
to customers as quickly as possible. But then that’s mainly about getting clarity as
quickly as possible. How much can I borrow? What kind of product can I borrow?
At what interest rate can I borrow it? This was very new, so the concept of doing
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it really very quickly was new. Before that it was manual. That could take number
of days to weeks and we do it in 15 minutes. So super cool project. One of the im-
portant component in this is of course how do you calculate that and that’s where a
piece of AI comes in. So we use trained models. Well which one is that? I think it’s
gradient Boosted Forest. The exact name sometimes escapes me, but the Boosted
gradient forest used for that. Then that model deployed. So it’s not a model that
continues to learn in production. Because it’s only trained offline.

My role is: I am the Solution Architect on the project where I actually ensure that
the entire flow can be carried out, so from front to back a piece of front-end, piece
of back-end, integrations. How does the data flow, how do you make sure you are
compliant, how do you make sure you remain secure? We did this by means of an
event driven, micro services architecture, which is quite a mouthful. Basically what
that means is we only work with messaging internally. Its not new, but special and
cool way to work together. Basically, you can imagine it as, a long line of mailboxes.
All you do is throw bills in and you don’t know who’s going to read those bills. It
could also be that several people are going to read the bills or several services in this
case and in this way you make sure that you get a kind of transactional system that
is entirely based on events. In this way, we can follow very well what is happening
and also react on certain input we get at the front-end and the second piece is we
are cloud native, or cloud first I should say. For example, apply horizontal scaling.
We also do that for the models for example.

How it goes with input from the customers. So you come as customers on the
website and you just say “I need working capital”. We don’t say what products are
connected and say hey. What’s the reason? The borrowing reason that you want
something, what you need money for. So it’s also completely geared towards what
the customer needs. So a customer doesn’t have to decide for themselves: I want a
business mortgage. But it could also be that they want a credit or a loan. So when
you look at that, you’re looking at, dear customer, what do you want to borrow it
for, how much do you want to borrow, and then you can move on. So our whole
model is also trained on transaction data, so that’s a piece for the input, the models
input and that’s also where it’s all bright and shiny new, and where that adds nice
value. So that’s how we make sure, that we can do pricing based on what people
have done over the last few years.

In this way, a risk is determined and the corresponding prices. And then what
kind of input can you expect. Well, what is your borrowing capacity, what do you
have? What was your profit last year? Your depreciation last year, but also your
bank account, upload so that can be done with PSD2 or MTf 40s. Do you want to
put in collateral, for example, or not. And that could be if you’re in a certain sector,
or have a certain construction of your business. That is used to determine whether
more questions are needed, to cover additional risks.

All that goes as input, we make nice summary of that and then that goes into
the models. Models then say: We have a whole number of options, all the options
are calculated through, so you can imagine that in some cases that you can choose
five terms and within that term you can also shift something a little bit, that it can
produce quite a lot of options. That’s really exactly what we’re using for as well.
As a precondition, within the banking world compliance is super important. So
everything we do also has to be validated, revalidated again and after you’ve done
that you also have to prove once again that you were compliant. That’s roughly
how you can see it. Another precondition is just making sure you market well.

Look, the people themselves who take the customers don’t see what we do at the
back. Something that works very well for us. It’s not just AI and then you get finan-
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cial product. No, it’s an offer, so I’m giving you an indicative offer. From this offer,
we assume that we can offer and you have five days to contact us. And so then
you also have the bank employee still contacting that person to validate that what
they’ve filled out, that that’s correct an accurate. There are, of course, a number
of additional checks that are going to happen after that before you get any money
in your bank account at all. So I think that bit of run-up, we’ve sped that up very
much, but there are always a number of extra steps behind it, including face to face
meeting. So that you’re working with the right people, with the right information
to deal with, but the offer remains. If that’s all right.

On the considerations for the architecture, we looked at it from okay. We just want
to have some meta data very simply. Exactly what data cannot be mentioned in
detail.

And what impact that has on architecture. The architecture trade-off is to make
sure that you have the most efficient journey for your customer and so you collect
the right information to run models as quickly as possible. Because actually what
we’re doing is kind of, you think of it as a filter or a funnel where at the beginning
you allow everything. And actually as quickly as possible you want to filter out
companies that don’t qualify. Because, those are obviously less interesting. That’s
also where the models help, because if you can say, ”you may not be eligible,” that
you also return that as quickly as possible. And then that’s often from go to the
employee or something like that: architecture, wise. We do see that the models do
tend to be heavier for certain products, for example, and so we scale those horizon-
tally.

So we currently have four instances running of the models and they run in par-
allel in the cloud. What cloud cannot be elaborated on. It is also known what
instance is used, but by naming is the cloud service revealed.

Because these are Python scripts they run on Python, of course all the way on a
stripped down secured container and those are called via APIs. That’s basically it.

I don’t know what the training was done on and I do know the data underneath,
but how exactly they train this. I don’t know that.

This linked to the subject of the thesis. How do I make sure that with as few
containers as possible, In our case, because we have everything containerized- as
few services as possible run as much as possible. And when you run a service that
you run it preferably with one instance instead of 16 instances, so to speak. And
I think that’s where you can find your gains in particular. That would be my first
lead. If you really looked at it like hey - I want to know how this works, that would
be it.

The main consideration to scale down the containers was the efficiency of the whole
process. If you just have an efficient process. And this is also where you actually
come up with what do you want to achieve in your journey. That you shouldn’t
build for the sake of building and I think we’re looking very closely at What are
really? The mandatory steps in the process that you have to go through to run a
good process. If you do that well, then you actually need very few instances. For ex-
ample, we have a functional domain, still specified in the journey, and per domain
we have one, two, three, four, five micro services running, and they do a certain
functionality together. And then you can think about, for example. I’m looking for
a company because that’s important for when you want to start in the Journey. You
don’t want to have tons of instances of that.
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Because of course that would be a waste, so in that way I look much more at:
how to make sure that the footprint of our application landscape, because we have
a pretty complex landscape. But how can you make sure that it runs few contain-
ers, but offers maximum functionality. That’s always a very difficult trade-off. For
example, we’ve seen the models that were for us the slowest component.

And because that’s the slowest component, we also said, well, we should have
more instances of that that we run simultaneously. Because they are stand alone,
it doesn’t matter either. At which instance the input arrives, because the output is
captured, and then we have the advantage of event driven architecture? That it also
doesn’t matter, because it’s then packaged again as a message on the event bus and
then that’s picked up again by then subsequent service so. Precisely because we
have decoupled that, you can also scale horizontally much more easily.

What I know about training the model. Training, what is done based on trans-
action data or basically a summary of your transaction data. So different scores are
calculated. what we’ve seen is when we started the project - it was a very simple
model and the first thing that happens is can you make sure that we can get all
the input and output from production as well, so that we can train the model of-
fline, where they can also take outliers themselves, but of course you don’t want
the model to change in production while you’re working on financial products. It’s
not the most convenient thing, so offline training is just an important component in
this. In addition to that, they’ve also helped at times. We do a kind of summary of
the transaction data, and the models use that summary. We also looked at pieces
of data together with them so that we knew what to look for. What do we have
to pay attention to? That the summary is also correct. You can see that this is also
done throughout the chain, everywhere, in order to ensure that what goes into the
models is correct and subsequently what comes out is also correct.

And sometime in the last six months, the model was updated to support a little
bit more products and sectors, and you also see now the model has become a little
bit more complex. It’s become a little more complex than it was and I think one of
the challenges that you’re going to see now is of course, what effect does corona
have on those models, precisely because it’s very based on transactions of the past
year, in a normal year, that’s much better. Then if you now for example if you are
hospitality industry, I don’t want to know what the model says then. I can’t help
you and then that’s a consequence. And then I go a little bit too far on what the
model should do. But you actually see continuous through the development of the
model itself and a continuous offline through training as well. And I think that’s
necessary to stay sharp of what’s happening? What are the trends in the market?
Because if you train something in 2019 and you suddenly apply it now, you have
a different picture of what is actually the reality. So we also have a continuous
actually update to the models which we continuously implement. So when we get
a new trained model - and then it’s also immediately okay, that’s then put live.

About updating models, there is a dedicated team on those models and of course
there are more than just the model itself, so also a bit of input and output. Some-
times there is a mistake in that the wrong field is returned. that kind of thing
actually I can say: every two weeks we make a change to the risk models, but be-
cause we also have three and in addition it is just an important topic within our
whole engine, it is not so strange that that also just continuously ripples through.
The same thing is with our cadence. Our cadence is at releasing every two weeks,
so that fits in there just fine.

About evaluating the models, I know there has been a formal validation, also of
those models. Of course, it was first a hypothesis for them when they started this
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two years ago. We’re going to try something new - try it with AI see how that turns
out. In addition, those models were also validated by the bank itself, an external
team, and that was good and they had gotten the go from that. And that’s actually
as far as I know.

I just know that so certainly in addition to validating themselves, continuing to
train the model, there’s definitely an external there. I don’t want to say auditors
busy. But continuous validation has to take place, also because it’s actually all still
quite new and the models are not always well understood. But you also need quite
specialized knowledge if you want to train good AI model and then also apply it.

Yes, so here you have another piece, so that offline validation and offline through
training. That does get done. So from project we run, product we run online, be-
cause we literally have their model in the engine. What we do is make sure that
they can get to that data. All the inputs and outputs from production are captured
and those are then shared with that team, which makes those models and they train
on that. So that validation, it does sort of semi training, semi validation, but just
how they shoot it themselves.

About the information from the service provider about energy consumption. There’s
always the settlements of course, at the end of the day it just comes down to what
credit card did you link and is there enough credit on there to pay. I think there’s
undoubtedly something on there somewhere about how many minutes which in-
stance they ran, but basically for the landscape we say: we have twenty four seven
always running one service so they’re not all ladas, and we’ve applied that some-
times for really things that only occur very infrequently or just periodically, but
because it’s actually a website with that engine, you don’t want to warm it up when
a customer comes. When the customer comes, you have to be running already. So
what we have done is: you always have one instance of a service running and where
necessary screw up the instances and you could also apply dynamic scaling there.

To understand what I’m talking about I also have a picture of all the services that
are running and how they are connected. But this is confidential and cannot be
added. The point is that many processes can be scaled up with additional instances,
but something always has to run because it is connected to the website and constant
running works better.

e.3 ericsson product information assistant

e.3.1 Model developer

The interview was conducted in English.

The Interview:

Interview Andreas The project is EPIA, product information assistant, of Ericsson,
which is recently to be released globally. It’s a product that uses a lot of information
available at Ericsson, when it comes to installation, troubleshooting, exchanging or
upgrading the different software or hardware they have in the field. These can be
radio transmitters, cable units, base band boxes, these things. Often, the engineers
that change these things or work with them, work on heights. So, they don’t want to
bring their laptop up, where they have the PDF instructions available with instruc-
tions. They want to scrape and retrieve all the information stored in the database
and want to make it available by speech or by typing on their phones (Android and
iPhone). With the speech-to-text and text-to-speech but also different inputs, you



98 transcript of the case studies

can get lists, step by step instructions, and similar products to it.

The original problem they had was that the information was spread out. The tech-
nicians that worked for a long time knew their stuff very well, but the newer tech-
nicians may need to look up these details while far up in the mast. So, even with
a senior technician available they should climb down the mast, check the informa-
tion and climb back up. The discussion about the project started around 5 years
ago and back then they had some high hopes about the technology, but only in the
recent years it really kicked of due to new technologies. So, the language models,
speech-to-text and text-to-speech they use now, were not available back then. What
they required was that it had to be on premise within Ericsson and for clients to use
it, it also had to be on premise and not on the Infrastructure of Google or Apple. 2

years ago Google released self-contained speech-to-text and text-to-speech module
for English and that one is used. Now only English is available.

In general, energy consumption is a requirement for Ericsson projects, but for this
project it was not a big deal. Normally, it is a requirement for the hardware they
sell. For EPIA, the front-end works on a cellphone and the back-end on Ericsson
servers. It hasn’t really been a big thing. Response time for sending something to
the server and getting something back is an important requirement.

The stakeholders. - The engineers were involved as tester in the feedback process
to adopt their preferences to refine and develop new features to the product. - The
Product owner is within his group. - Team lead - Some testers - Some experts on
the data sources that are used.

For the deep learning applications that are used, they used a broad a set of NLP
technologies. For the speech-to-text and text-to-speech they were as hands-off as
possible on the models and relied on implementation of Android or iPhone and
overall it worked really well. They mainly built a Knowledge Base model with the
knowledge about the products and how they related to each other. By extracting a
lot of information from the text documents and instructions of the different prod-
ucts on how to install them. That is more of a traditional implementation of NLP,
the good thing is that they can be certain about the variety of the questions they
got. As long as they put true statements in it, there will be true answers out of it.
With the newer DL models, such as transformer, XLNet, BERT. Then they are able
to ask questions about the text and then the result is a part of text in a document.
So, then a section can be linked to a question. It took some time to train or fine tune
the newer models and in the end it didn’t really improved the results.

They tried several neural networks, but there is not 1 that worked best. Trans-
formers, classifiers, etc. Classifier is more standard NLP. Take some text, train a
classifier on it and get some output and then just send text through it. For the dia-
logue they use a combination of public available data in conversational data as well
as their own conversational data to train and that is used to handle the dialogue
pipeline. They have that in parallel with a final state machine going on. So, the
combination means that they can both follow the steps well, but also be flexible if
the user asks or states things in a different way, they can still response. For the DL
part they trained and tried different models. We had different models in place and
we just picked the one that seemed to got the best results of understanding their
questions and test data. So, we set up a test data set of 20 to 50 different sections
and a few questions for each and we just ran it through the model and see what the
results were.

There definitely are ways of standardizing this. But then you would also need
to create an expected response from that situation. And usually you would need
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an expert in the field, given the responses. And they just didn’t have that. Well, at
least they didn’t have it for their dataset. There are test data sets out there, but for
their own data, we just want to see what’s was the best and it works really well.

They are on the second iteration. They used the previous model up until this
summer. He thinks that model may have been from 2017 or something. A new
family of NLP models came into place, so stepping up from fast text to transformer
generation, they used one of the first of the transformer family. It worked well, but
it was a bit large and slow and it didn’t get the best results. So they switched to a
second generation one from late 2018, early 2019 or something like that. That’s the
one they have in place right now.

They spend a few days on training the models.

The type of service was probably some kind of a cloud solution where they allo-
cated a bit of C.P.U and a bit of speed for G.P.U. He can be quite sure that it was
internal server. So it could have been run on a local machine, so like a laptop. But
my feeling is that it would have been internal Ericsson cloud solution because that
data couldn’t leave the premises. Therefore there is no information available about
the data center that was used by them, its was quite far away from them.

It’s difficult to even know where to ask these questions for them in the project,
they can be fairly sure about the G.P.U. and C.P.U of the allocated server or most
likely a subset of a server. So like a virtual server or a virtual machine or not, they
can be very sure about how much they have been allocated. But even if they would
ask the one who allocated the virtual machine for them about these things. So what
are the hardware underneath and these things, they would have to send it off to
someone else to answer. So for them, it would be difficult for him to find that in-
formation even if they had a week or two and that was part of the requirements.
Definitely in the end, they would be able to find if these are the hardware things
going on and they run approximately do these things, maybe they have measured
how much energy they consume. Maybe not. But there’s definitely like there’s an
IBM or it’s some Intel or something like that machine going, that kind of operating
system on it. And they run this much according to the hardware information from
the provider. But because they never run it on their own technology, well, in the
sense of their own hardware, so Ericsson units, it’s not as big of a concern.

So, one of the restrictions is the limited information and that the information is
spread out. Also, when it comes to energy consumption in. It’s quite tied to the
processing time that they do so they have a model in place where it’s possible to
scale it to its dimensions. So it’s using up most of the allocated processing power
for it. And then it’s quite tight. To the shorter time you use it, the less energy to
use. So from their side, they would be able to say, OK, it’s more energy efficient.
And of course, the server standing somewhere, they’re going to measure how much
energy they use, how much electricity they use. And if they use way too much, they
will start allocating differently and they will start asking people who run stuff on
the servers. But that’s that is those people are not the same ones that allocate the
servers for us. They would need to start talking with each other there and saying,
OK, but they have allocated these ones there. And then they would start talking
to them. But in the end. Right. They have a certain allocated server space, and if
they use too much of that, they either can ask for more. And if they say no, then
they come back and say, OK, how can we make it more efficient? So he guesses
that’s where they can make it somewhat energy efficient in a roundabout way. They
are in control of the server space, the virtual machines, and they, of course, have
restrictions on there, even from like higher up in the company. They do have energy
constraints, even internally. They have energy. And what they need to meet when
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it comes to energy consumption, once electricity they use, they‘re mainly towards
their clients, but they also have it for themselves. So, if they would have servers
that from really inefficient and these things, they would need to see how can we
lower energy consumption? And then that could be a way. Then they would say,
OK, your team, you cannot actually have 50 percent of the global server capacity,
just your small project. You need to have just a small one. And if you want more
than that, you have to pay for it. And that payment has to come from somewhere.
They don’t have the budget for that so that they are not restricted by the energy
consumption, but they are restricted by what they are allocated and what they as
a project can afford to use. So in that case, in that sense, they’re concerned with
energy, but as a project. They are more concerned about how efficiently that model
can from what they’re allocated and when it comes to energy consumption.

It is hard to make an estimation about the energy consumption of the training
in the project. And cant really name numbers. About the server occupations: So
that difference between production and training and testing these things, they have
a production and testing at their well, production is allocated to us. I think testing
is always allocated as well. Training, I think. What they have done is that they
have used some allocated virtual machines that are allocated to our section rather
than something that they have for their own project, because a lot of the training
and testing of these things are small testing, especially since they never train a full
transformer model on billions of data points.

e.4 asphalt damage recognition

e.4.1 Model developer

The interview was conducted in Dutch and is translated to English.

The interview:

The customer’s question is: what is the status, the condition status of my roads
in acreage? How good are my roads? Historically, you can determine that in a
number of ways. Usually you just go out and see what the status of the road is.
How good your road is. I can ask an inspection company to do that, but of course
a road authority can also do that, they just want to know what a road looks like,
but they usually ask an inspection company to map out the entire area. It used
to be done by hand, by measuring and then looking. And I don’t know when, a
few years ago that was also done more by camera inspections, among other things,
for national roads, provincial roads. Why camera inspections? Don’t have to look
along the road of what does the road look like? Is it good enough or not? and
why not stand along the road? That’s just obviously huge safety risk, not in the
neighborhood, but on the highway. And then the customer was, and that’s internal
in this case. We actually looked internally of yes, can’t that be even easier? Can’t
that be done better? Couldn’t that be done more uniformly by means of automatic
image recognition? And then we ourselves, if frames or problems come up and we
looked at whether that could be solved with automatic image recognition.

Requirements for the project were: the model to be good enough and what is good
enough of course? Problem with road defect is large cracks you can recognize. But
fraying, that’s one of the fun examples then, because those are loose pebbles from
the asphalt, is hard to distinguish because it’s just harder to see. Don’t tie me down
on it, because I’m not an inspector. Especially on camera footage. But one road
inspector may find it fraying and another inspector may not find it fraying and then
image recognition offers a huge addition because it always says the same thing.



e.4 asphalt damage recognition 101

Also, of course, an inspector can miss things. Yes, it doesn’t always work out, you
can’t always see everything and an image recognition model does. Well, then basi-
cally in its looked at is of yes, how good should it be and actually that should be
better than the inspectors. Or about the same.

It was difficult because of those different looks from inspectors to then determine
what a fray is, for example. That was dealt with by having as many inspectors as
possible, as many people as possible, and then outlining an average.

About the different functions of the model. The current model makes sure, that
pipelines are automatic and somewhat clumsy retrieving images from a third party.
Running an image recognition model, so looking at what the effects on those im-
ages are present. Then also positioning the images and ultimately for the customer.
With the right methodologies, that’s then based on (?) among other things. So
the inspection must meet certain requirements and that on the basis of different
methodologies, to convert that as well. And in addition, a customer also wants to
know at segment level how good his road is. So ultimately you get as output a map
with all the defects, but also the segments with their goods. The municipality can
then, for example, immediately see where the really bad segments are and immedi-
ately filter them out. In an online environment.

About other preconditions. Some preconditions depend on which customer you’re
sitting with. One who wants it delivered this way, and the other on those method-
ologies. They differ. The input images can also be different, so these are also
preconditions. They all have to take that into account.

As architecture, we use Tensorflow Mask RCNN models and these models are built
from scratch.

The evaluation of models are twofold. In the sense of do you mean the evaluation
of model itself or really the results. A validation set of images is used to evaluate
this. For example with all types of damages and all types of roads as well.

About the different architectures and cofigurations used for the latest version. We’ve
been around for a while and different models have been trained, with different con-
figurations. We once started with a Faster RNN, jolo, those are all the image recog-
nition model types and we’re looking of yes, which one is the best qua and what is
the best treshold you should use.

For an estimate on the different options that have been tried. The training set is
also extensive of course, so let’s say we’ve already made 100 models. About maybe
that’s a bit of an over estimate. They ran for about 12 hours and then was evaluated
how far they were. We have two supercomputers standing around with two times
the Geforce GTX 2080 as the GPU. So in total 4. And for the training, often one is
used for the training runs. The energy consumption of the supercomputer or the
GPUs is not known.

Correction about the run-time: The run-time is 2,5 day and about the 175000 steps.

How much energy is consumed is unknown, but its probably a lot.

There was no use of cloud services because when we had started it was 2018. Then
there was cloud, but it was easier to just do it with these computers than in the
cloud and now we do work partly in the cloud now. However, its still in the test
phase.
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A final notion is that the supercomputers might consume a lot of energy, but they
are located in the building of Arcadis and the CO2 emissions of the building are
compensated. So, eventually it will not be a lot.
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European Commission
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of Electrical Engineering Mathematics and
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of Electrical Engineering Mathematics and
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Anonymous
Program manager at Service
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Sander van
den Bosch

Manager at Deloitte Netherlands at Technology
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The interviews are transcribed individually and in this appendix grouped per per-
spective. At the individual interviews is noted whether the original interview was
conducted in English or Dutch and translated afterwards.

f.1 governmental institutions

f.1.1 Frank Hartkamp - Netherlands Enterprise Agency (RVO)

The interview was conducted in Dutch and translated to English.

The interview:

When you look at energy consumption, you have to distinguish between imple-
menting the policy and what our own consumption is. Let’s leave the latter out of
it. At the moment the policy is mainly focused on energy efficiency with a payback
period of five years at the level of taking measures. But the impact of how you deal
with the use of that service, otherwise that power management, then you’re at the
level of software. In fact and I have started and for years kept a knowledge network
in the air, we call that knowledge center green software.

103
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I know off the top of my head WIRTH’s law. Also something about just like Moore’s
law that that also applied to software itself. That there is a huge growth in the num-
ber of lines of code and you name it. That there’s a world to be won there and
if you look in the energy efficiency area is. Actually the most biggest promise is
something you can do there all around green software. Because in the past when
computers were very large switch boxes and the capacity of the space was decisive,
you had programming languages that took that very much into account. That you
gave as few commands as possible to get to a solution, for example in Cobalt. At
a certain point, with the amount of hardware, when that no longer gave the restric-
tion, that was completely abandoned. And then you got all kinds of programming
languages that play a much higher level and have become less and less efficient,
that serve a whole bunch of functions where it is often not necessary at all, but that
the developers who work with that software. They are not judged at all. They have
no knowledge of it at all. Have no awareness. The whole word energy is not men-
tioned in the average ICT training. All those sorts of things. The chairman of the
knowledge network at the time worked at the software improvement group, which
is primarily concerned with the quality of software.

I am now working with parties around Amsterdam economic board to look at what
a sustainable ICT infrastructure system, in 2030 and beyond might look like, what
actions are needed there, to accelerate that and then one of the insights there is also
that the role of software is really very dominant actually in the potential. but very
little dominant now in the attention that it gets.

It is still very much in its infancy that these design choices matter. To provide
insight into the extent to which it matters and what choices you have to make to
steer it. One of Jas Visser’s conclusions from his work in Leiden is that if you have a
programmer program for an extra month, it may cost 5000 or 10000 euros more, but
you recoup those costs by reducing energy costs and management costs. Because
the moment you have something done with less code, you also need less hardware,
you also need less management around it.

With AI then I sit myself as a civil servant at a consultation of the Directorate of
Digital Economy, where the whole coalition artificial intelligence has started, also
with the policy field. And then I say: yes, you also have to look at how much en-
ergy all these ICTs cost, also earlier with blockchain. The beautiful discovery of the
cryptocurrency and you name it. I say guys do you know how much energy goes
into that and do you want that. Then they say yes, is not our responsibility. I say
well it is. But so with everything around AI and AI coalition and all the millions
and billions that are budgeted for that there is very little there about sustainability.
It does say that sometimes you can use AI for beautiful sustainable solutions, be-
cause then you can calculate it better. But I also read once: Yes, that’s very nice,
but the moment you use that technology to further explore and extract even more
oil reserves, you are also using the technology for unsustainable purposes and then
you disqualify yourself by saying that it helps sustainable solutions.

The silly thing is that you don’t see the gigantic emissions from models. Because
the average researcher or in a company. They’re just sitting at their computer. Then
a huge flame doesn’t suddenly start burning somewhere, because that just goes via
the cable to a data center and in a data center you don’t see that a server suddenly
starts running faster or something. And the only one who sees that is ultimately the
energy manager, and if he hasn’t measured it properly, then he won’t see it either.

There are several anecdotal examples where people were made aware of how much
a computer can consume. But it hasn’t landed enormously yet, and it’s also very
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difficult to enforce, because you have the recognized measures list that the technol-
ogy that you have pays for itself within five years and that you have to apply it.
That’s very difficult to legislate that in terms of software. It’s a very tricky one, but
just making it transparent is, I think, a first step. If you come up with a great AI ap-
plication and it turns out to be equal to the energy consumption of a medium-sized
village or town, you can find out whether you are doing humanity a huge favor.
Ultimately it’s about if you find AI or blockchain or whatever application very rel-
evant and important for the future. Then start thinking: How can that application
be as sustainable as possible?

As the RVO, we can focus on creating awareness, but in the context of policy imple-
mentation it must ultimately become a law or a subsidy scheme. In that sense, other
than that knowledge network, nothing further has ever come of it. And we’re at
the level of those recognized measures and we’re not getting any further than thou
shalt apply visualization in an environment. And you have to apply power manage-
ment, but there is still no question of if you write a program, then you should not
write more rules than necessary or if you think of a program for something know
that it may cost much more energy, and that you better go there yourself by cab to
bring the answer.

The whole energy issue is caused by the current scarcity of renewable energy, but
the moment the whole country and the sea are built with windmills and there is
no scarcity anymore. Yes, then everyone can do their thing and use all the crazy
AI they want and it doesn’t matter how much energy it takes. But that situation
is not here. In fact, we are investing heavily as a government to keep it all a bit
affordable and to make that renewable energy. So anything that you don’t need
extra of that, that would help. And in the growth of ICT you see that there is quite
a bit of unbridled growth there and with that unbridled energy use, which in part
would just not be needed.

In part, the data centers that lease the spaces to organizations that put a their servers
there. And then they have an interest in having as many customers as possible who
want that. It’s up to the customer to say: I don’t need a whole corridor anymore,
but next time I’ll do it with half a corridor, because I’ve optimized my software. Ba-
sically, that goes against their business model of data centers. Only at the enterprise
centers, which only have their own things to run. So the hyper scalers of Microsoft
and Google, who only run their own things, do have that interest. The idea is that
they would also be receptive to this, in part. But I honestly don’t have a good view
on that. But with all the novelty of AI and the fact that we can and do pluck data
from everywhere. And that they have to come from all sorts of different sides for
one job that data has to come from all sides. If you think about that, actually a very
weird concept, because everywhere there is the need for those servers to be on and
running because that data can be requested there at that time plus all the transport
you need for that and the infrastructure. The moment you make it explicit to every-
one, that that triggers something. Yes, perhaps at a certain point people will say I’ll
wait or I’ll do it less or differently. But it’s mainly about different, maybe not less,
but better and not different.

Automating good behavior would help tremendously. So the moment you’re work-
ing in software and you get a warning of this line of code is redundant or makes it
unnecessarily complicated; It can be simpler, would you like to go on for a while?
Then it would also influence your choices. So just having a counter of what you do
from has so many consecutive commandos as a result.

On average, in ICT, communication is about functionality and whether that is real-
ized and whether it is error-free without interruptions. For the time being everyone
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has good money for that. It all has to be three times safe and redundant and once
it’s running well you especially shouldn’t reset it, because then it can go wrong. So
there are all reasons to do it less green than could be done.

That’s very dominant, because in the considerations of cost what you can earn and
what you can save or need less, I just mentioned, with AI there are really billions
being pumped in. Because it’s all important for the knowledge developments in the
future, but there’s no consideration there of what kilowatt hour price or whatever is.
But with all the renewable energy targets in the Netherlands, of 75 percent electric
from renewable sources by 2030. The moment this takes off with AI and with ICT
in general, we really won’t get to that 75 percent in 2030. Because then the energy
consumption will simply be a lot higher and then the share of sustainably gener-
ated energy will be much lower.

In the past, with consolidation in data centers, companies often said: no, the server
must remain on, because it runs a database. But which one they didn’t really know,
but let’s not turn it off, because later someone will complain. That turned out to be
an almost unused small database.

With a study of power management, you could see that there was a huge differ-
ence in visualization rates between different servers from different organizations.
And then I know that KPN was very good about having the server utilization high,
a CPU utilization of 60 percent, but other organizations often stayed below one per-
cent CPU utilization or below one percent. So that means that compared to KPN.
That then such a party has 60 times too many servers hardware on. So that’s yes
and in these times of attention to climate and what they all have to do differently,
In these times of climate attention it’s actually very strange that you come across
that. Even stranger is when you say that it has to change, that they then say: well
that’s not our business, so it doesn’t have that much attention. So we’re not going
to do anything with it. That is in principle forbidden. In the Netherlands you are
not allowed to open the tap and let the water flow if there is no purpose behind it.

f.1.2 Daniel Mes - Frans Timmermans’ Council

The original interview is conducted in Dutch and translated to English.

The interview:

It is interesting to stay In touch with science, because when you look at AI and
hyper computing, it is for Europe very important to stay in the race with China,
Asia, and America.

Most things are still in their infancy. People know what we are talking about with
artificial intelligence, but in practice it is still in its infancy. That now gives an op-
portunity in that rollout itself to already think about it. All those solutions, we
can’t already think about energy consumption. What is important for us is to avoid
a situation where we say with the green deal, for example, we’re all going to use
renewable energy, and you get stuck in a situation where Amazon buys half of the
wind capacity for data centers. That’s for the data centers that we have now, not
even for high performance computing that we also want to have. It’s important with
that rollout, to look directly at that. The way we look at it is that we are already
looking at what we can do with the sector itself in terms of technical solutions. I
think the sector itself also sees a bit of this problem. They are also really afraid of
ending up in the new dark corner in terms of energy consumption. I notice that in
all the conversations I have with the sector. They are also really interested in see-
ing how we can roll out the system so directly that energy use doesn’t deteriorate.
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That’s why it’s interesting to talk to independent scientists to see what’s technically
possible. What remains then is for Europe for legislation and regulation, because
that is not excluded. But because it is still in the rollout phase and it is important
for Europe to have these solutions, we choose these two tracks.

What we are of course in the situation that it is not possible like with aviation,
like you already have it and you are going to look at cleaning it up. We’ve moved
on with the data centers and expressed the ambition to have them climate neutral by
2030. So there will be a package there eventually as well. But where we’re looking
now, artificial intelligence and high performance computing is interesting to take
those two tracks.

On transparency of energy consumption of services also for smaller companies is
indeed also being considered. I’m curious about what you can do with it at the
end, once it’s transparent. I have to say, we are now looking at transparency mainly
from the point of view of what is ultimately needed from the supply side. People
can make an informed choice of course, but many of those companies that really
choose these solutions. Everyone has an interest in keeping their energy bills low,
so everyone has an interest in knowing that this is energy efficient and I also think
that society is changing and everyone wants it to be sustainable. You’re right that
we’re looking a bit at the supply side, but we’re really looking at it in a very broad
sense, because it’s both a question of green procurement, so buying the energy, but
also thinking about it in advance: When you build a data center, from Europe then,
that we also think about. How can I connect it to the heat network so that all excess
heat can be used to heat up the neighborhoods next door? That’s what we’re doing
in our energy strategy, and we’re really ambitious about that, and in addition to
that you also have all the things we’re doing with the circular economy. We are also
looking at how data centers can contribute to that. We’re also looking at how data
centers can contribute to this, that you build these things in a good way, but also
that 40 percent of the equipment is not thrown away as it currently is. Part of this
is also in technological solutions, because you can look at how you can spread the
use of data, for example. You can often do bank transfers at night. So you can leave
the system alone during the day. These are all of those things that we do in one
package with the offering.

Indeed, we don’t do much on the demand side and transparency is something
we do work on and not only transparency, but also that the apples can be compared
to apples. So there are people in Digi-connect with us working with the sector also
to look at. How can we arrive at the same measurement method, because every
week some tech company comes up to me with a super nice climate-story and I can
do very little with it because everyone uses a different methodology to say what
they are doing. The only thing that is consistent is: Everyone is buying the wind
energy, but then I say that’s important, but I also don’t want all the wind energy to
go to the data centers and digital infrastructure. I also want to know about energy
use and then it does become difficult because then people are measuring different
things.

I think it’s very interesting to also think about how can you already make sure
that that market develops in such a way that you can also offer these kinds of solu-
tions to people, so actually when do you train the model? And what is the best to
avoid an energy shock later on? It’s a little easier with the things we already have,
the data centers. We all know what they look like what they do, it also with the
cloud services by the way. Also the infrastructure, so there we know what we need
to do there. We know what we need to do and want to adapt - that’s the eco de-
sign. The eco design is much more than the little label that we as consumers know.
With that leaf that something is eco. The eco design is really a standard that every
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manufacturer of equipment must take into account when making equipment-and
we’re going to extend the eco design this year to all the things that are already in
data centers, so all the equipment and all the data infrastructure will be covered
by the eco design. But indeed, AI is nothing but a model. We’re also moving to a
world where everything is connected, so in any case everything is going to be edge
computing and a lot of it is going to take place at the edges. And then, of course,
it’s going to be much harder to sit down and agree on an eco-design centrally, be-
cause it’s everywhere. It’s a bit like your dishwasher, you have the eco mode and
then you automatically choose the right one. We have to think about that for a while.

It’s interesting and also in our digital strategy, that we can focus on all the things
that make the energy efficient choices, is not quite the same as what you’re say-
ing, but it comes close. Because the commitment for the existing infrastructure is
very clear there, to make that 2030 climate neutral state-of-the-are circular. But the
commitment is also there for artificial intelligence and all the high performance
computing. To, what we call, Europe wants to be the ecosystem of excellence it and
then also the European ecosystem of excellence where it comes to energy efficient
technology and this does fit with that. That’s how we describe that ambition. I do
find it very interesting when you say that we can’t push this a bit more concretely.

The bosses are also working on this, so Frans Timmermans from the green deal
idea. Energy consumption and emissions are now on par with aviation and you all
know how we treat aviation. Those really treat like a black sheep on the climate
agenda, so we have to be careful that the technology sector doesn’t go the same
way. So they need to start working now to prevent them from becoming the energy
consumer of the future. Again I do think people are embracing that.

Margrethe Vestager is also really with that agenda. Because she is the digital
supreme of Europe, but also really does have a green mindset. If we come up
with the right tools, it should be doable, because the tech sector is precisely the
sector where there is a lot of creativity to just tackle this in advance and just do it,
and the employees in silicon valley and also in the tech sector in Europe who want
to have it, these are often the progressive people. Those are often the people who
think climate action is very important and they really do demand that of employers.
So I think everything is there, but it is indeed a question of: how can we give hands
and feet to this in a practical way and in a way that it doesn’t sound as if Europe
has closed its borders to technology again. I think that dilemma is not a dilemma,
that we can indeed come out of it if we indeed think about it concretely now.

We are looking at certifications. How can we make things transparent and then
certify them in a certain way, when a certain method is followed, that it is indeed
true that it is energy efficient. A bit with that in mind, because ultimately you also
have to throw something over the top - that you can compare apples with apples
and that it’s all right what happens there, without being too heavy handed. This
will continue to be an area, were learning by doing is, that’s just the way it is and
that’s not just for energy use, that’s also for other big things in society. Also learning
by doing in the sense of does a bias come into this or discrimination, does safety
come into this, it’s learning by doing across the board.

f.2 scientific community

f.2.1 Emma Strubell - Carnegie Mellon University

This interview is conducted in English.
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The interview:

Probably, you know, be from, like the the paper I wrote on quantifying the car-
bon footprint of certain deep learning models and NLP. My background and my
actual expertise, like my actual focus is machine learning, like machine learning
researcher specifically. I work on machine learning for natural language, and specif-
ically I work on developing more efficient approaches. So which is why it was in
my head, the introduction to a lot of my papers was these models use a lot of energy
and we care about that. It has high costs of monitoring and for the environment. I
was saying this, but there’s like no citation, so let me try to quantify this. And it
was really hard. It’s very hard. Like I would like to do a follow on work, but it’s
really hard without, obviously, a lot of information at companies and stuff that you
don’t necessarily have access to. I don’t think they even have access to it, they don’t
necessarily have the tools in place because I talked to people in companies and they
said: that would be really hard to compute. Beyond sort of a fairly small scale thing
that I did, which is kind of the low hanging fruit. Like easiest possible estimation.
I’m an assistant professor at CMU and the Language Technologies Institute. My
focus is on developing machine learning algorithms that are as efficient as possible
without sacrificing accuracy. So, that’s related to caring about the environment.

The lack of information to calculate the energy consumption of machine learning is
an important problem. I don’t think a lot of people are thinking about it, but people
who care about this are thinking about it.

I have not really an idea about the energy consumption of smaller models. It’s
like a thing that I would love to do, but I haven’t had the time and I don’t have a
student assigned to it. It would be so easy to estimate that if I just sat down and
did it. I mean smaller models being basically simpler linear classifier, like SPM or
something. Well, so here’s the point. There’s a number that we don’t have. It is to
what extent those models are being run and deployment versus the larger neural
network models. I do think people have been sort of switching over from simpler
linear classifiers to, not necessarily these enormous deep neural networks, but at
least smaller networks. Which are still going to be more energy intensive or at least
they’re going to use more compute, which tends to correspond to requiring more
energy.

I don’t have the numbers unless I’m trying to think of I could do some back of
the envelope estimate. I definitely could. You could maybe estimate, based on the
number of parameters in the model. It would vary a lot depending on the actual
application, so if you’re doing natural language versus computer vision or some-
thing. I can’t do it off the top of my head, I have to sit down and figure it out. I
think I could figure out a ballpark, sort of multiplicative factor. And so there’s also
this discrepancy between training and inference.

So in our paper we get numbers for these enormous models for training, but we do
also have numbers for smaller models, they are all known neural network models.
We do have a number for a typical NLP pipeline. So, if you have a company that
is running NLP, that’s a reasonable number for that. It is still using like a neural
network, not just a little classifier. Yeah, I mean, it’s hard.

Yeah, there are numbers that people still haven’t explored that are sort of easy to
get. This is harder estimates. We also don’t even have a really clear understanding
of the easier estimates, which is really unfortunate.

When thinking about restrictions that make it hard to calculate the energy con-
sumption for the training of deep learning models, lets first start with inference.
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Training time is a good place to start, because inference time is impossible to do.
It’s very hard. But the reason I do care about it is there’s some estimates that of AI
or machine learning computation in data centers, like 90 percent of it is inference
and only 10 percent of it is training. So that’s why we could try to better understand
the cost of inference that would be important, but it’s a lot harder.

So, for training time or for training cost. So depending on at what level you’re
trying to measure it, it becomes more and more difficult. So, like at the lower level,
I think we have the tools. To measure your training. If you’re a practitioner or a
researcher and you’re training a specific model you can measure the energy use of
training that model. Typically, I think one challenge is mapping the energy use to,
if you want to get a carbon estimate, the actual carbon intensity of the energy that
your energy source is using. So, the carbon intensity of your energy source. I think
that becomes even more challenging. And there are tools that exist that I haven’t
used for this, I think it can become more challenging once you’re using a cloud
provider. So different cloud providers, it seems like they’re developing tools so that
you can kind of easily estimate this, which is awesome. And I think for Amazon,
basically I don’t know how much information is actually available. I’m guessing,
you know the tool that was developed for if you are using the cloud, you’d say
which cloud, which part of the cloud, which part of the world you’re using. And it
will give you a carbon estimate, based on your use.

One of the things for me is I feel like a lot of the tools are there, but people don’t
use them. So it’s not common to report these numbers in papers. When people do
report numbers in papers, they report the wrong numbers. They’re not wrong. I
mean, I think they’re easier to get. So they report floating point operations, flops,
and/or they report the training time and the hardware. And so those are both ap-
proximations of the actual energy use, but they’re not the same as the actual energy
use. The actual energy use is tied. It’s like a function of the specific algorithm and
the hardware that you’re running it on. Certain models are not going to efficiently
use a GPU. And so, even if the floating point operations are very low, because of a
sparse model, that hardware doesn’t do those operations efficiently. So you’re not
actually saving anything even though the flops are lower. So that’s why I advocate
for reporting actual energy use. And there’s also a tool that reports the energy use,
a Python library. So that seems useful, but I guess people aren’t using it, but also
it’s pretty new.

One of the things that I’m working on is, within my research communities, trying
to develop standards where people should be reporting the stuff. And reviewers
will expect that and things like this.

About evaluation metrics to determine when a model is done training and the
stopping mechanism, at least in NLP. This might actually be a little bit different
than people who are doing stuff in practice, but what we do in research in NLP and
I think computer vision, we tend to have a development set. So we measure the
accuracy on the development set and then just stop. I think people will just train
for a fixed number of steps and then take the model that performed best within that
fixed number of steps. So you’re typically overshooting. I think you’re doing more
training, that doesn’t need to happen.

But actually, a related issue that you reminded me of also kind of a reporting is-
sue that makes it difficult to estimate the amount of energy that’s actually being
spent on training is, and this is also something we discuss in our paper. No one
reports all the experiments that actually go into this final. So, there is almost no
way to estimate that. We had a case study in our paper of what went into that and
it was quite substantial compared to if you were to just report the training of this
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one model. Well actually we had to train many models to get there. And it makes it
hard to make decisions if you’re not reporting how much of this development was
needed. It’s like totally unclear based on what we report, how much energy and
how much computation is going to have to go into that development because we
don’t report how sensitive these models are. Are you going to be able to, out of the
box, apply it to this new data? Or you’re going to have to train a ton of different
models to try to find the correct parameters for that model.

You just reminded me of another thing. So going back to the original point about
what stage you want to estimate the energy use. So if you want to estimate the en-
ergy use, so that’s like the lowest level. I have a single model like what does energy
use? It immediately becomes much harder if you want to actually try to estimate it
on a sector level or something at a higher level. Because we don’t know for which
models retraining happens.

Facebook has released a couple of papers on what their machine learning workloads
look like in their data centers. And it’s interesting because they do provide some
statistics of which models they retrain and how frequently they retrain them. So,
larger models, like the machine translation model is only getting retrained weekly,
but then there are models that are getting retrained every hour or every few hours.
Most places don’t report that. I think it’s also not well understood that retraining
happens all the time, at a place like Facebook. Like the banks right now, you have
all this new data coming in and you want to constantly adjust your model to the
new data. So, training is not a static thing, it does happen frequently.

So about the Facebook papers, it’s still frustrating because it’s very clear that these
papers have to go through an internal review where the lawyers don’t let them say
certain things.

Next, about the model developers that lack a level of knowledge. I would hope
that the researchers have more knowledge, but I see the same things happening. I
think unfortunately this is the issue with these deep learning models, they’re very
different from previous models and that makes them way more inefficient to train.
Because, we don’t really understand very well how they work. The key thing is the
amount of computation that actually goes into finding a good model, it’s the hyper
parameter tuning. And the deep learning models have almost always more hyper
parameters than you can possibly even search the space. So even in the research
community, there are like machine learning theory people trying to better under-
stand these and trying to develop better ways. Because, if we actually understood
how these parameters interacted and we’d be able to say this is what our data looks
like, this is how we should set these parameters. We don’t really understand how
they interact and how they interact with the data. So, that’s why it’s so inefficient,
because we’re like let’s try every combination of them. So, I think people with more
experience, researchers and people in industry, this is a skill you develop of engi-
neering these models and having an intuitions for how to set these things to do less
computation. But it’s almost black magic or like a dark art.

People often want to use deep learning just so they can say they use it. I think
that happens in industry, especially because people who are not as technical want
to hear that you’re using deep learning. Funders for startups want to hear those
keywords. So maybe they’re using it but they don’t need to use it, I think in re-
search as well.

I think if we had standards for reporting, like the computational requirements of
models that we could actually look for a given model at how much accuracy im-
provement are we actually getting versus a computational requirements. It’s a little
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bit different, but it’s actually needed here. Is the two percent accuracy improvement
worth 20 times increase in cost. And when we don’t report the cost and we only
report the accuracy, which is what is standard now, you don’t even see that part of
the picture. Especially for companies, it costs money to run these models so they
don’t just have the environmental incentives. There’s also the money incentive.

f.2.2 Jan van Gemert & Silvia Pintea - Delft University of Technology

This interview was conducted in English with both interviewees at once.

The interview:

Associate prof van Gemert is more focused on teaching the theory about deep learn-
ing and haven’t trained a model in long time, which he would like to more if time
would allow him.

Assistant Prof Pintea focuses on the computer vision/deep learning and the effi-
ciency of these models. Also a bit at the energy consumption and the efficiency.
And I found some very shallow way of computing that from looking at the num-
ber of floating operations. And then, you know, at certain GPU support a certain
number of floating operations per Watt and then you can compute an approximate
estimate of how much it would take to train a certain network, if you know the
number of floating operations the network takes. So, that you can actually do it
will probably be a rough estimate. But I think that that’s as far as my practical
advice comes to this.

So, to calculate the energy consumption, one should know this data about the model
training and about the hardware.

The first restriction named is if you run a model in parallel, it may have effects
on the energy consumption. And the model itself doesn’t say anything about how
it’s implemented. So you can do all the convolutions sequentially on the CPU or
the GPU. But this will probably be less efficient, then if you do them all in parallel.
which will be also faster accidentally, which is of course the reason why you do it
on parallel on the GPU. But that will probably also be more efficient because then
there’s probably a certain threshold and certain overhead for using the GPU.

And then if you only use 10 percent of the compute, this threshold stays there
is fixed for a longer time, whereas you have this initial threshold and then you have
100 percent use. I can imagine that affects efficiency. So you don’t know how the
implementation will be. So it’s not a hardware problem. It is more of a how is it
going to be implemented. And that relates to which framework you use if you a
Tensorflow, or Pytorch, or Xnet or something. So that you could probably have the
same model more efficiently. So then if you just have the the model that doesn’t
necessarily directly related to the energy. And then in addition, the flops is also an
approximation, I would say, because the reason of implementation. Memory is also
something that’s often forgotten. I don’t know if you read papers that they all talk
about flops or some measure based on flops, but memory is also often a bottleneck.

What memory you refer to, because a lot of people give a number of parameters,
but that is not static? Exactly. Number parameters is only a million or something.
Or order of million, but all the feature maps and all the batch sizes. That depends
on the training import data. So if you run it on image net, which has two hundred
per two hundred, it’s a lot more than if you run it on MNIST. So it’s twenty by
twenty pixels. But, that again depends again on the batch size for example. So does
it get hyperparameters. Hyperparameters also determine real efficiency and that’s
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a second thing as implementation. So if you have the model that you also have to
choose hyperparameters.

We wrote a small paper about the black magic and deep learning. How hyper
parameters effect model accuracy. Experts are better at suiting this hyperparame-
ters than not experts.

It is stressed that the definition of the model developers is different. Van Gemert
does not see the model developer as the one who runs the model, or makes it deeper
or wider. But, the one who makes architecture. So, on the side of the person who
invents the RESNET. So, that is different from the one who deploys the model.

About the complexity of DL that makes it harder to account the energy consump-
tion. It is just multiplication and addition. That’s the basic operation, but I think
what also explains the popularity of deep learning is that you can do any kind of
differential operation. Everything that is differentiable to any kind of function you
can put that into your network and then people invent the most crazy stuff that they
can put into it as long as it’s differentiable. It’s very free. So that makes it complex.
But the model in itself is not per definition complex. You could take a relatively
simple model and then the energy consumption would still be complex. But, that’s
complex for almost all models. I don’t know if the interoperability of the weights
really play a role, I would say the interpretability of the training, so the batch size
which samples are chosen. The model in parallel, the optimizer does stuff. It seems
to be all implementation dependent, always how the framework is implemented.

we have the idea with pen and paper we could write down what happens during
training. It’s just that we don’t know how exactly it’s implemented in a framework.
So we don’t know what additional caching of feature maps and other operations
is done in the background. You could write down here’s one layer network and
these are all the operations that happen and then you’re done. With more hidden
layers, it is the same thing that happens. So it does not become more complex, but
the total sum becomes bigger. The only thing that I can see is that it very much
depends on the implementation details and the framework that you’re using has its
own optimizations in the background that are not clear to the person writing the
code. And then you also have GPU optimizations which are done actually on the
hardware and then certain operations are done differently on different GPUs, then
that can also cause a difference.

The other thing that plays a role that I just thought of is the input data. For example,
the size of the images could play a huge role. And the number of parameters stays
the same. And I can imagine that even in a practical setting, that you could have
corrupted images. And then the model just has to stop. Let’s assume it doesn’t
crash, let’s assume it’s nicely implemented with a try catch or something, and then
it just skips this corrupted data. Data from the case study was also corrupted, but
in a different way. The input data during corona was a different trend that might
be undesired as input data.

About the different evaluation tools and methods of the models. People already
use peta flops, run time, and number of parameters. As I said, this can be used
to determine the energy consumption for a architecture, but everything is approx-
imate. But as far as I know, it’s the only thing that people report this, because
indeed, energy consumption is very much depending on the machine you’re run-
ning on and the implementation that you’re working with. So it’s hard to say.

Usually the averages are used to determine the capacity of the hardware over a
whole bunch of iterations and then you average the estimates. So you get more or
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less stable estimates, hopefully. But yeah, it does vary per batch.

This average is calculated from the model, not measured. So we say we have this
model, we know that it has to do this many multiplications and additions. We have
this input size. We have this a number of weights and then you can just estimate
it with pen and paper. So, how many operations would that mean? But as I said,
this is a rough estimate because you don’t know how many extra operations are
done in the background by the framework. And also, you don’t if the GPU actually
optimized itself because it may actually skip certain operations and then that’s also
counted. And also, you don’t if the GPU actually optimized itself because it may
actually skip certain operations and then that’s also counted.

About Deep learning being a relatively new technique to businesses. There’s all
kind of new operations indeed happening, to every paper proposes their own new
layer. Now the self-attention layer is getting more attraction. It has very different
complexity than CNN’s for example.

Another thing that I just thought of is that NVIDIA makes it difficult to extract
statistics about the GPU use. So I know that our manager has difficulty getting
the information out of it because he says that the API doesn’t support it. Their
library isn’t supported in getting efficiency usage. So how much of the GPU is now
being used? I think you can’t get it unless it’s a runtime, so there is this NVIDIA
command that you can run, but then you have to be on the same note that you’re
running your code and then it shows during runtime. How much of the GPU
you’re using? Like 90 percent, 10 percent, 20 percent. And of course, there’s a
lot of variation between a distance when you wait for the next batch to be loaded
from the CPU to the GPU. So this is like this big peak and then going down and
the peak then going down. So it’s fluctuating. It’s not constant. So that will also
affect the energy, of course, because it’s not constantly running on the on the inputs.

About the social awareness about deep learning. I think people are not aware and
they’re becoming more aware of this because Open AI, for example, is creating these
huge models and people are now making some noise about how much it even cost.
Tens of thousands dollars and how much Watt so how much energy was used in
training this huge model. But that is getting some traction, there was even a paper
about this: Green AI.

If we can have maybe a copy of your findings, then maybe we can indeed look
at these because it may give us an insight into what should we now optimize for. If
you want to do research for efficiency. Yeah. What what’s what are the factors that
are really important in the real world? That is useful often because we sit in our
ivory tower smoking our pipe, thinking a lot. That is useful often because we sit in
our ivory tower smoking our pipe, thinking a lot. Yeah, but yeah, it’s nice to talk
to people because sometimes interesting problems appear that you don’t think of
staring outside of the ivory tower. You just have to go down in the mud and find it
there.

f.3 service providers

f.3.1 Program manager - Service provider A

The original interview was conducted in English.

The interview:
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The hype surrounding Deep Learning is an interesting point. It’s for many busi-
ness cases not necessary being the most advanced or having the largest models, I
think there’s a sweet spot. You can optimize your return on investment for, say,
maybe just using a simple statistical model to achieve your goals, rather than train-
ing a custom Bird model, text classification.

I am on the Machine Learning Team. So we offer a platform for AI workflows
across the entire machine learning lifecycle. So I work on the team that touches
on everything from training to testing to deployment to monitor. So I take a very
unique view on machine learning, and I’m interested also in performing case stud-
ies across a lifecycle so that you have an accounting framework for not only training
cost, but potentially even your data and the inference as well. So at Service provider
A there are a number of broad sustainability initiatives, as you may be aware, and
I applied for a grant to build the foundations to measure and mitigate the carbon
footprint of AI. so I actually onboarding after this call, onboarding my team who
will begin work on that. So we have a number of different things planned and fea-
tures that are coming down the pipeline.

Most common restrictions found by me (Frank) are the lack of awareness of the
client, lack of knowledge of project member not being modelers, modelers only be-
ing aware about basic proxies as running time, and modelers lacking knowledge
about precise knowledge on when to use what deep learning architecture. He to-
tally agrees with those restrictions. That’s a really great point about the different the
lack of ability to decide which architecture provides the best solution. “Everything
you’re saying is exactly what I’m working on.” He is developing a methodology for
measuring the life cycle, the operational life cycle for machine learning models. So,
for training, storage, and inference.

For the training he has not yet a method, but he believes at the end of this grand cy-
cle that will be measured. He has a good understanding of the technical constraints
that we’re facing and it’s going to it’s going to take a few months to get to a good
state.

It’s the end goal for the tool of Service provider A to publish the energy consump-
tion. “This feature that we’re developing will be useful for machine learning, but
we intend to build it so that it can be used across all cloud services.” The goal is to
provide transparency on the power and carbon costs of cloud services. It’s not only
to create awareness, but also that behavior change and to save carbon.

Once you measures then you can start to mitigate. By providing recommendations.
I’ve actually got the equivalent of a dissertation on ways that we can do it. We just
need to measure it first.

A big part of the business of Service provider A is running servers, so that why
he thinks that they’re in a good position to execute this. For more or less all of the
tools we’ll have to access some of our internal metrics.

He doesn’t see this project conflicting with Service provider A or as losing part of
the business. “I see it as a way to identify cost savings and opportunities that can
then be passed on to customers.” I agree there is a conflicting interest with. So
some people in the business simply want our customers to run massive training
jobs all day, every day. But perhaps a better way to frame it might be why don’t we
maximize utilization of our servers. Providing the same product with less compute
is a win-win for Service provider A and the clients.

About the decarbonizing. Reducing the energy is one good step. There are ways
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to say shift your workloads to different times of day or different locations that are
cleaner and potentially explore pricing mechanisms to incentivize sustainable be-
havior.

About the energy reporting metric. We’re still finalizing what we can and can’t
share of it, but we believe as of right now that it’s OK to share power. It’s also fairly,
somewhat public knowledge of what the regional carbon intensities are.

About the availability of the PUE? It’s a good question. I know that we track it.
I don’t know if we are able to expose, uh. That is maybe a closely guarded secret.
The reporting on the energy consumption will be on end-to-end solutions as well
as virtual machines that are rented.

The biggest challenge he’s facing is. The fact that the data is hidden away in dif-
ferent parts of the organization and no one has brought it together yet. And there
are some constraints as well. The data is hidden in a organizational way. It’s a vast
company with conflicting incentives. Many silos. Its totally a goose chase.

About the link between deep learning and sustainability. Within Service provider
A, he thinks he is one of the people at Service provider A that has done most research
into it. To his knowledge they’re really early, they’re leaders. And none of the other
big service providers is working on similar products. Or at least they don’t promote
it.

He’s also looking for projects/case studies that request the energy consumption
for underpinning his project within Service provider A and justification to his man-
agement.

f.3.2 Sander van den Bosch - Deloitte

The original interview was conducted in Dutch and translated into English.

The interview:

My background is: I studied in Enschede, where I studied technical computer sci-
ence and did a master’s in business and IT. Because I found the business side in-
teresting - I started six years ago at Deloitte there also did my graduation research.
That was about enterprise architecture and security and how you can actually get
those two disciplines to work together more and connect them, and then actually
stayed at Deloitte, doing various projects. Most of them in the financial industry,
and then I mainly focus on bringing new propositions live, usually at the edge of
the organization. So a bank that wants to bring a new proposition to the market.
To do that, they set up a subsidiary, for example, that will market that under a new
brand, a new product. That’s what I focus on. What do you need from that side
to realize that, which often involves the following tension: you want to bring some-
thing to the market quickly and often on a small scale, but it must be feasible, but
on the other hand it must also be attractive enough. And big enough that people
say: hey, there’s something in it. Cloud is a topic that often comes back, or actually
always comes back, because the scaling model of cloud fits that type of proposition
very well. And I was one of the initiators of the cloud deep dive, a two-day training
course that we organize to bring our colleagues up to speed on what the cloud is,
the developments in it and the possibilities. Including a hands-on lab that we give.
So I am definitely interested in the subject and the TS&T team is one of the initiators
of the cloud topic.

More focused on the question. I do see that parallel between insight into what
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kind of energy consumption and insight into what costs are involved. And ulti-
mately, with this type of question, you also have to consider what resources you
are using and ultimately this leads to an invoice in euros, or an invoice in CO2

emissions. I’ve never done any in-depth research into it, but I’ve come across very
little from service providers in terms of dashboards and reports about how, as a con-
sumer, you have little insight into what energy consumption underlies this. I don’t
know if there and that will probably not be a one-to-one translation, but the two
do of course increase as you consume more. I don’t know if there’s simple conver-
sion tool in there. That certainly won’t, so far I think, the parallel that goes on there.

Besides aws and azure you are left with google and Alibaba as two other big ones.
Where if I look at Alibaba, I don’t know if they are very concerned about their
carbon footprint. If you look at the other operations that are under that group,
but Google is obviously another interesting one could be. The fact that the service
providers do not want to say much about their the energy consumption and its cal-
culation indicates at least at what stage they are.

There is one party that we as Deloitte do still have contact with and that is schuberg
philis. They do the same thing as aws and Google, but on a much smaller scale
have their own data center in Schiphol.

What I could imagine: that such a party is a little more accessible and if you publish
results about the AWS energy consumption is dramatic then and then I can imagine
that they want to do their own research first and if they like it they publish it very
nicely and if they don’t like it they don’t publish it. Schuberg Philis might be more
willing to publish number and details. Ultimately to reduce their own costs, they
will also be concerned about energy consumption so there is an in incentive to have
that understood. I just don’t know if it plays out, but you could look.

Then back to the relationship between you and the service providers. You get an
invoice from AWS. Per the type of service you’re using, is a completely proprietary
pricing model and most work that you turn on a server and you just bill it by the
hour. Whether it’s been busy or not or used its maximum capacity or not, it’s just a
cost per hour. That’s the most basic model that many people know. And then you
have more serverless computing. Then you don’t pay per server but per millisecond
that a function is running.

And if that function doesn’t perform nothing, you don’t get charged either. With
lambdas from AWS, you pay per millisecond. You write a very small program. You
put in that lambda function, it executes it. And if it takes three seconds. So then
you get charged for three seconds. The latter might be an even better proxy for
energy consumption than a server running, because if it’s busy or less busy, it uses
more or less energy depending on the load, whereas those microservices there you
might get even better insight and be a more accurate proxy.

In addition, on that invoice you will also see what licenses you have used and
what you may still have to pay for. But it depends a bit on what type of service you
use. The more detail you get in the invoice.

For calculating the energy consumption of services that you purchase. I think
that’s how I would differentiate it by the type of service that you’re purchasing.
What the characteristic are of the energy, I would start with a common service and
server running of a certain type. Get from that what the average energy cost is
on an hourly basis. And then you’ll have an insight into that at the time that it’s
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running so longer, and there will probably be running under load at the time that
you’re training those deep learning models. That’s not something where you say
just for an hour it does and then it’s down for ten hours and you’re training it, so
you want to get the most out of it. I would make an assumption it’s full continuous
ballast. So what is the energy consumption of such a server and then you have at
least that for the core to deal with. And then you have some additional services
that AWS will offer to keep that server running. They have monitoring running, of
course, and things like that. You didn’t include those then initially. But maybe you
need to take a mark-up from that. You can calculate that in detail about saying, I’ll
take five percent markup.

When calculating for projects about the biggest constraints. The main one: is the
lack of that data about your energy, if you don’t get it reported by default from the
aws, then the question is can I get that. If you were to do that yourself in your own
managed environment, it would be much easier. Then you just have to look at the
electricity meter then and you’ll see that reflected there. If you have your own set
up then that’s doable. If you buy that from a provider, then the biggest restriction
is the access to the data around energy consumption. If you do have access to that
data, then you have to look at how much the sun’s server is using, but that’s what
the monitoring does for you. So I think there is data available on what the load is
on a CPU. And then I think you should be able to get there. The lack of data seems
to me to be a big challenge here.

Is there a demand in the market for the energy consumption? Yes, that is an
interesting direction. If you put effort into this, it’s an effort you can’t put into
something else. I think that if you look at the importance of sustainability and
energy reporting, you’ll see that more and more parties are looking at this. They
may be less interested in a small project somewhere that is not part of their core
business. But at a certain point you see that they purchase so many services that
it becomes a significant part of their IT spend and potentially also of their energy
consumption and emissions. I do see that customers would start asking for that
more and more. I don’t see the demand being current. It’s not something I get a lot
of questions about today. But the overall reporting also if you look at Deloitte. And
how Deloitte is working on that. Making electric driving more attractive or buying
off CO2 from air travel that’s made? That sort of thing. On the IT side, too, there
is of course considerable energy consumption. And in order to do this reporting
well, I do think that there will be a greater need for insight. So when I look into the
crystal ball, I think that demand is going to increase and that more insight will be
expected into that, whether they expect that from Deloitte who reports integrally or
whether they expect that from their cloud service providers where they purchase
the service, I think it’s more the latter that they ask those questions to aws. For
example, I’d mention a bank, they send a monthly invoice to the bank saying can
you pay me this many euros and I wouldn’t be surprised if at some point they said.
Can you clarify how much CO2 we emitted before that, or the energy consumption
before that? And what are you doing about reducing energy consumption? You can
see this particularly in the contracting of third parties. You also see more attention
being paid to this. So not today. But in the future, and as Deloitte, we’ll also try to
be ahead of our clients’ questions.

There must be some data somewhere, where is then the question. Where you get
insight into the consumption of such a server in aws or Azure. I can hardly imagine,
but well, if nobody has ever asked that question, then it may not be there, but there
must be something somewhere. That is probably easier to find at a smaller service
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provider, since they even might publish it in their yearly reports. That you know
how much energy there is consumed and how many servers there are in the data
center. It is at least possible to calculate an average. That could be an initial step.

It is stressed that service providers have a conflicting interest of on one hand
running their servers efficiently, but on the other hand selling as much server-hours
as possible.
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