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Abstract

The environment in which microscopic organisms live in is dominated by viscous forces because of their
small length scales. Inertial forces are of little use to them in their propulsion mechanisms. As a conse-
quence of this, an organism such as the scallop which moves through time-reversible deformations of
its body would not propel itself in a regime dominated by visocus forces. Hence, microscopic organisms
use appendages like cilia and flagella that are not time reversible to move forward. However, inertial
effects become important to microscopic organisms at the relevant time and length scales. For exam-
ple, inertia is used by a microscopic organism such as Paramecium to escape/attack its predator/prey
[Hamel et al., 2011].

The effects of inertia on the model of a spherically ciliated micro-organism are studied numerically
using an Immersed Boundary Method (IBM) in the present work. In this model given by [Felderhof,
2015], the distortions of the envelope that is generated by connecting all the tips of the cilia together,
are prescribed. The unsteady Reynolds number (𝑅𝑒Ꭶ = ᎦፋᎴ

᎚ ) which characterizes the influence of
unsteady inertia that is generated by the beat of the organism, is varied from 0.025 to 18. The code
which uses a Volume Penalization/Volume of Solid IBM to simulate the distorting sphere is validated
for several test cases.

The mean swimming velocity of the organism that is obtained numerically from the code is in agree-
ment with the analytical model for two cases of the unsteady Reynolds number. The mean swimming
velocity is found to decrease at increasing inertia. The flow pattern that is obtained in the near-field as
a result of the distorting sphere is significantly different from those obtained with the existing models
available in literature.
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1
Introduction

1.1. Low Reynolds Number Flows
Micro-organisms inhabit an environment dominated by viscous forces because of their small length
scales. For a human being with a typical length scale (L) of 1 m, swimming in water with an average
velocity (U) of 1 ፦

፬ , the Reynolds number,Re, (defined as the ratio of inertial to viscous forces) is 10
ዀ,

while for some micro-organisms (L ≈1 𝜇𝑚, U≈30 ᎙፦
፬ ), it is 10

ዅ኿. In such an ”inertialess” environment
(Re « 1), the mechanism of locomotion of a micro-organism differs from that of a macroscopic organism.
A macroscopic organism such as a scallop owes its ability to propel forward to inertial forces by slowly
opening and rapidly closing its shells in a reversible manner as shown in Fig. 1.1. In closing its shell
rapidly, it expels the fluid between its shells, thereby moving forward. In a microscopic environment
however, this reciprocal motion of the scallop would not help it or any other organism to move forward.
This is known as the Scallop theorem [Purcell, 1977].

Figure 1.1: A scallop moving by opening (frame a) and closing its shells (frame b). The direction of
its motion is towards the right as shown by the red arrow. This mechanism of motion is termed as
jumping. Reproduced from [Qiu et al., 2014].

1



2 1. Introduction

Figure 1.2: Swimming devices as shown in the film Low Reynolds Number Flows by G.I Taylor. The
first device from bottom employs a time reversible flapping motion. Unlike the second device from the
bottom, it does not swim in the highly viscous fluid surrounding it [NCFMF, 1972].

Sir Geoffrey Ingram Taylor has shown a demonstration of the Scallop theorem in his film Low
Reynolds Number Flows. In the film, two model-swimmers were shown. The first swimmer (the first
device from the top in Fig. 1.2) employed a spiral to propel itself, while the second swimmer (the second
device from the top in Fig. 1.2) employed a time-reversible flapping tail to propel itself. It was shown
that when the second swimmer was put into a highly viscous fluid, it did not produce a net motion.
This was because, the motion produced by the forward stroke of the flapping tail was cancelled by the
motion produced by its backward stroke. In conclusion, the exact mechanisms of the locomotion used
by a macroscopic organism cannot be employed by an organism living at the micro-scale. Naturally,
the question arises as to how does a microscopic organism propel itself forward.

(a) Cilia on a Paramecium cell.
Reproduced from [Valentine et al., 2012].

(b) A spermatozoon whipping its flagellum to propel
forward. Source : ።፦ፚ፠፞፬.፭፡፞፯።፧፞.፜፨፦.ፚ፮

(c) Bacterium rotating its flagellar bundle to propel for-
ward.
Reproduced from [Cowan, 2018].

Figure 1.3: Flagellated and Cilated micro-organisms.

A microscopic organism propels forward by employing deformations through its appendages such
as cilia (hair-like structures) and flagella (whip-like structures) as shown in Fig. 1.3a & 1.3b, 1.3c
respectively. These are not time-reversible and thus help the organism to move [Blake, 1971]. The
differences between cilia and flagella come through their sizes and beat sequences. Flagella average
around 10𝜇m in size and beat in a sinusoidal fashion while cilia are much shorter averaging around 2
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𝜇m in size and have two distinguishing stages in a beat [Elgeti et al., 2015]. The differences between
their beat sequences will be explained in a following section.
The earliest of models to study the swimming of microscopic organisms (with flagella) was proposed
by G.I Taylor in 1951 [Taylor, 1951]. He considered an inextensible sheet which propagates trans-
verse waves along its length and has calculated its mean swimming velocity to the fourth order in its
amplitude. The direction of swimming of the sheet and its physical interpretation is summarized below.

Figure 1.4: Taylor’s swimming sheet. The thick blue line represents the wave at the time instant t.
Wave at a time instant t�Δt is represented by the thin blue line. Velocities of the material points on the
sheet are represented by the black vertical arrows. Curved red arrows represent vorticities induced by
the velocities. The blue arrows indicate the direction of propogation of the wave. The sheet swims in
the opposite direction as indicated by the red arrows. Reproduced from [Lauga and Powers, 2009].

As seen in Fig. 1.4, the sheet moves towards the left by propagating transverse waves along its
length in the opposite direction (towards the right). The wave at a time instant ’t’ displaces to the right
in a small time interval ’Δt’. The propagation of the wave results in positive (upward) and negative
(downward) velocities along the length of the sheet, inducing an alternating profile of vorticity. The
vorticity is anti-clockwise at the crests and clockwise at the troughs of the wave. The induced flow due
to the vorticity at the crests and the troughs is towards left. Hence the sheet swims to the left. [Lauga
and Powers, 2009].

Flagellated micro-organisms as shown in Fig. 1.3b and 1.3c are driven by a single flagellum or
by rotating bundles of flagella. Ciliated micro-organisms on the other hand have several rows of cilia
attached to their surface as shown in Fig. 1.3a. The beat cycle of a single cilia can be categorized into
a power stroke and a recovery stroke as shown in Fig. 1.5.

Figure 1.5: Power and recovery stroke of a single cilium attached to the cell surface (black horizontal
straight line). The frames a to e in the top row represent the power stroke and the frames e to a in
the bottom row denote the recovery stroke. Red arrow indicates the direction of the motion of the cell.
Reproduced from [Sleigh, 1989].
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During the power stroke as shown by the frames a to e in the top row in Fig. 1.5, the motion of
the cilium is fast and not bent. In the recovery stroke as shown by the frames e to a in the bottom
row, the cilium folds in such a way that it moves tangentially to the fluid, gradually coming back to its
original position. The drag acting on the cilium when it is perpendicular to the cell surface (frame c) is
twice the drag acting on it when it is parallel to the cell surface (frame f) [Tillett, 1970]. This generates
a net motion in the forward direction as shown by the red arrow.

In nature, several organisms such as Opalina or Paramecium have a surface shrouded with rows of
closely packed cilia. The beat of each cilium is therefore not isolated and is hydrodynamically influenced
by its neighbours [Sleigh, 1989]. Hence, neighbouring cilia beat out of phase with each other, leading
to a non-synchronous, wave-like pattern as shown in Fig. 1.6. These are known as Metachronal
waves1[Tamm and Horridge, 1970].

Figure 1.6: Metachronal waves of Cilia on the surface of the micro-organism Opalina. Black arrows
indicate the direction of propagation of the waves. Reproduced from [Tamm and Horridge, 1970].

The earliest model for ciliary propulsion was developed by Lighthill in 1952 [Lighthill, 1952]. He
models a spherical micro-organism whose surface is densely covered with short, closely packed cilia.
Because of the length2, density and closely packed nature of the cilia, their tips are considered to
form a flexible, impermeable sheet, thus forming an envelope around the organism as shown by Fig.
1.7. He considers small amplitude perturbations ’𝜖’ of the envelope and calculates the mean swimming
velocity to the second order in its amplitude (𝜖ኼ). This is known as the spherical squirmer model or
the envelope model. A ’steady’ squirmer model can be obtained by neglecting the radial deformations
of the envelope and by assuming that the tangential velocities on the mean surface of the envelope do
not vary in time.

Figure 1.7: The envelope model (one-half) developed by Lighthill [Lighthill, 1952]. The sphere with
radius 𝑎ኺ indicates the cell surface. The region covered by cilia is given in pink and the dashed lines
bordering the pink region denote the envelope. The sphere with radius a denotes the mean surface
of the envelope. Magenta and blue arrows indicate the direction of propagation of the wave and the
direction of swimming respectively. Reproduced from [Pedley, 2016].

1The reasons for the appearance of these waves are not yet completely understood, though hydrodynamic influences between
cilia adjacent to each other seem to be one of the possible reasons [Guirao and Joanny, 2007].

2 Cilia in organisms such as Opalina and Paramecium are typically 20 times shorter than their body lengths and are spaced
at 65 times shorter than their body lengths [Childress, 1981].



1.1. Low Reynolds Number Flows 5

The steady squirmer model has been widely used across literature to study the influence of iner-
tia on self-propelled bodies [Wang and Ardekani, 2012a], nutrient uptake by micro-organisms [Magar
and Pedley, 2005], interaction between swimmers [Ishikawa et al., 2006], and dynamics of bacte-
rial suspensions [Ishikawa and Pedley, 2007]. This thesis aims to study the effects of inertia on the
combined-stroke-swimmer (explained in the following section) which cannot be realized by the steady
squirmer model. Inertia is used by organisms living at the micro-scale as their escape mechanisms
which involve fast time scales. Paramecium uses inertia to flee/attack its predator/prey or while re-
sponding to a localized stimuli [Hamel et al., 2011].

Figure 1.8: Paramecium fleeing by ejecting thin rod-like structures in response to localized heating by
a laser as shown by the yellow star. The ejections are directed towards the laser source. The direction
of its escape is shown by the red arrows. Reproduced from [Hamel et al., 2011].

As shown in Fig. 1.8, Paramecium, which is sensitive to temperature, ejects thin rod like structures
known as Trichocysts in the direction of the laser (shown by the yellow star) to escape from localized
heating. The discharge of these structures is done in such way that the drag acting on the ejected
structures balances the drag acting on the cell escaping in the opposite direction (shown by the arrows
in red).

In addition to using inertia while escaping, inertial effects become important to organisms as they
grow in size during their life cycles to larger length scales. Organisms such as fish larvae for example,
emerge from their eggs into a viscosity dominated regime (Re < 20). During their lifecycle, they grow
in size to length scales large enough to use inertia to propel their bodies (Re ≈10ኽ), eventually reaching
adulthood [Müller and Videler, 1996]. Fig. 1.9 depicts the length scales at which inertia can become
important to swimming organisms.

Figure 1.9: Length scales and their associated Reynolds numbers for swimming organisms. Parame-
cium (first from the top in the red box) and Chlamydomonas (second from the top in the red box) live
in a viscosity dominated regime. Coepods (shown in the blue box) measure about 1 mm in size and live
at the border between inertia and viscosity dominated regimes. Reproduced from [Naganuma, 1996].



6 1. Introduction

1.2. Immersed boundary methods
The technique used in this thesis to study the effects of inertia is called an Immersed boundary method
(IBM) [Mittal and Iaccarino, 2005]. It uses cartesian grids to simulate fluid flow. It was introduced by
Peskin [Peskin, 1972] in 1972 to simulate flow around heart-valves. Commercial software packages
such as ANSYS-FLUENT use body-conforming grids as shown in Fig. 1.10 to numerically solve the
Navier-Stokes equations.

Figure 1.10: A body conforming grid used to simulate a flow over a cylinder at a Reynolds number of
150, cells close to the cylinder wall are made finer to resolve the boundary layer. Reproduced from
[Behara and Mittal, 2010].

Figure 1.11: A non-body conforming grid used by an Immersed boundary method (IBM). The grid cuts
across the cylinder as shown in green.

Simulating the fluid flow around a deforming/moving object by using a body-conforming grid is a
time-consuming and error-prone process. This is because the grid needs to be re-generated at every
time-step, and the solution computed from the previous time-step needs to be projected onto the new
grid. An alternative to this is using an Immersed boundary method (IBM).

The grid used by this technique, cuts across the body and modifies the Navier-Stokes equations
in the vicinity of the object as shown in Fig. 1.11, to satisfy the no-slip and no-penetration boundary
condition. Thus, the object is ’immersed’ in a Cartesian grid. The Navier-Stokes equations are solved
numerically by considering both the advection and the diffusion terms. At higher Reynolds numbers,
effects of the advection (inertial) terms become important. Hence the influence of inertia on the
micro-organism can be determined. Larger amplitudes of deformation for the micro-organism are also
relatively easier to incorporate in the IBM, which is analytically difficult. This was also one of the
reasons to choose a numerical implementation.
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1.3. Objective
The objective of the thesis is to numerically study the effect of inertia on the model of a swimming
micro-organism that is developed by B.U. Felderhof [Felderhof, 2015]. The results obtained from the
numerical model will then be compared to that of the analytical solution to the model.

In order to achieve this, following sub-objectives were formulated.

• Develop a Fortran code using an Immersed boundary method (IBM) for simulating the deformable
object.

• Validate the Fortran code for several test cases.

• Simulate the microswimmer and obtain the mean swimming velocity for different regimes, and
compare it to the analytical solution to the model.

1.4. Outline
In Chapter 2 a theoretical introduction to low Reynolds number flows is presented. The difference
between the model used in this thesis for a swimming micro-organism and the model existing in liter-
ature is also discussed.
In Chapter 3, the numerical method is discussed. Details on the IBM that is used in this thesis are
given.
In Chapter 4, several test cases for the code validation are presented and compared to those of a
body conforming grid (FLUENT).
In Chapter 5 the results obtained for the swimmer are discussed, followed by the conclusions in
Chapter 6.





2
Theoretical Background

2.1. Fundamental Solutions to Stokes Flow
Microscopic organisms live in a regime dominated by viscous forces as explained in section 1.1. Hence,
the inertial terms (LHS of eq 2.2) can be neglected from the Navier-Stokes equation (eq 2.2) leading
to the Stokes equation (eq 2.3).

∇ ⋅ 𝑢⃗ = 0 (2.1)

𝜌𝜕𝑢⃗𝜕𝑡 + 𝜌𝑢⃗ ⋅ ∇𝑢⃗ = −∇𝑝 + 𝜇∇
ኼ𝑢⃗ + 𝑓 (2.2)

∇𝑝 = 𝜇∇ኼ𝑢⃗ + 𝑓 (2.3)

The Stokes equation (eq 2.3) is linear and independent of time. Hence, singular solutions can be
found, and by superimposing these solutions, the flow induced by the swimming micro-organisms can
be determined. This will be explained in the following sections.

The most basic of these solutions is the Stokeslet. It represents the flow field generated by a point
force in an unbounded fluid. The flow field created by the Stokeslet is shown in Fig. 2.1a. The velocity
(𝑢⃗) and the pressure (𝑝) fields at a point with position vector 𝑟 due to the Stokeslet with a strength
and a direction 𝛼⃗ is given by the equations 2.4 and 2.5.

𝑢⃗ = 𝛼⃗
𝑟 +

(𝛼⃗ ⋅ 𝑟)𝑟
𝑟ኽ (2.4)

𝑝 = 2𝜇 𝛼⃗ ⋅ 𝑟𝑟ኽ (2.5)

where 𝜇 is the absolute viscosity of the fluid ( ፤፠፦፬ ).
The Stokeslet is the lowest order singularity where the velocity fields die out the least slowly in the

order 𝑂(ኻ፫ ) as compared to higher order singularities. Higher order derivatives of the Stokeslet are
also solutions to the Stokes equation. The stresslet (force dipole) is a higher order derivative of the
Stokeslet and is shown in Fig. 2.1b. Physically, it is a pair of equal and opposite Stokeslets separated by
a distance 𝛿𝑑 (not shown in the figure). The velocity fields induced by the stresslet decay as 𝑂( ኻ፫Ꮄ ). The
stresslet can approximate the far-field flow (>7R, ’R’ is the characteristic length scale of the organism)
of a swimmer quite well [Drescher et al., 2011]. This is shown in Fig. 2.1d and 2.1e. Hence, the flow
fields induced by the swimmers at a point far away are obtained by considering the swimmer as a force
dipole. The bacteria E.coli, for instance, can be considered as a force dipole with its thrust coming from
the rear and the drag acting on the front of the organism. This is shown in Fig. 2.2a. An organism
such as Chalmydomonas which obtains its thrust from the front and the drag acting on the rear can be
represented as a force dipole with an orientation opposite to that of E.coli, as shown in the Fig. 2.2b.
Other examples of higher order singularities used to recreate the flow fields by the micro-organisms
are the source dipole 𝑂( ኻ፫Ꮅ ) as shown in Fig. 2.1c, the force quadrupole 𝑂(

ኻ
፫Ꮆ ) and the force octupole

𝑂( ኻ፫Ꮊ ).

9
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(a)

(b)

(c)

(d) (e)

Figure 2.1: Flow fields created by the singular solutions to the Stokes equation. (a): Stokeslet, the
flow field created by a point force (shown by the black arrow) in an unbounded fluid; (b): Stresslet (or
the force dipole), a higher order singularity used to represent the flow field around swimming micro-
organisms. It is obtained by placing two Stokeslets which are equal in magnitude (indicated by the
red arrows) opposite to each other. Reproduced from [de Graaf and Stenhammar, 2017]; (c): Source
dipole, a third order singularity constructed by placing a source (filled red circle) and a sink (hollow red
circle) close to each other. Reproduced from [Zöttl and Stark, 2016]. (d): Experimental measurement
of the average flow field around the bacteria E.coli; (e):Top (B) : flow fields obtained from the stresslet
model that is fitted to the experimental measurements shown in panel d to the left; bottom (C) : flow
field after removing the stresslet model from the experimental measurement on the same color scale
as panel d. Differences can be seen only close to the body of the swimmer. Reproduced from [Drescher
et al., 2011].

(a) (b)

Figure 2.2: Swimming micro-organisms E.coli and Chalmydomonas represented by force dipoles. (a):
In an organism such as E.coli, the thrust comes from the rear and its direction is indicated by the blue
arrow. The drag acts on the front of the organism and its direction is indicated by the red arrow; (b)
In Chalmydomonas, the thrust comes from the front and its direction is indicated by the blue arrow.
The drag acts on the rear of the organism and its direction is indicated by the red arrow. Reproduced
from [Ishikawa, 2009].
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2.2. Steady Squirmer
The flow field induced by a ciliated micro-organism can also be represented in terms of Stokes-
singularities. This will be explained in the later parts of the section. An introduction to the steady
squirmer model in greater detail is provided in the first few paragraphs of this section.
As previously explained in section 1.1, a simple mathematical model (also known as the ’squirmer’
model) to study ciliary propulsion was developed by Lighthill [Lighthill, 1952] and Blake [Blake, 1971].
In this approach, the cilia are considered to be very closely bundled so that no fluid can penetrate the
surface formed when all the tips of the cilia are connected together. The region below this surface is
ignored. Sub-layer models have also been developed by Blake [Blake, 1972] by considering the flow
inside the cilia layer. However, this approach is not considered in this thesis.

Figure 2.3: The envelope model developed by [Blake, 1971]. The sphere with radius b represents the
surface of the micro-organism without the cilia. The surface with radius R represents the envelope.
The sphere denoted with radius a denotes the mean surface of the envelope. The swimming direction
is indicated by the blue arrow. Reproduced from [Blake, 1971].

In nature, a single cilium beats out of phase with its neighbouring cilia due to the hydrodynamic in-
teractions between each other. This generates a wave-like pattern known as a Metachronal wave.
When the Metachronal wave is along the direction of the effective stroke, it is called symplectic
metachrony and the vice versa is called antiplectic metachrony. This is illustrated in the Appendix
A.1. The no-slip and the no penetration boundary conditions on the envelope are valid only for the
case of symplectic metachrony [Blake, 1971].

In the squrimer model, the mean shape of the swimmer is approximated as a sphere of radius a. In
a frame of reference that moves with the sphere, the velocity fields are found as a set of fundamental
solutions to the Stokes equation. They are expressed in a spherical coordinate system where r denotes
the radial distance and 𝜃 denotes the polar angle. The velocity fields are obtained under the assumption
of axial symmetry. At the surface of the swimmer (𝑟 = 𝑎), the velocity fields are given by equations
2.6 and 2.7. Here 𝑃፧(𝑐𝑜𝑠𝜃) and 𝑃ᖣ፧(𝑐𝑜𝑠𝜃) denote the Legendre polynomials and their first derivatives
respectively.

𝑢፫|፫዆ፚ =
ጼ

∑
፧዆ኺ

𝐴፧(𝑡)𝑃፧(cos 𝜃) (2.6)

𝑢᎕|፫዆ፚ =
ጼ

∑
፧዆ኻ

𝐵፧(𝑡)
2 sin 𝜃
𝑛(𝑛 + 1)𝑃

ᖣ
፧(cos 𝜃) (2.7)

Equations 2.6 and 2.7 are simplified by assuming that the radial velocity at the surface of the
swimmer vanishes and the tangential velocities at the surface of the swimmer are time independent.
In addition to this, only the first two terms of the equation 2.7 are retained. Hence, the tangential
velocity of the swimmer is derived as shown in equation 2.8. This is known as the steady squrimer
model or the B1-B2 model [Ishikawa and Pedley, 2007].

𝑢᎕|፫዆ፚ =
𝐵ኻ
3 ⋅ sin 𝜃 + 𝐵ኼ ⋅ sin 𝜃 cos 𝜃 (2.8)
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Figure 2.4: Flow field (u) around a squirmer in the laboratory frame of reference constructed from the
singularity solutions of Stokes flow. uB1 represents the contribution from the source dipole and uB2

represents the contribution from the stresslet. Reproduced from [Delmotte et al., 2015].

As seen in Fig. 2.4, the flow field around a squirmer can be represented as a combination of the
flow fields from two singularity solutions, the source dipole and the stresslet. The terms 𝐵ኻ and 𝐵ኼ in
equation 2.8 relate to the strength of the source dipole and the strength of the stresslet respectively.
Only the first term in the equation 2.8 determines the swimming velocity of the squirmer which is given
by ኼፁᎳ

ኽ . This is derived from the condition that the squirmer is force-free and is irrespective of the size
of the particle [Molina et al., 2013]. The Stokeslet does not contribute to the far field because the
swimmer is force free.

Figure 2.5: Flow field around Volvox in the laboratory frame of reference. (a): The experimentally
measured flow field ; (b): The fitted flow field with the contribution from the Stokeslet with the same
color scale as panel a ; (c): The relative error 𝜀 is defined as |፮ᑖᑩᑡዅ፮ᑗᑚᑥ||፮ᑖᑩᑡ|

between the experimental flow

field in panel a and the fitted model in panel b. 𝑔⃗ denotes gravity. The swimming direction is indicated
by the black arrow. Reproduced from [Drescher et al., 2010].
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The experimental measurements of Drescher [Drescher et al., 2010] on the spherically ciliated alga
Volvox, indicate that there is strong contribution from the Stokeslet to the flow field, despite the minute
density difference between the fluid and the alga (

᎞ᑧᑠᑝᑧᑠᑩዅ᎞ᑗᑝᑦᑚᑕ
᎞ᑗᑝᑦᑚᑕ

≈ 0.3%) as shown in panels a,b,c in
the Fig. 2.5. The differences between the experiments and the fitted model are restricted to a narrow
region close to the swimmer as shown by panel c in Fig. 2.5. The source dipole dominates in the near
field as shown by Fig. 2.6. This is observed after removing the Stokeslet contribution. The contribution
of the stresslet is small, causing an asymmetrical velocity profile between the front and the rear portion
of the organism, as shown in Fig. 2.6.

Figure 2.6: The contours of the experimentally measured velocity fields near Volvox obtained after
subtracting the contribution from the Stokeslet. The source dipole dominates the flow field. The
swimming direction is indicted by the white arrow. 𝑔⃗ is gravity. Reproduced from [Drescher et al.,
2010].

2.3. Pushers,Pullers and Neutral Squirmers
The ratio, 𝛽 = ፁᎴ

ፁᎳ
is a typical characteristic of a swimmer. When 𝛽 > 0, the swimmer is known as

a puller, while 𝛽 < 0 represents a pusher and 𝛽 = 0 represents a neutral swimmer. The flow field
around a pusher, a puller and a neutral squirmer in the laboratory frame of reference and in a frame
of reference that moves with the squirmer is shown in Fig. 2.7.

Figure 2.7: Flow fields around various types of squirmers. The flow fields around a pusher (𝛽 = −5)
in a laboratory frame and in a moving frame of reference are given in panels a and d respectively,
while those of a puller (𝛽 = +5) in a laboratory frame and in a moving frame of reference are given
in panels c and f respectively. The flow fields around a neutral squirmer (𝛽 = 0) in a laboratory frame
and in a moving frame of reference are given in panels b and e respectively. The red dot indicates the
stagnation point in the flow field. The arrow in yellow indicates the direction of swimming. Reproduced
from [Evans et al., 2011].

As shown by Fig. 2.7, there exist regions of re-circulation behind a puller and in front of a pusher
in a moving frame of reference. The flows in the far-field induced by the swimming micro-organisms
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such as E.coli and Chlamydomonas can be studied by considering them as either pushers or pullers. A
pusher such as E.coli draws the fluid surrounding it, from its sides and pushes the fluid along its length
as shown by the panel a in Fig. 2.8. A puller such as Chlamydomonas does the opposite by pulling the
fluid along its length and expelling it sideways as shown by the panel b in Fig. 2.8. Hence, the flow
fields induced by pushers or pullers can be either extensile or contractile as shown by the panels c and
d in Fig. 2.8 respectively [Dunkel et al., 2010].

Figure 2.8: Flow fields induced by pushers and pullers. (a) and (c): The pusher E.coli shown in black,
inducing an extensile flow field (shown by panel c). (b) and (d): The puller Chlamydomonas shown in
black inducing a contractile flow field (shown by panel d). Reproduced from [Molina et al., 2013].

2.4. Inertial Effects on a Squirmer
Wang and Ardekani [Wang and Ardekani, 2012a] investigated the effects of inertia on pullers and
pushers for the Reynolds numbers ranging from 10ዅኽ to 10ኺ for different values of 𝛽. The velocity
scale for the Reynolds number is the strength of the stresslet 𝐵ኼ. They find that inertia increases the
swimming speed of the pusher by 60%, while it reduces the swimming speed of a puller. As discussed
in section 2.3, there is a region of closed streamlines formed in front of a pusher, while this region is
formed at the back of a puller.

Figure 2.9: Streamlines for a pusher (top) and a puller (bottom) in a co-moving frame of reference
respectively. The dashed red lines indicate the streamlines at Re=0, and the continuous green lines
indicate the streamlines at Re=1. The swimming direction is denoted by the red arrow. The Z and X
(not shown in the figure) axes point in the horizontal and vertical direction respectively. Reproduced
from [Wang and Ardekani, 2012a].
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As seen in Fig. 2.9, inertia shortens the region of re-circulation for a pusher and enlarges the region
of re-circulation for a puller hence reducing the swimming speed of the puller and increasing the speed
of the pusher.

Figure 2.10: The non-dimensionalized swimming velocity for a pusher and puller at different values of
𝛽. The swimming velocity is non-dimensionalized by the velocity that is predicted by the B1-B2 model
(ኼፁᎳኽ ). The Reynolds number is plotted along the horizontal axis and the non-dimensional swimming
velocity is plotted along the vertical axis. Reproduced from [Wang and Ardekani, 2012a].

Figure 2.11: Non-dimensionalized contours of the vorticity for a puller (top) and puller (bottom). The
solid green lines denote the contours at Re=1, and the dashed red lines denote the contours at Re=0.
Reproduced from [Wang and Ardekani, 2012a].

The effects of inertia are more pronounced at higher values of 𝛽 at higher Reynolds numbers. This
is shown by Fig. 2.10. The vorticity generated at the surface of the organism is larger due to inertial
effects in a puller and is diminished by inertial effects in a pusher. This enhances in mixing the fluid for
a puller, while diminishing the mixing in a pusher. This is shown in Fig. 2.11.
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2.5. Unsteady Squirmer
Wang and Ardekani [Wang and Ardekani, 2012b] consider the effects of the virtual mass force and
the Basset force in addition to the Stokes drag that arise when a squirmer is accelerating, on the
swimming velocity of the organism. They find that the effects of the virtual mass force and the Basset
forces are negligible when 𝑆𝑡𝑅𝑒 << 1, where 𝑆𝑡 is the Strouhal number given by ፟ፋ

ፔ and 𝑅𝑒 is the
Reynolds number given by ፔፋ

᎚ , where 𝑓, 𝐿, 𝑈, 𝜈 denote the charecteristic frequency of the beat, the
swimming velocity of the organism, the length scale of the organism and the dynamic viscocity of the
fluid respectively. The Strouhal number is the ratio of the time scale of the unsteady inertia that is
generated by the surface distortions of the organism to the time scale of the convective inertia of the
organism. The Reynolds number is the ratio of the convective inertial force on the organism which
scales as 𝜌ፔ

Ꮄ

ፋ to the viscous force on the organism which scales as 𝜇 ፕፋ . The effects of the Basset force
and the added mass forces become important at 𝑆𝑡𝑅𝑒 >> 1.

Figure 2.12: Swimming velocity and the forces on an unsteady squirmer. (a): The non-dimensionalized
swimming velocity (𝑉∗) as a function of the non-dimensional time (𝑡∗) obtained by considering the
effects of the basset and the added mass forces (shown in red) and without considering their effects
(shown in black). (b): The non-dimensional Stokes drag (shown in red), Basset force (shown in black)
and the added mass force (shown in blue) as a function of the non-dimensional time (𝑡∗). (c): The
amplitude (𝑓𝐴∗) of the Basset force , the added mass force and the Stokes drag as a function of the
non-dimensional time (𝑡∗). Reproduced from Wang and Ardekani [2012b].

As shown in panel b Fig. 2.12 the magnitude of the basset force and the added mass force is much
larger than the Stokes drag acting on the squirmer. The mean swimming velocity as predicted by them
considering the added mass force and the Basset force differs from the solution by Blake which does
not consider the two forces. The effects of these two forces is more pronounced at 𝑆𝑡𝑅𝑒 ∼ 𝑂(1) as
shown in panel c in Fig. 2.12.
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2.6. Effects of a Distorting Sphere
The B1-B2 model derives a flow pattern 𝑢᎕ by assuming a slip velocity on the mean surface of the enve-
lope. Instead of deriving the flow pattern from the assumptions made on the envelope, B.U. Felderhof
[Felderhof, 2015] prescribes the deformations of a sphere with radius a and calculates the swimming
velocities induced from the deformations of the sphere to the second order in the perturbations of the
sphere (𝜉). The swimming velocities are derived in a laboratory frame of reference where the fluid is at
rest at infinity. The deformations of the sphere prescribed analytically by him are used in the present
work. Their details are described below.

A spherical coordinate system is used where 𝑠 (r ,𝜃,𝜙) denotes a point on the sphere, with radial
distance r , azimuthal angle 𝜃 and polar angle 𝜙. The perturbation 𝜉 of the sphere is axisymmetric
and is given by equation 2.9, where 𝑢። and 𝑣። as described by equations 2.10 & 2.11, are functions of
the Legendre polynomials (𝑃።(𝑐𝑜𝑠𝜃)) and their derivatives (𝑃ኻ። (𝑐𝑜𝑠𝜃)) respectively. 𝑀።(𝑡) & 𝐾።(𝑡) are
periodic functions of time t given by equations 2.12 and 2.13. 𝜔 is the characteristic frequency of the
deformation.

𝜉(𝑠, 𝑡) =
ጼ

∑
።዆ኻ
𝑀።(𝑡)𝑢።(a , 𝜃) +

ጼ

∑
።዆ኼ
𝐾።(𝑡)𝑣።(a , 𝜃) (2.9)

𝑢።(r , 𝜃) = (
𝑎
𝑟 )
።ዄኼ[(𝑖 + 1)𝑃።(𝑐𝑜𝑠𝜃)𝑒፫ + 𝑃ኻ። (𝑐𝑜𝑠𝜃)𝑒᎕] (2.10)

𝑣።(r , 𝜃) = (
𝑎
𝑟 )
።[(𝑖 + 1)𝑃።(𝑐𝑜𝑠𝜃)𝑒፫ +

𝑖 − 2
𝑖 𝑃ኻ። (𝑐𝑜𝑠𝜃)𝑒᎕] (2.11)

𝑀።(𝑡) = 𝑎(𝜇።፬𝑐𝑜𝑠𝜔𝑡 − 𝜇።፜𝑠𝑖𝑛𝜔𝑡) (2.12)

𝐾።(𝑡) = 𝑎(𝜅።፬𝑐𝑜𝑠𝜔𝑡 − 𝜅።፜𝑠𝑖𝑛𝜔𝑡) (2.13)

The first three terms i.e 𝑖 =1,2,3 are considered in the expansion of 𝜉 (eq 2.14) to prescribe the
deformation of the sphere.

𝜉(𝑠, 𝑡) =
ኽ

∑
።዆ኻ
𝑀።(𝑡)𝑢።(a , 𝜃) +

ኽ

∑
።዆ኼ
𝐾።(𝑡)𝑣።(a , 𝜃) (2.14)

The expansions for 𝑢ኻ(r , 𝜃), 𝑢ኼ(r , 𝜃), 𝑣ኻ(r , 𝜃), 𝑣ኼ(r , 𝜃) used by [Felderhof, 2015] are given by equa-
tions 2.15-2.18.

𝑢ኻ(r , 𝜃) = (
𝑎
𝑟 )
ኽ[2𝑐𝑜𝑠𝜃𝑒፫ + 𝑠𝑖𝑛𝜃𝑒᎕] (2.15)

𝑢ኼ(r , 𝜃) = (
3𝑎ኾ
4𝑟ኾ )[(1 + 3𝑐𝑜𝑠2𝜃)𝑒፫ + 2𝑠𝑖𝑛2𝜃𝑒᎕] (2.16)

𝑣ኻ(r , 𝜃) = (
𝑎
𝑟 )[2𝑐𝑜𝑠𝜃𝑒፫ − 𝑠𝑖𝑛𝜃𝑒᎕] (2.17)

𝑣ኼ(r , 𝜃) = (
3𝑎ኼ
4𝑟ኼ )[(1 + 3𝑐𝑜𝑠2𝜃)𝑒᎕] (2.18)

The set of coefficients 𝜇ኻ፜ , 𝜇ኻ፬ , 𝜇ኼ፜ , 𝜇ኼ፬ , 𝜇ኽ፜ , 𝜇ኽ፬ and 𝜅ኻ፜ , 𝜅ኻ፬ , 𝜅ኼ፜ , 𝜅ኼ፬ , 𝜅ኽ፜ , 𝜅ኽ፬ as shown in the RHS of
equations 2.12 and 2.13 characterize the type of deformation (𝜉) of the sphere. A different combination
of the coefficients leads to a different swimmer with a distinct deformation. The combined-stroke -
swimmer, the squriming swimmer and the potential swimmer as described by [Felderhof, 2015] are
shown in Fig. 2.13 , 2.14 and 2.15 respectively. They are obtained by using different combinations of
the coefficients.
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Figure 2.13: Deformations (one-half) of the combined-stroke-swimmer (𝜇ኻ፜ = 0.05, 𝜅ኽ፜ =
−0.022, 𝜅ኼ፬ = 0.0621) as shown in red. The sequence is to be read clockwise from top-left. 𝑇፜፲፜፥፞
in the frames denotes the cycle time of the swimmer. The Z and R axes (not shown in the figure) are
in the horizontal and the vertical direction respectively.

Figure 2.14: Deformations (one-half) of the squirming swimmer (𝜇ኼ፜ = 0.05, 𝜇ኽ፬ = 0.053, 𝜅ኼ፜ =
−0.05, 𝜅ኽ፬ = −0.053) as shown in red. The sequence is to be read clockwise from top-left. 𝑇፜፲፜፥፞
in the frames denotes the cycle time of the swimmer. The Z and R axes (not shown in the figure) are
in the horizontal and the vertical direction respectively.
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Figure 2.15: Deformations (one-half) of the potential swimmer (𝜇ኻ፜ = 0.025, 𝜇ኼ፬ = 0.038, 𝜅ኼ፬ =
−0.0471) as shown in red. The sequence is to be read clockwise from top-left. 𝑇፜፲፜፥፞ in the frames
denotes the cycle time of the swimmer. The Z and R axes (not shown in the figure) are in the horizontal
and the vertical direction respectively.

The following dimensionless numbers are of use to analyze the effects of inertia on the combined-
stroke -swimmer.

Scale Number
The scale number as defined by [Felderhof, 2015], is a measure of inertia generated by the surface
of the distorting sphere. It is given by equation 2.19 where 𝜔 is the characteristic frequency of the
distortion, a is the radius of the sphere, and 𝜈 is the kinematic viscosity of the fluid in which the sphere
is swimming.

𝑠 = 𝑎( 𝜔2𝜈 )
Ꮃ
Ꮄ (2.19)

Unsteady Reynolds Number
The unsteady Reynolds number characterizes the ratio of the unsteady inertial forces to viscous forces.
It is given by equation 2.20 where 𝜔 ( ኼ᎝

ፓᑔᑪᑔᑝᑖ
) is the characteristic frequency of the organism, L is the

length scale of the organism and 𝜈 is the kinematic viscosity of the fluid in which it swims.

𝑅𝑒Ꭶ =
𝜔𝐿ኼ
𝜈 (2.20)

Reynolds Number
The Reynolds number characterizes the ratio of inertial forces to viscous forces. It is given by equation
2.21 where U is the characteristic velocity of the organism, L is the characteristic length scale of the
organism, and 𝜈 is the kinematic viscosity of the fluid in which it swims.

𝑅𝑒 = 𝑈𝐿
𝜈 (2.21)

The swimming velocity to the second order in the deformation (𝜉) obtained by B.U. Felderhof
[Felderhof, 2015] for the combined-stoke-swimmer for 𝜇ኻ፜ = 0.05 is shown in the Fig. 2.16. At large
scale numbers (s > 3) where inertial effects become important, the swimming velocity decreases in
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magnitude and changes in sign, leading to a change in the direction of swimming sphere. The mean
swimming velocity as a function of the scale number as obtained by the analytical solution as shown
in Fig. 2.16 will be compared to the numerical solution obtained in this thesis.

Figure 2.16: Swimming velocity (፦፬ ) as a function of the logarithm of the scale number (𝑠) for the
combined-stroke-swimmer with the coefficients 𝜇ኻ፜ = 0.05, 𝜅ኽ፜ = −0.022, 𝜅ኼ፬ = 0.0621. Reproduced
from [Felderhof, 2015].

The swimming velocity also depends on the values of the coefficients that are chosen. The non-
dimensional swimming velocity (second order in the deformation 𝜉) for 𝜇ኻ፜ = 1.0 as obtained by
[Felderhof, 2015] for a large range of scale numbers (𝑠 > 100) is shown in the Fig. 2.17. In a recent
publication, [Felderhof and Jones, 2017] find the optimal efficiency of the swimmer at asymptotically
large scale number.

Figure 2.17: Non-dimensional swimming velocity ( ፔᎦፚ ) as a function of the logarithm of the scale
number (𝑠) for the combined-stroke-swimmer with 𝜇ኻ፜ = 1.0. Reproduced from [Felderhof, 2015].



3
Numerical Method

In this chapter, details on the numerical method are described. The grid used and the Volume Penal-
ization/Volume of Solid scheme adapted to this work are described in the following sections.

3.1. Staggered Grid
In Fig. 3.1, the X and Y axes point in the streamwise direction and the normal direction respectively.
The velocity components along the streamwise direction and the normal direction are U and V are
shown by the blue and green arrows respectively. The U and V velocities are stored at the cell faces,
while the pressure is stored at the cell centres as shown by the red dots in the figure. A staggered grid
is used to avoid the pressure and the velocity getting decoupled [Versteeg and Malalasekera, 2007].

Figure 3.1: The staggered grid used in the present work used to simulate the fluid flow. The blue
arrows represent the U velocities in the streamwise direction and the green arrows represent the V
velocities in the normal direction respectively. The red dots represent the pressure points. Reproduced
from [Niazi Ardekani et al., 2018].

3.2. Discretization of the Navier Stokes Equations
The code uses the finite volume scheme. Hence the Navier-Stokes equations (eq 3.1) are integrated
over a control volume.

𝜌𝜕𝑢⃗𝜕𝑡 + 𝜌𝑢⃗ ⋅ ∇𝑢⃗ = −∇𝑝 + 𝜇(∇
ኼ𝑢⃗) + 𝑓 (3.1)

21
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Using Gauss divergence theorem, the integrals for momentum and diffusion are converted to surface
integrals. They are then evaluated over the surface of a grid cell as shown by equation 3.2.

∫
ፕ
𝜌𝜕𝑢⃗𝜕𝑡 𝑑𝑉 + ∫

ፕ
∇ ⋅ (𝜌𝑢⃗𝑢⃗)𝑑𝑉 = ∫

ፕ
−∇𝑝𝑑𝑉 +∫

ፕ
𝜇∇ኼ𝑢⃗𝑑𝑉 + ∫

ፕ
𝑓𝑑𝑉 (3.2)

3.3. Fractional Step Methods
Integration of equation 3.2 in time, is done in parts. In the first part, an intermediate velocity (u∗) is
obtained from a guessed value for the pressure field (𝑝፧ዅኻ/ኼ) as done in equation 3.3. The symbolsAn

and Dn denote the advection and the diffusion terms at the old time levels respectively, Δ𝑡 indicates
the time-step and 𝜈 indicates the kinematic viscosity of the fluid. This intermediate velocity (u∗) is not
divergence free. In order to correct this, a pressure that corresponds to an intermediate divergence free
velocity field is obtained (eq 3.4) and the intermediate velocities are corrected to obtain the velocities
at the next time-step (eq 3.5). The guessed value of pressure (𝑝፧ዅኻ/ኼ) is also corrected to obtain the
pressure at the new time level (eq 3.6).

u∗ − un

Δ𝑡 = −(∇𝑝፧ዅኻ/ኼ −An + 𝜈Dn) (3.3)

∇ኼ𝑝̃ − 1
Δ𝑡∇ ⋅ u

∗ = 0 (3.4)

unዄ1 = u∗ − Δ𝑡∇𝑝̃ (3.5)

𝑝፧ዄኻ/ኼ = 𝑝፧ዅኻ/ኼ + 𝑝̃ (3.6)

In an Immersed boundary method, equations 3.3-3.6 are modified to account for the presence of
an obstacle in the domain. The intermediate velocity computed from eq 3.3 is modified by a forcing
term (𝑓፧ዄኻ/ኼ) into a second intermediate velocity (u∗∗) at the location of the obstacle (eq 3.8). The
velocities at the new time level are obtained from the pressure (eq 3.10). The scheme is given by
equations 3.7-3.11. This is known as a fully explicit scheme.

u∗ − un

Δ𝑡 = −(∇𝑝፧ዅኻ/ኼ −An + 𝜈Dn) (3.7)

u∗∗ = u∗ + Δ𝑡𝑓፧ዄኻ/ኼ (3.8)

∇ኼ𝑝̃ − 1
Δ𝑡∇ ⋅ u

∗∗ = 0 (3.9)

unዄ1 = u∗∗ − Δ𝑡(∇𝑝̃) (3.10)

𝑝፧ዄኻ/ኼ = 𝑝፧ዅኻ/ኼ + 𝑝̃ (3.11)

3.4. Restrictions on the time-step
A fully explicit scheme given by equations 3.7 -3.11 has one major disadvantage. It does not allow
for large time-steps. The diffusion and the Courant criteria for restrictions on the time step for the
fully explicit scheme are given by equation 3.12 and equation 3.13 respectively. The diffusion criteria
is more restrictive as compared to the Courant criteria. The time-step ’Δ𝑡’ for the diffusion criteria
is proportional to the square of the grid spacing (Δ𝑥, Δ𝑦) while the Courant criteria (eq 3.13) is less
restrictive with ’Δ𝑡’ varying linearly as the grid spacing. Hence, extremely small time steps are required
to solve the equations 3.7-3.11. This restriction on the time-step can be overcome by using an implicit
scheme for the diffusion term. Hence, for regimes which are highly viscous, an implicit treatment of
the diffusion terms is preferred.

𝜈Δ𝑡
𝑑𝑥ኼ +

𝜈Δ𝑡
𝑑𝑦ኼ ≤ 0.5 (3.12)

and,
𝑈Δ𝑡
𝑑𝑥 + 𝑉Δ𝑡𝑑𝑦 ≤ 𝐶፦ፚ፱ (3.13)
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3.5. Implicit Scheme
In order to overcome the restrictions posed by the fully explicit scheme as mentioned in section 3.4,
an implicit integration for the diffusion is used in this work. This scheme is given by equations 3.14-
3.18. A Crank-Nicholson scheme is used for the implicit integration of the diffusion terms, while the
advection terms are integrated through a 2፧፝ order Adams-Bashforth scheme, which consists of using
the advection terms from the current and the old time level respectively (An,Anዅ1). In addition to
this, extra terms to the pressure correction equation (eq 3.18) are added due to the diffusion terms
being implicitly solved.

u∗ − un

Δ𝑡 = 𝜈
2∇

ኼ(un + u∗) − ∇𝑝፧ዅኻ/ኼ − (32A
n − 12A

nዅ1) (3.14)

u∗∗ = u∗ + Δ𝑡𝑓፧ዄኻ/ኼ (3.15)

∇ኼ𝑝̃ = 1
Δ𝑡∇ ⋅ u

∗∗ (3.16)

unዄ1 = u∗∗ − Δ𝑡∇𝑝̃ (3.17)

𝑝፧ዄኻ/ኼ = 𝑝፧ዅኻ/ኼ + 𝑝̃ − 𝜈2∇
ኼ𝑝̃ (3.18)

3.6. Volume Penalization IBM/ Volume of Solid IBM
The distinction between various Immersed boundary methods is in the way they compute the forcing
term (𝑓፧ዄኻ/ኼ). In this thesis, the Volume penalization IBM of Kajishima [Kajishima et al., 2001] has
been implemented. The forcing term in this IBM is computed from the mass/volume fractions (𝛼)
occupied by the immersed object in a cell (eq 3.19) where 𝑛 denotes the time level.

𝑓፧ዄኻ/ኼ = 𝛼፧ዄኻ(𝑈
፧ዄኻ
፬፨፥።፝ − 𝑢∗
Δ𝑡 ) (3.19)

Figure 3.2: Mass/Volume fractions (shown by the areas colored in green and red) occupied by the
immersed boundary (shown by the red line) for the partially filled cells centered at points ’M’ and
’N’. Crosses (x’s) and circles (o’s) represent the points where the U and V velocities are computed
respectively. Black dots represent the points where the pressure is computed. ’P’ and ’Q’ represent the
centres of the cells which are fully inside and outside the immersed object respectively.
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As shown in Fig. 3.2, the volume fractions which are shown in green and red colors are used
to compute the forcing term (eq 3.19). For the cell with centre Q which lies completely outside the
immersed solid, the volume fraction (𝛼) is 0. For the cell with centre P which lies completely inside the
immersed solid, the volume fraction (𝛼) is 1.

On the basis of their location, there are two methods to evaluate the volume fractions. In the first
method, the cells are centered around the velocity points as shown in Fig. 3.3a. Hence the volume
fractions are computed directly at the velocity points. In the second method, the cells are centred
around the pressure points as shown in Fig. 3.3b. Here, the mass fractions are computed at the
pressure points and need to be linearly interpolated to the velocity points thereby losing accuracy. This
also diffuses the interface over a grid cell, which is important for a moving/deforming obstacle. In this
thesis, the first method is used for accuracy.

(a)

(b)

Figure 3.3: Locations at which the mass/volume fractions are evaluated. (a): The mass fractions
(shown by the areas colored in green and red) are evaluated at the U and V velocity points denoted
by x’s and o’s respectively. (b): The mass fractions (shown by the area colored in red) are computed
at the pressure points as shown by the black dots and interpolated to the velocity points.
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3.7. Methods for computing volume fractions
There are two known techniques for determining the mass fractions. These are the Sub-division volume
counting and the Level-Set method respectively. Both of them are explained here briefly.

3.7.1. Sub-division volume counting

Figure 3.4: Method of Sub-division volume counting. The mass fraction of the solid (shown in grey) in
the cell is given by the ratio of the number of the blue dots in the cell to the total number of the dots
in the cell. ’D’ is the diameter of the immersed solid. Image courtesy [Zaidi et al., 2014].

Sub-division volume counting, as explained in Fig. 3.4, is the process of dividing an interfacial cell into
sub-cells and obtaining the mass fractions through the ratio of the number of points inside and outside
the solid respectively. Thus the mass fraction of the cell in Fig. 3.4 is given by

𝛼፜፞፥፥ =
𝑁፛፥፮፞፩፨።፧፭፬
𝑁፭፨፭ፚ፥፩፨።፧፭፬

(3.20)

3.7.2. Level-Set Method
Kempe et al. [Kempe and Fröhlich, 2012] adapted the method of level-sets from [Osher and Sethian,
1988] to track the solid-fluid interface for a spheroid. In this method, a level set function 𝜙 is defined
in such a way that 𝜙 = 0 represents the moving interface Γ(𝑡), 𝜙 < 0 represents the set of level
surfaces that are inside the interface and 𝜙 > 0 represents the set of level surfaces that are outside
the interface.

Figure 3.5: Method of Level-Sets from Kempte et al. [Kempe and Fröhlich, 2012]. The fluid-solid
interface is shown in green. 𝜙 represents the level set function for the fluid-solid interface (equation
3.21) and is evaluated at the corner points of the cell. Reproduced from [Kempe and Fröhlich, 2012]
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The level-set function as shown in Fig. 3.5 is evaluated at the corner points of the cell. It is given
by equation 3.21, where (x,y) are the coordinates of the point under consideration, (𝑥፩,𝑦፩) are the
coordinates of the geometric centre of the spheroid, and (a,b,c) are the lengths of the semi-major axes
of the spheroid.

𝜙፱,፲ = √
(𝑥 − 𝑥፩)ኼ

𝑎ኼ +
(𝑦 − 𝑦፩)ኼ

𝑏ኼ +
(𝑧 − 𝑧፩)ኼ

𝑐ኼ − 1 (3.21)

The mass fraction (𝛼) is computed by equation 3.22. In equation 3.22, 𝜙፧ represents the level-set
function defined at the corners (n) of the cube.

𝛼 = Σ፧዆ዂ፧዆ኻ − 𝜙፧𝐻(−𝜙፧)
Σ፧዆ዂ፧዆ኻ|𝜙፧|

(3.22)

where 𝐻(𝜙፧) is the heaviside step function defined as

𝐻(𝑥) = {0 𝑥 < 0
1 𝑥 > 0

Figure 3.6: Interfacial cells that could occur with a deforming interface. U and V velocities are computed
at the points represented by x’s and o’s respectively. The deforming interface is shown in red.

It is very much possible that there are interfacial cells as shown in Fig. 3.6. In these kinds of cells,
all the 4 corners of the cell lie outside the interface (shown in red) and yet there is a finite fraction of
the mass of the cell that is occupied by the object. The level-set method however would yield a mass
fraction of 0 for these kinds of cells and hence is not used in this work.

All the above mentioned methods are simply not accurate enough to compute the mass fraction.
Hence, an accurate method to compute the volume fraction is important. The accuracy issues in the
above methods can be overcome by using algorithms from computational geometry. An open source
library [Lemoine et al., 2017] implementing these algorithms is utilized in this work for computing the
mass fractions. The algorithm for polygon clipping by Joseph O’Rourke [O’Rourke et al., 1982] is used
to find the coordinates of the clipped polygon. The area of the polygon is then computed from the
Green’s theorem as given by the below equation .

𝐴 =
፧

∑
፤዆ኺ

(𝑥፤ዄኻ + 𝑥፤)(𝑦፤ዄኻ − 𝑦፤)
2 (3.23)

where A denotes the area of the polygon, and 𝑥፤ , 𝑦፤ denote the 𝑘፭፡ vertices of the polygon. In a
Cartesian coordinate system, the volume of the polygon is obtained by multiplying the area by the grid
spacing in the z direction (Δ𝑧). In a cylindrical coordinate system, the volume of the solid formed by
the revolution of the polygon is obtained by multiplying the area with the the circumferential length
2𝜋𝑟፜ where 𝑟፜ is the radius of the centroid of the solid formed by the revolution. The accuracy of this
technique in computing the mass fractions is shown in the Appendix A.2. The coupling between the
deforming object to the Cartesian grid is shown in the Appendix A.3.



4
Code Validation

In this chapter, validation of the numerical method is presented. Four standard two-dimensional test
cases have been used to validate the code. The first-two test cases use a Cartesian coordinate system.
The model swimmer, which is of interest to this work, is spherical and deforms its body axisymmetrically.
Hence, the Cartesian code was adapted to a cylindrical coordinate system.

4.1. Flow over a stationary cylinder
Steady and unsteady flow over a stationary cylinder at two different Reynolds numbers of 40 and 100
have been simulated. The values of the drag and the lift coefficients obtained for both the cases are
found to be in good agreement with those reported in the literature.

Figure 4.1: Computational domain of 30D X 36D as used in the test cases.The cylinder with a diameter
’D’ is indicated in red. Inflow and outflow boundary conditions are imposed at the left and the right
boundaries respectively. Symmetry boundary conditions are imposed on the top and bottom boundaries
respectively. The direction of the flow is from left to right

As shown in Fig. 4.1, a large computational domain of 30D X 36D (where D denotes the diameter of
the cylinder) is chosen to prevent any influence of the boundary conditions on the flow near the cylinder.
A uniform flow velocity (𝑢 = 𝑈።፧፥፞፭ = 1, 𝑣 = 0) is imposed at the left boundary. Outflow (Ꭷ፮Ꭷ፱ = 0,
Ꭷ፯
Ꭷ፱ = 0) boundary conditions are imposed at the right boundary. The top and bottom boundaries are

27
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specified with symmetry boundary conditions (Ꭷ፮Ꭷ፲ = 0, 𝑣 = 0). Neumann boundary condition for the
pressure (Ꭷ፩Ꭷ፧ = 0) is imposed for the all the boundaries except the right, where the Dirichlet boundary
condition (𝑝 = 0) is specified. A uniform grid has been chosen with Δ𝑥 = Δ𝑦 = ፃ

ኽኼ with a fixed time step

Δ𝑡 = 0.01 (CFL=ፔᐴጂ፭ጂ፱ = 0.32), where CFL denotes the Courant-Friedrichs-Lewy condition. The mean
value of the drag coefficient (for the case of an unsteady flow over the cylinder) that was obtained for
a lower grid resolution with Δ𝑥 = Δ𝑦 = ፃ

ኻዀ and a time step Δ𝑡 = 0.01 (CFL=0.16) differed by 5% with
the standard value found in literature. On refining the grid, the mean value drag differed by about
0.7% with the value found in literature. Hence the finer grid was chosen for the further test cases.
The differences in the drag and the lift coefficients for the two grids are shown in the Appendix A.4.

4.2. Steady flow
The drag and the lift coefficients for the steady flow over a cylinder at a Reynolds number of 40 have
been compared to values reported in the literature. The numerical schemes chosen in the code and in
FLUENT for this and all the other cases which are explained in the subsequent sections, are tabulated
in table 4.1. In addition to the drag and the lift coefficients, the characteristic parameters of the wake
as shown in Fig. 4.2 are compared to values from the literature. Both of them are found to be in good
agreement with each other and are tabulated in table 4.2.

Settings chosen FLUENT Code used in the present work
Spatial Discretization Central Differencing Central Differencing
Temporal Discretization Second order Implicit Crank-Nicholson (2፧፝ order), Adams-Bashforth (3፫፝ order)

Table 4.1: Comparison of the numerical schemes used by a body conforming grid (FLUENT) and the
code used in the present work. The Crank-Nicholson and the Adams-Bashforth scheme are used for
the integration of the diffusion and the advection terms repsectively.

Figure 4.2: Parameters for the steady state wake as defined by Coutanceau and Bouard. ’a’ represents
the distance between the cylinder and the centre of the upper vortex, ’b’ represents the distance
between the two vortices,’l’ represents the complete length of the recirculation zone. ’𝜃’ represents
the separation angle calculated from the x-axis.
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Figure 4.3: The symmetric steady state wake for the flow over a cylinder (shown in red) at a Reynolds
number of 40 ( ፃጂ፱ = 32,CFL=0.32). Streamlines can be seen to penetrate into the surface of the
cylinder because the no-slip boundary condition is only approximately enforced in the present IBM.

፥
፝

ፚ
፝

፛
፝ 𝜃(∘) 𝐶ፃ

Linnick and Fasel 2.28 0.72 0.6 53.6 1.54
Coutanceau and Bouard (experiment) 2.13 0.76 0.59 53.8 -
Taira and Colonius 2.33 0.75 0.6 54.1 1.55
Present work 2.17 0.69 0.59 53.3 1.56

Table 4.2: Comparison of the steady state wake structure obtained from the present work with values
from the literature. The definitions for a,b,c,d and l can be found in Fig. 4.2. 𝜃 denotes the separation
angle and 𝐶ፃ denotes the drag coefficient.

The coefficient of pressure (𝐶፩) in Fig. 4.5d is obtained by taking the values of the pressure at the
points that lie in the vicinity of the cylinder. The points that lie in the vicinity of the cylinder are the
centre of the cells whose distance from the centre of the cylinder is given by equation 4.1. The cells
that satisfy the criteria are identified first and the pressures at these points are plotted with the polar
angles of the points. The polar angle of these points is given by equation 4.2. Equation 4.1 is only
satisfied upto a certain tolerance (on the order of the grid width). This results in identifying multiple
points that lie inside and outside the cylinder with the same polar angle. Hence, there appears to be
two lines in the curves for the pressure coefficient in Fig. 4.5d.

√(𝑥፜፞፥፥ − 𝑥፜፲፥።፧፝፞፫)ኼ + (𝑦፜፞፥፥ − 𝑦፜፲፥።፧፝፞፫)ኼ ≈ 𝑅 (4.1)

𝜃 ≈ 𝑡𝑎𝑛ዅኻ 𝑦፜፞፥፥
𝑥፜፲፥።፧፝፞፫ − 𝑥፜፞፥፥

(4.2)

Here, 𝑥፜፞፥፥ , 𝑦፜፞፥፥ , 𝑥፜፲፥።፧፝፞፫ , 𝑦፜፲፥።፧፝፞፫ denote the coordinates of the centre of the cell and the coordi-
nates of the centre of the cylinder respectively. 𝑅 denotes the radius of the cylinder. The drag and the
lift forces for all the cases in the cartesian code are obtained by volume integrals of the force over the
body as given by equation 4.3 [Noor et al., 2009]. The drag and the lift coefficients are then obtained
by scaling them accordingly as given by equations 4.4 and 4.5 respectively.

𝐹⃗ =
፧዆ፍ

∑
፧዆ኻ

𝑓፧𝑑𝑉፧ (4.3)
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where, 𝑁 is the number of cells in the grid, 𝑑𝑉 is the volume of the grid cell, and 𝑓፧ is the forcing in
one time step given by equation 3.19.

𝐶ፃ =
𝐹ፃ

0.5𝜌𝑈ኼጼ𝐴
(4.4)

𝐶ፋ =
𝐹ፋ

0.5𝜌𝑈ኼጼ𝐴
(4.5)

where, 𝐹ፃ , 𝐹ፋ are the drag force and the lift force obtained from equation 4.3, 𝑈ጼ is the fluid velocity at
infinity and 𝐴 is the frontal area of the object. In the axisymmetric case, the volume of each element
(dV) can be obtained by 𝑟𝑑𝑟𝑑𝑧.
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(a)

(b)

(c)

Figure 4.4: Comparison of the velocity and the pressure profiles obtained from the present IBM with
those from a body conforming grid (FLUENT). (a): U-velocity (፦፬ ) plotted along the horizontal centre-
line; (b): Pressure (Pa) plotted along the horizontal centreline; (C): U-velocity (፦፬ ) along the vertical
centreline.
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The velocity and the pressure profiles obtained from the present work have been compared to those
from a code (FLUENT) that uses body conforming grids. These are shown in Fig.4.4a,4.4b & 4.4c. As
can be seen from the Fig. 4.4a, the length of the recirculation region is determined accurately by the
present-IBM. A close up of the contours for the pressure and the vorticity are shown in Fig. 4.5a and
Fig. 4.5b. It can be seen from Fig. 4.5a that the behaviour of the pressure near the cylinder is smooth.

(a) (b)

(c)

(d)

Figure 4.5: Results for the flow over a cylinder (shown in red), at a Reynolds number of 40 that is
obtained from the code. The inside of the cylinder is coloured in white. (a): Contours of the pressure
(Pa) close to the cylinder; (b): Contours of the vorticity close to the cylinder. (c): The drag and the
lift coefficients plotted against the non-dimensional time ( ፭ፔ፝ ). The value for the drag coefficient (𝐶ፃ)
remains steady at 1.565 and the value for the lift coefficient is of the order of machine zero. (d): The
plot of the pressure coefficient (𝐶፩) obtained from the code only along the the upper half of the surface
of the cylinder (𝜃).
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(a)

(b)

(c)

Figure 4.6: Flow over the cylinder at a Reynolds number of 40. (a): Contours of the 𝑢 (x-component)
velocity in ፦

፬ . (b): Contours of the 𝑣 (y-component) velocity in the
፦
፬ . (c): Contours of the pressure

𝑝 in Pa.

4.3. Unsteady flow
The mean value of the drag coefficient and the peak value of the lift coefficient (which is a very
sensitive quantity to the numerical errors in the code) for the case of an unsteady flow over a cylinder
at a Reynolds number of 100 have been plotted in Fig. 4.7. They are compared to the standard values
found in the literature and are tabulated in table 4.3. They are found to be in good agreement with
the values reported in the literature.
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Figure 4.7: Drag (𝐶ፃ) and the lift (𝐶ፋ) coefficients as a function of the non dimensional time 𝑡∗ (
፭ፔ
፝ ) for

the flow over a cylinder at a Reynolds number of 100. The average drag coefficient (𝐶ፃ) obtained was
1.34 and the peak value of the lift coefficient (𝐶ፋ) was 0.33.

𝐶ፃ,ፚ፯፠ 𝐶ፋ,፩፞ፚ፤
Body Conforming Grid [Park et al., 1998] 1.33 0.33

Present work 1.34 0.31

Table 4.3: Comparison of the mean value for the drag and the peak value for the lift coefficient between
those obtained from a body conforming grid with the present work.

Figure 4.8: Contours of Vorticity (ኻ፬ ) for the flow over a cylinder at a Reynolds number of 100 at
𝑡∗ =300.
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(a)

(b)

(c)

Figure 4.9: Flow over the cylinder at a Reynolds number of 100. (a): Contours of the 𝑢 (x-component)
velocity in ፦

፬ . (b): Contours of the 𝑣 (y-component) velocity in the
፦
፬ . (c): Contours of the pressure

𝑝 in Pa.

A variant of the volume penalization scheme where the volume fractions (𝛼) are set to binary i.e.
1 when the cell is completely inside or partially filled and 0 when the cell is completely outside, is
also tested for the steady flow over a cylinder. The velocity, the pressure and the drag and the lift
coefficients from this variant are compared to the non-binary variant for the Reynolds number of 40
and are shown in the Appendix A.5. The drag coefficient obtained from the binary case differed by
1% from the non-binary case for the chosen grid resolution. The binary variant is expected to worsen
the problem of spurious force oscillations (explained in section 4.4) as seen in the volume penalization
scheme. Hence, the non-binary variant was chosen to be implemented for the further test runs.
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4.4. Flow Over a transversely oscillating cylinder

Figure 4.10: Amplitude (’A’ ) and frequency of oscillation (’𝑓 ’) of the cylinder. The computational
domain and the boundary conditions are the same as the previous case (Fig. 4.11 in section 4.1). The
cylinder with diameter ’D’ is shown in red.

The second test case was to simulate the flow over a transversely oscillating cylinder at a frequency
close to the natural frequency of vortex shedding at 𝑅𝑒 = 185 and obtain the mean value of the
drag and the root-mean square values for the lift coefficient. The computational domain remains the
same as the one chosen for the stationary cylinder (Fig. 4.10). The flow over an oscillating cylinder
at a Reynolds number of 185 is a standard test case for which data is easily available from literature
to compare against. Spurious force oscillations (explained in section 4.4) are observed close to the
natural frequency of vortex shedding at 𝑅𝑒 = 185. Hence, the cylinder oscillating at close to its natural
frequency at the Reynolds number of 185 was chosen.

𝑦፜ = 𝐴𝑠𝑖𝑛(2𝜋𝑓 𝑡) (4.6)

The oscillations of the centre of the cylinder are prescribed according to equation 4.6, where A is the
amplitude, 𝑓 is the forced frequency of oscillation and 𝑦፜ is the centre of the cylinder. The results for the
mean value of the drag and the RMS value for the lift for the forcing frequency have been presented.The
drag and the lift coefficients as a function of the non-dimensional time 𝑡∗ ( ፭ፔ፝ ) are shown in Fig. 4.11.
The mean value for the drag is good agreement with [Amiralaei et al., 2010]. The rms value for the
lift was 0.2366 while the rms value for the lift obtained from [Uhlmann, 2005] for the same case was
0.166.

Figure 4.11: The drag and the lift coefficients as function of the non-dimensional time 𝑡∗( ፭ፔ፝ ) for an
oscillating cylinder at 𝑅𝑒 = 185,𝑓 = 0.8𝑓ኺ,𝐴 = 0.2𝐷. The spikes in the curves are a consequence of
the volume penalization scheme. 𝐶ፃ = 1.26,Cፋ,፫፦፬ =0.2366.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.12: Pressure contours at 10 instances of time for 2 cycles of oscillation of the cylinder at Re=
185, 𝑓 = 0.8𝑓ኺ, 𝐴 = 0.2𝐷.
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Figure 4.13: The point for the computation of the U-velocity 𝑢ኻ (shown in blue) switches from solid
(shown in grey) as shown in panel a, to the fluid as shown in panel b, due to the movement of the
immersed object. Reproduced from [Lee et al., 2011].

Spurious Force Oscillations (SFO’s)
The fictitious force oscillations in the drag and the lift (seen in Fig. 4.14) is because of a grid point
switching from solid to fluid, due to the movement of the immersed object, as shown in Fig. 4.13.
The grid point that is located inside the solid 𝑡 = 𝑡፧ at the old time level is now in the fluid domain at
𝑡 = 𝑡፧ዄኻ. The pressure from the old time level that belonged to the solid now affects the computation
of the pressure at the point that is now in the fluid. The volume penalization scheme is expected to
alleviate this situation, as the grid point switches only gradually between the solid and the fluid due
to the smoothing by the volume fraction 𝛼. The resulting pressure field that is computed at the point
thus has a contribution from the solid and the fluid. The contribution 𝛼 is computed very accurately
(see the Appendix A.2) in this work. However, this does not help in removing the force oscillations. As
shown in Fig. 4.14, interpolating the mass fractions does help a bit in attenuating the force oscillations.
However, this too does not remove the force oscillations completely. Hence, other methods to reduce
the spurious force oscillations (SFO’s) such as increasing the grid spacing or increasing the time step
have to be used. The spurious force oscillations worsen in the case of the binary variant in the volume
penalization scheme as compared to the non-binary variant. This is shown in the Appendix A.6.

(a)

(b)

Figure 4.14: Spurious force oscillations in the drag (panel a) and the lift (panel b) coefficients for the
flow over an oscillating cylinder at Re= 185, 𝑓 = 0.8𝑓ኺ,𝐴 = 0.2𝐷. The curves in red and blue denote the
drag coefficients obtained when the mass fractions are non-interpolated and interpolated respectively.
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4.5. Axisymmetric flow over a sphere at 𝑅𝑒 = 80

(a) (b)

(c)

(d)

Figure 4.15: Axisymmetric flow over a sphere at a Reynolds number of 80. (a): Contours of the axial
velocity (m/s) obtained from the code; (b): Contours of the vorticity (ኻ፬ ) obtained from the code; (c):
Comparison of the axial velocity profile (plotted along the axis) obtained from the code with a body
conforming grid (FLUENT). (d): Comparison on the pressure (Pa) plotted along the horizontal axis
obtained from the code with a body conforming gird (FLUENT).

A third test case to simulate the flow over a deforming cylinder in a Cartesian coordinate system is
shown in the Appendix A.7. The mean value of the drag coefficient that is obtained is in reasonable
agreement with the value found in literature. The Cartesian code as used in the three test cases is
adapted to the cylindrical coordinates to model the swimmer.The case of an axisymmetric flow around
a sphere at two Reynolds numbers of 80 (𝜈 = 0.025, 𝐷 = 2, 𝑈 = 1) and 0.2 (𝜈 = 10, 𝐷 = 2, 𝑈 = 1) was
tested prior to modelling the swimmer. As a final test case, the axisymmetric flow over an oscillating
sphere at two different values for the viscosity (𝜈 = 10,𝜈 = 100) is simulated. The domain chosen
is 30DX36D in the axial and the radial direction respectively. The sphere is placed along the axis, at
the centre of the domain. The simulations for the cases where the sphere stays stationary are done
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with a uniform grid (Δ𝑥 = Δ𝑦 = ፃ
ዀኾ), and time step with CFL=0.32. The contours of the axial velocity

and the vorticity obtained for the axisymmetric flow over a sphere at the Reynolds number of 80 are
shown in Fig. 4.15a and 4.15b respectively. The velocity and the pressure for the same case profiles
as shown in Fig. 4.15c and 4.15d obtained from the code are compared to those obtained from a body
conforming grid (FLUENT) and are in good agreement with them. The coefficient of the pressure for
the above case (which is also sensitive to numerical errors) is validated against FLUENT and is shown
in Appendix A.8 .

4.6. Grid-Independence

(a)

(b)

Figure 4.16: Plots of the axial velocity (panel a) and the pressure (panel b) along the centreline for
three different grid configurations with Δ𝑧 = Δ𝑟 = ፃ

ዀኾ , Δ𝑧 = Δ𝑟 =
ፃ
ኽኼ , Δ𝑧 = Δ𝑟 =

ፃ
ኻዀ .

Uniform grids with three different resolutions (Δ𝑧 = Δ𝑟 = ፃ
ዀኾ , Δ𝑧 = Δ𝑟 =

ፃ
ኽኼ , Δ𝑧 = Δ𝑟 =

ፃ
ኻዀ ) were used

in this case to check the dependence of the solution on the mesh. The plots of the axial velocity and
the pressure along the axis are shown in Fig. 4.16a and Fig. 4.16b. The differences in the solutions
obtained are minimal. Hence the intermediate grid was used in all the further test runs.
The contours of the axial velocity for the flow over the sphere at 𝜈 = 10, 𝐷 = 2, 𝑈 = 1 are shown in
Fig. 4.17a. There is no separation observed at this Reynolds number as shown by the streamlines in
Fig. 4.17b in contrast to Fig. 4.15a which is obtained at a higher Reynolds number of 80. The velocity
and the pressure profiles have been compared to that from a body conforming grid as shown in Fig.
4.17c-Fig. 4.17e. They are found to be in good agreement with each other.
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4.7. Axisymmetric flow over the sphere at 𝑅𝑒 = 0.2

(a) (b)

(c)

(d)

(e)

Figure 4.17: Axisymmetric flow over a sphere at a Reynolds number of 0.1. (a): Contours of the axial
velocity (m/s) obtained from the code; (b): Streamlines obtained from the code; (c): Comparison of
the axial velocity profile (plotted along the axis) obtained from the code with a body conforming grid
(FLUENT). (d): Comparison of the pressure (Pa) plotted along the axis obtained from the code with a
body conforming grid (FLUENT). (e): Comparison of the axial velocity with the vertical centreline that
is obtained from the code with a body conforming grid (FLUENT).
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4.8. Axisymmetric flow around an oscillating sphere

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.18: Comparison of the axial velocity (left section) and the pressure (right section) along the
axis for the flow over a horizontally oscillating sphere, obtained from the code to a body conforming
grid (FLUENT) at t=0.5 𝑇፜፲፜፥፞, 𝑇፜፲፜፥፞, 2.5 𝑇፜፲፜፥፞,4 𝑇፜፲፜፥፞ respectively from top to bottom. This is done

for a viscosity of 10 ፦Ꮄ
፬ .

The case of an axisymmetric flow around an oscillating sphere in a fluid with viscosity (𝜈=10 ፦Ꮄ
፬ ) and

(𝜈=100 ፦Ꮄ
፬ ) is chosen to validate a moving object in a cylindrical coordinate system. The domain is a

square domain with edge-length 30D. The centre of the sphere is a periodic function of time as given
by equation 4.7.

𝑧፜ = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡) (4.7)
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where 𝑧፜ , 𝐴, 𝑓, 𝑡 denote the centre of the sphere, amplitude of the oscillation, frequency of the oscillation
and the time respectively. The Amplitude of the oscillation is 𝐴 = 0.2𝐷 and the frequency 𝑓 = 1. The
simulation is run for 4 cycles of the oscillations of the sphere. The velocity and the pressure profiles are
compared with those of a body conforming grid (FLUENT) and are shown in Fig. 4.18 for a viscosity
𝜈 = 10፦

Ꮄ

፬ and in Fig. 4.19 for a viscosity 𝜈 = 100፦
Ꮄ

፬ respectively.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: Comparison of the axial velocity (left section) and the pressure (right section) along the
axis for the flow over a horizontally oscillating sphere, obtained from the code to a body conforming
grid (FLUENT) at t=0.5 𝑇፜፲፜፥፞,𝑇፜፲፜፥፞, 1.5 𝑇፜፲፜፥፞, 2 𝑇፜፲፜፥፞ respectively from top to bottom. This is done

for a viscosity of 100 ፦Ꮄ
፬ .



44 4. Code Validation

(a) (b)

(c) (d)

Figure 4.20: Comparison of the axial velocity along the vertical axis for the flow over a horizontally
oscillating sphere, obtained from the code to a body conforming grid (FLUENT) at t=0.5 𝑇፜፲፜፥፞,𝑇፜፲፜፥፞,
1.5 𝑇፜፲፜፥፞, 2 𝑇፜፲፜፥፞ respectively from top to bottom. This is done for a viscosity of 10 ፦Ꮄ

፬ .

(a) (b)

(c) (d)

Figure 4.21: Comparison of the axial velocity along the vertical axis for the flow over a horizontally
oscillating sphere, obtained from the code to a body conforming grid (FLUENT) at t=0.5 𝑇፜፲፜፥፞,𝑇፜፲፜፥፞,
1.5 𝑇፜፲፜፥፞, 2 𝑇፜፲፜፥፞ respectively from top to bottom. This is done for a viscosity of 100 ፦Ꮄ

፬ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.22: Grid Independence for the flow around an oscillating sphere at a viscosity 𝜈 = 100፦
Ꮄ

፬ for

two time instants 𝑡 = ፓᑔᑪᑔᑝᑖ
ኼኺ and 𝑡 = ፓᑔᑪᑔᑝᑖ

ኻኺ . (a): The axial velocity profiles along the axis for 𝑡 = ፓᑔᑪᑔᑝᑖ
ኼኺ

in the left and the 𝑡 = ፓᑔᑪᑔᑝᑖ
ኻኺ in the right. (b): The axial velocity profiles along the vertical centreline

𝑡 = ፓᑔᑪᑔᑝᑖ
ኼኺ in the left and the 𝑡 = ፓᑔᑪᑔᑝᑖ

ኻኺ in the right. (c): The pressure profiles along the axis for 𝑡 = ፓᑔᑪᑔᑝᑖ
ኼኺ

in the left and the 𝑡 = ፓᑔᑪᑔᑝᑖ
ኻኺ in the right. The red line denotes the coarse grid and the blue line denotes

the fine grid.

In both the cases of the oscillating sphere, a second-order accurate upwind scheme was used for
the spatial integration and a first order accurate implicit scheme was used for the time-integration in
FLUENT. The plots of the axial velocity along the vertical centerline and the axis as obtained from the
code, for both the cases of the oscillating sphere as shown in Fig. 4.18-4.21 , are in good agreement
with those obtained from FLUENT. There are differences however, in the plots of the pressure along
the centreline in both the cases of the oscillating sphere. This could be because of the grid and the
time integration scheme used in FLUENT. This could also be related to the addition of the extra terms
in the code, in the pressure correction equation as given by equation 3.18. However the addition of
the extra terms in the code is necessary as the diffusion terms are being solved implicitly. A finer grid
with Δ𝑧 = ፃ

ኽኼ , Δ𝑟 =
ፃ
ኽዂ is used to check the dependence of the solution on the mesh. The results for

the axial velocities and the pressure along the axis and the axial velocities along the vertical centreline
for the two time instants 𝑡 = ፓᑔᑪᑔᑝᑖ

ኼኺ and 𝑡 = ፓᑔᑪᑔᑝᑖ
ኻኺ are shown in Fig. 4.22 respectively.
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Figure 4.23: Comparison of the unscaled drag force on the oscillating sphere at a viscosity (𝜈) of 100
፦Ꮄ
፬ as obtained from the code (shown in red) with a code that uses a body conforming grid (FLUENT)
as shown in blue, for two cycles of the oscillation. 𝑡∗ denotes the number of cycles. 𝐹 denotes the
unscaled drag force.

The drag force (unscaled) for the coarser grid, is compared with FLUENT for the case of the oscil-
lating sphere at the viscosity (𝜈) of 100 ፦Ꮄ

፬ for more than two cycles of the oscillation, in Fig. 4.23. It
is in good agreement with the body conforming grid (FLUENT).

4.9. Conclusions from the validations of the code
1. The computation of the mass fractions accurately is important as setting the mass fractions to
binary leads to spurious force oscillations in the coefficients for the drag and the lift.

2. However, an accurate computation of the mass fractions does not completely solve the problem
of the spurious force oscillations seen in the computation of the drag and the lift coefficients for
a moving/deforming object.

3. The code is able to handle moving boundaries in highly viscous flows in a cylindrical coordinate
system. This can be seen from the plots of the drag coefficients in Fig. 4.23 and the velocity
profiles in the figures 4.18-4.21.

4. The grid with the configuration Δ𝑧 = ፃ
ኻዀ , Δ𝑟 =

ፃ
ኻዃ is sufficient for an accurate computation of the

forces and the velocity profiles for a moving boundary in a cylindrical coordinate system. Hence,
this grid configuration could be used to model the combined-stroke-swimmer.



5
Results and Discussion

In this chapter, the results obtained for the combined-stoke-swimmer for four cases at increasing scale
numbers 𝑠 = 0.11, 0.25, 0.79 and 3.03 are presented. First, a short summary of the combined-stroke-
swimmer is presented. Then, the details on the computational domain and the boundary conditions
are described. The results including the streamlines, the vorticity and the axial velocity profiles with
time which are obtained from the simulations are then presented.

The parameters a, 𝜈(፦
Ꮄ

፬ ) and 𝑇፜፲፜፥፞ used in the following sections, denote the radius of the swimmer,
kinematic viscosity of the fluid and the cycle time (sec) of the swimmer respectively. 𝑅𝑒, 𝑅𝑒Ꭶ and 𝜔
are the Reynolds number, the unsteady Reynolds number and the frequency of the distorting swimmer
(𝜔 = ኼ᎝

ፓᑔᑪᑔᑝᑖ
) respectively. The swimmer is assumed to be neutrally buoyant, so the density of the

swimmer (𝜌፬) is the same as the density of the fluid (𝜌፟).

5.1. Combined-stroke-swimmer
As explained previously in section 2.6, only the first three terms are considered in the series expansion
for the perturbation 𝜉 to prescribe the deformations of the sphere. The swimming velocity is then
obtained in a labratory frame of reference to the second order in the perturbation 𝜉. The deformations
are given by equation 5.1. The combined-stroke-swimmer is then realized by specifying values to
certain coefficients in the expansion 5.1. The deformations during one cycle for the combined stroke
swimmer are shown in Fig. 5.1

𝜉(𝑠, 𝑡) =
ኽ

∑
።዆ኻ
𝑀።(𝑡)𝑢።(a , 𝜃) +

ኽ

∑
።዆ኼ
𝐾።(𝑡)𝑣።(a , 𝜃) (5.1)
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Figure 5.1: Deformations (one-half) of the combined-stroke-swimmer (𝜇ኻ፜ = 0.05, 𝜅ኽ፜ = −0.022, 𝜅ኼ፬ =
0.0621 used in equation 5.1) as shown in red. The sequence is to be read clockwise from top-left.
𝑇፜፲፜፥፞ in the frames denotes the cycle time of the swimmer. The Z and R axes are in the horizontal and
the vertical direction respectively.

5.2. Domain

Figure 5.2: Computational domain (2D) for the swimmer. The swimmer is shown in red. R* and Z*
are the height and length of the domain non-dimensionalized by the radius of the swimmer. The axis
of symmetry is at R*=0. Neumann boundary conditions are used at all the boundaries for the axial
and the radial velocities (𝑢,𝑣) and the pressure (𝑝) except at the outlet and at the axis.

As shown in Fig. 5.2, a large computational domain is chosen to minimize the influence of the boundary
conditions on the flow near the swimmer. The swimmer (with radius R) is placed at a distance of 25R
from the left and the right boundaries. The top boundary is 36R from the swimmer. The reference
frame used in the present work is that of the swimmer. Neumann boundary conditions are used at all
the boundaries for the axial (𝑢) and the radial (𝑣) velocities respectively. The swimming velocities are
obtained as a function of time, at points which are located at distances increasing radially from the
swimmer as shown in Fig. 5.3. Since the frame of reference is a co-moving frame of reference, the
axial velocities at all the points obtained in the far field (> 7R) should tend to reach the velocity of
swimming of the combined-stroke-swimmer.
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Figure 5.3: Monitor points (shown by the black x’s) are placed at distances which increase radially
from the swimmer. The velocities induced by the deformations of the swimmer are measured at these
points. R denotes the radius of the swimmer. The swimmer is shown in red.

5.3. Input Parameters
The combined-stroke-swimmer has been simulated at four increasing scale numbers. The values of the
kinematic viscosity (𝜈), the frequency of distortion (𝜔) used to achieve the desired scale numbers (𝑠),
their corresponding unsteady Reynolds numbers (𝑅𝑒Ꭶ) are tabulated in table 5.1. The characteristic
length scale is the radius of the swimmer (𝑎 = 1) in all the cases.

Case number 𝜈(፦
Ꮄ

፬ ) 𝑇፜፲፜፥፞(𝑠) 𝜔 = ኼ᎝
ፓᑔᑪᑔᑝᑖ

𝑠 = 𝑎√ Ꭶ
ኼ᎚ 𝑅𝑒Ꭶ =

ᎦፋᎴ
᎚

1 100 2.5 2.51 0.11 0.0251
2 100 0.5 12.56 0.25 0.1256
3 2 2.5 2.51 0.79 1.255
4 0.034 10 0.6283 3.03 18.47
5 500 0.5 12.56 0.11 0.02512

Table 5.1: Input parameters used to obtain the swimming velocity of the combined-stroke-swimmer
at four different scale numbers (𝑠). The fifth case uses a different viscosity to obtain the same scale
number as case 1, to compare with the swimming velocity obtained in case 1.

5.4. Results
The results at four scale numbers 𝑠 = 0.11, 0.25, 0.79, 3.03 are presented in the following section. The
axial velocity as a function of the non-dimensionlized time for the fifth case is shown in the Appendix
A.9. The axial velocities are plotted with the non-dimensionalized time (𝜔𝑡) for all the scale numbers
in Fig. 5.4 and the non-dimensionalized forces are plotted in Fig. 5.5. The second prediction velocities
at the interfacial cells and the interior of the swimmer are given by equation 5.2. There is no interior
forcing in all the cases that are simulated.

{𝑢
∗∗ = (1 − 𝛼)𝑢∗ + 𝛼𝑈፧ዄኻ፬፨፥።፝ at the interface
𝑢∗∗ = 𝑢∗ in the interior of the swimmer

(5.2)
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(a) (b)

(c) (d)

Figure 5.4: The plot of the axial velocities (፦፬ ) induced by the swimmer at increasing distances from
it with the non-dimensional time (𝜔𝑡) at (a): 𝑠 = 0.11; (b): 𝑠 = 0.25; (c): 𝑠 = 0.79; (d): 𝑠 = 3.03;
R denotes the radius of the swimmer. The axial velocities are plotted for (a): 48 cycles (b): 20 cycles
(c): 640 cycles, and (d): 1910 cycles of the swimmer respectively.

(a) (b)

(c) (d)

Figure 5.5: The plot of the non-dimensionalized forces on the swimmer at (a): 𝑠 = 0.11 ; (b): 𝑠 = 0.25;
(c): 𝑠 = 0.79; (d): 𝑠 = 3.03; The forces are non- dimensionalized by the Stokes drag acting on a sphere
of radius 1 and moving with the velocity of the swimmer at the respective scale number. The forces
are plotted for (a): 4 cycles (b): 2 cycles (c): 5 cycles, and (d): 5 cycles of the swimmer respectively.
Oscillations in the unfiltered force are observed (shown in black).The spurious oscillations in the curves
of the force are a consequence of the Volume penalization scheme that is chosen. The filtered force
data is shown in red. A median filter of the 3rd order is used to filter the spurious force oscillations.
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5.5. Case 1, 𝑠 = 0.11
The axial velocities are plotted with the non-dimensionalized time in Fig . 5.4a for case 1 (𝑠 = 0.11).
The simulation is done for 49 cycles of the swimmer. The radial velocity induced is 0. There are
oscillations in the axial velocities at all the monitor points in the domain. However, this does not imply
that the swimmer is accelerating/decelerating. The monitor points are located at finite distances from
the swimmer and due to the high viscosity of the fluid, they feel the effects of the surface distortions
and oscillate in time. The acceleration of the swimmer (if any) is computed from the force on the
swimmer. The axial force on the swimmer that is non-dimensionalized by the Stokes drag (∝ 𝜇𝑈ኺ𝑙) on
a sphere with the length-scale 𝑙 and moving with the mean velocity of the swimmer (𝑈ኺ), is given by
Fig. 5.5a. The time average of the force on the swimmer over a cycle is 0. The spurious oscillations
in the force curve in Fig. 5.5a are a consequence of the Volume penalization scheme that is chosen.
The unsteady Reynolds number for this case is two orders of magnitude less than 1, so the effects of
unsteady inertia which arise due to the unsteady beating of the swimmer can be neglected. Hence,
there are no fictitious force terms added to the governing equations. In addition to the fictitious forces,
the total hydrodynamic force on the swimmer also includes the contribution from the Basset force and
the added mass force. The contribution from these two non-fictitious forces become more pronounced
at 𝑆𝑡𝑅𝑒 >> 1 (see section 2.5). The Strouhal number (𝑆𝑡) and the Reynolds number (𝑅𝑒) for the
present case (𝑈 ≈ 0.04, 𝐿 = 𝑎 = 1, 𝜈 = 100, 𝑓 = ኼ᎝

ፓᑔᑪᑔᑝᑖ
) are given by equations 5.3 and 5.4. As given

by equation 5.5, 𝑅𝑒Ꭶ(𝑆𝑡𝑅𝑒) < 1. Hence, in this case the Basset force and the added mass forces could
also be neglected.

𝑆𝑡 = 𝑓𝐿
𝑈 = 2𝜋

0.04 ⋅ 2.5 ≈ 62.83 (5.3)

𝑅𝑒 = 𝑈𝐿
𝜈 = 1 ∗ 0.04

100 ≈ 4 ⋅ 10ዅኾ (5.4)

𝑆𝑡𝑅𝑒 = 4 ⋅ 10ዅኾ ⋅ 62.83 ≈ 2.5 ⋅ 10ዅኼ (5.5)

The unsteady Reynolds numbers for this case and case 2 (explained in the following section) are
close to those obtained for an Algal cell and Opalina where the effects of unsteady inertia need not be
taken into account. This is shown in the table 5.2.

Organism 𝑎(𝜇𝑚) 𝜔(𝐻𝑧) 𝑈(፦፦፬ ) 𝑅𝑒 𝑆𝑡 𝑅𝑒Ꭶ(𝑆𝑡𝑅𝑒)
Algal cell 5 207.3 0.3 0.0015 3.5 0.005
Opalina 175 25.13 0.1 0.02 44 0.8

Paramecium 125 188.49 1 0.13 24 3
Pleurobrachia 15000 10 - - - 3500

Table 5.2: Typical length scales and unsteady reynolds numbers for microscopic organisms. 𝑎 denotes
the radius of the organism. 𝜔 denotes the frequency of the beat. 𝑈 denotes the swimming speed of
the organism. 𝑅𝑒 and 𝑆𝑡 are the Reynolds number and the Strouhal number respectively. 𝑅𝑒Ꭶ is the
product of the Strouhal and the Reynolds number. Reproduced from [Wang and Ardekani, 2012b].

Streamlines for the far field and the near field are shown in section 5.9 by Fig. 5.6 and Fig. 5.7
respectively. A recirculation region is seen close to the surface of the swimmer in the near-field as shown
in Fig. 5.7. The recirculation region shifts its position in the same way as the surface distortions of the
swimmer, unlike those in pushers or pullers, where the regions of recirculation appear in front/back of
the organisms (see Fig. 2.7). In the far-field, the streamlines are parallel to each other as shown in
Fig. 5.6. Contour plots of the vorticity in the near field of the swimmer are shown in section 5.9 by
Fig. 5.8. Vorticity that is only generated at the surface of the swimmer is confined to a narrow region
close to the surface of the swimmer due to viscous dissipation by the fluid. The vorticity generated at
the surface of the swimmer shifts its position in the same way as the surface distortions in a similar
manner to the recirculation region.
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5.6. Case 2, 𝑠 = 0.25
In this case, the cycle time is reduced by a factor of 5 from the previous case and the dynamic viscosity
(𝜈) remains the same as the previous case to achieve a scale number of 0.25. The axial velocities are
plotted against the non-dimensionalized time (𝜔𝑡) in Fig. 5.4b. The magnitude of the axial velocities
are reduced by a factor of 2 when compared to the case at 𝑠 = 0.11. The amplitude of the oscillations
of the axial velocities at the monitor points is higher than the case at 𝑠 = 0.11. This is because of the
higher frequency of distortion of the swimmer as listed in the table 5.1. The simulation is done for 20
cycles of the swimmer. The force on the swimmer for 2 cycles is shown in Fig. 5.5b. The time average
of the force on the swimmer over a cycle is 0. The unsteady Reynolds number (𝑅𝑒Ꭶ) for this case as
indicated in table 5.1 remains small (< 1) and comparable to that of Opalina for this case as well (see
table 5.2). The Strouhal number (𝑆𝑡) and the Reynolds number (𝑅𝑒) for the present case are given by
equations 5.6 and 5.7. As given by equation 5.8, 𝑆𝑡𝑅𝑒 < 1. Hence, in this case the Basset force and
the added mass forces are not expected to affect the swimming velocity drastically.

𝑆𝑡 = 𝑓𝐿
𝑈 = 2𝜋

0.015 ⋅ 0.5 ≈ 837.75 (5.6)

𝑅𝑒 = 𝑈𝐿
𝜈 = 1 ∗ 0.015

100 ≈ 1.5 ⋅ 10ዅኾ (5.7)

𝑆𝑡𝑅𝑒 = 1.5 ⋅ 10ዅኾ ⋅ 837.75 ≈ 1.25 ⋅ 10ዅኻ (5.8)

The combined-stroke-swimmer is in a diffusion dominated regime. At the surface of the swimmer,
the distortions generate axial velocities of roughly 1 body length per second. This diffuses across the
domain eventually reaching the points located in the far-field. The diffusive time scale is 𝑡፝ ∼

ፋᎴ
᎚ .

Thus, it takes around 12 cycles of the swimmer for a point located in the far-field (at 25R) to achieve a
constant time-averaged swimming velocity. There is a difference in behaviour from the previous case
(𝑠 = 0.11) as shown by the streamlines in the near field in section 5.10 by Fig. 5.10. The penetration
of the recirculation region into the fluid is farther into the domain than the previous case. However,
in the far field the streamlines remain parallel to each other. Contour plots of the vorticity in the near
field of the swimmer have been shown in section 5.10 by Fig. 5.11. The vorticity is confined to a only
narrow region close to the swimmer.

5.7. Case 3, 𝑠 = 0.79
In this case the viscosity and the cycle time was reduced by a factor of 50 from the previous case.
The cycle time remains the same as the one used for 𝑠 = 0.11. The axial velocities are plotted against
the non-dimensionalized time (𝜔𝑡) in Fig. 5.4c. They are similar in magnitude to the axial velocities
obtained in the case for 𝑠 = 0.11. The simulation is done for 600 cycles of the swimmer. Since, the
viscosity in this case is reduced by a factor of 50 from the previous case, it takes a long time (∼ 600
cycles of the swimmer) for a point located in the far-field (25 R) , to attain a constant time-averaged
velocity. The diffusive time scale for that point in this case corresponds to 125 cycles of the swimmer.
As can be seen from the Fig. 5.5c, the oscillations in the axial velocities are absent. This is because of
the lower viscosity used in this case. The effects of the surface distortions are not felt by the monitor
points located in the fluid because of its reduced viscosity. Hence the oscillations in these points are
absent. The force averaged over a period on the swimmer remains 0 as can be seen from Fig .5.5c.

The Strouhal number and the Reynolds number and their product for this case are given by equations
5.9,5.10 and 5.11. In this case 𝑆𝑡𝑅𝑒 ∼ 𝑂(1). The contribution from the basset and and the added
mass force is therefore expected to have a small effect on the velocity of the swimmer.

𝑆𝑡 = 𝑓𝐿
𝑈 = 2𝜋

0.04 ⋅ 2.5 ≈ 62.83 (5.9)

𝑅𝑒 = 𝑈𝐿
𝜈 = 1 ∗ 0.04

2 ≈ 2 ⋅ 10ዅኼ (5.10)

𝑆𝑡𝑅𝑒 = 2 ⋅ 10ዅኼ ⋅ 62.83 ≈ 1.2566 (5.11)

Streamlines for the far field and the near field are shown in section by Fig. 5.12 and Fig. 5.13
respectively. A streamline and vorticity pattern (section 5.11, Fig. 5.14) similar to that of case 1
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is observed. The vorticity generated at the surface of the swimmer is higher because the viscous
dissipation is lesser in this case.

5.8. Case 4, 𝑠 = 3.03
The viscosity in this case is reduced by two orders of magnitude from the case for 𝑠 = 0.79. The
axial velocities are plotted against the non-dimensionalized time (𝜔𝑡) in Fig. 5.4d. The swimming
velocity at this scale number is an order of magnitude lesser than the cases for 𝑠 = 0.11, 0.25 and
0.79. The simulation is done for 2000 cycles of the swimmer. Inertia has a strong effect at this scale
number. There are no oscillations in the plots of the axial velocities as shown in Fig.5.4d because of the
extremely low viscosity used in this case. The force on the swimmer averaged over a period remains 0
as shown in Fig. 5.5d. The Strouhal number and the Reynolds number and their product for this case
are given by equations 5.12,5.13 and 5.14. In this case 𝑆𝑡𝑅𝑒 > 1. The contribution from the basset
and the added mass force is therefore expected to have a non-negligible effect on the velocity of the
swimmer.

𝑆𝑡 = 𝑓𝐿
𝑈 = 2𝜋

0.006 ⋅ 10 ≈ 104.719 (5.12)

𝑅𝑒 = 𝑈𝐿
𝜈 = 1 ∗ 0.006

0.034 ≈ 176 ⋅ 10ዅኼ (5.13)

𝑆𝑡𝑅𝑒 = 176 ⋅ 10ዅኼ ⋅ 104.71 ≈ 18.47 (5.14)

Streamlines for the far field and the near field have been shown in section 5.12 by Fig. 5.15 & Fig.
5.16. Contour plots of the vorticity in the near field of the swimmer have been shown in section 5.12
by Fig. 5.17. Both show similar behaviour to the case at 𝑠 = 0.79. All the cases are summarized in
table 5.3.

Case number 𝜈(፦
Ꮄ

፬ ) 𝑇፜፲፜፥፞(𝑠) 𝜔 = ኼ᎝
ፓᑔᑪᑔᑝᑖ

𝑠 = 𝑎√ Ꭶ
ኼ᎚ 𝑅𝑒Ꭶ =

ᎦፋᎴ
᎚ 𝑈 (፦፬ )

1 100 2.5 2.51 0.11 0.0251 0.04
2 100 0.5 12.56 0.25 0.1256 0.017
3 2 2.5 2.51 0.79 1.255 0.04
4 0.034 10 0.6283 3.03 18.47 0.006
5 500 0.5 12.56 0.11 0.02512 0.45

Table 5.3: Input parameters and the numerically obtained mean swimming velocities (in the fifth
column).
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5.9. Streamlines and the vorticity for case 1

Figure 5.6: Streamlines in a co-moving frame for 𝑠 = 0.11 in the far field of the combined-stroke
-swimmer at 8 instants of the cycle. The sequence is to be read clockwise from top-left. The swimmer
is moving to the left.
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Figure 5.7: Streamlines in a co-moving frame for 𝑠 = 0.11 in the near field of the combined-stroke
-swimmer at 10 instants of its cycle. The sequence is to be read clockwise from top-left. The swimmer
is moving to the left.
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Contours of the vorticity for case 1

Figure 5.8: Contours of the vorticity for 𝑠 = 0.11 in the near field of the combined-stroke-swimmer at
10 instants of its cycle. The vorticity is only confined to a narrow region close to the swimmer.
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5.10. Streamlines and the vorticity for case 2

Figure 5.9: Streamlines in a co-moving frame for 𝑠 = 0.25 in the far field of the combined-stroke-
swimmer at 8 instants of its cycle. The sequence is to be read clockwise from top-left. The vertical
axis (not shown in the figure) 𝑅∗ ranges from 0 to 36R. The swimmer is moving to the left.
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Figure 5.10: Streamlines in a co-moving frame for 𝑠 = 0.25 in the near field of the combined-stroke-
swimmer at 10 instants of its cycle equally spaced in time. The sequence is to be read clockwise from
top-left. The swimmer is moving to the left.
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Contours of the vorticity for case 2

Figure 5.11: Contours of the vorticity for 𝑠 = 0.25 in the near field of the combined-stroke-swimmer at
10 instants of its cycle.
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5.11. Streamlines for case 3

Figure 5.12: Streamlines in a co-moving frame for 𝑠 = 0.79 in the far field of the combined-stroke-
swimmer at 8 instants of its cycle. The sequence is to be read clockwise from top-left. The swimmer
is moving to the left.
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Figure 5.13: Streamlines in a co-moving frame for 𝑠 = 0.79 in the near field of the combined-stroke-
swimmer at 10 instants of its cycle. The sequence is to be read clockwise from top-left. The swimmer
is moving to the left.
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Contours of the vorticity for case 3

Figure 5.14: Contours of the vorticity for 𝑠 = 0.79 in the near field of the combined-stroke-swimmer at
8 instants of its cycle.
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5.12. Streamlines for case 4

Figure 5.15: Streamlines in a co-moving frame for 𝑠 = 3.03 in the far field of the combined-stroke-
swimmer at 8 instants of its cycle. The sequence is to be read clockwise from top-left. The swimmer
is moving to the left.
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Figure 5.16: Streamlines in a co-moving frame for 𝑠 = 3.03 in the near field of the combined-stroke-
swimmer at 10 instants of its cycle. The sequence is to be read clockwise from top-left. The swimmer
is moving to the left.
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Contours of the vorticity for case 4

Figure 5.17: Contours of vorticity for 𝑠 = 3.03 in the near field of the combined-stroke-swimmer at 10
instants of its cycle.
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5.13. Discussion
A model as described by B.U. Felderhof [Felderhof, 2015] is used in this thesis to analyze the swimming
of a spherically ciliated micro-organism. In the model, the deformations of a sphere are prescribed
analytically using perturbation theory instead of making assumptions on the surface of the swimmer
(see section 2.2). There are however certain nonphysical entities observed in the model and these are
discussed below.

Figure 5.18: Variation in the volume for three cycles of the combined-stroke-swimmer at increasing
values of the coefficient 𝜇ኻ፜. A cycle time (𝑇፜፲፜፥፞) of 0.5s is chosen. 𝑡∗ (

፭
ፓᑔᑪᑔᑝᑖ

) denotes the non-

dimensional time.

The combined-stroke-swimmer as given by B.U. Felderhof [Felderhof, 2015], deforms in such a
way that its volume is not conserved. As shown in Fig. 5.18, the maximum deviation (≈8%) from its
initial volume peaks at the middle of its cycle. This is only physical if there is an inflow/outflow across
the envelope of the swimmer which is not the case, as the no-slip and the no-penetration boundary
conditions on the envelope are assumed in the analytical model. The deviations in its volume are small
(< 2%) but not negligible at lower values of the coefficient 𝜇ኻ፜ (< 0.025) as shown in the figure.
However, for small values of 𝜇ኻ፜, there is no discernible distortion of the sphere. As 𝜇ኻ፜ tends to 0, the
shape of the swimmer can be approximated as a steady sphere. The distorting sphere at various time
instants for 𝜇ኻ፜ = 0.01 is shown in the figure 5.19.

Figure 5.19: Deformations (one-half) of the combined-stroke-swimmer (𝜇ኻ፜ = 0.01) as shown in red.
The sequence is to be read clockwise from top-left. 𝑇፜፲፜፥፞ in the frames denotes the cycle time of the
swimmer. The Z and R axes (not shown in the figure) are in the horizontal and the vertical direction
respectively
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The variation in the volume does not reduce as the number of points defining the surface of the
swimmer increases. This can be seen in Fig. 5.20.

Figure 5.20: Variation in the volume for three cycles of the combined-stroke-swimmer (𝜇ኻ፜ = 0.05) at
increasing values of the number of points (𝑁ኻ,𝑁ኼ,𝑁ኽ) used to define the surface of the swimmer. A
cycle time (𝑇፜፲፜፥፞) of 0.5s is chosen. 𝑡∗ (

፭
ፓᑔᑪᑔᑝᑖ

) denotes the non-dimensional time.

In the squirmer model that was developed by Blake [Blake, 1971] and Lighthill [Lighthill, 1952], the
surface distortions were of the form given by equations 5.15 and 5.16

𝑅 = 𝑎[1 + 𝜖
ፍ

∑
፧዆ኼ

𝛼፧(𝑡)𝑃፧𝑐𝑜𝑠(𝜃ኺ)] (5.15)

𝜃 = 𝜃ኺ + 𝜖
ፍ

∑
፧዆ኻ

𝛽፧(𝑡)𝑉፧𝑐𝑜𝑠(𝜃ኺ) (5.16)

where R,𝜃 denote the radial and polar coordinates of the oscillating surface of the sphere. 𝜖 represents
the perturbations of the sphere. 𝛼፧, 𝛽፧ correspond the modes of the radial and the tangential defor-
mations of the sphere respectively. 𝑃፧𝑐𝑜𝑠(𝜃ኺ), 𝑉፧𝑐𝑜𝑠(𝜃ኺ) correspond to the Legendre polynomials and
their first derivatives respectively. 𝛼ኺ corresponds to the swelling of the surface of an organism and is
constrained to zero to ensure volume conservation. A similar effect is observed in the combined-stroke-
swimmer in Fig. 5.18. The error (%) in the volume increases with increasing 𝜇ኻ፜, which could be related
to the amount of the radial expansion in the sphere. The inclusion of the zeroth mode could affect the
swimming velocities in the near field. Thus, by conserving the volume, the combined-stoke-swimmer
could become suitable to model a ciliated micro-organism exhibiting Symplectic metachronism.

Figure 5.21: Deformation (one-half) of the combined-stroke-swimmer (𝜇ኻ፜ = 1) at the start of its cycle.

In the case of an organism exhibiting Antiplectic metachronism, the no-slip and the no-penetration
boundary conditions as used in the analytical model would also have to be modified. In addition to this,
at a certain value of the coefficient 𝜇ኻ፜ = 1, the combined-stroke-swimmer is a highly distorted sphere
and is of the form shown in Fig. 5.21. Cilia on the cell surface of a micro-organism are typically ኻኼኺ
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times their body-length. Hence, it is improbable that the envelope generated by connecting the tips
of the cilia is of the form shown in the figure. However, this does not affect the flow pattern in the
far field (>25R) of the swimmer. In the far field of the swimmer, the geometric shape of the swimmer
becomes irrelevant.

The effects of inertia on the swimmer are discussed in the following section. Inertia reduces the
mean swimming velocity of the combined-stroke-swimmer. This is very similar to the effect found in
a puller. In addition to this, the time averaged force over a cycle for the combined-stroke-swimmer
remains 0 for all the scale numbers chosen. The streamline and the vorticity patterns for all the scale
numbers are similar with the exception for the case 𝑠 = 0.25. The velocities generated at the surface
of the swimmer die out to a nearly constant time averaged velcoity in the far field for all the scale
numbers. The velocities in the far-field are computed in the reference frame of the swimmer. When
the reference frame is switched back to the laboratory frame, the velocities in the far-field vanish.
This shown for the two cases 𝑠 = 0.11 and 𝑠 = 0.79 in Fig. 5.22a and 5.22b respectively. This is in
agreement with what is observed experimentally in the analysis of the swimming of micro-organisms.

(a)

(b)

Figure 5.22: The plots of the axial velocity (፦፬ ) along the vertical centerline (𝑅
∗) in the domain. The

horizontal axis (𝑅∗) begins at the surface of the swimmer. (a): The plot for the case 𝑠 = 0.11; (b): The
plot for the case 𝑠 = 0.79.

For the scale number 𝑠 = 3.03 in the analytical model, the mean swimming velocity of the swimmer
is negative. In the numerical model, the swimming velocity is an order of magnitude lower than the

cases 𝑠 = 0.11, 0.25, 0.79 but positive. The non-dimesnional mean swimming velocities ( ፔᎦፚ ) obtained
for case 1 and case 5 where the scale number is kept constant and the cycle time is changed by a
factor of 5, differ by a factor of 2. This is shown in table A.4 in the Appendix A.9.



6
Conclusions and Recommendations

6.1. Conclusions
A model as described by B.U. Felderhof [Felderhof, 2015] is used in this thesis to analyze the swimming
of a spherically ciliated micro-organism. In the model, the deformations of a sphere are prescribed
analytically using perturbation theory instead of assuming the surface of the swimmer as a steady
sphere (see section 2.2). Different swimmers can be obtained by using a different combination for
the coefficients prescribing the deformations. The combined-stroke-swimmer used in this thesis is an
example of this. The mean swimming velocity for the combined-stroke-swimmer is obtained in this
work.

1. The mean swimming velocities for the combined-stroke-swimmer that are obtained numerically
are more or less in agreement for the 2 cases of 𝑠 = 0.11 and 𝑠 = 0.25. At the scale number of
𝑠 = 3.03, inertia seems to decrease the velocity of the swimmer though not in the same range of
values as predicted by the analytical model.

2. The flow pattern obtained in the near field for the combined-stoke-swimmer for all the cases,
differ significantly from the flow pattern obtained in the near-field of a swimming micro-organism
by the widely used B1-B2 model. Hence, to capture the near-field effects (< 7R), prescribing the
deformations of the sphere become important.

3. The combined-stroke-swimmer could be used to model a ciliated microorganism exhibiting sym-
plectic metachronism by ensuring volume conservation

4. The accurate computation of the mass/volume fractions in the volume penalization scheme does
not alleviate the problem of the spurious force oscillations (SFO’s) as seen in other Immersed
boundary methods.
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6.2. Recommendations
The present work can be extended with the following recommendations.

1. The deformations could be modified to ensure volume conservation at all values for 𝜇ኻ፜ ,making
it more suited to model a ciliated micro-organism.

2. The volume penalization scheme can be modified to that of Vanella and Balaras [Vanella and
Balaras, 2009] to remove the Spurious Force Oscillations (SFO’s) that are seen in this IBM, and
to enable a smoother coupling between the Lagrangian points describing the IB and the Eulerian
grid.

3. The swimming efficiency and the mean dissipation for the combined-stroke-swimmer could be
calculated and compared to the analytical solution.

4. It would be interesting to analyze the swimmer in a laboratory frame of reference. The decay
of the velocity fields from the surface of the swimmer to the far-field can be more accurately
captured. An estimate for the velocity of the swimmer that is imposed upon it in the laboratory
frame of reference could be obtained from the analytical solution.

5. Apart from the combined-stroke-swimmer, the potential swimmer and the squirming swimmer
could be simulated and their swimming velocities could be compared to the analytical model.
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A
Appendix A

A.1. Differences between Symplectic and Antiplectic metachrony

Figure A.1: Symplectic and Antiplectic metchrony. Symplectic metachrony is shown to the right, while
Antiplectic metachrony is shown to the left. The travelling wave generated by the cilia is in the direction
of the effective stroke in Symplectic metachrony and the vice versa is true in Antiplectic metachrony.
The sequence of images is to be read from the top to bottom. The white dots denote particles to
indicate the fluid motion. Reproduced from [Khaderi et al., 2011].
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A.2. Accuracy in computation of the mass fractions
The test for the mass fractions for the polyogon clipping algorithm have been done on a sphere of
radius 0.5 and a grid with resolution Δ𝑧=Δ𝑟= ፃ

ኻዀ . Kempe et al. [Kempe and Fröhlich, 2012] have done
the same test on a sphere of radius 0.8. The error obtained from the present work is compared to
their work in table A.1. The time spent in the computation of the mass fractions through this technique
amounts to only 4% of the total time spent in the volume penalization algorithm.

Method Actual volume Numerical volume Error (%)

Level-Set-Method [Kempe and Fröhlich, 2012] 2.144 2.133 0.5
Polygon clipping 0.523 0.523 -1.21 𝑒ዅኾ

Table A.1: The error in computation of the volume for Polygon clipping and the the Level set method
that is traditionally used.

A.3. Coupling the deforming object to the Cartesian grid.

Figure A.2: The points shown in blue are the Lagrangian points that describe the deforming object
shown by the red line. The grid cell bordered in black is centered at the 𝑢 velocity (horizontal compo-
nent) point A. The 𝑣 velocity (vertical component) points are shown by the pink hollow circles. The 𝑢
velocity at point A gets a contribution from the solid (inside) and the outside (fluid) through the solid
volume fraction 𝛼 as given by equation A.1. The contributions from the inside and outside are 𝛼 and
1 − 𝛼 respectively.

Fig. A.2 denotes the 𝑢,𝑣 and the pressure points of an interfacial cell. The interfacial cells are identified
as those that have mass fractions between 0 and 1. The deforming object is described by the Lagrangian
points as shown in blue in the figure. Since the deformations of the swimmer are both axial and radial,
each Lagrangian point describing the swimmer has a different velocity. All the points 1,2,3 and 4
as shown in the Fig. A.2 have different axial and radial velocities respectively. Hence, the volume
penalization scheme as defined in the section 3.6 is slightly modified only in the computation of the

forcing term at point A (𝑓፧ዄ
Ꮃ
Ꮄ

ፀ ). This is explained in the current section. The second prediction velocity
at A is computed as usual as given by equation A.1. The forcing term is computed as given by equation
A.2.

𝑢∗∗ፀ = 𝑢∗ፀ + Δ𝑡𝑓፧ዄኻ/ኼፀ (A.1)

where,

𝑓፧ዄኻ/ኼፀ = 𝛼፧ዄኻፀ (𝑈
፧ዄኻ
፬፨፥።፝ − 𝑢∗ፀ
Δ𝑡 ) (A.2)

where 𝑈፧ዄኻ፬፨፥።፝ is given by the velocity of the last Lagrangian point in the grid cell.
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The second prediction velocity at point A (𝑢∗∗ፀ ) gets a contribution from the solid and the fluid and
through the volume fractions as given by equation A.1. In case of the deforming object, the solid
velocity 𝑈፧ዄኻ፬፨፥።፝ in equation A.2 is given by the velocity of the last Lagrangian point inside the grid cell
(shown by point 4 in the figure). The differences in the solid velocities (𝑈፧ዄኻ፬፨፥።፝) between the Lagrangian
points that describe the swimmer reduce as the grid cells become smaller in size and the number of
Lagrangian points that describe the swimmer increase. Hence, the contribution to 𝑢∗∗ፀ from point 1
would be the same as that of point 4. The velocities of the Lagrangian points (𝑈፧ዄኻ፬፨፥።፝) at 1,2,3 and 4
are computed from their displacements in a time-step (Δ𝑡) as given by equations A.3 and A.4. This is
first-order accurate in time.

𝑈፧ዄኻ፬፨፥።፝ =
𝑧፧ዄኻ − 𝑧፧

Δ𝑡 (A.3)

𝑉፧ዄኻ፬፨፥።፝ =
𝑟፧ዄኻ − 𝑟፧

Δ𝑡 (A.4)

where 𝑈፧ዄኻ፬፨፥።፝ and 𝑉፧ዄኻ፬፨፥።፝ denote the axial and radial velocities at the new time level respectively and
𝑧, 𝑟 denote the coordinates of the Lagrangian points describing the swimmer respectively. 𝑛 + 1, 𝑛
indicate the new and the old time level respectively. Δ𝑡 denotes the time-step.

A.4. 𝐶𝐷 and 𝐶𝐿 for two different grids.

Figure A.3: The plots of the drag and the lift coefficients against the non-dimensional time (𝑡∗) for
a coarse grid (Δ𝑥 = Δ𝑦 = ፃ

ኻዀ ) shown by the brown (𝐶ፃ) and the blue (𝐶ፋ) lines and a fine grid
(Δ𝑥 = Δ𝑦 = ፃ

ኽኼ ) shown by the green (𝐶ፃ) and the red (𝐶ፋ) lines.

The plots of the drag and the lift coefficients for a coarse grid and a fine grid which have 16 and 32
grid points over the cylinder diameter respectively are shown in the Fig. A.3. The mean and the peak
values for the drag and the lift coefficient respectively have been tabulated in table A.2.

Grid 𝐶ፃ Cፋ,፩፞ፚ፤
Coarse 1.25 0.26
Fine 1.34 0.31

Body conforming grid [Park et al., 1998] 1.33 0.33

Table A.2: The mean value of the drag and the peak value of the lift coefficient as obtained from the
code using a coarse and a fine grid. The values in the last row are obtained from a code that uses a
body conforming grid.
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A.5. Comparison of the results obtained from the binary and the
non-binary volume fractions.

The velocity and the pressure profiles obtained from the code for the steady flow over a cylinder at
𝑅𝑒 = 40, by setting the volume fractions to binary have been compared with those obtained by setting
the volume fractions to non-binary in Fig. A.4. Both the simulations are done with the same grid
resolution (Δ𝑥 = Δ𝑦 = ፃ

ኽኼ ) and a time step Δ𝑡 = 0.01 with CFL=0.32. The drag and the lift coefficients
are tabulated in table A.3.

(a)

(b)

Figure A.4: Comparison of the pressure and the 𝑢 velocity profiles obtained from the binary and the
non-binary volume fractions. The pressure as predicted by the binary volume fractions is lower at the
back end of the cylinder. (𝑋 = 10.5𝑚)

Volume fractions 𝐶ፃ
Binary 1.58

Non-Binary 1.56
[Taira and Colonius, 2007] 1.55

Table A.3: The drag and the lift coefficients obtained from the binary and the non-binary volume
fraction. The drag obtained in the former differs from the latter by 1.2%.
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A.6. Spurious force oscillations in the case of the binary volume
fractions

(a)

(b)

Figure A.5: Comparison of the drag and the lift coefficients obtained from the code with binary and
non-binary volume fractions respectively. (a): Spurious force oscillations in the drag coefficient; (b):
Spurious force oscillations in the lift coefficient. The red and blue lines indicate the curves that are
obtained from the non-binary volume fraction and the binary volume fraction respectively. 𝑦፜ is the
centre of the cylinder, 𝐷 is the diameter of the cylinder.

The spurious force oscillations in the drag and the lift coefficients that are obtained as a result of setting
the volume fractions to binary, are shown by the blue curves in Fig. A.5. An accurate computation of
the volume fractions helps in reducing the spurious force oscillations but does not remove it completely
as seen by the red curves in the figure.
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A.7. Flow over a deforming cylinder
The flow over a deforming cylinder using the scheme given in the Appendix A.3 is simulated. The
sequence of the distortion shown in Fig. A.6. The radius in the lateral direction is varied sinusoidally
as given by equation A.5. The deformations are such that the area is conserved. Hence, the radius in
the longitudinal direction can be obtained as given by equation A.6.

Figure A.6: Sequence of the distortion for the deforming cylinder. Reproduced from [Zheng et al.,
2016].

𝑟፲ = 𝑅ኺ − 𝐴𝑠𝑖𝑛(2𝜋𝑓 𝑡) (A.5)

𝑟፱𝑟፲ = 𝑅ኼኺ (A.6)

where, 𝑅ኺ is the intial radius of the cylinder, A is the amplitude of the deformation of the cylinder, 𝑓
is the excitation frequency. The simulations are done for a Reynolds number 𝑅𝑒 = 200 at 𝐴 = 0.1𝑅
for a frequency 𝑓 = 0.75𝑓ኺ. Here 𝑓ኺ denotes the natural frequency of vortex shedding at 𝑅𝑒 = 200.
The simulation is done for Δ𝑥 = Δ𝑦 = ፃ

ኽኼ and a fixed Δ𝑡 such that the CFL <1. The drag coefficient
obtained as a function of time is shown in the Fig. A.7. The 2S mode of vortex shedding is observed
at this frequency as shown in the Fig. A.8.

Figure A.7: The drag that is obtained from the code as function of the non-dimensional time 𝑡∗ for the
distorting cylinder at 𝑅𝑒 = 200, 𝑓 = 0.75𝑓ኺ, 𝐴 = 0.1𝑅. Spurious force oscillations are observed in this
case as well.
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The mean value of the drag obtained from the current simulation for 𝑅𝑒 = 200, 𝑓 = 0.75𝑓ኺ, 𝐴 = 0.1𝑅,
showed a difference of 6% with the value reported in the [Zheng et al., 2016].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.8: Contours of the vorticity in ኻ
፬ at 10 instances of time for 2 cycles of deformation of the

cylinder at 𝑅𝑒 = 200, 𝑓 = 0.75𝑓ኺ, 𝐴 = 0.1𝑅. 2S mode of vortex shedding is observed.
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A.8. 𝐶𝑝 for the axisymmetric flow over the sphere at 𝑅𝑒 = 80.
The coefficient of pressure obtained from the code is validated with that from a code that uses a body
conforming grid (FLUENT) in Fig. A.9. It is found in good agreement with FLUENT.

Figure A.9: Comparison of the pressure coefficient obtained from the code (shown by the red dots)
and the pressure coefficient as obtained from a code that uses a body conforming grid (FLUENT) as
shown by the blue line, for the flow over a sphere at a Reynolds number of 80. 𝜃 is the polar angle
along the surface of the sphere (one-half).

A.9. Case 5, 𝑠 = 0.11
The viscosity is increased by a factor of 5 and the cycle time is reduced by a factor of 5 from the
case 1 to achieve the desired scale number in this case. The axial velocities are plotted with the non-
dimensionalized time in Fig . A.10. The simulation is done for 12 cycles of the swimmer. The radial

velocity induced is 0. The non-dimensionlized value of the axial velocity ( ፔᎦፚ ) is twice of that obtained
in case 1 where the cycle time and the viscosity are five times larger and five times smaller than the
cycle time and the viscosity in this case. The non-dimesionlized value for both the cases is tabulated
in table A.4. There are oscillations in the axial velocities at all the monitor points in the domain. The
amplitude of the oscillations at the monitor points are higher because of their finite distances to the
swimmer and a higher viscosity of the fluid that is used in this case.
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Figure A.10: The axial velocities (፦፬ ) at the monitor points located at increasing distances from the
swimmer for 𝑠 = 0.11, 𝜈 = 500.

Case number 𝜈(፦
Ꮄ

፬ ) 𝑇፜፲፜፥፞(𝑠) 𝜔 = ኼ᎝
ፓᑔᑪᑔᑝᑖ

𝑠 = 𝑎√ Ꭶ
ኼ᎚ 𝑅𝑒Ꭶ =

ᎦፋᎴ
᎚ 𝑈 (፦፬ )

ፔ
Ꭶፚ

1 100 2.5 2.51 0.11 0.0251 0.04 0.0159
5 500 0.5 12.56 0.11 0.02512 0.5 0.039

Table A.4: The Non-dimensional swimming velocities ፔ
Ꭶፚ for the cases 1 and 5.
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