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Abstract 

Life cycle assessment (LCA) has been the primary tool for the quantification and 

comparison of the environmental impact of product systems. Despite ongoing 

development of the LCA methodology, uncertainties are often not adequately 

addressed in LCA research. The large variety of approaches to treat uncertainties and 

the lack of uniform guidelines prevent a widespread adoption of uncertainty analysis, 

while its importance is generally acknowledged. Especially in the agricultural sector, 

where LCA is often used as policy support, uncertainties are of great importance. This 

thesis aims to provide guidelines for practitioners of agricultural LCA in developing 

countries, as agriculture is often an important sector there. To this end four different 

method of uncertainty propagation are tested on a case study of sugarcane 

cultivation methods in Thailand. These methods are compared and evaluated on their 

suitability for agricultural LCA in developing countries, complemented by an expert 

survey in a Thai LCA research network. The results show that there is a general lack 

of knowledge among LCA practitioners on uncertainty analysis, while primary data 

is often abundant. Also, sampling methods can provide great insight into the output 

uncertainties, but are also complex and data intensive. Analytical or fuzzy interval 

methods could be a good alternative when knowledge or resources are lacking. LCA 

practitioners should be better guided in choosing and performing the most suitable 

propagation method for their situation. To this end, a decision tree for choosing the 

most suitable method depending on the user and the type of study closes this thesis. 
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1. Introduction 

1.1 Background 

In the light of climate change and environmental threats there has been a growing interest in 

sustainable development to improve environmental conditions for present and future 

generations. The challenges that this implies are arguably large, especially for developing 

countries as economic growth has been priority there, and climate change has only recently 

become a topic in policy development (Markandya & Halsnaes, 2002). At the same time 

developing countries often lack the scientific capacity and institutional support for tackling 

environmental problems (Kates et al., 2001). It has been argued that decision support tools for 

environmental policy, often developed in developed countries, can provide the basis for a shift 

towards sustainable development in developing countries (Cash et al., 2003). To this end, there 

has been growing interest from environmental scientists in tools to quantify and compare 

environmental impacts of products and services.  The primary tool to do so is life cycle 

assessment (LCA), which aims to assess the environmental impacts and resources used 

throughout a product’s life cycle (Finnveden et al., 2009). This comprehensive assessment 

enables, through its holistic approach, the comparison of product functions in terms of 

environmental impact (Guinée et al., 2002). LCA can therefore be used for a wide range of product 

types, including consumer products, industrial products and agricultural products (Bauman & 

Tillman, 2004). When considering environmental impacts in developing countries, agricultural 

products are especially important because the economies of many developing countries are 

largely dependent on agriculture (Tilman, 1999). LCA has proven to be a valuable tool to assess 

environmental impacts of agricultural products in developing countries, such as biofuels and 

renewable energy from biomass (Paolotti et al., 2017).  

 

While early LCA studies, termed ecobalances or product environmental profiles, were conducted 

without a uniform methodology or harmonisation, standardisation efforts in the 1990s led to 

uniform guidelines for LCA practices (Klöpffer, 2006). The International Organisation for 

Standardisation (ISO) developed the first complete series of LCA standards with the ISO 14040 

series (ISO, 2006). The ISO standard divides the LCA procedure into four phases (as described in 

Guinée et al., 2002): 

 

1. Goal and scope definition; initial choices for the working plan are made, including 

definition of a research question, research scope and functional unit. 

2. Inventory analysis; in this phase the product system is defined, including system 

boundaries, unit processes and data, allocations and final calculations. The main result is 
the inventory table presenting a list of quantified inputs and outputs. 

3. Impact assessment; in this phase the results of the inventory analysis are interpreted in 

terms of environmental impact. 

4. Interpretation; in this final phase the results from the impact assessment are evaluated in 

terms of completeness, consistency and robustness, and overall conclusions are 

formulated.  

 

Over the last decade LCA methodology has seen an ongoing development and harmonisation, 

especially regarding consistency, data quality, and addressing uncertainty (Finnveden et al., 

2009). Uncertainty of outcomes is one of the main issues recently discussed around LCA 

methodology (Finnveden et al., 2009). The acknowledgement that LCA research intrinsically 

includes a certain level of uncertainty is not new, and assessing these uncertainties has been 

named an essential part of LCA research (Ciroth, 2006). In an LCA context, uncertainty has been 
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described by Finnveden et al. (2009, p. 14) as “the discrepancy between a measured or calculated 

quantity and the true value of that quantity’’.  

 

Existing LCA studies often do not address uncertainties, as is the case with many decision support 

tools (Finnveden et al., 2009). While the importance of addressing uncertainty has been 

acknowledged by many (e.g. Guo & Murphy (2012) and Payraudeau & Van Der Werf (2005)), 

uncertainties are often not properly addressed in LCA studies (Zamagni et al., 2009). Arguably 

this is a troublesome finding, especially when considering the potential impact of LCA studies in 

decision-making. As LCA can offer decision support aiming at sustainable development, 

uncertainties within LCA studies should not be neglected (Tillman, 2000).  

 

The fact that many LCA studies do not address uncertainties properly has been ascribed by 

Geisler et al. (2005) to the lack of an ‘integrative’ approach, where uncertainties are transparently 

addressed according to uniform guidelines throughout LCA practices. Also, quantifying 

uncertainty through uncertainty analysis can be very time consuming, making it difficult to 

implement in LCA by default (Sonnemann et al., 2003). These issues are underlined by the large 

variety of approaches to treat uncertainty seen in LCA research. Many different quantitative 

methods are used to assess uncertainty in life cycle inventory (LCI) data. While generally only one 

of those methods is used, different methods might yield different outcomes (Lloyd & Ries, 2007). 

The suitability of different methods of uncertainty analysis for different types of LCA studies, and 

different ways of presenting their results has been subject of scientific debate in recent years. 

Henriksson et al. (2015a) state that the outcomes of uncertainty assessment need to fit the 

purpose of the study. For example, not all uncertainty analysis methods are suitable for 

comparative analysis of alternatives (Heijungs et al., 2017). The inappropriate use of uncertainty 

assessment methods for comparative purposes has been subject of recent debate, which has not 

yet led to a consensus among practitioners.   

 

In the light of decision support for sustainable development in developing countries, agricultural 

LCA research can be very beneficial. For the purpose of assessing the environmental impact of 

e.g. biofuels and renewable energy, LCA has proven to be a valuable tool that enables the 

comparison of e.g. different functions of biomass (Paolotti et al., 2017). In terms of decision 

support, LCA outcomes can underline the significance of policy targets for environmental 

management. For example, LCA can be used to guide sustainable production of food products 

through comparison of different food products in terms of environmental impact (Mungkung & 

Gheewala, 2007). At the same time, it can be argued that uncertainty assessment in agricultural 

LCA is becoming increasingly important when LCA-based research on agricultural products is 

used in a comparative way as decision-making support. Nevertheless, scientific expertise and 

financial support for adequate LCA research is often lacking in developing countries, hindering 

adequate use of LCA studies for the benefit of sustainable development (Chiu & Yong, 2004). 

Moreover, the non-uniformity of uncertainty assessment approaches in LCA methodology does 
not promote an effective integration of LCA in national policies, especially considering the 

importance of uncertainty assessment in a decision-making context. Developing or adopting a 

uniform procedure for uncertainty assessment in agricultural LCA could improve the value of 

such research for sustainable development in developing countries. 
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1.2 Aim & research questions 

 

Based on the issues discussed above, a twofold problem statement can be made: 

 

1. The multiplicity of methods to assess uncertainty in LCA makes it difficult to treat 

uncertainties in an appropriate, uniform manner in a decision-making context, while 

consequences can be considerable. Research on the different outcomes that different 

methods might yield and their suitability for agricultural LCA purposes is yet to be 

conducted. 

2. Developing countries can benefit significantly from agricultural LCA research to promote 

sustainable development, but the lack of a uniform procedure to assess uncertainties 

impedes appropriate use of such research. 

 

The aim of this research is to address these two issues as follows: to provide guidelines for LCA 
practitioners in the field of agricultural LCA in developing countries on how to appropriately 

apply uncertainty assessment in their work. The research question is therefore: 

 

What methods of uncertainty analysis are most suitable to use in agricultural life cycle 

assessment in developing countries in terms of procedure and outcomes? 

 

To answer the main research question, the following sub-questions will be answered: 

 

1. What are the drivers and barriers for practitioners of agricultural LCAs in developing 

countries for applying uncertainty analysis? 

2. What methods for assessing uncertainty in LCI data are available? 

3. What are the differences in outcomes when applying different methods of uncertainty 

propagation on agricultural LCI data? 

4. How can the results be used to guide practitioners of agricultural LCA to appropriately 

apply uncertainty assessment in their work? 

 

1.3 Structure & case study 

 

This thesis is structured as follows. First, the theoretical approach to this study will be presented 

in chapter two, as well as the theoretical framework in which the study is carried out. In the third 

chapter the methodology will be discussed. The fourth chapter will consist of the results of the 

methods used, and the sub-questions will be answered. The main research question can be 

answered based on the answers to the sub-questions. The final chapters will contain a discussion 

of this study and the final conclusions. To adequately address the problem statement, which is 

focussed on LCA research in developing countries, data from a real LCA research from the Thai 

King Mongkut’s University of Technology Thonburi (KMUTT) in Bangkok will be used to compare 

different methods of uncertainty analysis by means of a case study. This LCA research, on 

different sugarcane cultivation practices, provides field data and an LCA model suitable for 

performing uncertainty analysis. The Thai LCA study is introduced here, the actual case study that 

will be performed as part of this thesis is explained in the methodology.  

 

The LCA study was carried out in 2013-2014 by researchers from KMUTT’s Joint Graduate School 

for Energy and Environment (JGSEE), in cooperation with partners from the sugarcane industry 

and different research institutions. The project was funded by the Thai National Science and 

Technology Development Agency and the Thailand Research Fund under the Royal Golden Jubilee 
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Ph.D. program (grant PHD/0101/2557). The LCA study discusses the environmental impacts of 

the sugarcane industry in Thailand, as part of a larger sustainability research project on the Thai 

sugar industry. Aside from the environmental impact assessment the project includes economic 

objectives regarding production efficiency and economic security, and social objectives regarding 

fair trading and safety and health issues.  

 

The LCA study comprises the environmental impact the processes of cultivation of sugarcane and 

the refining of sugarcane into raw sugar, bio-ethanol and by-products. The goal of the study was 

to provide baseline environmental impact information of the Thai sugarcane industry, as well as 

providing recommendations for both competitive and sustainable practices in the sugarcane 

industry based on different scenarios. The main distinction between the scenarios was the 

cultivation practice (either conventional cultivation including pre-harvest field burning or ‘green’ 

cultivation with mechanical harvesting), and the production and use of different by-products 

from the sugar milling process (e.g. for electricity production and fertilizer). The results of the 

different scenarios were used to construct a roadmap to set targets for sustainable practices in 

the sugarcane industry. Publications resulting from the LCA study cover environmental impacts 

of different harvesting practices (Pongpat et al., 2017) and environmental sustainability of 

sugarcane biorefineries (Silalertruksa et al., 2017). For this thesis only the research on the 

cultivation of sugarcane will be used in the case study, thereby not considering the use of by-

products in other processes. The main conclusions regarding the environmental impact of 

sugarcane cultivation practices include that green cultivation results in less greenhouse gas 

(GHG) emissions than conventional cultivation, because emissions from harvesting machinery 

are lower than from pre-harvest field burning. Also, most GHG emissions occur during the land 

treatment stage rather than during the harvesting stage (Pongpat et al., 2017).    

 

Uncertainty analysis was not performed during the LCA study. The only information regarding 

data quality was given by the standard deviations of the input data of several parameters in the 

LCA model, but not all. 
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2. Theoretical approach 

2.1 Theory  

 

In order to assess the uncertainty propagation methods as mentioned in the research aim, it is 

necessary to elaborate on the theoretical background of uncertainty in LCA and types of methods 

that can be used to assess uncertainty. In this chapter, the state-of-the-art of scientific work on 

uncertainty analysis in LCA is presented. Subsequently a framework is presented within which 

this study is conducted. 

 

2.1.1 Uncertainty in LCA 

Before discussing uncertainty assessment it is essential to understand the concept of uncertainty 

in the context of LCA. As mentioned before, uncertainty describes the discrepancy between a 

measured value and a real value. Fundamentally, uncertainty is present in all stages of LCA, and 

is the result of data incompleteness due to a variety of causes (Heijungs & Lenzen, 2014). It is 

important here to make the distinction between variability and uncertainty. Variability is 

described by Huijbregts (1998, p. 273) as “stemming from inherent variations in the real world”. 

Uncertainty, as stated by Björklund (2002, p. 64), is the result of “a lack of knowledge about the 

true value of a quantity”. Uncertainty is connected to variability in the sense that inherent 

variability in e.g. input data leads to so-called stochastic uncertainty, while uncertainty due to 

imperfect knowledge and modelling choices is called epistemic uncertainty (Walker et al., 2003). 

Stochastic uncertainty is therefore always present in LCA research, because variability is always 

present in a real-world situation. Unfortunately this means that epistemic uncertainty is also 

unavoidable, as modelling a real-world situation requires a certain degree of generalisation to 

handle this variability. As for uncertainty in LCA, epistemic uncertainty is most interesting, 

because this type of uncertainty can be analysed with the aim of reducing it, whereas stochastic 

uncertainty cannot be reduced other than redefining the scope of the study.  

 

Within epistemic uncertainty, three types of uncertainty can be discerned: parameter 

uncertainty, scenario uncertainty and model uncertainty. Huijbregts et al. (2003) describes those 

as follows. Parameter uncertainty is described as the lack of knowledge about the true value of a 

parameter, i.e. due to imprecise measurement and assumptions. Scenario uncertainty is caused 

by normative choices in LCA modelling, e.g. in choosing the functional unit, allocation methods or 

impact categories. Model uncertainty refers to the validity of the model in relation to the real-

world situation, i.e. how simplifications and assumptions affect the validity of the model 

predictions. Although other classifications of epistemic uncertainty are possible, these three are 

the most widely used in LCA research and will therefore be adopted in this study (Lloyd & Ries, 

2007). The relation between stochastic and epistemic uncertainty in LCA is depicted in Figure 1. 

Considering that the aim of this research is focussing on the life cycle assessment part of Figure 1 

(the middle box), the focus of this research will be on epistemic uncertainty.  
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Figure 1: Uncertainty and variability in LCA. Adapted from: Huijbregts, 1998, p. 274 

 

2.1.2 Uncertainty analysis 

In general uncertainty analysis refers to the qualitative or quantitative assessment of the 

uncertainties in an LCA study. Different types of uncertainty ask for different assessment 

methods, although quantitative assessment is the preferred option when possible. Qualitative 

assessment generally requires little data (it usually includes expert judgement or data quality 

indicators), but this represents data quality rather than the amount of uncertainty (Lloyd & Ries, 

2007, p. 170). Quantitative assessment is therefore more common in LCA studies (Lloyd & Ries, 

2007). Parameter uncertainty can be quantified into an uncertainty distribution of the output 

variable, with the help of propagation methods. Uncertainty propagation can be seen as the 

quantitative part of uncertainty analysis, as it addresses the way uncertainties propagate into the 

output uncertainty of the LCA model (Heijungs & Lenzen, 2014, p. 1446). This is usually done 

through stochastic sampling, using Monte Carlo or Latin Hypercube simulations, or through 

analytical uncertainty calculation (Huijbregts, 1998). Stochastic sampling uses parameter 

distributions as input, making it widely applicable to life cycle inventory (LCI) data, while 

analytical methods require only uncertainty estimations. Scenario and model uncertainty are 

more difficult to quantify because they involve the assessment of normative choices, that are 

intrinsically not quantitative and therefore have no distributions. It was suggested by Huijbregts 

et al. (2003) that these uncertainties can be quantified by first explicitly naming all the normative 

choices in the different stages of the LCA, followed by a quantification of the resulting output 

uncertainty using nonparametric bootstrapping. This involves assigning probability values to 

each normative choice that is made concerning an alternative. A recent study by Mendoza Beltran 

et al. (2016) suggests a method that enables propagation of uncertainty due to allocation choices 

as well as uncertainty in unit process data. The authors call this a ‘pseudo-statistical’ method, 

because normative choices cannot be assessed in a truly statistical way. Considering the 

discussed difficulties of assessing scenario and model uncertainty, only parameter uncertainty 

will be considered in this study. 

 
As shown by Lloyd and Ries (2007, p. 166), who conducted a survey of approaches to quantitative 

uncertainty analysis, parameter uncertainty was by far the most studied in the 24 LCA studies 

that the surveyed. The most used method to assess uncertainty was stochastic modelling, 

occurring in 67% of the studies (Lloyd & Ries, 2007, p. 167). Although most LCA studies use a 

purely stochastic method, yielding only absolute results, recent studies suggest using such 
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quantitative propagation methods in a correlated way, yielding relative results that are necessary 

when comparing alternatives in LCA (Henriksson et al., 2015). Henriksson et al. (2015a) provide 

an example of this notion by comparing GHG emissions from the production of Pangasius fish in 

large or small farms, and expressing the uncertainty of each alternative’s impact both in an 

absolute and a relative way. The absolute uncertainty, visually represented as a box-and-whisker 

plot, seem to indicate that the uncertainty around each alternative is too large to draw 

conclusions on the preferability of one alternative over the other. However, by subtracting the 

MCS output of one alternative from the other for each run the uncertainty around shared 

processes is disregarded, because MCS samples the same value for shared processes in the same 

run. This leaves the relative uncertainty, i.e. the uncertainty of the difference between two 

alternatives. In the example this showed that the relative uncertainty was in fact much smaller 

than the difference in GHG emissions from both alternatives, indicating that the impact of small 

Pangasius farms is indeed significantly larger than that of large farms.  Also, it has been argued 

that possible correlations between among input parameters cannot be neglected (Bojacá & 

Schrevens, 2010). Studies on quantitative uncertainty propagation (Heijungs & Huijbregts, 2004; 

Lloyd & Ries, 2007) and comparing different quantitative methods (Benetto et al., 2008; Clavreul 

et al., 2013; Heijungs & Lenzen, 2014) are sometimes contradictory in their recommendations. 

For example: while Lloyd & Ries (2007) suggest focussing on qualitative uncertainty analysis 

when information on uncertainty is scarce, Clavreul et al. (2013) propose to draw ‘optimistic’ and 

‘pessimistic’ scenarios and compute distributions in all cases. Based on such fundamental 

discussions, it can be stated that uncertainty propagation in LCA is a developing field of study.  

 

2.1.3 Uncertainty propagation 

As this study focusses on quantitative parameter uncertainty, only methods used to describe that 

are considered here. Within quantitative uncertainty analysis, the procedure where uncertainty 

information is analysed is called uncertainty propagation. Different methods for uncertainty 

propagation will be discussed here. Within the propagation phase of uncertainty analysis there 

are two main aspects to be considered. First there is the actual propagation method, or modelling 

technique. Several techniques are available, and as identified by Lloyd and Ries (2007) the most 

common techniques are stochastic modelling (e.g. with Monte Carlo simulation), analytical 

propagation (e.g. with Taylor series expansion) and fuzzy set-based techniques. Stochastic 

modelling was found by Lloyd & Ries (2007) to be most commonly used, although the reasons for 

choosing a specific technique in an LCA study often remain unclear. Stochastic modelling involves 

sampling a large number of times from a dataset to identify a range of possible outcomes for each 

parameter and thereby describe the output uncertainty. Monte Carlo (MC) sampling has been 

extensively covered in literature as an uncertainty propagation method in LCA, and adaptations 

and extensions of the method have been identified (e.g. Groen et al., 2014a; Heijungs & Huijbregts, 

2004). Other MC-based methods include Latin hypercube sampling, metropolis sampling and 

quasi-MC sampling (Helton et al., 2006). The detailed differences between these methods will not 

be discussed here, for a detailed description the reader is referred to Groen et al. (2014a). 

Analytical uncertainty propagation is the technique of expressing output uncertainty as a function 

of the variances of all input parameters in an LCA model. This can be done using a first order 

Taylor series expansion of the LCA model, where only the variance of each parameter needs to be 

known (Groen et al., 2014a). Fuzzy set-based methods make use of a possibility function to 

describe the output uncertainty of an LCA model. By assigning a value of one to the most plausible 

value (i.e. the mean, or core value) and zero to the least plausible values, intervals for the output 

values can be created based on the likelihood of a value in the possibility function (Groen et al., 

2014a). Larger intervals will therefore describe output values that are less likely to occur, while 

more plausible values will have small intervals. This method makes it possible to give insight in 
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the distribution of the model output with limited uncertainty information, as only the boundaries 

of the possibility function need to be known.  

 

The second important aspect is the uncertainty representation, or characterisation as referred to 

by Lloyd & Ries (2007). This involves describing the way parameters are distributed, for which 

there are several methods. Two main categories of uncertainty characterisation can be discerned 

(aside from analytical uncertainty propagation, for which no distribution type is needed): using 

a probability distribution (for sampling methods) or a possibility distribution (used in e.g. fuzzy 

interval methods). Simply put, probability distributions describe how probable the occurrence of 

different possible outcomes are, while possibility distributions give an estimation of the 

possibility that any given value will occur in the parameter based on intervals within the 

parameter (Clavreul et al., 2013). In LCA probability distributions have been the preferred option 

to represent uncertainty in input parameters, as they can give an accurate indication of  

uncertainty when many data points are available (Lloyd & Ries, 2007). The main disadvantage is 

that probability distributions become inaccurate when information is scarce, as is the case with 

e.g. expert judgement (Clavreul et al., 2013). Also, the preferable characterisation method can 

depend on the type of uncertainty: it has been argued that epistemic uncertainty is better 

described by possibility distributions, while for stochastic uncertainty probability distributions 

are preferred (Heijungs & Tan, 2010). The details of the different distributions will not be 

discussed here, but in Table 1 an overview of the most commonly used distributions relating to 

probability and possibility characterisation is given. 

 
Table 1: Uncertainty characterisation types and relating distributions commonly used 
in LCA. Adapted from Lloyd & Ries (2007, p.168). 

Uncertainty characterisation Common distributions 

Probability 

Normal 
Lognormal 
Uniform 
Beta 
T-distribution 

Possibility 
Triangle 
Intervals 
Uniform 

 

 

2.1.4 Sensitivity analysis  

Parameter uncertainty in principle encompasses the uncertainty around all parameter values in 

the LCA model. However, due to the complexity of the systems that many LCA models aim to 

describe, a large number of input parameters is often included in the model. While it would be 

ideal to propagate uncertainties of all input parameters in a model, this would be very time 

consuming. Moreover, the output uncertainty of an LCA model can often be explained by the 

variance of just a few parameters (Groen, 2016; Koning et al., 2010). Therefore, the number of 

input parameters included can be limited to those that contribute most to the model output, both 

in terms of uncertainty and in terms of environmental impact. The assessment of the contribution 

of input parameters to the model output is done using sensitivity analysis, where the model 

output is tested on sensitivity to changes in the input parameters (Saltelli et al., 2006). In LCA 

modelling, sensitivity analysis has been acknowledged as being essential to the interpretation of 

the LCA results, because it can help identify priorities for data refinement and model 

simplifications – such as limiting the number of input parameters included in uncertainty 

propagation (Groen et al., 2014b; Saltelli et al., 2008).  
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Within sensitivity analysis three main types of analysis can be discerned: local sensitivity analysis 

(LSA), screening and global sensitivity analysis (GSA) (Groen et al., 2014b). Local sensitivity 

analysis refers to assessing the change in the model output when input parameters are changed. 

A common way to do this is via a one-at-a-time (OAT) approach, where parameter values are 

changed one at a time with a specific factor (Groen et al., 2014b). Screening involves identifying 

important contributors to the output uncertainty using basic sample information such as the 

range (Lloyd & Ries, 2007). In global sensitivity analysis, the contribution of the uncertainty 

around each input parameter to the output variance is assessed based on more specific 

uncertainty information, such as parameter distributions. GSA can be performed either before or 

after uncertainty propagation, respectively to find important parameters and to find additional 

information on the behaviour of the model (Anderson et al., 2014; Cucurachi et al., 2016).  

From the above it follows that the most important parameters in a model are those that 

contribute to both the model output (in the case of LCA: environmental impact) and the output 

uncertainty. In literature such important parameters are also called ‘key issues’, described by 

Heijungs (1996) as model parameters that are strongly contributing to the outcomes and that are 

uncertain.  A parameter that makes only little contribution to the outcomes and is fairly certain is 

considered not a key issue (Heijungs, 1996). This approach has been adopted by several authors, 

most notably by Saltelli et al. (2008). They describe importance in terms of contribution to the 

outcomes of the model as influence, and importance in terms of contribution of a parameter’s 

uncertainty to the total output uncertainty as importance. Key issues are both influential and 

important (see Figure 2).  

 

 
 

Figure 2: Identification of key issues based on influence and importance. Adapted from Groen (2016). 

 

The analysis described above is referred to by Heijungs (1996) as key issue analysis (KIA), while 

the same analysis is called uncertainty importance analysis by Björklund (2002), and simply 

named ‘sensitivity analysis’ by Saltelli et al. (2008). For this research, the term sensitivity analysis 

is used to describe the procedure of assessing both influence and importance as described above.  

 

2.2 Framework 

 

While the theory discussed above provides a background of uncertainty analysis in LCA, it also 

shows that there is a large diversity of approaches to the assessment of uncertainties in LCA. In 

respect to the research questions of this study, it is necessary to combine several techniques that 
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allow for a comparison of propagation methods that is feasible within time frame of this thesis. 

This means that from the multiplicity of techniques a selection needs to be made, and 

operationalised for this study. A procedure that incorporates the necessary elements for 

addressing the research question, and that serves as a framework for this study, is presented here. 

It is aimed at providing guidelines for the methodology presented in the next chapter. 

 

As part of their research on uncertainty in product carbon footprints, Henriksson et al. (2015a) 

presented a procedure for analysing uncertainty in LCA data and presenting the results. This 

procedure starts with the collection of unit process data and distributions needed for sampling-

based propagations methods (e.g. Monte Carlo simulation), followed by a propagation step and 

statistical testing of the results. The final step involves communication of the results for the aim 

of the LCA study. The procedure is applicable to this study in the sense that it provides a 

procedure for assessing uncertainties in LCA studies in general. Also, it allows for the comparison 

of outcomes of different methods, as steps two and three can be repeated with different methods. 

However, as discussed above, it might be necessary to select only those parameters in the LCA 

model of the case study that are key issues. Therefore an additional step in this procedure is 

needed before the uncertainty propagation, where the most important parameters are selected. 

Sensitivity analysis, as discussed above, can be used to do so. 

 

An operationalisation of this framework for this study shows how the different steps can 

contribute to answering the research questions (depicted in Figure 3). Step one of the framework 

is data collection, essentially covering the life cycle inventory analysis. From the LCI data, 

sensitivity analysis can be used to select the key issues from the set of parameters. Of these 

parameters the distributions can be obtained with statistical analysis if the sample size is great 

enough, and if the propagation method requires that. These distributions are used in step two, 

where uncertainty propagation is done. Here the actual quantification of uncertainty takes place. 

In the case of this research, the propagation step can be repeated for each method that is being 

compared. The results of the propagation step can be tested statistically, e.g. to express the 

significance of the results. The outcomes of the different methods can be compared after this step. 

In the final step of the procedure the LCA outcomes are communicated to the target audience. 

Because the focus of this research is on methods for uncertainty propagation, the first and last 

step of this procedure are left out of the scope of this study (represented by the dashed line in 

Figure 3). The LCA research on which the case study is based provides the necessary data to 

continue with the sensitivity analysis. The communication step is excluded because it is not 

relevant for the purpose of this study. 
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Figure 3: Procedure for propagating uncertainty in LCA data (adapted from: Henriksson et al., 2015a, p. 5).  

The dashed line indicates the scope of this study. 
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3. Methodology 

The methodology of this study is divided into four phases:  

 

1. Literature review 

2. Expert survey 

3. Case study 

4. Evaluation 

 

In this chapter the methodology for each phase will be presented in detail. For each phase, the 

outcome of the phase and how this contributes to answering the research questions is described.  

 

3.1 Literature research 

 

In the firsts phase of this research, a literature review will be done to provide input for answering 

the first two research questions, on drivers and barriers for uncertainty analysis and on the 

available methods. Where the previous chapter provided the elementary principles of 

uncertainty analysis in LCA, the literature review will explore what the arguments for and against 

uncertainty analysis are based on literature. Also, the available methods for uncertainty 

propagation are further explored.  

 

3.1.1 Phase 1A: drivers and barriers from literature 

To answer the first sub-question, it is necessary to understand the arguments from a scientific 

perspective for LCA practitioners in developing countries to include or exclude uncertainty 

analysis in their research, as well as their own motivations to do so. In this phase scientific 

literature will be reviewed to assess the arguments that can be found in literature.  

 

Outcome phase 1A: an overview of drivers and barriers for uncertainty analysis found in 

literature.  

 

3.1.2 Phase 1B: methods for uncertainty propagation 

In order to perform and compare different analysis methods, a selection of methods needs to be 

made. Existing LCA studies and evaluation research on uncertainty analysis provide a large set of 

methods, some of which are commonly used (e.g. Monte Carlo analysis), while others are less 

commonly found in literature (e.g. fuzzy set methods and Taylor series expansion) (Benetto et al., 

2008; Heijungs & Lenzen, 2014). In the literature review a selection of uncertainty propagation 
methods will be made to be used in the case study. The selection will be made based on 

applicability on parameter uncertainty and on the availability of documentation concerning the 

application of the method in LCA research.  

 

Outcome phase 1B: a selection propagation methods to include in the case study. Considering 

the available time for this study, a minimum of three and a maximum of five different propagation 

methods will be included for comparison in the case study. 
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3.2 Expert survey 

 

3.2.1 Phase 2: drivers and barriers from expert survey 

In addition to the drivers and barriers for uncertainty analysis found in literature, experiences 

from practitioners in a developing country can contribute to a better understanding of their 

motivations to include or exclude uncertainty analysis in their work. To this end, LCA 

practitioners from Thailand – as an example of a developing country where LCA research is taking 

place – will be surveyed. The survey will be performed online and distributed to members of the 

Research Network on Food, Fuel, and Climate Change (FFCC) in Thailand. This research network 

includes LCA practitioners from five Thai universities and is financially supported by the Thailand 

National Science and Technology Development Agency’s (NSTDA).  

 

The survey consists of three sections: a general information part about the background and 

experience of the participant, a section with questions for those who have experience with 

uncertainty analysis and one for those who don’t have experience with uncertainty analysis, and 

a final part with two finishing questions. The survey will be answered anonymously to gain the 

best results, as there are certain questions that participants could feel might harm their work or 

reputation (e.g. on research choices and knowledge). The questions of the survey can be found in 

Appendix II.  

 

The processing of the survey results will be quantitatively, meaning that the results are 

summarised based on the number of times each answer was chosen. For open questions, the 

answers will either be grouped (if there are recurring answers) or included in the results in full 

(if they are unique). From this table of results, a qualitative assessment will be done to analyse 

the results in relation to the sub-question of drivers and barriers for uncertainty analysis.  

 

Outcome phase 2: drivers and barriers from expert survey. The qualitative assessment of the 

survey results will lead to a number of conclusions that can be drawn concerning the first sub-

question.  

 

3.2.2 Evaluation criteria 

To be able to compare the outcomes of different uncertainty propagation methods in the final 

phase of this study, criteria on which the outcomes are compared are needed. In the literature 

review an overview of driver and barriers for uncertainty analysis in LCA will be given. These can 

be complemented by the conclusions from the expert survey, to formulate criteria to which an 

appropriate uncertainty propagation method should comply. To operationalise these criteria for 

use in the final evaluation, a scoring method will be described for each criterion, based on three 

possible scores: scores of 1, 2 or 3, where 1 represents the least desirable situation in terms of 

suitability of the method for agricultural LCAs in developing countries, and 3 represents the ideal 

situation. For each criterion the requirements for all scores will be described. The scores of 1 to 

3 indicate valuation on an ordinal scale, meaning that 3 is better than 1, but 3 is not three times 

better than 1. When the propagation methods included in the case study are evaluated in the final 

phase, this scoring method will help identify the strengths and weaknesses of each method. 

 

Outcome phase 1 and 2: criteria for evaluation. The result of this step is a table with criteria in 

which the selected propagation methods will be scored. The scoring of the studied methods will 

be done after the propagation step.  
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3.3 Case study 

 

To answer the third sub-question about different outcomes of different uncertainty propagation 

methods, a case study will be done. Following the framework described in chapter 2, the 

procedure to perform uncertainty analysis with several propagation methods includes two main 

parts: sensitivity analysis and uncertainty propagation. How these steps will be performed is 

explained in this chapter. For this case study the existing LCA research that was introduced in the 

theoretical approach will be used. However, considering the extensiveness of the original study, 

it is necessary to define a clear scope as to which parts of the original research will be subject of 

the case study. How the original research is translated to a case study to be used in this thesis is 

explained here. For the sake of clarity, the preparatory steps that are needed prior to performing 

sensitivity analysis and uncertainty propagation with the LCI data from the original study are 

discussed here as well. 

 

3.3.1 Case study scope 

As the original LCA research covers many different topics and can be seen as multiple LCA studies 

combined, a scope must be determined for the use of this project as a case study. In agreement 

with the project leader, prof. S.H. Gheewala, it was decided that the focus of this case study should 

be on the environmental impact occurring during the cultivation stage of sugarcane. The 

cultivation stage includes all product flows and processes that occur from the planting of the crop 

to the harvesting of sugarcane. This means that other subjects that were part of the original study, 

i.e. the processing of sugarcane into raw sugar, bio-ethanol and by-products, are excluded in this 

case study. The main distinction in the original LCA study for the cultivation stage was made 

between conventional cultivation and ‘green’ cultivation, identifying environmental issues 

related to pre-harvest field burning in conventional practices (Pongpat et al., 2017). Therefore, 

the scenarios from the original study can be adapted to this case study with a focus on these two 

cultivation practices. This distinction will be kept throughout the case study. Within sugarcane 

cultivation, four stages can be discerned: land preparation, crop planting, land treatment and 

harvesting. Land preparation covers ploughing the land to prepare it for the planting of the crop. 

The planting stage includes planting of cane stubbles (‘setts’) and fertilising the land. The 

treatment stage comprises application of fertiliser and pesticides and irrigation. The harvesting 

stage includes the harvesting of the sugarcane (either mechanically or manually) and 

transporting the harvested sugarcane stems to a central point at the farm. Conventional 

cultivation includes pre-harvest field burning, while green cultivation involves only mechanical 

harvesting. The main differences between the two scenarios are listed in Table 2.  

 
Table 2: Main differences between the two cultivation practices per stage of cultivation. 

Stage Conventional cultivation ‘Green’ cultivation 

Land preparation Mechanical ploughing Mechanical ploughing 
Planting Manual planting and application 

of fertiliser 
Mechanical planting and 
application of fertiliser  

Treatment Manual application of fertilizer 
and pesticides 

Mechanical application of 
fertilizer and pesticides 

Irrigation Irrigation 
Harvesting Pre-harvest field burning Mechanical harvesting 

Manual harvesting 
On-site transporting of 
harvested cane by truck 

On-site transporting of 
harvested cane by truck 
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3.3.2 Data preparation 

For this case study two data types from the original LCA project are needed: the LCA model that 

contains the connections between goods, products and emissions, and the raw data as collected 

in the field. The LCA model is needed to perform the first analysis (i.e. a sensitivity analysis to find 

the most important parameters), while the raw data contains all the sample data which is needed 

to identify ranges and distributions for uncertainty propagation. The following section addresses 

first the data as it was used in the original study, followed by the preparatory steps that were 

needed to use this data in this case study. 

 

Original data structure 

Primary data was collected by researchers from KMUTT through questionnaires of sugarcane 

farmers and sugar milling companies in Thailand. A total of 1,652 farms and 20 sugar milling 

companies were surveyed in different regions of Thailand in 2013 and 2014. The raw data 

collected in the field was digitalised and saved in spreadsheets by the KMUTT researchers. These 

contain both qualitative data (e.g. harvesting method) and quantitative data (e.g. fertilizer input). 

To be able to use this data in an LCA model, the Thai researchers extracted average parameter 

values for all farms linked to one sugar milling company, followed by an average value for the 20 

sugar milling companies. This averaging was done to obtain a single value to be used in the LCA 

model, but thereby the uncertainty information (i.e. the variance and distribution of the collected 

data points) was not incorporated in the model. Secondary data from the Thai national LCI 

database and the Ecoinvent v3 database was used for background processes in the model, which 

was constructed in the SimaPro LCA software. The distinction between conventional and green 

practices was maintained throughout the modelling process. This model structure is depicted in 

the flowcharts in 

Figure 4 and Figure 5. The original model structure was maintained for the case study in order to 

obtain comparable results (and therefore useful for the KMUTT researchers). The stages of 

cultivation were structured in the original model as separate processes that deliver the input for 

the overall cultivation process. The output of each cultivation stage is then one hectare of 

cultivated land, so that the overall cultivation process delivers the amount of sugarcane produced 

on one hectare of land. The functional unit of the LCA study is 1 tonne of sugarcane output, which 

requires approximately 0.015 of a hectare to produce (the average yield of one hectare of 

sugarcane field is 68 tonnes of sugarcane). Input economic flows include different types of 

fertilizer, pesticide, diesel fuel, water for irrigation and transport of the harvested sugarcane to 

the factory. While different types and brands of fertilizer are used in sugarcane cultivation, for 

implementation in the model these were aggregated into N-fertilizer (ammonium sulphate), P-

fertilizer (phosphate as P2O5), and K-fertilizer (potassium chloride), as well as urea fertilizer. 

Three types of pesticide were discerned: glyphosate, atrazine and unspecified pesticides. The 

process of cane trash burning, which is essentially the burning of pure biomass, leads to methane 

emissions in the model, while CO2 emissions are omitted. The reason that CO2 is omitted from the 

equation is that this is seen as biogenic CO2, which has no (long-term) impact on climate change. 

Methane is included because biomass burning has been found to be an important source of 

atmospheric methane due to incomplete combustion. While CO2 is mostly emitted during the 

flaming phase, methane is mostly emitted during the smoldering phase afterwards (Hao & Ward, 

1993). In green cultivation, cane trash is not burned but disposed of as bio-waste. In Ecoinvent 

disposal is modelled as an input to the process where the waste is created (even though waste is 

actually an output of the harvesting process), which is why disposal is depicted as in input in 

Figure 5 as well.  
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Limitations of the original LCA model 

While the original LCA model serves the purpose of this study well by providing LCI data on which 

uncertainty analysis can be performed, there are some limitations to the original model that need 

to be pointed out. As can be seen in the flowcharts of the LCA model, there are several processes 

that do not seem to adequately cover the chemical processes they represent. There seem to be no 

sulphur emissions from diesel combustion in Thai machinery, which is not expected (Bond et al., 

2004). Also, methane (CH4) emissions from diesel combustion are included, while methane is not 

one of the main components of emissions from diesel combustion (Hesterberg et al., 2008). 

However, because methane is a strong greenhouse gas (about 20 times stronger than CO2), small 

emission quantities will still have a considerable impact, which explains why it is included in this 

model. There are also limitations related to modelling choices. Firstly, a distinction is made 

between urea and N-fertilizer, while ammonia is the main component of urea, and urea is 

therefore also an N-fertiliser. Secondly, the N-fertiliser product, ammonium sulphate was chosen 

from the database, but it remains unclear why this product was chosen over ammonium nitrate 

or calcium ammonium nitrate. A possible explanation is that ammonium sulphate is better suited 

for alkaline soil conditions (Bakker, 2012). Thirdly, the P-fertiliser product in the LCA model was 

wrongly chosen from the Ecoinvent database. For the phosphate fertiliser that is used on the land, 

the P2O5 content of di-ammonium phosphate was chosen. However, this product should never be 

chosen without the simultaneous use of di-ammonium phosphate as N-fertiliser, because they are 

physically the same product and only split for the purpose of energy allocation (Moreno Ruiz et 

al., 2013, p. 15). A possible implication of this error is an underestimation of the environmental 

impact related to P-fertiliser use, as only part of the impact related to di-ammonium phosphate 

production is allocated to P-fertiliser. Lastly, it can be argued that there is a negative feedback 

loop between cane trash burning and fertiliser use, because burned field will become more fertile, 

leading to a lower fertiliser demand. These are suspected to be human errors in the modelling 

process. Because the main goal of the case study is not to deliver a perfect LCA, but rather to use 

an existing agricultural LCA study for uncertainty analysis, the original LCA model is adopted in 

full, including the suspected errors.  
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Figure 4: Flowchart of the conventional cultivation of sugarcane.  
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Figure 5: Flowchart of the green cultivation of sugarcane.  
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Data translation 

In order to use the required data in this case study, several translation steps are required. Firstly, 

all qualitative data, including variable names, was written in Thai language and had to be 

(digitally) translated to English. The translated version has been checked with the Thai 

researcher concerned to prevent misinterpretations. Secondly, the original study was conducted 

with a set of 12 environmental impact categories from the ReCiPe v1.1 indicator set (at the 

midpoint level, from the hierarchical perspective). Due to time limitations for this thesis, only the 

ReCiPe climate change indicator of global warming potential (GWP100) will be used in this case 

study. Thirdly, the original model was built in the SimaPro software using the Ecoinvent v3 

database, which has two main disadvantages. For one, SimaPro does not include extensive 

sensitivity analysis options, which means that the selected sensitivity analysis is not possible in 

this software. Another disadvantage is that the Ecoinvent v3 database contains two options in 

terms of modelling approach: either based on unit processes including uncertainty data, or based 

on system processes, using aggregated datasets and without uncertainty data. For the original 

LCA model the system-based approach was used, and because of the lack of uncertainty data any 

uncertainty-based analysis would be meaningless. Considering these disadvantages, the original 

LCA model had to be converted to alternative software. 

 

As an alternative to the SimaPro software CMLCA was chosen because of the extensive options 

that it provides in terms of data handling, sensitivity analysis and uncertainty analysis. Because 

the Ecoinvent v3 database was not available in CMLCA, Ecoinvent v2.2 was used (which does not 

make the distinction between a unit-based and system-based approach, and therefore does 

include uncertainty data). The original model was manually copied to the CMLCA software and 

linked to corresponding goods and processes in the v2.2 database. The same impact categories 

that were used in the original model (ReCiPe v1.1) were available used in the CMLCA model. In 

all probability, this conversion step has consequences for the behaviour of the model, both in 

terms of outcomes and relative performance of the processes. To give a superficial indication of 

the way the two models compare, they were both run with the same functional unit (1 tonne of 

sugarcane output, conventional cultivation) and compared on impact for all 10 ReCiPe impact 

categories (see Table 3). It shows that for some categories the models are show a large difference 

(50-95%), while for others the models are relatively similar. For this case study however, the only 

indicator that will be used is climate change, GWP100. On this category the CMLCA model shows 

an 8.7% larger score than the SimaPro model, which was considered acceptable for the purpose 

of this study. The implications of this model conversion step will be further covered in the 

discussion. 

 

  



29 
 

Table 3: Comparison of impact scores for the two LCA models (ReCiPe v1.1). The impact category that is used in this study 
is highlighted. 

Impact category Unit SimaPro 
model 

CMLCA 
model 

Difference  

Natural land transformation, NLTP m2 6.11E-03 1.19E-02 +94.8% 

Particulate matter formation, PMFP kg PM10-Eq 1.27E-01 1.35E-01 +6.3% 

Marine ecotoxicity, METPinf kg 1,4-DCB-Eq 4.31E-01 2.11E-01 -51.0% 

Terrestrial acidification, TAP100 kg SO2-Eq 3.24E-01 3.76E-01 +16.0% 

Terrestrial ecotoxicity, TETPinf kg 1,4-DCB-Eq 4.71E-03 5.04E-03 +7.0% 

Metal depletion, MDP kg Fe-Eq 5.36E+00 2.02E+00 -62.3% 

Fossil depletion, FDP kg oil-Eq 1.22E+01 1.38E+01 +13.1% 

Photochemical oxidant formation, 

POFP 

kg NMVOC 7.95E-01 8.03E-01 +1.0% 

Climate change, GWP100 kg CO2-Eq 6.01E+01 6.53E+01 +8.7% 

Ionising radiation, IRP_HE kg U235-Eq 3.33E+00 3.40E+00 +2.1% 

Freshwater ecotoxicity, FETPinf kg 1,4-DCB-Eq 4.55E-01 1.48E-01 -67.5% 

Urban land occupation, ULO m2a 7.72E-01 2.80E-01 -63.7% 

Human toxicity, HTPinf kg 1,4-DCB-Eq 9.93E+00 8.26E+00 -16.8% 

Ozone depletion, ODPinf kg CFC-11-Eq 6.11E-06 5.63E-06 -7.9% 

 

 

3.3.3 Phase 3A: sensitivity analysis 

 

For the first phase of the case study, specific methods of sensitivity analysis need to be selected. 

For the selection of the most essential parameters (key issues) in the case study LCA model two 

aspects are important: the influence and the importance of the parameters (as defined in chapter 

2). The influence can be best assessed with a local sensitivity analysis, as the interest here is in 

the specific influence that a change in a parameter has in the model output. One widely used 

method for local sensitivity analysis in LCA is matrix perturbation (Groen et al., 2014b; Heijungs, 

2010). This method, which is based on several matrix calculations, is also called perturbation 

analysis, operationalised for life cycle impact assessment by Heijungs (2010). Using first-order 

partial derivatives, the influence of each parameter in the model is estimated. The main equation 

can be formulated as (Heijungs, 2010, p. 513): 

 

∆𝑧 =  
𝜕𝑧

𝜕𝑥
 ∆𝑥 +  

∆𝑧

∆𝑦
 ∆𝑦 

 

where the sensitivity is expressed, using the partial derivatives, as the change in the result (∆z), 

determined by a marginal change in parameter x (∆x) and in parameter y (∆y). The full 

calculations are covered in the paper by Heijungs (2010). The outcome of this perturbation 

analysis is a list of parameters and their sensitivity coefficients (multipliers). This method will be 

used to find the most essential parameters in terms of influence. Concerning importance of 

parameters, a screening method fits best, because an estimation of contributions to the output 

uncertainty can be obtained without first going through uncertainty propagation (Groen et al., 

2014b). As in this case study this sensitivity analysis will be done before the uncertainty 

propagation, screening can provide the necessary information on importance. One screening 

method is the method of elementary effects (MEE), which uses the lower and upper boundaries 

of an input parameter’s range to estimate the importance (Groen et al., 2014b). As this 
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information will be available in the case study, MEE will be used to find the importance of input 

parameters. Contrary to perturbation analysis, which uses the default values of parameters, in 

MEE the ranges of parameters are used to measure the change of the model output based on 

changes in the input parameter (Groen, 2016). The elementary effect of a parameter is expressed 

as the change in the model outcome caused by changing a parameter within its range, defined by 

lower and upper values. By selecting random values within the parameter range the change 

compared to the default outcome can be determined. The outcome of the analysis is the measure 

of importance μ*, which is the absolute mean of the average elementary effects of a parameter. 

This is expressed as (Groen, 2016, p. 33):  

 

𝐸𝐸(𝐴, 𝑖, 𝑗) =  
ℎ(𝐴𝑖𝑗 + 𝛿𝐴,𝑖,𝑗) − ℎ(𝐴𝑖𝑗)

∆
 

 

where A is a parameter in the model that is changed with predefined steps of 2/3 of the range (∆) 

of that parameter, defined by boundaries i and j. The elementary effect EE is then calculated by 
dividing the output change by the step size ∆. By repeating this procedure R number of times, the 

measure of importance μ* is found (Groen, 2016, p. 33):  

 

𝜇∗(𝐴, 𝑖, 𝑗) =  
1

𝑅
 ∑|𝐸𝐸(𝐴, 𝑖, 𝑗)|

𝑅

𝑟

 

 

One of the benefits of this method is that it is not necessary to define distributions, and 

uncertainty propagation is not needed. This is also its main disadvantage, as a range is a very 

limited measure to describe the nature of a parameter. More extensive background on the MEE 

including the full mathematical formulations can be found in Groen (2016), Saltelli et al. (2008) 

and Campolongo et al. (2007). 

 

Outcome phase 3A: selection of parameters. The perturbation analysis will result in a list of 

important parameters. Because key issues are both important and influential, the MEE can be 

limited to those parameters that have already been found in the perturbation analysis. To fit the 

parameter selection to the time constraints of this research, a maximum of ten parameters to be 

included in the propagation step will be kept as a guideline. 

 

3.3.4 Phase 3B: uncertainty propagation 

 

The second stage of the case study consists of the actual uncertainty propagation. With the 

methods that are selected from the literature study, the output uncertainty of the parameters 

selected in phase 3A will be propagated. The outcomes of the propagation step will be evaluated 

and compared in the next phase. Because the methods possibly require different types of input 

(e.g. parameter distributions or general uncertainty information), the required inputs will have 

to be determined from the available data. The model parameters selected in the previous phase 

will be used to run the uncertainty propagation.  

 

Outcome phase 3B: uncertainty quantifications. Depending on the type of output from each 

propagation method, the results will be presented graphically and by means of statistical 

information. This includes at least the estimated mean value and the available expression of 

uncertainty (e.g. variance, standard deviation or confidence interval).  
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3.4 Evaluation 

 

In this final phase the results from the literature study, uncertainty propagation and expert 

survey will be combined. The results of the uncertainty propagation will be evaluated based on 

the criteria for evaluation formulated after the second phase. Based on this evaluation, where the 

strengths and weaknesses of each method are identified, the most suitable method for assessing 

parameter uncertainty in agricultural LCAs in developing countries will be discussed. The full 

methodology is presented schematically in Figure 6. For each expected outcome (dashed boxes) 

is indicated how it is used in the process, either by serving as input for another phase or by 

directly answering a sub-question. 

 
 

 

 
Figure 6: Research phases and expected outcomes (dashed boxes). Arrows indicate what information is used to answer 
each research question. 
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4. Results 

4.1 Literature research 

 

In this first phase of the study scientific on uncertainty analysis in LCA literature is reviewed. 

Drivers and barriers for uncertainty analysis are assessed in phase 1A to answer the first sub-

question from a scientific perspective. An overview of the found drivers and barriers is given in 

Table 4. In phase 1B existing methods of uncertainty propagation are discussed in order to select 

a minimum of three and a maximum of five propagation methods to be used in the case study.  

 

4.1.1 Phase 1A: drivers and barriers for uncertainty analysis 

 

The importance of addressing the reliability of the outcomes of LCA research, especially in a 

decision-making context, has been stressed by many authors, most notably by Huijbregts (2002) 

and Geisler et al. (2005). Nevertheless, uncertainty analysis is far from common practice in LCA 

research. In order to understand the considerations of LCA practitioners whether or not to 

incorporate uncertainty analysis in their work (if they even deliberately make this choice), 

literature on this topic is reviewed and evaluated here.  

 

Drivers 

First of all, there are obvious arguments for performing uncertainty analysis related to scientific 

reliability. These arguments can be called scientific drivers, as they present a reason for LCA 

practitioners to include uncertainty analysis in their research to increase (or at least explain) the 

reliability of their work. Decisions, at least from a scientific perspective, are not supposed to be 

random, and should therefore be based on (scientific) data with credible sources. Regarding LCA 

studies, the outcomes can be significantly influenced by uncertainty, as discussed in chapter 1.1. 

LCA models are often based on single-point values, which can give a false sense of accuracy when 

the actual value can vary greatly (Koning et al., 2010). Considering this, as stated by Björklund 

(2002), the results of LCA studies must be accompanied by uncertainty analysis, otherwise the 

credibility can (and must) be questioned. The ISO 14040 guidelines for LCA mention the 

importance of uncertainty analysis to better explain and support the LCI conclusions (ISO, 2006). 

Scientific drivers for uncertainty analysis arguably become more important when LCA research 

is conducted in a decision-making context.  

 

Secondly, there are drivers for uncertainty analysis related to the decision-making context in 

which LCA research is often conducted. When used to support decision-making, LCA is often 

comparative in nature, and not properly dealing with uncertainties may results in 

counterproductive decisions (Henriksson et al., 2015a). When comparing alternatives, the 

uncertainty of the outcomes may be larger than the difference between the alternatives, meaning 

that it is close to impossible to compare them in terms of environmental impact. An example of 

this issue was provided by Malça & Freire (2010), who performed a comparative LCA on rapeseed 

biofuel replacing fossil fuel. They found that while the outcomes suggest a significant advantage 

of the biofuel alternative, the high uncertainties in GHG emissions limit the conclusions to the 

point that appointing a preferred alternative becomes virtually impossible. Moreover the same 

authors state that decision-makers are often not qualified to judge comparative LCA results, and 

supporting information on uncertainty is required to guide them in the process (Malça & Freire, 

2010). Uncertainty information can also contribute to a more informed discussion among 

stakeholders in a decision-making context (McManus et al., 2015).  
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Thirdly, there are regulatory drivers, referring to national or international requirements for 

scientific support of e.g. policy decisions. In the field of environmental impact assessment (EIA) 

in general, to which LCA is related, there is extensive national and international regulation and 

mandatory procedures that need to be followed. However, the specific field of LCA does not know 

such requirements (Jay et al., 2007). Nevertheless, there are countries where requirements 

concerning reliability of LCA research are explicitly formulated. In the United States for example, 

it is mandatory to communicate scientific uncertainty for important policy decisions based on 

LCA (Cohen, 2013). This requires at least some level of uncertainty analysis in LCA research. Still 

this seems to be an exception to the rule, while such legal requirements can be considered a 

powerful tool to encourage uncertainty analysis in LCA (Ross et al., 2002). 

 

A fourth type of driver is related to practical availability of uncertainty analysis methods. It is 

easily argued that a prerequisite for LCA practitioners to perform uncertainty analysis in their 

work is that a way to do so needs to be available to them, preferably within their software of 

choice. All major LCA software tools, including SimaPro, CMLCA and OpenLCA, facilitate 

uncertainty analysis to some extent (at least provide the option of a Monte Carlo simulation) 

(Lloyd & Ries, 2007). This means that, apart from the question of data availability, the resources 

to perform at least some form of uncertainty analysis are readily available. This can be seen as a 

driver for uncertainty analysis. 

 

Barriers 

While the need for uncertainty analysis in LCA has been laid out above, there are many different 

reasons why it is not included in most LCA studies. Barriers for performing uncertainty analysis 

are related to different issues. First of all, barriers can relate to a lack of knowledge of the real-

world phenomena that the LCA study is dealing with. Uncertainty analysis requires a certain 

amount of information on the uncertainty of input data, while this is often simply not available. 

According to Huijbregts et al. (2001) quantifying uncertainty can be ‘extremely hard’ when 

dealing with temporal or spatial variability in input data. This is underlined by Björklund (2002), 

who argues that deriving the necessary information for uncertainty analysis (e.g. parameter 

distributions) can be very difficult when insufficient data is available. Moreover, when 

considering qualitative assessment of data quality, LCA practitioners have to make a judgement 

on data accuracy while they often don’t have this information (May & Brennan, 2003).  

 

Secondly, there are methodological barriers related to uncertainty analysis. According to 

Heijungs & Lenzen (2014) there is a general lack of knowledge among LCA practitioners on the 

content of different types of uncertainty analysis, which is also a result of conflicting explanations 

of these methods in literature. Also, while standardisation efforts (e.g. ISO 14040) may have led 

to a commonly accepted framework for LCA research in general, these guidelines fail to provide 

an adequate framework for incorporation of uncertainty analysis in LCA studies (Heijungs & 

Huijbregts, 2004). Another methodological barrier exists in the quantification of uncertainty 

types other than stochastic uncertainty. Model and scenario uncertainty are much more difficult 

to assess and quantify, and methods to do so are less commonly known than e.g. Monte Carlo 

simulation (Mendoza Beltran et al., 2016). Including these types of uncertainty in uncertainty 

analysis requires a combination of methods, complicating the procedure significantly. A final 

barrier is related to available software to deal with uncertainties. Firstly, computation time can 

be significant for sampling techniques like Monte Carlo simulation when dealing with large LCA 

models (Heijungs & Lenzen, 2014). Secondly, as mentioned earlier, most LCA software tools 

include methods for uncertainty analysis, but these are generally still limited in terms of scientific 

validity, ignoring important aspects like correlation between parameters (for a more thorough 
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investigation of this issue see recent studies by Henriksson et al. (2015b) and Heijungs et al. 

(2017)).  

 

A third type of barrier for uncertainty analysis is related to interpretation of the results. Heijungs 

& Huijbregts (2004) argue that LCA research is already a complicated procedure, and both data 

collection and interpretation of the outcomes is even further complicated when uncertainty 

analysis is included. This poses a problem when the results have to be understood by decision-

makers without the scientific background to understand them. Technical jargon and uncertainty 

results require a high level understanding, which complicates applicability in policy-related 

research (Cowell et al., 2002; Heijungs & Huijbregts, 2004). Outcomes of uncertainty analysis can 

also be wrongly interpreted when the methods used were incomplete (Björklund, 2002). This 

may give a false sense of credibility of the LCA results. Interpretation of uncertain results may 

also lead to pessimism. When LCA outcomes have a large uncertainty they may lead to a 

pessimistic view of the research, interpreting it as meaningless (Heijungs & Huijbregts, 2004). A 

final barrier related to interpretation is found in political use of LCA research. Political actors may 

tend to use the uncertainty of LCA results to their benefit, i.e. emphasising the uncertainty when 

the outcomes are not in line with their views (Bras-Klapwijk, 1998). This also goes for results that 

are in line with their views, when political actors may suppress or deny the uncertainty of the 

research.  

 
Table 4: Drivers and barriers for uncertainty analysis found in literature 

Drivers 
Uncertainty analysis is included in LCA because… 

Barriers 
Uncertainty analysis is excluded from LCA because… 

… it increases scientific reliability  … there is a lack of uncertainty information of 
input data 

… a false sense of accuracy can be avoided … there is a lack of knowledge among LCA 
practitioners of uncertainty analysis methods 

… counterproductive decisions due to a lack of 
uncertainty information can be avoided 

… there is a lack of an adequate framework for 
uncertainty analysis in international standards 
(e.g. ISO) 

… it can guide decision-makers in the 
interpretation of LCA results 

… it is complicated to assess model and scenario 
uncertainty 

… it may be necessary in order to comply with 
(inter)national LCA requirements 

… sampling methods require a significant 
computation time for large LCA models 

… options for uncertainty analysis are available in 
all LCA software tools 

… the options for uncertainty analysis in LCA 
software tools are limited in terms of available 
methods and scientific validity 

 … the results of uncertainty analysis are too 
complex to interpret by decision-makers 
… the results of uncertainty analysis may lead to 
pessimism about the LCA outcomes 
… the results of uncertainty analysis may be used 
to the benefit of political actors 
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4.1.2 Phase 1B: selection of propagation methods 

 

In this study uncertainty propagation methods are compared in terms of outcomes and their 

appropriateness for agricultural LCA in developing countries. Because many different 

propagation methods for parameter uncertainty propagation exist, and this study will focus on 

only a selection of propagation methods, an overview of existing methods will be given here. From 

this overview, a selection of three to five methods will be made based on availability (application 

examples should be available), input requirements (the case study should provide the necessary 

data) and technical feasibility (the method can be performed with the available time and 

resources).  

 

As introduced in the theoretical approach, uncertainty propagation methods can be classified by 

modelling technique (stochastic, analytical or fuzzy techniques), while the characterisation of 

parameter uncertainty depends on the modelling technique and the type of data. For the sake of 

completeness, the commonly used modelling techniques should be represented in the selection 

of propagation methods used in this study. Comparing methods that are fundamentally different 

from each other also contributes to the aim of this study, as the most appropriate propagation 

method should be sought within the full spectrum of available method. The starting point is 

therefore to include one propagation method from each modelling technique that is most 

common: Monte Carlo simulation (MCS) for stochastic sampling, Taylor series expansion for 

analytical uncertainty propagation (AUP) and fuzzy interval arithmetic (FIA) for fuzzy 

techniques. In terms of the availability of examples in literature, all three modelling techniques 

have been covered in literature with multiple studies. While stochastic, or sampling methods are 

most common (especially MCS), analytical methods are included in numerous studies as well 

(Lloyd & Ries, 2007). Fuzzy techniques are less common, but recent studies have provided 

sufficient information on possible methods of this type (Clavreul et al., 2013; Groen, 2016).  

 

Considering the recent discussion on uncertainty analysis in comparative LCA, and its 

implications for the procedure of sampling-based analyses (see Henriksson et al., 2015), two 

types of sampling techniques will be included. While the importance of dependent sampling has 

been acknowledged, the way the sampling results are analysed is still debated. Therefore, two 

sampling-based methods are included: one using independent analysis, and one using dependent 

analysis.  

 

Depending on the type of propagation method, different inputs are required to quantify 

parameter uncertainty. Sampling-based methods require the distribution function of each 

parameter to be specified, together with a central value and a parameter of dispersion (e.g. the 

standard deviation) (Groen et al., 2014a). The specific expression of this parameter of dispersion 

depends on the distribution type. For analytical methods much less information is required, only 

the standard deviation is needed. Possibilistic methods require three values: a core value, the 
upper and lower bounds of the possibility function and the type of possibility function of each 

input parameter (Groen et al., 2014a). The input requirements for each method should be feasible 

for this study. As it is expected that the available data in the case study is sufficient to determine 

both probability and possibility distributions, no methods need to be excluded based on 

feasibility. The final selection of propagation methods is listed in Table 5.  
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Table 5: Selected uncertainty propagation methods. The input requirements are adapted from Groen et al. (2014a). 

Modelling 
technique 

Characterisation Propagation method Input requirements 

Sampling Probabilistic  Monte Carlo,  
dependent analysis 
Monte Carlo, 
independent analysis 

1. Distribution function [pdf] 
2. Central value [µ] 
3. Parameter of dispersion [π] 

Analytical Probabilistic First order Taylor 
approximation 

1. Standard deviation [σ] 

Fuzzy  Possibilistic Fuzzy interval 
arithmetic 

1. Core value [vs] 
2. Upper and lower bounds [δ+ and δ-] 
3. Possibility function [S] 
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4.2 Expert survey 

 

4.2.1 Phase 2: drivers and barriers from expert survey 

A total of 21 members of the research network participated in the survey. Among them were three 

researchers, three PhD-students, two lecturers and a government official (twelve did not give 

their current occupation). Most of them had experience in more than six LCA projects. The full list 

of answers can be found in Appendix II. This section will be focussed on the conclusions that can 

be drawn from those answers. 

 

1. There is a general lack of knowledge among participants on how to perform uncertainty 

analysis. 

The answers show that one third of the participants is not familiar with the concept of uncertainty 

analysis, and more than half of the participants has no experience with performing uncertainty 

analysis. The most named reason for this was that they don’t know how to perform uncertainty 

analysis. Consequently, more knowledge on the subject was named as the most important 

requirement for participants to include uncertainty analysis in their work.  

 

2. While parameter uncertainty is named as the most interesting uncertainty type, scenario 

analysis is the most used method. 

When asked which type of uncertainty is the most interesting for their work, most participants 

chose parameter uncertainty (although this does not mean that they have experience in assessing 

parameter uncertainty). However, this is not reflected by the answers to the question which 

methods they have used is their work. Scenario analysis was used the most (by eight 

participants), while five participants used sampling or analytical methods. One reason for the 

discrepancy between the most important uncertainty type and the methods that are being used 

could be that scenario analysis is less resource and knowledge intensive to perform.  

 

3. The importance of uncertainty analysis is generally acknowledged by participants 

Of all participants, two stated that uncertainty was not interesting for their work. This indicates 

that the importance of uncertainty analysis is generally acknowledged by participants. Moreover, 

the question if the participants wanted to learn more about uncertainty analysis if they had the 

opportunity was unanimously answered positively. Although this doesn’t necessarily mean that 

they think uncertainty analysis is important, there seems to be a willingness to gain more 

knowledge on the subject, which is a necessary first step to tackle the lack of knowledge discussed 

above.  

 

4. Most researchers use SimaPro for scientific research, or only spreadsheet software.  

The SimaPro software by Pré Consultants shows to be the most used software tool for LCA 

research of the participants. SimaPro is one of the leading software tools in LCA, but there are 

limitations to its use (Herrmann & Moltesen, 2015). There are limited options for uncertainty 
analysis in SimaPro, and the tool is primarily aimed at business and education purposes (Pré-

Consultants, 2017). This can be seen as a barrier for the further development of uncertainty 

analysis in the LCA research of practitioners in Thailand.  

 

5. Guidance and knowledge development would support an increase in application of 

uncertainty analysis 

Considering the suspected general lack of knowledge by LCA practitioners of uncertainty analysis, 

knowledge development would support an increase in application of uncertainty analysis. This is 

underlined by the answers to the question what the participants without experience un 
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uncertainty analysis would need in order to include it in their work. There, knowledge is 

mentioned by 75% of the participants. Furthermore, the lack of consequent guidelines for 

uncertainty analysis is mentioned in the final question on suggestions for how LCA practitioners 

could be encouraged to include uncertainty analysis in their research. A step-by-step manual or 

international guidance would help practitioners to include uncertainty in their research, 

preferably from the start of the study. Finally, of all LCA studies by participants who performed 

uncertainty analysis, the results of uncertainty analysis were included in the final report or 

publication. This means that increasing the use of uncertainty analysis would indeed lead to an 

increase of application of uncertainty analysis in scientific reporting. 

 

4.2.2 Evaluation criteria 

From the literature overview given in the previous chapter, together with the findings from the 

expert survey, several observations can be made regarding the conditions to which an 

appropriate method for uncertainty analysis should comply. By translating these observations to 

concrete criteria of suitable methods uncertainty analysis in agricultural LCA, the results of the 

case study can be evaluated in the final phase of this study. In this section these criteria are 

formulated, and the scoring procedure for each criterion is explained. The final list of criteria and 

the scoring methods are depicted in Table 6. 

 

From the results of the previous sections, the aspects of importance to a suitable method of 

uncertainty analysis can be categorised into three categories: resources (related to the required 

inputs and tools), procedure (related to the required activities during the analysis), and 

understanding (to what extent the analysis contributes to a better understanding of the LCA 

outcomes).  

 

Resources 

Although LCA studies tend to be data-intensive, uncertainty analysis may require large amounts 

of sample data that was initially not gathered. Sampling techniques require multiple data points, 

while an LCA study is sometimes based on single point estimates of parameter values (Björklund, 

2002). The amount of primary data required for an uncertainty propagation method can be a 

limiting factor in the procedure of uncertainty analysis. When secondary data with uncertainty 

estimations suffice (like the pedigree matrix in Ecoinvent), or expert judgement can be used to 

quantify parameter uncertainty, this is seen as an advantage in terms of resource requirements. 

Therefore, the first criterion addresses the primary data requirement of the method.  

 

Criterion 1: Primary data requirements 

When many primary data points are required for uncertainty propagation, this is seen as a 

limiting factor. Conversely, when no primary data is needed this is an advantage in terms of 

suitability to all research types. Following the reasoning of Henriksson et al. (2014) that at 

least eight primary data points are needed to determine a distribution for an input parameter, 

the scoring for this criterion is as follows: 

1. More than eight primary data points are required; 

2. At least one, but less than eight primary data points are required; 

3. No primary data points are required. 

 

A second aspects related to resources refers to the time that is needed to complete the uncertainty 

propagation. As seen in the literature review, the available time to complete an uncertainty 

analysis (or an LCA study in whole) is sometimes limited. Therefore, it is seen as an advantage 
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when uncertainty propagation is not very computationally demanding, and it can be completed 

fast. 

 

Criterion 2: Computation time 

The scoring of this criterion is based on how much time is required to complete the 

uncertainty propagation step for two alternatives in an LCA model.  Computation time is 

considered ‘short’ when it takes less than ten minutes to complete, and it thereby doesn’t 

influence the planning of the study and it can be repeated several times if needed. A maximum 

of three hours is set for the calculation time to be considered ‘long’, because the calculation 

can then be completed within half a day. If the calculation takes longer than three hours, it is 

considered ‘very long’, and it will influence the planning of the study. 

1. Calculation time is more than three hours; 

2. Calculation time is between ten minutes and three hours; 

3. Calculation time is less than ten minutes. 

 

The third aspect related to resources refers to the software that is required for the uncertainty 

propagation. The expert survey shows that most participants use only one software tool in their 

work, which may limit the possibilities for uncertainty propagation: when a method is not 

available in the preferred software tool (SimaPro, following the majority of participants in the 

survey), the practitioners has to use another tool, or even multiple tools. Therefore, the third 

criterion describes if, and if so how many software tools are required. 

 

Criterion 3: Software requirements 

If the full propagation step can be performed within the preferred software tool (SimaPro) 

this is seen as an advantage. When a different tool is required this is seen as a barrier, and the 

lowest score is given to methods that require multiple software tools. 

1. Multiple software tools are required; 

2. One software tool different from the preferred software is required; 

3. The full uncertainty propagation can be performed within the preferred software tool. 

 

Procedures 

Due to the general lack of knowledge about uncertainty analysis that was found both from the 

literature review and the expert survey, uncertainty analysis is not widely used in LCA research. 

The question whether this knowledge should simply be increased, or if the methods should be 

simplified can be subject of further research, but for this study the focus is on the application of 

uncertainty analysis in the current environment of LCA research. In relation to the lack of 

knowledge of uncertainty analysis, the complexity of the procedures is important when 

discussing the suitability of propagation methods. While the core calculations of uncertainty 

propagation are generally made by software tools, additional procedures may be required, either 

in data preparation or after the main calculations. As stated in the literature review, the 

specification of distributions for input parameters may be required, depending on the method 

and available data. Because specifying distributions requires thorough understanding of 

statistical concepts related to uncertainty, it can be expected that LCA practitioners with limited 

knowledge of uncertainty analysis will have difficulties with this preparatory step. Therefore the 

fourth criterion describes the need to specify distributions for the input parameters in the LCA 

model.   

 

Criterion 4: Data preparation 

When no distributions need to be specified for the uncertainty propagation method, this is 



40 
 

seen as an advantage. Because it is either necessary to do so or it isn’t, this criterion can only 

be scored 1 or 3.  

1. Specification of distributions is necessary  

3. No distributions need to be specified 

 

Another procedure that may be required in addition to the core calculations in the propagation 

stage is statistical testing of the outcome of the uncertainty propagation, or ‘post-processing’. 

When a propagation method directly delivers uncertainty information, such as variance, no 

additional procedures are necessary. When a result is presented that is not directly interpretable 

however (e.g. a number of sampling results), statistical testing may be necessary to gain 

interpretable results. The fifth criterion therefore describes the need for post-processing. 

 

Criterion 5: Post-processing 

Because post-processing in the form of statistical testing requires additional knowledge, the 

need for post-processing operations is seen as a disadvantage. It is also possible that post-

processing is not strictly necessary, but can be used for more insight (e.g. when sampling 

results are translated to a measure of variance by the software tool). Ideally post-processing 

is not necessary, so this case is assigned the highest score. 

1. Statistical testing of the outcomes is crucial for interpretation  

2. Statistical testing can be used for more insight, but not crucial for interpretation 

3. Statistical testing of the outcomes is not necessary 

  

Understanding 

Uncertainty analysis methods should present results that lead to a better understanding of the 

LCA outcomes, both in terms of comparison and in terms of absolute significance of the results. 

In terms of comparison the outcomes should present insight in the actual extent to which one 

alternative is preferred over another in terms of environmental impact, considering the 

uncertainties. As shown in the literature reviews, comparing alternatives in a relative way is 

preferred over comparing in an absolute way, because it allows for the comparison of the specific 

uncertainty for each alternative by disregarding uncertainty around shared processes. However, 

this is only possible when the shared processes can be separated from the alternative-specific 

flows, which could be a problem a propagation method only provides a single uncertainty value. 

The results from the expert survey show that when uncertainty analysis is performed, the results 

are always incorporated in the reporting. This notion underlines the importance of this criterion, 

because if the results do not provide a better understanding of the results, but are presented 

anyway, this might give a false sense of accuracy (or at least a meaningless presentation of 

uncertainty). The sixth criterion describes whether relative comparison is possible: the 

comparative power. 

 

Criterion 6: Comparative power 

Because alternatives either can or cannot be compared in a relative way, only two scores are 

possible for this criterion. When relative comparison is possible this automatically means that 

absolute comparison is also possible, because relative comparison requires only a further 

specification of uncertainty information.  

1. Alternatives can only be compared in an absolute way 

3. The results allow for relative comparison of alternatives 

 

In addition to the comparative power of the propagation method, practitioners should be able to 

understand and interpret the outcomes of uncertainty analysis. However, the interpretability of 

the results depends on the amount and type of uncertainty information that is presented. When 
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more information on uncertainty is provided, a better interpretation of the output uncertainty is 

possible. When the presented uncertainty information is limited to single values (e.g. variance) 

or only graphs (e.g. a distribution of output uncertainty), this is seen as a disadvantage. The last 

criterion addresses the possibilities for interpretation, based on the type of uncertainty 

information that is presented through the propagation method.  

 

Criterion 7: Interpretation 

The highest score for this criterion is assigned when confidence intervals can be determined 

with the uncertainty information presented by the propagation method, because this is the 

most valuable uncertainty information when comparing alternatives. Single uncertainty 

values (e.g. variance values) are deemed less desirable, because it doesn’t tell how the 

outcomes are distributed.  When a graphical interpretation is necessary to understand the 

results (i.e. when no representative uncertainty values are given, but only an indication of the 

distribution of the outcomes) this is seen as a disadvantage.  

1. Limited uncertainty information is presented, graphical interpretation is necessary  

2. The results are presented as single uncertainty values (variance)  

3. The results can be presented as confidence intervals 

 
Table 6: Matrix for evaluating uncertainty analysis methods. 

Category 

 

Criterion 

Scores 

1 

 

2 

 

3 

Resources 

 

Primary data 

requirements 

More than 8 

primary data 

points 

Less than 8 

primary data 

points 

No primary data 

required 

Computation 
time 

Very long – 
calculation time is 
more than 3 hours 

Long – calculation 
time between 10 
minutes and 3 
hours 

Short – calculation 
time is less than 
10 minutes 

Software 
requirements 

Multiple software 
tools are required 

One software tool 
– different from 
the software of 
choice – is 
required 

Full analysis 
possible within 
LCA software of 
choice 

Procedure 
 

Data 

preparation 

Specification of 

distributions is 

necessary 

 No distributions 

are required 

Post-
processing 

Statistical testing 
of the outcomes is 
crucial for 
interpretation 

Statistical testing 
can be used for 
more insight, but 
not crucial for 
interpretation 

Statistical testing 
of the outcomes is 
not necessary  

Understanding 

Comparative 
power 

Alternatives can 
only be compared 

in an absolute way  

 The results allow 
for relative 

comparison of 

alternatives 

Interpretation Limited 
uncertainty 
information is 
presented, 
graphical 
interpretation is 
necessary 

The results are 
presented as 
single uncertainty 
values (variance) 

The results can be 
presented as 
confidence 
intervals  
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Criteria weighting  

While all seven criteria are important for the suitability of propagation methods for agricultural 

LCAs in developing countries, some are arguably more important than others. Because the aim of 

uncertainty analysis is to gain a better understanding of the uncertainty around LCA outcomes, it 

can be stated that the two criteria on comparative power and interpretation are of primary 

importance. Also, the abundancy of available primary data from the original LCA study suggests 

that primary data requirements will be of lesser importance in this type of LCA study. Assigning 

values to these criteria based on their relative importance can be done by weighting: more 

important criteria will be assigned higher values, making them count higher in the final 

evaluation. While this procedure is common practice for numerical variables that can be added 

and multiplied (e.g. impact categories in the normalisation phase of LCA), it is harder to 

implement for ordinal variables such as the evaluation criteria here. Because the scores of 1 to 3 

are ordinal, meaning that 3 is not three times better than 1, the scores cannot be added or 

multiplied. Choosing a numerical scale for the scoring of the propagation methods would imply 

that the preferred option for each criterion would be ‘three times better’ than the least preferable 

option. Because of the qualitative nature of the criteria this numerical scale would not make sense. 

Quantitative weighting of the criteria is therefore not possible. Nevertheless, acknowledging that 

the two criteria on comparative power and interpretation are the most important criteria, and 

that primary data requirements are of lesser importance will steer the evaluation of the case 

study results in a way that reflects the importance of each criterion in the context of this study. 

This ‘qualitative weighting’ will be maintained throughout the final evaluation.  
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4.3 Case study 

 

4.3.1 Sensitivity analysis 

 

The first stage of the case study is dedicated to selecting a set of the most important parameters 

in the model in terms of contribution to the model outcomes and the uncertainty of these 

outcomes. First, a perturbation analysis is performed to find the sensitivity of the model outcomes 

to changes in the input parameters. Secondly, using the most influential parameters found in the 

previous analysis, an MEE is performed to find the importance of these parameters in terms of 

contribution to the model output uncertainty. 

 

Perturbation analysis 

In CMLCA, a perturbation analysis can be performed on the process level, elementary flow level, 

or the category level. As the focus of this study is on the ReCiPe climate change indicator (as 

explained in chapter 3), the perturbation analysis on the category level seems to be sufficient. 

However, by performing the analysis on the elementary flows that contribute to climate change, 

the individual contributions of the different GHGs to the multiplier value of each parameter can 

be discerned. This can provide additional insight in the specific role that each parameter plays in 

its contribution to the model outcome. Therefore, the perturbation analysis is repeated for the six 

elementary flows that contribute most to the resulting score on the climate change category 

(listed in Table 7). As 99% of the total impact score is explained by these six flows, it is justified 

to ignore other contributing flows. A general side note to the perturbation analysis in CMLCA is 

that elementary flows have to be converted to input products in the model in order to be included 

in the analysis. This does not affect the results, but it is contradictory to the main principles of the 

way CMLCA works. 

 
Table 7: Elementary flows contributing to the climate change impact category (ReCiPe 1.1 climate change 
[GWP100]). 

Elementary flow Value [kg CO2-eq.] Contribution [%] 

N2O emissions to air 21.2 33 

CO2 emissions to air (high population density) 16.8 26 

CO2 emissions to air (low population density) 11.8 18 

Methane emissions to air (unspecified) 7.59 12 

CO2 emissions to air (unspecified) 6.29 10 

Methane emissions to air (low population density) 1.33 2 

Explained by listed flows 65 99 

Total impact score 65.3 100 

 

The result of the perturbation analysis is a table of the most influential parameters in the model, 

i.e. with a multiplier value higher than the cut-off value of +0.01 (or below -0.01). The multiplier 

value indicates the magnitude of a change of 1% in the parameter on the output. For example, a 

multiplier value of +0.02 indicates that by increasing the parameter value with 1%, an increase 

in GWP of 0.02% will be observed. The multiplier value can also be negative, indicating a decrease 

in GWP when the parameter value is increased. A parameter can either be an input or an output 

flow, or an emission. Because the multiplier values represent the contribution to the climate 

change impact of the output flow of sugarcane, the sugarcane output flow has a multiplier value 

of -1.00 (as a 1% increase of the yield of sugarcane would lead to a 1% decrease of the climate 

change impact).  
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While a total of 386 parameters was found above the cut-off value, most of those are background 

processes with a fixed value and uncertainty data from the Ecoinvent database. Because the focus 

of this case study is on the parameters that are directly related to the cultivation of sugarcane (i.e. 

that were obtained in the field by KMUTT researchers), these background parameters will be 

excluded from further analysis. Table 8 lists the remaining parameters directly related to the 

model foreground processes (stages). Because the different parameters and their associated 

multiplier values may be hard to interpreted intuitively, an explanation of what each parameter 

means is added. 

 
Table 8: Multipliers of the most influential parameters of conventional sugarcane cultivation.  

Stage Flow Multiplier Explanation 

Sugarcane cultivation 
(total) 

Sugarcane output [kg] -1.000 Yield of sugarcane (kg/ha) 
Land preparation input 
[ha] 

+0.040 Land preparation intensity (ha/kg 
output) 

Planting input [ha] +0.032 Planting intensity 
Treatment input [ha] +0.612 Treatment intensity 
Harvesting input [ha] +0.215 Harvesting intensity 
Transport input [tkm] +0.100 Transport (load * distance) 

Land preparation Diesel input [kg] +0.040 Diesel use (kg/ha) 
Planting Diesel input [kg] +0.024 Diesel use (kg/ha) 
Treatment N-fertilizer input [kg] +0.112 N-fertilizer use (kg/ha) 

P-fertilizer input [kg] +0.050 P-fertilizer use (kg/ha) 
Urea input [kg] +0.139 Urea fertilizer use (kg/ha) 
N2O emissions from 
treatment  

+0.289 - 

Harvesting Cane trash burning [kg] +0.152 Cane trash burning (kg/ha) 
CH4 emissions from cane 
trash burning 

+0.116 - 

N2O emissions from cane 
trash burning 

+0.036 - 

Diesel input [kg] +0.063 Diesel use (kg/ha) 
Transport Transport output [tkm] -0.183 Efficiency of transport (tkm/input) 
Production of input 
materials 
(background 
processes) 

Diesel output [kg] -0.056 Efficiency of diesel production 
(kg/input) 

N-fertilizer output [kg] -0.116 Efficiency of N-fertilizer production 
P-fertilizer output [kg] -0.044 Efficiency of P-fertilizer production 
K-fertilizer output [kg] -0.012 Efficiency of K-fertilizer production 
Urea output [kg] -0.134 Efficiency of urea production 

 

The multiplier table still shows several parameters that are not directly important to this study. 

The inputs to the total sugarcane cultivation can be interpreted as ‘intensity’ of cultivation 

practices, in hectare per kilogram of sugarcane produced. These are in fact the different stages in 

the cultivation process (aside from transport), and are therefore not relevant in the next step of 

this case study of uncertainty propagation. Also, the production of input materials is not relevant 

for the uncertainty analysis because these values are fixed in the database. Lastly, the parameter 

‘cane trash burning’ constitutes of CH4 and N2O emissions, but as these parameters cannot be 

changed (as the chemical process of burning cane trash is fixed), only the total of the parameter 

‘cane trash burning’ is of interest here. This leaves a total of nine parameters of potential 

relevance to uncertainty propagation in terms of influence, presented in Figure 7. The figure 

displays the parameters with the absolute multiplier value, because the relative magnitude of the 

multipliers is of interest here (i.e. how large the contribution of each parameter is compared to 

the others), and for visual interpretation this is best presented in an absolute way. 
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Figure 7: Selected relevant parameters and their corresponding multiplier values. For the sake of comparison of 
magnitude the absolute values are given. 

 

Method of elementary effects 

The MEE is performed for the nine parameters that were selected in the perturbation analysis in 

the previous section, in order to describe their importance in terms of their contribution to the 

output uncertainty. To perform an MEE, uncertainty information of the model parameters is 

needed in the form of ranges. As this case study is based on the sample data for one sugar mill, 

the ranges for each parameter are taken from this sample set (88 data points per parameter). 

While these ranges can be seen as indicative for the full dataset of 1,652 farms, the results may 

be different for other sugar mills due to a different geographical location, climate conditions and 

so on. Therefore, the results should be interpreted as only indicative. Also, for one parameter a 

range is not available (cane trash burning), as it was derived from literature. It was therefore 

excluded from the results.  

 

The MEE analysis is performed with MatLab, using a script written by Groen (2016), who used 

MEE in her PhD thesis on uncertainty and sensitivity analysis in agricultural LCA. The required 

input data for an MEE are three matrices from the LCA model (technology matrix A, intervention 

matrix B and final demand matrix f), which are extracted from the CMLCA software. They are 

adapted to fit to the software, i.e. cut off at the foreground processes and aggregating impacts 

from background processes to foreground input parameters. The range of each parameter is 

defined in separate matrices (one for the upper values, one for the lower values). The MatLab 

script and the adapted matrices can be found in the electronic supplementary material. 

 

The results of the MEE can be combined with the results from the perturbation analysis in a 

diagnostic diagram, as suggested in Figure 2. In Figure 8 the importance of the parameters is 

plotted on the y-axis, and the influence (as the absolute multiplier value) is plotted on the x-axis. 
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Figure 8: Combined results of the perturbation analysis and MEE analysis. Circles indicate parameters for which a range 
was available, triangles represent parameters for which the range is unknown. The parameter of diesel input in harvesting 
is indicated by an arrow, because its importance value is too high to fit on this scale.  

 

The combined results of the perturbation analysis and MEE show that the diesel consumption 

during harvesting is by far the most important parameter in terms of uncertainty, but its influence 

on the model outcome is not exceptional. Also, urea and N-fertilizer use during treatment are 

significantly important while also scoring high on influence. N2O emissions during the treatment 

stage are highly influential, but not exceptionally important in terms of uncertainty. Cane trash 

burning does not have a score on importance because a range was not available, but will be used 

in the propagation step because it is the second most influential parameter. 

 

 

4.3.2 Phase 3B: uncertainty propagation 

 
In this phase, the uncertainty of the nine parameter that were selected in the previous section is 

propagated using the methods selected in section 4.1. However, the data that is needed for the 

propagation step needs additional preparation. Errors in the full dataset (where in the previous 

phase only data from one sugar mill was used) need to be removed. Also, as described in the 

methodology, the required input for each propagation method needs to be obtained from the 

dataset. This is explained here. 
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Data errors 

While preparing the raw data for the uncertainty propagation, it became apparent that the dataset 

contained several errors and missing values. This includes extremely high values (> 100 times 

the average value) and zero-values where zero is simply not possible. The parameters where 

zero-values are not allowed are transport (transport from the farm to the sugar mill is always 

necessary) and cane trash burning for conventional cultivation (assuming that conventional 

cultivation always includes cane trash burning). Also, some farms were listed with the cultivation 

method zero, which is considered an error as well. For the purpose of this study it is not necessary 

to remove all the farms containing errors from the dataset, but only the values containing errors 

are removed (except for the cultivation method errors). 

 

The original dataset contained 1346 farms for conventional cultivation and 189 farms for green 

cultivation, adding up to a total of 13,815 data points for nine parameters. This excludes the farms 

containing an error for cultivation method. Table 9 lists the numbers of errors removed from the 

dataset for each error and alternative. A total of 606 data points were removed from the dataset, 

which corresponds with 4.3% of the data points values. 

 
Table 9: Number of data errors removed from the dataset. 

Error Number of errors 

 Conventional 
cultivation  

Green 
cultivation  

Total 

More than ten times the average value 20 3 23 
Transport = 0 183 22 205 
Cane trash burning = 0  46 - 46 
Cultivation method = 0  42 farms 378 
Total 249 25 606 

 

Descriptive statistics 

Several of the required inputs described in Table 5 can be easily generated from the available 

dataset. These descriptive statistics, including the mean, median and standard deviations can be 

obtained through simple calculations, without setting additional parameters. The bounds of the 

possibility functions are based on a pre-defined distance from the core value, for which the mean 

is taken. The upper and lower bounds are set to a distance of ±40% from the core value. This 

choice is further explained in the FIA results. The results of the descriptive statistics calculations, 

which were performed in R, are depicted in Table 10. 
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Table 10: Descriptive statistics of the parameters of conventional and green cultivation of 1 tonne of sugarcane. 

Parameter Unit N Mean Median SD CV Lower 
bound 

Upper 
bound 

Conventional cultivation 
Cane trash 
burning 

t/ha 
1300 70.72 65.91 18.04 0.26 49.50 91.94 

Input of diesel in 
land preparation 

kg/ha 
1342 43.16 31.25 46.71 1.08 30.21 56.11 

Input of diesel in 
planting 

kg/ha 
1336 14.33 6.25 17.57 1.23 10.03 18.63 

Input of N-
fertilizer in 
treatment 

kg/ha 
1345 174.81 150.00 137.90 0.79 122.37 227.25 

Input of P-
fertilizer in 
treatment 

kg/ha 
1345 99.39 93.75 79.24 0.80 69.57 129.21 

Input of urea in 
treatment 

kg/ha 
1346 121.01 0.00 185.77 1.54 84.71 157.31 

Input of diesel in 
harvesting 

kg/ha 
1344 14.55 0.00 49.15 3.38 10.19 18.92 

Transport tkm 1161 1096.03 700.0 1256.50 1.15 767.22 1424.84 
N2O emissions 
from treatment 

kg/ha 
1345 1.46 1.32 1.17 0.80 1.02 1.90 

Green cultivation 
Input of diesel in 
land preparation 

kg/ha 
189 44.58 37.50 35.64 0.80 31.21 57.95 

Input of diesel in 
planting 

kg/ha 
189 21.37 25.00 16.29 0.76 14.96 27.78 

Input of N-
fertilizer in 
treatment 

kg/ha 
189 168.54 148.44 124.59 0.74 117.98 219.10 

Input of P-
fertilizer in 
treatment 

kg/ha 
189 72.72 65.63 58.20 0.80 50.90 94.54 

Input of urea in 
treatment 

kg/ha 
189 137.74 0.00 220.72 1.60 96.42 179.06 

Input of diesel in 
harvesting 

kg/ha 
187 6.56 0.00 13.11 2.00 4.59 8.53 

Transport tkm 166 1051.84 875.00 846.32 0.80 736.29 1367.39 
N2O emissions 
from treatment 

kg/ha 
189 1.34 1.13 1.23 0.92 0.94 1.74 

 

 

Distributions 

One of the required inputs for uncertainty propagation with a sampling method is the distribution 

function that can be used to describe each parameter. In the sampling procedure, this function is 

used to estimate the probabilities of all values within the distribution function, and sample from 

this function according to these probabilities. When little data and time resources are limited, it 

is possible to assume a certain distribution (e.g. lognormal) for all parameters (Henriksson et al., 

2014). When sufficient data is available (more than eight data points), Henriksson et al. (2014) 

argue that the best fitting distribution should be determined in order to avoid increasing data 

uncertainty by assuming one distribution. In this case study, because much primary data is 

available, the best fitting distribution will be determined for all parameters. However, the best 

fitting distribution must still present a truthful depiction of the way the parameter is distributed. 

This means that a normal distribution with the probability density function (pdf) stretching 
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below zero is only possible for parameters where negative values can occur. In this case study, all 

nine parameters do not allow for negative values: negative fuel consumption, fertiliser use, 

transport or emissions are not possible in this system. This means that when the best fitting 

distribution implies a pdf that stretches below zero, it has to be adjusted to a distribution that 

does not allow for negative values (the lognormal distribution). Although this is arguably an 

assumption that affects the outcomes, it is necessary to avoid negative outcomes. 

 

When determining the best fitting distribution for a parameter, the sample data is compared to 

theoretical fitted distribution functions, as where they perfectly following a distribution function. 

A goodness-of-fit (GOF) test determines the extent to which is does so, by testing the hypothesis 

that the sample data follows a certain distribution. If the null-hypothesis that the data does not 

follow a certain distribution is rejected, the data can be assumed to follow this distribution. 

Common GOF test methods that can be used to determine this information for several 

distributions include the Anderson-Darling (AD) test and the Kolmogorov-Smirnov (KS) test.  

 

However, if the null-hypothesis is not rejected for any distribution, additional measures are 

needed to determine the best fitting distribution relative to the others. The AD and KS tests also 

give a specific value for each distribution when compared to the sample data. This information 

can be used to compare the fitting distributions in a relative way, when no conclusions can be 

drawn from the hypothesis-testing alone. This method may be required when using large sets of 

sample data, because it is not likely that primary data closely follows the theoretical distribution 

function. The GOF-tests are performed in R, and the results are listed in Table 11 and Table 12.  

 
Table 11: Goodness-of-fit results for green cultivation parameters. The best fitting distributions for each parameter are 
highlighted. For the uniform distribution, the AD statistic and AIC criterion are not available. 

Parameter Distribution AD statistic KS statistic AIC criterion Explaining 
graphs 

Input of diesel 
in land 
preparation 

Normal 3.21 0.124 1890.1 
CDFs 
P-P plot 

Lognormal 21.65 0.289 1898.2 
Uniform  0.421  

Input of diesel 
in planting 

Normal 10.27 0.197 1594.0 
None Lognormal 24.53 0.273 1612.5 

Uniform  0.352  
Input of N-
fertilizer in 
treatment 

Normal 5.74 0.154 2363.2 
All Lognormal 20.36 0.271 2436.9 

Uniform  0.474  
Input of P-
fertilizer in 
treatment 

Normal 2.95 0.110 2075.5 
All Lognormal 20.47 0.273 2094.6 

Uniform  0.487  
Input of urea 
in treatment 

Normal 20.65 0.279 2579.4 
None Lognormal 26.43 0.361 1869.8 

Uniform  0.665  
Input of diesel 
in harvesting 

Normal 33.72 0.387 1496.0 
None Lognormal 33.26 0.430 980.0 

Uniform  0.696  
Transport Normal 8.80 0.165 2712.1 

All Lognormal 1.23 0.091 2595.5 
Uniform  0.681  

N2O emissions 
from 
treatment 

Normal 6.90 0.146 617.0 
All Lognormal 2.02 0.095 527.1 

Uniform  0.616  
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Table 12: Goodness-of-fit results for conventional cultivation parameters. The best fitting distributions for each parameter 
are highlighted. For the uniform distribution, the AD statistic and AIC criterion are infinite and not available respectively. 

Parameter Distribution AD statistic KS statistic AIC criterion Explaining 
graphs 

Cane trash 
burning 

Normal 28.44 0.132 11212.3 
All Lognormal 16.72 0.124 11080.3 

Uniform  0.570  
Input of diesel 
in land 
preparation 

Normal 57.43 0.178 14128.6 
CDFs Lognormal 118.44 0.241 12714.9 

Uniform  0.557  
Input of diesel 
in planting 

Normal 100.65 0.291 11452.5 
None Lognormal 167.20 0.336 9578.7 

Uniform  0.668  
Input of N-
fertilizer in 
treatment 

Normal 37.20 0.146 17072.2 
Histogram 
CDFs 

Lognormal 117.62 0.239 17348.3 
Uniform  0.605  

Input of P-
fertilizer in 
treatment 

Normal 29.38 0.157 15582.0 
All Lognormal 126.10 0.254 15802.8 

Uniform  0.586  
Input of urea 
in treatment 

Normal 139.30 0.302 17887.2 
None Lognormal 197.82 0.370 12978.8 

Uniform  0.683  
Input of diesel 
in harvesting 

Normal  0.384 14286.7 
CDFs Lognormal 218.71 0.409 7966.5 

Uniform  0.885  
Transport Normal  0.192 19867.8 

P-P plot Lognormal 15.70 0.106 18724.0 
Uniform  0.690  

N2O emissions 
from 
treatment 

Normal 32.41 0.130 4233.1 
All Lognormal 7.32 0.082 3756.1 

Uniform  0.578  

 

The information from the GOF-tests implies that most of the parameters in the model are 

normally distributed. However, when looking at the descriptive uncertainty information from 

Table 10, it becomes clear that all of these parameters will have a pdf that stretches below zero, 

implying the possibility of negative values. As this must be avoided, lognormal distributions are 

assumed for all parameters. It is acknowledged that the best procedure to handle the 

impossibility of negative values is by truncating the normal distributions at the zero value, 

thereby avoiding all values below zero. However, due to time restrictions the parameters were 

simply assumed to be lognormal. Still it is important to understand the best fitting distributions 

when interpreting the uncertainty propagation results, as the assumption of a different 

distribution influences the result. This will be discussed in the discussion chapter.  

 

Using the information from this section, the CMLCA model can be supplemented with uncertainty 

information. In CMLCA parameter uncertainty for lognormally distributed parameters is 

expressed as the mean value and a parameter of dispersion phi. This parameter expresses the 

dispersion based on the coefficient of variation as follows (Heijungs & Frischknecht, 2005, p. 

252): 

 

𝑝ℎ𝑖 =  √ln(CV2) + 1 

 

where CV is the coefficient of variation. This formula is applied to the mean values and CVs from 

Table 10, and the resulting values that are put into CMLCA are listed in Table 13.  
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Table 13: Parameter uncertainty information as input in the CMLCA model. 

Parameter Distribution Mean value Parameter of 
dispersion (φ) 

Conventional cultivation Value 
Cane trash burning Lognormal 70.72 0.256 
Input of diesel in land preparation Lognormal 43.16 0.879 
Input of diesel in planting Lognormal 14.33 0.960 
Input of N-fertiliser in treatment Lognormal 174.81 0.696 
Input of P-fertiliser in treatment Lognormal 99.39 0.703 
Input of urea in treatment Lognormal 121.01 1.102 
Input of diesel in harvesting Lognormal 14.55 1.587 
Transport Lognormal 1096.03 0.918 
N2O emissions from treatment Lognormal 1.46 0.703 
Green cultivation 
Input of diesel in land preparation Lognormal 44.58 0.703 
Input of diesel in planting Lognormal 21.37 0.675 
Input of N-fertiliser in treatment Lognormal 168.54 0.661 
Input of P-fertiliser in treatment Lognormal 72.72 0.703 
Input of urea in treatment Lognormal 137.74 1.127 
Input of diesel in harvesting Lognormal 6.56 1.269 
Transport Lognormal 1051.84 0.703 
N2O emissions from treatment Lognormal 1.34 0.783 

 

 

Correlations and common processes 

One important aspect of assessing parameter uncertainty is the presence of correlations between 

parameters. The outcomes of comparative LCA studies often depend on both common and 

correlated parameters; common in the sense that alternatives often share part of the processes in 

the product system, and correlated in the sense that some parameters in the model may be fully 

or partly dependent on other parameters ‘upstream’ in the product chain (Lloyd & Ries, 2007). 

For example, in the sugarcane cultivation case study both alternatives include the production of 

fertiliser, which is therefore a shared process. Correlated parameters could be for example 

emissions (e.g. CO2) directly related to another parameter (e.g. diesel combustion).  

 

In the context of uncertainty, correlation between parameters is important because the results of 

uncertainty analysis can present wrong conclusions when correlation is ignored (Bojacá & 

Schrevens, 2010). Because the variance in a correlated parameter can be explained partly or fully 

by the variance in another parameter, including the variance of both parameters in uncertainty 

propagation would lead to an overestimation of the output uncertainty (Groen & Heijungs, 2017). 

In other words, this would be ‘double counting’ of parameter uncertainty, and should be 

accounted for during uncertainty propagation. Groen and Heijungs (2017) studied the effect of 

ignoring correlations between parameters, and found that the magnitude of over- or 

underestimation of uncertainty is determined by the variance in the parameter and by the 

correlation coefficient. Small parameter variance and a large correlation coefficient have a large 

effect on the output variance; depending on the type of correlation (technical parameter-

emission, emission-emission or technical parameter-technical parameter), the output variance 

decreases or increases when correlations are ignored (Groen & Heijungs, 2017). Consequently, 

the importance of parameters in terms of their contribution to the output uncertainty (as can be 

quantified with a global sensitivity analysis) is underestimated when correlation is ignored. 

 



52 
 

Although correlations between input parameters can have a significant effect on the output 

uncertainty, incorporating them in uncertainty analysis in LCA is far from common practice 

(Lloyd & Ries, 2007). Groen and Heijungs (2017) name two main requirements that need to be 

met: the procedure for uncertainty propagation needs to be adapted, and knowledge about the 

correlation coefficients is needed. Most common LCA software tools do not provide for adapted 

procedures to handle such correlations within uncertainty propagation, and knowledge about 

this subject is not widespread. Because the focus of this research is on the comparison of 

uncertainty analysis methods, the application or even development of new methods for 

incorporating correlations in uncertainty analysis is beyond the scope of this study. However, 

understanding the correlations between parameters in the case study and interpreting the 

uncertainty propagation results accordingly (although limited to a qualitative assessment) is 

possible without the use of such new methods. Within the nine parameters under study for each 

alternative, considering the flowcharts of both product systems, three correlations are found. The 

emission of N2O in the treatment phase is possibly directly linked with the application of N-

fertiliser and urea fertiliser, as nitrogen is the main component of N-fertiliser and urea. Also, it is 

expected that N-fertiliser and urea are correlated, because both fertilisers are used nitrogen 

fertilisers providing the same service to the soil. When more N-fertiliser is used, less urea would 

be needed to provide the same amount of nitrogen to the soil. The correlation between 

parameters can be tested with Pearson’s correlation coefficient r, found by  

 

𝑟 =  
∑(𝑋𝑖 − �̅�) (𝑌𝑖 − �̅�)

[∑(𝑋𝑖  − �̅�)2  ∑(𝑌𝑖 −  �̅�)2]1/2
 

   

where X and Y are the parameters tested (Rodgers & Nicewander, 1988, p. 61). Although this 

measure does not say anything about causality, it gives an indication of the magnitude of 

correlation. A correlation coefficient of 1 indicates perfect correlation, while 0 means no 

correlation.  

 

N-fertiliser and N2O emissions have a correlation coefficient of 0.91, suggesting a strong 

correlation. An implication of this correlation is that in the uncertainty propagation, the outcome 

may be an overestimation of the actual uncertainty. This because the uncertainty stemming from 

the N-fertilizer and urea fertiliser use is also propagated in the uncertainty N2O emissions. Urea 

fertiliser and N2O emissions however have a correlation coefficient of only 0.04, suggesting a very 

weak or no correlation. Urea fertiliser and N-fertiliser also have a correlation coefficient of 0.04, 

and therefore don’t suggest any correlation. Based on the chemical properties of urea fertiliser 

the lack of correlation with both N2O emissions and N-fertiliser is not expected. A possible 

explanation is that the relationship between urea and N2O emissions was not properly modelled 

in the original model (i.e. the emission factor of N2O from urea fertiliser was not incorporated). 

The lack of correlation with N-fertiliser use suggests that either farmers don’t take into account 

the chemical properties of the fertiliser products when applying them, or that the primary data 

on fertiliser use is incorrect. While this notion is important for the interpretation of the LCA 

results, it does not necessarily complicate matters for uncertainty propagation in this case study, 

because there is no correlation incorporated in the model.  
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Results: Monte Carlo simulation 

The result of the MCS is a list of 3000 possible outcomes of the model for both alternatives. 

Regarding uncertainty, descriptive statistics can be given of this sample set. The mean and median 

values, CV, SD and the 95% confidence interval (as the lower and upper bounds) are listed in 

Table 14. 

 
Table 14: Results of the Monte Carlo simulation (3000 runs). 

Alternative Mean Median SD CV 2.5% 97.5% 

Conventional cultivation 39.6 37.0 12.6 0.318 23.2 72.7 
Green cultivation 32.8 30.5 11.7 0.357 17.7 61.6 

 

 

Graphically the results are presented as histograms (Figure 9 and Figure 10), in a bar chart 

(Figure 12) and in box-whisker plots (Figure 11).  
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Figure 9: Histogram of the MCS results for green cultivation. The dashed lines represent the 2.5th and 97.5th percentile. 

 

 

Figure 10: Histogram of the MCS results for conventional cultivation. The dashed lines represent the 2.5th and 97.5th 
percentile. 
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Figure 11: Box-and-whisker plot of the MCS results for 
both alternatives. The black line indicates the median, the 
box represents the 25th and 75th percentile, and the 
whiskers represent the 10th and 90th percentile. 

Figure 12: Bar chart of the MCS results for both 
alternatives. The error bars indicate the 95% 
confidence interval. 

 

 

 

 

 

 
 

 

The dependent analysis of the MCS is done using the method presented by Henriksson et al. 

(2015a). Because the resulting graphs for each alternative separately are the same for this 

method as for the independent analysis, this part will be focussed on the additional options that 

this method provides for the relative uncertainty of both alternatives. To assess the relative 

uncertainty (i.e. comparing the alternatives on uncertainty caused parameters specific to each 

alternative), the values for green cultivation obtained in the MCS are subtracted from those for 

conventional cultivation. The resulting sample set can be analysed in a similar way to the 

independent analysis. The descriptive statistics are given in Table 15. 

 
Table 15: Results of the MCS dependent analysis. 

Alternative Mean Median SD CV 2.5% 97.5% 

Conventional – green cultivation 6.85 6.40 16.8 2.46 -25.4 41.4 

 

Because of the negative values in the 95% confidence interval, this result is graphically best 

presented as a histogram (Figure 13) and a box-and-whisker plot (Figure 14).  
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Figure 13: Histogram of the MCS dependent analysis results. The dashed lines represent the 2.5th and 97.5th percentile. 

 
Figure 14: Box-and-whisker plot of the dependent 
analysis of the MCS results. The black line indicates the 
median, the box represents the 25th and 75th percentile, 
and the whiskers represent the 10th and 90th percentile. 
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Results: analytical method 

 

The AUP was performed in CMLCA. The required inputs (standard deviations from the parameter 

mean) are not directly put into the model, but calculated on the background from the uncertainty 

information used in the MCS. As discussed earlier, a first order Taylor expansion was used to 

express the output uncertainty. The resulting output is given by the baseline and mean values (i.e. 

with and without including uncertainty information, which are the same for AUP), the standard 

deviation, variance and coefficient of variance. The results are listed in Table 16. 

 
Table 16: Results of analytical uncertainty propagation. 

Name Baseline Mean SD 
Variance 
(unit^2) CV 

Conventional cultivation 39.7 39.7 14.4 208 0.36 
Green cultivation 33.1 33.1 12.9 166 0.39 

 

Because this method is based on a single calculation, no distribution or confidence interval can 

be provided. Therefore, the results are presented in a bar chart with error bars representing the 

standard deviation (Figure 15). 

 

 
Figure 15: Bar chart of the results of the AUP method. The bars indicate the mean values, the error bars represent the 

standard deviation from the mean. 

 

Results: fuzzy interval arithmetic method 

 

The FIA was conducted in MatLab, using a script adapted from Evelyne Groen (2016) that can be 

found in the electronic supplementary material. This matrix-based approach (which is similar to 

the script used in the sensitivity analysis) requires the input of the mean values in the technology 

matrix, the intervention matrix and the final demand matrix. The script calculates a possibility 

function where the core value is set to one, and the lower and upper bounds are both zero. A 



58 
 

number of alpha cuts is used to describe the levels of possibility between zero (least plausible 

value) and one (most plausible value). Here 11 alpha cuts are used, as this yields steps of 0.1. The 

interval between the lower and upper values at the alpha cuts give the range in which the values 

are estimated to be for a certain possibility. The result is a possibility function where the base 

represents the largest interval, and the top represents the most plausible value. 

 

The intervals are described by the lower and upper bounds at ±40% from the core value, which 

is implemented in the model by setting the parameter range to 0.4. This range has to be chosen 

somewhat arbitrarily, as generally no expression of variance is known when only this method is 

used. An alternative is to use the actual ranges of the available data, but because of the very large 

data set these ranges will be very large, most likely resulting in an overestimation of the actual 

uncertainty. This is so because the possibility function does not allow for the specification of the 

probability that a given value will occur within the range, thereby assuming all values equally 

likely. Therefore, an estimation of the variance (in this case the rather arbitrary 40%) would give 

a better indication of the parameter uncertainty. Uncertainties around the intervention matrix 

are disregarded, as these are not subject of this study. 

 
Figure 16: Results of the FIA method. 

As it is not possible to determine a confidence interval or variance from the triangular fuzzy 

interval in Figure 16, the expression of uncertainty in this method is limited to the graphical 

interpretation and an estimated range around the core value (corresponding to the base of the 

triangle). This information is presented in  

 
Table 17: Results of the FIA method. 

Name Baseline Core value Lower limit Upper limit 

Conventional cultivation 39.7 39.7 28.3 66.1 
Green cultivation 33.1 33.1 23.9 55.7 
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4.4 Evaluation 

 

In this final phase, the results from the uncertainty propagation are evaluated with the criteria 

selected earlier. The scoring guidelines formulated in section 4.2.2 are used to determine the 

score of each method per criterion. The final scores are listed in Table 17. 

 

MCS – independent analysis 

Primary data requirements: Because a sampling method requires a significant amount of data 

points to be available, this method will not yield representative 

results when only a few data points are available. The score is 

therefore 1. 

Computation time: The computation time of this sampling method is very long 

(around 24 hours for 3000 runs). The score is therefore 1. 

Software requirements: Monte Carlo simulation with independent analysis is available in 
most LCA software tools, including SimaPro. No additional 

software is required, therefore the score is 3. 

Data preparation: For this method it is necessary to specify distributions for all 

parameters in the model. The score is therefore 1. 

Post-processing: Because the output of this method is given on a per-run basis, the 

essential uncertainty information can be easily determined within 

the software tool. However, additional testing can be done to find 

the confidence intervals for the alternatives, which provide more 

insight in the significance of the results. The score is therefore 2. 

Comparative power: Because the per-run output of this method is analysed 

independently, the output uncertainty can only be quantified in an 

absolute way. The score is therefore 1. 

Interpretation: Post-processing can be used to find confidence intervals, allowing 

for a better interpretation of the results. The score is therefore 3. 

 

MCS – dependent analysis 

Primary data requirements: The data requirements for this method are the same as those for 

MCS with independent analysis, demanding enough data points to 

determine a distribution. The score is therefore 1. 

Computation time: The computation time for this method is the same as for MCS with 

independent analysis, taking around 24 hours for 3000 runs. The 

score is therefore 1. 

Software requirements: While the Monte Carlo sampling can be done within most LCA 

software tools, the procedure of dependent analysis requires the 

difference between both alternatives on a per-run basis to be 

known. This is not possible within SimaPro alone, the subtraction 

needs to be done in different software (e.g. spreadsheet software). 

The score is therefore 1. 

Data preparation: For this method it is necessary to specify distributions for all 

parameters in the model. The score is therefore 1. 

Post-processing: Other than with the MCS with independent analysis, post-

processing is necessary for a dependent analysis. The outcomes of 

the MCS (3000 outcomes for each alternative) have to be 

subtracted and analysed (whereas in the independent analysis the 
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basic uncertainty information can be presented by the LCA 

software). The score is therefore 1. 

Comparative power: Because the results of the MCS are analysed dependently, this 

method provides insight in the relative uncertainty of the LCA 

outcomes. This means that the comparative power of this method 

is high, as the specific uncertainty information for each alternative 

(i.e. not the shared processes) can be assessed. The score is 

therefore 3.  

Interpretation: Confidence intervals can be determined for the dependently 

analysed results because the output is again given on a per-run 

basis. The score is therefore 3. 

 

Analytical uncertainty propagation 

Primary data requirements: The required input for this method is limited to a core value and 

standard deviation for each parameter. As the standard deviation 

can be determined with less than eight data points (although more 

would increase the reliability), the score on this criterion is 2. 

Computation time: The computation time for this method is very short: less than one 

minute. The score is therefore 3. 

Software requirements: Analytical uncertainty propagation can be performed within a 

single software tool, but not in SimaPro. Therefore another tool is 

needed (e.g. CMLCA), so the score for this criterion is 2. 

Data preparation: It is not necessary to define distributions for the model 

parameters for analytical uncertainty propagation. The score is 

therefore 3. 

Post-processing: The output of this method gives the essential uncertainty 

information, where post-processing is not necessary (nor 

possible). The score is therefore 3. 

Comparative power: Relative comparison of two alternatives is not possible, because 

the uncertainty around each alternative is calculated 

independently from each other. The score is therefore 1. 

Interpretation:   As this method provides single uncertainty values (variance and 

    standard deviation), confidence intervals cannot be determined. 

    Graphical interpretation is possible in addition to the uncertainty 

    information, but not required. The score is therefore 2. 

 

Fuzzy interval arithmetic 

Primary data requirements: Only very limited uncertainty information is required to perform 

this method, as an estimation of the parameter uncertainty is 

sufficient. The score on this criterion is therefore 3. 
Computation time: The computation time for this method is very short, less than one 

minute. The score is therefore 3. 

Software requirements: FIA can currently not be performed within any LCA software tool. 

A different tool is therefore required (MatLab was used for this 

case study). The score is therefore 2. 

Data preparation: No distributions of input parameters are required for this method. 

The score is therefore 3. 

Post-processing: The output of this method gives the uncertainty information by 

means of a possibility distribution, where post-processing is 

would not lead to additional insights. The score is therefore 3. 
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Comparative power: The uncertainty information that is presented by this method 

allows only for an absolute comparison of alternatives. The score 

is therefore 1. 

Interpretation: The possibility distribution that is presented as the outcome of 

this method provides only the upper and lower limits for each 

alternative. The uncertainty information is therefore limited, and 

graphical interpretation is necessary. The score is 1. 

 
Table 18: The scores of each propagation method on the evaluation criteria. 

Category Criterion 

Monte Carlo 
simulation 
(independent 
analysis) 

Monte Carlo 
simulation 
(dependent 
analysis) 

Analytical 
uncertainty 
propagation 

Fuzzy 
interval 
arithmetic 

Resources 

Primary data 
requirements 

1 1 2 3 

Computation 
time 

1 1 3 3 

Software 
requirements 

3 1 2 2 

Procedure 

Data 
preparation 

1 1 3 3 

Post-
processing 

2 1 3 3 

Understanding 

Comparative 
power 

1 3 1 1 

Interpretation 3 3 2 1 
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5. Discussion 

 

5.1 Discussion of results 

 

In this chapter, the insights from the case study evaluation are discussed in relation to the 

research questions and the situation of agricultural LCA research in developing countries. The 

research sub-questions are: 

 

1. What are the drivers and barriers for practitioners of agricultural LCAs in developing 

countries for applying uncertainty analysis? 

2. What methods for assessing uncertainty in LCI data are available? 

3. What are the differences in outcomes when applying different methods of uncertainty 

propagation on agricultural LCI data? 

4. How can the results be used to guide practitioners of agricultural LCA to appropriately 

apply uncertainty assessment in their work? 

 

The literature review and expert survey show that the drivers for applying uncertainty analysis 

in LCA are related to increasing scientific reliability, better guiding decision-makers, and (to a 

lesser extent) compliance with international regulations. Especially when an LCA is comparative, 

uncertainty analysis is crucial to determine the significance of the difference in impact between 

alternatives, and to avoid counterproductive decisions. This underlines the importance of 

assessing the relative uncertainty of LCA alternatives, which has been subject of recent scientific 

debate. The most important barrier was found in the fact that there is a lack of knowledge among 

LCA practitioners of uncertainty analysis methods, which hampers a widespread and adequate 

implementation of uncertainty analysis in LCA practices. Scientific research on methods for 

uncertainty analysis to this date has been focussed on the scientific validity and adequacy of 

different propagation methods, thereby neglecting the fact that some methods are far too 

complex for LCA practitioners to perform. Further research is needed on the integration of 

adequate uncertainty propagation methods in LCA software tools, in such a way that users with 

limited knowledge of uncertainty analysis are able to perform them. Other barriers are related to 

the lack of an adequate framework and guidance for uncertainty analysis, and the need for 

sufficient uncertainty information of the input data.  

 

Answering the second sub-question showed that there many different methods for uncertainty 

analysis in LCA. The methods for assessing parameter uncertainty are sampling methods, 

analytical methods or possibilistic methods, where sampling methods are by far used the most. 

This is in part due to the fact that Monte Carlo simulation is available in most LCA software tools, 

while other methods require additional tools. The fact that most propagation methods that have 

been studied in the context of LCA are rarely used in practice underlines the need for further 

implementation of such methods in LCA software tools.  

 

The differences in outcomes of different uncertainty propagation methods, obtained in the case 

study of this thesis, were evaluated. This evaluation has provided insight in the advantages and 

disadvantages of the uncertainty propagation methods under study. The evaluation shows that 

the primary goal of uncertainty analysis – to gain a better understanding of the uncertainty 

around LCA outcomes – is best served using sampling methods. Including Monte Carlo-based 

uncertainty propagation in an LCA study allows the practitioner to draw reliable conclusions 

about the representativeness of the LCA results. Using MCS with dependent analysis allows for a 
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comparison of two alternatives in a relative way, which is not possible with the other methods, 

and therefore has a high comparative power. However, the results also show that in terms of data 

requirements and knowledge of procedures, the sampling methods perform significantly worse 

than the analytical and fuzzy interval methods. For sampling methods to yield representative 

results, many primary data points are required. Less data is required for AUP (more than one data 

point) and FIA (no primary data required), but these methods contribute to a (far) lesser extent 

to a better understanding of the results. When FIA would be used for research where sufficient 

primary data is available, a considerable and ‘unnecessary’ simplification of the uncertainty 

information is needed. While the variance of each parameter could be used to estimate a 

representative range, there is no methodology available that allows for the implementation of 

such information in FIA. Using AUP would then be a ‘second best’ option in terms of quality of the 

results, because at least the variance of the alternatives is given.  

 

The answer to the final sub-question, how the results can be used to guide LCA practitioners in 

developing countries in applying uncertainty analysis in their work, follows from the evaluation 

of the case study results. The evaluation has shown that data availability, knowledge of 

practitioners, and available time and software determine the most suitable method for 

uncertainty propagation in an agricultural LCA. However, the availability of primary data was not 

found to be an issue in Thai agricultural LCA research, where primary data was abundantly 

available. This implies that primary data requirements are of lesser concern for this type of LCA 

research in developing countries, where time investment in data collection is relatively large. 

Nevertheless, data availability may differ among developing countries regardless of the time 

investment by the LCA practitioners (e.g. due to limited data sources). Computation time and 

software requirements are still issues, depending on the resources available to the LCA 

practitioner. The specification of distributions and post-processing operations, which are 

required for the sampling methods, involve intricate procedures that complicate the uncertainty 

analysis as a whole. Because of the lack of knowledge of uncertainty analysis that was found in 

the expert survey, the required procedures for an adequate use of sampling-based uncertainty 

propagation is too complicated for most LCA practitioners to become common practice. The most 

suitable method of uncertainty propagation for agricultural LCA in developing countries should 

therefore be chosen based on the characteristics of study and the knowledge of the LCA 

practitioner. 

 

5.2 Reflection 

 

While the results presented in this study provide new insight into the suitability of different 

methods for uncertainty analysis for agricultural LCA in developing countries, there are some 

remarks that need to be made regarding the representativeness of the results for the situation it 

aims to describe. Or, to stay within this study’s terminology: the uncertainty around this study. 

Several research choices and limitations have arguably influenced the result, and should 
therefore be discussed.  

 

Firstly, choices regarding the case study LCA model have been made in order to fit the purpose of 

this study. While the original LCA model was constructed in the SimaPro software, the case study 

was performed based on an LCA model converted to CMCLA. While the implications of this 

conversion step have been discussed, it is still possible that the CMLCA model behaves differently 

than the SimaPro model. It is assumed that the two models are adequately corresponding, but it 

is not possible to rule out the possibility of discrepancy between the models, simply because the 

options required for this study are not available in SimaPro. This also emphasises that SimaPro 
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does not provide enough options for adequate uncertainty analysis. Another point of discussion 

concerning the LCA model is the question whether the original model was an adequate 

representation of sugarcane cultivation in Thailand. While data was collected locally and the 

geographical spread of the data was preserved in the dataset, this information was not 

implemented in the LCA model. Several averaging steps were needed to provide an overall 

presentation of environmental impact in the sugarcane sector. This study has not addressed 

geographical differences because of time limitations, but the neglection of those is arguably a 

simplification that should be avoided. Also, the LCA model that was used in the case study of this 

thesis is rather imperfect and taken from a larger study that includes processes after the 

cultivation stage as well (see also section 3.3.1). While this model serves the purpose of this thesis 

well, no reliable conclusions can be drawn regarding the actual situation of Thai sugarcane 

cultivation practices.  

 

Secondly, due to time limitations the extensiveness of the issues discussed in the case study is 

limited. This includes the selection of nine parameters for uncertainty propagation, the 

comparison of four methods, and the limited inclusion of the effect of correlation between 

parameters. Starting with the selection of parameters, the selection of parameters included in the 

uncertainty propagation can be seen as representative because they account for almost all 

uncertainty estimated in the LCA model. However, it must be acknowledged that all parameters 

in the model have some degree of uncertainty. Therefore the actual uncertainty around the model 

outcomes will be slightly larger. It should also be noted that the uncertainty of the background 

processes (i.e. the processes and flows from the Ecoinvent database) is included in the analyses 

performed in CMLCA. The discussion around the representativeness of these quantifications 

(stemming from data quality indicators) is not part of this study, but it should be noted that not 

all software tools allow for the convenient propagation of these ‘background’ uncertainties. 

Another issue that was encountered is that of assuming lognormal distributions to avoid negative 

values, while normal distributions fit some parameter data better. Although this is a recurring 

issue in all uncertainty propagation methods where distributions for input parameters need to 

be defined, there does not seem to be a uniform method to handle this problem. Also, while there 

are many methods for uncertainty analysis available, this study is limited to the comparison of 

four methods. Including more methods was not feasible in terms of available time, but it is 

recommended that other methods (e.g. other sampling or analytical techniques) are assessed 

similarly to this study to complement the results of this research. Lastly, the effect of correlation 

between parameters is only shortly discussed. Because the focus of this research was kept at the 

comparison of methods, the effect of including or excluding correlations was not studied here. 

However, this topic has been the subject of recent discussion in literature and is highly relevant 

for the way uncertainty analysis is performed. Therefore, the effect of correlation on the output 

uncertainty of different propagation methods should be part of further research, also, but not 

limited to the context of agricultural LCA in developing countries.  

 
Thirdly, choices and limitations regarding the scope of this research need to be discussed. While 

choosing an adequate scope for this research is necessary, it also limits the extent to which the 

results can be generalised. This study aims at providing guidelines for LCA practitioners in 

developing countries on how uncertainty analysis is most appropriately applied. Because the case 

study was performed under the supervision of one of Thailand’s leading LCA researchers, and 21 

LCA practitioners across Thailand have been surveyed, the results can be considered as 

representative for the situation of LCA research in Thailand. However, it can be argued that one 

case study in Thailand is not sufficient to make general statements about developing countries. 

More research in other developing countries is needed to make such statements. A second 

discussion point regarding the scope of this research is the fact that only parameter uncertainty 
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is discussed, while model uncertainty and scenario uncertainty are not necessarily of lesser 

importance. Especially considering the number of participants in the survey that have experience 

with the assessment of scenario uncertainty, it can be stated that more research on the suitability 

of uncertainty analysis methods for model and scenario uncertainty for LCA in developing 

countries would be valuable. Nevertheless, the availability of methods for assessing parameter 

uncertainty and large input datasets provide large potential for quantification of parameter 

uncertainty and its interpretation in LCA research in agricultural LCA. 

 

Lastly, it can be stated that the LCA result of this case study, i.e. the environmental impact of 

sugarcane cultivation, is highly uncertain. Where the other methods give a strong suggestion that 

the output uncertainty is larger than the difference between both alternatives, the MCS with 

dependent analysis shows that this is indeed the case. The confidence interval of the difference 

between both alternatives stretches far below zero, indicating that the difference is not 

significant. Therefore, based solely on the cultivation stage, it cannot be concluded that green 

cultivation should be preferred over conventional cultivation. This underlines the need for 

uncertainty analysis to be included in this type of LCA research, as it may influence the 

conclusions drawn based on the LCA outcomes.  
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6. Conclusion 

Considering the discussion above and the final evaluation, the main research question can be 

answered. The research question is: 

 

What methods of uncertainty analysis are most suitable to use in agricultural life cycle 

assessment in developing countries in terms of procedure and outcomes? 

 

The comparison of methods in the case study has provided insight in the advantages and 

disadvantages of each method in terms of suitability for agricultural LCA in developing countries. 

Some elements of comparison are specifically important for developing countries, including data 

availability and application of the research in policy-making. Considering this and the final 

evaluation, the following conclusions can be drawn. 

 

It can be argued that the extent to which each method provides a better understanding of the LCA 

results is the most important criterion, as that is the primary goal of uncertainty analysis. In 

situations where LCA research is used for policy support, as is often the case in Thailand, an 

understanding of the uncertainties around the LCA results is crucial. A dependent analysis of a 

Monte Carlo simulation has shown to meet this criterion best, as this is the only method that 

allows for a relative comparison of two alternatives. This advantage is only valid in a comparative 

context however, and limited to two alternatives. When not comparing alternatives, e.g. in a 

hotspot LCA, the independent analysis of an MCS performs only slightly better than other 

methods in terms of providing better understanding of the LCA results. The FIA however provides 

only limited understanding, as the uncertainty information it uses is very limited. In terms of 

resource requirements both sampling methods score low, while the AUP and FIA provide more 

possibilities. This is an advantage when limited time or data is available. However, in most 

agricultural LCA research much primary data is collected (as was the case in the case study), and 

data requirements are easily met. Therefore this issue becomes less important for such research, 

at least when sufficient time is available. In terms of difficulty of procedures, there are large 

differences between the studied methods. The AUP procedure is least complicated due to the 

single calculation that is used, and no post-processing is necessary. The independent analysis of 

the MCS and the FIA are more complicated, as several steps are needed to gain a result. Still, the 

final calculations can be performed within the LCA software. The dependent analysis of the MCS 

is most complicated, because several additional steps need to be performed manually, and in-

depth understanding of the way this analysis works is needed. Considering the results from the 

expert survey concerning the found general lack of knowledge of uncertainty analysis among Thai 

LCA practitioners, this criterion is arguably very important. Lastly, the best interpretation of the 

uncertainty propagation results is possible with sampling methods, as this provides reliable 

information that can intuitively interpreted with confidence intervals. The outcomes of AUP are 

also easily interpreted with bar charts with error bars, but because the error bars are limited to 

variance-based information (standard deviations), the information is less valuable than 

confidence intervals. The FIA method is harder to interpret than the other methods, as a 

possibility distribution can be confusing for those without experience in possibilistic methods, 

and the outcomes are arguably less valuable when based on simply an estimation of uncertainty.  

 

The conclusions above suggest that there is no single answer to the main research question, as all 

methods have advantages and disadvantages regarding suitability for agricultural LCA in 

developing countries. In any case, a first step towards a more widespread implementation of 

uncertainty analysis in LCA research would be to provide practitioners with extensive guidelines 

on how to perform uncertainty analysis, as well as the implementation of more methods in 
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different LCA software tools. While such extensive guidelines can be subject of future research, 

based on the results of this study recommendations can be made regarding the choice for a 

specific method of uncertainty propagation. Based on the findings in this study, a decision tree is 

presented here for choosing the most suitable propagation method (see Figure 17).  

 

Concludingly, it can be stated that ideally, in a comparative context MCS with dependent analysis 

of the alternatives in an LCA study should be used. However, there may be several reasons why 

this method is not preferred or possible. If the study is not comparative, MCS with independent 

analysis may suffice. Also, if the study includes more than two alternatives, dependent analysis is 

not possible (with the existing methodology), and independent analysis is best option. Other 

issues may be a lack of knowledge of uncertainty analysis, limited time available for the study, or 

that only few primary data points are available. In those cases, analytical uncertainty propagation 

is recommended. Only when no primary data points are available, FIA should be considered, 

because of the very limited contribution to better understanding the LCA outcomes it provides. 

 

 
 

Figure 17: Decision tree for selecting the most suitable uncertainty analysis method. 

This decision tree provides guidance for selecting the most suitable method depending on the 

user and the type of study. It is also clear however that both knowledge development among LCA 

practitioners and extensive step-by-step guidelines for uncertainty analysis would greatly 

support an increase of the use of uncertainty analysis in LCA research. This would allow for a 

greater contribution of the LCA method to sustainable development in both developing and 

developed countries.   
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I. Goodness-of-fit plots  
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II. Questionnaire for LCA practitioners 

 

This questionnaire is part of a Master thesis research on uncertainty analysis in agricultural Life 

Cycle Assessment. One of the topics of interest is the way that LCA practitioners see uncertainty 

analysis, and why they do or do not incorporate uncertainty analysis in their research. The goal 

of this questionnaire is to gain understanding of the challenges for LCA practitioners related to 

uncertainty analysis, in order to give recommendations for methodological improvements. 

 

Wisse ten Bosch 

Graduate intern at King Mongkut’s University of Technology Thonburi, Thailand 

Master’s student at Leiden University & Delft University of Technology, The Netherlands 

 

1. What is your current occupation? 

Open question 
 

2. What is your experience with LCA research (how many and what kind of projects were 

you involved in)? 

A. Less than 3 projects 

B. 3 to 6 projects 

C. 6 to 10 projects 

D. More than 10 projects 

 

3. Are you familiar with the concept of uncertainty analysis in LCA? 

A. Yes 

B. No 

 

4. What kind of LCA projects have you been you involved in? 

Open question 

 

5. Which of the following LCA software tools have you used in your work? 

A. SimaPro 

B. GaBi 

C. CMLCA 

D. OpenLCA 

E. I don’t use LCA software 

F. Other… 

 

6. Are you familiar with the concept of uncertainty analysis? 

A. Yes 

B. No 

 

7. Regarding uncertainty in LCA research, which type of uncertainty is most interesting for 

your work? 

A. Parameter uncertainty  

B. Scenario uncertainty  

C. Model uncertainty  

D. Uncertainty is not interesting for     my work 

E. I don't know 
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8. Do you have any experience with performing uncertainty analysis? 

A. Yes 

B. No 

 

a. If so: 

Which of the following methods have you used in your work? 

A. Sampling methods 

B. Analytical methods 

C. Scenario analysis 

D. Fuzzy set methods 

E. I don’t know 

 

Where did you learn how to perform uncertainty analysis? 

A. In a university course 

B. From a colleague 

C. Self-study 

D. From LCA software instructions 

E. Other… 

 

Did you encounter any challenges when performing uncertainty analysis? 

Open question 

 

In what way did you use the results from the uncertainty analysis in your 

research? 

A. Uncertainty was included in conclusions and recommendations 

B. Uncertainty was analysed, but not included in conclusions and 

recommendations 

C. The results were not included in the final report/publications 

 

b. If not: 

What were the main reasons for you not to perform uncertainty analysis in 

your LCA research? 

A. I don’t know how to perform uncertainty analysis 

B. My LCA software does not support uncertainty analysis 

C. I didn’t have enough data 

D. I didn’t have enough time 

E. Uncertainty is not interesting for my work 

F. Uncertainty analysis is not mandatory 

G. Uncertainty analysis would undermine my results 

H. Other… 
 

What would you need in order to include uncertainty analysis in your 

future research (e.g. more time, resources, knowledge, etc.)? 

Open question 

 

Would you like to learn more about uncertainty analysis in LCA if you had 

the opportunity? 

A. Yes 

B. No 
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9. Regarding uncertainty analysis methods, how important are the following aspects to you 

(scale 1 to 5)? 

A. The method is easy to use 

B. The method does not require many data points 

C. The method gives very accurate results 

D. The method is very fast in calculation 

E. The analysis can be performed within my LCA software  

 

10. Do you have any suggestions on how LCA practitioners could be encouraged to include 

uncertainty analysis in their research? 

Open question 

 

Thank you for participating in this study. If you have any questions or comments regarding this 

questionnaire or my research, please contact me at w.s.tenbosch@tudelft.nl.  

  

mailto:w.s.tenbosch@tudelft.nl
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III. Result of the questionnaire for LCA practitioners 

 
Question Answers N % 

General information (N = 21) 

What is your current occupation? Lecturer 
Researcher 
Government official 
Student 
Missing 

2 
3 
1 
3 
12 

9.5% 
14.3% 
4.8% 
14.3% 
57.1% 

What is your experience with LCA 
research? 

Less than 3 projects 
3 to 6 projects 
6 to 10 projects 
More than 10 projects 

3 
7 
6 
5 

14.3% 
33.3% 
28.6% 
23.8% 

What kind of LCA projects have you 
been you involved in? 

Agriculture 
(Bio)energy 
Transport & fuels 
Raw materials 
Consumer products 
Service 
LCA policy 
Water footprinting 
Waste management 

16 
14 
16 
8 
12 
1 
1 
1 
1 

76.2% 
66.7% 
76.2% 
38.1% 
57.1% 
4.8% 
4.8% 
4.8% 
4.8% 

Which of the following LCA software 
tools have you used in your work? 

SimaPro 
GaBi 
CMLCA 
OpenLCA 
I don’t use LCA software 
Spreadsheet 

15 
1 
0 
2 
8 
1 

71.4% 
4.8% 
0.0% 
9.5% 
38.1% 
4.8% 

Are you familiar with the concept of 
uncertainty analysis? 

Yes 
No 

14 
7 

66.7% 
33.3% 

Regarding uncertainty in LCA research, 
which type of uncertainty is most 
interesting for your work? 

Parameter uncertainty  
Scenario uncertainty  
Model uncertainty  
Uncertainty is not interesting for     
my work 
I don't know 

8 
6 
4 
2 
 
1 

38.1% 
28.6% 
19.0% 
9.5% 
 
4.8% 

Do you have any experience with 
performing uncertainty analysis in 
your work? 

Yes 
No 

9 
12 

42.9% 
57.1% 

For those with experience in uncertainty analysis (N = 9): 

Which of the following methods have 
you used in your work? 

Sampling methods 
Analytical methods 
Scenario analysis 
Fuzzy set methods 
I don’t know 

3 
2 
8 
0 
0 

33.3% 
22.2% 
88.9% 
0.0% 
0.0% 

Where did you learn how to perform 
uncertainty analysis? 

In a university course 
From a colleague 
Self-study 
From LCA software instructions 
From my advisors 

2 
2 
6 
2 
1 

22.2% 
22.2% 
66.7% 
22.2% 
11.1% 

Did you encounter any challenges when 
performing uncertainty analysis? 

Yes 
Yes, the interpretation 
Yes, lack of data 
Yes, misleading data  collected 
Missing 

2 
1 
1 
1 
7 

22.2% 
11.1% 
11.1% 
11.1% 
77.8% 
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In what way did you use the results 
from the uncertainty analysis in your 
research? 

Uncertainty was included in 
conclusions and 
recommendations 
 
Uncertainty was analysed, but 
not 
included in conclusions and 
recommendations 
 
The results were not included in 
the final report/publications 

8 
 
 
 
1 
 
 
 
0 

88.9% 
 
 
 
11.1% 
 
 
 
- 

For those without experience in uncertainty analysis (N = 12): 
What were the main reasons for you 
not to perform uncertainty analysis in 
your LCA research? 

I don’t know how to perform 
uncertainty analysis 
 
My LCA software does not 
support uncertainty analysis 
 
I didn’t have enough data 
 
I didn’t have enough time 
 
Uncertainty is not interesting for 
my work 
 
Uncertainty analysis is not 
mandatory 
 
Uncertainty analysis would 
undermine my results 
 
I asked someone else to do it 

6 
 
 
2 
 
 
3 
 
1 
 
1 
 
 
2 
 
 
0 
 
 
1 

50.0% 
 
 
16.7% 
 
 
25.0% 
 
8.3% 
 
8.3% 
 
 
16.7% 
 
 
- 
 
 
8.3% 

What would you need in order to 
include uncertainty analysis in your 
future research (e.g. more time, 
resources, knowledge, etc.)? 

Knowledge 
Time 
Resources 
Guidelines 

9 
1 
3 
1 

75.0% 
8.3% 
25.0% 
8.3% 

Would you like to learn more about 
uncertainty analysis in LCA if you had 
the opportunity? 

Yes 
No 

12 
0 

100% 
- 

Final questions (N=21) 

 
Regarding uncertainty analysis 
methods, how important are the 
following aspects to you (scale 1 to 5)? 

 
The method is easy to use 
 
The method does not require 
many data points 
 
The method gives very accurate 
results 
 
The method is very fast in 
calculation 
 
The analysis can be performed 
within my LCA software 

1 2 3 4 5 Av. 

1 2 7 2 8 3.7 

1 3 8 5 3 3.3 

0 3 5 8 4 3.6 

0 4 5 8 3 3.4 

2 3 5 6 4 3.4 

Do you have any suggestions on how 
LCA practitioners could be encouraged 
to include uncertainty analysis in their 
research? 

An international guidance published by UNEP/SETAC or 
other well-known international institutions would 
encourage the research in this area. 
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Results will be affected if not considering uncertainty 
issues  
 
Without uncertainty analysis, the results may alternate 
the fact and influence on decision making process, which 
will not support one of the reasons in doing LCA. 
 
The uncertainty and data analysis should be one of 
important topic for LCA since the beginning. Therefore 
the method and  of uncertainty is necessary to apply 
along with the LCA steps. So the LCA practitioners can 
understand that where do they can apply uncertainty for 
their work and how can they analyse it. 
 
A methodology of uncertainty analysis need to be 
developed  with a consistency of all aspect of sustainable 
data regarding environmental, economic and social 
aspects. 
 
Having a rigorous, step-by-step method on how it is to 
be done; a manual. So far, there seem only to be 
available only intellectual exercises performed sitting at 
a computer. Nothing really for real, field data. 
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Electronic supplementary material  

E1 

CMLCA model of sugarcane cultivation 

File: E1_LCSAL.lca 

 

E2 

MatLab script for the method of elementary effects, adapted from Groen (2016). 

File:  E2_MEE_LCA.m 

 

E3 

Adapted matrices used in the MEE analysis 

Files: A-matrix (technology matrix):  E3_Amatrix.csv 

B-matrix (intervention matrix): E3_Bmatrix.csv 

f-matrix (final demand matrix): E3_fvector.csv 

 

E4 

Results of 3000 Monte Carlo runs 

File:  E4_results_MC3000.xlsx 

 

E5 

MatLab script for the fuzzy interval arithmetic method, adapted from Groen et al. (2016) 

File: E5_FIA_LCA.m 
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