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1~ Many AI ideas, such as distributed problem solving, are
appropriate and applicable to design discipline. Further studies
can bridge some of the gaps between these two areas.

2- Experience with TOPGENE shows that heuristic rules are a
satisfactory means for solving a large number of problems that
are computationally intractable and for which there are no fast
algorithms.

3~ An automatic design generation system based on qualitative
reasoning often produces a realistic design whose performance is
hard to judge, while a system based on quantitative approach
often delivers an optimized design whose performance is easy to
judge, but which may not be realistic. The experience of TOPGENE
shows that a design generation system based on the above two
reasoning approaches has the advantages of both.

4~ Q-analysis provides a means for explication of hidden
information in existing data, discovery of interconnections
between elements of a set with respect to a common attribute
between them, and clustering of the elements into groups having
specific ties with each other. These properties of Q-analysis
have many implications in some processes of architectural design.

5- The notion of operation has a significant role in the behavior
of a design. This concept is often omitted or mixed with the

behavioral aspects in models of design processes.

6~ Chemical engineering has used graph theoretical notions known
as Topological 1Indices (TIs) for structure-properties cor-
relations in chemical substances. Some TIs are extremely useful
in development of precedent-based architectural design systems
for indexing, categorizing, filtering, and selecting precedents
of designs.



7- The experience of this work with the Hopfield model of neural
networks shows that this area of artificial intelligence has
potentials for solving some of the design optimization problems
that are classically dealt with by analytical methods.

8- The rise of religious thinking and environmental activism in
the world is a consequence of carelessness of contemporary
social-economical views about the human values and nature.

9- Scientific theories are much less subject to misinterpre-
tations and manipulations than religious principles. One reason
is that only scholars are concerned with scientific theories,
while religious principles are mostly dealt with by ordiniry

people.

10- History is said to be written for us to learn from the past
and to stop repeating our past mistakes. Yet, practically,
history seems written to teach us not to forget to repeat our

mistakes.

11- TU Delft has extensive capital investment compared to many
universities in the world. Yet, the use of these investments

seems relatively very low.
12- TU's quarter system, and its 4-year undergraduate program is

incompatible with most of the well known universities in the

world, and harmful to its educational quality.

13- A partial truth is a lie.
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|
CHAPTER 1
INTRODUCTION
|

1.1 Problems

This work integrates Artificial Intelligence (AI) with mathematical tech-
niques to partially model the architectural design process and to manipulate
architectural design knowledge for solving the following class of design

problems:

Problem-1:

Given the structure and operation of an architectural design product, and a
set of social norms identifying its expected (desired) behavior:

— Evaluate the design with respect to the set of social norms.

= Develop an analysis and give a diagnosis of the design for its behavior.

Problem-2:

Given a set of activities, and a set of social norms identifying the

expected (desired) behavior of an architectural design:

- Generate a design with activities assigned to its locations, whose actual
performance is as close as possible to the expected performance.

- Develop an analysis and give diagnosis of the generated design.

Problem-1 is a design product evaluation problem, the second is a design
generation problem. Both problems are based on the relationship between the
formal-structure and behavior of a building mediated through its operation.
The terms structure, function, behavior, and performance are often used
to denote different phenomena in different knowledge domains. These terms

are treated in detail in the next chapter. However, for the sake of clarity,

(1-1)



Chapter 1: Introduction

brief definitions of these terms and other key-terms such as analysis,
evaluation, and diagnosis, related to the architectural domain, the specific

focus of my investigation, are given here:

Structure:

Structure refers to the physical organization of a building, and more speci-
fically the pattern of connectivities embedded in it. I also will refer to
the connectivity pattern of a building as its location access graph, topo-
logy of the locations, or simply its topology [Tzonis87] in rare circumstan-

ces.

Operation:

I define the operation of a building as the dynamic aspects of a building as
a result of the arrangement or allocation of activities within the building.
The allocation of activities in a building in a certain way has direct
affect on the patterns of movements of people and objects within that buil-
ding. The circulation flow between different location pairs in a building
and interactions between groups of people are, therefore, operational as-

pects of a building system.

Behavior:

I define the term behavior in this work to denote the functional qualities
of a building, measurable in costs and utilities that it provides for its
users. The behavior of a building with respect to the social norms mentioned
earlier is a function of its operation, and it is constrained by the
physical organization of the building.

Norms:

The behavior of a system is usually divided into the actual behavior and the
expected behavior. The expected behavior of a building is commonly expressed
in terms of normative requirements. A norm is therefore the anticipated or
expected behavior of a building with respect to a single point of view. Ex-
periments have led to the identification of several categories of norms with
respect to the performance of buildings [Tzonis87]. This work deals only
with a selection of norms privacy, community, circulation-cost, and interve-

ning opportunity that are associated with the social qualities of buildings.

(1-2)
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Performance:

The actual behavior of a design with respect to a norm is sometimes referred
to as design objective, design goal, criterion of evaluation, and perfor-
mance of the design. I will mostly refer to the actual behavior of a buil-

ding with respect to a norm as its performance in this work.

Analysis:
Analysis of a design is the process of deriving the values of its (expected

or actual) performance attributes from its structural description [Rosenman-
90].

Evaluation:
The process of comparing the performance (i.e. actual behavior) and the
expected behavior of a design, and judging its performance is called

evaluation [Rosenman90].

Diagnosis:

The process of identifying the causes of (mis)behavior of a system with
respect to a norm is often referred to as its diagnosis [Rosenman90]. This
term, here, refers to the process of identifying locations of a building
having a behavioral value (e.g., disturbance degree, costs, utilities) with

respect to social norms.

The relationship between the structure, operation, and behavior of buildings

is illustrated in figure 1.1.

(1-3)
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Verbal description Pictorial description

Activity, Actors
Structure

o

(Physical organization) Activity, I Activity,

Actors Qee————()e———0 Actors
(Connectivity pattern) I
+

0

Allocation of activities and actors
Activity, Actors

Causes

v CiFculation flow
Operation

x4

Causes 1

Interactions
Operational aspects

(_J, ,,,,,,,,,,
Causes
4
Social behaviors Social behaviors
A
l: Means A causes B
B

Figure 1.1: The structure, operation, and behavior relationships
in a building

Architects deal with several dilemmas while facing a design. As opposed to
more precise and simple kinds of artifact design, ambiguities, informali-
ties, lack of information, and a vast number of constraints are characteris-
tics of architectural design. These are characteristics attributed to design
in general as well [Alexander66] [Aguero87]. The constraints of architec-
tural design are often varlous, conflicting, and stemming from different
sources. Orientation, light, access, and different performance requirements
are examples of such constraints. In architectural practice, even a single
set of design requirements might turn a design task into an impossible one.
For example, the realization of connectivity requirements in a building
might be an impossible goal to achieve. To avoid such situations, architects
have to make trade-offs while designing. These trade-offs are often subjec-
tive and based on their intuitions. The introduction of more requirements
into an architectural problem results in further increase in the complexity
of its design process. Close examination of the problems, posed above,

conveys several interesting characteristics that played an important réle in
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the development of the present system:

- There is a dynamic aspect associated with generating building designs
as a result of the operation that they contain. Practically, the
operation and behavior of a bullding are time dependent. I have
suppressed the time element in this work for the sake of simplicity.
I believe that the time factor, first, has only a linear affect on
the computational complexity of our design problem, and second, it
does not require an approach different than it is used in this work.

- There is ambigulty, lack of rigor and absence of information in the
statement of above problems. The actual operation of a building in
terms of degrees of interactions (flow) between its location pairs is
not explicitly stated. This is important in quantitative evaluation
of a design, and in generating a design product with respect to a set
of social norms. In case of a design evaluation, the design product
and the elements contributing to the operation of the design are
known, while in case of a design generation the formal structure
(connectivity pattern) of the building is unknown. Furthermore, no
accurate degree of specificity is given on the level of performance
requirements in both problems.

- There is a high degree of computational complexity associated with an
architectural design at the abstract connectivity level. The number
of possible designs increases exponentially with the number of
locations in the design problem. The size1 of the space of design

solutions for n number of locations is 2" *1/Z

This size charac-
terizes the design as an intractable NP-hard problem [Gary and
Johnson79]. The introduction of domain constraints such as the
planarity requirement into the search process reduces the size of the
solution space to a limited degree but not enough to consider it as a
polynomial type problem. This computational complexity was noticed by
Berwick [72] before. The computational complexity of these and
hundreds of similar problems [Gary and Johnson79] remalins untouched,
but advances in computer technology and development of new methods

and techniques such as heuristic programming, and neural modeling,

'The number of possible graphs for n nodes is 2n(n—1) / n!. This number in

the case of labeled graphs increases to Zn(n_l)/Z[Wilf86].
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nowadays provide us with more efficient and effective ways of
handling such problems than before.

— The design evaluation problem is computationally less complex than
the design generation problem.

- Both problems are multi-dimensional, multi-objective decision-making
problems in which each objective is expressed in terms of a normative
requirement (expected behavior).

~ There are norms that conflict with other norms. Conflicting norms are
uncooperative in a sense that each attempts to achieve its own goal.
Any attempt at optimizing such a norm has a reverse effect on the
performance of a design with respect to other norms having conflict
with it.

- Norms are incommeasurable and mutually independent of each other.
Such a property common to these norms creates methodological and
philosophical problems about the way in which a design can be
optimized with respect to a combination of them simultaneously.
Incommeasurability rules out comparison of the norms for making
trade-off decisions in cases of conflict. Of course, one possibility
to get around this problem is the assignment of weight factors

between the norms. This is a strong assumption to make.

The main concern of this work is to report the implementation details of an
operational system, called TOPGENE, for solving above design problems. The
work also discusses a neural network approach for generating a sub-class of
the design production problem, as well as proposing other AI based
approaches for tackling these problems.

In the following sections after a review of motivations, objectives,
scope, and context of this thesis, an introduction to the system is

presented.

1.2 Motivation

Architectural design starts with a problem (a need), and ends with descrip-
tion of an artifact through a chain of complicated iterative processes
involving problem analysis, abstract design, floor plan layout, etc. Finding

methods for easing the architectural design process has been an objective of
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researchers within the field. In the last four decades several attempts have
been made to develop computer systems to attack architectural designs at
various levels. Examples of these systems are space allocation systems aimed
at generating floor plan layout of buildings from one or a limited number of
points of view. Most of these systems were unsuccessful because of the
underlying methods in their approach: Most of these methods were based on
combinatorial optimization techniques [Tzonis85] [87]. Reliance of these
methods on massive quantitative data and combinatorial calculations, and
absence of architectural knowledge and qualitative data in these approaches,
make them tedious, complicated, computationally expensive, and sometimes
unrealistic in architectural practice. Inefficiency of these methods, and
the need to devise new methods to cope with the complexities of architec-
tural designs, demanded search for new solutions.

Advances in computer technology and software engineering, and the use
of new problem solving methodologies have led to the use of computers in
different scientific areas. In the realm of architectural design the use of
computers has been limited and mostly CAD oriented. One reason seems to be
the ill-structured [Newe1169]2 and combinatorial nature of designs in
general that make them unusually difficult candidates for automation [Simon-
73] [Findler81]. The second reason is in relatively poor efforts in taking
advantages of current progress in this direction.

Recent progress in the area of Artificial Intelligence has paved the
way for research in the use of Al techniques and methodologies in
architectural désign. The main motivation behind this work has been to
investigate and show possible application of Al approaches in automating a
class of architectural design problems. These problems which are identified
at the abstract (topological) level of architectural design are
multi-dimensional, and some of them are computationally intractable. The

approaches discussed in this work should go beyond the analytical, enumera-

°Newell [69] defines well-structured problems as having the following crite-
ria:

- They are describable in terms of numerical variables, scalar and
vector quantities.

- Their solutions are describable in terms of a well-defined objective
function.

- An algorithm should exist for solving and stating them in numerical
ter All other problems are considered as ill-structured.
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tion techniques, and naturally are therefore more intelligent than brute

force applications.

1.3 Research framework

The initial idea of this work was to design and implement a knowledge-based
expert system for automatic generation of connectivity patterns of buildings
exploiting domain knowledge of architectural design. However, during the
work this approach appeared unfeasible for the reasons given in sections
1.3.2 and 1.8, while several other objectives exhibited themselves as

appropriate for the effort. These objectives are discussed below.

1.3.1 Points of departure and research goals

The goal of this work from the design point of view is to provide a frame-
work on how different disciplines such as mathematics, graph theoretical
notions, and AI techniques can be employed for tackling specific architec-
tural design problems some of which are computationally hard and intrac-
table. From a computational point of view the primary objectives are:

- To discuss the combinatorial nature of architectural designs.

-~ To find the potential of AI techniques in tackling architectural
problems in general. This includes the réle of AI techniques in
dealing with multi-dimensionality and multi-objectivity of architec-
tural designs.

— To show the réle of heuristics in reducing the complexity of search
in design.

- Investigate the possibility of neural network approach in tackling
design problems.

= Analytical comparison of designs generated for the same set of data

but based on different approaches.

From the practical points of view the objectives of the work are:
- Design and development of a heuristic system capable of:
. Generating designs (connectivity-patterns) to architectural
design problems with respects to a set of social norms presented

above.
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. Evaluating the quality of existing designs (architectural floor
plans) with respect to a set of social norms.

— Design and development of a small scale and prototype neural network

model capable of generating architectural designs (connectivity

pattern of buildings) with respect to a set of social norms.

1.3.2 Desiderata
This work, as mentioned above, was targeted for a Knowledge-based system
based on architectural design knowledge and a knowledge base of precedents
of architectural designs at connectivity level. The initial studies of the
problems posed revealed that, first, very limited expert knowledge of design
is available, and second, these problems demand a deep reasoning strategy
based on basic rules and laws of architectural design at micro levels rather
than shallow expert knowledge. The dynamic aspect of our design problem,
requires a deep reasoning process based on the mathematical analysis of the
data, and externalization of new qualitative data for guiding the design
process towards generating a design product. These facts resulted in giving
a second thought in choosing the expert system approach. The system for this
work is implemented in procedures. LISP was chosen as an appropriate
language for representing the knowledge, modeling the mathematical tech-
niques, and simulating the design processes.

A brief discussion on the differences between expert systems, and other

systems, and their underlaying reasoning depth is given in section 1.8.

1.3.3 Caveat

This thesis reports on a research project, that has been conducted within
the paradigms of AI. The results have been implemented into a system called
TOPGENE and another small-scale neural network model. The fundamental issue
in this research is, thus, development of new approaches outside of the
enumeration techniques, to architectural design at topological level. The
work also shows the power and the limitation of proposed approaches. Detalls
of the work are given in the sequel; but, as for the sake of this introduc-~
tory chapter, one should note that:

Much work is required to take a computer system from a research labora-
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tory into the practical use. Crucial issues include: the appropriate scope
of the program of the operation, integrating the system into routine opera-
tion, development of a user interface appropriate for both input data and
the output data, etc. TOPGENE is tested and debugged to some extent; but the
work does not present a fully polished system to be used by architects
unless additional steps are taken.

TOPGENE, has a graphical interface for automatic inmput and display of
patterns of buildings, and a limited help to navigate the user while working
with the system. A polished version of the system should provide a more
extensible help facility, and perhaps explanation facility for presenting
the reasoning strategies behind the decisions made by the system while gene-
rating a design or evaluating existing designs.

Another important issue with respect to a working system is testing and
tuning of the system with respect to real architectural problems. The system
developed has been tested to a limited extent. However, more effort is
needed in tuning the system with architectural environments, in order to

claim the system to be operational for practical use.

1.4 Scope

An architectural design process takes place at various levels, each level
comprising of several sub-processes. A rough sketch of levels of the archi-
tectural design is given below, while a more detailed review 1is postponed

for chapter 2.

Analytical level

Topological (abstrac) level

Geometric level

Figure 1.2 Levels of Architectural Design Process

TOPGENE addresses some issues involving design of the architectural floor

plan at the second level, and in the presence of a set of specific social
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norms. There exist several major classes of design norms in architectural
design. This work restricts itself to the performance of a building at the
presence of social norms: privacy, community, circulation-cost, and inter-
vening opportunity.

The norms chosen in this work have common attributes that make them
good candidates for a unique approach. All four norms, as are clarified in
chapter 2, are sensitive to flows in a building. The potential flows between
the location pairs in a building may be considered probabilistic and time
dependent. This work, however, assumes constant and time independent flows.
Consideration of flow as probabilistic and/or time dependent neither
increases the computational complexity of the problem, nor the applicability
of the method discussed in this work. TOPGENE’s approach is also appropriate
to other architectural problems, such as urban design, that deals with
social norms.

TOPGENE, neither produces a design at the geometric level nor considers
the metric distances at topological level of the architectural design. TOP-
GENE uses knowledge of design relevant to architectural design at the
abstract connectivity-level. The system considers the interaction potentials
between the location pairs in a building for generating a design or evaluat-
ing an existing design. The interaction potentials between the locations are
calculated from the allocation of actors and the weight associated with
thenm.

The scope of this research is, thus, limited to the topological level
of the architectural design, and from now on, whether mentioned explicitly
or not, the discussion is about designs only at this level.

To reiterate what was mentioned earlier, TOPGENE:

— Generates connectivity patterns of buildings with respect to a set of

social norms.

— Evaluates the behavior of existing buildings with respect to a set of

social norms, and produces analysis and diagnosis result for their

behavior.

1.5 Context
This research is carried out in partial fulfillment of the Doctoral degree

in Computer Science at Delft University of Technology. The work was carried
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out in collaboration between the Department of Mathematics and Informatics
and the Department of Architecture as part of the "Intelligent Architect
Project" [Tzonis 75]. The objective of the project is to study and improve
architectural design methods by studying and applying methods founded in the
area of Artificial Intelligence. The ultimate goal of the project is deve-
lopment of an intelligent architectural system for automatic generation of
architectural designs. The system should accept programmatic architectural
problems and generate architectural floor plans based on the precedents of
designs stored in a data base, and knowledge of the architectural design.
The current subjects of the project for the study include:

- Pattern recognition.

- Discourse analysis.

- Expert Systems.

- Architectural data base.

Architectural theory, and

Architectural design methodology.

The result of this work will be integrated with other projects within the

department towards the realization of the complete system.

1.6 The human analogy

Architects design (draw) floor plan layouts of buildings based on their
traditional knowledge, experiences, and individual creativity. The process
of architectural design is usually a long cognitive process with heavy
dependency on subjective judgment and common-sense reasoning.

Generating a floor plan layout of a building requires architectural
knowledge. The cognitive process that operates on architectural knowledge to
create a plan is called architectural reasoning. Architects mentally work on
a variety of levels and rely on their hierarchical knowledge to tackle
architectural problems. An architect has to keep in mind different levels of
information while working on a specific level of a design process. Such a
correlation between knowledge at different levels of a design, while redun-
dant in some specialized situations, still, comes to play an important réle
in most cases. There are spatial relations and connectivity problems. For

example, in designing a house the program of requirements may dictate that:
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everybody should have access to the living room, the kltchen most be next to
the dining room, children’s bedroom must be located next to their parent’s
bedroom, etc. There are also different performance requirements for
different types of buildings. For example, prisons must have a high perfor-
mance in terms of security and surveillance Libraries must be quiet and
everybody using a library must share a comfortable and quiet study place.
Obviously, there is not always a simple ready-made solution to every archi-
tectural problem. Architects usually start from the bottom up to come at a
suitable solution for a design problem. Preparing the matrix of required
adjacencies, generating alternative connectivity patterns under the archi-
tectural constraints dictated by the matrix of required adjacencies
[Baybarsg80] [Hashimshony86], turning the matrix into a planar graph [Hashim-
shony80], turning a graph realization of a floor plan into a proper rectan-
gular floor plan [Roth82] are examples of activities involved in an archi-
tectural design process.

An architect might face several alternatives in each stage of a design.
Several solutions may be considered until one seems to fit best the problem.
For example, at the abstract level several solutions about the connectivity
of locations might exist for a single problem. In fact this multi-
disciplinary nature of architectural design justifies any attempt to look at
architectural designs from different points of view. In this work the
problem of generating connectivity patterns is viewed from the angle of
social norms such as privacy, community, circulation-cost, and intervening

opportunities.

In this thesis the objective is neither to simulate architects, nor to

prove the psychological validity of any architectural theory, but to expand
and improve design by discovering more intelligent ways of handling archi-
tectural problems. The approach should necessarily introduce an applicable
and pragmatic system that benefits designers time / cost wise, and increases
the reliability and the inter-subjectivity of their design products.
However, this is the previous works of architects that provides the
problems, provides the domain heuristics, guides to choose new methods, and

helps to present new approach.
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1.7 Introduction to TOPGENE

This research work has been implemented in a system called TOPGENE, an
acronym for the "TOpological Pattern GENErator". An introduction to TOPGENE
is given in this section. The implementation details of TOPGENE, the
interrelationships between its different parts, and detall description of
the underlaying methodologies are given in future chapters.

The architecture of TOPGENE
TOPGENE is capable of fulfilling three major tasks, based on the relation-
ship between the structure and behavior of a building:
— Generating designs {connectivity patterns) with respect to a set of
social norms.
- Evaluating existing designs with respect to a set of social norms.
= Analyzing and diagnosing existing designs with respect to a set of

social norms.

TOPGENE consists of two major mcdules depicted in the following figure.

— Plan Evaluator
Plan Generator
(Analyzer, diagnozer,
(Generator)
evaluator)
Module
S Module

Figure 1.3: TOPGENE’s modules

Design analysis and diagnosis is trivial compared to generating a design. A
system for analysis and diagnosis of a design does not have to go beyond a
model-driven approach. Such a system first has to analyze the input data,
and make explicit the flow generation potential between the location pairs
in a design, if such information is not given. Data analysis is also a major
step in evaluating a design with respect to the social norms discussed. This
is achieved by applying the Q-analysis [Atkin74a) {74b]l [74c] [75] [77]
method. In the next step, the system has to simulate the operational aspects
of the design before analyzing its behavior and diagnosing its different

locations for possible misbehavior with respect to the social norms. A
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design analysis ends with modeling of the building behavior with respect to
the circulation flow and interactions between the people moving within
different locations of the building, measuring its actual behavior with
respect to the social norms. A design evaluation is carried out after an
analysis of a design and calculating its actual behavior. An evaluation is
" possible only if the expected behavior of a design is also given. This
information is not a part of the input data in the evaluation problem dis-
cussed above. TOPGENE, acquires this information, by generating sub-optimal
yardstick designs with respect to each social norm and uses their behavioral
values as expected behavior for evaluation.

Architectural design at connectivity level by a model-driven approach
is a search for a solution from among the space of possible solutions whose
behavioral characteristics satisfy a set of social norms. I will show that
this problem has a high degree of computational complexity and a large
state-space of search. This implies that a model-driven approach is
inefficient if not completely fruitless.

By viewing architectural design as a constraint-directed heuristic
search, much of the knowledge for tackling this problem can be viewed as
domain heuristics guiding the system towards evolution or rather configu-
ration of a design product. This approach brings a high degree of efficiency
in terms of computation time. The rest of this section tries to expose the

components of TOPGENE and the methodology underlaying its implementation.

Variables
TOPGENE as a system capable of making inferences based on structure and
behavior has to deal with variables one way or the other. The number of
these variables is subject to change depending on the input problem and the
values that are assigned to a subset of them. For example, in an evaluation
problem the variable representing the connectivity pattern has a value, but
this value is unknown if a design problem is posed to the system.

The important variables corresponding to different components of the
TOPGENE are exhibited in figure 1.4.
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Design aspects Related variables
Structure: Structure variables:
(Connectivity pattern). - Locations.

- Accesses between location pairs.
- Paths between locations pairs.
- Shortest paths between location pairs.

Operation: Operation variables:
- Actors in a location.
- Potential flow between locations.
- Flows crossing locations.
- Flows crossing flows on locations.

Norms Normative variables:
(Anticipated behavior) - Community.
- Privcay.

- Circulation_cost.
- Intervening_opportunity.

Performance Performance variables:
(ACtual behavior) - Community_utility degree.
- privcay_cost degree.
- Circulation-cost degree
- Intervening_opportunity_utility degree.

Figure 1.4: Aspects of a design and their related variables

A design is always identified with a vast number of requirements (const-
raints) stemming from different sources. Architectural design is not an
exception to this rule. The interactions between the requirements of a
design are major contributors to the complexity of a design reasoning
process. The design problem discussed in this thesis involves a number of
constraints including the social norms, planarity, and branching degree of a
location and several other related constraints. Two important set of
constraints based on the domain knowledge are lists of the recommended and
prohibited links in different building types. For example, in a hospital,
from a doctor’s room it is very likely prohibited to have direct access to
the appointment room, although the analysis of data shows a high degree of
interaction between these two locations. On the other hand, secretariles’
rooms must have direct access to the doctors’ rooms, although the analysis
result indicates a lower priority for such accesses. The knowledge of prohi-

bited and recommended links in typical buildings can serve to avoid the
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system to make undesirable decisions while generating a design solution.
TOPGENE, although not a constraint satisfaction system, has to produce
designs in a constraint environment. The major constraints considered by

TOPGENE are exhibited in figure 1.5.

Circulation-cost?

Prohibited accesses? R ded acc ?
o ]

Planarity? 0——0——0—o0 Branchiness?
o] o]

Privacy cost? Community utility?

Intervening opportunity utility?

Figure 1.5: Design constraints considered by TOPGENE

Reasoning strategy

Computer systems based on Al techniques, or mathematical modeling, or
analytical approaches, each emphasize different types of domain knowledge
and reasoning strategies. Mathematical models describe physical laws
governing a system. Artificial Intelligence deals with problems that demand
computer programs based on domain knowledge, cognitive modeling, and which
one way or the other emulate human intelligence. Both of these approaches
are suited for reasoning about the behavior of a system based on its
structure. Analytical approaches use differential equations to represent the
structure of a system and use numerical or analytical methods to derive its
behavioral values in numerical form. AI techniques, on the other hand, can
give qualitative analysis of the behavior of systems based on their
structural descriptions.

Common-sense causal reasoning is qualitative reasoning about the beha-
vior of the mechanism of systems. The basic characteristic of common-sense
reasoning is the absence of external memory or calculation aids [Kuipers84].
Qualitative reasoning as opposed to analytical reasoning uses qualitative
description of a system’s structure and uses heuristics to derive the

behavioral description of the system in qualitative form. This later type of
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reasoning is important in domains such as medicine, and in cases where
precise numerical data characterizing states of a system are not available
or are hard to attain. Qualitative descriptions of physical systems and the
line of reasoning behind their behavior tend to be much weaker than quanti-
tative reasoning based on quantitative data and analytical methods. This is
evident from the reasoning of physicians. Physicians tend towards numerical
data based on the analysis of, for example, blood samples, when their quali-
tative approach in diagnosing patients and predlicting patients disease
fails. Quantitative analysis, thus, can resolve qualitative ambiguities, and
it can provide quantitative estimates values for parameters that cannot be
measured or are hard to measure qualitatively [Kuipers84].

This work proposes an integrated approach based on Al techniques,
mathematical modeling and domain heuristics for solving above problems.
TOPGENE uses a heuristic approach in generating design, and analytical
methods to quantify the operational and behavioral aspects of a building
system. Such a mixed approach takes advantage of analytical methods and the
efficlency of heuristics strategy, which is known as the basic aspect of
common-sense reasoning and AI systems. The exclusion of either one from the
approach is not without consequences. Without the heuristic power, one is
shifted towards enumeration techniques and has to accept the burden of
computational inefficiency. On the other hand, relying on pure heuristics,
specially in a domain with analytical methods having crucial rdles in the
quantitative analysis of the data, is not a wise approach. Without numerical
analysis of a domain, a measure of goal attainment is hardly possible, or
impossible. Quantitative data provides a means for constructing an evalua-
tion function in a search procedure to compute distances of the intermediate
states of the search with respect to a goal state [Nilssong80].

Another rdle of numerical data, at least with respect to the problems
posed above, is tangibly to reflect the quality of design products with res-
pect to the social points of view. This includes presentation of the analy-
sis result of the design products in quantitative forms.

The existence of quantitative data, according to my belief, removes the
sense of vagueness and subjectivity from a design, and presents its quality
in a form that can be judged quickly with other competitive designs. Some-
thing that the present design products have been blamed for in other domains
[Aguero87]. This holds for th architectural domain as well.
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The integrated use of heuristics and analytical methods in TOPGENE is,
thus, more powerful than the use of either one apart. Figure 1.6 displays a
comparison of TOPGENE’s reasoning method with pure numerical and pure quali-

tative methods.

Structural Reasoning process / Behavioral
Description type Method(s) used Description type

Numerical or analytical approach

Diff ial ti R
erential equation R

TOPGENE approach
Mixed description R 7/ Qualitative
Heuristics + analytical

Qualitative Reasoning
Verbal Description Qualitative
Heur istics

Figure 1.6: A comparison of TOPGENE’s reasoning method
with analytical (quantitative) and qualitative methods

Studies have been carried out around the causality in physical devices
behavior [Iwasaki86]. Expert systems also have been built based on the
structural-functional inter-dependencies of physical systems [Davis82]
[Genesereth82] [Davis84] [Kuipers84]. TOPGENE is based on this concept.
TOPGENE is built on a theory of architecture describing the mechanism of
behaviors of a building as a result of its operation. TOPGENE uses the
knowledge of the domain in the form of procedures and inference rules
embedded in the procedures. The embedded knowledge in the system is based on
the causal relations between the formal structure of a building in terms of
the connectivities between its locations, and its performance or behavior,
and to some level simulate the behavior of an expert trying to design or
evaluate a building with respect to the social norms.

TOPGENE is, thus, capable of making inferences from the interrelation
between the structural knowledge of a building (connectivity relations of
locations) and its functional knowledge (i.e., its behavior) as a result of
operation within the building. Causal relations are used to represent the
reasoning of an expert while evaluating or designing a bullding, to capture
functional-structural inter-dependencies, and to infer the effect of opera-

tions on the behavior of the building.
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Knowledge Representation

Last section contrasted systems based on mathematical modeling with Al
systems with respect to their reasoning methodologies. Another significant
difference between these two categories of systems lies in their knowledge
representation and knowledge manipulation approach. Al programs are charac-
terized for their emphasis on heuristics knowledge [Campbell86]. AI systenms
also usually use integrated representation of domain knowledge. Several AI
systems have been designed and implemented in varlious domains. Examples of
Al systems are scattered around different fields. Knowledge Based Expert
Systems (KBES) are a prominent example of these characteristics. Expert
systems demand extensive knowledge about a domain for solving the domain
problems. A sophisticated expert system might integrate different represen-
tation techniques to capture and use different levels of a domain knowledge.
Domain knowledge can be categorized into two classes of knowledge. The first
type of knowledge comprises the factual knowledge of the domain relevant to
the problem solving, while the second type can be thought of as causal
knowledge about relationships between different entities in the domain or
the expert knowledge describing the problem solving process. Factual know-
ledge is usually encoded in assertion form [GoldWorks87], while the causal
knowledge is represented in the form of IF-THEN inference rules. There are
also Al programs based on the explicit representation of the knowledge of
structure and behavior of systems. Davis's [82] [84] system reasons from the
knowledge of structure and behavior in the domain of trouble-shooting
digital electronic circuits. Genesereth’s DART program [84] was built for
diagnosing physical systems. These systems are similar to architectural
building systems in the sense that there are logical relations between their
structural and behavior.

TOPGENE's approach in integrating different reasoning strategies and
different knowledge manipulation methods demanded different representation
and manipulation techniques. The effectiveness of a technique depends on its
fitness to a problem. TOPGENE uses an architectural design model based on
first principles and facts of architectural design (domain heuristics) and
includes causal relations between the structure and performance of a buil-
ding as a result of its operation. TOPGENE also exploits mathematical
descriptions of the structure and the operation of buildings and causal

relations governing their behavior with respect to specific social norms.

(1-20)



TOPGENE: An Artificial Intelligence Approach to a Design Process

The architectural knowledge used by TOPGENE 1s the knowledge of access
in buildings and a limited expert knowledge of design at the abstract level
of design processes. The first type of knowledge is the knowledge of
prohibited and recommended accesses (connections) in a building can be
taught to TOPGENE, and stored in a data base for repetitive use. The design
knowledge is mostly in the form of general heuristic rules of architectural
design for optimizing a building with respect to different norms.

The domain knowledge and causal relations in TOPGENE are embedded in
procedures rather than explicit representation, encoding and storage in
separate knowledge bases. Analysis and explanation of architectural design
laws is ultimately based on the factual knowledge of structure and behavior
of buildings and causal relations between them. The design knowledge in
TOPGENE is stored both in procedures and inference rules embedded in proce-
dures. The inference rules are capable of capturing the causal relations.
Such rules encoded in IF-THEN rules in expert systems have the capability of
making explicit the causality between a state of being (situation, event,
etc.) and another situation to be reached or an action to be taken. The
embedding of such rules in procedures hides the explicitness of causality,
but has the advantage of gains in processing power [Winograd75].

Several types of knowledge can be identified and extracted from
interview transcripts or other architectural knowledge sources such as
architectural literature in this domain:

- Knowledge about the formal-structure of a building.

— Knowledge about the operation of a building.

= Behavioral knowledge of a building.

— Causal knowledge about the relations between the structural proper-
ties of a building (e.g., as branching degree, penetration etc.) and
its behavior with respect to different social norms.

- Causal knowledge about the relation between operation and behavior of
a building.

— Expert knowledge in the form of domain heuristics describing the
process of architectural design. This knowledge can serve as a guide-

line for the search process.

TOPGENE, thus, uses:

- Graph representation techniques for representing the access proper-

(1-21)



Chapter 1: Introduction

ties of buildings. This includes matrix, list and property-list
representations. Matrix representation of graphs is important to some
sub-tasks such as an algorithm that calculates distances in partial
designs. Access list and property list representations of graphs, on
the other hand, are of use to LISP algorithms for path-finding and
planarity testing, that cannot rely on the matrix representation of
graphs.

- Matrix representation for representing associations between the
activities (locations) and actors in a building. This representation
1s used by the Q-analysis method for inferring the circulation flow
potentlial between location-pairs, and partially hierarchical
clustering of them in the building.

-~ A knowledge base of recommended and prohibited accesses. This know-
ledge is taught to the system by the user for use during a design
configuration.

— Causal knowledge relating the structure and behavior of buildings in
the form of IF-THEN rules embedded within procedures, and

- Expertise knowledge of the design at the pre-metric level in the form

of procedures.

The mathematical model of the system uses Q-analysis to recognize and
organize the interrelationship (potential flow) between the location pairs
as a result of the responsibilities of actors for certain activities. The
calculation of flow is important to different activities such as: synthesis,

analysis, evaluation, and allocation in design.

Methods
TOPGENE incorporates the following methods for its reasoning process:
= An iterative improvement bottom-up approach used in conjunction with
hill-climbing and heuristic techniques to arrive at a design.
= An agenda mechanism and relaxation method to guide the system in
improving partial designs with respect to the social norms.
— Q-analysis method for externalizing the flow-generation potentials
between the location (i.e., activity) pairs of a building, and
partially hierarchically clustering of the location-pairs with res-

pect to their interaction potential degree.
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- Graph theoretic notions for diagnosing the intermediate partial
designs and improving (incrementing) their structure towards a
complete design product.

— A fast algorithm for keeping track of distances in partial designs.
This algorithm emerged through the needs of TOPGENE.

— Different graph algorithms such as planarity testing and path finding

for manipulating partial designs during a design process.

Facilities
TOPGENE provides limited facilities for practical use. These facilities
include:

-~ Limited help facilities for guiding the user of the system.

— Menu interface for efficient inputting of design data.

— Several data bases of existing designs and other design data for one

time input and storing, and multiple use.
— An automatic heuristic graph-displayer for input of the existing

designs for evaluation, also output of the generated designs.

Testing

Experiments were conducted to compare design solutions with varying styles
for the same design problems. These experiments, to be discussed in chapter
6, confirm with the structural and behavioral knowledge of buildings, and
with one’s intuition. Tests were also conducted to compare designs generated
by TOPGENE and a neural network implementation of a sub-set of design
problems. These tests, partly presented in chapter 8, also show that the
heuristic rules underlaying TOPGENE are sufficiently powerful in producing

near-optimal designs with respect to the social norms.

1.8 Why not an expert system?

An expert system is primarily based on a large collection of rules descri-
bing interrelations between (important) concepts in a knowledge domain.
Expert system technology, since its birth, has made an outstanding contribu-
tion to the discipline of Artificial Intelligence in general. XCON, MYCIN,
and PRIDE are examples of successful expert systems in commercial use today.

XCON is used for configuring VAX computers [Bachant84]. This system is
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capable of validating the technical correctness (configurability) of
customer orders and to guide engineers to assembly of these orders
[Barker89]. MYCIN is an expert system in medical diagnosis that solves the
problem of identifying an unknown bacteria based on input laboratory infor-
mation {Buchanan84]. PRIDE [Mital85] is an engineering assistant system.
However, experience [Parrello88], and history of expert system reveals that:
this technique, like other techniques, is only fruitful in well-understood
and appropriately chosen domains. In particular, this technology is suitable
only for highly specialized and narrow areas, rich with a considerable
amount of expert knowledge, and does not promise to work if breadth of the
scope, level of expert knowledge, and careful feasibility study are not
taken into consideration seriously [Bobrow86].

Bobrow [86] characterizes expert systems as programs that apply subs-
tantial knowledge of specific area of expertise to problem solving. He
refers to the term "expert" as to imply both narrow specialization and
competence. Expert systems are also characterized as being shallow in their
chain of reasoning as opposed to deep systems that rely on the deeper rules
and principles of a domain.

A system is characterized as shallow if its chain of reasoning is
rather short. A deep reasoning system uses (long) chains of reasoning based
on a knowledge comprising the underlying principles and theories of a domain
[Bobrow86]. In general, however, there is not a guideline from the AI field
on what makes a model deep, and on the appropriate depth of models for a
specific task. A model is usually referred to as shallow, if it draws
conclusion directly from the observed facts that characterizes a situation.
Such models have the advantage of embedding the heuristics that experts
usually use in performing their line of reasoning. Klein [87] uses a simple
relational definition for distinguishing depths of models of expertise for a

specific reasoning task as follows:

"Consider two models of expertise M and M’'. We will say that M’ is
deeper-than M if there exists some implicit knowledge in M which is
explicitly represented or computed in M'"“, [Klein87], PP:559-562.

Advantages and disadvantages of both types of reasoning have been notified

by Klein [87] as follows:
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Shallow models:

— Are relatively easy to build, provided that the expert knowledge is
either available or easy to acquire.

- Are relatively efficient in terms of performance. This is because of
the fact that they usually select a solution to a problem rather than
to constructing one.

= Are inflexible in a way that they cannot deal with unforeseen
situations that are slightly different from those explicitly included
in the system.

~ Are difficult to maintain, since conceptually a single piece of know-
ledge may be unsystematically distributed across several objects in a
knowledge base.

— Can only explain their line of reasoning processes in a limited
extend. Such an explanation tends to be shallow and based on the

trace of their chains of inference leading to conclusions.

In contrast deep models of expertise have the following advantages and dis-
advantages:
- They Correspond more closely to the notion of reasoning from first
principles.
— They tend to be more robust than shallow models.
— They can handle problems not explicitly anticipated.
- They exhibit higher level of performance at the periphery of their
knowledge.
- It is easier to verify the completeness of deep models.
- They are more useful in generating explanation because of possibility
of elucidating the implicit reasoning steps involved in a process.
-~ They are usually slower than the shallow models.
~ They are more complex than shallow models, since they require more

sophisticated control structure than the shallow models.

The experience of this work supports the idea that prototyping is a much
more flexible approach for complicated design tasks demanding deep reasoning
strategies. Expert system technology is only suited for narrow areas of
design, where considerable expert knowledge is available for application.

For example, reducing the design problem posed in this work, to a problem of
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deslign of a library, a prison, or an office, makes it a good candidate for
expert system approach, specially if such a system relies on qualitative
knowledge rather than quantitative data. On the other hand, it is hard to
perceive that a qualitative system can provide a deep analysis of a design
without being equipped with mathematical techniques such as used in this
work. The conclusion is that, integration of a shallow reasoning process
with a deep reasoning process based on mathematical models provides a better

working system than a system relaying on elither approach alone.

1.9 An Outline of this thesis

A brief description of topics discussed in proceeding chapters is given in

this section.

Chapter2:

Chapter 2 begins with a short review of definitions and characteristics of
design in general, followed by a brief coverage of different models of
design. A background on architectural design automation is presented in
section 2.4, A Classification of architectural design as a process of crea-
ting an artifact rather than generating a description of a design is given
in section 2.5. Section 2.6 reviews phases of architectural design with a
focus on design at the abstract non-geometrical level, because of Iits
relevance to this work. A discussion on the relationship between the formal-
structure and behavior of a building as a result of its operation is
presented in section 2.7. The subsections of this section contain the formal
definition of and the réle of social norms: community, privacy, circulation-
cost, and intervening opportunity in a design. Section 2.8 presents detailed
versions of the problems discussed in this chapter. The rest of this chapter
(sections: 2.9-2.11) examines the computational complexity of architectural
design at different levels, the computational complexity of design problem
discussed in thlis work, and the réle of architectural domain heuristics in

reducing such a complexity.

Chapter 3:
Chapter 3 is devoted to problem solving and knowledge Representation (KR).

Section 3.1 gives a brief review of three distinguished problem solving

(1-26)



TOPGENE: An Artificial Intelligence Approach to a Design Process

methods in Artificial Intelligence (AI): Heuristic Programming, Machine
Learning, and Neural Modeling. Sections 3.2 and 3.3 review relevant problem
solving paradigms and AI problem solving techniques. The rest of this
chapter is devoted to the KR. Sections 3.4 and 3.5 present definition of KR,
the réle of KR in software engineering, and criteria for choosing a
representation technique. A brief review on advantages and disadvantages of
declarative and procedural representation of knowledge is given in section
3.6. Section 3.7 covers graphs as means for representations of objects and
their relationships, and representations of different properties of graphs
in computers. The last part of this chapter (section 3.8) is devoted to the

representation of architectural domain information needed in this work.

Chapter 4:

This chapter contains a survey of means for diagnosing the structural com-
plexity of systems having a topological property representable as a graph.
This includes the connectivity property of a building. Diagnosing the struc-
tural complexity by means of Topological Indices (TIs) has a significant
réle in molecular design in chemistry. The idea may have several applica-
tions in diagnosing building behavior as well. Section 4.1 covers this sub-
ject. Examples of topological indices are given in appendix A.

Section 4.2 of this chapter presents a new theorem for keeping track of
distances in incrementally growing graphs. The theorem exposed in this work
exhibited itself in a search for an efficient algorithm for keeping track of
distances in incrementally growing partial designs. The algorithm and a
working example of it is presented in the subsections of this section.

Topological indices deal only with the statics of graphs. In the next
section of this chapter (i.e., section 4.3) a mathematical method for
diagnosing the operation of a building is reviewed. This method known as Q-
analysis has significance in data abstraction, clustering of objects with
respect to a common attribute within them, also exhibiting a holistic view

on the relationship between these objects.

Chapter 5:
Chapter 5 describes issues involved in the implementation of TOPGENE as a
system. Section 5.1 gives an overview of the architecture of TOPGENE. Sec-

tions 5.2 to 5.4 describe assumptions made before the implementation of
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system, design types recognized by the system, and the representation issues
involved. Section 5.5 describes levels of data-abstractions in TOPGENE.
Section 5.6 covers TOPGENE’s approach to problem solving. This section is a
repetition of what was said in chapter 3. Section 5.7 covers heuristic
strategies used by the system in easing the search efforts and reducing the
computational complexity. Sectlions 5.8 and 5.9 discuss the conflict resolu-
tion strategies and the mechanism used by TOPGENE for resolving a conflict
during a design process. Planarity, branchiness and knowledge of connectivi-
ties between different locations in buildings are some of the constraints of
architectural design at the abstract level. These issues are reviewed in
sections 5.10 to 5.12. Sections 5.13 to 5.19 give the implementation details
of deslgns with respect to a single and combination of norms respectively.
TOPGENE’s approaches to design analysis, design diagnosis, and design

evaluation are presented in section 5.20.

Chapter 6:

This chapter is fully devoted to the experiments carried out with TOPGENE.
Three different design problems are selected and used as test cases. Data
sets related to these problems are presented in section 6.1. Section 6.2
presents the partially hlerarchical clusters of locations (activities) and
streams of locations generated by TOPGENE for these problems. Sections 6.3
to 6.5 presents examples of designs generated with respect to single norms
for our data-sets. Generated designs are followed by their diagnosis and
analyslis results when appropriate. Examples of designs generated with
respect to multiple norms and an analysis of these designs are presented in
section 6.6. Section 6.7 presents examples of evaluation of existing designs

for the problems posed in section 6.1.

Chapter 7:

This chapter discusses a neural model of a specific type (l.e., linear-tree)
of architectural design problem. This model only generates designs with
respect to a single norm: community or privacy / circulation-cost. The idea
in this chapter is borrowed from the Hopfield model of the neural network
(NN) for the travelling salesman problem {(TSP). Sections 7.1 and 7.3 discuss
Hopfield’s model. In section 7.4 I discuss the NN implementation of the

linear-tree designs with respect to a single norm. Algorithms for generating
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linear-tree patterns with respect to community and privacy / circulation-
cost norms are presented in section 7.5. Experiments and test results with
the NN are presented in section 7.6. A summary of the chapter is given in

section 7.7.

Chapter 8:

In this chapter I discuss the testing of TOPGENE and future works. A
comparison of specific sets of designs generated by the TOPGENE and the NN
is presented in the beginning of thls chapter. Sections 8.2 and 8.3 discuss
the limitations of both TOPGENE and the NN, and suggest extensions for both

systems.

Chapter 9:

This chapter is the concluding chapter. The contributions of this work, and
summary of issues addressed in this thesis are reviewed in short in this
chapter. In the last section of this chapter (section 9.3) I propose two
other possibilities for tackling design problems as discussed in this work.
The first suggestion is within the paradigm of automatic discovery and the

second one is based on means-ends analysis.

1.10 Summary

This work is an attempt towards the automatic generation of architectural
designs at the abstract topological level. The work was targeted for a know-
ledge based system. Close examination of the problem, the domain knowledge,
and the knowledge based technology, showed that a deep reasoning approach
based on mathematical modeling is more realistic and more fruitful than a
pure Knowledge Based approach. The system developed on this basis is called
TOPGENE standing for the TOpological Pattern GENErator. TOPGENE uses mathe-
matical modeling and heuristic knowledge of the domain to generate connecti-
vity patterns of buildings. Heuristics, as used by human problem solvers,
reduce the computational complexity of a problem solving process, but may
not succeed in producing the optimal solution. Mathematical methods on the
other hand are more capable than the heuristics methods, but are often
inefficient in some problem domain.

TOPGENE by integration of heuristics and mathematical modeling takes
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advantage of both methods. Experiments with TOPGENE show that this approach

deserves more attention.
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. CHAPTER 2

THE DesiGN PROBLEM
]

The aim of this chapter is to specify the domain context. The first part of
the chapter (sections 2.1-2.2) introduces definitions, characteristics, and
classification of design. The following section describes a model of design
processes that TOPGENE implementation is bases on. Sections 2.4 and 2.6 give
a background on architectural automation, a classification of architectural
design, and different phases of an architecture design. The subsequent
sections (2.7-2.8) provide formal definitions of social norms, also details
of the design problems introduced in chapter one. The rest of this chapter
is devoted to a brief introduction to the problem of computational
complexity in general, and complexity of architectural design at different

levels in particular.

2.1 Definition and Characteristics

Design has been recognized as an important activity for more than 4000 years
[Gero90]. Yet, scientific research in this field does not date earlier than
1960 [Coyne et al 90].

Design as craftsmanship is the process of inventing new physical things
(artifacts) that have order and form in response to a set of requirements
[Alexander77], or the process of creating objects that fit best a context
[Stiny81]. The context of a design is anything that imposes certain demands
or constraints on the artifact, this includes [Mostow85]:

- Functional specifications of the design;

- Limitations on the resources; and

— The set of formal criteria defined over the design.
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Eastman [81] describes design as creating the description of an artifact
rather than its realization as a physical object:
“Design is the specification of an artifact that both achieves

desired performances and is realizable with high degrees of
confidence." [Eastman8l, p. 13]

Gero [90] characterizes design as a decision-making activity that involves
exploration and learning, and take place in a constrained situation within a
context that depends on the designer’s perception.

Simon [88] defines design in a broad sense as a process that tries to
change any undesirable situation into a desirable one. He describes design

in the context of the problem solving:

“Engineers are not the only professional designers. Every one designs who
devises courses of action aimed at changing existing situation into pre-
ferred ones. The intellectual activity that produces material artifacts
is no different fundamentally from the one that prescribes remedies for a
sick patient or the one that devises a sales plan for a company or social
welfare policy for state. Design, so construed, is the core of all pro-
fessional training; it is the principal mark that distinguishes the pro-
fessions from sclience. Schools of engineering, as well as schools of
architecture, business, education, law and medicine, are all centrally
concerned with the process of design." [Simon88, p.129]

Design as a problem solving activity is also characterized as a process in

an ill-structured [Newe169]1 [Simon‘73l2 environment. Design problems are

1Newell [69] classifies problems into two categories of Well-structured and
Ill-structured problems according to the following argument:

"Well-structured problems are to ill-structured problems as linear systems
are to nonlinear systems, or as stable systems are to unstable systems, or
as rational behavior is to non-rational behavior. In each case, it is not
that the world has been neatly divided into two parts, each with a theory
proper to it. Rather, one member of the pair is a very special case of all
the rest of the world-uncharted, lacking uniform approach, inchoate, and
incoherent." [Newell69, pp: 363-64]

2Simon [1973] defines ill-structured problems in terms of well-structured
problems. He characterizes well structured problems by the following pro-
perties:

- They are representible (in terms of at least one problem space).

- There exist criteria and algorithms (for testing their solutions).

- Defining and representing all the legal and illegal moves (in their

state-space of search) is possible.
- There exist enough information for solving them.
- They are computationally solvable in a reasonable time.
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attributed as ill-structured because of their multi-dimensionality [Tzonis-
751, fuzziness of the measure of their goal attainment, incompleteness and
vagueness of their problem statement, and lack of general guidelines in
choosing alternative course of actlons in their search spaces [Findlers81l}.
Characterizing a design problem as ill-structured also means that either it
does not have a clear-cut solution, or there is not a specific process for
finding such a solution. A design may start with specification of a goal
that must be satisfied by an object, or start with testing an object if it
matches some requirements. This implies that design may take a bottom-up
approach, a top-down approach, or a combination of them, depending on their
nature and complexity [Coyne et al90].

Design as a problem solving activity is goal oriented in search of
description of an object that satisfies a set of performance requirements.
In this respect design (in a naive way) is viewed as the reverse process of
the scientific explanation. Scientific explanation tries to describe the
behavior of objects through observation, while design is aimed at describing
objects that satisfy a set of performance requirements [Coyne et algon]
[Gero90].

Scinece

Description of an object ———————— Behavior of the object
Explanation

Design
Description of the objecté—————————— Behavior of an object
Generation

Figure 2.1: Design seen as the reversal of scientific explanation

Design often requires the integration of several disciplines for Iits
accomplishment. The complexity of a design mostly arises from a
combinatorial interactions between its requirements. Protocol analysis of
three different design disciplines, architecture, mechanical engineering,
and instructional design, has shown the following invariant characteristics
within them [Goel89]:

- Design problems often exhibit lack of information, so they might

suffer from freedom in statement.
— Feedback from the world is limited or delayed during a design

process.
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Design objects are often judged as good, bad, better or worse, rather
than right or wrong. Such attitude towards design objects entails the
use of specialized evaluation functions and stopping rules on
designs.

The long, and expensive process of most designs demands a limit
nested evaluation cycles or one final global evaluation.

Designers are often forced to make and propagate commitments.

The complexity of design problems often demands decomposition of them
into several incomplete and "leaky" sub-problems.

The solution decomposition of a design requires the mediation of goal
and artifact by abstraction hierarchies.

Design processes demand the use of representation systems and
artificial languages for abstracting, filtering and processing of

information.

Most of design processes usually take these sequences of actions [Harfmann-
87] [Goel89]:

Analysis and decomposition of the problen.

Identification of the interconnections between components of the
design.

Search for sub-optimal partial solution for isolated sub-components,
or with respect to isolated view points.

Synthesis of (partial) solutions.

Evaluation of the resulting design with respect to its functional or

behavioral demands.

This process of subsequent sub-processes in design mostly requires backtra-

ckings

to previous steps and repetition of some sub-processes. A backtrack-

ing usually arises due to evaluation of result of a sub-process which

demands some modification on the result. Such a design process is depicted

in the

following figure.
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Problem Identifying; Search for Synthesising
Decomposition:inter- parttial sub-solutions
connections:solutions

Problem < > gesujn
Statement < > r::z:on

1 1 1 T

Figure 2.2: Sub-processes in a complex design

<

The difficulties in design of complex systems, such as architectural
designs, arise when designers are trying to merge the sub-components or sub-
optimal solutions to arrive at a global solution. Such a difficulty is
largely because of the incommeasurability [Tzonis87] of design norms. This
problem will be discussed in more detail in this chapter. Sriram [86]
summarizes difficulties in design of large and complex systems as follows:

- The consequences of design are not apparent during the process of
design. Many alternatives should be considered.

- A large number of constraints arising from multiple sources must be
satisfied.

- Large design problems are often divided into several sub-tasks to be
handled by individual experts. The interactions between these sub-tasks
must be handled properly, and decisions by individuals should be justi-
fied. This is not an easy task when large number of decisions have to be
made.

-~ Designers should be able to perceive the total picture of a design, as

well as the locally optimum solutions for each sub-task.

2.2 Classification of designs

Simon [73] classifies design problems as ill-structured that can only be
solved by division of them into smaller loosely-coupled well-structured sub-
problems. This classification is alike to attributing designs as Wicked
problems [Sriram87]. These are problems with no clear cut solutions.

Looking from a different perspective, design 1is considered as
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formation-type problems, as opposed to most of the engineering problems
which are in the derivation-formation category [Sriram87]. Derivation type
problem solving is based on the hypothesis formation and identification of
hypothesized solutions from a set of possible solutions. In the formation
type problem solving, the problem solver only has knowledge of how to form a
solution by applying appropriate problem solving techniques. This definition
of design is most appropriate to a class of design (i.e., creative designs,
defined below), rather than design in general.

A popular distinction between design types is their classification into
routine designs and non-routine designs with non-routine designs further
split-up into innovative and creative designs [Sriram87] [Coyne et al. 1990]
[Gero90]). Sriram also defines redesign as another type of design process
somewhere between innovative and routine designs. This classification of
design, although may be differently defined from one author to another, but
seems to enjoy a popular acceptance.

Designs also may be classified in terms of their computational complex-
ity. Classification of design into routine, innovative, and creative design
coincides with complexity degrees of design, with creative design as the
most chaotic and complex type, and the routine design as the least complex

type of design.

Non-routine design

Routine € ]
Design Redesign Innovative Creative
Design Design
- ¢
Less complex More complex’

Figure 2.3: A classification of designs in terms of complexity

Routine design, the less complex and simplest type of designs, is a design
process based on the assumption that both the knowledge of design and
problem solving techniques are known in advance. Routine design is also
characterized as a prototype-instance refinement [Gero90] process in which a
priori plan of the design, and alternative components are known in advance
[Sriram87]. The design process, here, consists of finding alternative sub-

components that satisfies the new design requirements.
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Redesign is the creation of new artifacts by modification of existing
ones, so that it fulfills new functional demands [Sriram87]1. Gero [90] calls
this type of design routine design. Redesign, and routine design both
proceed within a well-defined state-space of potential designs.

Innovative design, characterized as a prototype-instance adaptation
[{Gero90], is a design process in which the decomposition knowledge and
variables (components) of the design are known, but the actual values of
variables are in question. Innovative design, thus, proceeds in a well-
defined state-space of solutions, and produce designs that are familiar in
structure [Gero90].

Creative design, the most complex and chaotic type of designs, is a
process that involves creativity and imagination. Designers face this type
of design when neither an a priori plan (i.e., decomposition of the problem)
for the solution of the design exists, nor existing design prototypes are
applicable to the new problem. A creative design, thus, proceeds in an ill-

structured environment and may produce a new design type.

Space of creative designs

Space of innovative designs

Space of redesigns

Space of
routine
designs

Figure 2.4: The spaces of different designs

2.3 A Model for design sub-processes

An abstract modeling of a design process helps understanding of thelr nature
and alds in developing systems capable of generating designs. A set of
design sub-processes may fit several models. Different design models have

being proposed by researchers in the field. This section describes a design
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model upon which the implementation of TOPGENE is based.

A design is characterized as a three-phase process consisting of an
analysis phase, a synthesis (or generation) phase, and an evaluation phase
[Coyne et al90]. The analysis phase involves understanding of the design
problem and explicitly stating the design goals. This phase, also called
problem formulation phase, is a problem decomposition phase that tries to
analyze the design problem and find the relationships and interconnections
between components of the design. The synthesis phase is the problem solving
phase. This phase consists of the search for the design solution, albeit
finding and combining of sub-solutions, or direct generation of a solution.
The evaluation phase is the judging phase of the generated design. Evalua-
tion is a process of comparing the actual behavior of a generated design
with its expected behavior. Evaluation, in cases when a design does not meet
the expected behavior, results in reformulation or revised analysis of the
design problem and repetition of the three phases. This view of a design
process (figure 2.5) is very much similar to the sub-processes in a complex

design depicted in figure 2.2.

Input Problem Design Design Output

Design ——Formulation————Generation——3Evaluation——>Final Design

Requirements phase phase phase Description
(Analysis)

Figure 2.5: A general view of design consisting of three Phases

Gero [90] has proposed a model of design that is an extension to above view
of a design process. Gero’s model, based on the structure and behavior
relationship in design objects, is incomplete in terms of most of the design
processes. I will present an extension of Gero’s model here. The
prerequisite for understanding of this model is the definition of the terms:
structure, operation, behavior, analysis, and evaluation. These terms,
briefly defined in chapter 1, are treated in more detail and in relation

with architectural design here.
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Structure:

By structure one usually refers to the physical organization of a system in
terms of its components and their underlaying connections. The components of
a system may differ depending on the level in which they are considered. For
this reason a system may be attributed with several structural properties
each at a different level. For example, the structure of an electronic
system at device level is the electronic boards and interconnections between
them, while at the lower board level, its structure consists of electronic
components in the board and the connections between them.

Structure, in this work, refers to the physical organization of a
building, and more specifically the pattern of connectivities embedded in
it. The connectivity pattern of a building may also be referred to as its
location access graph, topology of the locations, or simply its topology
[Tzonis87].

Operation:

An important missing part from Gero’s model is the notion of operation.
Operation has a significant réle in the relationship between the structure
and behavior of a system. Without an operation a behavior is not conceivable
for a system. Operation is thus the property of a system, extrinsic to its
structure, that causes it to behave in a certain way. The operation of a
fork as a design object is the way it is handled. The operation of an
electronic device is flow of electrons in the device that are initiated by
its input. I perceive the logical switching of an electronic device as its
operational aspects. Note that, while the physical organization of objects
are constant, their operation may be a time dependent phenomenon that varies
in time. For example, the operation of a fork changes as it is handled by
different persons in different ways. The operation of an electronic device
changes as its input varies.

Now, I define the operation of a building as the pattern of flow of
people and objects within that building as prescribed by the interrelations
and associations between them. The interactions between groups of people in
a building and the pattern of movements between its different location-pairs
are, therefore, operational aspects of that building system. The operation
of a building, as it was defined above, is thus related to the arrangement

of activities and actors within that building.
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Behavior:

The behavior of a system is the conduct of the system as a result of the
operation imposed on its structure. Davis [84], in describing his system
developed for trouble shooting electronic devices, uses the term behavior to
denote the way in which the input of a system (as a black box) is related to
its output. He describes the operation of a system as a set of rules that
maps its inputs to its outputs.

Here, I define this term to mean the qualities of a design with respect
to different points of view, measurable in terms of costs or utilities that
it provides for its users. The behavior, as it is defined here, is a multi-
component type variable that reflects the points of view through which it is
considered by its users or its designers. Furthermore, the behavior of a
design at a particular time reflects 1its operation in that time. The
behavior of a system is therefore under the influence of its operation and
is constrained by its physical organization. The argument about the levels
of physical organizations may be carried out here. As we attribute different
levels of structure to a system, we can attribute a different behavior to
each level as well. Furthermore, the behavioral aspects of buildings can be
expressed both qualitatively and quantitatively. For example, the security
degrees in different areas of a building can be stated qualitatively, while
the privacy degree is expressible quantitatively in terms of the flow

generation potentials between different location pairs.

Performance:

The behavior of a system is usually divided into the actual behavior and the
expected (anticipated) behavior. The actual behavior of a design with
respect to a norm is sometime referred to as a design objective, a design
goal, a criterion of evaluation, and performance of the design. I will refer
to the actual behavior of a building with respect to a point of view as its

performance as well in this work.

Norms:

The expected behavior of a building is commonly expressed in terms of norma-
tive requirements. A norm is therefore the anticipated or expected behavior
of a building with respect to a single point of view. Experiments have led

to the identification of several categories of norms with respect to several
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kinds of performance of buildings [Tzonis87]. This work deals only with a
selection of norms privacy, community, circulation-cost, and intervening

opportunities that are associated with the social qualities of buildings.

Function:

Each building is designed to serve a specific purpose. A house is designed
for 1living, an office is designed for work, a school for educational
purposes, and so on. The function of a system is defined as the purpose of a
system for its behavior [Kuipers84]. In an example, in distinguishing the
meaning of the terms behavior and function, Kuipers[84] explains that the
function (purpose) of a safety valve in a boiler is to prevent the
explosion, while its behavior is the level which it keeps the boiler at. The
function of a system is obviously under the influence of its physical and

operational organizations. This term is rarely used in this work.

Analysis:

Analysis of a design is the process of deriving the values of its (expected
or actual) behavioral attributes from its structural description [Rosenman-
90].

Evaluation:

The process of comparing the actual and the expected behavior of a design
(with respect to a point of view) is called an evaluation [Rosenman90]. The
goal of an evaluation is judging the performance (actual behavior) of a

design [Rosenman90].

Diagnosis:

The process of identifying the causes of (mis-)behavior of a system with
respect to a norm is often referred to as its diagnosis [Rosenman90]. The
term, in this work, refers to the process of identifying locations of a
building having a behavioral value (e.g., disturbance degree, costs,

utilities) with respect to social norms.

The physical arrangements of locations of a building and the way they are
accessible have impact on the operation and consequently on the performance

of the building. The connectivity pattern of a building, the relative
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distances between its locations, and the number of paths between these
locations carry with themselves important behavioral information. They
determine the relationships between locations, they imply the ways in which
routes can run, along which people and objects can circulate through the
building.

The allocation of activities in a building in a certain way also
influences circulation flow between different location-pairs in a building.
Circulation of people and objects in a building causes interactions that in
turn results the building to behave in a certain way.

The structure, operation, and behavior of a building may be regarded as

parts of its properties and its qualities, the relationships between them
are depicted in the following figure.

HP
HP —> Geometr
Building Structure |Twp y
——-> Topology
HP cas
—————>|Activities
Constraints
HP
b3 | ACt O'S - +
l Cause
HP
3 —-) Flows
Operation HP
———-) Interactions
Causes
I AkO
> Anticipated behavior
HQ AkO

W

Behavior T’ Actual behavior (Performance)
> Evaluation value

HP

Function

HP: Has Property, HQ: Has Quality, and AKO: A Kind of

Figure 2.6: Causal relations between

Structure, operation and performance of a building

Design as a process, based on the structural-behavioral relationship, is
viewed as a chain of transformation sub-processes upon a set of entities.
Design sub-processes include formulation, generation, evaluation, and
reformilation [Gero90]. In the following discussions, —— means a trans-

formation process, a ¢«——— means a comparison, a sub-process is written on
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top of an arrow, and the information that the sub-process needs is presented
below the arrow.

A process that can hardly be considered as a design is a direct trans-
formation between design requirements (i.e., D(R)) and the structure
description (i.e., D(S)) of the design. This particular transformation which
is achievable in the form of a routine design is as follows:

Routine Design

D(R) » D(S)

A more realistic transformation between D(R) and D(S) can only take
place through a chain of sub-processes based on consideration of operation

(0) and expected behavior (i.e., Be) of the design.

Design Generation
(]

> D(S)

Here, Be usually is estimated through a formulation (also called speci-
fication) sub-process. The objective of formulation is to explicate informa-
tion from a design statement and to specify the expected behavior of the
design object. The expected behavior of a design is a set of its qualities

that are functions of the operation of a design.

Formulation (Analysis)
o}

D(R) Be

If we put together the last two sub-processes, we have:

D(R) Formv;lat.lon' Be Gen;ratlon D(S)

A design, by nature, has attributes that exist in its performance space.
The attributes of a design are either explicit and immediately obvious or
not immediately apparent. In the second case attributes of a design are
derived by application of analytlical, or interpretive methods. For example,
in a building design description, the branching degree of each location may
be an explicit attribute, immediately apparent by visual examination of its

connectivity pattern, while many of its other attributes, such as potential
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Interactions between 1its different location pairs 1s not an obvious
attribute.

Any design description always maps into a unique point in its perfor-
mance space, but the reverse is not necessarily always true. Several design
descriptions may have the same performance, and thus, a performance value
often maps to several design descriptions. This means that there may often
be several design solutions to a particular design problem.

Derivation of performance attributes gives ability to assess the per-
formance of a design with respect to certain criteria. The spaces of design
description and of design performance, depending on the number of variables
in the first one and the number of criteria in the second, may be multidi-
mensional. However, in a given time, one might be only interested in certain
attributes of a design. For example, given an existing design, one is always
interested in knowing its actual performance relative to a desirable or
expected performance, or having a design description, it is beneficial to
know what is its performance with respect to a number of points of view?

The process of mapping a design description to values reflecting its
performances criteria is called a design analysis [Gero90] [Rosenman90]. The
purpose of design analysis is to derive its performance with respect to some
norms once it is generated. Design analysis is carried out by applying a
certain procedure. An analysis of architectural design with respect to
social norms is a function of both the structural description and the

operation of design.

Design analysis

Design description space (D(S)) o o

Performance space (Ba)

The evaluation of a design is the comparison of its expected behavior with
its actual behavior (performance) [Rosenman90]. Once an actual behavioral
(Ba) value of a design description is known, then it may be compared to its
anticipated (i.e., expected) behavioral value. An evaluation must provide
sufficient information on design so as one can judge whether its actual

performance value is acceptable or not [Rosenman90]

Expected behavior (Be) e—E§%§¥3§%¥L—-9 Actual behavior (Ba)

Another inference process closely related to the analysis of a design

is diagnosis. Diagnosis is the process of finding the causes of (mis-
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Jbehavior of a system. Diagnosis, thus, presupposes discrepancy between the
expected and actual behaviors of a system [Struss8sg].

Diagnosis

Expected behavior (Be) 5 o

Actual behavior (Ba)

Analysis, and evaluation of a design are followed by reformulation, if
the evaluation of design shows that its performance (Ba) is unsatisfactory

in some respect.

Evaluation
Be

~
v

o]

4

T Reformulation |
Structure + Operation

If we put the components of the process together we have the following model

of a design. The implementation of TOPGENE is based on this model.

Design Generation

I Operation 1
Formulation Evaluation & Diagnosis Design analysis
D(R) e 2 > Ba ¢ 2 X 2. D(S)
Operation D(S) + Operation Operation
Reformulation

D(S) + Operation

x
A =——> B means that given A and y, process x produces B,
y
D(R): Design Requirements Be: Expected behavior (norm)

D(S): Design (Structural) Description Ba: Performance (Actual behavior)

Figure 2.7: A model for design sub-processes

2.4 Background on architectural design automation
There has been extensive research in bringing architectural design at a
scientific level of thinking during last four decades. The motivation behind
these efforts is based on several facts [Broadbent86] [Tzonis87]:

- Dissatisfaction about the improvement of architectural designs.

- Availability of new tools, such as computers.

- Emergence of new techniques such as simulation, operation research,

and artificial intelligence.
- Successful application of above tools and techniques in other areas

of science.
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— Needs for transforming architectural design from a craftsmanship

process to a more rational problem solving process.

Attempts In automating the architectural design process dates back to the
invention of computers and emergence of operation research after the World
War Two [Tzonis87]. In this period one can see the impact of operation
research techniques in design [Coyne et al 90). The first attempt towards
the automatic generation of architectural floor plans is attributed to the
work of Alexander and Chermayeff in late 1950's and early 1960s [Alexander-
64]. Reviews of Alexander’s works can be found in [Tzonis87] and [Coyne et
al90]. The Chermayeff-Alexander paradigm inspired many researchers into
development of new methods for generating architectural plans. These methods
are classified under different names, such as Space allocation techniques,
Facility layout, Automated Spatial Synthesis, and Space Planning [Eastman73}
in architectural literature [Tzonis85] [87]. Space allocation methods saw
architectural problems as quantitative combinatorial problems that could be
expressed in terms of a matrix of interactions, and solved analytically.
These methods used different types of constraints, such as relational (i.e.,
interaction requirements), locational (e.g., where to put a specific
location), configurational (e.g., alignments, proportions, acbesses)
[Tzonis87), to reduce search efforts.

All space allocation techniques led to schematic partial architectural
plans which were difficult to integrate into architectural design processes.
The difficulties, inherited from the original paradigm, weakened the
position of the techniques into a level of being considered as reductive in
a design process, or of limited use in architectural practice [Tzonis87].

Two steps were taken in 1962 to improve the techniques: the development
of more powerful algorithms and the introduction of interfaces between users
and systems [Korf77] [Roch78]. The first effort improved the efficiency of
the techniques in terms of calculation time, and the second allowed human
intervention in search processes.

Galle [81] has categorized these systems in terms of their degree of
automation as follows:

- Interactive systems for appraisal of users’ designs.

~ Step-wise automatic systems capable of generating intermediate

partial solutions to be selected by manual control.
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— Non-exhaustive automatic systems generating designs under a set of
constraints.

— Exhaustive automatic systems generating desligns under a set of const-
raints.

- Automatic systems generating optimal or quasi optimal desiéns under a

set of constraints.

Still, space allocation techniques were seen as intermediary steps in the
design process, and the implemented systems were used interactively by the
architects for optimizing and evaluating design objectives one at a time,
independent of other objectives. The introduction of more than one norm into
these systems had the immediate consequence of incommeasurability.

An architectural design problem is essentially combinatorial and
intractable. To appreciate the computational complexity of a design
specially at topological level, one must notice that a problem with n
elements has the potential for creating n!/(n-2)! interacting pairs and as
many as 2" interacting sub-systems. For example, a space planning program
developed by Grason [68], took 23 minutes to find five solutions to a five-
room problem stated in terms of adjacency and dimension requirements. It
took 210 minutes for the same system to find only 1 solution for an eight-
room problem, after which the program was forcefully stopped: Grason’s
reaction to exhaustive enumeration was that these approaches should be
abondoned [Steadman76].

The trace of the exhaustive enumeration paradigm can be seen in the
works of researchers even during 1970s and 1980s. For example, several works
can be found in the area of exhaustive enumeration of floor-plans under
space relations or dimensional constraints [Mitchell et al 76] [Steadman76]
[Flemming78] [Gilleard78] [Galle81].

Flemming’s [78] work described a procedure that could give solutions to
space-allocation problems under the dimensional and relational constraints
between the locations.

Mitchell et al [76] presented a set of algorithms for generating
rectangular floor plans under adjacencies and dimension requirements. Their
algorithm first generates exhaustively all distinct arrangements of
locations under access requirements, and then arranges the rooms in an

optimized fashion with respect to their covering surface.

(2-17)



Chapter 2: The design Problem

LAYOUT, a system by Gilleard[78) enumerated all rectangular dissections
based on the adjacency and size requirements. LAYOUT first generates all the
ad jacency graphs for a specific problem, and then the rectangular dissec-
tions based on the dual graphs of the adjacency graphs. Gilleard’'s
algorithm, also based on exhaustive enumeration techniques, generates floor
plans with rectangular space molecules based on user defined constraints
such as the minimum and maximum area of each room.

Recent works in the area of knowledge-based expert systems, automatic
discovery and neural networks have paved the way for development of new
ldeas and sophisticated systems in many scientific areas. Computers are
considered as repositories of knowledge capable of performing intelligent
tasks, competent in learning and discovering new ideas, and not as a calcu-
lating machine any more. Some new Al systems rely on a prior body of know-
ledge to solve problems. Something which was absent from previous systems.
Examples of these Al systems are scattered around the scientific fields such
as medicine [Shortliffe76] [Pople84], chemistry [Lindsay85], engineering
[McDermott81] [Mittal85], etc.

Al systems employ heuristic methods and other AI techniques to go
beyond the old paradigm of enumerating solutions. These techniques have
proven to be successful in almost every area of science. Some of these
systems are closely related to design methodologies in many respects. Their
underlaying methods can be hired to attack design problems in many levels.
There are many reasons to believe that these techniques might be equally
useful in transforming the design process from a intuitive process into a
more rational problem solving process. Such a transformation can help to
increase the efficiency of design processes, also the quality of designs.

In spite of the widespread application of AI, it is believed that
little improvements have been made in the area of architectural design
[Tzonis85] [87] {[Broadbent88] [Coyne88]. The existing body of knowledge
provides sufficient ground for making new improvements in design methodo~
logy. The signs of new approaches towards design can be seen from the
current research works in this direction.

Charles Eastman’s paper "Automated Space Planning" [Eastman73], perhaps
is one of the earliest contribution of Al to architectural design. Eastman
developed a program called General Space Planner (GSP) that solved spatial
arrangement tasks by taking the advantage of heuristics. GSP accepted a
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space S, a set of Design Units (DUs), a set of Spatial-Relations S-R as
constraints, and a set of operators for manipulating the locations of DUs
within S. GSP was able to generate a space layout satisfying the set of
constraint S-R.

Explanation Based Generalization (EBG) [Mitchell86] is a learning
paradigm in AI whereby a learner learns from examples. Mostow and Bhatnagar
[Mostow87] developed a system, called Failsafe, based on the EBG that could
learn from its failures. Failsafe is in fact an intelligent space allocation
system for generating simple floor-plan layouts of houses subject to
dimension and adjacency constraints.

HI-RISE, is an example of Kknowledge-based expert system in building
design [Maher85]. HI-RISE uses top-down refinement and constraint handling
strategy to synthesis preliminary structural design of high rise buildings.

ALL-RISE developed by Sriram [87] 1is the extension of HI-RISE to
include the structural design of all building types. This system is also a
knowledge based system that uses top-down refinement and constraint-handling
techniques to synthesize structural design of buildings. The architecture of
ALL-RISE includes several knowledge sources and a blackboard mechanism
[Rich83] [Hayes-Roth85] that allows communication between these several
knowledge sources.

For detailed discussion on the history of architectural automation
systems and references to the works carried out in this direction, readers

are referred to Tzonis [87], and Galle [81].

2.5 Classification of architectural designs
In a broad sense, architects are believed to use four distinct approaches
towards generating three-dimensional bullding forms: Pragmatic design,
Iconic design, Analogical design, and Canonic design [Broadbent88]. This
classification, which reflects the physical creation of the build forms
rather than their descriptions, although does not reflect the scientific
approaches towards design of new bulldings, but in some cases coincides with
particular models of design described by researchers.

Broadbent describes the pragmatic design as the way in which early men
designed their shelters by choosing available materials, and putting them

together in a way that seemed to work. Pragmatic design, as a trial and
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error process, is common practice today as well, specially in situations
when new materials are available and must be tested by use. Pragmatic design
matches best the redesign described earlier.

Iconic design is defined as the repetition of typical.existing designs
which have been proved to work well for a particular climate or particular
purpose. The cultural causes, the patterns of life, and the availability of
certain materials have basic influence on persistence of iconic design
approach [Broadbent88]. Iconic design is the practical model of the routine
design described above.

Analogical design 1is another class of practical design mentioned by
Broadbent [88]. Analogical problem solving plays an important réle in every-
day life. Human beings seem to use analogical methods in varying ways within
their reasoning processes. From learning [Winston84] to teaching, and from
reasoning [Winston80] [Winston83] to problem solving [Evansé68] and finding a
design solution to a complicated archlitectural problem [Broadbent88] analogy
is a common practice. Analogy in building design can extend from abstract
level to geometrical realization of the floor plan, and even to minor
aspects such as decoration. A designer working at abstract level, for
example, could use important aspect of prisons having réle in their security
performance, to design an office with a high security performance require-
ment. Another example could be given in micro level of architectural design,
where the aesthetic aspects of nature direct designers in creating aesthetic
forms. Analogy as a reasoning process is a practically proven method of
problem solving in AI that could be well integrated with knowledge based
design systems.

Canonical design is the process of creating form by setting up a two or
three dimensional grid and trying to fit sub-modules of a design into the
grid. This process ensures modularity and coordination in the outcome of a
design process. The process starts by defining first the desired shape and
dimensions of modules of the design in prospect. The basic dimensions of the
grid will be determined according to dimensions of the modules. The obvious
problem with this technique is the reconciliation of the grid, once it is
decided, with design components on one hand, and fitting of the whole system

with the environment on the other hand [Broadbent88]).
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2.6 The phases of an architectural design process

An architectural design problem usually demands organizing a given set of
elements (activities) in space, under a given set of requirements. The
process of architectural design can roughly be divided into two global
phases, namely the analytical phase, and the synthetic phase [Broadbent88].
These phases may further be divided into sub-phases. For example, two
distinguished sub-phases at the synthetic phase are the pre-metric
(topological) and the geometric phases [Hashimshony86] [Tzonis87]. These two
sub-phases are important both to the design processes, and because of metho-
dological developments in recent years. These phases in architectural design
are familiar to the general view of Qesign, depicted in figure 2.5, consist-
ing of three basic sub-processes. Research work on these two levels has been
considered important and of equal value. The following sections give brief

descriptions of these levels of architectural design.

2.6.1 Analytical (programmatic)

This phase of architectural design, also called programmatic phase, 1is
identical with the formulation phase of a design process, discussed in
section 2.3.

Traditionally, the basis of almost every architectural design process
is a matrix of interactions that provides information about the interactions
between different functional areas of a building [Reynolds80] [Hashimshony-
86] [88]. The interaction information provides the basic ground for arriving
at the adjacency and access possibilities of a design. This process Iis
carried out in the analytical phase which involves analysis of the design to
deduce the requirements of the design. Designers, in this phase, have to
decompose and analyze design requirements, categorize them in terms of rela-
ted concepts, define the elements of design and their characteristics, and
deduce the program of requirements (POR) from design requirements. The ulti-
mate aim of this phase is determination of the interaction information, and
consequently the matrix of required adjacencies (MRA) which is an input to
the topological phase. The required adjacency of a design reflects, to some
degree, the expected behavior of the design. Figure 2.8 shows a matrix of
interactions that reflects (potential) interaction degrees between the loca-

tion pairs in a building, scaled within the range of 0 and 5. In this exam-
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ple, a 5 indicates the highest interaction between corresponding locations
pairs, the implication which is that these locations should have access or
be located as close as possible. Similarly, a 0 indicates no interaction at

all, that may be taken as very low priority in terms of access.

//// Anaesthetic room
//// Doctors’ changing
o //// Nurses’ changing
0 0 //// Operating room
a 3 3 //// Recovery room
3 0 1 3 / Scrub-up room
2 3 3 3 o //// Sterile lay-up
2 o 1 4 ) o //// X-ray control
3 o o 3 [ o o ////

Figure 2.8: An interaction matrix exhibiting interaction
potentials between location pairs in a design [Reyno1ds8o]

The interaction matrix is used to arrive at the adjacency matrix or the
access matrix. These matrices, which are symmetrical matrices hold informa-
tion about adjacency and access of locations respectively. The polar and
East-West directions, and exterior location are sometimes included in the
MRA to emphasize the direction requirements or day-light requirements for
some locations. In general an element aij of the matrix is either 1 or 0O
depending on whether the adjacency (common wall) or direct connection
(access) between locations i and j is recommended or not.

The entries to the adjacency matrix are sometimes welghted numbers
representing the requirement degrees of adjacencies between the location
pairs. In such cases the adjacency matrix should be further treated with
some design considerations to obtain the more restricted ad jacency matrix
with binary entries. In such case definitions of interaction and ad jacency

matrices overlap with each other. For example Hashimshony[86] refers to the
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interaction matrix as adjacency matrix, and to the binary adjacency matrix
as the Feasible Connection Matrix (FCM). The reason is that often the
empirical data reflecting the interaction potentials between the activities
are not known prior to design solution. Designers, then, have to use
intuition or rely on unprecise data from the program of requirements for
guessing the interaction potentials between the activities. In such cases,
instead of the real data providing basic ground for deciding on the
adjacency and access properties of the design, intuition is used. These
guesses and intuitions are usually reflected in the form of weighted entries
in the MRA. MRA after further treated is converted into a binary matrix.
Figure 2.9 depicts the MRA related to the interaction matrix depicted in
figure 2.8. One should note that the adjacency is a necessary condition for
realization of the accesses 1n an architectural floor plan. This implies

thatbthe ad jacency matrix precedes the access matrix.

//// Anaesthetic room
//// Doctors’ changing
o //// Nurses’ changing
Operating room

o o //// p g

Recovery room
1 1 1

Scrub-up room
1 o ) 1 //// P
Sterile lay-u
o] 1 1 1 0 //// y-up
X-ray control

(o] 0 o 1 [»] [o]
1 0 0 1 4] [o] (o] ////

Figure 2.9: A matrix of required adjacencies (MRA)

2.6.2 Topological

The study of properties of objects which are invariant under continuous
transformations, such as twisting, pulling, and stretching, belong to a
branch of mathematic known as topology. The word topology is derived from

two Greek words with the meaning study and place. Topology is defined as the
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study of non-metric spatial relationships, such as connectedness and bound-
ness [Flegg74]. Topological analysis in terms of building design is the
study of the lmpact of relational organization of a building on its perfor-
mance regardless of its other properties, such as sizes, physical shape,
levels, etc. Continuous transformation destroys the geometric properties of
objects but preserves the topological ones.

The importance of topology liles in the fact that the fundamental
spatial concepts are not considered as metrical but relational. The most
spatial qualities which can be treated topologlically are: accessibility,
adjacency, proximity, separation, enclosure, connectivity, visibility,
acoustic, continuities, and properties such as localization of activities or
objects [Tzonis87].

The topological relationship cannot be disregarded while designing
buildings. Architects, when they are planning layouts, often speak of some
kind of association between rooms or spaces that they manipulate in
different arrangements. These associations have behavioral and operational
implications in a design [Steadman71]. Topological arrangements of locations
in a building, also abstract representation of space as graphs of
topological properties gives a great degree of flexibility to the designers
in the analyses of designs and finding of associations between its different
elements. Another Iimportant aspect of this approach is its ability in
formulation of architectural problems as mathematical models that could be
solved by known techniques and computers.

The arrangement of locations in terms of adjacency or access is usually
for various reasons. The most apparent is the access requirements. There is
always a need for people to have direct access from one location to the
other in a building. For example, in a factory material or goods have to be
moved from one area to other areas. Adjacency also may provide natural
lighting, ventilation, and viewing for a location, if such a location is
adjacent to an outside space. On the other hand separation of locations may
have its own reasons. For example, sound isolation or increasing the privacy
of a room might be a good reason for keeping a room isolated from another.

The treatment of plan arrangement in terms of adjacency requirements at
small scale, such as a house is perhaps more realistic than at a large scale
such as an office building or factory. It is unrealistic to talk about

adjacency and access for all locations in large size buildings. Instead we
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can talk about the concept of nearness or proximity of rooms in them. In an
office with possibly having hundreds of rooms or in a department store with
more that hundreds of locations for displaying goods, or in a factory with a
fairly long production line, the distance between the locations, which
individuals must travel, and the arrangement of such locations in terms of
nearness and proximity becomes more significant. These are the concepts that
play réle in optimization of design with respect to the norms discussed
above.

The topological phase of architectural design is, thus, a conceptual
phase which deals with schematics of a design in terms of its topological
aspects such as connectivity (access) or adjacency between locations. In
this phase, the programmatic requirements, translated into the matrix of
required adjacencies, must be transformed into a layout graph of the design
solution. The layout graph represents the elements of the programmatic phase
and their interrelationships. Realization of such a graph is not always
trivial. The ultimate adjacency or access graph of a building, at least,
must be a planar graph so that it is realized at the geometric phase. This
is not always the case. A graph corresponding to the MRA or the FCM is not
always planar, and there may be several planar graphs corresponding to a
non-planar one. An optimal planar graph should be sorted out of the
generated planar graphs in this phase. Several researchers have proposed
different methods for generation of an optimal graph in the topological
phase [Baybars80] [Hashimshony86]. This phase is the invention of a design
pattern which reflects the influence of constraints of the analytical phase.
This work is concentrated on this phase with emphasis on social norms as the

basic constraints in the formation of a bullding design.

2.6.3 Geometric

In this phase the layout graph is transformed into a two dimensional archi-
tectural floor plan. The transformation is carried out under a set of
constraints. The constraints of the geometrical phase could be generalized
as those which are defined in the programmatic phase and inherited in the
adjacency graph, the functional performance of the design as it is viewed by
a designer, and the forces of the contexts of the design such as physical

and economical considerations. The result of this phase is the invention of
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architectural floor plans which comply with those constraints. Design at
geometric phase also may be seen as pre-metric geometric and and metric
geometric sub-phases. The first sub-phase concerns the drawing) of rough
sketches of the actual floor plans by designers, and the second sub-phase is
when the metric constraint is imposed on the geometry of spaces.

The phases of the architectural design process, discussed above is

depicted in figure 2.10.

Analytical phase:

Analyzing design requirements

|

Deducing POR

Preparing matrix of required adjacencies

!

Preparing feasible connections matrix

Topological phase: l

Generating planar adjacency graph(s)
based on the matrix of required
ad jacencies (MRA)

Selecting an optimal ad jacency graph

Geometric phase: 1

Generating floor plan layout(s) according
to the adjacency requirements

Figure 2.10: Phases of architectural design

2.7 The role of social norms in architectural design

As mentioned earlier, the expected behaviors of buildings are usually exp-
ressed in social norms. The social norms mentioned in this work are all
under the influence and control of flows in a building. By flow, here the
pattern of movements of people and objects in a building as a result of its
operation is intended. The operation of a building is determined by the way
in which the activities are allocated. If we assume that activities are
bound to the locations in a building, and if some actors are responsible for
more than one activity, then one can assume that these actors move between

locations within the building and interact with each other. The movement of
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the actors within the building, and their interactions contribute to the
social behavior of a building. The theory can be explained by an example. We
take a simple access pattern of a building and some arbitrary activities and
actors responsible for them. By choosing a different building pattern and
arbitrary assignment of activities to the locations (allocations) and obser-
ving the patterns of flow as a result of the operations imposed on different
building types, we can analyze the impact of the structure and operation on
the behavior of designs. We take a small design problem, with 4 locations as
follows:

{Al is an activity assigned to groups G1, G2}

{A2 is an activity assigned to the group G2}

{A3 is an activity assigned to groups G3, and G4}, and

{A4 is an activity assigned to groups G3, and G4}

Several designs exist for above problem, depending on the access pattern
(structure) of the design, and also the way in which activities are
allocated to them. To make life simple, we take only four design solutions,

as depicted in figure 2.11, from among all possible solutions, and compare

their performances.

Al A2 A3 A4 A3 Al A2 A4
s O Fg) 0 —0—--00——-0
>
(1) (2)

(VUNY ] O A2
N (I I | -
A3 A1
Al A2 A3 |

——> OAa

(3) (4)

Figure 2.11: Four different solutions for a design problem

The arrows in the above figure show the flows between locations that share
actors. Solutions (1) and (2) have the same structure, but have different
operations, and consequently different behaviors. This is because of the way
that activities are allocated to their locations. There are no interactions
between the actors in solution (1). So, solution (1) has a behavior in

accordance with the privacy norm, but poor in terms of the community norm.
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In contrast to the solution (1), solution (2) has a relatively good
performance in terms of the community norm, but it behaves poor in terms of
the privacy norm. The sharing groups between locations that are identified
by A3 and A4 disturb residents in locations labeled by Al and A2 and create
some sense of soclal amenity for the building, while moving from one
activity assigned to them to the other. By the same tokens solution (3) has
some advantage over (2) with respect to the privacy norm. The most
interesting solution in terms of both norms is number (4). In this design,
while all resident groups enjoy benefit of non-intervention, still there is
a potential for new group formation at the central location that may be a
corridor. This location absorbs all interactions, creating social amenity,
and it is also a perfect place for allocating an intervening opportunity
activity. These solutions also have different implications in terms of the
circulation-cost. A topologically more compact solution, intuitively, has
more benefit in terms of this norm relative to stretched solutions. This
obviously 1is only true under relatively identical operations for all
designs.

This example indicates the interrelationships between the structure and
operation of a building, the effect of flow on the actual behavior of a
building, and the réle of social norms on a design process. The example,
also showed the existence of conflicts between some norms. Another important
characteristic for such a design problem is that the norms are incommea-
surable, and there is no common factor in converting one to another. Such a
characteristic of architectural design problens, limits choices of
techniques that one may borrow from other disciplines in dealing with them.
The following sub-sections treat the formal definitions of the social norms
dealt with in this work.

2.7.1 Community norm

The norm community, also known as social interaction opportunities and
social amenity [Tzonis87], concerns the degree of social interactions and
associations between different groups within a building. The community
utility of a building can be measured in terms of degrees of group forma-
tions within the building.

If we assume that two activities with identical groups are assigned to
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more than two locations in a building, one may assume that these groups
would travel between their assigned locations, and appear at intervening
locations. As a result they will encounter other groups traveling or
residing within those intervening locations and form new groups. For
example, in figure 2.12, if the activities in locations L1 and L8 are
assigned to the group-sets {Gl G2 G3}, and {Gl G2 G5} respectively, then one
can assume that the groups Gl and G2 will travel between these two locations
and will appear at intervening locations L2, L5, L6, and L7. Similarly the
group G7 responsible for the activities in locations L3 and L4, will move
between these two locations and will appear at location LS. As a result {G1,
G2} forms a new group set {Gl1, G2, G7} with {G7} at L5, a new group {G1, G2,
G4} with {G4} at L6, and a new group {Gl, G2, G5} with G5 at L7. Formation
of these new groups contributes to the social amenity of the building.

L3, {G7, G9}
0
{G1, G2, G3} {G4} {G5} {G1, G2, G5}
L1 L2 LS L6 L7 L8
0 0 0 0 0O 0
L4, (67, ce)

Figure 2.12: Patterns of flow in a building as a result of
its structure-operation interrelationship

Social amenity in a building, as described in above example, is proportional
to the degree of new group formations (i.e., interactions) in each location.
The formation of new groups within a building may take place under three
conditions: overlapping flows in a location, a flow crossing another flow in
a location, or a flow crossing a resident location. The impact of new groups
formed on the social quality of a building is obviously proportional to
weight of new groups, which in turn is proportional to both the weight of
flows between location-pairs and the weight of groups residing in locations.

Expression of the total community utility of a building with complex
pattern in terms of the actual group formation in its different locations is

not easy. A formal definition of this norm for directed and undirected flow
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may be given as follows, respectively:

n n
Total Uco = ¥ ¥ flj i., u , for 1+
i=t =1
n-1 n
Total Ueo = T L £, 1, u
1=1 j=1+1

where, n is the number of locatlons, flj is the flow degree between loca
tions i and Jj, ilj is the index of potential group formations between two
locations i and j, and u, is the unit utility for group formations. u_ may

vary for different group formations.

2.7.2 Privacy norm

Privacy may be considered as a cost associated with the undesirable inter-
ventions by other groups in a building. As a designer likes to aggregate
benefits for the social amenity and new group formation within a building,
he might as well provide quiescence for the groups working or residing in
different locations. This is possible by minimizing the interventions of
groups walking in the building, to the other locations. The privacy norm is
uncooperative and in conflict with the community norm. This means that a
designer trying to maximize both norms at the same time often faces unre-
solvable situations. A formal definition of the privacy norm under the

influence of the undirected flow is as follows:
n-1
Total Cpr = §
i=1

where, n is the number of locations, flj is the flow degree between loca
tions 1 and j. iU is the index of potential interventions for the resident
groups between two locations i and j, and cp is the unit cost for an inter-

vention. cp may be taken different for different group interventions
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2.7.3 Circulation-cost norm

Circulation-cost is associated with the number of trips that groups of
people make for different purposes within a building. In an office building,
for example, the staff members carry out duties in a regulating way, and
their relations to other staff members are more or less fixed. So, each
staff member has some closer collaborators than other colleagues, and as a
result the number of trips that people make between specific locations are
more significant than other trips they might make. These trips mean waste of
time and money for the office. This is what is called circulation-cost. It
is wise for the architect to be concerned about this cost, and try to
organize the activities in such a way that the distance between most inter-
active activities are minimized. Circulation-cost is directly proportional
to the number of trips, distances between location pairs, the time spend for
each trip, and the individual travelling cost per unit of time [Berwick71].
The cost per unit of time for individuals or specific groups of people could
be taken as proportional to their salaries. The circulation-cost also can be
categorized in terms of its different types. For example, in a hospital one
can take into consideration the circulation cost for staff, visitors, trolly
movements, service movements, etc. separately.

If distances between all pairs of locations of a building are captured
in a distance matrix (dij), and the number of daily trips made by different
groups of people between the same locations as in the distance matrix are
stored in a matrix (t ), then the cost for all pairs of locations per day

i}
in term of distances can be calculated as:

n
Total Cec =Y}
1=1 }§

d t , for i#j
X 1) i)

™

Now, the actual cost in terms of money for a period of time can be obtained
by multiplying the time each person spends for his / her trips during that
period by his / her unit cost.

n n
Total Ccc=1§1 JE:l(dutuc”)/su, for 1 # j

where, n is the number of locations, sU is the speed in meters per hour,
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and clj is the unit cost per hour for a resident travelling between loca-
tions i and j.

Circulated-cost also may be calculated based on the topological
distance rather than metric distance. In this case, the cost is proportional
to the number of links between two locations, and the circulating flow

between location-pairs in the building.

n-1 n
Total Cee=}y Y d f c ,
1=1 j=1e1 1Y

where, n is the number of locations, dlj is the topological distance (number

of links) between two locations i and j, is the flow between two loca-

f
ij
tions i and j, and cij is the unit disutility per link between two points 1

and j. Cx) may be taken equal for all location pairs.

2.7.4 Intervening opportunity norm

Intervening opportunity is a norm concern with the location opportunities in
a building. As people travel within a bullding, they might aggregate
benefits by passing by location opportunities, such as a newspaper stand, a
snack bar, an activity location, etc.

The total intervening opportunity utility of a building is equal to the
benefits that individual groups gather by coming at an intervening opportu-
nity point, while traveling in the building. Such utility is obviously
proportional to the flow rate between location-pairs, and to the presence of
intervening points between specific location-pairs.

We can define this norm in terms of the flow rate, the number of inter-

vening opportunity points, and the unit utility as follows:

n-1 n
Total Ute =Y Y} u
1=1 j=1+1

ko
1y 1y

where, n is the number of locations, uTJ is the unit utility associated with
the intervening opportunity k for locations i and j. u:j could take negative

as well as positive values. fij is the flow between two points i and j.
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2.8 Defining the problems

The interplay between the structure and behavior of buildings in terms of
the social norms, leads us to the formulation of three types of design prob-
lems at topological level, two of which were briefly introduced in chapter
one. The first problem concerns generating connectivity patterns of buil-
dings optimized with respect to the social norms. The second problem demands
evaluation of the behavior of existing designs (buildings)} with respect to
the same norms. These two problems are the only one considered in this work.
The third problem, brought up only for the sake of completeness of
discussion, is not fully manipulated in this thesis. This problem deals with
the allocation of a set of activities to an existing building in a way that

certain social behavior is achieved.

2.8.1 Generating Designs

The design problem is as follows:

Given:
- A set of activities.
- Actors responsible for each activity.
- A set of social norms expressing the expected behavior (i.e., Be) of a
design.
Find:
- A design for the given set of activities that has a good performance

behavior (i.e., Ba) relative to the expected behavior (i.e., Ba).

An analytical view on this problem shows that very little information is
available in the problem statement. For example, while activities and actors
are given, the expected operation of the design is not known. Also, in the
problem statement, the potential flow between location pairs may be identi-
fied by looking at the common actors between them, but the overall flow in
the design may only be realized when design is known and the activities are
allocated to its locations. Furthermore, there is lack of information on the
level of the expected behavior. A normative requirement does not give much
information on the degree of the required performance behavior of design.

This problem may take different forms depending on the number and types
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of norms involved. Mathematically speaking, the presence of a norm in the
statement of this problem does not increase its complexity in mathematical
terms. Addition of norms, however, changes the handling complexity of a
design. This problem, to be discussed later in this chapter, is an intract-
able problem with a high degree of complexity. Other important criteria of
this problem are the incommeasurability of the norms and conflicts between
some of them. These two characteristics are important and must be taken into
consideration if one tries to optimize a design with respect to a combina-
tion of norms (i.e different view points). A traditional approach in archi-
tectural design towards this problem has been based on generating sub~
optimal solutions with respect to each norm irrespective of the others, and
choosing a compromised solution, based on multi-criteria evaluation tech-
niques, which seems to satisfy best all the norms [Tzonis87].

The relationship between data and variables of the design problem is

depicted in figure 2.13.

Unknown ) Formal structure

(Variable)
(Topological organization)

+
Allocation of
activities and actors

Unknown
(Variable)

Causes
Unknown Circulation flow potential
(Derivable)
Causes
Unknown Interaction
(Varivable)
Causes
E
Unknown Actual behavior

(Variable)

Figure 2.13: The interplay between data and variables in the
problem of generating a design with respect to a set of social norms

2.8.2 Evaluating designs

The evaluation problem assumes that the formal structure (connectivity
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pattern), the operation (activities and actors assigned to locations), and
the expected behavior of the building are known, and the evaluation of the
building with respect to a given set of social norms is required. Figure

2.14 shows a design under evaluation of four social norms (view points).

Intervening opportunity ?

G1 G2
Al A2
0 (]
Privacy 7?7 O 0} o] {0} Community 7?
A A4
G2,G3 G4
AS A6

G4 G1,G6

Circulation cost ?

Figure 2:14: Viewing a design from perspectives of social norms

The evaluation problem may be stated as follows:
Given:

~ A design (connectivity pattern) of a building.

Activit(y) (ies) attached to each location of the building.

- Actors responsible for each activity.

- A set of norms expressing the expected behavior of the design.
Find:

- Evaluation of the building with respect to the given norms.

Noticeably, again several pieces of information are vaguely expressed in
this problem. The operation of the building is not known and must be expli-
cated by some means. Besides, the expected behavior, as in the case of the
design problem is expressed in normative requirements. The norms do not
carry any implicit quantitative or qualitative information in terms of the

degrees of expected behaviors of the design.
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known Formal structure

(Topological organization)
+
Allocation of

known
activities and actors
Causes
Unknown Circulation flow
(Derivable)
Causes
Unknown Interaction
(Derivable)
Causes
Unknown Actual behavior
(Derivable)

Figure 2.15: The interplay between data and variables in the
problem of evaluating a design with respect to social norms

2.8.3 Activity and group allocation designs (fitness checking)
The third problem which fits our categories of design problems at topo-
logical level is the allocation problem. This problem requires the arrange-
ment of a set of activities upon a building pattern under certain social
behavior constraints. In this problem the structure of the building, acti-
vities, and actors responsible for each activity are given. The expected
behaviors of the building, as in the case of previous problems, are express-
ed in normative requirements. The operation of the building 1is, thus,
variable and directly depends on the way activities are allocated. Another
unknown of the problem is the circulation flow potentials between the
activity pairs. Circulation flow potential must derived from the given data.
Here is a summary of the problem statement:
Given:

- A design in terms of a topological pattern.

- A set of activities.

- Actors responsible for each activity.

- Expected behavior in terms of social norms.

Find:
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— Whether the activities fit the design well.
-~ Locate the activities on the pattern in such a way that satisfactory

social behavior is achieved.

known Formal structure

(Topological organization)
+

Allocation of

Unknown
activities and actors
(Variable)
Causes
Unknown Circulation flow
(Derivable)
Causes
Unknown Interaction
(Derivable)
Causes
Unknown Actual behavior
(Variable)

Figure 2.16: The interplay between data and variables in the problem
of checking the fitness of a design with respect to social norms

2.9 On the complexity of architectural design

In this section we take a brief look at the complexity of architectural
design at different levels, and complexity of the design problem discussed
above. The concluding paragraphs discusses the réle of heuristics in reduc-
ing the complexity of our design problem.

Complexity is an intrinsic nature of architectural design. Considering
the architectural design as the act of arranging a set of locations (rooms,
corridors, etc.) in such a way that to achieve a set of functional demands,
the concept of computational complexity [Aho et al 74] [Gary & Johnson 79]
[Wilf86] is an approach to show the difficulty of the subject.

Topological level
Practically, we can draw various unique graphs for the same set of nodes.

The implication of this in terms of the connectivity property of a building
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is that locations within a building can have access to each other in many
different ways. The universe of connected graphs for a number of nodes,
starts with the set of all possible trees over the nodes. A tree has at
least n-1 links. If one is to enumerate all possible graphs of different
sizes, then as the number of nodes increases, the number of possible
connected graphs grows rapidly.

However, in the case of architectural design, a designer is interested
only in simple planar graphs without loops or multiple edges. The number of
possible graphs for a given set of nodes is dramatically reduced under the
planarity constraint, but still grows fast for a number of nodes above six.
The enumeration of all possible graphs for number of nodes up to 6 can be
found in Steadman [76]. For example, for 2 nodes we have only a tree graph,
for n=3 there are only 2 planar graphs (a tree and a cyclic graph), for n=4,
there are 6 planar graphs (2 trees and 4 general graphs), for n=5 there are
20 planar graphs (3 distinct trees and 17 planar graphs), and for n=6 there
are 98 planar graphs (6 trees and 92 general graphs). As I mentioned in
chapter 1, architectural design at topological 1level not only requires
taking care of the planarity of the design, but also is concerned with the
behavior of the design with respect to different points of view. The
behavior of a building with respect to social norms is directly related to
its operation. This requires right allocation of the design with its
activities (or 1location names). Labeling requirements increase the
complexity of design at this level. The number of possible graphs for n

nodes according to Wilf [86] is gh(n-1)

2n (n-1)/2

/ n!. This number increases to
for the labeled graphs. These formulas show that enumeration of
graphs in general has an exponential time complexity.

Figures 2.17 shows the number of planar, non planar, and labeled graphs

for a limited number of nodes.

Transformation between topological and geometric levels

As in above case, the relationship between a graph of a building, and actual
space arrangement is often one-to-many, and for every topological pattern
there might be more than one floor plan arrangement. This is obvious if
there is no constraint on the geometrical shape of the floor plan. However,
to show the complexity, it is enough only to consider cases of square space

arrangement and the rectangular dissections. These two cases for graphs of
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up to 6 nodes, already enumerated by Steadman [76] [83], is reflected in
figure 2.17. This figure shows that for a design of more than 6 nodes the
number of possible space arrangements dramatically increases. One should
note that the number of possible square arrangements and rectangular
dissections corresponding to planar graphs are slightly less than what is
reflected in figure 2.17. The reason is that in some cases there is not a

floor-plan corresponding to a connectivity pattern.

Geometric level

Architectural design at this level is also a task with combinatorial charac-
teristic, and there are many possible solutions to a given design problem
at this level., The extreme case for this level is when we assume no metric
constraints on the geometrical shapes and sizes of spaces in a design. This
case, obviously, runs into infinite solution for any design. However, to
check the level of complexity for real cases, we may look at the case of
rectangular spaces, when a rather strong constraint exists on the geometry
of spaces. The goal is to create combinations of patterns of rectangular
spaces with a given set of square spaces. Furthermore, we restrict ourselves
with the condition that the square cells are attached by sides, and holes
are not permitted. For n=1, and n=2 We have only one possibility for each
case. For n=3, there are two possibilities, For n=4, there are 5 possible
arrangements. For n=5, there are 12 possibilities. The set of all possible
combinations increases rapidly when n is more than 5. Haggett [67] claims
that for seven cells there are over one hundred combinations, and for ten
cells, over 4000 alternative combinations. This brings us to the issue of

computational complexity in design problem solving.

2.10 On the complexity of our design problem, and the role of heuristics

Without a fast algorith for its solution, the design problem posed in this
work is for all practical purposes an intractable problem. This problem, at
first glance may look alike the problem of finding a tree or planar graph to
fit a set of activities. Yet, the level of its complexity expands far beyond
a combinatorial search for a tree or planar graph from among all possible
ones. This is because of the fact that the norms involved in this design

problem depend on the arrangements of the activities upon a given graph, and
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not their arbitrary allocation. So, in fact one has to deal with labeled
graphs for its solution. This means that, based on a combinatorial approach,
one has to try all possible permutations of activities on every graph of
universe of the planar graphs with specific number of nodes, in order to
find the optimum solution with respect to a set of the norms. Berwick [71]
has shown that a state modeling or integer programming of this problem ends
with the permutation of activities on graphs, in such a way that it is

equivalent to a generating all possible labeled graphs in search of a
solution.

n
Wilf (86]° claims that for n nodes there are 2(%)= 2°™172 j.pa)1eq
n
graphs and approximately 2(2)/ n! unlabeled graphs.
The number of possible planar, non-planar, and labelled graphs for a
set of up to 9 nodes are included the following figure. This figure shows
that our architectural design problem is an intractable NP-hard problem [Aho

et al 74] [Gary & Johnson 79] [Kronsjo85] [Wilf86] [Nishizeki88]}.

Number of:

Nodes (locations) 1 2 3 4 5 6 7 8 9

Graphs :1 2 4 11 34 156 1,044 12,344 308,168

Planar connected graphs : 1 1 2 6 20 98 #700 #8,000 #200,000

Rectangular arrangements: 1 1 2 § 12 ? >100 A

Rectangular dissections : 1 1 2 7 22 117 #700 #10 #250, 000
0 1 3 6 .10 _15 21 28 36

Labeied graphs t 2 2 2 2 2 2 2 2 2

Figure 2.17: Growth of the solution spaces for design
problems at different levels

One should note labeling of a pattern with the activities in certain
way 1is merely for imposing a apecific operation on design. The flow
potential between the location pairs are the important factor contributing
to the operation of a building. Different operations affect in various ways

the behaviors of a building with respect to different social norms. Some of

3A graph of n vertices has a maximum of S edges. To construct a graph one
has to decide which of these edges would be used, and one can make each of
this (3) decisions independently. For every way of putting an edge one may
get a diff%{ent graph. Therefore the number of labeled graphs on n ver-

tices is 2(2)= or(-1)/2
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these norms, as discussed before, are conflicting and all are incommeasur-
able. These properties do not change the complexity degree of the problem in
mathematical term, but increases its handling complexity. In other words,
the size of the problem space is not changed under the presence of flows or
norms. Yet, obviously the considerations for this design problem are more
than just enumeration and labelling of graphs.

By inspecting definitions of norms, one can predict that a design with
respect to the privacy and circulation-cost norms automatically favors
condensed buildings with maximum connections between its location-pairs,
while a design for the community norm tends towards é linear-tree type
pattern. The reason is that a compact graph has a lower average distance
than a less compact graph with the same number of nodes. Similarly, we can
imagine that the community norm demands allocation of activities in a way
they create maximum flow overlaps (interactions), while the other two norms
favor minimum overlapping of the flows.

Figure 2.18 compares average distances (AD) between three different

graphs with the same number of nodes (i.e. n=6).

A Chain graph A Circular graph A Star Graph
AD={(n+1) /3= AD=(n*2)/(4* (n-1) AD=2-(2/n)
T AD=1.66
0—0—0—-0—-0-0 ' AD = 1.8 ‘ 0——;;0——-—0
AD = 2.3 ) : ; o o

Figure 2.18: Graph compactness and average distance
[Tsonis87]

Similarly, we can see that the community and intervening opportunity norms
demands allocation of activities in a way that they create maximum flow
overlaps (interactions), while the other two norms act on the contrary.
Altogether, one can conclude that, first the community and intervening
opportunity norms favors linear-tree patterns, while the other two norms
demand compact patterns; and second, maximum interactions on a pattern are
only obtainable if most interactive locations (locations with maximum flow)
are allocated as far as possible with less interactive activitlies between

them. These intuitive conclusions may serve as heuristic rules, embedded in
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an automatic system, for reducing the search efforts.

Trying to find a design that satisfies a combination of conflicting
norms is not an easy task, since a step in optimizing a norm may have a
reverse affect on another norm. A designer trying to optimize both norms
will face difficulties. Besides the incomeasurability of norms do not allow
relating a unit of a norm to another one for their comparison. This implies
that practically a trade off between the norms is not possible, unless a
strong assumption is made for such a purpose. For example, should the norm
be compared to each other, one has to decide on the relations between the

units of norms.
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CHAPTER 3
PROBLEM SOLVING AND

KNOWLEDGE REPRESENTATION TECHNIQUES
]

Chapter 2 identified levels of architectural designs, defined the social
norms related to this work, and stated the problems concerned in this
thesis.

The aim of this chapter is to review AI approaches to problem solving,
and to present the problem solving and knowledge representation techniques
that are either directly relevant to the implementation of TOPGENE, or

appropriate to the architectural design processes.

3.1 Artificial Intelligence (AI), and its approach to problem solving
“Intelligence" is defined as to mean: "capacity to acquire and apply know-
ledge", but there is not a common definition over the term "Artificial

Intelligence". Minsky [68] states that:

"Artificial Intelligence is the science of making machines do things
that would require intelligence if done by men". [Minsky68, prefacel

The most common speculation in almost all definitions is the concept of
“intelligent behavior" [Rich83] [Yazdani86]. Campbell [86] in an effort to
bridge the gap between different definitions of AI, pictures AI as having
three basic levels as follows:

— A process or model level,

- A heuristic level, and

-~ A computational level.
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The top level consists of the computational models that have some inte
1ligent characteristics. Two types of model are recognized in AI [Campbell-
86]: models that are related in some sense to human intelligence, and models
that are not directly related to intelligence, but their behavior, as they
are implemented in AI programs is at intelligent level. The first type of
models, called theory generated models, are test beds for proving the
legitimacy of the underlaying theories. For example Langley [87] claims that
the ultimate goal of his work on scientific discovery is to provide a
comprehensive theory of the processes of sclentific discovery by men. His
work is tightly coupled with weak heuristic methods.

Heuristic is attributed as the basic element of AI because of its
recognition as a main tool of humans as a problem solver [Polya571. AI uses
heuristics usually at search level to reduce the complexity of search. Camp-
bell argues that although it is true that most of the AI systems use heuris-
tics as elements of intelligence, still, algorithms that fit one of the
above three levels may be considered as to whether be in the domain of AI.

The computational level comprises problem solving techniques some of
which may be common to other fields. Examples of Al techniques are represen-
tation and search techniques, some of which discussed later in this chapter.

With above arguments in mind, one may define AI in a broad sense as an
area within the discipline of computer science that is concerned with the
development of computational models, theories, methods, techniques, and
systems that enable computers to do tasks that are judged to lie within the

domain of intelligence.

3.1.1 Heuristic programming

Heuristics! Patient rules of thumb, So often scorned:
Sloppy! Dumb! Yet, slowly, common sense become. (ODE TO AI)

According to Webster’s dictionary the adjective “Heuristic” means "serving

to discover". "Heuristic" is derived from the Greek word “eureka” meaning "I
have found it!”, and the word "heuriskein” meaning "to discover” or "to
find”. Polya brought heuristic reasoning into focus in the last four decades

[Lenat82] [Rich83]). Heuristics are defined as: The judgmental rules of

thumb, educated guesses, intuitive judgments, readily accessible criteria,
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methods, strategies, trick, principles, or simply common sense that help to
choose the most promising course of action for achieving a goal or solving a
problem by human beings or computers [Davis et al 82] [Lenat82] [Pearl84].

A program that uses heuristic rules is called a heuristic program.
Heuristic rules improve the search process by guiding the problem solver in
a quickest way towards a solution, but they do not necessarily guarantee the
best solution. Heuristic techniques try to explore the paths in a state-
space of a problem that has highest possibility of leading to goal-states.
The problems attacked with a heuristic approach often have combinatorial
nature, and take a long time to solve without heuristics. The arguments for
heuristics are mostly based on the two factors:

— The combinatorial nature of many problems, that make a complete
search through their state-space time consuming and redundant. This
means that an obvious reason behind choosing a heuristic approach
towards problem solving is efficiency.

~ People rarely need or seek an absolute optimum solution but rather

look for a satisfying solution [Simon81].

Heuristic rules are différent in nature. Some are general purpose, appli-
cable to a wide variety of problems, and some are multipurpose, suited for
several problems. Other heuristic rules are specific purpose and limited to
solve problems in a specific domain. General heuristics are properly
attributed as Weak methods, as opposed to domain-dependant, task-specific
ones, which are called Strong Methods {[Langley871. Domain-specific heuris-
tics can be incorporated into a heuristic program in different ways. One way
is to code heuristic information in forms of rules or procedures to solve
the domain problems. This is the case when a direct method for solving the
domain problem does not exist or is not efficient. This type of heuristic
approach is named strategic heuristic [Georgeff83]. Heuristics also may be
used in the form of heuristic functions [Rich83]1. Here, heuristics play réle
in evaluating states of a search, and measuring the degree of success of
corresponding problem solver. Such evaluation measures guide the problem
solver for directing its search efforts towards the most promising paths.
Some of the weak heuristic methods, such as generate-and-test, hill-
climbing, and means-ends analysis that have been emerged from the study of

problem solving will be discussed in the following sections. To tackle a
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problem with heuristic search, three basic consideration must be made
[Lenat82]:
- Observability, and possibility gathering of domain information.
= Continuity of environment to ensure the validity of heuristics, and
— Stability of environment changes over time to prolong the lifetime of

a heuristic.

Empirical results show that heuristics originates from three sources
[Lenat82]:
— Specialization of existing, more general heuristics. This 1is the
process of adapting, binding, and matching of existing heuristics to
a new more special situation.
= Generalization and expanding of existing domain dependant heuristics
to suit a more general situation.

- Analogy: Creating new heuristics analogous to existing ones.

The heuristic AI approach towards problem solving has two main streams. A
soft and a hard approach [Koppelaar90}. The soft approach relies on the
existing body of knowledge that is either available or has to be prepared by
knowledge elicitation. The existing body of knowledge is then stored in the
computer programs for use. Examples of this approach are expert systems.
Acquiring and incorporating all the required knowledge into a system is a
time-consuming and error-prone process. Such a process requires a collabo-
rative effort between at least two highly trained experts. A Domain-expert
and a Knowledge-engineer. So, the main difficulty associated with the soft
approach is the knowledge acquisition bottle neck. The main characteristic
of this approach is that such programs have performance proportional to the
amount of knowledge which has been stored within them.

The hard approach is based on the conjecture that if human beings can
learn and discover things without prior knowledge or a limited amount of
knowledge, so should do the computers. This approach tries to make the
computer to perform in a higher level than its previously stored knowledge
either by recreation of new knowledge or discovery of new facts. Examples of
this approach are the AM system developed by Lenat [82] [Davis et al 82] and
the Bacon system of Langley [87]. AM with the aid of a collection of 250

heuristics rules of thumb was able to form new mathematical concepts, and to
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rediscover mathematical concepts [Davis et al 82]. Bacon was set as a test
proof for automatic discovery, and for observing the process of discovery by
human beings [Langley87]. Bacon rediscovered a group of previously discover-
ed physical laws such as Proust’s molecular gas constant law, Dalton’s gases
law, and Boyle-Gay state equation law of gases.

TOPGENE is a heuristic program that incorporates heuristics rules in
its procedures to reduce the search effort. TOPGENE uses strategic heuris-
tics during its search for a design. Heuristics used by TOPGENE are genera-
lization of design rules either used by experts (architects) trying to
optimize designs from points of view of social norms, or empirical rules
relating the structure and behavior of a building with respect to the social

norms. Examples of heuristics rules used by TOPGENE are given in chapter 3.

3.1.2 Machine Learning

Learning is any change or addition of new knowledge in the structure of a
knowledge based system in order to improve its performance and efficiency
upon a given task. Learning is classified into two basic categories of Know-
ledge acquisition, and Skill-refinement [Carbonell83c].

Basic forms of learning are recognized as: genetic learning, learning
through direct teaching, learning by outside control and eyaluation, learn-
ing by experience and observation, and learning by analogy [Carbonell183c].

Learning is also categorized in terms of the learning strategies.
Several strategies have been distinguished in learning, among which are
rote-learning, instructional learning, learning by deduction, learning by
induction, and learning by analogy [Carbonell83c].

In rote learning, the basic information is accepted from the teacher,
indexed and stored (memorized) by the learner. No transformation is involved
in rote learning. Rote learning can further be subdivided into learning by
being programmed, and learning by memorization. The first case is when a
programmer program the knowledge into a computer. In the second case, which
is the simplest type of learning, the knowledge or information is directly
stored in a data-base. Learning by memorization does not involve new
inference from stored knowledge.

TOPGENE is designed so that it can directly learn and memorize the

access knowledge of building design in the form of recommended and prohibi-
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ted links. The system may use this knowledge while generating new building
patterns. This type of learning was categorized as rote-learning. An exten-
sion of TOPGENE may include a sophisticated type of learning such as induc-
tive learning for accumulating knowledge of accesses in buildings based on

precedents of architectural design.

3.1.3 Neural modeling

The third AI approach to problem solving is neural modeling. This approach,
initiated in early 60’s, suffered two decades of set-back because of criti-
cisms by prominent researchers, such as Marvin Minsky, in the AI field,and
the birth of symbolic knowledge manipulations, but has regained its accele-
ration in recent years.

One interesting aspects of natural neural networks is the non-local
representation of information. The study of brain functioning shows that
although its different parts are responsible for different activities, such
as vision, speech and understanding, still, there is a large degree of non-
localization in information storage in the brain. The argument is that, if a
single neuron in human brains were responsible for representing an object,
then, there would be several people in the world that would be normal except
that they would not recognize that object. Instead human beings seem to
suffer uniform degradation in functioning of their brains, specifically when
they get old [Zeidenberg90].

Neural modeling tries to simulate the neural behavior of the human
neural system. Human neural networks consist of roughly 1010 to 1012neuron
cells [Slagle71] ([Zeidenberg90). Neuron cells are of different complexity-
types, and there are various connection-types in the brain for transfer of
information. The actual interconnections and operating system of the human
neural nets is not completely known. So, the correspondence between the
nervous system and the current neural nets are considered only at analogical
level [Durbin89]. Also, the realization of such a huge network of cells are
not trivial, if not impossible!, at this moment. However, current progress
in realization of parallelism in computers, and consequently the improve-
ments in the processing speed have given new initiative to the neural net-
work approach [Hoekstra90].

An artificial neural network has a large number of simple elements, or
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artificial neurons (nerve cells) interconnected in a certain way. The main
advantage and characteristic of neural networks are adaptability and learn-
ability from experience. Neural network models of computation, whether hard-
wired or implemented in software, have the following elements and characte-
ristics [Hoekstra90] [Zeidenberg90]:

— Elements (artificial neurons) are either active or not. The states of
each element are expressed by a number, called activation number,

— There are usually two special sets of neurons, input and output
neurons,

- Associated with each connection between the elements there is a
weight, which corresponds to the strength of a synapse in a natural
neuron,

— A learning rule, that describes the updating mechanism of the connec-
tion weights,

— An activation rule, which, based on the new connection weights and
the past value of the activation number,describes the updating
mechanism of the activation numbers, and

— A propagation rule, which describes the way activations are propaga-

ted in the network.

This work introduces the Hopfield neural network for solving a special case
of the design problem introduced in the sequel. The Hopfield model is diffe-
rent from other networks in its underlaying principles and the mechanism of
its behavior. An introduction of the Hopfield model, and details of the

implementation of the architectural design process is given in chapter 8.

3.2 Relevant problem solving paradigms

"Problem solving" is a general term used to denote a set of actions for
achieving a well-defined goal. Problem solving falls within one of the
following paradigms [Carbonell83al:

— The Newell and Simon’s state-space of search paradigm,

~ The McDermott and Wilensky’s identifying and instantiating plan(s) of
actions paradigms,
— The analogy paradigm, which considers problem solving as searching

for previously solved similar problems, and transforming their
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solutions into ones that are applicable to the new problems, and
= The heuristic paradigm, which emphasizes on the réle of heuristics in

searches for solutions to problems.

These problem solving approaches are not mutually exclusive, and a combina-
tion of them are often used. For example, analogical reasoning and heuristic
programming both require search.

As problems are categorized under the classes of well-structured prob—
lems and ill-structured problems, problem solving techniques also may be
categorized under the Weak-methods and Powerful-methods. Domain independent
problem solving techniques are considered as weak methods which demand
limited domain knowledge of their task environment and may lead to combina-
torial explosion as the complexity of their tasks increase. On the other
hand, problem sclving strategies which employ domain knowledge as heuristic
operators are called strong problem solving strategies {Sriram86].

TOPGENE is a heuristic program that uses domain heuristics to guide a
search for a solution in the state-space of a design. The heuristic guided
search in TOPGENE is planned in such a way that also resolves possible
conflicts between social norms involved in a design process. The following
sub-sections describe the state-space of search paradigms, and a metaphor

used by TOPGENE for planning of the process of a design generation.

3.2.1 State-space of search
Problem scolving, according to Newell and Simon is defined as the search for
a solution through the state-space, also called situation-space [Jackson74],
of the problem. Search, by its nature, is always guided by a set of rules in
combination with an appropriate control strategy. The state-space of search
is considered as the most popular problem-solving paradigm in AI for the
following reasons, around which a considerable number of heuristic search is
developed [Rich83]:
= Its correspondence to formal definition of problems as a process of
converting a set of existing situations to a set of desired situa-
tions by application of some operators.
- Its power for defining a problem solving processes as a combination

of known techniques with search techniques.
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Search is the general technique of exploring state spaces in order to find
some paths from the current state toward a goal state. A search always
starts from an initial state toward a goal state by finding an appropriate
path or paths. The state space is a set of all possible states in the
problem solution, consisting of a set of initial states S, a set of goal-
states G, and a set of intermediate states SI. An state space is analogous
to a state transition diagram [Dougherty88]. The nodes in a state space
represent the problem states and is analogous to the transition states. A
link denote a relationship between two states or potential action for geoing
from one state to the other and is analogous to an input function in a state
transition diagram. The relationship between two states is defined by an
operator. Operators can be considered as a set of functions F whose domain
and range are the set of states of the problem [Nilsson71]. Operators,
depending on the nature of the problems, can take different forms. F may be
a simple function that maps a data structure, representing a state of the
program, to the others; or, it may constitute computations that transforms a
state description into other state descriptions, or a rewriting rule that
transforms a situation into other situations [Nilsson71]. The operators are
broadly classified into the following categories [Sriram87]:

— General Operators: Applicable to many problem domains.

— Task-specific Operators: Applicable to a specific domain.

— Heuristic Operators: Which might be domain dependent or domain inde-

pendent.

Furthermore a solution path is a set of states beginning from a initial
state and ending with a goal state. A problem solver is assumed to move from
a state to another toward a goal state by applying an operator.

So, <SS, SI, F, SG> is a problem-space, such that:

- SS is a set {ssl, SS,, ...y S8, .. ssi) of start-states.
- SI is a set (sil, Siz’ e Sij—l’ sij) of intermediate states.
- SG is a set of {sg1, S8, - +s SE s sgk} goal states.

— F is a set of operators or functions required for changing the states

of the problem-space.

A solution of a problem of searching a goal-state sg, starting from start-

state ss is a sub-set of operators {fl, fz' Cy fn) < F, such that sg = fn
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(fn_1 (fn_2 ( ...(f2 (f1 (ss))))))
Furthermore, we can think of a set of goal paths for a particular solution k
as: {pr}’ for K = 1 to n, where, SPk is a solution path k, or a partial
solution path k. Here, SPk = <SSk, SIx’ SGk, F’>, where F'cF is a set of
transformation between states in SPk.

As above definition shows, a search is very important in solving
complex problems for which no direct techniques are applicable. Search tech-
niques also allow embedment of direct methods into the search process when
possible. The following steps must be taken for formulating a problem as a
state space of search [Rich83].

— Define a space of all possible states of search.

= Specify the initial states.

- Specify the solution (Goal) states.

— Specify rules describing actions (Operations) for going from a state

to another.

Furthermore the following issues must be considered while specifying the
rules:

— Unstated assumptions in the problem description.

- Trade-offs between the generality and specificity of the rules.

— The amount of knowledge that should be pre-computed.

One should note that for a complex problem having a large state-space, often
a part of the state-space is possible to be drawn, or mentioned implicitly.
Similarly a problem solver trying to explore all states, or paths leading to
goal-states of complicated problems can easily end-up with an unreasonable
search-time. Such a problem solver has no choice but to explore most
promising paths leading to solutions.

Figure 3.2 shows the state-space of a linear-tree type design problem
with only four locations: L1, L2, L3, and L4.

3.2.2 Negotiation metaphor for distributed problem solving
Distributed problem solving is cooperative way of finding solutions to prob-

lems, by a number of decentralized but loosely coupled collection of problem
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solvers [Davis83). This type of problem solving is akin to viewing the
process of design consisting of four global phases: problem decomposition,
sub-problem distribution, sub-problem solution, and sub-solution synthesis
[Harfmann87] described in chapter 2. A distributed problem solver presumably
consists of a number of sub-problem solvers loosely coupled with each other.
Davis defines the term loosely coupled as to mean that the individual
problem solvers spend most of their time in computation rather than communi-
cation. This type of problem solving is of interest specially in cases such
as a design in which there is a natural distribution of knowledge sources,
and distribution of sub-tasks. Davis states his objective in developing the
negotiation metaphor for problem solving as the creation of a "cooperative
behavior between willing entities, rather than a compromise cooperation
between potentially incompatible entities". Fundamental issues in managing
distributed problem solving are [Davis83]:

— Global coordination of behavior of the system,

- A protocol for communication between the sub-systems, and

— Differed action in case of failure.

In this type of problem solving, any time that there is more than one active
agent in the system, there are possibilities of mutual interference rather
than mutual support between the actions of the agents. This can happen in
numerous ways. There may be conflicts over the resources. One problem solver
might unknowingly undo the result of the other, the same action might be
repeated redundantly. etc. In general a collection of problem solvers might
fail to act in a coordinated and supportive way, and as a team. This
difficulty arises because each problem solver has a limited knowledge and a
local view of the problem. If each problem solver had complete knowledge of
the system, and consequently of the actions of the other competitors, then
this would not happen. A local view of the problem, in one hand creates an
easier atmosphere for the problem solver to think, and in the other hand
requires a global coordination of the sub-processes. The basic motivation
behind the idea of distribution is to allow sub-problem solvers to focus on
specific tasks. So, if all problem solvers have universal knowledge of the
problem, then this would be contrary to the basic notion of the distribu-~
tion.

As the communication among any entities requires a pre-defined communi-
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cation protocol, so it does the communication between a group of problen
solving entities. A protocol defines what should be passed between two
entities. A protocol has three basic layers [Davis83]:

- A content that identifies what should be communicated,

= A communication language, and

-~ A message format for negotiation.

Negotiation as defined by Davis is a type of discussion and exchange of
information between interested parties in order to come to agreement upon a
subject. A negotiation has three basic components:

— Two way exchange of information,

= Evaluation of information by parties of interest,

— Collective decision upon the matter.

There are two models of negotiation based problem solving: Task-sharing and
Result-sharing [Davis83]. Task-sharing occurs in a situation in which a
group of experts working on sub-tasks related to a global task, call each
other when they need assistance on their sub-tasks or need for exchange of
information because of lack of expertise. The alternative model to task
sharing is the result-sharing model [Smith81] [Davis83]. In this type of
approach the problem solvers assist each other through sharing of the
partial (intermediate) solutions. As we will see below, this type of coope-
ration is more eminent in situations where incomplete knowledge of the
partial solutions leads to the conflicting views at individual problem
solvers.

The important components of a negotiation-based system are: A task-
manager that is responsible for the distribution of tasks, and monitoring
the executions, and several contractors that are the sub-problem solvers
responsible for the actual execution of the sub-tasks. A contractor may in
turn sub-divide a task and distribute them between other sub-contractors. A
contractor in direct contact with the task-manager is called a direct-
contractor.

TOPGENE is a negotiation based system akin to the result-sharing model.
The TOPGENE's task-manager, by using an agenda of norms, iteratively passes
the intermediate solutions to a number of direct contractors responsible for

optimizing a partial design with respect to a specific norm. The final
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solution is generated through cooperation between the individual problem
solvers. In such a case passing the information about the partial solutions
is vital to the continuation of the sub-problem solvers in improving the
partial design towards a final global design. Negotiation is a two-way
transfer of information between the task-manager and the contractors. The
question of "What is to be done next?", "Who is responsible for it?", commu-
nicating the partial solutions with the sub-problem scolvers, and the overall
control of the process is handled by the task-manager. The messages passed
between the task-manager and the sub-problem- solvers at each situation are:
the partial solution, the processed locations, distance matrix corresponding
to the partial solution, and partially hierarchical clusters of location-
pairs.

This metaphor as it is laid out by Davis is for complicated tasks where
a high degree of cooperation is required between a manager and problem
solvers. A manager does not know before-~hand which task to assign to which
problem solver, unless it sends signals for all problem solvers {(contrac-
tors) for a bid, and assign the task upon the readiness of a contractor. In
addition the manager has to watch the problem solvers for their dead-lines.
However, in the case of TOPGENE, the task manager knows before-hand, based
on the norm on the top of the agenda, which contractor to call. TOPGENE’s
task-manager does not have to worry also about deadlines of the processes
carried out by the task-executers when they are called for execution of a
task. The task manager is notified by the task-executers when they fulfill
their duty, or when they fail to do so because of difficulties that they may
face.

The following figure shows TOPGENE’'s design generator modules, inclu-
ding its task-manager and its different task-executers. A detailed discus-

sion on the implementation of the TOPGENE is postponed for chapter 5.
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Figure 3.1: TOPGENE’s design generator sub-modules

3.3 Relevant problem solving techniques
In this section problem solving techniques incorporated into the TOPGENE

system and relevant to this work is discussed.

3.3.1 Generate-and-Test

A problem solver has to find one or all potential solutions to a problen.
Tractable problems are trivial and soft to solve or to predict their solu-
tions, but as intractable problem, such as a complex design, 1is far to
difficult to predict its solution. A way of dealing with an intractable
problem is to take a brute-force approach and devise a search procedure that
generate all possible solutions for consideration. A system based on such an
approach is called a generative system. The idea of generative systems can
be traced back to Aristotle. Aristotle in his book Politics, used the
following biological analogy to describe a generative system for design of a
city [Mitchell75]:
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"If we were going to speak of the different species of animals, we
should first of all determine the organs that are indispensable to
every animal, as, for example, some organs of sense and
instruments of recelving and digesting food, such as mouth and
stomach, besides organs of locomotion. Assuming now that there are
so many kinds of organs, but that there may be differences in
them-I mean different kinds of mouths, and stomachs, and
perceptive and locomotive organs- the possible combinations of
these differences will necessarily furnish many varieties of
animals...And when all the combinations are exhausted there will
be as many sorts of animals as there are combinations of the
necessary organs". [Politics, Section 1290]

Mitchell [75] gives examples of other thinkers describing generative systems
throughout the history, some of whom dreamed of designing systems capable of
generating the universal knowledge. Among which are the thirteenth century
Spanish scholar Ramon Lull, who was thinking of generating knowledge by
combinatorial art from a concentric spinning wheels inscribed with words,
and German writer Kurd Lasswits who wanted to generate a library of
universal knowledge by a generating system. The combinatorial idea was
treated by other scholars such as the seventeenth century philosopher
Leibnitz, and nineteenth century mathematician Charles Babbage. Leibnitz
described the methods of invention and design by systematic generation of
combinations.

A generating system was exhibited at the Cybernetic Serendipity exhi-
bition in London in 1968 [Mitchell75]). This system consisted of a thesaurus
of five short lists, and the following sentence frame with five empty slots:
I ... the ... in the ... all ... in the ... bang the ... has ....

The number of choices for each slots was as follows:
Slot number: 1 2 3 4 5 6 7
Number of choices: S5 7 8 6 8 7 13

The system was then capable of generating 1223040 (i.e., the multipli-
cation of number of choices) different sentences by selecting 54 different
words from a vocabulary and inserting into the slots of the sentence frame.
The practice of combinatorial arts also is involved in classical architec-
tural designs, when a design is approached by a systematic generation and
testing of combination of elements [Mitchell75].

The Generate-and-Test (GT) problem solving technique stems from the
idea of generative systems. GT in its pure form is the simplest but most

inefficient of all problem solving techniques. This strategy first generates
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all possible solutions (complete paths) in the search-space, and tests them
for finding solutions that satisfies the goal requirements. GT can be
devised in a way that generates a single solution at a time for test instead
of generation of all possible solutions. GT is equivalent to enumeration
techniques attributed as inefficient in design. Yet, this technique, as I
will discuss it in later chapter, is perhaps a good choice if one is
interested in discovery of a class of prototypical solutions for cataloging
and repetitive use, for larger and more complex problems.

Figure 3.2 illustrates the search-space for a linear-tree design
problem involving only four locations: L1, L2, L3, and L4. This design is
expected to have a good performance in terms of the privacy norm. Further-
more, the following priority has been assumed for the location-pairs with

respect to their flow generation potentials: (L1 L4), (L2 L3), and (L2 L4).

(L1 L2 [ ~3(L1 L2 L3) —=>{(L1 L2 L3 L4)
> . -3(L1 L2 ->{L1 L2 L4 L3)
’—-)(Ll)- @ L3 [ ~(L1 L3 L2)- ->(L1 L3 L2 L4)
..................... (L1 L3 L4)--—3(L1 L3 L4 L2)
— :(u La L2)——(L1 L4 L2 L3)
(L1 L4 L3)- (L1 L4 L3 L2)
w2 L [_)(1_2 L1 L3)- —=>(L2 L1 L3 L4)
? —3(L2 L1 L1 L4 L3)
(L2 L3 L3 L1 L4)
> (L2){—>(L2 L3) |:“_2 L L3 L4 L1)
3 (L2 LA L4 L1 L3)
L2 1) {: S— -2 L4 L3 L1)
(@)
‘ (w3 L1 L1 L2 L4)
Li L1 L4 L2)
—>(L3) (L3 L2 p2 oy
L2 L) ———(L3 L2 L4 L1)
wa La) [__) (L3 L4 L1)--3(L3 L4 L1 L3)
) ey (L3 LA L4 L2 L1)
(La Ll)!:;“-4 L1 L1 L2 L3)
? (L4 L1 L1 L3 L2)
S ) L2 L1 L4)
s aao+—— s )| 4 Lo Lz L3 La)
(La L3) [ -3(L4 L3 L3 L1 L2)
? worr3(L4 L3 L2)——3{L4 L3 L2 L1)

Figure 3.2: The state-space for a linear-tree type design with 4 locations

A pure GT strategy will produce a combination of all potential solutions for

this problem, and then it will evaluate each to find the best solutions.
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These solutions, underlined in the following figure, are: (L1 L4 L2 L3) and
(L3 L2 L4 L1). Our design example shows that the complexity of its search
,under the G-T strategy, is n!. Where n is the number of locations. This
means that this strategy is an inefficient strategy that quickly runs into
trouble, specially for large size problems. The G-T strategy, as we will see
in chapter 8, is extremely useful in cases, such as automatic discovery of
solutions to small scale problems, when exhaustive enumeration of solutions

is an important goal.

3.3.2 Heuristic-Generate-Test (H-G-T)

"By the pricking of my thumbs, something wicked this way comes."[MACBETH}

The example illustrated in figure 3.2 indicates the inefficiency of the pure
GT technique, specially for large size problems. The number of final states
in GT increases exponentially with increase in the size of a problem. To
reduce the search effort in GT strategy, one possibility is the integration
of heuristics with the search process. Early pruning of branches of a search
tree limits the search process. For example, in the case of the design
problem, posed in the last section, we can use knowledge of design in the
form of heuristic rules during the search process. Here is a heuristic rule
that rejects solutions which may not be optimal with respect to the privacy
norm:
IF : The most interactive locations are not next to each other.

THEN : Reject the solution path.

This rule eliminates the unacceptable paths from the beginning, and some of
them in the middle of the process, when they are found not attending this
rule. The solid lines in figure 3.2 shows part of the state-space of search
for the design problem that would be actually searched under the H-G-T
strategy described above.

H-G-T may become similar to heuristic hill-climbing (H-H-C) technique

used by TOPGENE in some cases. Hill-climbing is discussed in section 3.3.4.
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3.3.3 Backtracking

When during a search process a choice made at a state leads to a dead-end
situation, then, progress is impossible. In this situation, instead of
starting from a start-state the problem solver may retract to a previous
state and tries another choice. Such an action from the problem solver is
called a backtracking. A backtracking is called chronological backtracking,
if it is based on the time when the last wrong decision is made [Winston84].
A strategy based on backtracking, and specially chronological backtracking
technique without the help of heuristics may be extremely inefficlent
specially in the case of intractable problems. For example, this strategy in
the case of the design problem mentioned in the last section, simply may
lead to discovery of all possible solutions, which is equivalent to a brute
force approach.

In the case of previous example, a chronological backiracking with and
without the help of heuristic rule will take the following courses of
action, where —— represents a forward search and —Ba denotes a backtrack-
ing. Furthermore it is assumed that the state-space of the problem in figure
3.2 is traversed from top to bottom and from left to right:

Chronological Backtracking without heuristics:

SS = (8) — (L1)— (L1 L2) — (L1 L2 L3) —> (L1 L2 L3 L4) -2
(L1 L2) —> (L1 L2 L4) —> (L1 L2 L4 L3) >

(L1)—> (L1 L3) —> (L1 L3 L2) —» (L1 L3 L2 L4) 2

(L1 L3) — (L1 L3 L4) —> (L1 L3 L4 L2) >

(L1 L3) —> (L1 L3 L2) —> (L1 L3 L2 L4) -2

(L1) — (L1 L4) — (L1 L4 L2) —> SG = (L1 L4 L2 L3)

Backtracking with heuristics:

SS = (8) —(L1)— (L1 L2)-25 (L1)— (L1 L3)-25(L1)—» (L1 L4)—>(L1 L4
L2)— SG = (L1 L4 L2 L3)

TOPGENE combines heuristics with the hill-climbing strategy without
extensive backtracking, but two of its algorithms for generating streams of
locations with respect to the norms privacy and community use look-ahead
mechanisms that uses a limited backtracking. These algorithms are discussed
in chapter 5.

A backtracking based approach in TOPGENE, because of the nature of our
design problem, runs into full enumeration of all possible solutions. The

main reason behind this claim is combinatorial relation between the loca-
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tions pairs in a design which forces a backtracking strategy into the exami-
nation of all paths in the design search-space. This fact, leaves the

heuristic approach as wise choice for tackling the design problem.

3.3.4 Hill-Climbing

Hill-Climbing (HC) [Pear184] (Winston84], a modified version of H-G-T, is a
simple search strategy based on local optimization techniques that tries to
take the most promising course of action in each state of the search-space,
by applying of a test function on the chosen states. This strategy is called
Hill climbing because of its resemblance to the effort of a human in trying
to climb a hill (Goal-state) in a foggy situation. H-C strategy, continuous-
ly expands a node in the search-space, test new generated nodes, and expands
the most promising one, without keeping track of the previously investigated
nodes. This means that this strategy is an irrevocable strategy [Pearl84]
that does not allow backtracking into the previously investigated states. H-
C strategy, without a good evaluation function guiding the search, has its
own peculiar problems, some of which are as follows [Rich83]:

— A local-optimum situation in which a state pose itself better than
its neighboring states, but in reality it is not better than some
states farther away.

— A horizon effect, whereby all neighboring states show themselves the
same, and a move towards a better situation is not possible.

— A Ridge situation in which an area better than a neighboring state is

not accessible in a single move in any one direction.

Hill-climbing, however, is considered as a useful strategy when supported by
a highly informative evaluation function that could prevent the problem
solver from above problems, and it leads quickly towards a solution.

TOPGENE uses hill climbing in combination with domain heuristics in
generating designs. The use of heuristics in TOPGENE eliminates needs for an
evaluation function. TOPGENE, in each state of the search-space improves a
partial solution (design) by choosing a next-state which seems appropriate
to a social norm. The main criteria in choosing such a state in TOPGENE are
potential flow degrees between the location-pairs in a design. The use of

heuristics in TOPGENE, does not guarantee the optimality of designs genera-
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ted. However, test results show that designs generated are at least in the
neighborhood of an optimal solution.

The following is an example of heuristic rules used by TOPGENE to
improve a partial design with respect to a social norm:
IF: = SPk is a partial design,

— The current norm is COMMUNITY,

- (Lx Ly) is a unprocessed location-pair with maximum flow generation

potential, such that: Location Lx € SPk.

THEN: = Improve SPk by adding the link (Ly Lz) such that:Lz is the most

eccentric pair with respect to Lx.

3.3.5 Means-ends analysis
Means-ends analysis is another weak heuristic problem solving method which
is widely applied by human problem solvers particularly when specialized
algorithms are not available for a problenm [Langley87]. This method uses a
type of test heuristic to detect specific differences between the start-—
state (SS) or the intermediate states (SI) and the goal state (SG) and
evokes the moves that would reduce differences between the current state and
the goal state [Winston77]. This strategy would apply to our design problem
under the following conditions: Suppose that we have a number of activities
for which a design is required with respect to a combination of norms. The
goal of our design is to maximize the actual behavior of our design with
respect the norms under consideration. In reality some norms are in conflict
with each other, and all norms are incommensurable. Now, if we make strong
assumptions with respect to their incommensurability. For example, if we
presume numerical weights that relates norms to each other, then, we can
define a globally optimum function over the combination of norms, and
generate a satisfactory solution with respect to them as follows:

— Generate sub-optimal designs with respect to each norm separately.

— Analyze the behavior of all sub-optimal designs with respect to the

social norms, and remember their behavioral analysis results.
— Use means-ends analysis in combination with a constraint-satisfaction

system, described below, to generate a globally satisfactory design.

A final remark about the means-ends analysis is that this approach is very
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much similar to the hill-climbing approach, in a way that both strategies
try to attain a high quality goal-state by successive appraisal of the
partial solutions. The only difference between these two strategies is that,
during the process, the first strategy looks at both the intermediate and
the goal-state, while the second strategy is only concerned with the inter-

mediate states.

3.3.6 Hierarchical planning and top-down refinement

Hierarchical planning is a technique for converting complicated tasks into
levels of abstract tasks that are usually simpler to work with, or to
automate. Architects usually start from a abstract level, for example, by
drawing a rough sketch that have no clear boundaries and dimensions toward a
complete floor plan layout. Theoretically an architectural design may even
start from a matrix of required adjacencies or a bubble diagram towards more
sophisticated detailed levels.

Hierarchical planning also may involve knowledge abstraction. As the
tasks could be hierarchically ordered into several levels of abstractions,
so could be the knowledge. Knowledge abstraction takes different forms
according to the nature of a task. One can, for example, consider design
knowledge in terms of objects such as walls and spaces and processes that
must be followed in arranging them. Or can consider is as a sequence of
actions and processes that must be followed by a design problem solver.
Another view on knowledge abstraction is hierarchical abstraction of data
with respect to a specific criterion. Hierarchical planning, as it was des-
cribed, is prerequisite for a Top-Down refinement process defined below.

Top-Down-Ref inement is a problem solving process which starts from an
unclear abstract level towards a more clear detailed (Down) level in a step-
wise manner. This strategy may follow a model-driven or a data-driven
approach. The first approach sees a problem as a conceptualization of
several levels or layers of abstract sub-problems, to be solved from the
top-most level towards the down-most detailed level. For example during a
routine design, defined in the last chapter, TDR is seen at work by
continuously refining an old design to arrive at a desired new design.

The data-driven approach is based on the hierarchical abstraction of

data preceded by the hierarchical-planning strategy. Here, a Top-Down-
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Refinement strategy would try to start at the most abstract level and based
on the nature of the data to arrive at a detail solution. This process is
obvious in theoretical design processes when designers start from adjacency
requirements, and work out the problem towards the realization of a connec-
tivity graph, the derivation of a planar graph, and consequently an actual
floor plan lay-out.

TOPGENE uses both the hierarchical planning, and the Top-Down-
Refinement in generating designs. The system, first, clusters location-pairs
in a design with respect to their interaction potentials, in a partially
hierarchical manner. In the next stem, the system uses a hill climbing
strategy in combination with domain heuristics to generate a design with
respect to a set of social norms.

The hierarchical abstraction of locations by TOPGENE also may be viewed
as a Bottom-Up strategy towards a Hierarchical-Planning, followed by a

design generation step, which is in fact a Top-Down-refinement process.

3.3.7 Deferred Commitment Principle

I refer to deferred Commitment Principle (LCP) as postponing the binding of
a variable during a process because of lack of sufficient information, until
more information is available. Deferred binding is often due to dependency
of a variable in a process to the result of other sub-processes. Sriram [87]
calls this technique as the Least commitment principle.

TOPGENE uses this principle during design in the following manner:
assuming the current state of a design as PD (i.e., a partial design), a
current location-pair to be processed as (Lx Ly), and the norm under the
consideration as ni. (Lx Ly) must be added to PD provided that Lx or Ly have
a logical relation with PD. If such a location-pair does not show a logical
relation with PD, TOPGENE differs binding of (Lx Ly) to PD, and continues to
bind other location-pairs with a logical relation with PD, until the logical

gap between (Lx Ly) and PD is removed, after which (Lx L ) is processed.
y

3.3.8 Constraint satisfaction
Design was defined as a goal oriented activity in a constraint situation.

Constraint handling involves the following stages [Sriram87]:
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— Constraint formulation, which is defining a new constraint on the
value of a variable.

- Constraint propagation, which is the creation of new constraints by
rules operating on the formulated constraints.

— Constraint satisfaction, which is the finding of appropriate value

for variables that satisfying the constraints.

A constraint may take different forms and values, such as relational,
numerical and non-numerical. We defined the constraints of a design as the
requirements of design in general. For example, in the case of the design
problem posed in this chapter, the requirements (Next-to L1 L4) and (Next-to
L2 L3) are two non-numeric constraints that must be handled by the problem
solver. TOPGENE as a problem solver has to lead its way towards a design
solution through the paths constrained by the following requirements:

— Knowledge of recommended links.

Knowledge of prohibited links.

Planarity of a design solution.

Branchiness degree of locations.

- Norms, indicating the social points of view.

Constraint-satisfaction (CS) systems use techniques such as local propaga
tion, relaxation, propagating degrees of freedom, adding redundant view to
the constraints, and graph transformation, for solving numerical problems
dealing with constraints [Leler88].

TOPGENE tries to satisfy design requirements, discussed above, using
the following strategies. These strategies in a way use a relaxation
technique in dealing with requirements of a design.

— Planarity and branchiness degree of locations have priority over all

other constraints.

— Recommended links have priority over all constraints except planari-

ty.

— Prohibited links have priority over the normative requirements.

— The problem of conflicts between normative requirements is handled by

agenda mechanism and relaxation technique.

(3-23)



Chapter 3: Problem Solving and Knowledge Representation techniques

3.4 Knowledge Representation (KR), its definition and role

The behavior of an intelligent entity depends on its knowledge about the
environment [Genesereth87]. Such an entity has to have a representation of
information prior to its manipulation. The rest of this chapter examines the
réle of representation, characteristics of a good representation system, and
representation of architectural information relevant to this work.

A representation is the use of a set of syntactic and semantic conven-
tions for describing a class of things, a set of objects, or some events
[Winston84]. The syntax of a representation system is specified by a set of
rules which describe the construction of expressions in the representation
language from a set of symbols. The semantics specify the interpretation or
meaning of expressions.

Knowledge representation (KR) is the invention of an artificial
language for capturing the important aspects of a knowledge domain, and
representing them in a modular and suitable form for manipulation by known
techniques or intelligent machines. A representation system, with regards to
above definition, then, consists of:

- A vocabulary or language for naming things.

- A set of operations that can be performed on things.

- A syntax (data structure or formalism) for capturing and encoding

descriptions of things.

The word "representation" is understood both as structuring of knowledge,
and also capturing of them in a data structure for computer manipulation.
Considering the fact that the value of a representation is different in the
eyes of men and the machines, one has to distinguish between the human level
and the machine level of representation while comparing representation tech-
niques. These two levels of representation are distinguished by Charniak and
McDermott [Charniak85) as abstract level and concrete level of representa-
tion respectively. So, we can attribute three levels to any Kknowledge

domain.

A fact level which is the state of being.
— An abstract level representation, which is the capturing and repre-
sentation of content of a knowledge domain into a set of expression

for human use.

- A concrete level representation, which is the data structure chosen
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for indexing and storage of the abstract level knowledge within the

computers.

KR also may be looked at in a broader context for having the following rdles
[Fisher87]:

- Knowledge interpretation: Representation has a kind of interpretive
réle. This réle is more evident in representation of sensory infor-
mation, specially when they are to be processed by computers.

- Knowledge organization: Representation helps structuring knowledge of
a specific domain. Knowledge structuring helps better understanding
of the nature of objects, events, and relationships between them.

- Deduction power: Representation methods, such as predicate logics,
provide the basic ground for automating reasoning processes.

- Modeling proéesses, and predicting the behavior of real world: Repre-
sentation of objects and events permits modeling of real world

processes, and predict the behavior of the real world objects.

There is not a strict universal guideline for choosing a representation
system for representing the knowledge of a specific domain. The choice of a
representation depends completely on basic criteria of a domain such as
structure of the data, and nature of 1its search space [Jackson86]. The data
structure for representing knowledge in a computer is usually chosen in a
way that the storage and manipulation of the knowledge are as efficient as
possible. Furthermore, Since a representation technique might not be capable
of capturing all aspects of a knowledge domain, usually a wide spectrum of
representation techniques are needed in dealing with real world problenms.
This is evident from different representation schemes that are needed at

different levels of an architectural design (figure 3.3).
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Natural language
(Design Brief)

Mathematical representation
(Interaction matrix)

Graph representation
(Topological properties)

Isomorphic representation
(Rough Sketches, Perspectives)

Analogical representation
(Floor-plan lay-out)

Figure 3.3: Representation systems used in different levels
of architectural design

This work is concentrated on design at connectivity level. The most natural
representation of connectivity properties of a building is graph. Graphs
hire different techniques for its implementation at machine (concrete)
level. In the rest of this chapter after reviewing theoretical concepts
around the issue of knowledge representation, some of the existing represen-
tation schemes related to this work is reviewed. However because of the
relevance of this work to the representation of objects and their relations
as graphs, the main emphasis of this section is on graphs as a means of

representation.

3.5 Criteria for a good representation method
Representation of knowledge is an important issue in the development of any
computer system simulating real world events or imitating the behavior of
real world objects. AI since its birth has paid special attention to this
issue. Following, you can find some of the characteristics set for a good
K.R. system. Some of these characteristics may overlap and some contradict
others.

= Explicitness: One must be able to represent important aspects of

knowledge domain as explicit as possible. Explicitness is considered
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as must important feature of a knowledge representation method at
least within the AI field’.

~ Expressive adequacy: also called epistemological adequacy [McCarthy-
691, completeness, and logical adequacy [Jackson86), is the power of
a representation language in exposing and capturing the important
aspects of the things that one wants to represent. This characteris-
tic is important in knowledge manipulation.

- Reasoning adequacy, also called Heuristic power and Computability
[McCarthy69] [Rich83] [Jackson86] means that a good representation
language must provide sufficient ground for reasoning processes, and
problem solving in general.

— Reasoning Efficiency [Rich83]: A representation language must provide
efficient ground for knowledge storage, knowledge retrieval, and
knowledge manipulation. This criteria often contradict the expre-
ssiveness.

— Uniqueness: A representation system must not lead one to any ambigui-
ties while encoding the knowledge. Charniak and McDermott [Charniak-
85] distinguish two types of ambiguities, which must be avoided while
encoding a knowledge domain into a representation system: The
referential ambiguity and word-sense ambiguity. The first type of
ambiguity arises when a referent in a sentence is not clear and leads
to uncertainty as to which object it is referring to. This type of
ambiguity is avoided by giving object of the same type and with
similar names unique names. Such a unique name is called an instance
or token. The word sense ambiguity arises due to multidimensional
meaning of words in natural language. Word-sense ambiguity is removed
from a representation language by choosing different term for diffe-
rent meaning of such words.

— Stability: A representation system must be stable in a sense that a
small change in the domain knowledge does not cause a large change in
its syntax.

—~ Brevity and conciseness: While one must be able to suppress and keep

Yuyhat makes AI systems knowledge-based is not that somehow takes knowledge
to write them, nor just that they behave as if they had knowledge, but
rather that their architectures include explicit knowledge bases -more or
less direct symbolic encoding of the knowledge in the system." [READ8S]
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details of the domain knowledge out of the sight and represent
matters as efficiently as possible, but the detail must be accessible
when they are necessary.

= Consistency: A good representation is expected to be consistent and
not to lead to any contradictions in representing different aspects
of a knowledge domain.

~ Transparency [Read85]: A representation system must provide access to
the implicit facts stored in a knowledge base.

= Acquisitional Efficiency [Rich83]: It must provide an easy (i.e.,
automatic) way of knowledge acquisition and insertion into the know-
ledge base.

- Notational convenience [Jackson86]. A good representation system must
have an easy to write and read syntax, and an easy to understand
semantics. This means that the resulting expressions from the langu-
age must be understandable by a human despite of their interpretive

meaning to machines.

In practice, trying to find a representation scheme for a particular task
that has an even balance between these characteristics is a difficult task.
The choice of a representation is always under the control of nature of the
knowledge domain, and the processes that must be applied to them.

TOPGENE, is an example of this situation. TOPGENE, as a system simula-
ting the social behavior of buildings, takes advantage of several existing
algorithms developed around graphs theoretical concepts. Each algorithm
demands its own representation scheme. So, it was impossible to think about
developing or choosing a single representation method capable of fulfilling
all the system requirements. For this reason, TOPGENE uses several represen-

tation schemes for capturing and manipulation building information.

3.6 Declarative vs. Procedural representation

The choices of representation methods for representing knowledge at any
level of abstraction are not too many. Current computers employ a handful of
knowledge representation methods. Any book on knowledge representation will
not discuss the matter beyond the categories such as: graphs, state-

transition graphs, frames, procedures, predicate logic, if-then inference
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rules, and a few more. Some of these methods, such as graph and isomorphic
representations [Fisher87] are mostly used for representation of knowledge
on abstract level. The representations of knowledge at concrete level
(implementation level) often requires different representation methods than
those at abstract level.

The approaches in representing knowledge for intelligent systems are
categorized into two basic categories: The declarative method and procedural
method. Examples of declaralive methods are frame representation and
predicate logic mentioned above. Procedural representation, the counterpart
of declarative representations, is the embedment of knowledge in programming
languages in the form of procedures. Knowledge involving performance of
sophisticated tasks could be represented by procedures that describe accom-
plishment of those task in a step wise algorithmic manner.

The trade-off between the two representation techniques has been a
controversial subject within AI community for sometimes. Some believe that
there is not a clear distinction between these two types of representation,
as it is not known sometimes whether a piece of knowledge is a program or a
statement. Both approaches often seem of equal value for computer systems.
Programming languages such as LISP and KRL have the benefit of combining
both of these approaches [Rich83]. The following table shows different views
on "What is knowledge?" [Winograd75]:

What is knowledge?

Proceduralists view: |Programmist view: Declarativist view:
Papert, and Minsky Hewitt, Bishop, and Steiger|McCarthy

"Knowledge is: "Everything is: Program." |"Knowledge is:
Knowing How.". Knowing What.'".

Figure 3.4: Different views on what is knowledge?

Both categories have some advantages over the other. Declarative knowledge
representation is more modular and hence more flexible but process-wise more
expensive than the procedural representation of knowledge, while procedural
representation is less flexible but more efficient. Representation of facts

or objects in frames or representation of beliefs in logic systems in decla-
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rative form cannot accomplish any task without their manipulation by some
type of procedures. Consequently one should consider both systems necessary

for any real application. As Rich [83] states:

"No system can survive exclusively on deciarative knowledge, with no pro-
cedures for manipulating what it knows. ... A procedural representation of
a piece of information is essentially a plan for the use of that infor-
mation. Thus constructing a good procedural representation is similar to
constructing any other type of plan. Because of this, work on procedural
knowledge representation is closely interwoven with work on plan genera-
tion. " [Rich83, pp 240-241}

The advantages of both types of KR can be summarized as follows [Winograd7s]
[Rich83] [Genesereth87]: The advantages of declaratives:
= They are usually flexible and multipurpose. They may be used for va-
rious lines of reasoning.
~ They are extendible beyond their status, by application of reasoning
processes (i.e., derivation of additional knowledge).
- They may be changed easily, while a small change in procedural know-
ledge could have devastating consequences.
- They are economical, because of possibility of multiple use.
— They are understandable and learnable because of their simplicity,
relative to procedural knowledge.
— They are accessible and easily communicable.

= They are easy to modify, or add to.

The benefits of procedurals:

— Modeling of a process in procedural form is usually easier than in
declarative form.

- Second Order Knowledge, such as a plan of actions, are better repre-
sented by procedures.

— Heuristic knowledge could be easily integrated into procedures for
deep deduction reasoning. Declarative systems do not allow such a
flexibility.

- It is easier to represent knowledge that is not easily representible
in declarative forms.

- A procedural knowledge is computationally less costly and more effi-

cient than the declarative ones.
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TOPGENE is a deep reasoning system minimally depending on declarative know-
ledge of architectural design. The main knowledge of architectural design
related to TOPGENE is captured in procedures rather than knowledge bases.
TOPGENE, however, uses a limited knowledge of design at connectivity level
in declarative form, stored in knowledge bases. This is the knowledge of
prohibited and recommended accesses in buildings. The connectivity property
of buildings are best representible as graphs. TOPGENE uses several imple-
mentation of graphs as demanded by its algorithms. The following sections

discuss graphs as a means of representing information.

3.7 Graphs as a means for declaring topological information

Graphs are convenient means for representing a set of objects and relation-
ships between them. Graphs have wide variety of applications, and take
-different forms in representing information. Visually, graphs are represen-
ted in the form of nodes and links, with nodes representing objects and the
links representing relations between them. Implementation of a graph for
algorithmic operations by a human or a computer may take different forms.
Several techniques have been developed for capturing basic structural

properties of graphs. Following sections are devoted to these techniques.

3.7.1 Adjacency matrix

Matrices are convenient way of representing basic properties of graphs. A
graph G with n vertices can be associated with an n by n (vertex) adjacency
matrix A(G) [Christofides75]. An adjacency matrix captures the adjacency
properties of the nodes of a graphz. An entry 2 of A(G) is a binary value
such that:

O Otherwise.

a =[1 If: (1 §) €E(G),andi#j
i)

2Geometrically, a graph is defined as a set of points (also called vertices

or nodes) interconnected by a set of, not necessarily distinct, lines (also
named links or edges). A graph G is denoted by: G=(V, E), or G = (G(V),
G(E)), where, V and G(V) denote the set of vertices, and E and G(E)
represent the set of edges in G.
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If G is undirected, and contains no loops, then A(G) is symmetrical about
the diagonal. Here, the transpose of the A(G) leaves it unchanged. That is
to say A(G)= ATG). If G is a weighted multi-graph (i.e., a graph with at
least a node-pair with multiple edges), then, the entries of the A(G) are

defined as:

a = [¥ 1Ifandonly if (1 §) €E(©), and (1 J) is k weighted.
1) O otherwise.

a = N If there is a loop of a weight h at vertex 1.
i1 O otherwise.

The adjacency matrix representation of a graph G reflects many structural
aspects of a graph. For examples [Bucklay90]:

= A graph is connected if and only if one cannot re-label its vertices

such that its adjacency matrix has the following form, where Al1 and

A are square.
22

A1 O
A= [0 Az22 .
—~ If A" is the n-th power of the adjacency matrix, then the al? entry
of A" is the number of paths of length n from v, to vj.
- d(vi), the branching degree of v, in G, is equal to the a:f) entry of

A%,

— The distance between two distinct vertices vl and vJ in G is the

least integer for which a::)> 0.

A graph can be represented in computers in array (matrix), linked list or
simple list data structures. A graph with n vertices has nzstorage complexi-
ty if it is represented by an array data structure. Here, if the graph is
sparse and the number of edges are far less than n(n-1)/2, then , it is not
economical to represent it as an adjacency matrix, and it will be better off
if it is represented as an adjacency 1list, to be discussed later. However,
to compare the representation of a graph in an array with other
representation techniques, let’s remember that if a graph is represented as
an array data structure, then, a search for a link (vl,vj) € E takes one
step, and a scanning of neighbors of a vertex Vs despite of its degree
d(vl), takes n steps to complete. The following figure depicts the graph and

corresponding adjacency matrix
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Ovs
vi v2 v3 vd4 ¥ v6
el e2 vl 0 1 [o] (o] 1 (o]
> 3 4 v2 (o] 1 0 1 1
v, \Z
o o 0 0’ v3 o 1 o0 o
e3 e4 es
vl v o] o] o]
eb
v5 o [4]
Ove vé o

Figure 3.5: A undirected graph and its corresponding vertex adjacency matrix

Adjacency matrix has important réle in representing the connectivity and
ad jacency properties of floor plan layouts. Several exiting algorithms for
calculating distances in a graph use this data structure. TOPGENE uses both
the access and distance information for reasoning about structure and beha-

vior of a building with respect to the social norms.

3.7.2 Edge adjacency matrix
The adjacency property relating edges of a graph G also may be captured in a
m by m edge-adjacency matrix EA(G). Here, m is the number of edges in G.

1 If: the edge el is edjacent with enother edge ej.

ealj(G) = [ 0 Otherwise.

3.7.3 Incident matrix
A graph G with n vertices and m edges can be represented as an n by m inci-
dence matrix. The rows and columns of such a matrix, also called edge adja-

cency matrix, correspond to the vertices and edges of G, respectively. The

entries of an incident matrix T(G) are defined as:

1 If the vertex vi has the edge ej incident with it.
0 Otherwise.

tij (G} = [

The incidence matrix corresponding to graph of figure 3.5 is shown below:
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vl 1 [o] 1 0 o] (o]
v2 (o] 1 1 i [ 1
v3 o] 0 o] 1 1 o]
v4 o] o] o] o 1 o]
v5 1 1 o o] o o
v6 o] o] o] (o] 0 1

Figure 3.6: Incident matrix representing graph of figure 3.5

A directed graph also may be represented by an incident matrix. The entries
to such a matrix will then be as follows:
1 If the vertex V_ has the edge € incident with it.

t (G) = -1 If the vertex V. has the edge € Iincident from it.
i . i 3
0" oOtherwise.

The sum of the elements of T(G) representing an undirected graph G is equal
to twice the number of edges in G. This, in turn, is equal to the sum of all

vertex degrees in G.

Y ttj =¥ d (vi) =

The line graph of a graph G, denoted by L(G), is a graph derived from G in
such a way that each vertex in L(G) represents an edge in G, and each edge
connecting two vertices in L(G) denotes the adjacent edge in G. The number
of vertices (V(L)) and the number of edges (E(L)) of a line graph L(G) of G
can be calculated by the following relations [Trinajstic83al:

V(L) = E@G), E(L) = ( F [d(v1)1?) - E@)

i=1
0/ \ / \0 \0/
I——ﬁﬁ% ————a L(G)
o ) o x
V(L) = E(G) = 6, E(L) = -6 + (1/2)(90904#44l)=

Figure 3.7: A graph G and its line-graph L(G)

The edge-adjacency matrix of a graph G is identical with the vertex-
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adjacency matrix of the line graph L(G) of G. The reason is that the edges
in G are replaced by vertices in L(G). Line graphs have application in cap-

turing the wall property of building in architectural design.

3.7.4 A Dual representation

Adjacency and incidency are two views of a graph. The storage complexities
for representing a graph of n vertices and m edges as an adjacency matrix or
an incidence matrix are n*n, and n*m, respectively. If the number of nodes
in a graph is relatively large and the representation of both views is
demanded, then separate representations of them are redundant. In such a
case, and if possible, the combination of two views and their representation
in a single matrix reduces the space complexity almost in half. Figure 3.8
shows an n by m adjacency-incidence matrix representing the graph of figure
3.5. In this matrix a O entry represents a null relation, a 1 entry
represents an adjacency relation, a 2 entry represents an incidency rela-
tion, and a 3 represents the adjacency and incidency relations both. This
representation is only suitable for simple (i.e., Graphs without multiple
edges) unweighted graphs, but with some modification the adjacency-access

properties of other types of graphs also may be captured within the same

matrix.

vli v2 v3 v4 v§5 vé

e1 e2 €3 e4 e5 €6
vl 2 1 2 0 1 0
vz |1 2 3 2 1 3
v3 |0 1 o] 3 2 0
vd |0 0 1 0 2 0
vs |3 3 V] (4] [o] V]
vé |0 1 o] (o] ¢} 2

Figure 3.8: A Dual representation of graph G in figure 3.5

3.7.5 Adjacency lists

A graph also can be represented within computers as an adjacency list. Each
adjacency list consists of a head element representing a vertex v, € V and a
number of succeeding tail elements representing its neighbors (i.e., N(vl)).
The space required for representing a graph G(E,V) with n vertices and m

edges as an adjacency list is in the order of n + m. This seems more econo-
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mical than the adjacency matrix if a graph is sparse. The space requirement
for adjacency list representation of a graph G is then:
O(Y [1+d(v}]) = O(n+m), where d(v) is the vertex degree of v.
vev

The scanning of the neighbors of a node of G represented by adjacency lists
and search for a link, both requires d(v) steps. This means that in compa-
rison with array representation, adjacency list is better in terms of search
strategies. An adjacency list (and other representations) could be implemen-—
ted in several ways. For example, if one has to implement graphs in proce-
dural languages without any list processing power, then the logical relation
between the graph nodes has to be explicitly taken care of by the program-
mer. The following figure illustrates the linked list representation of the
graph G in figure 3.5. The arrows, in the following figure represent the

address links (logical relations) between the neighbor vertices.

Head-node Neighbour nodes.
EI-EI-=]

0 I Y s B ) e Y 0 |
Gl 3013

T = Y 0 |

EIET -ET]

= 2

Figure 3.9: An adjacency list representation of graph G in figure 3.5

3.7.6 Association list and property list

The connectivity property of a graph may be captured in various implemen-
tation schemes, depending on the computer languages that are used. In LISP,
for example, one can implement a graph as an Association-list or Property-
lists. An assoclation list, also called a-list, is a list consisting of
pairs of associated elements. Each pair in an association list is a pair
which its first element is called a key and the second element is called a
datum. An association list has a name which serves as its addressing for
manipulations. A function for constructing an association list, in common
LISP language, has the following format [Steele84] [GoldWorks87] [Winston-

89]: (SETF a-list-name ’ (<key datum>+)). where, + sign means unlimited repe-
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tition of the <key datum>.

An association list corresponding to the connectivity property of graph
G in figure 3.5 is:

(SETF GRAPH-G6 ’ ( (v1 vs) (vi v2) (v2 vs) (v2 ve) (v2 v3) (v3 va) ) )

An item in an association list can be retrieved by applying the ASSOC
function. ASSOC retrieves only the first pair with first item as its
element. This function has the following format: (ASSOC item a-list). For
example: (ASSOC ’v2 GRAPH-G) returns (v2 vs) as its value. However, since
most of the algorithms on graphs work on the neighborhood property of
graphs, one often needs to have a quick access to the list of neighbor
vertices of a node. An association list representing connectivity property
of graph G is depicted in figure 3.10:

(SETF GRAPH-G6’ ( (v1 (vz vs))
(v2 (v1 vs v3 vs))
(v3 (v2 va))
(va (v3))
(vs (v1 v2))

(ve (v2))
) )

Figure 3.10: An association list representation of Graph G in figure 3.5

Now, the command (ASSOC ’vz GRAPH-G) returns (vz (v1 vs v3 ve)), and the
command: (SECOND (ASSOC ’vz GRAPH-G)) gives (vi1 vs v3 ve), the neighboring
node for va.

An association list also can be updated by adding a new association
pair to the list or by replacing an old pair with a new one. The function
ACONS and RPLACD can do the addition and replacement job respectively.
(ACONS key datum a-list)

(ACONS ’v3 ' (vi v2 va) GRAPH-G)
(RPLACD (ASSOC key assoc-list) new-value)
(RPLACD (ASSOC ’vi GRAPH-G) ’ ((v3 ve v7))) ==> (v1 (v3 v6 v7))

Property list

Property list, also called plist, is another data structure capable of
capturing graph properties, such as access and neighborhood. Property list
is very much similar to association list. A difference between a property

list and an association list is that: objects within a property list have a
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unique identity, and when they are modified their old values are destroyed;
while, an association list can be augmented with a new (key value) pair
without destruction of an old pair identical with the new one. A function
for searching and constructing property lists in common LISP have the
following templates:

(GET <object-name> <property-name>)

(SETF (GET <object-name> <property-name>) <property value>)

Where, GET is the lisp primitive for returning the property of an object,
and SETF is another primitive which in combination with GET allows to assign
a particular property to an object. Figure 3.11 shows the representation of

neighborhood properties of the graph G in figure 3.5.

(SETF (GET ’v1 ’'neighbors) ’(vz vs)
(GET 'v2 ’neighbors) ’(v1 vs v3 vs)
(GET ’v3 ’neighbors) ’(v2 va)
(GET ’va ’neighbors) ’ (v3)
(GET ’vs ’neighbors) ’(v1 vz)
(GET ’ve ’neighbors) ’ (vz)
)

Figure 3.11: A property list representation of Graph of figure 3.5

(GET ’v2 ’'neighbors) returns (vi vs va vé), the neighboring nodes of vz2. For
further detail on functions manipulating association list in common ISP
language see [Steele84] and [Winston89].

TOPGENE, additional to the matrix representation, uses property list
representation of topology of buildings. A representation was defined as a
kind of data structure for algorithmic manipulation. It is hardly possible
to find a single representation scheme that is expressive enough for cap-
turing a variety of properties of an object, or highly adequate in providing
for a number of algorithms a manipulating means. This was also the case for
above representation schemes devised for capturing graphs properties. TOP-
GENE is a system that requires a relatively large number of graph algori-
thms, each with its own demand for a particular data structure. As a result,
TOPGENE has to keep several representations of connectivity property of
building simultaneously or at different levels of its reasoning processes.
For example, adjacency matrices provide a basis for calculating topological

distances in a building, but fails completely to serve as means for finding
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paths between the topological locations in a building. TOPGENE, thus, depen-
ding on its algorithmic demands, keeps vertex adjacency representation,
property list representation, and association list representation of the
connectivity property of a building at the same time or at different times

as they are required.

3.7.7 Distance matrix

A distance matrix D(G) for a graph G is a symmetric n by n matrix, in which
an entry d‘J(G) in it represents length of the shortest path between the two
vertices v, and vj in G. The length of a path is the number of edges on the
path. All diagonal elements in D(G) are by definition zero. Such a matrix

for an undirected graph is naturally symmetrical on diagonal.

k Where, k is the number of edges on the track bet ween V and V .
dlj (G)= 0 If i=j ! ]

The following figure shows an undirected graph and its corresponding dis-

tance matrix.

vi vd
o vli v2 v v4d v5 v6
vi O 1 1 2 2 2
e2
ed e7 v2 1 2 2 2
eS v3 1 1 1
el v3 vs
v4 o] 1 2
e3 e6 e8 v5 o] 1
v6 0]
0
v2 v6

Figure 3.12: A graph and its distance matrix.

The following relation exists between the distance and adjacency matrices.

D(G) =f A (G) = AG) + % A (G
i=1 i=2

N
where, ¥ A(G) represent matrices containing the shortest paths between the
1=2
second, third, ..., etc. neighbors [Trinajstic83a].

The distance matrix has applications in calculating well known topo-
logical indices, such as Randic’'s index in chemical topology, in generating

access patterns of building, and evaluating buildings with respect to some
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social norms. TOPGENE uses distance matrix to calculate and keep track of

distances in partial designs.

3.7.8 Circuit matrix
The circuit (cycle) matrix C(G) of a graph G is a ¢ by e matrix, where c is
the number of circuits and e is the number of edges. The circuit matrix is

defined as [Trinajstic83al:

1 If the i-th cycle contains the j-th edge.

CSJ(G) = [ 0 Otherwise.

Figure 3.13 shows circuit matrix for the graph G in figure 3.13.

Cycles: el e2 €3 e4 e5 e6 e7 e8
Ci={el, e2, e3} C1 i1 1 o0 0 0 0 O
C2={e4, e5, e7} c2 0O 0 0 1 1 0 1 O
C3={e5, e6, e8) c3 o 0 0 01t 1 0 1
C4={e4, e6, e7, €8} cs o 0 0 1 0 1 1 1

Figure 3.13: The circuit matrix representation eof
the graph G in figure 3.13

A circuit matrix C(G) of a graph G, has the following orthogonality relation
with the transpose of its incidence matrix T(G) ([Trinajstic83al. C(G) »
T'(G) = 0 (Moduio 2). That is to say, the elements of resulting matrix are
either 0 or divisible by 2.

TOPGENE does not use a circuit matrix representation of topological
property of a building, but this matrix may be of use in an extended version
of TOPGENE that would include the allocation problem discussed in chapter 2.
Such a matrix, then, may have réle in holding Iinformation on the circular

paths in a design.

3.8 Notes on representation of domain information

The richness of the graph theory, and possibility of representation of many
topological properties of buildings in graphs, also existence of graph
manipulation algorithms, poses it as a valuable choice for TOPGENE’'s imple-

mentation. The following sections covers notes on representation of buil-
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dings’ properties in graphs as is approached by TOPGENE.

3.8.1 Representation of activities and actors

In implementing a system capable of making inference based on the structure
and behavior of a building, one has two choices in dealing with the alloca-
tion of activities and actors responsible for the activities in a building.
To bound each actor to a location, and assume multiple presence of the
activities in several locations, or to assign each activity to a location
and assume multiple presence of actors in different locations. The first
assumption is unrealistic, since in practice actlivities are bound to loca-
tions, and in reality locations in a building are for a purpose (i.e.,
activity) to serve.

Assuming that each location is assigned to an activity, then, actors
have to attend the activity(ies) which they are assigned to. Now, if some
actors are responsible for multiple activities, then, they are supposed to
have to move between locations related to their activities. The movements of
actors in a building create interactions and consequently cause a building
to behave socially in certain ways.

TOPGENE assumes that the activities are bound to locations. In such a
case, a location is identified by an activity. To be more specific, given an

activity AX, and actors Gl, G, Gk responsible for that activity. First,

since the locations are bound fz activities, so, there is no need for sepa-
rate presentation of the locations and activities. A location, say Lx, is
represented by the allocated activity Ax to that location. Now, the actors
responsible for an activity, such as Ax, may be represented simply as a
property list as follows:

(SETF A (GET ’actors (G, G, G )))
x i J k

3.8.2 Representation of topological information

Connectivity property
Architects present floor-plan layouts of buildings in two dimensional Eucli-
dean space. This form of representation, called isomorphic representation

[Fisher87], is what architects produce at the last stage of a design. The
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reason is that, for a complex architectural design, a systematic approach
starts at an abstract level, such as the topological level, and works out
from top to bottom until arriving at a floor-plan layout. Graphs have been
widely used for representing properties of buildings such as their adjacen-
cies and accesses. An access graph represents the contiguity (existence of
door or other means of access) of locations within a building, while an
adjacency graph represents the boundaries of locations. The adjacency graph
of a building is planar and has vertices corresponding to the locations and
the links corresponding to their access or contiguities. The adjacency pro-
perty of a floor plan represents the existence of boundaries between diffe-
rent locations of a building. The nodes and links, in such a graph, corres-
pond to the locations and the common walls between them respectively.

Note that the access graph for a particular floor plan is a spanning
sub-graph of the adjacency graph of corresponding floor plan. Such a graph
is also generally a connected spanning sub-graph. The adjacency graphs are
similar to what architects call "Functional" or "Linkage" diagram [Steadman-
83]. Linkage diagram is used in the early stages of the design process by
some designers for functional analysis of the building. The adjacency rela-
tionships between the locations of a building are significant, since when
there is a sufficient wall sharing between two locations then the placement
of doors and windows are possible. The following two figures shows a floor-

plan and its corresponding access (connectivity) and adjacency graphs.

Kitchen Bedroom 1

Living

Corridor
Room

Bath- Bedroom 2
room

Shower

Figure 3.14: An architectural floor plan

(3-42)



TOPGENE: An Artificial Intelligence Approach to a Design Process

Kitchen Bedroom 1 Kitchen Bedroom 1
0————20 0 0

Living / Living room 2 %rldor
Room Corridor 0 0

/‘ ‘ Outside
Shower O———0 Bedroom 2 Shower 0———O0 Bedroom 2
Bathroom Bathroom

Figure 3.15: The adjacency and access graph corresponding to the
floor plan layout of figure 3.14

Special cases of adjacency and access

There are special cases of access and adjacency relations which are realis-
tic and actually exist in some buildings. The first case arises when a loca-
tion completely encircles another location, and it has been partitioned in a
way that it has access or has a common wall with itself. The graph of such a
situation has a loop in the node corresponding to the room that has access
to itself.

Another special case arises when two locations, such as A and B in
above example, have more than one way of direct access to each other, or
share more than one common wall. This case is realized only if location B is
interpreted as one location. Such a case in graph notation can be represen-
ted by multiple edges, or case can be handled by taking the location B as
consisting of two locations B and B’. These cases are illustrated in the

following figure:

Figure 3.16: Two special cases of access/adjacency and
their corresponding topological interpretations
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TOPGENE only deals with the connectivity (access) property of buildings. The
multiple loops and linkages between locations of a building do not have any
implication in terms of the social behavior of a building because of its
structure-operation relationship. For this reason, TOPGENE is careless about

loops and multiple links in buildings.

Parcels of locations

A location is a space or place allocated to an activity or reserved for a
purpose. A location might be a room, a long corridor, a hall, a place for a
small object such as canteen, or an eating area. We can think of hierarchi-
cal levels of locations. For example, an eating room consisting of several
sub-locations could be identified and taken together as a single location.
TOPGENE does not attempt to subdivide a location into several sub-locations,
or to aggregate a group of locations into a single location while generating
a design. The number of locations a design is always identical with the
number of declared activities. The exception is design with auxiliary loca-
tions such as corridors, in which case such locations are added to a design
to produce prototypical designs such single-loaded or double-loaded designs.
The decision on whether a group of locations should be considered as a
single location or not, in the case of the evaluating an existing design is
also with the user. A group of related locations (activities) may be presen-
ted as a single location. In such cases, actors responsible for the aggrega-

ted activities also must be aggregated and presented to the system.

Corridors

A corridor is a continuous, long, short, large, or small space in a building
which serves as an accessory to the people residing, working or visiting a
building. A corridor connects certain locations of a building and serves
people as a link choice for making decision on where to go, and in passing
through and reaching from one location of a building to the others. TOPGENE
calls corridors and similar locations without any activity assigned to them
the auxiliary locations. A rather large auxiliary location, such as a
corridor, in reality, can be considered as a single location, but practica-
1ly representing a long corridor with relatively large number of rooms hav-
ing access to each other via that corridor as a single location can have

serious implications and impact on the behavior of a building with respect
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to the social norm, or evaluating an existing design. For example, in
evaluation of a building with respect to a set of social norms , represen-
tation of a large corridor as a single location may result in the loss of
the semantics, and as a result, false evaluation of the building. While,
taking and representing parts of a corridor, having significance in terms of
the linkage that they provide between different locations, as separate loca-
tions, eliminates the problem. Examples of this situation are the single-
loaded and double-loaded type buildings, in which parts of a corridor in
front of a residential location may be taken as a separate auxiliary loca-
tion. TOPGENE leaves the choice of representation of auxiliary locations as
an aggregated or divided locations with the user.

The following figures show a double-loaded design and two access
patterns corresponding to this design. One with the corridor taken as a

single location, and the other taken as a chain of successive locations.

AS A4 A3 A2 Al
G4, G5 G4, G5 c3 G2 G1
Corridor
U—
A6 A7 A8 A9 A10
G6 G7 c8 62, G9 G10

Figure 3.17: An architectural floor plan with double loaded corridor

G3
A3
1] G4,G5 G4,G5 G3 G2 G1

A4
A2
A5 G1 AS A4 A3 A2 Al
0 a1 0 o] o] o] (o]
G4, GS /,/
\

G4, GS

a6 O 4 0 0. -0 0
G6 c Outside cs c4 |c3 c2 C1 Outside
0/
A7 0 0 0 0 0
A10
G7 A6 A7 A8 A9 A10
A8 G10
0 G6 G7 G8 G2, G9 G1l0
cs
A9
G2, G9

Figure 3.18: A star and a double-loaded interpretation of topology
of floor plan lay-out depicted in figure 3.17
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In these figures the As represent the activities and Gs the actors respon-
sible the activities. The star-shape representation is, first, unrealistic
in terms of architectural design since it might represent a building with a
round corridor with rooms around it, and second, its 1mpiication in terms of
the social aspect of the building is not the same as the other one. Since,
if we compare these two designs and try to imagine the patterns of flow on
them as a result of operation of the building, we can expect different
behaviors from them. This can be examined by looking only at a few location-
pairs and the interactions between them. For example, if we take two
location-pairs (A2 A9) and (A4 AS5), each of them shares the same actors. As
a result we can expect interactions and flow between each location—pair.
These patterns of flow in the case of the star type pattern cross each other
at location C, and thus contribute to the social behavior of the building,
while in the case of the doubley-loaded pattern the flows between these
location-pairs may not cross each other. The second case, obviously,
reflects a more practical design with a more realistic organization. An
evaluation of the behavior of corresponding building based on the second

pattern yleld a more realistic result than the first one.
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CHAPTER 4

DiaGNOSTICS BY COMPLEXITY MEASURES
]

"A man, viewed as a behaving system, is quite simple. The apparent com-
plexity of his behaviour over time is largely a reflection of the comp
lexity of the environment in which he find himself." {Simon81, p.65]

The interrelationship between physical structures and behaviors of systems
is a fundamental concept in almost any area of science. In electronic net-
work analysis, chemical engineering, and in architecture, the physical orga-
nization of a system has profound influence on its behavior. Such facts have
urged researchers to creative work in developing theories and methods for
diagnosing structural organization of systems and characterizing them for
structural feature detection or structure-behavior correlations. The deve-
lopment of structural complexity was initially proposed in chemistry and
biology [Bonchev87]. The study of complexity of chemical structures has
great significance in recognition of structural-property correlation in che-
mical substances, and in design of new chemical substances. Complexity also
is an important issue in other areas of science such as system theory and
computer science.

Diagnosis and characterization of structural organization of buildings
in terms of their connectivity or behavioral properties are important issues
in design activities. Synthesis, evaluation, allocation were given as exam-
ples of activities involved in architectural design. Design as a problem
solving activity may not proceed without some diagnostic means for probing
the physical organization of designs and analysis of their data. For exam-
ple, configuring connectivity pattern of a building requires a diagnostic

means for probing the structure of forming partial (incomplete) designs as a
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guide for choosing next courses of action. Similarly, an evaluation requires
analysis and diagnosis of the structure and operation of a design for
obtaining its actual and expected behaviors for comparison (l.e., evalua-
tion). Another example is the allocation problem posed in chapter two. This
problem, although open for an extension, seems to need a more intricate
treatment compared with the first two problems. A structural analysis of the
design and the analysis of the relations between the activities to be
allocated is a prerequisite for proceeding the allocation activity.
To be more specific, problems introduced in this work involve the
following complexity aspects:
Complexity issues in design evaluation:
- The complexity of input design:
. What are the flow generation potentials between the actors?
. Clustering of locations (activities) of design with respect to
their flow generation potentials.
. What are topological distances in design?

. What are the (shortest) paths between different locations?

Complexity issues in design generation, and allocation problems:
- What are the flow generation potentials between the actors?
- Clustering of locations (activitlies) of design with respect to their
flow generation potentials.

~ The complexity of intermediate partial designs.
. What are the topological distances between different locations?
. What are the (shortest) paths between different locations?
. What are the most eccentric locations with respect to a location?

. What are the neighboring locations of a location?

Above complexity problems may be split in two significant categories. Those
dealing with the structure of a bullding as a system of connected compo-
nents, and those dealing with the operation of a building.

This chapter introduces a set of tools, and a method that deal with
above complexity issues. The complexity tools are Topological Indices (TI).
TIs are used in geographical science and chemical engineering to charac-
terize topological features of systems of roads [Haggett69], and molecular

structure of chemical compounds [Bonchev87]. To deal with the operational
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complexity of buildings, this work takes advantage of the Q-analysis method
[Atkin74]. This method enables diagnosing the relationship between a set of
objects, and partially hierarchical classification of them with respect to
their association degrees. Q-analysis in our case is a powerful method for
detecting the flow generation potentials (dynamic aspects) associated with
the activities assigned, or to be assigned, to locations a building.

TIs are complexity measures derivable from the adjacency and distance
matrix of a graph. The calculation of distances in graphs involves algori-
thms. Reduction of computation time of algorithms is an aspect of complexity
in computer science. To reduce the computational time for calculating dis-
tances in partial designs, this chapter also introduces a fast algorithm for

this purpose.

4.1 Diagnosing structural complexities by means of Topological Indices (Tis)
A graph may represent the components (i.e., the nodes) of a system and
relationship (i.e. the links) between them. Graphs have application in
chemistry for depicting the connectivity structure of molecules. The
vertices of a graph represent the individual atoms, and edges depict the
valence bonds between pairs of atoms in chemistry. Such graphs are called
Chemical Graphs or Molecular Topology Graphs [Trinajstic83al [Balaban87] in
chemical science. Molecular-structure complexity has been an important issue
in Chemical science. In this domain, the problem was how to derive mathe-
matically the chemical properties of compounds from their structure (mole-
cular connectivity). One way to characterize the structure of a chemical
compound is by means of complexity measures. Complexity measures characteri-
zing chemical graphs are categorized under different names in literatures,
the most common of which is Topological Indices (TI) {Balaban87] [Nicholson-
87] [Tsai87]. TI's have found their ways in the areas such as network
analysis, geographical science [Haggett69], and particularly chemistry
[Trinajstic73a] [73bl [Kier76] for more than three decades. The structural
complexity of a system may be viewed from different perspectives, urging for
several complexity measures to reflect all complexity aspects of a system.
Some applications of TIs in chemistry are:
— Characterization of chemical graphs, and chemical substances.

— Structural mapping of a chemical graph to an index.
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- Quantitative Structure-Property Relationship (QSPR) [Tsai87] [John-
son87) [Trinajstic83bl]

- Predicting the structural complexity of non-existing molecular com-
pounds [Rouvray83].

- Quantitative Molecular Similarity Analysis (QMSA) [Johnson87] {[Rouv-
ray83] :

. Molecular identification,
. Searching molecular databases for structurally similar com-

pounds.

. Forming clusters of structurally related compounds,

. Ranking compounds with respect to their biological activities,

. Electing compounds for drug screening,

. Predicting molecular properties,

. Modeling drug receptor sites,

. Modeling and controlling corrosion,

. Predicting the degree of spread and harmfulness of pollutants in

the environment,

. Estimating cancer-causing potentials of certalin chemicals, and

. Developing beers with well-balanced taste,

~ Quantitative Structure-Activity Relationship (QSAR) studies [Balaban-
871 [Hanson87].

. Ordering, grouping, comparing chemical structures,

. Exploring the structure activity relationships in chemical com-
pounds,

. Quantitative structure-chemical properties correlatiens,

. Quantitative structure-biological properties correlations,

. Quantitative structure-boiling point correlations,

. Prediction of characteristics of unknown chemical compounds,

. Estimation of some properties of families of chemical compounds.

A TI is a numerical entity based on certain features of a graph that
attempts, to some degree, to reflect a property of that graph. TIs are
mainly based on local features of graphs. For example, molecular branching
is a topological feature recognized for contributing in complexity of mole-
cular graphs. At the heart of the structural analysis of a system, there is
a procedure or an algorithm that converts the topological structure of that
system into a single number (i.e., a TI). Such a number, then, characterizes

the corresponding system in a way that correlates it with one of its experi-
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mentally measured properties.
The standard procedure in devising structural-behavior (property)
correlation based on topological indices is as follows:
1- Devising a TI capable of describing a structural feature of a set of
objects under investigation.
2- Finding a quantitative relationship between the devised TI and a

common behavioral aspect of the set of objects.

For example, the Wiener index, described in appendix-A, well correlates with
a number of properties of a class of hydrocarbons, such as their boiling
points, viscosity, and surface tension, and has a wide range of applications
in predicting relative stabilities of unknown compounds that yet to be
synthesized and in corrosion control [Rouvray83] [Adler87]. Hanson [87] uses
three TIs, viz. the carbon number, the Wiener index, and the Balaban’'s
distance-sum-connectivity index to establish a reasonable correlation with
melting point of some chemical compounds. Similarly, in a building the
branching degree of a location, well correlates with the interaction
potential in that point. A location with branching degree one is an isolated
point with potential for serving as a singleton.

In spite of wide application of TI in chemistry, there are problems
associated with them. For example, a single TI is not a sufficient measure
for detecting a range of complexity features of a class of systems. This
means that a TI only gives a hint about the structure and the nature of a
system and not the complete information as an incident or adjacency matrix.
Besides, the correlation between structures of a class of objects and a TI
is not always one to one. More than one structure might map into a single
measure. This problem, known as the degeneracy problem [Bonchev87], is a
major drawback in application of TIs in chemistry. The ideal is to devise a
unique TI definition and an algorithm that could satisfactorily correlate
each structure to a unique index. Fully non-degenerate TI can be devised to
map chemical structures to unique indices, but till now such indices cannot
correlate the structures of systems to their properties. On the other hand,
TIs with little or no degeneracy, can be used for structure-property corre-
lations of a system, but because of lack of one-to-one correspondence a
structure cannot be retrieved from a data-base. The most challenging problem

in chemical application of graph theory is thus, whether two approaches
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above can ever converge into solutions which fulfill all thesge requirements
(Balaban87].

To cope with these problems researches have been carried out. Some have
proposed theoretical frameworks for trying to devise new indices. Kier [76]
and Bonchev [87] has laid out a number of criteria for a good TI as follows:

- It must be universal (domain independent), and capable of characteri-
zing any system representible as a graph.

~ A good complexity measure should be specified within a unique theo-
retical conception. One should not try to devise an index based on
combination of heterogeneous criteria of a system.

~ It should take into account different structural complexity levels of
a system and their hierarchy. This requires both a hierarchical
classification of the component of a system, and a vector type
measure instead of single number.

- It should emphasis on the relations between the components of a
system rather than on their numbers. The number of components of a
system does not necessarily reflect its organizational complexity.
This requirement demands different weighting of size and relation
parameters.

- A good TI should increase monotonically with increase in number of a
complexity features.

- It should correspond to the intuitive idea of complexity.

— It should differentiate (not degenerate) the non-isomeric graphs.

— It must be as simple as (not too sophisticated) possible.

= It should be practical in analyzing the characteristics of a set of

systems.

To minimize the degeneracy, some researchers have introduced combined
indices. Randic’s molecular identification numbers [Rouvray83], and Wiener's
index [Rouvray83] are examples of these indices. A vector type index is
another approach to reduce degeneracy, and increase distinguishing power of
TIs. The hierarchical model of Bonchev [87] is an example of this approach.
This model, which is almost universal, is not restricted to chemical graphs
and could be applied to any systems representible in a graph. I believe,
Bonchev model, introduced in the following section, is applicable to design

of data-bases of precedents of architectural design, for 1indexing and

(4-6)



TOPGENE: An Artificlial Intelligence Approach to a Design Process

retrieval of floor-plans having certain properties.

4.1.1 A hierarchical Model for measuring the topological complexity

To decrease the degeneracy problem associated with the TIs, a hierarchical
model for arriving at vector type indices have been proposed [Bonchev87a].
Figure 4.1 depicts a five levels model for arriving at a fairly non-
degenerate indices. The first level is the graph size. The next level deals
with the connectivity of the systems under investigation. This level is the
next fundamental level after the size level. The third level considers the
relationship between different classes of elements, if the system under
consideration has such different elements. The fourth and fifth levels deal
with specific metric and specific symmetry. The first three levels have
general application, while the last two levels are applicable to chemical
structures, where the notions of bound 1lengths and bound angles are

important.

SIZE

!

TOPOLOGY

PHYSICAL NATURE
(Elements, Relations)

SPECIFIC METRIC

SPECIFIC SYMMETRY

Figure 4.1: A hierarchical model for measuring
the structural complexity of systems (Bonchevs7al

Topological level is the most important one in measuring the complexity of a
system; so, it is natural to treat this level in greater depth. Bonchev
[87a] proposes a separate hierarchical scheme for topological complexity.
This is depicted in figure 4.2. Connectedness is primary a topological
feature. The next level constitutes the graph types related to adjacency.
This measure can differentiate classes of directed, undirected, and multi-

graphs. Different fragments of a graph such as its cycles, branches,
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bridges, and linear patterns are represented in the next level. Fragments of
a graph also may be sorted out in terms of their complexities. Cyclicity is
the most complex feature, with bridging, branching, and linearity as next
complex features respectively. Symmetry is the fourth level in the hierar-
chy. This level is related to the graph with non-symmetrical and non-binary
relations between their vertices. The fifth level is included for distingui-
shing non-isomeric graphs, if the first four levels are not sufficient for
differentiation. This level 1is divided Iinto +two branches; a metric
(distance) sub-level followed by a level corresponding to paths in a graph,
and a sub-graphs level. The path sub-level can distinguish paths of
different size in a graph, while the sub-graph level considers
classification of sub-graphs of different size.

CONNECTEDNESS
(DISCONNECTED, CONNECTED, PLANARITY)

!

ADJACENCY TYPE
(DIRECTED, NON-DIRECTED, MULTIGRAPHS)

FRAGMENTATION
(LINEARITY, BRIDGING, BRANCHING, CYCLICITY)

SYMMETRY

METRIC SUBGRAPHS
(DISTANCES) CLASSIFICATION
PATHS

Figure 4.2: A hierarchical model for measuring
the structural complexity of graphs (Bonchevs7al

In order to have the mathematical model reflect the hierarchy of the
conceptual model, one must avoid to arrive at a single number for showing
the structural complexity of a system. To achieve this, Bonchev proposes
complexity vectors, with as many components as the hierarchies of the
conceptual model dictate, for showing the complexity of a system. For
example, for a graph G the complexity measure will look like this:

C(G) = (C ,

C , C , C , C
size topology physical-nature metric symetry
C = (C

(o C ., C )
TOP conn.’ adj.’ frag. sym.

c = (C , C
SYM metric sub graphs
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The most important level with respect to the structural complexity of
buildings in terms of their connectivity property, and topological proper-
ties of other systems in general, is the third level. The first two levels
can contribute a little towards feature detection of a system. To enhance
the structural feature detection, fragmentation contributes a great deal.
Graph fragmentation means recognition of sub-graphs of different features
and properties within a graph. Fragmentation processes additionally contri-
bute to the recognition of graph complexities. For example cycles and bran-
ches have been recognized for a long time as features which increases the
complexity of a graph. Bonchev [78a] has introduced two more notions, that
are bridges and lines, for graphs. This breaks down a graph into four
distinct fragments which together they make up the third hierarchical level.

In order to fulfill requirement two of the complexity measures, desc-
ribed earlier, it is essential that the fragmentation level and its compo-
nents to be specified within the same adjacency conception of the second
level. Specifically we want the summands of the entries for the fragments to
be equal to the total adjacency A(G). The total adjacency of a graph then
can be defined as the sum of contribution of fragment adjacencies:

A(G) = Acy(G) + AB“(G) + ABR(G) + ALI(G) = 2m,
where, m is the number of edges.

c BN BR LI
Or: A(G) = a Y 4+ a + a +a =m +m +m +m
1] 1) ij 1] cy BN BR LI

This formula for undirected graphs is: A(G) = Z(mcv+ Moyt Mart ™,

Furthermore:

-m., is equal to the cyclomatic number (i.e., mcy = m-n+1).

- moo is the number of bridge edges, which are edges that connect two
cycles, but they do not belong to any cycle.

-m, is the number of linear edges, which can be taken as the number of
degree two vertices in the graph.

- Mo is the number of branched edges, which is taken as the number of

remaining edges after eliminating the cyclic, bridging, and linear ones.

To increase the discriminating power of the complexity measure, linear edges
may be grouped according to the type of sub-graphs to which they belong
[Bonchev78al.
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cY BR ScC AB

Here: m =m _+m +m "+ m , where:
oy LI LI LI LI LI
moo= The number of linear edges in cycles.
m:? = The number of linear edges in bridges.
mi:= The number of linear edges in side chains.
m:? = The number of linear edges in acyclic branches.

Similarly branching can be broken down into acyclic and cyclic branch-
ing groups. Edges associated with cycles are cyclic-branching, while the
acyclic-branching embrace the effect of branching in acyclic fragments,

bridges, and side-chains of cyclic fragments.

cy AC
m.=m + m__~, where:
BN BN BN
cY cY
m_ . = The number of edges in cycles - (m +m_ )
BN LI cy
c AB BR sC
AC — B 4 PR s
BN BN BN BN

The relationship between different fragments of a graph discussed above

are depicted in the following figure.

Graph edges(m)

! l ( I

Linear_edges Bridge_edges Branched_edges Cyclic_edges
(m m m_ ) m_ )
LI) BR) BN ( cYy
Cycles
d Bridges Side-chains Acyclic Acyclic Cyclic
e 8
ge branches fragments fragments
cy BR sSC AB AC cY
(m ) m (m (m (m m_ )
LI ( LI) LI) LI) BN) ( BN
[ | 1
Acyclic branches Bridges Side-chains
AB BR SC
(m__) m_ ) m_ )
BN ¢ BN ( BN

Figure 4.3: Classification of structural complexity in graphs
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o 0

0/ AN || m,, = mR+1=30-27+1=4
0—0—0 cy BN SC AB

I m =11 (m =8, m =1, m =1, m _=1)

LI LI LI LI LI
=1

/ \0/” “\, D,
Noo” Moo’

Figure 4.4: A graph and its measures of structural complexity

The ten components of the total adjacency described above characterizes in
detail the connectivity complexity of any graph. We can arrange these terms
in hierarchical order with respect to their degree of importance in terms of
the complexity. Intuitively, it is reasonable to assume that cycles are the
most complex and lines are the simplest and least complex connectivity
feature. Bridges which link cycles also may be taken as more complex than
acyclic branches, but less complex with respect to cyclic branches. Similar-
ly, we can associate a higher level to bridges than side chains and to side
chains than acyclic ones in both branches and linear edges. Now the total
hierarchy can be written as [Bonchev78al:

CY BR SC AB cy BR SC AB
C > C > C > C > C > C > C > C > C > C
cy BN BR BN BN BN LI LI LI LI

Obviously, these hierarchical relationships will provide a higher
discriminating power of the total adjacency of a graph. Now, this complexity
measure can be considered as a ten component vector, with the following
discriminating complexity rules attached to it, for comparing the complexi~
ties of two graphs Gl and G2:

AGI=(Ce, Cot Con G Conr S Corv G Sirv Cux
IF A(G1) > A(G2), THEN C(G1) > C(G2) ELSE
IF A(G1) < A(G2) THEN C(G1) < C(G2) ELSE
IF ccv(Gl) > Ccv(GZ) THEN C(G1) > C(G2) ELSE
IF Ccv(Gl) < Ccy(GZ) THEN C(G1) < C(G2) ELSE

IF ...
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4.1.2 Application of TIs on the architectural domain

TIs, have limited power in structure-behavior or structure-property correla-
tion, but can play a significant role in design activities such as design
synthesis and activity allocation. Most of the TIs presented in appendix-A
are capable of detecting structural features of graphs, and reflecting their
complexity to a certain degree. Some of these TIs, thus, can serve during
automated design processes for structural detection. The rest are purposely
introduced for extending the minds for continuation of this work. Almost all
TIs related to branchiness of graphs are able to support design decisions
while synthesizing a design. For example, branching degree can be used as a
constraint limiting the branching degree of locations. TIs also may be used
as a numerical indicator for detecting the potential privacy of locations in
a design. For example, locations with minimum degree branchiness (i.e., 1)
are potentially private locations. Other TIs such as topological distances
and eccentricity of locations are used by TOPGENE as a measure for heuristic
optimization of designs with respect to social points of view such as
privacy, circulation cost, and community. Here is a TOPGENE rule integrating
the eccentricity and branchiness into the design process:

— LET HCLP be a hierarchical clusters of location pairs.
— LET (pair € HCLP) be a location pair with the highest flow potential.
— Let PD be the current partial design.
- COND: = (EQL current_norm_on_agenda ’COMMUNITY).
— ((FIRST pair) e processed_locs).
~ ((SECOND pair) € processed_locs)).
- LET ECC-LOCS be list of locations in PD ranked according to their eccen-
tricity with respect to (FIRST pair).
= DOLIST (LOC ECC-LOCS):
- LET branchl := max_branching_degree of LOC - current_branching_degree
of LOC.
~ COND = NOT((LIST LOC (SECOND pair)) e *NEG_LINKS*) & (branchl > 0).
— (PUSH (SORT_PAIR (LIST LOC (SECOND pair))) *SOLUTION*).
— (UPDATE *DISTANCE_MATRIX* holding distances of the PD.
~ UPDATE_BRANCHINESS of LOC and (SECOND pair).
— ADD (SECOND pair) to processed_locations.
= Break the loop.
- END-DOLIST.

TOPGENE uses a data driven approach to generate design based on the analysis
of input data and heuristic rules. A model-driven approach would try to
produce designs based on a knowledge base of precedents of designs. Such a
system, would search the knowledge base for particular designs, select

precedents, refine the selected designs, filter them, and perhaps would have
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to modify a finally selected design before presenting it as a solution. Such
a process has several issues that may be dealt with by TIs. For example,
storing precedents of designs, demands a classification and indexing
strategy. Classification of designs with respect to their connectivity
properties, one way or the other, has to deal with the connectivity features
of designs. Here, the use of TIs are inevitable. Indexing precedents of
design solutions with respect to their most elementary structural features,
such as size, average branching degree, compactness, etc. are something that
may not be neglected, if efficient retrieval is required. Given a design
problem, a basic TI characterizing its solution is its size. Clearly a
design solution with hundreds of locations may not be expected to be appro-
priate for a design problem of a small house with a few locations. Further-
more, after selecting a number of design solutions, a system has to go
through a deeper selection process for minimizing the number of choices
made. Some of the TIs, discussed above, well correlate with specific proper-
ties of topological patterns of building, without a need for deep structural
analysis of the pattern. A simple example is the compactness measure of a
pattern, and the cyclomatic number. These measures are clear indication of
complexity of a pattern, and can serve in quick detection and selection of
patterns with specific properties. For example search for tree designs
(e.g., single-loaded, double-loaded) must lead to quick rejection of designs
with a positive cyclomatic number.

A better solution to search for specific designs is the use of a vector
type TI such as the hierarchical model of Bonchev. This model can serve not
only in selection but also produces detail structural characterization of a
design. Various sub-features of a pattern reflected in this hierarchical
model are valuable tools for detailed diagnosis of solutions patterns even
for allocation problem. Some of the possibilities were mentioned before. A
detailed discussion on the applicability of TIs is left further research

work.

4.2 Diagnosing topological distances in a partial design
The problem of finding the shortest paths and their lengths (distances) in a
graph is important in the applications of graph theory in scientific areas,

such as: network analysis, transportation [Dial79], also generating design
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solutions with respect to a set of social norms. TOPGENE, as mentioned, uses
eccentricity index and topological distances of locations as diagnostic
means for probing partial designs. Keeping track of distances in partial
design is a time consuming process. In this section an efficient algorithm
for this purpose is presented. This algorithm has a time complexity bounded
by (n—1)2/4 for readjusting distances between the nodes of a graph G that is
incremented by a new link, where n is the order (i.e., number of vertices)
of G. Existing algorithms, such as the power-matrix method (Flament63]
[Haggett69], Dijkstra’s algorithm, and Floyd’s algorithms [Christofides75]
[Gibbons85] [Buckley90] have a computational complexity in the order of n®
for achieving the same goal. The power matrix method is based on the

following theorems:

Theorem-1 [Festinger1949] [Flament63]: In a graph G, the number of paths of
length r from a vertex v, to another vertex vJ is given by the a:j element
of A, where A" is the r-th power of the adjacency matrix corresponding to G.
(See proof in [Flament63] and [Buckley901].

Theorem-2 [Flament63]: In a graph G with n vertices, the length of a
shortest path is at most equal to (n-1).

Theorem-1 states that an adjacency matrix A representing a graph G can be
powered to yield a series of matrices of order A? A? ey A?_I,An with some
interesting properties. In general an element aU of A" represents the total
number of n-steps paths between the vertex pair (vl, vj). For example, non-
zero elements of A represent direct (one step) connections between the
corresponding vertex pairs, a non-zero element of A® (A to the power of 2)
represents the number of 2-step paths between corresponding vertices, and so
on. This implies that we can use powered matrices of a graph for calculating

the lengths of the shortest path between different node-pairs.

Based on above theorems and discussion followed we have the following
algorithm for the calculation of the path-lengths in a graph [Flament63]:
1— Compute the successive powers of G, at most up to the power of r=n-
1, when n is the order of G.

2= The length of the shortest path between two vertices vi and vJ is
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equal to the non-zero element of the smallest power matrix corres-
ponding to the row i and column j.
For convenience, we can assume that:
. For any r = n-1 that a:j =0, d(ij) = o, and
For all v d(v1 vl)=0.

If we keep the lengths of the shortest paths in a matrix D, then in order to
denote the correspondence between this matrix and the power matrices, let’'s
enhance D with a subscript p to correspond it to a powered matrix A at a
given situation. For example, Dn will denote the correspondence of D with
A". Here, D1 will contain all connections that appeared in A? D2 will
include all the 2-step connections paths that did not exist in D1, and so
on. The process of finding the number of n-step connections (i.e.,
calculating A™) and the length of the shortest path between pairs of
locations (i.e., repairing Dn at each level n) can be continued until all
non-diagonal elements of the shortest path matrix D is filled. At this level
Dn contains distances the shortest path between all location-pairs. An
example of this algorithm at work can be found in [Haggett69] page 35.

The information in these matrices have implications in architectural
design. For example, the sum of the values in a row corresponding to a
vertex v in A" is the total number of connections from v, to any location
including v, at maximum n-step in the graph. Similarly the sum of the values
in a column corresponding to a vertex vj is an indication of total number of
routes coming to vj at maximum n-step. Similarly for a graph representing a
building, the power matrices A? A? ey A" suggest the access assurance of
the building at different levels.

The shortest path matrix also may be used to compare relative accessi-
bility of nodes in a graph. The rows in such a matrix show the shortest
paths from location indexed on the left of the matrix to all other locations
indexed at the top of the matrix. The largest value in a row is the Kdnig
number for location corresponding to that row. Kénig number is discussed in

appendix-A.

4.2.1 A new efficient algorithm
To reduce the computational complexity of distance calculation by TOPGENE
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during generating designs, I introduce a new algorithm for this purpose. The
problem is to efficiently keep track of distances in an incrementally
growing graph G (partial designs generated by TOPGENE) that is presumably in
the order of 1 (i.e., has one node) at step t, and is in the order of n at
step (t+n). TOPGENE needs to keep track of distances between the location
pairs of the partial designs, each time they are incremented by the addition
of a new location.

To keeping track of distances in an incrementally changing graph that

presumably has 1 node at step t, and has n nodes at step t+n, based on

n
applying existing algorithms, has a computational time proportional to ¥ 13

(i.e., the computational complexity is in the order of O(na)), while the

algorithm introduced here has a time complexity bounded by E (i—1)2/4 for
a growing process of G from 1 node to n nodes. This algorithm is based on
distance readjustment as opposed to the existing approaches, which are based
on the distance recalculation. This algorithm keeps track of distances
between all vertex pairs in G in a distance matrix, recalculates only those
distances that have been influenced because of the growth of G, and
readjusts the distance matrix. This is computationally cheaper than, for
example, the power matrix method which recalculates distances in G, based on
the access matrix, any time G is incremented by a new link. The time
complexity of this algorithm for each distance read justment in G is bounded
by (n~1)2/4. Now, if we assume that G is in the order of 1 at the initial
step and is in the order of n at the final step, then the computation time

n
adds up to } (i-1)%/4 for a growing process of G from 1 node to n nodes.

4.2.1.1 Theoretical foundations
The key issue in reducing the time complexity of recomputing distances in an
incrementally changing graph G is the method of detecting new tracks in G
after adding a new link to it, and calculating only the lengths of these
tracks. Such a method should be less complex and more efficient than the
recalculation of all distances once the graph is incremented by a new link.
To provide a basis for such a method and its implementation, I first
present a lemma (lemma-1) for detecting the newly created tracks and their

corresponding distances in a graph that has been incremented by the addition
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of a new link. This lemma is based on two previous theorems (theorems 1 & 2)

that represent the properties of a track between two points in a graph.

Theorem-1 (Bratton’s theorem)
If e(vk vl) is a track between the two vertices Ve and v then the path
between any vertex pairs on 9(vk vl) also is a track. the proof is to be

found in Flament [1963, page 30].

Theorem-2
The vertex v, is located on a track 9(vk vl). if and only if d(vk vx) + d(vx
Vl) = d(vk vl). The proof is to be found in Flament [1963, Page 30].

The implication of this theorem is that in an undirected graph G, the
distance between two end points of the track e(vk vl) is equal to the sum of
distances between the end points of two tracks separated by Ve @ point on

9(vk vl) (i.e., d(vk vl) = d(vk vx) + d(vx vl)).

Lemma-1

Let G’ (V’, E’) be a connected undirected graph with known distances between
any vertex pair. If a new link {(v1 vj) > i#j} with a weight w, and at
least, a node already in G’, is added to G’, then G(V, E) is an incremented
graph with new paths. A new path in G complying with one of the following

conditions is a track:

p(vl, VJ, ey vk) = e(vi, VJ, C e, vk)
5 < ) ,
iff d(vJ Vk) +u d(vi vk). Vk#i, ki) (1)
plv , v, ..., v)=8v,v, ..., v)
J i 1 j i 1
iff d(vi Vx) + W < d(v} v;), Vi#i, 1#j (2)
p(vk, ey vj, Vir e vl) = 9(vk, s vj, Vs e vl)
iff d(vk vJ) + W+ (vl vl) < d(v; v;), Vk & 1 in (1) & (2) (3)

Furthermore, the distances of these new tracks are:

d(vi vk) =W o+ d(vj vk), Visi, ki) (4)
d(vJ Vl) =W+ d(vi vl), Vi#i, 1#) (5)
d(vk vl) 1= d(vk vj) + W+ (v1 vl), Vk & 1 in (4) & (5) (6)

(4-17)

IS



Chapter 4: Diagnistics by Complexity measures

Proof:
Necessary condition: Let v, € G and v, € G be two arbitrary vertices in an
incremented graph G. p(vk vl) € G is a new path, if and only if it includes
at least a new link different from the links in p(v; v;) € G’. We know that
G is identical with G’ except for the new link (vl VJ). so, the necessary
condition for p(vk vl) being a new path is: (v‘ VJ) € p(vk vl).

Sufficient condition: From the condition above it follows that a new

path in G falls into one of the following three classes of paths:

'p(vi vk) = {(vi vj)(vj R B vk)}, Vk (7)
p(vj vl) = ((vJ vi)(v1 N I (R vl)}, V1 (8)
p(vk vl) = ((vk D I (R vJ)(vj v‘)(vi...) R vl)}, Vi &1 (9)

Now, for distinguishing the tracks among the classes of paths mentioned
above, we first take (7) and (8). The sufficient condition for any path in
(7) and (8) to be a track is that the distance between its end vertices in G
be shorter than their previous distances in G’. For example, d(vl vk) must
be less than d(v; v;). The distance between v, and \ is not known yet, but
we know that d(vi vk) = d(vi vj) + d(vj Vk). Hence, the sufficient condition
for detecting the tracks from among the paths (7) and (8) are:

d(vl vj) + d(vj vk) < d(v; v; ), Vk, and

d(vJ vi) + d(vi Vx) < d(v} v;), V1

We know that: d(vJ vk) = d(v} v; ), d(v1 vl) = d(v; v;), and d(vi VJ) = W.
So, first, above inequalities can be verified, and second, the new distance
for any point pair holding above inequalities can be calculated as follows:
d(vl vk) =W o+ d(v; v;), Vk # i&)

dlv. v ) :=w + dv’ v ), VI # i&j
IERS! 1 1

Now, the tracks among the paths described by (9) must be distinguished. We
know from Bratton’s theorem that a path p(Vk V1) in (9) is a track, if its

sub-tracks:

((vk R IRV (R vi)} (10),
and
((vj A I vl)) (11)

are tracks. This implies that the necessary condition for a path in (9) to

be a track is that: its end points must be identical with end points of the
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tracks recognized in (7) and (8). So, (10) and (11) are tracks if it was
proved so in (7) and (8).
Now, the sufficient condition for the paths between these point pairs

to be tracks is the inequality argument similar to the one for (7) and (8),
i.e.: p(vk vl) = B(Vk vl), if:
dlv. v ) +dlv. v.) + (v v ) <d(v’ V), Yk &1 in (7) & (8)

ko i) 11 K 1
And, the lengths of these new tracks are:
d(vk vl) 1= d(vk vj) + W+ (vi vl), Yk & 1 in (7) & (8)

4.2.1.2 Algorithm

Based on the lemma-1, I present the following algorithm, with a computa-
tional complexity bounded by (n-1)2/4. for keeping track of the distances in
an incrementally changing graph G from a node to n nodes. G is assumed to be
weighted and undirected. The algorithm with slight modification also may be
applied to directed graphs.

When G is undirected, the distance matrix is symmetrical, and the
storage requirement for storing distance information is n2/2 for a graph of
order n. The storage requirement for both distance and access information of
an undirected-weighted graph is nZ. When G is both undirected and unweigh-
ted, then the storage requirement reduces to n2/2, since distances equal to
1 imply direct links between the nodes as well.

The storage requirements for storing access and distance information of

different graph types are reflected in the following table:

Graph type . Storage requirement
Undirected-weighted nz
Undirected-unweighted n2/2
Directed-weighted an
Directed-unweighted n2

The storage requirement for keeping the distance and access information in
our case is then nZ. This is the size of a n by n matrix, which holds the
distances in its upper triangle and access information in its lower
triangle. The number n is the final order of G, so, the matrix is assumed to

be fixed for a complete growing process of G. In order to reduce the storage
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requirement, at least in the intermediate steps, it is possible to presume a
growing matrix as well. This is achievable only at the expense of recopying
such a matrix Ilnto a new one, each time G is incremented.

The time complexity bound (n-1)2/4 for the algorithm is related to the
distance readjustment corresponding to the condition (9). The worst case
arises when G is a tree, and 1s incremented by a link that connects the
roots of two sub-graphs (sub-trees) of the same weight in G. In this
situation, and if the new link connects two nodes which are the only nelgh-
boring nodes of the central-node' 1in G, then the number of new tracks in
(7) and (8) are exactly (n-1)/2. The comparison of these two sets of tracks
for condition (9) has a time complexity in the order of (n-1)%/4.

The algorithm is implemented by three procedures called ADD-LINK,
ADJUST-DISTANCES-1 and ADJUST-DISTANCES-2. These procedures are presumed to
have access to the distance and access information about the growing graph
G(V, E) through an access-distance matrix. ADD-LINK is a control procedure
that, upon receiving a new link e ¢ E with a weight w, adds the new link to
G and controls if both nodes of the new links are in G, one of its nodes is
in G, or none of its nodes are in G. ADD-LINK then calls either ADJUST~
DISTANCES-1 or ADJUST-DISTANCES-2 procedure for distance readjustments of
the new incremented graph.

The ADJUST-DISTANCES-1 recalculates (adjusts) the distances of the new
tracks originating from a newly added node with respect to other nodes in G,
and updates the distance matrix. The inputs indexl and index2 to this
procedure are the indices of nodes of a recently added link to the access-
distance matrix, with indexl corresponding to a new node, and index2
corresponding to an existing node in G.

The ADJUST-DISTANCES-2 readjusts distances of the new tracks created as
a result of linking two existing nodes in G with each other. The inputs to
this procedure are indices of the nodes of the new link to the access-
distance matrix, and the weight associated with the new link.

These procedures are presented in a pseudo language similar to Pascal
with some simple list processing notations. Comments start with a semicolon

and a node with an index i to the distance matrix is denoted by

1
See appendix-A for definition.
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node(i). The algorithm with slight modification can be applied to directed
graphs as well.

The definitions of parameters and some of the variables used by this
procedure are given below. Other variables are printed in italic font.

- link : the new link to be added to G.

-~ w : the weight associated with the new link.

~ nodes : list of the current nodes in G.

~ *ad_matrix* : the global variable, denoting the access-distance

matrix

Procedure: ADD-LINK (link w nodes)

1— indexl := index of the nodel € link to *ad_matrix*.
2— index2 := index of the node2 € link to *ad_matrix*.
3- IF: = (nodel ¢ nodes) & — (node2 ¢ nodes).
THEN: — nodes := nodes + {nodel nodel}.
IF: — nodel < node2.
THEN: = *ad_matrix* (indexl index2) := w,
— *ad_matrix* (indexl index2) := 1.

ELSE: = *ad_matrix* (indexl index2) := 1,

- *ad_matrix* (indexl index2) := w.
ELSE IF: - (nodel € nodes) & (node2 € nodes).
THEN: - Call procedure ADJUST_DISTANCES_2 (indexl index2 w).
ELSE IF: = Only one node, say node2 € nodes.
THEN: = nodes := nodes + {nodel}.
IF: = nodel < nodeZl.
THEN — *ad_matrix* (indexl index2) := w,
- *ad_matrix* (indexl index2) := 1.
ELSE - *ad_matrix* (indexl index2) := 1,
~ *ad_matrix* (indexl index2) := w.

4 ~ Call procedure ADJUST_DISTANCES_1 (indexl index2 w).
S5 — END-ADD-LINK.

Procedure: ADJUST-DISTANCES-1 (indexl index2 w)
;; Get distances of all nodes relative to node(index2).
1—= FOR row := 1 to index2

PUSH *ad_matrix*(row index2) to distance_list

END-FOR.
2— FOR col := (index2 + 1) to the last column of the *ad_matrix*:
PUSH *ad_matrix*(index2 col) to distance_list
END-FOR.

3- distance_list := (REVERSE distance_list)
;; Fix distance of the newly added node(indexl) relative to other nodes.
;3 Fix distances in the "index1"_th column of *ad_matrix*.

4~ FOR row := 1 to indexl:

~ distance := (POP distance_list)
- IF: - distance # O/
THEN: = *ad_matrix* (row indexl) := distance + w.
END-FOR.
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i3 Fix distances in the "index1"_th row of *ad_matrix®*.
5- FOR col := indexl to the last column of the *ad_matrix*:
- distance := (PQP distance_list).

- IF: - distance # 0O,
THEN: ~ *ad_matrix* (indexl col) := distance + w.
END-FOR.

6~ END~ADJUST-DISTANCE-1.

Procedure: ADJUST-DISTANCES-2 (index1 index2 w)
1= IF: -~ index1 > index2.

THEN: — swap indexl with index2]

;3 Store distance and access of the new link.
2= *ad_matrix* (indexl index2) := w.
3~ *ad_matrix* (index2 index1) := 1

;3 Get distances of all nodes relative node(index1).

;3 Get distances in the "index1"_th column of *ad_matrix*.
4— FOR row := 1 to indexl1:

PUSH *ad_matrix*(row indexl) to listi.

END-FOR.
;3 Get distances in the "index1"_th row of *ad_matrix*.
5= FOR: col := (i + 1) to n (dimension of the *ad_matrix*).
PUSH *ad_matrix*(i col) to listl.
END-FOR.

;; Get distances of all nodes relative to node(index2).
;i Get distances in the "index2"_th column of *ad_matrix*.
6= FOR row := 1 to index2:
PUSH *ad_matrix*(row index2) to list2.
END-FOR.
i; Get distances in the "index2"_th row of *ad_matrix*.
7— FOR col := (index2 + 1) to n (dimension of the *ad_matrix*):
PUSH *ad_matrix*(index2 col) to list2.
END-FOR.
8= 1listl := (REVERSE list1).
9— 1istZ := (REVERSE 1list2).
;3 Adjust distances of the new tracks.
10—= FOR row := 1 to indexl:
distancel (POP listl).
distance2 := (POP 1list2).
difference:= distancel - distance2
;3 AdJjust distances, and save adjusted nodes.
IF: - difference > w.
THEN - *ad_matrix* (row index1) := distance2 + w.
- PUSH row to set2.
ELSE IF: - difference < - (w).
THEN -~ *ad_matrix* (row index2) := distancel + w.
-~ PUSH row to setil.

END-FOR.
11— col := (1 + index1).
12— row := {1 + indexl1).
13= FOR n := 1 to ((index2 - indexl) - 1):

distancel = (POP list1).
distance2 := (POP list2).
difference := distancel - distance2.
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;3 Adjust distances, and remember the adjusted nodes.

IF: =d
THEN:— *

ifference > w.
ad_matrix* (indexl col)

= PUSH col to set2.

ELSE IF:

THEN: - *ad_matrix* (row index2)

1
1

col
row :
END-FOR.
14— FOR col :=
distance
distance
differen

index2

- difference < =-(w).

- PUSH row to setl.
+ col.
+ row.

1
2
ce :=

(POP 1listl).
(POP 1ist2).

distancel - distanceZ2.

1= distance2 + w.

:= distancel + w.

to n (the size of *ad_matrix*).

;3 Adjust distances, and remember the adjusted nodes.

fference > w.
d_matrix* (indexl col)

PUSH col to set2.

THEN:— *ad_matrix* (index2 col)

IF: di

THEN: *a

ELSE IF:
END-FOR.

- difference < - (w).

— PUSH col to setl.

;= distance2 + w.

:= distancel + w.

;3 Adjust distances of the new tracks B(Vi vj), where v, € setl & vj € set2.

indexi).
index1).

indexj).
index2).

:= distancei + distancej +

*ad_matrix* (indexj indexi).

:= distancei + distancej +

15= FOR indexi := (POP setl):
FOR indexj := (POP set2):

IF: - index1 < indexi.

THEN: = distancei := *ad_matrix* (indexl

ELSE: = distancei := *ad_matrix* (indexi

IF: ~ index2 < indexj.

THEN: - distancej := *ad_matrix* (index2

ELSE: — distancej := *ad_matrix* (indexj

IF: - indexi < indexj.

THEN: — distance := *ad_matrix* (indexi indexj).
IF: — distance > (distancei + distancej + 1).
THEN: = *ad_matrix* (indexi indexj)

w
ELSE: - distance :=
IF: —~ distance > (distancei + distancej + w}.
THEN: - *ad_matrix* (indexj indexi)
W
END-FOR.
END-FOR.
16~ END-ADJUST-DISTANCE-2.

4.2.1.3 Example

To exemplify the algorithm above,

graph G that is assumed to be undirected and unweighted,

we consider an incrementally changing

and has a maximum

number of nodes equal to 18. The matrix for storing the access and distance

information is

called *ad_matrix*,

(4-23)

with access and distances kept in the



Chapter 4: Diagnistics by Complexity measures

upper triangle. A distance equal to "1" in the matrix represents a direct

link (access), and a "«" indicates a disconnection between the corresponding
nodes. The distance from a node to itself is denoted by a O.

To demonstrate the process, we take two cross sections of the process
of distance adjustment for the graph G. One in case when the added 1link has
one node already in G, and another in both nodes of the link are in G. In
the first case the new link does not form new circuits, and there is only
one node (the newly added node) for which the distances to other existing
nodes have to be recalculated. In the second case, the addition of a 1link
creates new circuits in G, which in turn causes the creation of new paths
and new tracks in G.

To clarify matters, let’s assume that G, at step t, has the configura-
tion depicted in figure 4.5. This means that G has been incremented one link
at a time, and based on the presented algorithm, the distances and access
information has been kept up to date. Furthermore, we assume that the final
order of G is known beforehand, so the *ad_matrix* is prefixed for G at

final stage. The status of the *ad_matrix* at t is ghown in figure 4.6.

I__'—R
L/H\/Q F D
N P J G E— A B\C
K H I

Figure 4.5: A graph G at step t

Now, if we add to G a new link (O P), at step t+1, then the new G will look
like:

) VAl M
0/// K l 1

Figure 4.7: Graph G at step t+1

(4-24)
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Figure 4.6: The access-distance matrix for the graph of figure 4.5

The addition of a new link (O P) to G, does not change the distances between
the existing node pairs; but new tracks emerge from O to all existing nodes.
The distances between this new node and all other nodes, thus, have to be
added to the distance matrix. By looking at the upper portion of the access-
distance matrix (figure 4.6), we see that the distances between O, the new
node, and all other nodes are marked *, for infinite, standing for discon-
nection, and the distance of O to itself is marked 0. The calculation of
distances of the tracks from O to other nodes and insertion of them into
distance matrix correctly updates its status. This 1is trivial, since
distances of O relative to any node in G are equal to the distance of P to
the corresponding node plus the weight of the new link (P O). i.e.:

d(o vl) = d(P vi) +w {vi > v #0 & visP}

The distances of the new node 0O to all other nodes before and after the

ad justment are:

(4-25)
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RQPONMLKJIHGFEDCRBA
Distance~list of thenode P: (2 100 2122143233444 4)

Distance-list of the node O0: (» ... )

RQPONMLKJIJIHGFEDCEBA
Distance-list of thenode P: (2 101 2122143233444 4)
Distance-list of thenode O: (3 210323 32543445%5G65 5)

Figure 4.8: The cross sections of AD-MATRIX corresponding to
the nodes P and O before and after the addition of (0 P) to G

The *ad_matrix*, after the adjustment will look like:
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Figure 4.9: The access-distance matrix for the graph of figure 4.5

Now we add to G, at step t+2, a new link, say (P B), where p € V(G) and B e
V(G).

TN TN
AT

Figure 4.10: Graph G at step t+2
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This time both nodes of the new link (P B) are in G. The edge (P B) then
forms new circuits in G. As a result new tracks in the incremented graph G
are present, and the distances corresponding to these new tracks are not
valid any more. 8(P B) is the most obvious new track with a distance d(P B)
equal 1, which is the weight of (P B). Other new tracks must be identified
and their corresponding lengths must be adjusted according to the algorithm
presented in the last section.

The cross section of the distance matrix corresponding to the nodes B
and P, before and after the adjustment of the distance d(B P), is shown in
figure 4.11.

RQPONMLKJIHGFEDCBA
Distance-list of the node P: (21 0121221432334444)
Distance-list of the node B: (6 54565643432122201)

RQPONMLKJIHGFEDCBA
Distance-list of the node P: (21 0121221432334414)
Distance-list of the node B: (6 515656 43432122201)

Figure 4.11: The cross sections of the ®ad-matrix* corresponding
to the nodes P and B before and after the addition of (P B) to G

Following the procedure, in the next step we have to readjust distances of
the new tracks originating from P and B, to detect and save the end-nodes of
the tracks originating from P or B. Such nodes necessarily comply with one
of the following inequalities.

d(B vl) +w < d(P vl), Y1 (12)
d(P vk) + w < d(B vk), Yk (13)
And their new distances to P and B are:

d(P vl) := d(B vl) + w, V1 that comply with (12)

d(vk B) := d(vk P) + W, Yk that comply with (13)

Because the distance of a node to P or B complying with (12) and (13) is no
longer valid, and the new track from such a node to the most distanced node
(i.e., P or B) now crosses the other node (i.e. it includes the new link (P
B)). Figure 4.12 depicts cross sections of the distance matrix corresponding

to the nodes P and B, with distances that need to be readjusted underlined.

(4-27)
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RQPONMLKJIIHGFEDCBA
Distance-list of thenode P: (21 012122143233441 4)
Distance-list of thenode B: (6 51565643432122201)

Figure 4.12: Distances (underlined) of the new tracks,
originating from P and B, which require adjustment

Following the algorithm, the distances of P and B to the other nodes in G
after the readjustment will be:

RQPONMLKJIJIHGFEDCBA
Distance-1list of the node P: (2 1012122143223331 2)
Distance-list of the node B: (321232332432122201)

Figure 4.13: Distances of new tracks,
originating from P and B, after the readjustment

The nodes corresponding to the end points of the tracks originating from B
and P (i.e., the adjusted nodes relative to B and P) are collected in the
following two lists respectively.

List_ B: (JXLMNOQR)
List_ P: (ACDF)

Figure 4.14: End-points of the tracks originating from B and P

In the final step the distances between the 1list-B and list-P should be
checked and readjusted, if necessary. The old distance of every node pair is
checked, and if it is larger than the distance of the two nodes via the
paths going through the new link (P B), then the new path crossing (P B) is
the new shortest path for the corresponding node pair. To show the process,
we take the node pair (F R).

The distance between these two nodes from the distance matrix of figure
4.6 is equal to 5 steps, but the length of the paths between these two via
the link (P B) is equal to 4, sum of the lengths of the paths p(F B), p(R
P), and p(P B). Hence, d(F R) need to be readjusted to 4. The process is the
same for all combinations of node pairs corresponding to two node lists. The

new distance matrix after the complete readjustment is:

(4-28)
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Figure 4.15: The accesses-distances matrix after the complete readjustments

4.3 Diagnosing dynamics

TIs, discussed earlier in this chapter, are only capable of characterizing
topological features of systems. In the study of many physical systems often
a broader analysis of their complexity with respect to their components and
the interrelationships between them is required. The complexity of a system
is not always immediately evident from a large amount of information about
the system without gross simplification of the data into an absorbable
level. For example, given a building with a set of locations as a container
of activities and actors responsible for them, many design activities demand
deep understanding of dynamism of the building as a result its operation.

In dealing with such a problem Atkin [74a)] [77] has developed a
mathematical based method termed Q-analysis. Q-analysis provides a means for
dealing with a large amount of data related to a set of objects in order:

— To identify the association degrees between the objects, and

- To partially hierarchically cluster them.

The mathematical considerations in Q-analysis, which is essentially combina-

torial, center on the study of relations between finite sets. The overall

(4-29)
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method provides a working algorithm which can process observational or
theoretical data for identifying existence of relationship between a set of
objects as components of a large system. The result of Q-analysis gives
significant insight into the physical organization of a system as a collec-
tion of interrelated components, and extend the perceptions of investigators
diagnosing such a system. Result of the Q-analysis may be used in conjunc-
tion with other knowledge of a system to diagnose an exlsting system, also
to configure a system (design) with specific behavior. In this case, Q-
analysis provides a powerful means for hierarchical abstraction of data
before proceeding the process of design. The method has been successfully
utilized in the investigation of the complexity of urban communities,
medical diagnostics, art, university policies, etc. Atkin [Atkin74a] [74b]
[74c] [75] [77] explicates the method and reviews many of its applications®.

In this section a review of the method, and algorithms involved are
presented. In the last section the method is shown in work by applying it on
a design example related to this work. The original algorithm is only appli-
cable to set of objects having binary relation. I have improvement the algo-
rithm to widen its applicability to objects having non-binary relations and
to increase its classification power in some respect. I will discuss this

matters in sequel.

4.3.1 Q-analysis
Q-analysis is capable of analysis and presenting a holistic view on the
relationships between components of a system taken as elements of a set. A
set is a collection of finite objects characterized by two basic notions:

— The Set-elements: the set of member objects.

— The Set-membership: a proposition, which gives the membership degree

between the elements of the set.

The mathematical expression, representing the relation between elements of a
set, has been called Simplicial complex (or complex of simplices) [Atkin74].

A simplicial complex has an associated geometry which formally represents

2 For detailed treatment of the subject See also the special issue of the

International Journal of Man-Machine Studies, 1976.
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the structure or organization of the simplex. Atkin has shown [Atkin74] [85]
the application of set theory in the study of the structure of relations
between sets of entities in social systems. Here, the intention is to show
how the idea can be applied in the analysis of the relations between a set
of locations in a building as a container of activities. Such a relation is
jdentified based on the association degrees between location pairs in the
building, as a result of the sharing actors between them. The interpretation
of these associations leads to the identification of interaction potential
between these location pairs, and partially hierarchical cluster them with
respect to their association degrees.

Before to pursue the subject, some basic definitions and relations must
be laid down. Assuming two finite sets:
X= {yi, i=1 to m}
Y= (xJ, j=1 to n}
If a relation p exists between the elements of these two sets (e.g., y‘ and
xJ), this relationship is denoted by one of the following notations:

pcY*X, or y, P X, or (yi, xj) €p

Similarly, a relatio; p'l, the inverse of p, exists between the sets X and
Y. This inverse relationship is denoted by (xj, yi) € p-l, whenever (y‘, xj)
€ p.

A relationship p between two sets can be represented by an incidence
matrix A = (pij). An elements pU of this matrix, depending on the nature of
the relation could be either a binary number or a welghted integer number.

In the first case we have:

IF: (yi, xj) €ep
THEN: p, =1
ELSE: p =0

i)
A weighted relation matrix can be converted to several binary relation

matrices through slicing processes. This process tests the values of
specific rows, columns, or elements of the matrix against the value of a
threshold parameter 6, and sets them to 0 or 1, respectively, depending
whether the value is = 0 or > 6 [Atkin74].

If a particular yi is related to just a member of x, then this lis
called zero-order simplex, written as O-simplex. Similarly if yi is related
to two members of x, it is called a 1-simplex. In general yl is called p-

simplex if it is related to (p+1)-subset of X. Such a simplex is written as:
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yl=<x1, Xys wens xp*1> or yl=cp. Any subset of this (p+1)-subset also is a
simplex which is said to be a face of the op. The collection of simplexes
identiflied by Y is called a simplicial-complex K, denoted by Ky(X; P). KY(X;
p) implies that xs provide the vertices, and ys the names or labels of the
simplexes.

The largest value of q for which op € K is then called the Dimension of
K written as n = Dim. K. So, the dimension of K is equal to max q-value in K
(x).

By applying the inverse relation p—l, we get the conjugate simplicial
complex Kx(Y; p-l) in which case ys provide the vertices and xs the name of

the simplexes.

Geometrical representation of a simplex

Geometrically a O-simplex can be depicted as a point, a 1-simplex as a line,
a 2-simplex as a triangle, and so on. We can say that a p-simplex 0p=<x1,
xz,..., xpu> may generally be thought of as a convex polyhedron with p+1
vertices corresponding to X Xy oens X The simplicial complex Ky(X),
then, 1s geometrically represented by a collection of polyhedra which are
possibly connected to each other by sharing faces. Such a geometrical repre-
sentation gives better understanding of how the simplexes are interconnected
to each other. In fact, it is this geometrical representation which has
Justified the vague term structure for describing the relation p between two
sets [Atkin74). The following figure shows geometrical representation of a

simplex y =<x_, X, X, X, X >
P Yy 2’ X3 X %o ¥ *p0

X3 X4
0———— 90
x20 \\\T X6
0 —0
X10 X8

Figure 4.16: Geometrical representation of a simplex

=<x x X X x x >
Y, 2’ 73 Ta* T’ T8’ T1o0

Q_connectivity and Chains of q_connection

Two simplices are said to be g-connected or g-near (i.e., associated), if

(4-32)
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they share q+1 vertices. If we assume that each pair of simplices op and or
in K is connected by a common face, then all simplices of K are said to be
connected to each other directly by a common face or by a chain of q-
connection or g-connectivity, when q is the least of connections between two
simplexes within the chain. It is obvious that the maximum length of the
chain of connectivities in a simplicial complex with n simplexes is n-1. The

following figure shows the geometrical representation of 2 simplexes yi=<x

2
X X X X X > and =<x X X X X X ,X > which are 4-
3’ a2’ 76’ 8’ 10 Yy 1’ 3’ 4’ 6’ 8’ 9’710
connected to each other.

X1 X3 X4

0 Q 0

: \\\Oxs
%20
! 0 —0
X9 X10 x8

Figure 4.17: Two simplexes y‘=<x2, X, X, X, X, > and

X
3 4 6 8 10

=<x x X x x x X > connected to each other
yj 17 73" T2 Te* T8’ T9’ T10 4

Now, if we assume another simplex, say Y, =<xX_ , X, >, this simplex

X X

is 1-connected to yJ because of the sharing poilntsgx1 a;; x:i while it lacks
common face with Yy so, ¥, is said to be -1 connected to Y- But, since yJ
is 4-connected to y1 in one hand, and 1l-connected to yk in other hand, then
there is a chain of 1-connectivity (i.e., degree 1 association) between Yy
yj, and Y, The connectivities between these three simplexes are depicted in

the following figure.

X11 X1 X3 X4
\\\Oxe
x20
o 0 0 0
X13 X9 X10 X8

Figure 4.18: Three simplexes yl = <x2, xa, X, x6, xa, x10>,

= <X x x x X, X x >, and = <x X X ,X >
yj 17 73" T4’ Te’ T8’ T’ T107’ Yy 1’ 79’ T11°"13

with a chain of 1_connection
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The structure vector

The process of identifying all distinct simplices which are g-associated
with each other for all values of q from O to n (i.e., dimension of K) is
called Q-analysis. If we denote the number of components of K which are q-

connected by Qq, then we analyze K by finding all the values of: Qo, Q., Qz’

1
.., Q , Qn, where n is the dimension of k.

;L;se values form a vector Q called structure-vector [Atkin74]), which
is denoted by Q = (Qo, Ql, Qz’ vees Qu-l’ QN). The position of each Qi in Q
represents the q- value, when Qo is the leftmost, and ins the rightmost
item, and each Qi represents the number of components at the g-level of
connectedness which is the number of g-connected simplices. Q1>1 is an
indication that the complex K has Q: parts in that level, which can be

considered as the union of Q0 disjoint complexes.

4.3.2 Q-analysis algorithm
The goal of Q-analysis, thus, is to find the shared faces between all pairs
of simplices yje Y in Ky(X; p). If we denote our incidence matrix as A and
its transpose by A_i, then the product of a vector ai by aj is equal to the
number of common vertices shared by simplexes a, and aj, hence the g-value
of the face common to these two simplexes is obtained by deducting 1 from
their vector product. This 1implies that the g-value of KY(X; p) is
obtainable by first evaluating the matrix product A‘A-l, and subtracting 1
from every element. Similarly q-value of Ky(x; p) is calculated by deducting
1 from every elements of A™'A.
The complete process can be described in algorithmic terms as follows:
1- Form a m by n matrix A of (degrees of) associations between the xs
and ys, with rows corresponding to number of ys (i.e., m), and
columns corresponding to the number of xs (i.e. n).
2- If A is a weighted matrix, then apply a threshold value (slicing
parameter) to convert A into a binary matrix.
3= Form A*At, a m by m matrix representing the number of shared points
between all ys in Ky(X; o)

Evaluate A*At—¢, where ¢ is a m by m matrix of 1s.

T

Analyze the resulting connectivity (association) matrix, and identi-

fy hierarchical clusters of xs with chains of association.
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6=— Form the structure vector.
A similar process can identify the sharing faces between all pairs of xs in
Kx(y; e ') and corresponding association table. In this case, step 3 and
step 4 are as follows:
3= Forms AL*A, a n by n matrix representing the number of shared points
between all xs.

4~ Evaluate At'A—¢, where ¢ is a n by n matrix of 1s.

4.3.3 Application of Q-analysis on design data
This section presents examples of application of Q-analysis on design data
related to this work. Three design activities were distinguished in chapter
2:

— A design evaluation,

— A design generation, and

- Activities allocation.

In dealing with above problems, one is always in need of the analysis of
design data, and discovery of the following information:
— What is the complexity of associations between the actors?
— What are the degrees of associations (flow generation potentials)
between the activities (locations)?
— Which locations are related with each other, and in what degrees?
— What are the hierarchical clusters of locations (activities) with

respect to their flow generation potentials?

To show the capability of Q-analysis in providing above information, a set
of data related a small design problem suffice the purpose. We may assume a
set of activities {Al1 A2 A3 A4 A5 A6 A7 A8 A9 A10}, and a set of actors: {G1
G2 G3 G4 G5 G6 G7 G8 G9 G10} with the same number of elements, with the

following relationships holding between them. Where, p_1 is the inverse of

p:
p: “The actor: ... is responsible for the activity ..."
"The actor: ... is present at the location: “
p_l: "The activity (location): ... is assigned to (contains) the actor: "
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The following table shows the activities and actors responsible for each

activity.
Activity Actors (Groups) responsible for an activity
Al G1, G2, G6
A2 G2, G4
A3 G3, G1, G4
Ad G4, G1
AS G5, G7, G4, G9
A6 G5, 67, G9, G10
A7 G6, GB, G9
A8 G6, G7, G8, G9
A9 G7, G10
A10 G7, G8, G9, G10

Figure 4.19: Activities and the actors responsible for each activity

Furthermore we assume the following weights associated with the actors

(groups).
Actor (Group) welight

G1
G2
G3
G4
G5
G6
G7
G8
G9
G10

L LTI ) I Y R - R B

~

Figure 4.20: Weights associated with the actors

Now, we have to obtain the structure of the two simplicial complexes K (G;
p) and KG(A p ) corresponding to the first and the second relatlonshlp In
the first case, the activities provide the names (labels) for our simplices
(polyhedra) and the Gs provide the vertices of the polyhedra which p creates
out of the two sets. The position of As and Gs are reversed in the second
case. This means that the vertices of our polyhedra are named by As, where
Gs provide the labels for the simplices.

In order to achieve such a goal, the first step is to set up an

incident matrix of relationship between elements of the two sets. This
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matrix should contain binary values of O and 1, where a 1 in a position of
the matrix implies a positive tie between corresponding row (actor) and
column (activity). But, there are weights associated with the actors, so,
there are different degrees of associations between the activities and the
actors. The weighted association table for activities and actors in our data

set is as follows:

Al A2 A3 A4 A5 A6 A7 A8 A9 Al0
Gl s (] 5 5 0 [ o] o} ) o
G2 s 5 0 0 o 0 0 o] 0 o]
G3 o [ 4 0 (o] o) [¢] 0 o] 0
G4 o 6 6 6 6 [ 0 0 0 0
GS o 0 0 0 s 5 0 4] 0 o
G6 s 0 4] (o] 0 [} 5 [ o] 0
G7 o 0 0 0 8 8 [ 8 8 8
G8 o 0 ¢} o] 0 o] 5 s o] 5
G9 o [} ] 0 4 4 4 4 o] 4
G10 o o] o] 0 o] 7 0 o] 7 7

Figure 4.21: The weighted relation
matrix for the set of actors and activities

According to the Q-analysis algorithm, if we have a weighted relation
matrix, then we have to choose a threshold for converting the table into a
binary one. But, the weights are important in identification of degrees of
associations between the objects. For example, in the case of evaluation of
a design, weights are important in identifying the potential flow degrees
between the location-pairs, which in turn has significant influence on the
evaluation result of a design with respect to a set of social norms. The Q-
analysis ignores these weights. The following is an incident matrix repre-
senting the relationship p between the two sets. This table is prepared by
taking the slicing parameter value 6 = 0. This means that any value > 0 is

taken as a positive relation and other values as 0.
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Al A2 A3 A4 A5 A6 A7 A8 A9 AlO
Gl 1 0 1 1 [¢] 0 [¢] o o o
G2 1 1 (¢] [¢] [s) 0 o o o 0
G3 o 0 1 0 [ 0 0 o 0 0
G4 o 1 1 1 1 o 0 o 0 (]
G5 o o 0 0 1 1 o] o [+] [¢]
G6 1 0 o 0 4] [ 1 1 [ 0
G7 o 0 o] [o) 1 1 o 1 1 1
G8 o o 0 [o] [¢] [+] 1 1 (4] 1
G9 o 0 o [+ 1 1 1 1 (] 1
G10 o o o 0 (o] 1 0 o 1 1

Figure 4.22: Incident matrix based on the threshold 6 > O,
representing the relationship p between the set of actors and activities

To get the connectivity picture of our complex KG(A; p) or KA(G; p’l) we
continue with the Q-analysis algorithm, and get the following connectivity

table for the complex KG(A; p).

Gl G2 G3 G4 G5 G6 G7 GB8 G9 GloO

Gl 2 0 4]
G2 1 -
G3 o
G4 0

G5 1 -
Gé6

G7

G8

G9

G10 2

W O o~
]
B O O |
[N I B |
=N We e O
= OoON I C 1

Figure 4.23: Connectivity table representing
connectivities in the simplicial complex: KG(A; e)

Now, we can extract g-connectivity values together with corresponding
components from the above connectivity table, and order them in terms of
their g-values in the following partially hierarchical table. Qq-values in

this table represents the number of g-connected clusters of actors.

q_value Oq_va lue Components.

4 Q4=2 {G7} {G9)

3 Q3=2 {G4} {(G7 G9)

2 Q2=4 {G10 G9,G8,G7} (G6) (G4} {G1}

1 Q1=3 {610, G9, G8, G7, G6, G5} {G4,G1} (G2)
o Q0=1 {ALL}

Figure 4.24: Q-analysis table,
displaying the relationship between the actors
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From above table we have the structure vector Q = {2, 2, 4, 3, 1} that gives

a holistic picture of the relationship between all actors responsible for

the activities. We can attribute the following analytical information to the

result of the Q-analysis:

1=

2-

S5~

The Q vector shows that, we have one subset of actors at least 0-
related to each other, 3 subsets at least 1-related to each other, 4
subsets at least 2-related, and so on.

There are two groups, G9 and G7, which are 4-simplexes (i.e., g-
value=4). Each of these groups are responsible for four activities.
The structure vector also suggests that these two groups are the
most active groups, not in relation to the other groups but within
themselves. Another implication of the structure vector is that G7
and G9 do not have great significance in terms association with
other groups, at Q4 level. No other groups has any implication with
respect to design activities, at Q4 level.

At Q3 level, G7 and G9 become associated, and there is another
isolated group G4. These three groups do not have interaction with
the others at this level. G7 and G9 have some significance with
respect to design activities. Were we assumed that actors are bound
to locations of designs, then {G7 G9} had the implication that G7
and G9 are 3 associated, or having a potential of generating a flow
of degree 3. A design process under the influence of privacy norm
would try to locate them as close as possible, while a similar
process under the influence of the community norm would attempt on
the contrary.

In the next level (g-value=2) we have 3 isolated groups: {Gé6}, {G4},
{G1}, and a group-set {G10, G9, G8, G7}. G8 and G10 join {G7 G9} at
this level to create a new cluster with a chain of association of
degree 2. The same argument as above is applicable to this group as
a whole, in terms of the design activities. The fact that Q-analysis
only identifies chain of associations between objects, must be given
a cautious taught, specially with respect to its role in design
evaluation. A chain of association does not provide enough informa-
tion about the degrees of association between all group-pairs in a
cluster. So it is not valuable for a design evaluation.

At g=1, more groups are glued together. At this level there is only
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one lisolated group G2, and two group sets {G10, G9, G8, G7, G6, G5}

and {G4, Gl}. An argument the same as above is valid for these group

sets.

6~ At the next level (g-value = 0),

all activities are connected to

each other, thus we have a O-simplex of all activities.

Above analysis, as was mentioned earlier,

actors are identified with the locations.

identifying a activity with a 1location.

was under the assumption that

In practice one is interested in

In such a case the simplicial

complex KA(G; p_1) serves the purpose better. We can obtain this complex by

the operation A*A to arrive at the following table:

Al A2 A3 A4 AS

Al 2

A9
A10

Figure 4.25: Connectivity table for the

0
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simplicial complex: K, (G; H

The g-connectivities in KA(G; p) extracted from A*A (above table) is as

follows:
q_value Q _value Components.
q
3 Q3=4 {A10} {A8) (A6} {AS)
2 Q2=3 {A10 A8 A7 A6 A5} {A3} (A1)
1 Q1=4 {A10 A9 A8 A6 A5} (A4 A3} (A2} {a1}
[¢] Q0=1 {ALL}

Figure 4.26: Q-analysis table displaying the connectivity
structure within the activities

From above, we have the structure vector Q={3,5,4,1}. The Q—énalysis on

above structure shows that:

1- There are four activities (i.e., A10, A8, A6, and A5) each separate-

ly a 3-simplex (i.e., g-value=3).
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2=

4.3.4 A

bility of four distinguished group-sets for each of these activi-
ties. The Q-analysis at this level does not provide any information
important in design activities.

At level g-value = 2, all the activities appeared at Q3 become
associated and form a cluster. This association is, again, as a
result of a chain of association between pairs of activities. The
implication of the cluster of activities identified at this levels
is straight forward. Here, the same as arguments carried out with
respect the complex Kc(A; p). The identified clusters with a high
degree of association have in turn a high potential degree of inter-
action. A design with respect to the privacy norm would try to
locate these locations as close as possible (e.g., locate them
adjacent with respect to each other). Again, the pair-wise associa-
tions between these activities, important in design evaluation and
activity allocation, are not known. At this level there are also two
isolated activities each with a degree 2 association with itself.

At the g-value=1, beside the identified set at the earlier level, A3
and A4 also become associated. There is still no relation between
the activities A3 and A4 at this level, and between them and the
cluster of activities identified at level 2.

The elements of the set are not connected until we reach the level
of q=0. If it would happen that even in q=0 the value of Qo was, for
example 2, then, this would mean that our set of activities was
divided in two distinct disconnected sets, and that there was no
association between them at all. Such case has some social implica-
tion in terms of a building design. For example, a design with a
privacy behavior requires allocation of the activities in these two
set in two groups of separate locations. Such strategy would prevent
the unnecessary interactions between the groups in two sets moving
around. A design with a community behavior requirement, on the
contrary, demands mixing of these two groups for increasing the

social amenity of the building.

modified algorithm for Q-analysis

The examples, given above, and their corresponding analysis clearly indica-
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ted the analytical power of Q-analysis in explicating hidden information
about objects and their relations, also partially hierarchical cluster them.
However, two major shortcomings were evident in this method at least with
respect to design activities:
-~ The influence of weight factors on the assoclation degrees was neg-
lected.

- The association degree between a location-pair was not known.

Both of these information have major rdle in all design activities discussed
in this work. For examples, without knowing direct relationships between the
location pairs a reliable evaluation of a design is not possible. The same
information is needed in allocation of activities on locations of a design
under the influence of the social norms. The information provided by the Q-
analysis is obviously valuable to design activities, but are not enough. The
identification of direct assoclation-degree between the location-pairs can
have much more significant value than the chain of association-degree bet-
ween them. Such an information has significant impact on choosing a course
of action during a design process or evaluation of a design with respect to
the social norms. In fact, identification of a chain of relation between a
set of objects, does not guarantee the existence of a relation between all
element-pairs in the set at all.
The following revised algorithm eliminates both of the deficiencies
mentioned in the Q-analysis.
for Ky(x; c):
l- Form a m by n matrix A, representing degrees of associations between
the xs and ys, with row corresponding to the ys (i.e., m), and n
corresponding to the xs (i.e., n).
2= Form A « At, a m by m matrix representing the association degrees
between all ys, where a is the following operation for each row of A
and a column of A™':

t
jt

172

a= ¥ (aU *a )
J

3— Analyze the resulting connectivity (association) matrix, and

identify clusters of pairs of xs with identical association degree.

A similar process can identify the sharing faces between all pairs of xs in
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Kx(y; e ') and corresponding association table. In this case, step 2 is as
follows:
2= Form Ata A, a n by n matrix representing the total degrees of
association between all xs, where a is the following operation for
each row of Atand a column of A.
t 1/2
o= § (axj * aJi )
The influence of the weights, as displayed by the algorithm, is enforced by
multiplying the components the two matrices, and then taking the square root
of the result after each multiplication.
Application of above algorithm on the complex Ka(ec, p) yields this

connectivity table.

Al A2 A3 A4 A5 A6 A7 A8 A9 Al0
Al 15 5 5 o 0 5 5 o 0
A2 11 6 6 6 [} 0 0 (o] 0
A3 15 11 6 0 [ o o 0
Al 11 6 o] o] 0 o 0
AS 23 17 a4 12 8 12
A6 24 4 12 15 19
A7 4 14 o 9
A8 22 8 17
A9 15 15
Al10 24

-1

Figure 4.27: Connectivity table for the simplicial complex: KA(G; p )

Now, by an appropriate scanning of the above connectivity table, we can
identify location pairs with identical degree of association, and collect
them into separate groups, to be called partially hierarchical clusters. The
following table shows partially hierarchical cluster of activity pairs for

the simplicial complex KA(G; pl.

(4-43)



Chapter 4: Diagnistics by Complexity measures

Association degree Partially hierarchical clusters of location
19 {(A6 A10)}

17 {(AS A6) (AB A10))

15 {(A6 A9) (A9 A10))

14 {(A7 A8))

12 { (A5 A8) (A6 A8))

11 {(A3 A4)}

9 {(A7 A10))}

8 { (A5 A9) (A8 A9))}

7 {(A9 A10))}

6 {(A2 A3) (A2 A4) (A2 A5) (A3 AS) (A4 A5))
s {(A1 A2) (A1 A3) (A1 A4) (A1 A7) (A1 AB))
4 {(A5 A7) (A6 AT)}

Figure 4.28: A partially hierarchical clusterglof locations
for the simplicial complex KA(G; p )

The element of each cluster in above table represents the activity pairs
having the same degree of association. For example there are two location
pairs, that are (A6 A9) and (A9 A10), each with an association degree of 15.
Note that collapsing these two pairs together yield the set {A6 A9 A10} with
three element having a chain of 15 connections. This table is named
“partially hierarchical" since it presents elements of the set at different
levels of associations. This table conveys a much more clear picture of the
connectivities between the activities, than the connectivity table produced
by the original Q-analysis algorithm. In addition, the influence of the
actors weights alsoc has been accounted for this result. The implication of
this table, for design activities, is more straight forward than the
previous tables. The direct associations between the activity pairs,
provides sufficient information for all design activities discussed in this

work. A detailed discussion will be given in the following chapter.

FECHELTELEEEL b
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CHAPTER 5

THE IMPLEMENTATION OF TOPGENE
|

Chapter 3 and chapter 4 discussed major techniques and methods involved in
the implementation of TOPGENE. This chapter discusses the implementation
details of TOPGENE working system capable of generating, analyzing, and
evaluating designs. The chapter, among other subjects, discusses the archi-
tecture of TOPGENE, the réle of method and techniques, and the algorithms

involved in the implementation of the system.

5.1 The architecture
TOPGENE is designed for generating topological patterns of buildings with
respect to a set of social norms. These norms, defined in chapter 2, are
community, privacy, circulation-cost, and intervening opportunity norms. The
system also can evaluate existing buildings with respect to the norms.

TOPGENE has two basic modules corresponding to the two above mentioned
design sub-processes. A design generator module, and a design evaluator
module. The first module is responsible for generating designs (topological
patterns of buildings) with respect to a single social norm or a combination
of them. The evaluator module can analyze generated designs in terms of
their expected behaviors with respect to the social norms, and evaluating
existing designs with reépect to the same norms.

TOPGENE’s modules are interrelated. The design generator module calls

the evaluator module for analysis, diagnosis, and calculating the perfor-

mance values of the generated designs. The evaluator module, on the other
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hand uses the design generator module to generate yardstick solutions for
comparing their behavior with the input designs (i.e., evaluating the input
design).

The relationship between the plan generator and plan evaluator module
is depicted in the following figures.

Input data (activities, actors, social norms, ...)

Design Generated design .| Design

generator "1 evaluators

modul e analyzer
Performance analysis module

{Generator) of the generated (Evaluator)

ﬂ’ design
Output the generated design, and its performance
analysis with respect to the given norms.

Figure 5.1: The Generator-Evaluator relationship

Input data (a design, activities, actors, soclal

norms, ...)
Design Input data .| Design
evaluator / generator
analyzer module
modul e Cenerated designs
(Evaluator) (Generator)

Output the input design, and its evaluation
(i.e., comparison of its actual behaviour with the
expected behaviour)

Figure 5.2: The Evaluator-Generator relationship

TOPGENE accepts design generation problems in the following forms:
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Input:
-~ The input set A or B:

A: . A set of locations or activities.
. Actors responsible for each activity.
. Weight associated with each actor (optional).
. Expected or actual flow index between different locations-pairs

(optional).

B: . A set of locatlons or activities.
. The expected or actual flow between different locations.

- A set of social norms reflecting the expected behavior of the design to
be generated.

— (Ground-plan) type of design.

- Branching degree of each location (optional).

Output:

— A design (connectivity pattern of a building), labelled with the activi-
ties, that has a relatively high performance potential with respect to
the set of given norms.

— Analysis and diagnosis of the generated design with respect to the gilven

norms.

TOPGENE accepts design evaluation problems in the following forms:
Input:
- A design (connectivity pattern of a building) labeled with activities.
— Actors responsible for each activity, OR
Expected or actual flow index between different location-pairs.
- Weights associated with each actor (optional).
-~ The anticipated (or actual) flow between different location-pairs
(optional).
- A set of norms reflecting the expected behavior of the design.
- (Ground-plan) type of yardstick designs to be generated.
—~ Branching degree of locations in the yardstick designs (optional).
Output:

- Evaluation of the given design with respect to the set of social norms.

Design sub-processes (solid lines) that are carried out by TOPGENE are

depicted in the following model. This model was discussed in chapter 2.
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Design Generation

l Operation 1
Formulation Evaluation & Diagnosis Design analysis
D(R >Be J Ba ¢ L ALLEN 6|
Operation D(S) + Operation Operation
T i
1 Reformulation i

D(S) + Operation

X
A =3 B means that given A and y, process x produces B.
y
D(R): Design Requirements Be: Expected behavior {(norm)

D(S): Design (Structural) Description Ba: Performance (Actual behavior)

Figure 5.3: Design sub-processes (solid lines) carried-out by TOPGENE

The processes carried out by TOPGENE are based on the intuitive works of
architects in arranging locations of a building or evaluating an existing
design with respect to a set of social norms . For example, decisions about
the (connectivity) structure, and operation (arrangement of the locations
and activities on the structure) with respect to the social norms or evalua-
tion of an existing design, one way or the other, demands consideration of
interaction potentials between the activities. In practice, the interaction
potentials between the activity pairs in a design are either extracted from
the corresponding design statement, or intuitively estimated by the design-
er. TOPGENE acquires this information either directly form the user or
extracts it from a design data by applying the Q-analysis method.

TOPGENE has been implemented on an IBM PS/2 model 80, and is written in
GCLISP V 2.0, a dialect of Common LISP. GCLISP V. 3.0 is a full implemen-
tation of the Common LISP language, but the lower versions have some limita-
tions including multi-dimensional array manipulations and graphic capabili-
ties. TOPGENE accepts data, analyzes them, fits them into appropriate model,
consults with the user if necessary, takes appropriate actions, and presents
the result in appropriate form using a heuristic graph displayer [Watanabe-
89]. More specifically, TOPGENE includes all procedures and functions
necessary for:

- Developing a friendly user interface.

— Providing help to the users.

- Accepting data from the user.

— Checking the completeness of data.
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- Treating the input data with the Q-analysis method.

— Inferring the circulation flow potentials between the location pairs.

- Hierarchically clustering of activity pairs with respect to their
flow generation potentials.

— Path finding.

- Enforcing the planarity constraint on designs.

— Enforcing the branchiness constraints on designs.

= Graphical display of the generated designs.

- etc.

The approximate size (including comment lines) of various parts of the

TOPGENE are as follows:

Module Size in K-byte
Design Evaluator 35

Design configurer 175

Q-analysis 18

Graph manipulating algorithms 45

User interface and graphics 245

Other procedures and functions 55

Total 570

5.2 Assumptions
TOPGENE as a working system is implemented based on the following assump-

tions:

Constant (time independent) flow

The existence of association between two 1locations implies movement of
people between them. The pattern of movement between two locations having
several access paths may vary depending on their usage time, also several
other factors. In other worlds, distribution of flow between two locations
on paths connecting them may be time dependent and probabilistic. TOPGENE
ignores the effect of time on flow degrees. This may be Iinterpreted that
behavioral aspects of buildings are considered by TOPGENE over a long
period. This is completely a legitimate assumption, since in practice a
table of flow between locations usually reflects observation of flow over a

fixed period, and not at a moment. However, the introduction of time factor
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to the process according to my judgment neither increases the complexity of
the design problem nor requires a completely different approach in attacking
the problems. The design generation, and evaluation problems with respect to
the social norms discussed, based on a heuristic approach even at the
presence of time dependent flows one way or the other demands data analysis

and data abstraction similar to the one used in this work.

Proximate flow

As a flow directly disturbing a location, have effect of the total behavior
of a building, so does an indirect disturbance because of a nearby (proxi-
mate) flow. A nearby flow, although may not be as effective as a direct
flow, but have some contribution to social behavior of a building. An
example clarifies the claim. If we assume that, for example, a location L2
is recommended as an intervening location for two locations L1 and 14, then
the following single-loaded design is debatable whether to be considered as
a valid solution or not. This scolution according to the definition of the
intervening opportunity norm is not a good solution with a good performance
with respect to this norm. The reason is that this norm, as was defined in
chapter 2, depends only on the direct meeting of particular flows an inter-
vening point. This also is the way that TOPGENE calculates intervening
opportunity utility of a design. TOPGENE considers a location as an interve-
ning location for two other locations, if it is on a shortest path between
the two locations. However, in most of the real designs Intervening loca-
tions are not necessarily located on a shortest path and consequently they
do not have to be directly exposed to flows , but it suffices, or even it is
required for an intervening location to be in the proximity of such flows.
This is so in most of the practical designs. Similarly, if there is a high
degree of flow between two locations L1 and L4, then without a doubt this
flow passing locations C2 and C3 effect locations L2 and L3, and have
contribution to the privacy and community behavior of these locations and
the total design.

L1 L2 L3 La
0 o o 0
[ S
€1 cz c3 ¢3

The current version of TOPGENE does not consider the effect of proximate

flows on building patterns, but may be incorporated into future versions of
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the system.

Shortest paths, and closed-world assumptions

The basis of a design analysis, a design diagnosis, and a design evaluation
as it is carried out by TOPGENE is the detection of paths between locations.
recognition of paths between locations and the flow potentials between them
both play important réle in these processes. TOPGENE assumes distribution of
flow on the shortest paths between two locations. People, in general, have
tendency in taking the shortest paths between two locations. Several factors
may overrule this assumption. For example, outsiders visiting a building may
not know the shortest paths between locations. There also may be several
incentives for people in taking paths longer than the shortest ones, or
several other psychological factors affecting decisions of people in choos-
ing a path. The conclusion is that the usage of different paths may be
different in different buildings. TOPGENE neglects the effect of these
diverse phenomenon in path usage, and assumes the distribution of flow on
the shortest paths between locations in a design. This is quite different
from considering the psychological aspects associated with the actors using
a building, or considering the probabilistic behavior for actors in a build-
ing.

The analysis of building systems by TOPGENE also is based on closed-
world assumption. That is to say that TOPGENE investigates the behavior of
buildings under the influence of only the inside forces. Of course, TOPGENE
allows presentation of outside of a building as a location having
interaction with inside locations. Such a location is considered by TOPGENE

the same as other locations having logical relations with inside locations.

Topological distances

In a graph representing the connectivity property of a building, the nodes
represent the locations and the links depict accesses between locations,
which might be a door or imaginary barrier. Here, the metric distances, if
to be considered, are in fact dimensions of locations collapsed into a node
in the connectivity pattern or metric distances between center of two
adjacent locations. The metric distances between locations have little
effect in the study of social aspect of buildings, except for the

circulation cost. This norm is under direct influence of metric distances
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between locations. However, the current version of TOPGENE does not consider
these distances while calculating behavior of a building or generating a
design. TOPGENE consliders only the topological distances in a design. This
is the same as saying that a distance between two locations is taken as the
number of 1links between them. The incorporation of metric distances in
TOPGENE is an easy and trivial task to be considered in future version of
the system. Again, the current approach for the implementation of TOPGENE is
independent of the use of metric distances in a design, and the process of
involving metric distances in a design can take place prior to the analysis
of data carried out by the Q-analysis procedure, but taken into conside-
ration by this procedure at the later stage by this procedure.

With this assumptions, TOPGENE proceeds a design analysis and design

evaluation as described bellow.

5.3 Design types generated by TOPGENE

TOPGENE can generate various design types, depending on an user require-
ments, in response to a design problem . TOPGENE allows an user to decide
the maximum branching degree of each location, the use of knowledge base of
recommended and prohibited accesses in buildings, and the set of social
norms as well ranking of the norms in any order. These flexibilities of the
system together with its ability in analyzing and diagnosing a generated
design, pose it as a perfect bench-work system for designers.

TOPGENE uses different approaches in generating designs depending on
the number of the norms and (ground-floor) types of designs. We may catego-
rize TOPGENE’s algorithms for generating different types of designs
according to whether a single norm or multiple norms are defined for design
processes. The later class of algorithms also may be used to solve the first
class of the problems. This was not obvious at the beginning of this
research. Besides, test results show that specialized algorithms for genera-
ting sub-optimal designs with respect to single norms are more powerful than
other class of algorithms. The reason is that these designs are closer to
optimum designs compared with designs generated under the same conditions
but by multi-norm algorithms. The following figure shows design types that
are generated by TOPGENE with respect to a single norm or a combination of

norms.
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Design types

! ! !

Tree Near~-optimal prototypical
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Figure 5.4: Design types generated by TOPGENE

1 define a near-optimal design as a design with a performance in the
neighborhood of an optimal design. A near-optimal design may range from a
simple linear-tree type to a complicated design with circular paths. For
example, a near-optimal design with respect to the norm community is in the
form of a linear-tree, since a building with a linear-tree topology has
potential for creating maximum community utility. On the other hand a design
with respect to the norm privacy / circulation-cost always tends towards a
compact (highly branched) design with cycles. TOPGENE distinguishes near-
optimal designs for different norms, and generates them if requested by the
user.

A tree type design is a near-optimal design but without any cycles.
Depending on the norm, tree designs range from a simple linear-tree to a
complicated one with a high degree of branchiness on some locations. The
argument behind a tree type design is similar to the argument carried out
for above near-optimal solution.

The near-optimal and tree type design with respect to multiple-norms
are carried out under the following constraints. These constraints contri-
bute to generation of more realistic design solutions.

— Branchiness for each location,

—~ Planarity (only for near-optimal type design),

- Knowledge base of recommended links, and

= Knowledge base of prohibited links.

The branchiness of each location is an user controllable constraint. The
system allows setting of the same branchiness for all locations, or diffe-
rently for each location.

The knowledge base consists of two separate files of recommended and
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prohibited links in buildings. The use of these knowledge bases also is
optional, and an user can turn them on or off separately. TOPGENE currently
can learns about access properties of bulldings by rote learning which is
direct feeding of the access information into the system. The system may be
improved so that this knowledge is accumulated by analyzing new designs that
are presented to the system for an evaluation, or from designs stored in a
precedent-base.

A prototypical type design is a repetitively used building type such
as: a linear-tree (Row), a single-loaded, a doﬁble—loaded, a star, or a grid
type design. TOPGENE, allows two choices for each prototypical design: with
and without auxiliary location(s). By an auxiliary location, here, a
location such as a hall or corridor is intended. These locations are not
usually assigned to an activity. The choice of auxiliary locations for all
prototypical solutions and with respect to all combination of norms 1s the
same. So, further explanation will be skipped in further discussions, unless
it is felt necessary. Examples of these design types will be given in the
next chapter.

5.4 Knowledge Representation

A systematic method had to be found to encode the architectural information
in terms of a data structure. There are several possibilities for TOPGENE.
Topological patterns may be represented as an adjacency matrix, a linked
list or a property list. The representation system must also take into
account different levels of information or knowledge which play a réle
during the process of generating or evaluating designs.

TOPGENE is implemented based on Al techniques and mathematical model-
ing. The hybrid approach has the advantages of both in attacking the prob-
lems, but it often requires multiple knowledge representation techniques. Al
emphasizes heuristics while a mathematical model can represent and manipu-
late mathematical characteristics underlaying a problem. Knowledge may be
represented and used both in numerical or symbolic form, as appropriate to a
task. However, AI is mostly known for its emphasis on symbolic knowledge
representation.

The heuristic approach towards modeling of a process is mainly for

reducing the search complexity. TOPGENE uses heuristic rules to circumvent
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the complexity associated with the architectural design problems at topolo-
gical level. TOPGENE makes inferences from knowledge of structure and beha-
vior of buildings, by exploiting heuristics that relates the structural
description of buildings (i.e., topological patterns) to their behavior in
terms of social performances.

Symbolic information is used to reason about the qualitative relations
in a building system, while the quantitative information is used to reason
about the quantitative aspects of a design problem. The partially hierar-
chical clusters of location pairs are examples of symbolic information with
implicit qualitative information about a design. Another example of qualita-
tive information is the knowledge of recommended and prohibited links.
Qualitative analysis and qualitative information can resolve qualitative
ambiguities that may not be resolved by quantitative data. For example, the
flow potentials between location pairs are key criteria in arrangement of
location pairs relative to each other and with respect to social norms. Yet,
experiments with early version of TOPGENE showed that quantitative informa-
tion alone does not provide realistic designs. The use of an experimental
knowledge base of prohibited and recommended links reduced the deficiency of
the system in this respect. The integration of TOPGENE with a b:oader know-

ledge base of design could further improve the system.

Representation of design knowledge:

TOPGENE, as a heuristic program, uses rules of thumbs in relating and coding
the structural-behavioral relationship in a building, and in simulating the
architectural reasoning processes related to the social norms. IF-THEN
inference rules are the medium for capturing and representing heuristics in
programming languages. TOPGENE’'s heuristic rules, to be discussed, are
embedded in procedures.

TOPGENE has to apply various processes on topological information for
different purposes. Each process often demands a representation scheme
(i.e., data structure) appropriate to itself. So various processes demand
various data structure (representation). For example, most of the efficient
path-finding algorithms on graphs work only on adjacency or property list
representations of graphs (connectivity pattern of buildings), while
efficient algorithms dealing with distances in graphs only work on distance

matrix. This has forced me to choose several representation techniques in
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representing topological information. While multiple representation is
computationally more efficient, the Impact of such an approach in terms of
space efficlency is negligible.

TOPGENE specifically uses the following data structure for representing
connectivity patterns of buildings.

Access list:

Many graph algorithms such as efficient planarity testing algorithms
{Booth76] or [Nishizeki88] demand representation of graphs in the access
list form. The access 1list representation also was found suitable for
passing topology of buildings to the graph displayer routine for visual
representation of the generated designs, and representation of recommended

and prohibited accesses for storing them in the TOPGENE’s knowledge bases.

Property list:

Most of the path finding algorithms work more efficiently on linked 1list
representation of graphs than other types of representation. Property lists
in the language LISP are akin, but more powerful than the linked list data
structure in procedural languages. TOPGENE has to resort to temporary con-
version of access list representation of a topological pattern to property

lists representation when a process such as path-finding requires so.

Distance-matrix:

TOPGENE needs to keep track of distances in dynamically growing designs
(topological patterns) during a design generation process. Distances of
partial designs are used for diagnosing the graph structure in terms of its
topological distances and finding the eccentric locations with respect to a
location. Distance matrices also are found very useful in the path finding
algorithm for early pruning of undesirable search paths while searching for

the shortest paths between two locations.

5.5 Data abstractions
TOPGENE uses Q-analysis as a mathematical means to infer and make explicit
the circulation flow potentials between the location (activity) pairs in a

building from partial incomplete data. The method, as discussed in chapter
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4, also allows clustering of the location-palrs with respect to their flow
potential degrees in a partially hierarchical manner. Identification of the
circulation flow potentials and generation of partially hierarchical clus-
ters of activity pairs are important factor in the arrangement of activities
on the pattern of a building with respect to the social norms. This informa-
tion also is important in quantitative evaluation of existing designs. In
the absence of the Q-analysis, TOPGENE had to resort to design generation
and evaluation based on qualitative knowledge of the building design.

The Q-analysis procedure in TOPGENE takes the set of activities, the
set of actors responsible for the activities, and weights associated with
the actors (if available) as inputs and produces several levels of informa-
tion important to TOPGENE. The result of the first phase of Q-analysis is
identification of potential interactions between the activity pairs. This
information derived from the degree of association between the activities,
contributes to the social behavior of a building, and serves as numerical
information in evaluating a design with respect to the social norms.

The information provided by the first phase is used in organizing the
activity pairs into clusters of location pairs with identical degree of
association. A location (activity) might be present in several clusters,
depending on interactions that it has with the other locations. The possibi-
lity of presence of an activity in several levels, because of its different
degrees of association with other activities, attributes this clusters of
activity pairs as a partially hierarchical cluster. TOPGENE's heuristic
rules use the partially hierarchical clusters to generate a design with
respect to the social norms. These rules are only powerful if a higher level
of data abstraction over the activity-pairs exists.

The following figure shows different levels of data abstraction carried

out by Q-analysis.
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Figure 5.5: levels of data abstraction by Q-analysis

5.6 TOPGENE’s approach to problem solving

TOPGENE uses a hill climbing strategy in generating designs. This approach
fits in the state-space search paradigm, also the negotiation based problem
solving method, discussed in chapter 3. The analysis of the components of
the system and the way they are interrelated with each other, and describing
its underlaying methodologies, helps better understanding of the system.

TOPGENE design generator module has four task-managers for accompli-
shing its job. A task-manager for generating designs with respect to a
single norm, and three other task-managers for generating different designs
with respect to a combination of norms.

The single norm task-manager 1is responsible for calling different
single-norm task executers. A single-norm task executer is responsible for
generating a design or preparing information for doing so. For example, the
single-norm task executer for generating a near-optimal type or a tree type
design with respect to the norm privacy produces directly such a design
based on a hierarchical cluster of location pairs. Other single-norm task

executers, including the single-norm task-executer for generating prototy-
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pical type designs with respect to the privacy norm, generate a stream or
streams of locations before generating a design. This stream is list of
locations, linearly arranged in such a way that it has a high performance
potential with respect to that norm. The generated stream(s) is then fed to
a pattern generators to be used for labelling of a pattern.

The information sent to and received from a single norm task-manager

are as follows:

Information sent:
—~ A partially hierarchical clusters of locations-pairs (activity-
pairs), or
- A list of intervening opportunity triplets of locations (or activi-
ties) ordered in terms of the flow generation potential between their

bracketing item the triplets.

Information received:

— A partial intermediate stream(s), or a final stream(s) of locations.

Again, a stream or streams of locations (or activities) are produced only if
prototypical design (i.e., linear-tree, single-loaded, double-loaded, stars,
and grids) with respect to single norms or a combination of norms is deman-—
ded. The arrangement of locations (or activities) on prototypical patterns
are carried out by several pattern generators. TOPGENE has only three task-
executers for generating stream(s) of locations (or activities), and a
series of prototypical pattern generators accessible to all task-managers.
To summarize the subject:
— A request for any prototypical solution is routed to its correspond-
ing task-manager.
— A task-manager first ask a stream generator for a stream of locations
in the design.
— The generated stream is passed to a pattern generator, responsible
for a particular prototypical pattern, for labelling of a particular

pattern with the locations (activities) in the stream.

The three multi-norm task-managers are responsible for generating patterns

with respect to a combination of norms. These task-managers execute their
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task by calling several task executers, each responsible for improving a
partial design with respect to a specific norm. The norms privacy and
circulation-cost are not conflicting, hence, they have the same task-
executers. TOPGENE calls the task executers iteratively based on the order
defined by the agenda of norms. The agenda of norms is part of the task-
manager and contains a list of norms in an order defined by the user. The
user is allowed to repeat any norm in the list. In this way, the priority of
norms, and their degrees of contributions in affecting a design may be
varied. So, different designs could be generated for the same set of data.
The multi-norm task-managers and the task-executers communicate with each

other under the following protocol:

Information send from a task managers to a task executer:
= A partially hierarchical cluster of location-pairs (or activity-
pairs), if community, privacy, or circulation-cost norms, or a list
of I0 triplets of locations (or activities) ordered in terms of the
flow generation potential between the I0’s bracketing activities, if
the I0 task-executer:
- A partial design.

= A list of processed locations

Information send from a multi-norm task executers to a task manager:
- The improved partial design.
- Updated list of the processed locations.

= A processed location-pair.

Each task-executer, upon receiving a process call, is allowed to improve the
partial design received by incrementing it with at most a location pairs, or
a triplet of locations, if the intervening opportunity norm. Here by the
word "improvement" both the structural and behavioral improvement of the
partial design is intended. For this reason, such process is best characte-
rized as a hill climbing process, that in a step-wise manner the overall
performance of a design is improved. All the task execution processes
described above, subject to the user request, may take place under the
following constraints:

- The knowledge of recommended accesses in buildings.
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— The knowledge of prohibited accesses in buildings.

— The maximum branching degree defined for each location.

In an attempt to improve their goal, non of the task executers is allowed to
undo the result of the other task executers, and in cases when an attempt is
blocked because of the constraints imposed on the design, then, new attempts
are made by searching for next best possible action until a successful
attempt is made. If an attempt by a task executer is completely blocked,
then the current norm is put on a list of a deferred-agenda. The norms on
the deferred agenda have always a higher priority over the norms on the
agenda, and the task-manager in each iteration tries first to invoke a task
executer according to the norm on the top of the deferred agenda.

If the agenda is empty, it means that attempts by all task-executers
have been unsuccessful, then the control is passed to a fourth routine which
is called commitment task-executer. The commitment task-executer has the
function of breaking the logical deadlock for task-executers by making a
forceful arbitrary assignment of an unprocessed location to the partial
design. This condition arises only if there is not any logical relation
between a partial design and the unprocessed locations.
module and these task-

The relation between pattern the generator

managers are depicted in the following figure.
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5.7 Heuristics

Heuristic: " A piece of knowledge capable of suggesting plausible
action to follow or implausible ones to avoid." [Lenat82, p. 192]

I characterized architectural design at connectivity level as a NP-hard
problem with a large state-space, and no efficient algorithm for its solu-
tion. In Chapter 2 I discussed the rdle of heuristic programming in reducing
the search efforts. In this chapter also I characterized TOPGENE as a
heuristic program that uses strategic heuristic rules rather than a real-
valued heuristic function [Georgeff83] in its procedures. Heuristic search
based on the second technique has to use an analytical heuristic function
that maps a search-state into a value reflecting the measure of promise of
that state in reaching a goal state. The expression of problem specific
strategies in terms of a set of processing rules was called strategic
heuristics. Strategic heuristics, in comparison with real-valued heuristic,
are [Georgeff83]:

— More akin to the human problem solving than the real valued heuris-

tics.
- More transparent than real-valued heuristics.

— More adaptable and easier subject to change than analytical ones.

TOPGENE is a heuristic system that incorporates heuristic rules in the
search-space of designs to reduce complexity. TOPGENE uses strategic heuris-
tics rather than real valued heuristics, but it has a potential for the
incorporation of real valued heuristics under certain conditions. The evalu-
ator module can serve as a procedure for mapping partial designs (search
states) into real values indicating their actual behavior. These values may
be taken as a measure of the search-states in a means-ends analysis strate-
gy. I will discuss this possibility in more detail in the last chapter.
There are several reasons for choosing the strategic heuristic over a real
valued heuristic:
— A heuristic approach based on a real-valued function would be compu-
tationally less inefficient than the current approach.
— There 1s always possible that a next best state found under the
guidance of a analytical function is a locally optimum state that

does not lead to an optimum or near optimum solution. The strong
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inter-dependency of locations in a partial design with the unprocess-
ed locations (future states in the search-state) brings about the
possibility that an analytically chosen state might be a misleading
path. Picking such a path will require backtracking in a later stage
of the search. Backtracking is considered inefficient in most of the
cases. Besides, the combinatorial inter-dependency of the location
pairs in a design, support the claim that a backtracking strategy in
our case runs into generating and testing of states of the search.
This means that analytical heuristics with backtracking for our
design problem is as inefficient as an enumeration approach.

— The goal of optimization in design is usually to improve performance
towards some optimum point, and not necessarily to reach the optimum
point itself. Design problems often demand satisfactory and realistic
solutions rather than a mathematically optimized solution. A rigorous
attempt in optimization of design in the computational sense, not

only seems redundant, but also often runs into unrealistic designs.

TOPGENE uses heuristic rules provided by generalization of empirical causal
relations between the structure and behavior of a building with respect to
the social norms. Empirical causal relations are facts due to empirical
observations of the buildings behavior. These causal relations are qualita-
tive heuristic rules applicable in architectural domains.

Constraining relations about structure and behavior of a building may
consist of isolated relations, and relations propagated in several numbers.
A propagated sequence of causal relations defines a cascade of relations. A
particular simple behavioral aspect of buildings may be represented by a
single causal relation but a more complex behavior is often represented by a
chain of related rules cascaded in a rule-set or within a procedure. A beha-
vioral cascade in the system is the sequence of causal relations that
defines a way for an initial condition (cause) to propagate through a topo-
logical network of building to cause (effect) operational events such as
disturbance to a series of locations. Examples of these rules extracted from
analysis of expert interviews are presented in appendix-A. Analysis of the
expert interview shows that in general two types of causal rules relating
the structure and behavior of buildings with respect to social norms exist:

~ Rules relating the structure and behavior of buildings in the absence
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of the operation of the buildings.
— Rules relating the structure and behavior of the building in the

presence of operation of the building.

Most of the rules elicited from the expert are of the first type. For
examples:
IF: — The arrangement of locations in serial (locations are intervening).
THEN: - Potential-exposure,

= High privacy cost,

- High Circulation-cost,

— High community utility.

IF: — Average Distance between locations is low.
THEN: = Divided Flow among paths,

— Potential for regulating Flow,

-~ Low circulation-cost,

= Low privacy cost.

The second type of causal relations emphasize the effect of operation on the
structural-behavioral relationships in buildings. Here, connectivity
patterns of bulldings are considered as networks of flows, and the
structural-behavioral relation in a building is determined by a mathematical
analysis of its operation. Mathematically based causal relations may show
themselves in quantitative or qualitative forms. For example:

IF: - The number of shortest paths between two locations L1 and L2 is P,

- Flow potential between L1 and L2 is n.

n

THEN: — Assume flow on each path = -

The distinction between different types of causal relations enables one to
understand the nature of the inferred relations, to organize design know-
ledge, and to model buildings’ behavior. In addition, the causal relations
based on mathematical principles may have broad applicability in other
domains and different contexts within a domain.

The causal relations relating the structure, operation, and behavior of
buildings are analyzed and cascaded in TOPGENE’'s procedures. The basic stra-
tegic rules used by TOPGENE in optimizing partial designs with respect to
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the social norms are as follows. Protocols of several interviews with
experts have been main inspiration for deriving these heuristic rules. These
heuristic rules guarantee the improvement of partial designs with respect to
the social norms on an iterative basis without any failure to do so. The
expanded version of these strategic rules can be find in the design genera-

tion algorithms described later in this chapter.

Heuristic strategy for improving a partial design with respect to the
community norm:

— Let PD be the partial design with locations (L1, ..., Ln).
~ Let PHCLP be the partially hierarchical clusters of location pairs.
- FOR (Li Lj)} := (POP PHCLP), until (PHCLP = NULL):
IF - Li € PD or Lj € PD, say Li € PD.
THEN -~ Find ECC, the list of locations in PD in ascending order of their
eccentricity relative to Li.
— FOR Lk := (POP ECC), until (ECC = NULL) OR success:
IF = (Lj Lk) ¢ prohibited_accesses,
= The maximum branching degree of Lk is not violated.
THEN = Improve PD by the access (Lj Lx),
— Declare success,
— Remove (Li Lj) and (Lj Lx) from the PHCLP.
- END-FOR.
- END-FOR.

Heuristic strategy for improving a partial design with respect to the norms
privacy / circulation cost:

- Let PD be the partial design.
— Let PHCLP be the partially hierarchical clusters of location pairs.
- FOR (Li Lj) := (POP PHCLP), until (PHCLP = NULL):
IF - (L1 € PD and Lj € PD),
— {PD, (L1 L3)} is planar,
(Li Lj) ¢ prohibited_accesses,
-~ The maximum branching degree of Li and Lj is not violated.
THEN - Improve PD by the access (Li Lj),
— Remove (Li Lj) from the PHCLP.
ELSE IF - Li € PD or Lj € PD, say Li € PD.
THEN -~ LET ECC be the list of locations in PD is descending order
of their eccentricity relative to Li.
-~ FOR Lk := (POP ECC), until success:
IF = (Lj Lk) # prohibited_accesses,
- The maximum branching degree of Lk, set by the user, is not
violated.
THEN = Improve PD by the access (Lj Lk),
- Declare success,
— Remove (Li Lj) and (Lj Lx) from the PHCLP.
— END-FOR.
— END-FOR.
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Heuristic strategy for improving a partial design with respect to the
intervening opportunity (I0) norm:

Let PD be the partial design.

Let OIOT be the list of user defined IO triplets of locations.

Order OIOT in terms of flow generation potentials between their bracketing
locations.

FOR (L1 Ly Lx) € (POP OIOT), until (OIOT = NULL):

IF - Li € PD & Ly € PD & Lk € PD.

THEN = Remove (Li Lj Lk) from OIOT.

ELSE IF =~ (Lt or Lkx) ¢ PD, say Li ¢ PD.

THEN — Let ECC hold locations in PD, in ascending degree of their
eccentricity relative to Li, that are not on the path
containing Lj and Lk,

-~ PUSH Lj to ECC,
- FOR Lm := (POP ECC), until success:
IF = (Li Lm) ¢ prohibited_accesses,
= The maximum branching degree of La is not violated.
THEN ~ Improve PD by the access (Li La),
- Declare success,
- Remove (Li Lj Lx) from OIOT.
- END-FOR.
ELSE IF - only Lj ¢ PD.
THEN IF = (Li Lj) ¢ prohibited_accesses,
— (Lj Lx) ¢ prohibited_accesses,
- {pPD, (L1 Lj), (Lj Lx)} is planar,
—~ The maximum branching degrees of Li and Lj are not viola-
ted.
THEN - PD := {PD, (L1 Lj), (Lj Lx)}.
ELSE IF - ((Lit & Lj) or (Lj & Lx)) ¢ PD, say (Li & Lj) ¢ PD.
THEN — Let ECC be list of locations in PD, in descending degree of
their eccentricity relative to Lk,
PUSH Lk to ECC,
- FOR Lm := (POP ECC), until (ECC = NULL) OR success:
IF - (Lj Lm) ¢ prohibited_accesses,
— The maximum branching degree of Lm is not violated.
THEN =~ Improve PD by the accesses {{(Lj La), (Li Lj)},
~ Declare success,
Remove (Li Lj Lk) from OIOT.

~ END-FOR.
ELSE IF - (Li ¢ PD) & (Lx ¢ PD).
THEN = Let paths be List of non_circular paths in PD originating from

Lj.
— FOR path := (POP paths), until success:
- FOR Lm := (POP path), until (ECC = NULL) OR success:
IF - (Li Lm) ¢ prohibited_accesses.

- The maximum branching degree of Lam is not violated.
THEN - Improve PD by the accesses (Li Lm),
- Declare success.
= END-FOR.
Remove path from paths.
END-FOR
FOR path := (POP paths), until success:
= FOR Lm := (POP path), until (ECC = NULL) OR success:
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IF

(Lx Lm) ¢ prohibited access,
- The maximum branching degree of Lm is not violated.
THEN - Improve PD by the accesses (Lk Lm),
- Declare success,
— Remove (Li Lj Lk) from OIOT.
- END-FOR.
-~ END-FOR.

5.8 Conflict resolution

The social norms defined in this thesis have some interesting characteris-
tics with respect to an architectural design. Pair-wise comparisons of these
norms show that:

- The norms community and privacy are two conflicting norms. Any
attempt in an elevation and improvement of a design towards one of
them may annihilate improvements already made towards the other one.

- The only two norms in mutual harmony are the norms privacy and
circulation-cost. Improvement of a deslign with respect to any of
these two norms has always a positive effect on the other.

— The community norm has the same relation with the privacy norm as
with the circulation-cost norm.

~ The norm intervening opportunity has a better relation with the other
norms than the community and privacy relation. This norm might be in
agreement with one of the norms community or privacy, but not with

both of them, at the same time.

Theoretical work on conflict resolution in design, identifies two types of
conflict situations: competitive conflict =situations and cooperative
conflict situations [Klein89]. The first situation arises when, each bene-
ficiary in the conflict tries to fulfill his own ambitions, without being
concerned about the others, or being interested in achieving a globally
optimal goal in cooperation with the other parties. In the cooperative
situations, on the other hand, the parties try to achieve a common goal by
close cooperation with each other. Cooperation means sacrifices, compromise,
and abandonment of less important goals, in hope of reaching a globally
optimal goal which benefits every party. Computational models of conflict

resolution are categorized into 5 major groups [Klein89]:

(5-23)



Chapter 5: The Implementation of TOPGEKE

Development time conflict resolution:

This strategy, mostly used by knowledge based systems, requires resolution
of all conflicts at the knowledge-base development time. development time
conflict resolution demands enumeration of all conflicts and their solu-
tions; so, it has disadvantage of putting all labor work on the shoulders of
programmers. A middle road approach for this type of conflict resolution
strategy is the run-time conflict resolution. Here, conflicts are resolved
automatically during the run-time by incorporation of appropriate procedures
into the process.

Backtracking-based failure handling conflict resolution:

This type of conflict resolution uses backtracking techniques in cases of
conflicts to backtrack to earlier decision points to correct the wrong
decision that caused the conflict. This strategy suffers from the ineffi-

clency associated with the backtracking techniques.

Numerically-weighted constraint relaxation:
This method of conflict handling, mostly used in scheduling type problems,
rely on weights assigned on requirements of the final solution. Such
systems, in attempts to fulfill maximally all requirements, use constraint
relaxation techniques to resolve the conflicts. This approach suffers from
three main disadvantages:

— Assignment of numerical weights to constraints is unnatural to human

experts,
— Different experts may use different weights to a requirement, and

- Weighted requirements lacks justifying explanation by human experts.

Specific conflict resolution advise:

Collections of specific domain-independent conflict-resolution decision
rules may be incorporated in a system to resolve conflicts. This approach
has the advantage of direct application of identified conflict resolution
knowledge to resolve conflicts, but suffers from the limitation inheritance
in domain-independent conflict resolution expertise. A wiser approach is the
use of a combination of domain-independent and domain-dependent conflict

resolution expertise to resolve the conflicts.
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General conflict resolution expertise:

General conflict resolution expertise may be captured and stored implicitly
in a system to be used during the processes. This approach gives the same
level of importance to the conflict resolution knowledge as the domain know-
ledge.

TOPGENE' s approach towards conflict resolution may be characterized as
both cooperative and competitive conflict resolutions. The overall strategy
used by TOPGENE in generating a design is based on a hill climbing (i.e.,
iterative improvement) approach. Conflicts have often to be detected prior
to the resolution. However, in the case of our design problem the presence
of conflicting norms in a design problem conveys the existence of consistent
conflicting situation during a design. TOPGENE uses a competitive approach
to deal with the conflicts by giving a chance to just one competitor, and
relaxing the others iteratively. TOPGENE improves a partial design at each
iteration only by a location or at most two locations This strategy gives a
chance to each norm to improve partial designs with respect to their
objective, at micro level. By this, the overall approach seems as if there
is a sense of cooperation between all the conflicting norms, while at the
macro level the norms seem to compete with each other. The competition lis,
first, democratic and each norm gets its own chance to fulfill its goal; and
second, no norm is allowed to undo a result of the others. The main reasons
for choosing this approach may be listed as follows:

~ The development-time conflict resolution, the specific conflict

resolution support, and the general conflict resolution expertise
approaches all require domain knowledge of conflict handling. The
incommeasurability of the norms implies that there are no logical
relations between the norms, unless strong assumptions are made. For
example, one can presume a linear relation nl = k*(n2) between an
unit of a norm ni, and a unit of a norm nz. Upon such an assumption,
the problem of conflict resolution may be handled by constraint
satisfaction techniques. The main problem associated with this
approach, as was mentioned earlier, is that association of numerical
weights to norms is un-natural to experts. Consulting with the domain
expert, did not reveal any type of domain-dependent conflict
resolution strategy relating to these norms. In fact, a way of

solving our design problem, as proposed in architectural literature
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(Berwick71] [Tzonis87), is by generating sub-optimal designs with
respect to each norm and singling out one that seems best according
to a multi-criteria evaluation method such as ELECTRE [Tzonis75].

— Disregarding the incommeasurability of norms, a backtrack error
handling method, or a numerically-weighted constraint relaxation
method also may not be used here, for several reasons. Both of these
approaches, in our design case, require either an analytical function
for conversion of states of the search into numerical indicators that
would show which path is a best path in the search space; or, require
constraints on the minimum and maximum performances of the design
with respect to the norms. Because of the heavy interactions between
all states of the search as a result of the flow between locations of
a design, a brute force approach can only find best paths during a
search, or can find the performance constraints of a design. This
approach 1is practically impossible. Besides, the first method,
presumes the occurrence and detection of conflicts during the pro-
cesses, and not prior to them. Here, at least in the case of the
community and privacy norms, conflict exists at all situations.
Finally, theoretically speaking, resolving a conflict between two
incommeasurable norms is only possible by sacrifices and compromises
from the conflicting sides.

~ Architectural design is not only concerned with the social norms.
Early experiments with TOPGENE showed that most of the designs
generated by TOPGENE with respect to social points of view were
unrealistic. For example, a design from point of view of community
tends towards a linear-tree type design. Such a solution is in
general not a practical solution. Similarly, a design with respect to
the point of view of privacy / circulation-cost tends towards a
compact pattern with high branching degree. Such solutions are also
unrealistic in most cases. Integration of a complicated conflict
resolution strategy into the search process, without the integration
of knowledge of the architectural design, does not improve the
realism of a design in any case.

— The goal of a design optimization in human problem solving is usually
to improve the performance of a design, and not necessarily reach the

global optima. Emphasis on global optima is not always natural. When
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an architect talks about optimization of a building with respect to a
view point, he talks about improvement of the building with respect
to that point of view. Such a goal in design is pursued under the
constraints imposed by several other view points, and with regard to
the limitation of resources. As a result, in architecture and other
human decision making processes, convergence to global optima is not
an issue at all, but improvement towards and attaining a "satis-

ficing" [Simoné9] level of performance is of concern.

Considering above arguments the approach taken in implementing the TOPGENE
is a plausible approach. Besides, the incorporation of some of the existing
conflict resolution strategies discussed above into the TOPGENE also are
possibilities that may be considered in implementing systems similar and
akin to TOPGENE, or a new version of TOPGENE integrated with knowledge bases

of architectural design.

5.9 The agenda of norms

TOPGENE uses an agenda mechanism to automate resolution of conflicts between
the social norms. An agenda (sponsor) mechanism is a built-in feature of
expert system tools such as Goldworks [87], which enables users to have
control of the allocation of resources of the inference engine to different
tasks. For example, in Goldworks, the rules pertaining to different sub-
tasks may be clustered under different sponsors. Additional rules may be
used to control the sponsors by enabling or disabling them. Each sponsor has
an agenda associated with it that can contain rules or rule sets of diffe-
rent characteristics, such as forward rules, backward rules, or bidirec-
tional rules. Sponsors may be ordered in a hierarchical manner, with quanta
assigned to them. A limit is used to control the maximum number of rules
that may be fired in an agenda at each iteration.

TOPGENE’s agenda is a simplified simulation of the sponsor and agenda
mechanism. The agenda of TOPGENE, which is a part of any multi-norm task-
manager in TOPGENE, contains the norms in user defined ordered. TOPGENE uses
this agenda of norms to control the invocation of task-executer procedures
corresponding to the norms. Each task-executer is built based on the

heuristic rules for improving a partial design with respect to a particular
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norm. A task-executer receives a message from a task-manager and attempts to
improve a partial design with respect to a norm. The norms on the agenda are
processed on a first-in first-out (FIFO) basis. All norms on the top of the
agenda are (after the invocation of corresponding task-executers) shifted to
the bottom of the agenda, unless a task executer signals a fallure. In such
cases, norms are removed from the top of the agenda, and moved to a
deferred-agenda of norms. Norms on a deferred agenda have always priority
over the norms on the agenda, so, in any iteration, a task-manager always
first checks for a norm on top of the deferred agenda for invocation of a
task-executer. The presence of all norms on deferred-agenda signals failure
of all task-executers. In this situation, the task-manager sends a message
to a special task executer, whose job is to make a near-logical action for
design commitment. This situation arises, when there is no logical relation
between a partial design and remaining unprocessed locations. The following

figure shows TOPGENE agenda control mechanism.

Agenda Deffered agenda

New top norm New top norm
top top
item norm item norm

norm norm

norm norm

° + - ) . +
€=l Success? | Smmm———) ¢=]Success? e
Dismiss

Figure 5.7: The TOPGENE agenda control mechanism

5.10 Domain knowledge as a constraint: teaching the TOPGENE

Another development in TOPGENE stemming from deficiency in generated designs
was the integration of experimental knowledge bases with the system. TOPGENE
presently has two knowledge bases consisting of recommended and prohibited
accesses 1n buildings. These knowledge bases are improved via rote learning,
when the system is directly taught to accept and memorize recommended and
prohibited accesses 1in buildings. The use of the knowledge bases is
optional, and the user is allowed to turn them on or off. If the knowledge
base is turned on, recommended and prohibited accesses related to the design

problem under process are presented to the user, and the user can decide on
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the manual refinement of these accesses. The idea of integration of the
knowledge base with the TOPGENE arose from the unrealistic designs generated
by early versions of TOPGENE. The early version of the system, as a pure
analytical system was careless about the nature of activities and their
interconnections with other locations in a design.

The system, in its infancy, generated designs based on mathematical
modeling of the architectural process regardless of other factors. Experi-
ments showed that realistic design often do not emerge from pure mathema-
tical modeling of a design process alone. The integration of knowledge of
prohibited and recommended accesses in buildings improved the system consi-
derably. A greater improvement is believed to be achievable by narrowing
down the problem into a specific building type, or decomposing it into sub-
systems of designs for different building types. In such a case the integ-
ration of knowledge bases of different building types, or even integratlion
of precedents of architectural designs with the system can broaden the
practicality of generated solutions by TOPGENE. I will discuss this idea in
the last chapter.

.

5.11 Planarity as a constraint

Architectural designs at topological level are only valid if they are reali-
zable at geometric level. A necessary condition for realization of connecti-
vity pattern of a building at geometric level is its planarity. A graph is
planar if it cab be embedded in the plane without crossings. To ensure this
condition TOPGENE had to resort to graph algorithms for testing the
planarity of near-optimal type partial designs, that potentially may be non-
planar. Other design types such as tree and prototypical designs are always
planar, and do not require planarity testing.

Planarity testing and embedding of graphs have many applications.
Several algorithms have been proposed for these purposes. There also are
algorithms for planarization of non-planar graphs [Fisheré6] [0zawa81]
[Jayakumar89). The most efficient planarity testing algorithms are the
Hoperoft and Tarjan algorithm [Hopcroft74], and the Booth and Lueker
[Booth76] algorithm. Both algorithms have linear time complexity, but the
later one, which is an improvement on Lempel and Even [Lempel67] is

considered simpler than the first one [Nishizeki88].
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TOPGENE tests planarity of a near-optimal type partial design PD, when
PD is improved by adding a link L between two of its already existing nodes.
In such cases TOPGENE passes {PD + L} to its planarity testing procedure,
for a TRUE of False answer.

A graph G is planar if and only if all 2-connected components of G are
planar. A graph is 2-connected if it is connected and does not have a cut-
vertex (i.e., a vertex whose deletion results in disconnection of G).
Furthermore a graph G with n (23) nodes and m edges is non-planar if m = 3n-
6 [Nishizeki88]. So, first this edge-node relation is applied as a prior
non-planarity test, and if it fails the testing algorithm is applied.

The Booth algorithm is used for testing and ensuring the planarity of
partial designs . This algorithm employs a so called st-numbering technique
and a data- structure called PQ-tree. The st-numbering and PQ-tree data
structure have important réle in Booth’s planarity testing. A numbering of n
nodes of a graph G by 1 to n is called a st-numbering if two vertices vy and
v, (i.e., vertices numbered "1" and "“n") are necessarily adjacent, and each
vertex vj is adjacent to two vertices v, and v such that i<j<k. v, and v,
denoted by s and t are called source and sink of G, respectively. Every 2-
connected graph has a st-numbering that can be fonq in linear time [Nishi-
zeki88]. A PQ-tree consists of "P-nodes", "Q-nodes", and "“leaves". The key
idea in a vertex-addition algorithm is to reduce the planarity testing of a
graph to the problem of asking the permutation and reversions to make
special sub-set of vertices to occupy consecutive positions. For a detailed
discussion see [Booth76] or [Nishizekiss].

5.12 Branchiness as a constraint

Branchiness is another optional constraint on locations of a design in
TOPGENE. By this option, an user may decide the number of links that a
location might have with other locations. The idea of imposing the branchi-
ness constraint on locations arose from experimenting with early versions of
TOPGENE, whereby unlimited branchiness resulted in unrealistic designs.
Decision on the number of links on locations in TOPGENE expands from near-
optimal and tree types design to prototypical designs such as a star type
design. In the first two types of designs the user is allowed to decide the

branching degree of each locations irrespective of the other locations,
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while in the second type, the branching degree of centers of stars may be

determined by an user.

5.13 Designs with respect to a single norm

Decomposition of complex problems, such as designs, into several sub-
problems, solving each sub-problems irrespective of the other, and synthesi-
zing the sub-solution to arrive at a total solution, is a common approach by
human problem solvers. TOPGENE, does not follow this line of approach in
tackling the design problems, but generates designs with respect to isolated
social norms, or a combination of them. This approach is rational, since:

- In practice some users may look for sub-optimal designs optimized
with respect to single norms.

- The evaluator module uses sub-optimal solutions generated by the
generatormodule as yardstick for evaluating exlsting designs.

— A practical approach in generating a design with respect to multiple
points of view has been to generate sub-optimal designs each with
respect to an isolated view point, and electing one among them that
satisfies best all points of view together, by using a multi-criteria
decision making method [Tzonis87]. TOPGENE's capabilities in
generating diverse solutions to the same problem, including designs
with respect to a single norm, pose it as a choice for integration

with an automated multi-criteria decision making method.

Two types of information are important for TOPGENE in choosing a course of
action in generating a design. The number of the norms (single or multiple)
and type of the design. The key to generation of a design in all cases is
the partially hierarchical clusters of location pairs provided by the Q-
analysis routine. These clusters carry implicitly the potential of
interaction between location pairs in a design. This information is the main
criterion for heuristic arrangement of locations with respect to the social
norms. The nature of the clusters, thus, is always invariant, but the
treatment of the clusters and underlaying heuristic rules change according
to the norm and type of design under the consideration. For example some
combination of design type and norm requires generating a design directly

based on the clusters, while others demand generating a stream or streams of
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locations with specific attribute, and passing the stream(s) to a pattern
generator for producing a topological pattern. The later case is for all
prototypical design. In both cases TOPGENE uses the same heuristic strategic
rules discussed in section 5.6.

The complete picture of how TOPGENE generates a design with respect to
a single norm is depicted in figures 5.8 and 5.9. Figure 5.8 depicts the
task diagram for the process, and the later one shows the data flow for the

same process.

5.14 Designs with respect to the community norm

The first norm to discuss its implementation is the community norm. Under
this norm a designer tries to maximize the behavior of a building in terms
formation of new groups in locations of design, and increase degrees of
interactions between the actors moving within the building. The community
utility of a building increases with increase in meeting of flows caused by
movements of people.

Intuitively an architectural design with a relatively compact
topological structure and high average branching degree has a higher
potential for absorbing the interactions between people than another less-
compact design B with a relatively lower average branching degree. The least
branched graph for a given number of nodes is a linear-tree. Linear-tree has
potential for creating maximum overlaps and interactions for a building. So,
a linear-tree type design also is the near-optimal design type for this
norm, provided that it has a right operation in terms of arrangement of
activities on its locations. TOPGENE allows an user to request generation of
other types of building patterns such as a single-loaded, double loaded,
stars and grid patterns. To deal with these prototypical patterns, TOPGENE
first generates a stream of locations with a high potential performance with
respect a norm or combination of norms, and labels the locations of a
requested design with the activities on this stream. So, the task-executer
for the norm community is in fact a stream generator. The input to the
community norm task-executer is the hierarchical clusters of location pairs,
and the output is a stream of locations for the design problem, arranged in
such a way that a high performance with respect to the norm community is

expected. The community stream is, thus, a multi-purpose object that can be
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fed into different pattern generators produce different type of designs.
Examples of these design types patterns will be presented in chapter 6.
Generation of designs with respect to three other norms: Iintervening
opportunity, privacy, and circulation-cost have two distinct approaches. One
for generation pattern for the near-optimal, and tree solutions, and another
for prototypical solutions.

Figure 5.10 shows levels of operations that are carried out by TOPGENE
in reaching a design with respect to the community norm. The first 3 levels
are the Q-analysis levels depicted earlier, the fourth level is the stream
generation level, and the last level corresponds to the pattern generation

processes.
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Accepting and verifying of the input data.
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Figure 5.8: TOPGENE’s task diagram for
generating designs with respect to a single norm
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Input activities (locations)

Input actors responsible for the activities

l Input actors’ weight
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the location pairs (Q-analysis).
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Figure 5.9: TOPGENE’s data flow diagram for
generating designs with respect to a single norm.
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Figure 5.10: Levels of data-abstraction in generating a design pattern
with respect to the community norm

5.14.1 Generating a stream of locations

Based on the hierarchical clusters of location-pairs generated by the Q-
analysis procedure, and the heuristic strategy discussed in this chapter,
the following algorithm generates a stream of locations (or activities)
consisting of all locations in the design statement with respect to the norm

community. The heuristic rule for generating such a stream puts the most
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interactive activities as far as possible relative to each other. The
algorithm pursues the stream generation using a hill climbing strategy, in a
way that it tries to improve the community utility of the stream iterative-
ly. This task-executer in fact generates the stream from the outer locations
(i.e., most interactive locations) towards the inner locations. So technica-
1ly speaking, the procedure, first, generates two sub-streams, and finally
concatenates them to form the complete stream. A hand simulation of this
process is presented at the end of this section.

There are situations during a design process in which no logical
relation could be found between a new location to be processed and a partial
design. In these cases there 1s a sense of uncertainty on where in the
partial design to assign the new location. TOPGENE handles these situations
by a look-ahead algorithm that tries to find a logical relation between the
new location and the partial design by looking one step further into the
state search. The look-ahead mechanism is exemplified in the following

section.

The look-ahead mechanism:

The look-ahead algorithm for the community norm receives as input:
— A location pair Ip to be processed,
= Clusters of unprocessed location-pairs CLP,

- The generated sub-streams (partial design) PD.

The look-ahead algorithm first tries to match a location in Ip to a location
in a location-pair p € CLP, that its other location is already processed
(i.e., it is in the partial design). In the next step, the algorithm tries
to assign the locations Ip to PD in such a way that its matched location is
assigned to a part of the PD that has no identical location with a location
in p. If, we have the following partially hierarchical clusters of
locations:

(A3 A4)

(A1 A3)

(A5 A6) (AS Al)

(A1 A7)

Then, after step 2 the stream generator algorithm faces a dead-lock situa-
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tion in which it cannot decide on how to process the location-pair (A5 A6).
Here, the algorithm calls the look-ahead procedure for processing (A5 A6) as
is step-3 illustrated below.

Step C-SPACE1 C-SPACE2
1 (A3) (A1 A4)
2 (A3) (A1 A8)
3 (A3 AS) (A6 A1 AQ)

The followings are algorithms for both string generation and look-ahead pro-

cesses.

Procedure SINGLE-NORM-COMMUNITY-TASK-EXECUTER (sphclp)

1- Let phclp be 1list of the partially hierarchical clusters of location
pairs generated by the Q-analysis algorithm.

2- Let sphclp be list of location pairs resulted from scrapping of the
phelp.

3~ LET streaml and stream2 be two sub-streams.

4- Streaml := NIL.

S5~ Streaml := NIL.

6~ Stream := Streaml + Stream2.

7= FOR pair := (POP sphclp) until sphclp is NULL
— LET head := (FIRST pair).
— LET tail := (SECOND pair)

— COND - (head € stream) & (tail € stream).
THEN — Do nothing.
— COND - (head € streaml).
THEN = PUSH tail to stream2.
- COND ~ (head € stream2).
THEN - streaml := streaml + {tail}.
~ COND - (tail € streaml).
THEN = PUSH head to stream2.
- COND - (tail € stream2).
THEN — streaml := streaml + {head}.
-~ OTHERWISE

— Call LOOK-AHEAD (pair sphclp streaml stream2) success
- IF -~ look—-ahead failed.
- THEN - streaml := (APPEND streaml + {head}),
- PUSH tall to stream2.
8= END-FOR.
9— RETURN stream := streaml + stream2.
10— END-PROCEDURE.

Procedure LOOK-AHEAD (pair pairs streaml stream2)
1- LET stream := streaml + stream2.
2— LET head_pair := (FIRST pair).
3— LET tail_pair := (SECOND pair).
4— FOR p:= (POP sphclp).
~ LET head_p := (FIRST pair).
= LET tail_p := (SECOND pair).
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IF

THEN:
COND

COND
THEN

COND
THEN

COND
THEN

COND
THEN

COND
THEN

COND
THEN

COND
THEN

— (head_p = head_pair & head p ¢ stream & tail_p €
- (head_p € head_pair & tail p ¢ stream & head_p €
- (tail_p = head_pair & head_p ¢ stream & tail_p e
- (tail_p € head_pair & tail_p ¢ stream & head_p €
— (head_pair = head_p & head_p € stream2).

— streaml := streaml + {head_pair},

= PUSH tail_pair to stream2,

- success := TRUE.

- (head_pair € head_p & head_p € streaml).

- streaml := streaml + {tail_pair},
— PUSH head_pair to stream2,
- success := TRUE.

- (tail_pair = tail_p & tail_p € streaml).

— streaml := streaml + {head_pair},
— PUSH tail_pair to stream2,
- success := TRUE.

— (tail_pair € tail_p & tail_p € stream2).

- streaml := streaml + {tail_pair},
— PUSH head_pair to stream2,
— success := TRUE.

— (tail_pair = head_p & head_p € streaml).

- streaml := streaml + {head_pair},
- PUSH tail_pair to stream2,
- success := TRUE.

— (tail_pair € head_p & head_p € stream2).

~ streaml := streaml + {tail_pair},
- PUSH head_pair to stream2,
— success := TRUE.

— (tail_pair = tail_p & tail_p € streaml).

- streaml := streaml + {head_pair},
-~ PUSH tail_pair to stream2,
= success := TRUE.

~ (tail_pair € tail_p & tail_p € stream2).

- streaml := streaml + {tail_pair},
- PUSH head_pair to stream2,
- success := TRUE.

IF - SUCCEeSS.
THEN - Break the loop.

S5~ END-FOR.

6- IF - success.
THEN ~ Return streaml and stream2.
ELSE - Return NIL.

7— END-LOOK-AHEAD.

Figures 5.11 to 5.13 depict data for a design problem,
chical clusters of location pairs generated by the Q-analysis procedure
based on the data, and steps showing the formation of a stream of locations

with respect to the community norm.

this example, but are used by TOPGENE.
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Location (Activity) Groups responsible for an specific activity.

Al G1,6G2,G6

A2 62,64

A3 G3,G1,G4

Aa G4,G1

AS G5,G7,G4,G9
A6 G5,67,G9,G10
A7 G6,G8,G9

AS G6,G7,G8,G9
A9 G7,G10

A10 68,6G9,G10

Figure 5.11: A set of activities and actors responsible for the activities

Potential flow Partially hierarchical clusters

High T { (A5 A6) (A7 AB) )
i { (A3 A4) (A5 AB) (A6 A8) (A6 A9) (A10 A6) (A10 A7) (A10 AB) )
{ (A1 A2) (A1 A3) (A1 A4) (A1 A7) (A1 A8) (A2 A3) (A2 A4)
: (A2 AS5) (A3 A5) (A4 AS5) (A5 A7) (A5 A9) (A10 AS5) (A6 AT)
Low | (AB A9) (A10 A9) )

Figure 5.12: Partially hierarchical clusters of activity pairs

Iteration Stream-1 Stream-2

1 (AS) (a6)
2 (AS A7) (A8 A6)
3 (A5 A7 A4) (A3 AB A6)
4 (A5 A7 A4 A9) (A3 AB A6)
5 (A5 A7 A4 A9 A10) (A3 A8 A6)
6 (A5 A7 A4 A9 A10 A1) (A2 A3 A8 A6)

The final stream: (A5 A7 A4 A9 A10 A1 * A2 A3 A8 A6)

Figure 5.13: Formation of a community stream
from partially hierarchical clusters of locations

The "*" mark, which divides two sub-streams marks the first location pairs
processed, and is useful in generating a circular pattern. A direct arrange-
ment of a generated stream of location on a circular pattern brings the most
interactive locations together (i.e., A5 and A6 in figure 5.12). Something
which must be avoided for the community norm. Here, reversing one of the

sub-streams (from the marked point) reduces the negative effect.
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5.15 Designs with respect to privacy / circulation-cost norm(s)
Privacy and circulation costs are two non-confliéting norms that are in
harmony with each other, but are in conflict with the norm community.

Circulation-cost is the norm under which the travelling costs of people
and objects moving between location-pairs in a building are minimized. The
total circulation cost in a building is proportional to the number and
distances of journeys that groups make. Here, the circulation potential
between the location-pairs are taken as the number of journeys. This inform-
ation is provided by applying the Q-analysis method on the input data. The
distances are taken as the topological distances (i.e., number of links)
between locations.

The norms privacy and circulation-cost both require the same structural
and operational characteristic from a design. The costs associated with
these two norms, according to our definition, is reduced with decrease in
interactions between the actors in a building and reduction in distances
between the interactive locations. Heuristically, the following structure-
selection and operation-management fulfill these conditions:

- Selecting a relatively compact and highly branched design that
provides a large number of access possibilities between different
locations.

— Allocating the most interactive activity pairs as close as possible
{(e.g. adjacent), and least interactive activity pairs in the

periphery of the design.

The prerequisite for stepping towards such a goal is the identification of
interaction between the location pairs, and hierarchically arrangement of
them into clusters with identical interaction potentials. This, as in the
case of other norm is carried out by the Q-analysis algorithm.

Generating all types of designs with respect to the community norm
required a single strategy. Here, the case is different, and different types
of design may require different approaches. The reason is that a near-
optimal solution with respect to these norms, naturally, is leaned towards a
compact planar graph or a compact tree with high degree of branchiness. This
is quite different design than, for example, a prototypical design type,
such as a linear-tree design. On the other hand, all prototypical designs

share some similarities within themselves. There i1s a sense of order in the
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arrangement of locations in these patterns. For example, a linear-tree may
be viewed as a stretched double-~loaded, or a single-loaded pattern. Someth-
ing that cannot be found in irregular designs in the forms of general graphs
or trees. The regularities between the prototypical patterns, gave incentive
to find a single approach in generating these design types. TOPGENE first
generates a stream of locations with respect to these norms. This stream is
then used for labeling a design in such a way that a minimum distortion is
caused to the order of the locations in the stream. The order of locations
in a generated stream with respect to a set of norm(s), provides the beha-
vior of a design with respect to the norm(s).

The following sub-sections provide detail descriptions, and algorithms

for generating different designs with respect to these norms:

5.15.1 Near-optimal design (Detecting a maximum flow planar graph)

A near-optimal solution for the norms privacy / circulation-cost was
characterized as a compact solution. Such a pattern necessarily must planar
in order to be a feasible solution in terms of its realization at geometric
level. Now, for minimizing interactions between the location pairs,
intuitively one has to be able to generate a compact planar graph labeled
with the locations (or activities) in such a way that the most interactive
activities are adjacent. In other words, and in graph language, assuming
that we have a completely connected graph G with certain flow between each
location pairs, the objective would be to detect the maximum flow planar
graph of G. There are two possibilities for achieving this goal. A top-down
approach, and a bottom-up approach.

In the first case, one may start with a completely connected graph G
with number of nodes equal to the number of activities in the design
statement, and planarize this graph by pruning always the least interactive
links. This approach may be characterized as a top-down approach that starts
from a non-planar design and tries to reduce it to an acceptable planar one.

Another possibility is to start from the bottom up. In this case, one
starts from a partial design consisting of a single 1ink, and continues
towards a complete design by adding a 1link at a time. The process
necessarily would give priority to the most interactive activities, and work

out towards perfection under the planarity constraint. This approach is a
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heuristic approach to optimization of a design with respect to the privacy /
circulation-cost norms.

The generated solutions by both algorithm would be in the neighborhood
of an optimal solution, if not an optimal one. However, the solution may not
necessarily be a realistic design. Such solutions obviously have the benefit
of being used as yardstick for generating realistic designs by the archi-
tects. The bottom-up approach seems more suited for a system, such as
TOPGENE, that tries to generate more realistic designs. To achieve this
goal, TOPGENE is integrated with experimental knowledge of recommended and
prohibited access between locations of a building. With such capability, the
user is allowed to decide upon the use of this knowledge base during genera-
ting a solution pattern. TOPGENE, also allows the user to set a limit to the
branching degree of locations in a design. This constraint also helps in
generating realistic designs. The knowledge base and branching degrees have
priority over the mathematical information and the heuristic strategy
followed by TOPGENE. The procedure for generating near-optimal design with

respect to the privacy / Circulation-cost is as follows.

Procedure SINGLE-NORM-PRIVACY-NEAR-OPTIMAL-TASK-EXECUTER (phclp)
1- Recall the recommended and prohibited accesses from the knowledge base.
2= Ask for branching degree.
3— LET processed_locs be list of the processed locations.
4~ LET solution be the partial solution.
5~ Initialize solution preferably by the recommended accesses.
6- flag := TRUE.
7— DO-UNTIL all locations are processed.

7.1= IF — phclp is NULL.

THEN: = phclp := pos_links,
- pos_links := NIL.
7.2= IF: -~ flag = NIL.
THEN: -~ Call COMMITMENT_TASK_EXECUTER.

7.3= temp_phclp := phclp.
flag := NIL.
7.5= FOR pair := (POP temp_phclp), until flag = TRUE.

7.5.1— WHEN — All locations are processed.

THEN = phclp := NIL,
— Break the loop.
7.5.2= COND (FIRST pair) € solution & (SECOND pair) € solution.
THEN: IF — pair is not a prohibited link,
= Branching degree is not violated,

Planarity is not violated.
THEN - Add the 1link consisting of locations 1in pair to
solution,
Update branchiness of locations in pair,
- flag := TRUE,

~
S
1
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— REMOVE pair from phclp.
COND = (FIRST pair) € solution.
THEN = LET neighbors be list of all locations in solution sorted

in ascending order of their eccentricity relative to

(FIRST pair).

= FOR loc := (POP neighbors):
WHEN =~ The link (loc (SECOND pair)) is not a prohibited
link.
- Branchiness degree is not violated.

THEN - Add the link (loc (SECOND pair)) to solution,
ADD (SECOND pair) to processed_locs list,
- Update branching degrees,
— REMOVE (LIST loc (SECOND pair)) from phclp,
Break the loop.

—~ END-FOR.

COND — (SECOND pair) € solution.

THEN - LET neighbors be a 1list of locations in the partial
solution sorted in ascending order of their
eccentricity relative to (SECOND pair).

~ FOR loc := (POP neighbors).
WHEN — The link (loc (FIRST pair)) is not a prohibited
link.
— Branchiness degree is not violated.
THEN — Add the link (loc (FIRST pair)) to solution,

ADD (FIRST pair) to the processed_locs,

— Update branching degrees,

— REMOVE (loc (FIRST pair)) from phclp,

Break the loop.

—END-FOR.
OTHERWISE do nothing.
7.6- END-FOR.
7.7= IF = Any unprocessed recommended link. THEN ~ Process it.
8-~ END-DO-UNTIL.
9= Return solution.
10~ END-procedure.

5.15.2 Tree design (detecting a maximum flow spanning tree)

A tree type design with respect to the norms privacy / circulation-cost is
the same as a near-optimal type design with the exception that it must not
contain any cycles. If we presume all location of a design as connected and
each connection is labeled with the flow potential between the location-
pairs, then a tree type design with respect to the privacy / circulation-
cost norm is a maximum flow spanning tree of our completely connected
design. To detect such a tree, TOPGENE, however, as for the semi-optimal
type designs with respect to these norms, takes a bottom-up approach by
building such a tree from a pair of locations up to the complete design. The

approach is basically the same as the semi-optimal type design, with the
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exception that cycles are avoided in this case. So, the algorithm for the
task-executer corresponding to these two norms is basically the same as
algorithm described for the near-optimal designs with respect to these
norms. The only difference is the step providing cycles in a design, which

is unnecessary for this case.

5.15.3 Generating streams of locations for prototypical designs

The prototypical solutions for the norm privacy / circulation-cost, as for
the community norm, is approached via the stream generation. A stream of
locations (activities) with respect to these norms must provide minimum flow
meetings in the corresponding building. Heuristically this condition is
achieved if the most interactive activities are closer to each other than
the less interactive ones. This strategy is reverse of the strategy used for
the community norm. The criteria determining the order of location pairs to
be processed are the interaction potential for the activity pairs. This
order is determined by the hierarchical clustering of the activity pairs.
Here also streams are generated in an iterative improvement manner, in such
a way that in each iteration a location is added to the partial design.

The output from the privacy stream generator (i.e., task executer) lis
either a single stream of locations or multiple ones. The first case relates
to a situation whereby all the locations in a problem have some kind of
direct or indirect association with each other. Here, the privacy-stream
generator yields only a single stream of locations related to a set of input
data. The second case arises when all locations in a design do not have
logical relations with each other. Here, the set of locations is logically
broken into more than one disjoint sets of related locations. In such cases
the stream generator would recognize such association gaps between the
locations of a design and cluster them into separate streams.

Again, as for other norms, the final stream is fed to a pattern
generator responsible for generating a range of patterns. Figure 5.14 shows
the 4-th and 5-th levels of the prototypical design generation with respect
to the privacy / circulation-cost norm(s). The first three levels are the Q-

analysis levels and are identical with those depicted in figure 5.10.
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Level-5S
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Figure 5.14: Process levels corresponding to a design generation
with respect to the norm privacy or circulation-cost

Given a partially hierarchical clusters of location-pairs, the following

algorithm generates a stream or streams of locations for prototypical

designs with respect to the privacy / circulation-cost norm(s):

Procedure SINGLE-NORM-PRIVACY-PROTOTYPICAL~TASK-EXECUTER (phclp)

1- Let phclp be list of the partially hierarchical clusters of location
pairs generated by the Q-analysis algorithm.

2— Let sphclp be list location paris resulted from scrapping of the phclp.

3- LET c_stream be the current stream.

4=— LET streams be list of streams.

S~ c_stream :

6~ LOOP:

6.1- flag :=

(POP phclp).

NIL.

6.2= FOR pair (POP sphclp):
- ((FIRST pair) € c_stream & (LAST pair) ¢ pair).
THEN = new_loc := (LAST pair).

IF

ELSE

COND

THEN

COND
THEN

IF:

= ((FIRST pair) ¢ c_stream & (LAST pair) € pair).

THEN - new_loc := (FIRST pair).

One of the locations in pair is identical with one of the end
location in c_stream,

new_loc has the same degree of association with both of the
end location of c_stream.

Backtrack to find a processed location in the c_stream which
has relation with the processed location.

Add new_loc to end_side of the c_stream such that it is
closest to the processed location in c_stream,

Remove pair from sphclip,

flag := TRUE.

A locations in pair is identical with a location of c_stream.
Add new_loc to the end of the c_stream closest to the location
identical with a location in pair.
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— Remove pair from sphclp,
— flag := TRUE.
OTHERWISE —~ Do nothing.
6.3~ END-FOR.
WHEN — flag = NIL.
THEN - Break the loop.

7~ END_LOOP.
8- IF: = sphclp = NULL.
THEN: - Return streams as the final solution,
- Stop.

ELSE = Push c_stream to streams,
- c_stream := (POP sphclp).
9- Go to step 5.

Applying above algorithm to the hlerarchical clusters of actlvities presen-

ted in figure 5.12 yields the following stream for the norm privacy.

Step C-STREAM

1 ( AS * A6 )
2 ( A8 AS * A6 )
3 ( A7 A8 A5 * A6 )
4 ( A7 A8 A5 ¥ A6 A9)
5 ( A10 A7 A8 A5 * A6 A9)
6 ( A1l A10 A7 A8 AS * A6 A9)
7 ( A2 A1l A10 A7 A8 A5 * A6 A9)
8 ( A3 A2 Al A10 A7 A8 AS * A6 A9)
9 (A4 A3 A2 Al A10 A7 A8 AS * A6 A9)

Figure 5.15: Formation of privacy cluster from hierarchical clusters

Note that, in this example, all activities have fallen into the same stream.
This implies that there is at least a chain of association between them.
However, there might not be direct associations between all the location-
pairs. If there was a break in this chain, then we would have several
separated streams of locations each with a chain of association between
their elements. In such a case the list of streams of activities would look

like this: ( (... * ...) ... (... * ...) ).

5.16 Designs with respect to the "intervening opportunity” norm
This social norm, although different in nature from other norms, but has a
common characteristic with the community norm. It tends towards a linear-

tree pattern as a near-optimal solution. An optimal solution with the inter-
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vening opportunity norm is a solution that should satisfy a set of in-
betweenness requirements. Obviously, such requirements are best provided by
a liner-tree type design.

TOPGENE, as in the case of the prototypical designs with respect to
other norms, first generates a stream of locations that satisfies at least
a sub-set of in-betweenness requirements in the design, then labels a design
demanded by the user with the locations (or activities) in this stream. The
exception is the tree type design. A tree type design is generated directly
based on the in-betweenness requirements defined. This approach was taken to
prove that a general tree is also a candidate solution for the intervening
opportunity norm. Otherwise, in general a linear-tree might yield a better
result than a general tree for the same set of data. TOPGENE uses heuristic
strategy, described earlier, for generating the intervening opportunity (IO0)
stream. The I0 task-executer generates the 10 stream based on the IO-
triplets input by the user to the system. The criterion for selecting an IO-
triplet is its potential for contributing to the total intervening opportu-
nity of design. This criterion is explicated from the degree of association
between the bracketing locations in the triplets. The association degrees,
here as in the case of other norms, are detected by the Q-analysis
procedure.

The stream of locations is fed to a prototypical pattern generator for
producing a final design. Obviously, some of the prototypical designs, such
as double-loaded and single-loaded designs with auxiliary locations, are not
fit to the intervening opportunity norm at all, since they cannot provide a
large degree of in-betweenness requirements. This problem is inevitable, and
cannot be overcame, unless the notion of nearness is considered in computing
the behavior of buildings with respect to social norms. For some other
design types, such as prototypical designs without auxiliary locations,
specialized algorithms for each case may provide better results than genera-
ting designs with respect to the intervening opportunity norm based on a
stream of locations. The reason is that labelling of a design with the items
on a stream heavily effects the in-betweenness property of the stream, and
consequently degrades the expected performance of the design with respect to

this norm.
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5.16.1 Generating a stream of locations
TOPGENE single-norm task-executer for the norm intervening opportunity is
responsible for generating a stream of location with respect to this norm.
The input to this task-executer is an arbitrary stream containing all loca-
tions for a design, and a list of intervening opportunity triplets (interve-
ning opportunity requirements). The triplets are ranked with respect to the
flow generation potentials between the bracketing locations. The flow
generation potential is identified by the Q-analysis algorithm. This task-
executer starts by the arbitrary stream, and slides the locations around as
required by the intervening opportunity triplets and constraints their
movement possibility so to preserve the in-betweenness conditions for the
most important intervening locations. The approach is a heuristically guided
hill-climbing approach. The intervening opportunity task-executer starts
from the most valuable io-triplet (i.e., the io-triplet with most interac-
tive first and last activity) and satisfies its required in-betweenness. In
each of the following iterations this task-executer tries to satisfy the in-
betweenness conditions demanded by other io-triplets in order of their
priority such that previously satisfied conditions are not undone. This
approach guarantees a fast solution in the neighborhood of an optimal solu-
tion without a need for a brute-force approach.
The core of the algorithm for generating a stream of locations with
respect to the intervening opportunity is as follows:
~ Let OIOT be the list of all user defined intervening opportunity
triplets of locations, ranked according to the flow potential between
their bracketing locations.
— Take an arbitrary stream of all locations in the problem.
— LET each location in the stream have a left-movement and a right-
movement -attribute.
— Assign the left-movement and the right-movement of each location to
NULL.
—~ FOR (Li Lj Lx) € (POP 0IOT), until OIOT = NIL:
- Move Lj in-between the first and the last location, if its left-
movement and right-movement constraint allows to do so.
— Update the movement constraints to include the current action.

-END-FOR
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The expanded version of the algorithm for generating IO stream of locations

is as follows:

Procedure SINGLE-NORM-IO-TASK-EXECUTER (IO_stream IO_triplets)
1= LET counter := 1.
2= FOR location := (POP IO_stream), until IO_stream is NULL:
= Location’s position := counter.
— Increase counter by 1.
- SET the "left" property of the location to NIL.
- SET the "right" property of the location to NIL.
3= END-FOR.
4- FOR I0_triplet := (POP IO_triples), until IO_triplets is NULL:
— LET lpos be the position of the (FIRST IO_triplet) in the IO_stream.
— LET mpos be the position of the (SECOND IO_triplet) in the IO_stream.
~ LET rpos be the position of the (THIRD 1I0_triplet) in the IO_stream.
- IF -~ lpos > rpos.
— THEN - REVERSE IO _triplet.
— SWAP rpos with lpos.
— COND - mpos > lpos & mpos < rpos.
THEN - Call (CONSTRAIN_MOVEMENT IO_triplet).
= COND - mpos < lpos.
THEN ~— CALL (FIRST_AFTER_MIDDLE IOQ_stream
(LIST (SECOND IO_triplet) (FIRST IO_triplet) (THIRD
IO_triplet) )). OR
~ CALL (MIDDLE_BEFORE_FIRST I0_stream
(LIST (SECOND IO_triplet) (FIRST IO_triplet) (THIRD
IO_triplet) )). OR
= CALL (LAST_BEFORE_FIRST I0_stream (LIST (SECOND IO_triplet)
(FIRST I0_triplet) (THIRD IO_triplet) )).
— COND =~ mpos > rpos.
THEN - (MIDDLE_AFTER_LAST IO _stream (LIST (FIRST IO_triplet)
(THIRD IO_triplet) (SECOND IO_triplet) )).
OR
- (LAST_BEFORE_MIDDLE IO_stream
(LIST (FIRST IO_triplet)
(THIRD IO_triplet) (SECOND IO_triplet) )).

OR
— (FIRST_AFTER_LAST I0_stream
(LIST (FIRST IO_triplet) (THIRD IO_triplet)
(SECOND IO_triplet) )).

5—- END_FOR.

6- Generate the JO_stream according to the final position (movement const-
raint) of each location.
7—- RETURN I0_stream.

The function of each sub-procedure called by the IO task-executer are as
described below. The detail of the algorithm is suppressed for the sake of
brevity.

The procedure CONSTRAINT-MOVEMENT fixes the movement range of an inter-
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vening opportunity location so that it is in-between the current bracketing
locations, and all previously declared bracketing locations (if any).

The procedure FIRST-AFTER-MIDDLE checks the movement constraint of an
locations in a triplet, and adjusts the range movement of them so that the
first activity 1s positioned after the middle one.

The procedure MIDDLE-BEFORE-FIRST checks the movement constraint of the
locations in a triplet, and adjusts the range movement of them so that the
middle activity is positioned before the first one.

The procedure LAST-BEFORE-FIRST checks the movement constraint of the
locations in a triplet, and adjusts the range movement of them so that the
last activity is positioned before the first one.

The procedure MIDDLE-AFTER-LAST checks the movement constraint of the
locations in a triplet, and adjusts the range movement of them so that the
middle activity is positioned after the last one.

The procedure LAST-BEFORE-MIDDLE checks the movement constraint of the
locations in a triplet, and adjusts the range movement of them so that the
last activity is positioned after the middle one.

The procedure FIRST-AFTER-LAST checks the movement constraint of the
locations in a triplet, and adjusts the range movement of them so that the

first activity is positioned after the last one.

5.17 Designs with respect to multiple norms

Generation designs with respect to a combination of social norms, as was
depicted in figure 5.6, are carried out by three different task-managers,
each having three task-executers to its disposal. A task-executer improves a
partial design with respect to a specific norm. The near-optimal and the
tree type designs with respect to multiple norms, as in the cases of single
norms, generate connectivity patterns of bulldings with no particular regu-
larity. The patterns of access for these types of designs are defined by the
nature of data reflected in the hierarchical cluster of location pairs. The
task-managers for these two types of designs proceed design generation by
following the general strategy and heuristic rules, described earlier in
this chapter, and calling their corresponding task-executers to generate
designs using a hill-climbing strategy iteratively and in an order defined

by the agenda (and differed agenda) of norms.
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The tree and near-optimal patterns with respect to a combination of
norms are carried out under the following constraints, discussed earlier:

- Branchiness for each location.

- Planarity (for near-optimal solution only).

= Knowledge base of recommended links.

- Knowledge base of prohibited-accesses.

These constraints contribute to generation of more realistic design solu-
tions. The following sections describe algorithms and depict flow diagrams

corresponding to different task-executers in TOPGENE.

5.18 Generating near-optimal and tree type designs with respect to multiple
norms

The multi-norm-near-optimal-task-manager is responsible for generating near-
optimal designs for a set of locations with respect to a combination of
norms. This task-manager has three task-executers in its disposal each for
optimizing partial designs with respect to a single norm.

The multi-norm task-executer for generating tree type designs is
identical with the multi-norm near-optimal task-executer , except that the
cyclic paths are avoided in this type of designs. For this reason, TOPGENE
uses the same procedure (task-executers) for generating tree and near-
optimal design types with respect to multiple norm if possible. The task-
executers not being shared between them are not also too different. For this
reason stating similar algorithms for these two design types are skipped.
The task-diagram and the data diagram, For these design types are depicted
in figures 5.16 and 5.18.

Procedure MULTI-NORM-COMMUNITY-TASK-EXECUTER
(PHC_PAIRS processed_locs partial_design)
1- LET PD be the partial design.
2— FOR PAIR € PHC_PAIRS, UNTIL SUCCESS:
2.1= LET locl BE (FIRST PAIR).
2.2— LET loc2 BE (SECOND PAIR).
COND -~ (locl is already processed),
= (loc2 is already processed).
THEN - Do nothing.
COND < locl is already processed.
THEN LET DECC_LOCS be a 1list of locations in PD sorted in descending
order of their eccentricity with respect to locl.
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- FOR loc := (POP DECC_LOCS):
- LET link (LIST loc loc2).
— LET branchl := branching degree of loc.
— LET branch2 := branching degree of loc2.
- IF: = (link ¢ prohibited_accesses),
(branchl > 0},
(branch2 >0).
THEN: = Add link to PD.
Update branchiness of the link nodes,
(PUSH loc2 processed_locs),
success := TRUE,
Break the loop.

-END-FOR
COND = locl is already processed.
THEN — LET DECC_LOCS be a list of locations in PD sorted in descending
order of their eccentricity with respect to loc2.
- FOR loc := (POP DECC_LOCS):
— LET link (LIST loc locl).
- LET branchl := branching degree of loc.
- LET branch2 := branching degree of locl.
- IF: — (link ¢ prohibited_accesses),
- (branchl > 0),
— (branch2 > 0).
THEN: — Add link to PD,
- Update branchiness of the link nodes,
-~ (PUSH locl processed_locs),
- success := TRUE,
— Break the loop.
- END-FOR.
OTHERWISE = Do nothing.
- IF: =~ success. THEN: — break the loop.
3- END-FOR.
4— END-PROCEDURE.

Procedure MULTI-NORM-NEAR-OPTIMAL~PRIVACY-TASK-EXECUTER
(PHC_PAIRS processed_locs partial_design)
1= LET PD be the partial design.
2= FOR PAIR e PHC_PAIRS, UNTIL SUCCESS:
2.1 = LET locl BE (FIRST PAIR).
2.2 = LET loc2 BE (SECOND PAIR).
2.3 = LET branchl := branching degree of locl.
2.4 - LET branch2 := branching degree of locZ.
COND - (locl is already processed),
- (loc2 is already processed).
THEN IF: - (link ¢ prohibited_accesses),
-~ (branch1l > 0),
(branch2 > 0),
(pair + PD) is planar.
THEN: = Add link to PD,
Update branchiness of the link nodes,.
(PUSH loc2 processed_locs),
success := TRUE,
~ Remove pair from PHC_PAIRS.,
COND = locl is already processed.
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THEN ~ LET neighbors be a list of locations in PD in ascending order of
their eccentricity with respect to locl.
— (PUSH locl neighbors).
- FOR loc := (POP neighbors):
= LET -~ link := (LIST loc loc2).
= LET branch := branching degree of loc.
IF: - (link ¢ prohibited_accesses),
- (branch > 0).
THEN: - Add link to PD,
— Update branchiness of the link nodes,
- (PUSH loc2 processed_locs),
~ (PUSH pair success),
- Break the loop.
- END-FOR.
COND « loc2 is already processed.
THEN LET neighbors be a list of locations in PD in ascending order of
their eccentricity with respect to loc2.
(PUSH loc2 neighbors).
= FOR loc := (POP neighbors):
= LET = link := (LIST loc locl).
— LET branch := branching degree of loc.
IF: = (link ¢ prohibited_accesses) & — (branch > 0).
THEN: = Add link to PD,
— Update branchiness of the link nodes,
~ (PUSH locl processed_locs),
— (PUSH pair success),
- Break the loop.
= END-FOR.
OTHERWISE -~ Do nothing.
— IF = success THEN: — break the loop.
3— END-FOR.
4~ RETURN PHC_PAIRS and processed_locs.
5— END MN-OPTIMAL-PR-TASK-EXECUTER procedure.

Procedure MULTI_NORM_IO_TASK_EXECUTER
(IO_triplets processed_locs partial_design)

1= LET PD be the partial design.
2— FOR IO_triplet € I0_triplets, UNTIL SUCCESS:

2.1 = LET locl be (FIRST 1IO_triplet).

2.2 = LET loc2 be (SECOND IO_triplet).

2.3 = LET loc3 be (THIRD IO triplet).

COND « (locl & loc2 & loc3 are not processed).
THEN 1IF: = (LIST locl loc2) ¢ prohibited_accesses,
= (LIST loc2 loc3) ¢ prohibited_accesses.
THEN: = FOR loc € processed_locs UNTIL: processed_locs exhausted.
= LET branch := branching degree of loc.
IF:= (LIST loc loc3) ¢ prohibited_accesses,
- (branch >0).
THEN: - TEMP := LOC,
= Break the loop.
- END-FOR.
IF: - temp.
THEN: = Add (LIST temp loc3) to PD,
— Update branching degree of loc3,
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— Update branching degree of temp,
- (PUSH loc3 processed_locs),
- Add (LIST loc2 loc3) to PD,
— Update branching degree of locZ2,
— Update branching degree of loc3,
- (PUSH loc2 processed_locs),
= Add (LIST locl loc2) to PD,
- Update branching degree of locl,
— Update branching degree of loc2,
- (PUSH locl processed_locs),
- success := TRUE,
- Remove IO_triplets from IO_triplets,
- Break the loop.
COND = (locl is not processed),
(loc2 is not processed).
THEN -~ LET neighbors be a list of locations in PD in ascending order of
their eccentricity with respect to location loc3.
(PUSH loc3 neighbors).
- FOR loc € neighbors:

~ LET branch := branching degree of loc.
- IF: — ((LIST loc2 loc) ¢ prohibited_accesses), AND = (branch
> 0).

THEN: = Add (LIST loc2 ioc) to the PD,
- Add (LIST temp loc3) to PD,
- Update branching degree of locZ,
- Update branching degree of loc,
— (PUSH loc2 processed_locs),
= Add (LIST locl loc2) to PD,
- Update branching degree of locZ,
— Update branching degree of locl,
- (PUSH locl processed_locs),
~ (PUSH locl processed_locs}),
- success := TRUE,
- Remove I0_triplets from I0_triplets,
- Break the loop.
- END_FOR
COND = locl and loc3 are not processed.
THEN - LET paths be a list of all paths from loc2 location.
FOR path € paths:
— FOR loc € path:
— LET branch := branching degree of loc.
IF = (LIST locl loc) ¢ prohibited_accesses, & (branch
> 0).
THEN:= Add (LIST locl loc) to the PD,
— Update branching degree of locl,
- Update branching degree of loc,
-~ (PUSH locl processed_locs),
- temp := (LIST locl loc),
IF: - number of paths > 1.
THEN: -~ Remove the path from paths,
- Break the loop.

- END_FOR.
— Remove path from paths.
= Break the loop.
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— END-FOR.
~ IF: = success THEN: = Break the loop.
~ IF: = TEMP.
- FOR path € paths:
= FOR loc € path:
— LET branch := branching degree of loc.
IF: = (LIST loc3 loc) ¢ prohibited_accesses,
- (branch > 0).
THEN:= Add (LIST loc3 loc) to the PD,
Update branching degree of loc3,
Update branching degree of loc,
(PUSH loc3 processed_locs),
success := TRUE,
Remove the path from paths,
Break the loop.

- END-FOR.
=-IF: = success THEN: - Break the loop.
- END-FOR.

COND = loc2 and loc3 are not processed.
THEN - LET neighbors be a list of locations in PD in ascending order of
their eccentricity with respect to location locl.
— (PUSH locl neighbors).
— FOR loc € neighbors:
-~ LET branch := branching degree of loc.
IF: « (LIST loc2 loc) ¢ prohibited_accesses,
— (branch > 0).
THEN — Add (LIST loc2 loc) to the PD,
- Update branching degree of loc2,
= Update branching degree of loc,
= (PUSH loc2 processed_locs),
- Add (LIST loc3 loc2) to PD,
- Update branching degree of loc3,
- Update branching degree of loc2,
= (PUSH loc3 processed_locs),
- success := TRUE,
- Remove IO _triplets from IO_triplets,
= Break the loop.
END~FOR.
COND = locl is not processed
THEN - LET paths := list of all paths from loc2 € PD that do not cross
loc3.
FOR path € paths:
- FOR loc € path:
- LET branch := branching degree of loc.
IF: = (LIST locl loc) ¢ prohibited_accesses,
- (branch > 0).
THEN:= Add (LIST locl loc) to the PD,
Update branching degree of locl,
Update branching degree of loc,
(PUSH locl processed_locs),
success := TRUE,
remove IO_triplet from the IO_triplets,
-~ Break the loop.

1

- END-FOR.
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- IF: — success THEN: - break the loop.
COND = loc3 is not processed.

THEN

locl.

FOR loc € path:

LET paths := list of all paths from loc2 in PD that do not cross

FOR path € paths:

~ LET branch := branching degree of loc.

IF: =~

THEN -

END-FOR.
- IF: = success.

(LIST locl loc) ¢ prohibited_accesses,
(branch >0).

Add (LIST loc loc3) to the PD,

Update branching degree of loc3,

Update branching degree of loc,

(PUSH loc3 processed_locs),

success := TRUE,

remove JO_triplet from the IO_triplets,
Break the loop.

THEN - Break the loop.

COND - loc2 is not processed.

THEN = WHEN: type is near_optimal
- LET branchl := branching degree of locl.
— LET branch2 := branching degree of loc3.

IF: =~

THEN: =

OTHERWISE ~ Remove I0

(LIST locl loc2) ¢ prohibited_accesses,

(LIST loc2 loc3) is not a prohibited_accesses,
{(LIST locl loc2) + (loc2 loc3) + PD} is planar,
(branchl1 > 0) & (branch2 > 0).

Add (LIST locl loc2) to the PD,

Update branching degree of locl,

Update branching degree of loc2,

(PUSH loc2 processed_locs),

Add (LIST loc3 loc2) to the PD,

Update branching degree of loc3,

Update branching degree of locZ2,

success := TRUE,

Remove IO _triplet from the IO_triplets.

Break the loop.

triplet from the IO_triplets.

2.4 = IF: = success. THEN = Break the loop.

3~ END-FOR.

4— RETURN IO_triplets and processed_locs.
S= END MULTI-NORM-I0-TASK-EXECUTER.
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Input data
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Partially Hierarchical clustering of location pairs
with respect to their flow generation potential degrees.
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Output the generated design and its analysis result.

Figure 5.16: TOPGENE’s task diagram for generating
"near-optimal” designs with respect to a combination of norms
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Input data

!

Q-analysis:
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between the location pairs.

Partially Hierarchical clustering of location pairs
with respect to their flow generation potential degrees.
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Initialize the design solution according to the top item on
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Move the top agenda item to the bottom of agenda list.
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Figure 5.17: TOPGENE’s task diagram for generating "Tree"

designs with respect to a combination of norms
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Input activities (locations)

Input actors responsible for the activities

l Input actors’s weight

Q-analysis (Identifying the circulation flow
potentials between locations.)

Identified circulation
Input style =———e—e———3| flow potentials between
the locations.

Partially Hierarchical clustering of location pairs
with respect to their flow generation potential degree
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> Any unprocessed locations ?
1 -
Agenda M Distanced
i
Agenda item Task pairs Distance
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manager
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Analysis (calculating the actual behaviour) of the
Generated pattern with respect to the social norms.

lAnalysls of the generated solution

Displaying the solution pattern and its analysis.

Figure 5.18: TOPGENE’s data flow diagram for generating
"tree" or "near-optimal" designs with respect to a combination of norms

5.19 Generating Prototypical designs with respect to multiple norms

The approach in generating a prototypical designs with respect to a combina-
tion of norms is almost the same as the one used for generating a design
with respect to a single norm. TOPGENE In an attempt to generate a proto-
typical solution, first generate a stream of locations with respect to the
multiple norms, and feeds it to the pattern generator routine for a final
arrangement of the locations in the stream on a required pattern. The task-

manager for the prototypical designs, as in the two other cases, has three
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specialized task-executers each responsible for improving the partial design

with respect to a specific norm. The task-manager calls these task-

executers, based on the order defined by the deferred agenda of norms.
Figure 5.19 shows the task and data flow diagram for generating

prototypical designs with respect to a combination of norms.

5.19.1 Generating a stream of locations

The multi-norm prototypical task-manager generates a stream of locations
using a heuristic based hill-climbing strategy. This task-manager by iter-
atively calling different task-executers, each responsible for improving a
partial design with respect to a single norm, passes a partial design
(stream), and the list of unprocessed location pairs (resulting from scrapp-
ing of the partially hierarchical clusters of activity pairs to them), and
receives an improved and sometimes unimproved) version of the partial design
with possibly a reduced list of location-pairs.

The core of the task-executer algorithms is described below.

Procedure MN-PROTOTYPICAL-COMMUNITY-TASK-EXECUTER (stream ordered_pairs)
1- FOR pair € ordered_pairs:
1.1 LET locl be (FIRST pair).
1.2 LET loc2 be (SECOND pair).
COND = (locl is not processed),
- (loc2 is not processed).
THEN - Do nothing.
COND = locl is not processed.
THEN - Allocate locl to the end location of the stream which is
farthest from loc2.
— success := TRUE.
COND -~ loc2 is not processed.
THEN - Allocate loc2 to the end location of the stream which is
farthest from locl.
— success := TRUE.
OTHERWISE - DO nothing.
1.3 IF: = success THEN: Break the loop.
END-FOR.
Remove the processed pair from the ordered_pairs.
— RETURN stream & ordered_pairs.
END of procedure.

Procedure MN-PROTOTYPICAL-PRIVACY-TASK-EXECUTER (stream ordered_pairs)
1= FOR pair € ORDERED_PAIRS:

1.1 LET locl be (FIRST pair).

1.2 LET loc2 be (SECOND pair).
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COND = (locl & loc2 are not processed).
THEN = Do nothing.
COND = locl is not processed.
THEN « Allocate locl to the end location of the stream nearest
to loc2.
- success := TRUE

COND =~ loc2 is not processed
THEN < Allocate loc2 to the end location of the stream which is
nearest to locl.
= success := TRUE.
OTHERWISE -~ DO nothing.
= IF: = success THEN: - Break the loop.
-~ END-FOR.
~ Remove the processed pair from the ordered_pair.
= RETURN stream ordered_pairs.
END of procedure.

Procedure MN_PROTOTYPICAL_IO_TASK EXECUTER (stream IO _triplets)
1- FOR I0_triplet € I0_triplet:
1.1 LET locl be (FIRST pair).
1.2 LET loc2 be (SECOND pair).
1.3 LET loc3 be (THIRD pair).
COND - (locl & loc2 & loc3 are not processed).
THEN - Do nothing.
COND = (locl & loc2 are not processed).
THEN - stream := {(LIST locl loc2) + partial design}.
- success := IO0_triplet.
COND -~ (locl & loc3 are not processed).
THEN - (PUSH locl stream).
= stream := stream + loc3.
- success := I0_triplet.
COND = (loc2 & loc3 are not processed).
THEN = stream := {stream + (LIST loc2 loc3)}.
- success := IO _triplet.
COND = locl is not processed
THEN = PUSH locl to the end of the stream closest to loc2.
- success := [0_triplet.
COND - loc3 is not processed
THEN =~ PUSH loc3 to the end of the stream closest to loc2.
- success := I0_triplet.
COND - loc2 is not processed
THEN - Put loc2 in_between locations locl and loc3 in the stream.
OTHERWISE = Remove IO_triplet from the IO_triplets.
= IF: = success.
THEN -~ Break the loop.
-~ END-FOR.
- RETURN I0_triplets and processed_locs.
END of procedure.
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Figure 5.19: TOPGENE’s task and data-flow diagram for generating
"prototypical” designs with respect to a combination of norms
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5.20 Analysis, diagnosis, and evaluation of designs

“And how will you inquire, Socrates, into that which you do not
know? What will you put forth as the subject of Inquiry? And if
you find what you want, how will you ever know that this is what
you did not know?" Plato’s Meno

This section discusses the analysis, diagnosis, and evaluation of a design,
as it is carried out by TOPGENE. The definition of these terms was given in
chapter 2.

Many factors may contribute to the analysis of a building at topo-
logical 1level. The following figure 1lists topological and operational
variables contributing to the behavior of buildings with respect to the

social norms discussed in this thesis.

Design-description space: Performance space:
Design variables Behavioral criteria
= Connectivity structure: = Community-utility.

. Paths between locations. = Privacy-cost.

. Intervening locations, = Intervening-opportunity

. Locations beyound a location.

Circulation-cost.
. Branchiness of each location.
. Penetration.

= Operation:
. Activity assigned to each location.
. Actors responsible for each activity.
. Flow potential between locations.
. A flow meeting other flows on a location.
. Effect of proximate flow with respect
to a location

— Metric distances between the locations.
- Usage time.

Figure 5.20: Some factors relating a building description to
its performance criteria

Some of the variables, shown above, may be more important than the others
for analysis of a design, and some may be implicitly part of the others. For
example, in the absence of quantitative data such as flow generation degree
between location pairs in a design, an analysis or evaluation procedure may
be carried out based on qualitative analysis of the building and heuristics
rules. In such a case, available information, such as branchiness and pene-

tration (see appendix-A for a definition) degrees, for example, have impor-
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tant role in evaluation of building with respect to the social norms. A high
branching degree building has potential for a high performance with respect
to the privacy norm. Or, a location beyond a set of other locations cannot
perform as an intervening location for them. However in our case, the exis-
tence of operational information such as flow, makes the use of qualitative
analysis of a design unnecessary. As in the case of deslgn generation, most
of the information needed here are also prepared by the Q-analysis method.
The same process carried out for the design generation, such as finding the
flow generation potential between different location pairs, and hierarchical
clustering of location-pairs is applied here as well.

There are also variables in above table that are either disregarded, or
taken in an special way in the current implementation of TOPGENE. For
example, metric distances are neglected by TOPGENE. TOPGENE, in general,
carries out the analysis and evaluation of design under the assumptions
mentioned in section 5.2.

The plan evaluator module of TOPGENE, is used for two purposes: The
analysis and diagnosis of designs generated by the plan generator module,
and the evaluation of existing designs presented to the system. In the first
case the plan evaluator takes the generated design, analyze and produces its
analysis results in numerical forms. An analysis of a design by TOPGENE
results in the actual behavioral values of the design with respect to the
norms under the consideration.

Diagnosis was defined as the process of finding the causes contributing
to certain behavior or misbehavior of a system. Diagnosis of many physical
systems, often starts with observation of a misbehavior (symptom) from the
system, assuming a misbehavior as a result of malfunctioning of a specific
part, and investigating if the misbehavior of that part explains the observ-
ed symptom [Struss88].

The hybrid analytical and qualitative approach by TOPGENE, as described
in chapter one, is better than a pure qualitative approach for the same
purpose. The use of Q-analysis in analyzing design data, and identification
of potential flow degrees between location pairs in a design is the main
contributor to analytical power of the system. All the norms discussed in
this work, as described in chapter two, are under direct influence of the
flow degrees between location-pairs in a design. Other factors contributing

to the analysis, diagnosis, and evaluation of a building, are the weights
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associlated with the actors and flow indices between location-pairs. TOPGENE
also allows optional input of these data. The total behavior of a design
consists of the aggregation of its behaviors at micro-levels (locations).
According to the definition of the social norms in chapter 2, the
behavior of a building with respect to these norms is under direct influence
of the pattern of flow in a building. For example meetings of flow or
absence interactions between the flows in a bullding have effect on the
behavior of that building with respect to the privacy and community norms.
Similarly, the intervening opportunity norm is defined by the passage of
particular flows on certain locations. The circulation-cost on the other
hand is wunder the influence of flows between location-pairs. TOPGENE
provides the user causes of behavior of a building system with respect to
the social norms, without going to detalled explanation. The following
paragraphs display a diagnosis report on a generated design with respect to
the social norms forms:
Diagnosis of design with respect to the community norm:
The community utility for location TV-ROOM is 67 units.
The community utility for location BEDROOM-3 is 20 units.
The community utility for location KITCHEN-1 is 5 units.

etc.

Diagnosis of design with respect to the norm privacy:
The privacy cost for TV-ROOM is 67 units.

The privacy cost for BEDROOM-3 is 20 units.

The privacy cost for KITCHEN-1 is 5 units.

etc.

Diagnosis of design with respect to the norm circulation cost:

The circulation cost between BEDROOM-1 and LIVING-ROOM is: 125 units.
The circulation cost between BEDROOM-2 and LIVING-ROOM is: 87 units.
The circulation cost between HALL and LIVING-ROOM is: 150 units.

etc

Diagnosis of design with respect to the intervening opportunity norm:
The intervening opportunity of the HALL as a result of being on the shortest
path in-between location pairs (KITCHEN-1 LIVING-ROOM) is 10.

(5-66)



TOPGENE: An Artificial Intelligence Approach to a Design Process

The intervening opportunity of the HALL as a result of being on the shortest
path in-between location pairs (BEDROOM-2 LIVING-ROOM) is 6.
The intervening opportunity of the HALL as a result of being on the shortest
path in-between location pairs (BEDROOM-1 LIVING-ROOM) is 6.

etc.

I defined the analysis of a design as the act of finding the behavioral
values of each location in a design with respect to the social norms, and
presenting the cumulated values as the analysis result of a design. For
example, the result of behavioral analysis of a generated design is usually
as follows. This analysis may be limited to fewer norms, if information
about a norm is not available to the system.

Community utility: 1272 units utility.

Privacy cost : 1074 units cost.

Circulation cost : 2108 units cost.

Intervening opportunity utility: 28 units utility.

The analysis and derivation of actual performance behavior of buildings are
carried out by TOPGENE for both generated designs and designs presented to
the system, but evaluation is limited to the existing designs.

By evaluating an existing building with respect to the social norms, we
are interested in the system to judge the actual behavior of the system with
respect to an expected behavior. The problem, here is that the expected
behavior of a design presented to the system is not explicitly given to the
system. The only available information to the system is design description,
its operation to a certain degree, and a set of social norms reflection of
user’s point of views in judging the design. To fill the data gaps, TOPGENE
proceeds with the following steps:

— Applies Q-analysis on the activities and actors to:

. Derive the potential interactions between activity pairs in
design.

. Cluster partially hierarchical the activity pairs with respect
to their potential interactions.

— Analyzes the building based on the Q-analysis results to calculate

its actual behavior.

- Generates sub-optimal yardstick solutions with respect to each social

(5-67)



Chapter 5: The Implementation of TOPGENE

norms.

— Analyzes the yardstick solutions based on the Q-analysis results to
calculate their behavioral values with respect to the norms. The
behavioral values of the yardstick solutions are taken as the
expected behavior of the input design.

- Compares the actual and expected behavioral values of the input

design to judge actual behavior (i.e., evaluate).

In addition TOPGENE allows the user to decide the type of yardstick designs
for evaluation. This option provides several opportunity for a user to
evaluate a design with respect to a set of social norms. Other advantage of
this option is that it prohibit the system from unfalr evaluate of an
existing design in certain circumstances. For example, in many cases it is
unfair to evaluate the social behavior of a design delivered under certain
structural constraint against, for example, a near-optimal design. A design
with a certain structural type in many cases 1is better evaluated if it is
Judged against a design for the same set of data and with the same
structural type but optimized with respect to certain criteria.

Here is result of evaluation of a design by TOPGENE with respect to the
community, privacy, and circulation-cost norms:

Result of the behavioral analysis of the input design and yardstick designs:

Design Community Privacy Circulation
utility cost cost

Input design 1474 240 2422

Community yardstick 5141 0 6089

Privacy yardstick 1814 0 2762

Circ.-cost yardstick 1814 0 2762

Evaluation result:
The community utility of the input design is about 29% of the yardstick
solution, and it is very bad.

The privacy cost is 240 unit, which is higher than the generated
yardstick solution.

The circulation-cost of the input design is about 12% lower than the

generated yardstick solution, and it is excellent.
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The task-diagram and data-flow diagram for the whole process of evaluating a
design is depicted below. Examples of designs activities carried out by

TOPGENE will be given in the following chapter.

Input locations (activities), actors, and

actors’ weights

l Locations Locations
&
e Graph displayer: Input the design. Actors

The input design.

Q-analysis (Identifying Clirculation potential degrees) .

Location l pairs & their flow degree.

Partially Hierarchical clustering of location pairs in
in respect to their flow generation potential degrees.
Partially hierarchical clusters.ll Norms

For all input norms DO: ﬁ

!

Design generator module: Generate a yard-stick design
respect to a single norm.

Generated near-optimal solutioln with respect to a single norm.

l—>] Design evaluator / analyzer module.
Compare the analysis of the input and the generated
yard-stick designs and judge the performance behavior <«

of the input design

Evaluation results of the inputldeslgns.

Figure 5.21: TOPGENE’s Data flow diagram for evaluation
a design with respect to a set of social norms

Next chapter examines examples of designs generated by TOPGENE under

different design requirements.
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Chapter 6
Experimenting with TOPGENE

Examples and results

When you can measure what you are speaking about, and
xpress it in bers, you know hing about it.
(Lord Kelvin)

This chapter presents examples of design generation, and design evaluation
sub-processes carried out by TOPGENE. The chapter also gives an analysis of
TOPGENE ‘s behavior in currying these design sub-processes.

TOPGENE follows a design generation by a behavioral analysis of design with
respect to the social norms. The system also can give a diagnosis of the
design for its behavior upon the user’'s request. The behavioral analysis and
diagnosis results are in numerical form. These results provide us a means for
analyzing the performance of TOPGENE itself.

In this chapter, first I present three different sets of design data,
upon which experiments with TOPGENE are based. Each proceeding section, give
examples of design types generated by the system. These examples are followed
by a table consisting of the result of the behavioral analysis of different
types of designs generated under the same requirements. These tables are
complete in terms of covering design types; but, they are not exhaustive in
terms of covering all designs that may be produced for a set of data but with
respect to different set of requirements.

The concluding subsection evaluates TOPGENE. An analysis of behavior of
designs generated with respect to single norms helps us to evaluate TOPGENE's
behavior in generating designs in general. The reason is that TOPGENE
generates designs with respect to a combination of norms based on the same
heuristic rules that it uses for generating sub-optimal designs with respect
to single norms. The evaluation of system with respect to single norms is
approached from two perspectives:

~ The structural analysis of generated designs.

~ The behavioral analysis of generated designs.

TOPGENE also may be evaluated by examination of designs that it generates with
respect to a set of norms against corresponding sub-optimal designs with
respects to single norms. The difficulty, here, is obtaining of sub-optimal

(6-1)



Chapter 6: Experimenting with TOPGENE

designs. This difficulty is related to the intractability of our design
problem. The generation of sub-optimal designs are only possible through a
brute-force approach. However, partial implementation of the design problem
in a neural network has provided us with a means for partial testing of
TOPGENE. The neural network approach, to be discussed in the next chapter, is
a brute force approach comparing to TOPGENE's heuristic strategy. The network
generates only linear-tree type designs with respect to the community and
privacy / circulation-cost norm(s). These designs not necessarily optimal, but
they are in the neighborhood of optimal designe. Besides, the linear type
designs are computationally among the most complex types of designs. For this
reason the network solutions provide us an essential means for testing the
TOPGENE ‘s heuristic power with respect to some social norms.

6.1 Examples of design problems

To test TOPGENE, three sets of design data are gathered. These data-sets,
formulated by an architectural student or extracted from architectural books,
have been sufficient for formulating a wide range of design generation and
design evaluation problems.

TOPGENE can generate various types of designs with different social
behaviors for a set of data. This, in turn, provides many possibilities for
evaluating an existing design. Evaluation is carried out by comparing the
values of behavioral criteria of an existing design against values the same
criteria for a set of generated yardstick designs.

I have to mention beforehand that some formulation of design problems
presented in the following sections may seem unrealistic. This is also true
for some designs. For example, demanding a linear-tree design with community
performance for a house may occur rarely in practice. Yet, this design is
valuable in situations, such as arrangement spaces for public usage that
requires community performance. This odd and abnormal formulations of design
problems are, therefore, used purposely to show the capability of the system
in producing a diverse range of designs with different behaviors. Here are the
data-sets:

6.1.1 Data-set 1: A house

The first data-set belongs to a small-scale house with 12 locations. The
locations of the house and their users are shown in the following table:

Locations Actors

1- BEDROOM-1 DAUGHTER-1 DAUGHTER-2
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2- BEDROOM-2 SON-1 SON-2

3- BEDROOM-3 FATHER MOTHER

4- BATH-ROOM SONS FATHER MOTHER GUESTS DAUGHTERS STUDY-ROOM FATHER
6- TV-ROOM SONS FATHER MOTHER GUESTS DAUGHTERS

7- TOILET SONS FATHER MOTHER GUESTS DAUGHTERS

8- KITCHEN-2 MOTHER

9- KITCHEN-1 MOTHER

10- BEDROOM-4 GUESTS

11- LIVING-ROOM SONS FATHER MOTHER GUESTS DAUGHTERS

12- HALL SONS FATHER GUESTS MOTHER DAUGHTERS

Furthermore, a complementary data consisting of a table of flow degree between
location-pairs of the house is assumed to be available. This table may be the
actual flow between the location-pairs in the design gathered over a period
by observation, or may reflect the expected flow between different location-
pairs is the design.

Locations
1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 5 0 2 2 0 1 0 3 S
2 0 5 0 2 2 0 1 0 3 5
3 7 2 2 2 0 2 0 2 5
4 1 0 10 0 5 1 2 4
5 4 2 0 1 0 6 3
6 5 0 4 2 8 3
7 0 6 2 14 4
8 10 0 0 5
9 1 10 6
10 2 1
11 6

This table enriches the data-set. A complete data-set naturally helps TOPGENE
in producing a more reliable design in response to a problem. Experiments show
that the absence of detailed information, such as the expected flow between
locations of a building, or lack of design knowledge (e.g., knowledge of
recommended and prohibited accesses in buildings) may result in undesirable
designs. For example, above table shows that all actors in a house, such as
father, mother, sons, and daughters use most of the locations. Such a table
clearly confuses any designer, including TOPGENE, while trying to analyze and
hierarchically cluster the location-pairs with respect to their interaction
degree. Addition of more information to the data-set, or integration of
knowledge base of access with the system eliminates possible ambiguities. Both
of these solutions was implemented in TOPGENE and considerable improvement in
the quality of design was gained.

6.1.2 Data-set 2: A police-station

The second data-set belongs to a police-station with two floors. The locations
(activities) and actors assigned to them for different floors are reflected
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in the following tables. No flow indices are assumed between the locations

of this building.

Locations in the first floor Actors
1- CORRIDOR
2- KITCHEN COFFEE-MAIDS

3- PERSONNEL-TOILET

4- OFFICES

5- INSTRUCTION-ROOM3
6- INSTRUCTION-ROOM2
7- INSTRUCTION-ROOM1
8- CONFERENCE-ROOM2
9- CONFERENCE-ROOM1
10- RESTAURANT

11- STAFF-TOILET

12- ARCHIVE

13- SECRETARY-ROOM
14- CHIEF-ROOM

Locations in the second-floor

INSTRUCTORS PERSONNEL PROPERTY-KEEPER

PORTER COFFEE-MAIDS WARDER

PERSONNEL

OFFICERS INSTRUCTORS

OFFICERS INSTRUCTORS

OFFICERS INSTRUCTORS

PERSONNEL SECRETARIES DEPUTY CHIEF

PERSONNEL SECRETARIES DEPUTY CHIEF

OFFICES INSTRUCTORS PROPERTY-KEEPER PERSONNEL
PORTER COFFEE-MAIDS WARDER SECRETARIES DEPUTY CHIEF
SECRETARIES DEPUTY CHIEF

SECRETARIES

SECRETARIES

SECRETARIES DEPUTY CHIEF

Actors

1- CORRIDOR
2- VISITORS-ENTRANCE
3- PERSONNEL-ENTRANCE

4- RECEPTION2

5- RECEPTION1

6- BICYCLE-SHED

7- GARAGE

8- PROPERTY-INTAKE
9- VISITORS-TOILET

10- PROPERTY-STORAGE
11- BRIEFING-ROOM

12- DRESSING-ROOM3
13- DRESSING-ROOM2
14- DRESSING-ROOM1

15- REPORT-ROOM2

16- REPORT-ROOM1

17- PORTERS-LODGE

18- CELLS

19- PRISONERS-ENTRANCE

6.1.3 Data-set 3: A hospital

VISITORS PORTER

OFFICERS INSTRUCTORS PERSONNEL
PROPERTY-KEEPER PORTER COFFEE-MAIDS
SECRETARIES WARDER DEPUTY CHIEF
VISITORS PERSONNEL

VISITORS PERSONNEL

OFFICERS PERSONNEL PORTER
OFFICERS DEPUTY

PROPERTY-KEEPER WARDER

VISITORS

PROPERTY-KEEPER WARDER
OFFICERS INSTRUCTORS DEPUTY
INSTRUCTORS PERSONNEL

OFFICERS

OFFICERS

PERSONNEL

PERSONNEL DEPUTY

PORTER

PRISONERS WARDER

OFFICERS PRISONERS WARDER

Data-set 3 belongs to a four-stories hospital. This data-set is used to show
the capability of the TOPGENE in evaluating existing designs. The locations
and actors responsible for the actors in the hospital are as follows. I have
not separated locations of hospital in different floors, since they will be
evident in the last section, where the connectivity pattern of existing design

for each floor is displayed.
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Locations Actors

1- SURGERY SURGERY-PATIENTSSURGERY NURSESSURGERY-PATIENTS-HELPSSURGEONSINTERNISTS
PHYSIOTHERAPISTS CLERGYMAN VISITORS MENTAL-ATTENDANTS

2- UROLOGY UROLOGY-PATIENTS UROLOGY-NURSES UROLOGY-PATIENTS-HELPS

3- ORTHOPEDY

4- JAW-SURGERY

5- TNE-SURGERY

6- EYE-SURGERY

7- CARDIOLOGY

8- PULMONOLOGY

9- INTERNAL-SURGERY

10- DERMATOLOGY

11- GYNAECOLOGY

12- OBSTETRY

13- PEADIATRY

14- NEUROLOGY

15- PSYCHIATRY

16- RADIOLOGY

17- SPECIAL-CARE

18- ADMISSION

SURGEONS UROLOGISTS

INTERNISTS PHYSIOTHERAPISTS CLERGYMAN MENTAL-ATTENDANTS VISITORS
ORTHOPEDY-PATIENTS ORTHOPEDY-NURSES ORTHOPEDY-PATIENTS-HELPS SURGEONS
ORTHOPAEDISTS INTERNISTS PHYSIOTHERAPISTS

CLERGYMAN MENTAL-ATTENDANTS VISITORS

JAW-SURGERY-PATIENTS JAW-SURGERY-NURSES

JAW-SURGERY-PATIENTS-HELPS SURGEONS JAW-SURGEONS

INTERNISTS PHYSIOTHERAPISTS CLERGYMAN MENTAL-ATTENDANTS VISITORS
TNE-SURGERY-PATIENTS TNE-SURGERY-NURSES
TNE-SURGERY-PATIENTS-HELPS SURGEONS TNE-SURGEONS
PHYSIOTHERAPISTS CLERGYMAN MENTAL-ATTENDANTS VISITORS
EYE-SURGERY-PATIENTS EYE-SURGERY-NURSES
EYE-SURGERY-PATIENTS-HELPS SURGEONS EYE-SURGEONS

INTERNISTS PHYSIOTHERAPISTS CLERGYMAN MENTAL-ATTENDANTS VISITORS
CARDIOLOGY-PATIENTSCARDIOLOGY-NURSESCARDIOLOGY-PATIENTS-HELPSSURGEONS
CARDIOLOGISTS INTERNISTS PHYSIOTHERAPISTS CLERGYMAN

MENTAL-ATTENDANTS VISITORS

EYE-SURGERY-PATIENTS EYE-SURGERY-NURSES

EYE-SURGERY-PATIENTS-HELPS SURGEONS EYE-SURGEONS INTERNISTS
PHYSIOTHERAPISTS CLERGYMAN MENTAL-ATTENDANTS VISITORS
INTERNAL-SURGERY-PATIENTS INTERNAL-SURGERY-NURSES INTERNISTS
INTERNAL-SURGERY-PATIENTS-HELPS SURGEONS PHYSIOTHERAPISTS CLERGYMAN
MENTAL-ATTENDANTS VISITORS

DERMATOLOGY-PATIENTS DERMATOLOGY-NURSES

DERMATOLOGY-PATIENTS-HELPS SURGEONS INTERNISTS PHYSIOTHERAPISTS
DERMATOLOGISTS CLERGYMAN MENTAL-ATTENDANTS VISITORS
GYNAECOLOGY-PATIENTS GYNAECOLOGY-NURSES GYNAECOLOGY-PATIENTS-HELPS
SURGEONS VISITORS INTERNISTS GYNAECOLOGISTS OBSTETRISTS

PHYSIOTHERAPISTS CLERGYMAN MENTAL-ATTENDANTS

OBSTETRY-PATIENTS OBSTETRY-NURSES OBSTETRY-PATIENTS-HELPS

SURGEONS INTERNISTS OBSTETRISTS PHYSIOTHERAPISTS

CLERGYMAN MENTAL-ATTENDANTS VISITORS

PEADIATRY-PATIENTS PEADIATRY-NURSES PEADIATRY-PATIENTS-HELPS

SURGEONS INTERNISTS PEADIATRISTS PRODUCERS PHYSIOTHERAPISTS

CLERGYMAN MENTAL-ATTENDANTS VISITORS

NEUROLOGY-PATIENTS NEUROLOGY-NURSES
NEUROLOGY-PATIENTS-HELPSSURGEONSINTERNISTSNEUROLOGISTSPHYSIOTHERAPISTS
CLERGYMAN MENTAL-ATTENDANTS VISITORS

PSYCHIATRY-PATIENTS PSYCHIATRY-NURSES PSYCHIATRY-PATIENTS-HELPS SURGEONS
INTERNISTS PSYCHIATRISTS PHYSIOTHERAPISTS CLERGYMAN

MENTAL-ATTENDANTS VISITORS

RADIOLOGY-PATIENTS RADIOLOGY-NURSES RADIOLOGY-PATIENTS-HELPS

SURGEONS INTERNISTS RADIOLOGISTS PHYSIOTHERAPISTS VISITORS
SPECIAL-CARE-PATIENTS SPECIAL-CARE-NURSESSURGEONS CARDIOLOGISTSINTERNISTS
CLERGYMAN MENTAL-ATTENDANTS

SURGERY-PATIENTS UROLOGY-PATIENTS ORTHOPEDY-PATIENTS
JAW-SURGERY-PATIENTS TNE-SURGERY-PATIENTS EYE-SURGERY-PATIENTS
CARDIOLOGY-PATIENTS PULMONOLOGY-PATIENTS INTERNAL-SURGERY-PATIENTS
DERMATOLOGY-PATIENTS GYNAECOLOGY-PATIENTS OBSTETRY-PATIENTS
PEADIATRY-PATIENTS NEUROLOGY-PATIENTS PSYCHIATRY-PATIENTS
RADIOLOGY-PATIENTS SPECIAL-CARE-PATIENTS
ADMISSION-ADMINISTRATION-PERSONNEL

INTERNISTS

19- SPIRITUAL-MENTAL-CARE

SOCIAL-WORKERS CLERGYMAN MENTAL-ATTENDANTS

20- VISITORS-ACCOMMODATION

21- PATHO-PHYSIOLOGY

22- RADIO-ISOTOPE-LAB
23- RONTGENDIAGNOSIS

KITCHEN-PERSONNEL VISITORS
PATHO-PHYSIOLOGY-NURSES CARDIOLOGISTS
NEUROLOGISTS

RADIO-LABORANTS

SURGEONS JAW-SURGEONS TNE-SURGEONS

PULMONOLOGISTS INTERNISTS
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24- OPERATING-ROOM
25- RECOVERY

26- DELIVERY-ROOM
27- PHYSICAL-THERAPY

EYE-SURGEONS CARDIOLOGISTS PULMONOLOGISTS INTERNISTS OBSTETRISTS
PEADIATRISTS RADIOLOGISTS PATHO-PHYSIOLOGISTS ROENTGEN-LABORANTS
OPERATION-NURSES ANESTHESISTS SURGEONS POLY-OR-PERSONNEL BEDS-PERSONNEL
RECOVERY-NURSES SURGEONS ANESTHESISTS POLY-OR-PERSONNEL BEDS-PERSONNEL
GYNAECOLOGISTS ANESTHESISTS

PSYCHIATRISTSREHABILITATIONISTS PHYSIOTHERAPISTSOCCUPATIONAL-THERAPISTS-1
OCCUPATIONAL-THERAPISTS-2 PATHO-PHYSIO-ADMINISTRATORS
ADMISSION-ADMINISTRATION-PERSONNEL PHYSIO-ADMINISTRATORS SOCIAL-WORKERS
PHYSIO-PERSONNEL

28- STAFF-ACCOMMODATION

29- NIGHT-SERVICE

STAFF-SECRETARIES
SURGEONS RADIO-LABORANTS SPECIAL-LABORANTS TECH-SERVICES-PERSONNEL

30- POLYCLINIC-OPERATION

31- POLYCLINIC

32- CLINICAL-LAB

33- SPECIAL-LAB

34- PHARMACY

35- STERILIZATION
36- MORTUARIUM

37- MANAGEMENT
33- ADMINISTRATION

39- ARCHIVES

SURGEONS UROLOGISTS JAW-SURGEONS

GYNAECOLOGISTS ANESTHESISTS POLY-OR-PERSONNEL

SURGEONS UROLOGISTSORTHOPAEDISTSJAW-SURGEONSTNE-SURGEONSEYE-SURGEONS
CARDIOLOGISTS PULMONOLOGISTS INTERNISTS DERMATOLOGISTS GYNAECOLOGISTS
PEADIATRISTS NEUROLOGISTS PSYCHIATRISTS ANESTHESISTS

STAFF-SECRETARIES POLY-PERSONNEL

PATHOLOGISTS CLINICAL-CHEMISTS

LABORANTS LAB-PERSONNEL AUTOPSY-ASSISTANTS

BACTERIOLOGISTS PATHOLOGISTS AUTOPSY-ASSISTANTS

PHARMACISTS PHARMACY-PERSONNEL

PHARMACISTS PHARMACY-PERSONNEL

PHARMACISTS AUTOPSY-ASSISTANTS

MANAGEMENT-PERSONNEL SERVICE-CHIEFS DIRECTORS-SECRETARIES
STAFF-SECRETARIES GENERAL-ADMINISTRATION-PERSONNEL

RECEPTIONISTS ARCHIVES-PERSONNEL

ARCHIVES-PERSONNEL

40- PERSONNEL-ACCOMMODATION

41- CENTRAL-KITCHEN
42- LINEN-SERVICE

43- BEDS-SERVICE

44- DOMESTIC-SERVICE

SURGERY-NURSES UROLOGY-NURSES ORTHOPEDY-NURSES

JAW-SURGERY-NURSES TNE-SURGERY-NURSES

EYE-SURGERY-NURSES CARDIOLOGY-NURSES PULMONOLOGY-NURSES
INTERNAL-SURGERY-NURSES DERMATOLOGY-NURSES GYNAECOLOGY-NURSES
OBSTETRY-NURSES PEADIATRY-NURSES NEUROLOGY-NURSES PSYCHIATRY-NURSES
RADIOLOGY-NURSES SPECIAL-CARE-NURSES OPERATION-NURSES RECOVERY-NURSES
PATHO-PHYSIOLOGY-NURSES SURGERY-PATIENTS-HELPS UROLOGY-PATIENTS-HELPS
ORTHOPEDY-PATIENTS-HELPS JAW-SURGERY-PATIENTS-HELPS
TNE-SURGERY-PATIENTS-HELPS EYE-SURGERY-PATIENTS-HELPS
CARDIOLOGY-PATIENTS-HELPS PULMONOLOGY-PATIENTS-HELPS
INTERNAL-SURGERY-PATIENTS-HELPS DERMATOLOGY-PATIENTS-HELPS
GYNAECOLOGY-PATIENTS-HELPS OBSTETRY-PATIENTS-HELPS
PEADIATRY-PATIENTS-HELPS NEUROLOGY-PATIENTS-HELPS
PSYCHIATRY-PATIENTS-HELPS RADIOLOGY-PATIENTS-HELPS

SURGEONSUROLOGISTS ORTHOPAEDISTSJAW-SURGEONSTNE-SURGEONSEYE-SURGEONS
CARDIOLOGISTS PULMONOLOGISTS INTERNISTS DERMATOLOGISTS GYNAECOLOGISTS
OBSTETRISTS PEADIATRISTS NEUROLOGISTS PSYCHIATRISTS RADIOLOGISTS
PATHO-PHYSIOLOGISTS ANESTHESISTS BACTERIOLOGISTS

REHABILITATIONISTS PATHOLOGISTS PHARMACISTS CLINICAL-CHEMISTS
PHYSIOTHERAPISTS PRODUCERS OCCUPATIONAL-THERAPISTS-1
OCCUPATIONAL-THERAPISTS-2 PATHO-PHYSIO-ADMINISTRATORS
ADMISSION-ADMINISTRATION-PERSONNELPHYSIO-ADMINISTRATORSRADIO-LABORANTS
SPECIAL-LABORANTS SOCIAL-WORKERS PHYSIO-PERSONNEL ROENTGEN-LABORANTS
PHARMACY-PERSONNEL LABORANTS LAB-PERSONNEL AUTOPSY-ASSISTANTS
STAFF-SECRETARIES MANAGEMENT-PERSONNEL

SERVICE-CHIEFS DIRECTORS-SECRETARIES

GENERAL-ADMINISTRATION-PERSONNEL RECEPTIONISTS KITCHEN-PERSONNEL
LINEN-PERSONNEL BEDS-PERSONNEL POLY-OR-PERSONNEL POLY-PERSONNEL
TECH-SERVICES-PERSONNEL TRANSPORT-PERSONNEL ENERGY-PERSONNEL
STORE-KEEPERS ARCHIVES-PERSONNEL CLERGYMAN

MENTAL-ATTENDANTS

KITCHEN-PERSONNEL

LINEN-PERSONNEL

BEDS-PERSONNEL

TRANSPORT-PERSONNEL STORE-KEEPERS
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45- STORES TRANSPORT-PERSONNEL STORE-KEEPERS

46- TECH-SERVICE TRANSPORT-PERSONNEL TECH-SERVICES-PERSONNEL
47- TECH-INSTALLATION  TECH-SERVICES-PERSONNEL

48- ENERGY TECH-SERVICES-PERSONNEL ENERGY-PERSONNEL

Furthermore, the following weights are assumed to be associated with the
actors.

Actor Weights

ARCHIVES-PERSONNEL
AUTOPSY-ASSISTANTS
ANESTHESISTS

BEDS-PERSONNEL
BACTERIOLOGISTS
CARDIOLOGISTS
CARDIOLOGY-PATIENTS-HELPS
CARDIOLOGY-NURSES
CARDIOLOGY-PATIENTS
CLINICAL-CHEMISTS
CLERGYMAN
DIRECTORS-SECRETARIES
DERMATOLOGISTS
DERMATOLOGY-PATIENTS-HELPS
DERMATOLOGY-NURSES
DERMATOLOGY-PATIENTS
EYE-SURGEONS
EYE-SURGERY-NURSES
EYE-SURGERY-PATIENTS
EYE-SURGERY-PATIENTS-HELP
ENERGY-PERSONNEL
LINEN-PERSONNEL
LAB-PERSONNEL

LABORANTS

PHARMACISTS
PATHO-PHYSIOLOGY-NURSES
PULMONOLOGY-NURSES
PHARMACY-PERSONNEL
PULMONOLOGY-PATIENTS-HELPS
INTERNAL-SURGERY-PATIENTS-HELPS
JAW-SURGERY-PATIENTS-HELPS
JAW-SURGEONS
JAW-SURGERY-NURSES
JAW-SURGERY-PATIENTS
RECEPTIONISTS
GENERAL-ADMINISTRATION-PERSONNEL
MANAGEMENT-PERSONNEL
SPECIAL-LABORANTS
STAFF-SECRETARIES
PHYSIO-PERSONNEL
SOCIAL-WORKERS
ADMISSION-ADMINISTRATION-PERSONNEL
REHABILITATIONISTS
GYNAECOLOGISTS
GYNAECOLOGY-PATIENTS-HELPS
GYNAECOLOGY-NURSES
GYNAECOLOGY-PATIENTS
RECOVERY-NURSES
OPERATION-NURSES
OCCUPATIONAL-THERAPISTS-2
OCCUPATIONAL-THERAPISTS-1
ROENTGEN-LABORANTS
RADIO-LABORANTS
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RADIOLOGISTS
RADIOLOGY-PATIENTS-HELPS
RADIOLOGY-NURSES
RADIOLOGY-PATIENTS
KITCHEN-PERSONNEL
NEUROLOGISTS
NEUROLOGY-PATIENTS-HELPS
NEUROLOGY-NURSES
NEUROLOGY-PATIENTS
PSYCHIATRISTS
PSYCHIATRY-PATIENTS-HELPS
PSYCHIATRY-NURSES
PSYCHIATRY-PATIENTS
PULMONOLOGISTS
PULMONOLOGY-PATIENTS
PATHO-PHYSIOLOGISTS
PATHO-PHYSIO-ADMINISTRATORS
PHYSIOTHERAPISTS
PHYSIO-ADMINISTRATORS
PATHOLOGISTS
POLY-PERSONNEL
POLY-OR-PERSONNEL
PRODUCERS

PEADIATRISTS
PEADIATRY-PATIENTS-HELPS
PEADIATRY-NURSES
PEADIATRY-PATIENTS
OBSTETRY-PATIENTS-HELPS
OBSTETRY-NURSES
OBSTETRY-PATIENTS
OBSTETRISTS
INTERNAL-SURGERY-NURSES
INTERNAL-SURGERY-PATIENTS
‘ORTHOPAEDISTS
ORTHOPEDY-PATIENTS-HELPS
ORTHOPEDY-NURSES
ORTHOPEDY-PATIENTS
UROLOGISTS
UROLOGY-PATIENTS-HELPS
UROLOGY-NURSES
UROLOGY-PATIENTS

VISITORS
MENTAL-ATTENDANTS
INTERNISTS

SURGEONS
SURGERY-PATIENTS-HELPS
SURGERY-NURSES
SURGERY-PATIENTS
STORE-KEEPERS
SERVICE-CHIEFS
SPECIAL-CARE-NURSES
SPECIAL-CARE-PATIENTS
TRANSPORT-PERSONNEL
TECH-SERVICES-PERSONNEL
TNE-SURGEONS
TNE-SURGERY-NURSES
TNE-SURGERY-PATIENTS
TNE-SURGERY-PATIENTS-HELPS
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6.2 Partially hierarchical clusters of locations and streams of locations

Automatic analysis of above data-sets by TOPGENE yields the following
partially hierarchical clusters of location-pairs, and streams of locations
with respect to the community and the privacy / circulation-cost norm(s). The
streams of locations serve for generating prototypical designs. The previous
order of data-sets are kept intact in this section.

The partially hierarchical clusters of location-pairs for the house:

Association degree Cluster of location-pairs

97 (LIVING-ROOM TOILET)

70 (BATH-ROOM TOILET)

56 (LIVING-ROOM TV-ROOM)

35 (TOILET TV-ROOM)

14 (BATH-ROOM LIVING-ROOM) (BATH-ROOM BEDROOM-3)

10 (KITCHEN-1 LIVING-ROOM) (KITCHEN-1 KITCHEN-2)
(BATH-ROOM BEDROOM-2) (BATH-ROOM BEDROOM-1)

7 (BATH-ROOM TV-ROOM)

6 (ROOM STUDY-ROOM) (LIVING-ROOM BEDROOM-2)
(LIVING-ROOM BEDROOM-1) (KITCHEN-1 TOILET)

5 (BATH-ROOM KITCHEN-1)

4 (BEDROOM-3 LIVING-ROOM) (KITCHEN-1 TV-ROOM) (BEDROOM-3 TOILET)

(BEDROOM-2 TOILET) (BEDROOM-1 TOILET) (STUDY-ROOM TV-ROOM)
(BEDROOM-3 TV-ROOM) (BEDROOM-2 TV-ROOM) (BEDROOM-1 TV-ROOM)

2 (BEDROOM-4 LIVING-ROOM) (BEDROOM-4 TOILET) (BEDROOM-4 TV-ROOM)
(BEDROOM-3 KITCHEN-1) (STUDY-ROOM TOILET) (REDROOM-3 STUDY-ROOM)

1 (KITCHEN-2 LIVING-ROOM) (BATH-ROOM BEDROOM-4) (KITCHEN-2 TOILET)
(KITCHEN-2 TV-ROOM) (BATH-ROOM KITCHEN-2) (BEDROOM-3 KITCHEN-2)
(BATH-ROOM STUDY-ROOM)

0 (HALL ..)

The streams of locations generated by TOPGENE for the community and privacy
/ circulation-cost norm(s) based on above partially hierarchical clusters of
location are shown below.

The community stream of locations for the house data-set:

( LIVING-ROOM BATH-ROOM KITCHEN-2 HALL * BEDROOM-4 STUDY-ROOM BEDROOM-1 BEDROOM-2
KITCHEN-1 BEDROOM-3 TV-ROOM TOILET )

The privacy stream of locations for the house:

( BEDROOM-4 KITCHEN-2 KITCHEN-1 TV-ROOM LIVING-ROOM * TOILET BATH-ROOM BEDROOM-3
STUDY-ROOM BEDROOM-2 BEDROOM-1 HALL )

The partially hierarchical clusters of locations for first-floor of the
police-station:

Association degree Clusters of location-pairs
6 (PERSONNEL-TOILET RESTAURANT)
4 (CONFERENCE-ROOM| CONFERENCE-ROOM2)
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(CONFERENCE-ROOM2 RESTAURANT)
3 (CONFERENCE-ROOM2 STAFF-TOILET) (CONFERENCE-ROOM2 CHIEF-ROOM)
(CONFERENCE-ROOM1 STAFF-TOILET) (CONFERENCE-ROOM1 CHIEF-ROOM)
(RESTAURANT STAFF-TOILET) (CHIEF-ROOM RESTAURANT)
(CHIEF-ROOM STAFF-TOILET)
2 (INSTRUCTION-ROOM1 INSTRUCTION-ROOM3)
(INSTRUCTION-ROOM1 INSTRUCTION-ROOM?2)
(INSTRUCTION-ROOM3 RESTAURANT)
(INSTRUCTION-ROOM2 RESTAURANT)
(INSTRUCTION-ROOM1 RESTAURANT)
1 (KITCHEN PERSONNEL-TOILET) (KITCHEN RESTAURANT)
(OFFICE PERSONNEL-TOILET) (INSTRUCTION-ROOM3 PERSONNEL-TOILET)
(INSTRUCTION-ROOM?2 PERSONNEL-TOILET)
(INSTRUCTION-ROOM1 PERSONNEL-TOILET)
(CONFERENCE-ROOM2 PERSONNEL-TOILET)
(CONFERENCE-ROOM1 PERSONNEL-TOILET)
(CONFERENCE-ROOM?2 OFFICES) (CONFERENCE-ROOM! OFFICES)
(OFFICES RESTAURANT) (ARCHIVE CONFERENCE-ROOM?2)
(CONFERENCE-ROOM?2 SECRETARY-ROOM)
(ARCHIVE CONFERENCE-ROOM1) (CONFERENCE-ROOM1 SECRETARY-ROOM)
(ARCHIVE RESTAURANT) (RESTAURANT SECRETARY-ROOM)
(ARCHIVE STAFF-TOLLET)
(SECRETARY-ROOM STAFF-TOILET) (ARCHIVE SECRETARY-ROOM)
(ARCHIVE CHIEF-ROOM) (CHIEF-ROOM SECRETARY-ROOM)
0 (CORRIDOR ...)

The community stream of locations for first-floor of the police-station:

( PERSONNEL-TOILET CONFERENCE-ROOM?2 INSTRUCTION-ROOM3 CORRIDOR * SECRETARY-ROOM
ARCHIVE OFFICES KITCHEN INSTRUCTION-ROOM! INSTRUCTION-ROOM2 CHIEF-ROOM STAFF-
TOILET CONFERENCE-ROOM1 RESTAURANT )

The privacy stream of locations for first-floor of the police-station:

( OFFICES INSTRUCTION-ROOM1 INSTRUCTION-ROOM2 INSTRUCTION-ROOM3 KITCHEN-PERSONNEL-
TOILET * RESTAURANT CONFERENCE-ROOM2 CONFERENCE-ROOM1 STAFF-TOILET CHIEF-ROOM
ARCHIVE SECRETARY-ROOM CORRIDOR )

The partially hierarchical clusters of locations for second-floor of the
police-station:

Association degree Clusters of location-pairs
3 (BICYCLE-SHED PERSONNEL-ENTRANCE)
(BRIEFING-ROOM PERSONNEL-ENTRANCE)
2 (PERSONNEL-ENTRANCEPRISONERS-ENTRANCE)(CELLSPRISONERS-ENTRANCE)

(GARAGE PERSONNEL-ENTRANCE)(PERSONNEL-ENTRANCEPROPERTY-INTAKE)
(PERSONNEL-ENTRANCE PROPERTY-STORAGE)
(DRESSING-ROOM3 PERSONNEL-ENTRANCE)
(PERSONNEL-ENTRANCE REPORT-ROOM1) (RECEPTION1 RECEPTION2)
(BRIEFING-ROOM GARAGE) (PROPERTY-INTAKE PROPERTY-STORAGE)

1 (BICYCLE-SHED PRISONERS-ENTRANCE) (GARAGE PRISONERS-ENTRANCE)
(PRISONERS-ENTRANCE PROPERTY-INTAKE)
(PRISONERS-ENTRANCE PROPERTY-STORAGE)
(BRIEFING-ROOM PRISONERS-ENTRANCE)
(DRESSING-ROOM2 PRISONERS-ENTRANCE)
(DRESSING-ROOM! PRISONERS-ENTRANCE)
(PERSONNEL-ENTRANCE VISITORS-ENTRANCE)
(RECEPTION2 VISITORS-ENTRANCE) (RECEPTION1 VISITORS-ENTRANCE)
(BICYCLE-SHED VISTTORS-ENTRANCE) (VISITORS-ENTRANCE VISITORS-TOILET)
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(PORTERS-LODGE VISITORS-ENTRANCE) (PERSONNEL-ENTRANCE RECEPTION2)
(PERSONNEL-ENTRANCE RECEPTION1) (DRESSING-ROOM2 PERSONNEL-ENTRANCE)
(DRESSING-ROOM1 PERSONNEL-ENTRANCE)
(PERSONNEL-ENTRANCE REPORT-ROOM?2)
(PERSONNEL-ENTRANCE PORTERS-LODGE) (CELLS PERSONNEL-ENTRANCE)
(BICYCLE-SHED RECEPTION?2) (RECEPTION2 VISITORS-TOILET)
(DRESSING-ROOM3 RECEPTION2) (RECEPTION2 REPORT-ROOM?2)
(RECEPTION2 REPORT-ROOM1) (BICYCLE-SHED RECEPTIONT1)
(RECEPTION1 VISITORS-TOILET) (DRESSING-ROOM3 RECEPTIONI)
(RECEPTION1 REPORT-ROOM?2) (RECEPTION] REPORT-ROOM1)
(BICYCLE-SHED GARAGE)
(BICYCLE-SHED BRIEFING-ROOM) (BICYCLE-SHED DRESSING-ROOM3)
(BICYCLE-SHED DRESSING-ROOM?2) (BICYCLE-SHED DRESSING-ROOM1)
(BICYCLE-SHED REPORT-ROOM) (BICYCLE-SHED REPORT-ROOM1)
(BICYCLE-SHED PORTERS-LODGE) (DRESSING-ROOM2 GARAGE)
(DRESSING-ROOM1 GARAGE) (GARAGE REPORT-ROOM1)
(CELLS PROPERTY-INTAKE) (CELLS PROPERTY-STORAGE)
(BRIEFING-ROOM DRESSING-ROOM3) (BRIEFING-ROOM DRESSING-ROOM?2)
(BRIEFING-ROOM DRESSING-ROOM1) (BRIEFING-ROOM REPORT-ROOM1)
(DRESSING-ROOM3 REPORT-ROOM?2) (DRESSING-ROOM3 REPORT-ROOM 1)
(DRESSING-ROOM2 DRESSING-ROOM1) (REPORT-ROOM1 REPORT-ROOM?2)

0 (CELLS CORRIDOR)

The community stream of locations for second-floor of the police-station:

( BICYCLE-SHED BRIEFING-ROOM PRISONERS-ENTRANCE GARAGE PROPERTY-INTAKE PROPERTY-STORAGE
DRESSING-ROOM-3 REPORT-ROOM1 RECEPTION-2 VISITORS-ENTRANCE REPORT-ROOM2 CORRIDOR *
PORTERS-LODGE VISITORS-TOILET DRESSING-ROOM! DRESSING-ROOM2 RECEPTION1 CELLS PERSONNEL-
ENTRANCE )

The privacy stream of locations for second-floor of the police-station:

( CORRIDOR REPORT-ROOM2 REPORT-ROOM1 PROPERTY-STORAGE PROPERTY-INTAKE CELLS
PRISONERS-ENTRANCE BICYCLE-SHED * PERSONNEL-ENTRANCE BRIEFING-ROOM GARAGE
DRESSING-ROOM2 DRESSING-ROOM1 DRESSING-ROOM3 RECEPTION2 RECEPTIONI VISITORS-
ENTRANCE VISITORS-TOILET PORTERS-LODGE )

The partially hierarchical clusters of locations for the basement of the
hospital is shown below. Few relations exist between locations in the basement
of the hospital. For this reason, most of the location-pairs in this floor
fall into the cluster with O degree of association.

Association degree Clusters of location-pairs
5 (DOMESTIC-SERVICE TECH-SERVICE)
0 All other location-pairs.

The community stream of locations for basement of the hogpital:

( DOMESTIC-SERVICE CORRIDORS BEDS-SERVICES ARCHIVES PATHO-PHYSIOLOGY * MORTUARIUM
LINEN-SERVICE CORRIDORS TECH-SERVICE )

The privacy / circulation-cost stream of locations for the basement of the

hospital is as follows. This stream is divided in two sub-streams. A sub-

stream congisting of two activities: domestic-service and tech-service, and

another sub-stream embodying other activities in this floor. This shows that
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two activities domestic-service and tech-service are completely isolated from
other activities, and there is no association between these two activities and
other activities in this floor.

( DOMESTIC-SERVICE * TECH-SERVICE) (PATHO-PHYSIOLOGY MORTUARIUM ARCHIVES LINEN-
SERVICE BEDS-SERVICES CORRIDORS * CORRIDOR-10 )

The partially hierarchical clusters of locations for the ground-floor of the
hospital:

Association degree Cluster of location-pairs

65 (ADMISSION PEADIATRY)

56 (NEUROLOGYPSYCHIATRY)(PEADIATRY PSYCHIATRY)(OBSTETRY PSYCHIATRY)
(NEUROLOGY PEADIATRY) NEUROLOGY OBSTETRY) (OBSTETRY PEADIATRY)

3t (ADMISSION NEUROLOGY)

28 (ADMISSION PSYCHIATRY)

24 (ADMISSION OBSTETRY)

22 (POLYCLINIC RONTGENDIAGNOSTICS)

16 (POLYCLINIC POLYCLINIC-OPERATION)

13 (POLYCLINIC PSYCHIATRY) (NEUROLOGY POLYCLINIC) (PEADIATRY POLYCLINIC)
(PEADIATRY RONTGENDIAGNOSTICS)

12 (OBSTETRY RONTGENDIAGNOSTICS)

11 (OBSTETRY POLYCLINIC) (PSYCHIATRY RONTGENDIAGNOSTICS)
(NEUROLOGY RONTGENDIAGNOSTICS)

7 (DELIVERY-ROOM POLYCLINIC) (DELIVERY-ROOM POLYCLINIC-OPERATION)
(POLYCLINIC-OPERATION RONTGENDIAGNOSTICS)

6 (POLYCLINIC-OPERATIONPSYCHIATRY) NEUROLOGY POLYCLINIC-OPERATION)

(PEADIATRY POLYCLINIC-OPERATION) (OBSTETRY POLYCLINIC-OPERATION)

(ADMISSION PHYSICAL-THERAPY)

(PHYSICAL-THERAPY PSYCHIATRY)

(PHYSICAL-THERAPY POLYCLINIC) (NEUROLOGY PHYSICAL-THERAPY)

(PEADIATRY PHYSICAL-THERAPY) (OBSTETRY PHYSICAL-THERAPY)

0 (ENERGY STORES) (CENTRAL-KITCHEN STORES) (CENTRAL-KITCHEN CORRIDOR21)
All other location-pairs.

N s W

The community stream of locations for the ground-floor of hospital:

( ADMISSION PSYCHIATRY RONTGENDIAGNOSTICS POLYCLINIC-OPERATION DELIVERY-ROOM
ENERGY CENTRAL-KITCHEN CORRIDORS * CORRIDORS STORES PHYSICAL-THERAPY POLYCLINIC
OBSTETRY NEUROLOGY PEADIATRY )

The privacy stream of locations (activities) for the ground-floor of hospital
also is divided into two sub-streams. This is again. due to lack of
asgociation between any two locations in the sub~streams.

( PHYSICAL-THERAPY ADMISSION * PEADIATRY PSYCHIATRY NEUROLOGY OBSTETRY
RONTGENDIAGNOSTICS POLYCLINIC POLYCLINIC-OPERATION DELIVERY-ROOM) (CORRIDORS
CENTRAL-KITCHEN ENERGY * STORES )

The partially hierarchical clusters of location-pairs for first-floor of the
hospital:

Association degree Cluster of location-pairs

66 (NIGHT-SERVICE PERSONNEL-ACCOMMODATION)

s (CLINICAL-LAB PERSONNEL-ACCOMMODATION)

53 (OPERATING-ROOM PERSONNEL-ACCOMMODATION)
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51 (ADMINISTRATION PERSONNEL-ACCOMMODATION)

38 (PERSONNEL-ACCOMMODATION RECOVERY)

33 (OPERATING-ROOM RECOVERY)

25 (PERSONNEL-ACCOMMODATION SPECIAL-CARE)

15 (PERSONNEL-ACCOMMODATION TECH-INSTALLATIONS)

(NIGHT-SERVICE TECH-INSTALLATIONS)
(PERSONNEL-ACCOMMODATION VISITORS-ACCOMMODATION)
11 (MANAGEMENT PERSONNEL-ACCOMMODATION)
9 (PERSONNEL-ACCOMMODATION STERILIZATION)
(PERSONNEL-ACCOMMODATION PHARMACY)

(PHARMACY STERILIZATION)

7 (PERSONNEL-ACCOMMODATION RADIO-ISOTOPE-LAB)
(NIGHT-SERVICE RADIO-ISOTOPE-LAB)

6 (PERSONNEL-ACCOMMODATION STAFF-ACCOMMODATION)

(ADMINISTRATION STAFF-ACCOMMODATION)
(NIGHT-SERVICE RECOVERY) (NIGHT-SERVICE OPERATING-ROOM)
(NIGHT-SERVICE SPECIAL-CARE) (RECOVERY SPECIAL-CARE)
(OPERATING-ROOM SPECIAL-CARE)
4 (PERSONNEL-ACCOMMODATION SPECIAL-LAB)
(PERSONNEL-ACCOMMODATION SPIRITUAL-MENTAL-CARE)
(CLINICAL-LAB SPECIAL-LAB) (SPECIAL-CARE SPIRITUAL-MENTAL-CARE)
0 Corridor pairs.

©

The community stream of locations for first-~floor of the hospital:

( NIGHT-SERVICE CLINICAL-LAB OPERATING-ROOM ADMINISTRATION RECOVERY SPECIAL-CARE
TECH-INSTALLATIONS VISITORS-ACCOMMODATION MANAGEMENT STERILIZATION PHARMACY
RADIO-ISOTOPE-LAB  SPECIAL-LAB SPIRITUAL-MENTAL-CARE CORRIDORS * CORRIDORS
PERSONNEL-ACCOMMODATION )

The privacy stream of locations for first-floor of the hospital:

( RADIO-ISOTOPE-LAB  MANAGEMENT  VISITORS-ACCOMMODATION STAFF-ACCOMMODATION
ADMINISTRATION TECH-INSTALLATION NIGHT-SERVICES * PERSONNEL-ACCOMMODATION
CLINICAL-LAB SPECIAL-LAB OPERATING-ROOM RECOVERY SPECIAL-CARE SPIRITUAL-MENTAL-
CARE STERILIZATION PHARMACY) (CORRIDORS * CORRIDORS)

The partially hierarchical clusters of location-pairs for second-floor of the

hospital:

Association degree Clusters of location-pairs

70 (EYE-SURGERY PULMONOLOGY)

56 (DERMATOLOGY GYNAECOLOGY) (GYNAECOLOGY INTERNAL-SURGERY)

(GYNAECOLOGY PULMONOLOGY) (CARDIOLOGY GYNAECOLOGY)
(EYE-SURGERY GYNAECOLOGY) (GYNAECOLOGY TNE-SURGERY)
(GYNAECOLOGY JAW-SURGERY) (GYNAECOLOGY ORTHOPEDY)
(GYNAECOLOGY UROLOGY)(GYNAECOLOGY SURGERY)

(DERMATOLOGY INTERNAL-SURGERY)

(DERMATOLOGY PULMONOLOGY) (CARDIOLOGY DERMATOLOGY)
(DERMATOLOGY EYE-SURGERY)(DERMATOLOGY TNE-SURGERY)
(DERMATOLOGY JAW-SURGERY) (DERMATOLOGY ORTHOPEDY)
(DERMATOLOGY UROLOGY) (DERMATOLOGY SURGERY)
(INTERNAL-SURGERY PULMONOLOGY)

(CARDIOLOGY INTERNAL-SURGERY) (EYE-SURGERY INTERNAL-SURGERY)
(INTERNAL-SURGERY TNE-SURGERY) (INTERNAL-SURGERY JAW-SURGERY)
(INTERNAL-SURGERY ORTHOPEDY) (INTERNAL-SURGERY UROLOGY)
(INTERNAL-SURGERY SURGERY)(CARDIOLOGY PULMONOLOGY)
(PULMONOLOGY TNE-SURGERY) (JAW-SURGERY PULMONOLOGY)
(ORTHOPEDY PULMONOLOGY) (PULMONOLOGY UROLOGY)
(PULMONOLOGY TNE-SURGERY) (CARDIOLOGY EYE-SURGERY)
(CARDIOLOGY TNE-SURGERY) (CARDIOLOGY JAW-SURGERY)
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(CARDIOLOGY ORTHOPEDY) (CARDIOLOGY UROLOGY)
(CARDIOLOGY SURGERY) (EYE-SURGERY TNE-SURGERY)
(EYE-SURGERY JAW-SURGERY)
(EYE-SURGERY ORTHOPEDY) (EYE-SURGERY UROLOGY) (EYE-SURGERY SURGERY)
(JAW-SURGERY TNE-SURGERY) (ORTHOPEDY TNE-SURGERY)
(TNE-SURGERY UROLOGY) (SURGERY TNE-SURGERY)
(JAW-SURGERY ORTHOPEDY) (JAW-SURGERY UROLOGY)
(JAW-SURGERY SURGERY) (ORTHOPEDY UROLOGY) (ORTHOPEDY SURGERY)
(SURGERY UROLOGY)
53 (GYNAECOLOGY RADIOLOGY) (DERMATOLOGY RADIOLOGY)
(INTERNAL-SURGERY RADIOLOGY) (PFULMONOLOGY RADIOLOGY)
(CARDIOLOGY RADIOLOGY) (EYE-SURGERY RADIOLOGY)
(RADIOLOGY TNE-SURGERY) JAW-SURGERY RADIOLOGY)
(ORTHOPEDY RADIOLOGY)
(RADIOLOGY UROLOGY) (RADIOLOGY SURGERY)
0 Corridor pairs.

The community stream of locations for second-floor of the hospital:

( EYE-SURGERY GYNAECOLOGY CORRIDORS * CORRIDORS RADIOLOGY SURGERY UROLOGY
ORTHOPEDY JAW-SURGERY TNE-SURGERY CARDIOLOGY INTERNAL-SURGERY DERMATOLOGY
PULMONOLOGY )

The privacy / circulation-cost stream of locations for second-floor of the
hospital:

( RADIOLOGY SURGERY UROLOGY ORTHOPEDY JAW-SURGERY TNE-SURGERY CARDIOLOGY
INTERNAL-SURGERY DERMATOLOGY GYNAECOLOGY EYE-SURGERY * PULMONOLOGY)
(CORRIDORS * CORRIDORS )

Examples of the designs generated by TOPGENE are given in the following four
sections. The first three sections present samples of sub-optimal designs with
respect to a norm. The fourth section is devoted to samples of designs
produced with respect to combination of norms. A performance analysis of
complete sets of design types produced for data-sets are presented at the end
of each section. The last section of this chapter presents examples of design
evaluation by TOPGENE.

6.3 Designs with respect to the community norm

The first type of designs generated with respect to the community norm is the
linear~tree type designs. This type of design also is called the near-optimal
and tree type design with respect to the community norm. Two types of linear-
tree designs, namely linear-tree without auxiliary locations and linear-tree
with auxiliary locations, are distinguished by TOPGENE. Addition of auxiliary
locations to a linear-tree type design stretches it, and consequently
stimulates the formation of new groups in the auxiliary locations, which in
turn increase its performance with respect to the community norm. Examples of

this design type with their corresponding behavioral analysis for the house
problem are displayed below.
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Figure 6.1: A linear-tree design for the house
Result of the behavioral analysis of the generated design:
Community utility = 2785 units.
Privacy-cost = 2466 units.
Circulation-cost = 3621 units.
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Figure 6.2: A linear-tree design with auxiliary-locations
for the house

Result of the behavioral analysis of the generated design:
Community utility 5350 units.
Privacy-cost 2466 units.
Circulation-cost 6186 units.

Examples follow of other prototypical design types with respect to the
community norm for our data-sets. A few other design examples with respect to
the community norm also will be exhibited in the final section of this
chapter. These designs are used as yardsticks for evaluating existing designs.

LIVIN

STUDY BEDRD BEDAO T0ILE
j-RoO HALL ~ROOM ON-2 k-3 T
BATH- KITCH BEORO BE0RO KITCH TY-RO
ROON EN-2 ON-4 OM- 1 EN-{ oM

Figure 6.3: A single-loaded design for the house
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Result of the behavioral analysis of the generated design:
Community utility = 1611 units.
Privacy-cost = 1611 units.
Circulation-coat = 2447 units.
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Figure 6.4: A single-loaded design
with auxiliary locations for the house

Result of the behavioral analysis of the generated design:
Community utility = 3302 units.
Privacy-cost =0 units.
Circulation-cost = 4138 units.
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Figure 6.5: A double-loaded design for the house

Result of the behavioral analysis of the design:
Community Utility = 1162 Units.
Privacy-cost = 831 units.
Circulation-cost = 1998 units.
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Figure 6.6: A double-loaded design
with auxiliary locations for the house
Result of the behavioral analysis of the generated design:
Community utility = 1877 units.
Privacy-cost = 0 units.
Circulation-cost = 2713 units.
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Figure 6.7: A double loaded type design with auxiliary

locations for 1lst-floor of the police-station

Result of the behavioral analysis of the generated design:
Community utility 193 units.
Privacy-cost 0 units.
Circulation-cost 339 units.
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Figure 6.8: A star type design without auxiliary
locations for 1st-floor of the police-station

Result of the behavioral analysis of the generated design:
Community utility = 120 units.
Privacy-cost = 120 wunits.
Circulation~-cost = 266 units.
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Figure 6.9: R star type design with auxiliary
locations for 2nd-floor of the police-station

Result of the behavioral analysis of the generated design:
Community utility = 274 wunits.
Privacy-~cost =0 units.
Circulation-cost = 428 units.

Several grid type designs may be generated for the same set of data by varying
dimension of the grids. TOPGENE permits users to decide the length and width
of a grid type design. The labelling of a grid type design is carried out
based on the order of locations (or activities) of the design in the generated
community stream of locations. The locations in a community stream are
arranged in a way that the highest interactive activities are as far as
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possible. This arrangement of locations provides the operation of the design.
Obviously, there are many choices for labelling of the grid based on the
stream of locations. In addition the stream of locations must be broken into
several sub-streams depending on the dimension of the grid. Any choice of
allocation has some drawback in terms of disturbing the operational semantic
that a stream carries. Heuristic rules reveal that labelling of locations
from the same directions, as depicted in the following figure is more
favourable than other strategies. A pair-wise comparison of labelled
activities provide an insight into the matter. Such an comparison reveals that
this strategy potentially keeps the most interactive location-pairs more apart
than, for example, a bi-directional labelling. A grid type design, depending
on the number of locations in a design, may be incomplete in the last row.
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Figure 6.10: Labelling strategy for a grid type design with a
community stream of locations (activities)
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Figure 6.11: A 3 by 4 grid type design for the
lst-floor of police-station

Result of the behavioral analysis of the generated design:
Community utility 1877 units.
Privacy-cost o] units.
Circulation-cost 2713 units.

(6-19)



Chapter 6: Experimenting with TOPGENE

I skip exhibition of all possible designs with respect to the community norm.
Yet, the result of behavioral analysis of a complete set of design types for
the house and the police-station problems are presented in the following
tables.

Results of the behavioral analysis of different designs for the house,
generated by TOPGENE with respect to the community norm:

design Community Privacy Circulation
type utility cost cost
Linear-tree 2785 2466 3621
Linear-tree® 5350 2466 6186
Single loaded 1611 1611 24*Xx
Single-loaded* 3302 0 4138
Double-loaded 1162 831 1998
Double-loaded* 1877 0 2713
Star 781 781 1617
Star* 1269 0 2105
Grid (3x4) 974 948 1811

* Designs with auxiliary spaces.

Results of the behavioral analysis of designs for first-floor of the police-
station, generated by TOPGENE with respect to the community norm:

design Community Privacy Circulation
type utility cost cost
Linear-tree 386 352 532
Linear-tree* 772 352 923
Single loaded 220 220 366
Single-loaded* 583 0 678
Double-loaded 181 138 327
Double-loaded* 294 0 440
Star 120 120 266
Star* 193 0 339
Grid (3*4) 120 120 266

* Designs with auxiliary spaces.

Results of the behavioral analysis of different designs for second-floor of

the police-station, generated by the TOPGENE with respect to the community
norm:

design Community Privacy Circulation
type utility cost cost
Linear-tree 572 572 726
Linear-tree* 1221 528 1375
Single loaded 309 309 463
Single-loaded* 726 0 880
Double-loaded 229 : 229 383
Double-loaded* 404 0 558
Star 194 194 348
Star* 274 0 428
Grid (3*6) 174 in 328

* Designs with auxiliary spaces.
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6.3.1 An analysis of TOPGENE performance

Above tables present performance values of different designs for our data-
sets. These designs were generated with respect to the community norm.
However, as we can see in the tables, TOPGENE has provided us with the
behavioral values of generated designs with respect to the privacy and
circulation-cost norms as well. The reason is that TOPGENE tries to analyze
a design with respect to all social norms, if sufficient information is
available. For example, because of lack of information for intervening
opportunity locations no behavioral analysis with respect to this norm is
provided.

The results of behavioral analysis of different designs gathered in
above tables helps in analyzing the behavior of TOPGENE. For example we are
always interested in knowing the optimality of a design generated by TOPGENE
with respect to a norm. This question is only answered if we had knowledge of
the performance of the optimal design for each case. But, here, we do not have
any knowledge of an optimal design with respect to a norm, unless such a
design is generated and its performance behavior with respect to a norm is
calculated. Finding an optimal design, as was discussed in chapter 2, is a
hard task because of the intractability of our design problem. What we have
in our hand is the neural network approach for generating the liner-tree type
design, with respect to these norms. A comparison of TOPGENE and the neural
network designs are given in chapter 8. These results, as we will see, show
that TOPGENE heuristic approach in generating design with respect to the
community norm is effective and yields designs that are in the neighborhood
of an optimal design.

The main purpose of this section is to check the structure and behavior
of the generated designs against each other, and analyze them to see whether
they have a correct behavior relative to each other and in concordance with
our expectation. The basic information available to us for this purpose is the
results of the behavioral analysis of these designs in hard numerical form.
The absence of this information, or if TOPGENE only could provide a
qualitative analysis of these designs, then, without any doubt, judging the
performance of TOPGENE was a difficult task.

We discard the analysis result of the designs with respect to the
privacy, and the circulation-cost norms, since these norms have had no role
in these designs. Based on the heuristic rules, discussed in previous chapter,
we expect a high community performance for stretched design types, and low
community performance as generated designs for the same set of data shrink
towards more compact ones. This is of course only true if the operation of the
design is kept almost intact. The operations of the buildings corresponding
to our data are in fact defined by the arrangement of the locations (a-
ctivities) in the community streams. The operation of all designs except a
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liner-tree type design is changed in some degrees once it is labelled with the
locations in a stream. Yet, these changes are very small with respect to the
original arrangement of locations in the streams. This is evident from
different performance behavior that we have for different designs. In fact,
the connectivity structure of designs put certain constraint on the
arrangements and ultimately effects the operation of the generated designs.
The effect of this constraint is reflected in the above tables. These tables
show that the linear-tree type designs for all cases are best designs with
respect to the community norm. The next best design, in all cases, is the
single loaded design with auxiliary locations. Looking at the designs
presented in the last section, we can see that indeed this type of designs are
the most stretched ones after the linear-tree type designs for a specific
problem. If we continue analytical comparisons of community utilities of the
generated designs for a specific problem, on the condition that two classes
of designs with auxiliary locations and without auxiliary locations are
analyzed separately, then we see that for all cases, and with no exception,
the next best designs are double-~loaded, star, and grid type respectively.
The conclusion is that designs generated by TOPGENE with respect to the
community norm are indeed in conformity with our expectations and intuitions.
This supports the idea that the system has a well performance in generating
designs with respect to the community norm.

The following sections surveys performance of TOPGENE in generating
designs with respect to the privacy / circulation-cost norm(s).

6.4 Designs with respect to the privacy / circulation-cost norm(s)

The norme "privacy" and "circulation-cost" were characterised as two non-
conflicting norms that have tendency towards highly branched and compact
designs as near-optimal designs. The exception are the single-loaded, the
double-loaded, and star types designs with auxiliary locations. These design
types are perfect designs for the privacy norm. These design provide a zero
privacy cost so may be considered as perfect designs with respect to this
norm. If we disregard these three design types, then the labelling of a design
with respect to these norms requires that most interactive location-pairs to
have direct access with each other. Such strategy insures minimum disturbances
on the locations of design as a result of its operation.

This section examines examples of deeigns generated by TOPGENE with
respect to these norms. I will analyze these designs by inspecting their
structure and operation, and comparing their performance analysis with respect
to these norms. All examples of designs displayed in this section, or their
behavioral values gathered in the tables exhibited at the end of this section
are only generated with respect to the point(s) of view of the privacy /
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circulation-cost. So, first the essential information for these designs are
only the behavioral values corresponding to the privacy and circulation-cost
norms. The performance values corresponding to the community norm are produced
as supplementary information. Again, as in previous examples, no intervening
opportunity requirements have been defined for these designs, and no
intervening opportunity utility is calculated for these designs.
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Figure 6.12: A near-optimal design for the house

Above deeign is generated under the following branchiness constraints:
Maximum branching degree of locations was set to 4, except the branching
degrees of Bath-room = 1, Toilet = 1, Kitchen-2 = 1, and the hall = 6.

Diagnosis of the design in terms of disturbances on its locations:
TV-room = 52 units of disturbances, bedroom-3 = 32 units, kitchen-1 = 10
units, and living-room = 182 units.

Result of the behavioral analysis of the generated design:
Community utility 276 units.
Privacy-cost 276 units.
Circulation-cost 1112 units.
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Figure 6.13: A near-optimal design for the house
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Above design is generated under the following constraints:
- Knowledge base was used.
- Maximum branching degree of locations were set to 4, except: kitchen-
2=1, toilet=1, bath-room=1, and hall=6.

Diagnosis of the design with respect to disturbances on locations:
bedroom-4 = 132 units, kitchen-1 = 117 units, living-room = 173 units, and
hall = 195 units.

Result of the behavioral analysis of the generated design:

Community utility = 617 units.

Privacy-cost = 422  units.

Circulation-cost = 1453 units.
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Figure 6.14: A Tree design for the house problem

Above design is generated under the following constraints:
- The knowledge'bases of recommended and prohibited links were not used.
= Maximum branching degree of locations was set equal to 4, except for
the bath-room = 1, toilet = 1, kitchen-2 = 1, and the hall = 6.

Diagnosis of the design in terms of disturbances on its locations:
tv-room = 67 units, bedroom-3 = 20 units, kitchen-1 = § units, and 1living-
room = 190 units.

Result of the behavioral analysis of the generated design:
Community utility = 282 units.
Privacy-cost 282 units.
Circulation-cost 1118 units.
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Figure 6.15: A tree design for the house problem

This design is generated under the following constraints:
Knowledge bases of recommended and prohibited accesses were used.
Maximum branching degree of locations were set to 4, except
bath-room = 1, toilet = 1, kitchen-2 = 1, and hall = 6.

Diagnosis of the design in terms of disturbances on its locations:

hall = 195 units, bedroom-4 = 132 units, kitchen-1 = 117 units, and living-
room = 173 units.
Result of the behavioral analysis of the generated design:
Community utility = 617 units.
Privacy-cost = 422 units.
Circulation-cost = 1453 units.
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Figure 6.16: A near-optimal design for
1st-floor of the police-station

Result of the behavioral analysis of the generated design:
Community utility 88 units.
Privacy-cost 88 units.
Circulation-cost 234 units.
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Figure 6.17: A near-optimal design for
1st-floor of the police-station

Above design is generated in the presence of the knowledge-bases.
Result of the behavioral analysis of the generated design:
Community utility = 83 units.

Privacy-cost = 48 units.

Circulation-cost = 229 units.
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Figure 6.18: A near-optimal design for
2nd-floor of the police-station

Result of the behavioral analysis of the generated design:
Community utility = 63 units.
Privacy-cost = 63 units.
Circulation-cost = 217 units.
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Figure 6.19: A near-optimal design for
2nd-floor of the police-station

This design is generated in the presence of the knowledge-bases.

Result of the behavioral analysis of the generated design:
Community utility 82 units.
Privacy-cost 31 units.
Circulation-cost 236 units.

The prototypical designs

The number of possible prototypical designs for a single problem, here also
as in the case of community norm, ranges to a variety of designs, depending
on the constraints used. One should note that while two prototypical type
designs generated with respect to two different norms for the same data-set
may structurally be the same, but the arrangements of activities on them
(i.e., their operation) are different.

I skip exhaustive exhibition of examples of prototypical designs
generated with respect to the privacy norm here. But, in order to have an
analytical view on the performance of TOPGENE in generating designs with
respect to the privacy and circulation-cost norms, the results of behavioral
analysis of these designs are displayed at the end of this section.
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Figure 6.20: A linear-tree design for the house problem

Result of the behavioral analysis of the generated design:

Community utility = 392 wunite.

Privacy-cost = 385 units.

Circulation-cost = 1228 units.
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Figure 6.21: A linear-tree design
with auxiliary locations for the house

The labelling procedure for generation of grid type design with respect to the
privacy / circulation-cost norm(s) is different than the generation of same
design type with respect to the community norm. Here, on the contrary to the
previous case, the labelling of a grid with the locations (or activities ) in
the privacy stream(s) proceeds differently for every adjacent rows. The reason
is that, in order to have a high performance with respect to the privacy /
circulation-cost norm(s), the most interactive locations in a design must be
kept as close as possible relative to each other. The proposed strategy not
only preserves this property of the privacy stream, but also increases it to
a certain degree. This is because of additional accesses that a grid type
design provides between locations of a design on every adjacent rows. The
following figure depicts this labelling strategy.
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Figure 6.22: Labelling strategy for a grid type design
with a privacy stream(s) of locations (activities)
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Figure 6.23: A grid design for lst-floor of the police-station

Results of the behavioral analysis of the generated designs for the house

problem with respect to the privacy / circulation-cost norm(s) are as follows:

Design Community Privacy Circulation
type utility cost cost
Near-optimal 276 276 1112
Near-optimal +K.B. 617 422 1453
Tree 282 282 1118
Tree+K.B. 617 422 1453
Linear-tree 392 385 1228
Linear-tree* 1202 385 2038
Single-loaded 396 389 1232
Single-loaded* 1228 0 2064
Double-loaded 436 414 1272
Double-loaded* 813 0 1649
Star 420 420 1256
Star* 678 0 1514
Grid (3*4) 390 387 1226

* Designs with auxiliary locations.
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Result of the behavioral analysis of the generated designs for first-floor of
the police~station with respect to the privacy / circulation-cost norm(s) :

Design Community Privacy Circulation
type utility cost cost
Near-optimal 38 88 234
Near-optimal +K.B. 83 43 229
Tree 85 85 231
Tree+K.B. 91 54 237
Linear-tree 108 108 254
Linear-tree® 289 108 435
Single-loaded 83 83 229
Single-loaded* 254 0 400
Double-loaded 7t n 217
Double-loaded* 167 0 313
Star 81 81 227
Star* 126 0 271
Grid (3*4) 84 80 230

* Designs with auxiliary tocations.

Results of the behavioral analysis of the generated designs for second-floor
of the police-station with respect to the privacy / circulation-cost norm(s):

Design Community Privacy Circulation
type utility cost cost
Near-optimal 63 63 217
Near-optimal +K.B. 82 31 236
Tree 102 102 256
Tree+K.B. 111 56 265
Lincar-tree 244 244 398
Linear-tree* 565 244 9
Single-loaded 149 149 303
Single-loaded* 398 0 552
Double-loaded 134 134 288
Double-loaded* 240 0 394
Star 129 105 283
Star* 180 0 334
Grid (3%4) 107 106 261

* Designs with auxiliary locations.

The near-optimal and tree type designs were generated under the following branchiness consteaints:

Property-storage = 1, cell = 1, toilet = 1, and corridor = 20,

An analytical view on above tables, similar to cage of the community norm,
suggests the performance of TOPGENE'S in generating different designs with
respect to the point(s) of view of privacy / circulation-cost.

6.4.1 An analysis of TOPGENE performance

Here, similar to the case of other norms, the first question in our mind is
about the nearness of the behavior of a generated design to the behavior of
an optimal design. A question that may not be answered, unless all types of
optimal designs are generated by using an enumeration technique. However, as
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in case of the community norm, a comparison of linear-tree type designs for
a set of data with respect to the privacy / circulation-cost norm(s) generated
by both TOPGENE and a neural network will be presented in chapter 8. This
comparison, as we will see, shows that designs generated by TOPGENE with
respect to the privacy / circulation-cost norm(s) are also in the neighborhood
of the optimal designs. This performance by TOPGENE, as a heuristic program
is remarkable.

In this section we will analyze the performance of TOPGENE in generating
designs with respect to the privacy and circulation-cost norms. This analysis
is carried out by looking at the behavioral values of different designs,
gathered in above tables, with respect to these norms.

According to our intuitions and heuristic rules used in generating these
designs, we expect a high performance with respect to these norms for more
compact designs, and a decrease in the performance of designs as we shift our
attentions towards less compact ones. The most compact designs are the near-
optimal designs. These are the designs possibly with circular paths. Above
tables shows that the near-optimal designs are indeed best performing designs
with respect to the circulation-cost norm. This is also true for the behavior
of these designs with respect to the privacy norm, if we disregard designs
with the auxiliary locations. The auxiliary locations in prototypical designs
have the property of absorbing all disturbances as a result of flow between
different location-pairs in a building, and therefore providing a zero
privacy-cost for the building. So, these solutions have a zero privacy cost.
This is of course only true if disturbances as a result of proximate flows are
discarded. If we neglect these designs, we observe that for the cases of the
police~-station the most compact designs have a better performance with
respect to the privacy and circulation-cost norms, and as we pay our attention
towards more stretched type designs such as single-loaded, and linear-tree
types, then their performance with respect to these norms decreases. This is
a kind of performance that we expect from TOPGENE. However, in the case of
designs for the house problem this is not quite true. A comparison of
behavioral values of different designs for this problem seems counter-
intuitive at first glance. For example, the double-loaded design seems to have
a better performance than the linear-tree type design for this problem. This
was quite unpredictable. A detailed analysis of the house data-set and the
labelling strategy used by TOPGENE revealed the reasons behind this behavior
from TOPGENE. A look at the house clusters of location-pairs shows that except
for three location-pairs (Iiving-room toilet), (bath-room toilet), and
(living-room tv-room) respectively with 97, 70 and 56 degree of associations,
the association degree between the rest of location-pairs drops to
considerably low degrees. This irregularity in a design data, specially for
small scale designs is not without a consequence for the labelling approach
used by TOPGENE.
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TOPGENE stream generator algorithm, in attempt to optimize the privacy
performance of the stream, puts these high interactive locations as close as
possible to each other. This insures a good performance for prototypical
designs based on this stream. A labelling of a double loaded-design with such
a stream, although intuitively, and indeed in most of the cases should
increase the privacy output of the design. But, for a design data with a few
number of location-pairs having a high degree of interactions, this
expectation may not be fulfilled. The reason is that the labelling procedure
may separate the small number of highly interactive location~pairs. This in
turn may cause a poorer performance for a linear-tree type design.

I will skip a more detailed analysis of TOPGENE’s behavior, and leave
the matter to the reader. A detailed analysis of the system, in fact needs
a continual look-back at the implementation detail of the system. As an
example, one may wounder whether a star type design for a data-set should have
a better performance with respect to privacy norm or a double-loaded type
design? The answer to this problem lies in the branching degree of central
locations in the star type design. This branching degree is a user controlled
variable. A star type design with a somewhat high branching degree with
respect to a double-loaded design obviously should have a better privacy and
circulation costs performances than a double-loaded design for the same data-
set.

6.5 Designs with respect to the intervening opportunity norm

This norm, although in conflicts with all other social norms, but is in some
respect similar to the community norm. An optimal design with respect to the
intervening opportunity (hereafter IO) norm is a design that satisfies a set
of in-betweenness conditions demanded from the design. The most suitable
design type for this norm, the same as the community norm, tends towards a
linear-tree type design. This implies that a satisfactory design, specially
for a problem with relatively high in-betweenness requirements between its
locations, inclines towards a liner-tree design. For this reason, TOPGENE
precedes the generation of any design type for this norm by first generating
a stream of locations that satisfies maximum in-betweenness requirements. The
exception is the tree design. TOPGENE distinguishes a tree-type design for
this norm from a linear-tree type. This approach was taken to show the
appropriateness of a general tree type design for the intervening opportunity
norm. Otherwise, a linear-tree design generally yields a better result than
a tree type design for the same set of data. A prototypical design, here, as
in the case of previous norms, is labelled by locations (activities) in the
stream of locations.

I have chosen the house data-set to show examples of designs with
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respect to this norm. Furthermore, the following intervening opportunity
requirements have been assumed for the house:

(Bedroom-1 hall living-room) (Bedroom-2 hall living-room)

(Hall bedroom-2 bedroom-3) (Kitchen-1 hall toilet)

(Hall toilet bath-room) (Kitchen-1 hall living-room)
(Kitchen-2 kitchen-1 hall) (Hall bedroom-3 study-room)
(Hall bedroom-1 toilet) (Hall bedroom-2 toilet)

Upon analysis of the data, TOPGENE ranks the input triplets according to the
interaction potential between their bracketing pair. The ranking triplets are
used as a guide in choosing next location to be processed.

The following figures show samples of designs generated with respect to
this norm. Note that in the case of this norm, TOPGENE provides us with the
behavioral analysis of designs with respect to all social norms discussed in
this work. The additional behavioral values for this case, as in previous
cases, are produced as a side effect of the process of the behavioral

analysis.
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Figure 6.24: A near-optimal design for the house

This design is generated under the above defined intervening opportunity
requirements.

Diagnosis of design with respect to the intervening opportunity (IO) norm:
The IO utility of the HALL as a result of being on the shortest path between
the location~pair (KITCHEN-1 LIVING-ROOM) is 10.

The IO utility of the HALL as a result of being on the shortest path between
the location-pair (BEDROOM-2 LIVING-ROOM) is 6.

The IO utility of the HALL as a result of being on the shortest path between
the location-pair (BEDROOM-1 LIVING-ROOM) is 6.

The IO utility of the HALL as a result of being on the shortest path between
location-pairs (KITCHen-1 AND TOILET) is 6.

Result of the behavioral analysis of the generated design:
Community utility 1272 units.
Privacy-cost 1074 units.
Circulation-cost 2108 units.
Int. opportunity utility 28 units.
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Figure 6.25: A tree design for the house

This design is generated under the intervening opportunity requirements
defined above, and the following branchiness constraints: Branching degree of
each location is equal to 4, except the hall that was set to 6.

Diagnosis of design with respect to the intervening opportunity (IO) norm:
I0 utility of the HALL as a result of being on the shortest path between
location-pair (KITCHen-1 LIVING-ROOM) is 10.

I0 utility of the HALL as a result of being on the shortest path between
location-pair (BEDROOM-2 LIVING-ROOM) is 6.

I0 utility of the HALL as a result of being on the shortest path between
location-pair (BEDROOM-1 AND LIVING-ROOM) is 6.

I0 utility of the HALL as a result of being on the shortest path between
location-pair (KITCHen-1 AND TOILET) is 6.
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Result of the analysis of different design types with respect to the IO norm
for the house data-set is gathered in the following table.

Design community privacy Circ. I1.0.
type utility cost cost utility
Tree 670 348 1506 28
Linear-tree(SO) 272 1074 2108 28
Linear-tree* 2962 1074 3798 28
Double-loaded 906 540 1742 28
Single-loaded* 2108 0 2944 0
Doubie-loaded 570 570 1406 0
Double-loaded* 1243 0 2079 0

Star 530 530 1366 0
Star* 1011 0 1847 0

Grid (3*4) 524 486 1360 1

* design with auxiliary locations.
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6.5.1 An analysis of TOPGENE performance

Looking at the behavioral values of different design types, gathered in above
table, show that the high performing designs with respect to this norm, as we
expect, are the linear-tree and tree designs. Above table also suggests that
other prototypical designs, such as single-loaded, double-loaded, and star
designs have a very bad performance with respect to this norm. This
performances are not unexpected. Prototypical designs with auxiliary locations
can not provide intervening opportunity utility at all. All activities on such
designs are allocated on branches. These locations obviously cannot function
as an intervening opportunity point for any bracketing location-pair.
similarly, in other prototypical designs, most of the activities are allocated
to isolated branches. So, non of these activities can act as an intervening
opportunity activity.

In general, we can say that prototypical designs are not good candidates
for yielding a high performance with respect to the intervening opportunity
norm, unless the concept of proximate flow (i.e., flow passing nearby a
location) is counted in designs. In this case, which is indeed practical in
many designs, people passing-by the intervening locations, and not crossing
them, in fact benefit from these locations. Present version of TOPGENE, as was
discussed in the last chapter, does not consider the effect of nearby flows
to the performance calculation of a building. Besides, all prototypical
designs, here as in the cases of other norms, are generated based on a stream
of locations. Here, the intervening opportunity stream, as opposed to other
streams that were controlling the interaction potentials between the actors,
provides the in-betweenness property of a design. The latter property
attributed to an intervening opportunity stream is quite different from the
previous one. The in-betweenness property is much more sensitive to changes
in a stream than interaction in the same stream. The labelling of a branched
prototypical design with an intervening opportunity norm completely disturbs
the operation of design implicit in the order of locations in the stream. That
is why, here, labelling 6f any prototypical designs, other than the linear-
tree type designs with an intervening opportunity stream, has significant
impact on the operation of design with respect to this norm. A solution to
this shortcoming is, devising specialized algorithms for each prototypical
case. The current approach in generating design with respect to the
intervening opportunity norm based on the stream of locations is, therefore,
only valuable for the linear-tree and tree types designs. These designs are
near-optimal designs for this norm.
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6.6 Designs with respect to multiple norms

This section presents examples of designa with respect to a combination of
norms. The near-optimal and tree-type designs, as explained in the last
chapter, are generated by special task-executers, while the prototypical
designs are generated by the prototypical-task-executer. The latter one first
generates a stream of locations (activities) that is for labelling of a
prototypical design at a latter stage.
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Figure 6.26: A near-optimal design for the house

Above design is generated under the following constraints:

~ Norms defined: Intervening opportunity, privacy / circulation-cost, and
community.

- The intervening opportunity triplets defined for the locations: the
same as those used in the section 6.5.

Diagnosis of the design with respect to the intervening opportunity (I0) norm:
The 10 utility of the HALL as a result of being on the shortest path between
the location-pair (BEDROOM-2 LIVING-ROOM) is 6.

The I0 utility of the HALL as a result of being on the shortest path between
the location-pair (BEDROOM-1 LIVING-ROOM) is 6.

The IO utility of the HALL as a result of being on the shortest path between
the location-pair (KITCHen-1 LIVING-ROOM) is 5.

The IO utility of the HALL as a result of being on the shortest path between
the location-pair (KITCHen-1 AND TOILET) is 3.

Result of the behavioral analysis of the generated design:
Community utility = 324 units.
Privacy-cost 260 units.
Circulation-cost 1160 units.
I.0. utility 20 units.

e
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Figure 6.27: A tree type design for the house

Above design is generated under the same conditions as defined for above
design.

Result of the behavioral analysis of the generated design for the house:
Community utility = 554 units.
Privacy-~cost 360 wunits.
Circulation~cost 1390 units.

naun

I.0. utility 28 units.
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Figure 6.28: A near-optimal type design for the house

Above design is generated under the constraints of intervening opportunity and
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privacy norms. The intervening opportunity triplets were the same as used for
previous design. Maximum branching degree of locations were set to 4, except:
toilet = 2, bath-room = 2, and hall = 6.

Diagnosis of the design with respect to the intervening opportunity (I0) norm:
The IO utility of the HALL as a result of being on the shortest path between
the location-pair (BEDROOM-2 LIVING-ROOM) is 6 units.
The IO utility of the HALL as a result of being on the shortest path between
the location-pair (BEDROOM-1 LIVING~ROOM) is 6 units.
The IO utility of the HALL as a result of being on the shortest path between
the location-pair (KITCHen-1 LIVING-ROOM) is 5 units.
The I0 utility of the HALL as a result of being on the shortest path between
the location-pair (KITCHen-1 AND TOILET) is 3 units.

Diagnosis of the design in terms of disturbances on locations:
study-room = units, bedroom-3 = 4 units, kitchen-1 = 7 units, tv-room = 44
units, living-room = 109 units, and hall = 68 units.

Result of the behavioral analysis of the design:

Community utility = 233 units.
Privacy~cost = 165 units.
Circulation-cost = 1069 units.
I.0. utility = 20 units.
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Figure 6.29: A tree type design for the house

Above design is generated under the intervening opportunity and Privacy norms.
Maximum branching degree of locations was set to 4.

Diagnosis of the design with respect to the intervening opportunity (10) norm:
The IO utility of the HALL as a result of being on the shortest path between
the location-pair (BEDROOM-2 LIVING-ROOM) is 6 units.

The IO utility of the HALL as a result of being on the shortest path between
the location-pair (BEDROOM-1 LIVING-ROOM) is 6 units.

The IO utility of the HALL as a result of being on the shortest path between
the location-pair (KITCHen-1 LIVING-ROOM) is 10 units.

The I0 utility of the HALL as a result of being on the shortest path between
the location-pair (KITCHen-1 AND TOILET) is 6 units.

Diagnosis of the design in terms of disturbances on its locations:
bedroom-1 = 1 unitse, bedroom-3 = 13 unite, for kitchen-1 = 5 units, bedroom-2
= 42 units, toilet = 63 units, hall = 119 units, and living~room = 130 units.

Result of the behavioral analysis of the design:
Community utility = 372 units

Privacy-~cost = 253 units.
Circulation-coat = 1208 units.
I.0. utility = 28 units.
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Figure 6.30: A near-optimal design for the house

Above design was generated under the community and privacy / circulation-cost
norms without use of the knowledge-bases. Maximum branching degree of
locations for this design was set to 4, except, kitchen-2 = 1, toilet = 1,
bath-room = 1, and hall = 6 units.

Diagnosis of the design in terms of disturbances on its locations:
kitchen-1 = 70 units, tv-room = 39 units, bedroom-2 = 31 units,
bedroom-3 = 14 units, bedroom=-1 = 7 units, and living-room 177 = units.

Result of the behavioral analysis of design:
Community utility 338 units.
Privacy-cost 338 units.

Circulation-cost 1174 units.
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Figure 6.31: A near-optimal design for the house

This design is generated under the same conditions as used for the previous
design, except that the knowledge-bases are used.

Diagnogis of the above design with respect to the privacy norm:
The disturbance degree for: bedroom-1 = 222 units, bedroom-4 = 132 units,
living-room = 91 units, and hall = 131 units.

Result of the behavioral analysis of design:
Community utility = 776 units.
Privacy-cost 445 units.
Circulation-cost 1612 units.
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Figure 6.32: A tree design for the house

Above design is generated under the same conditions as used for previous
design, except that the knowledge-base was not used.

Diagnosis of the generated design: The disturbance degree for: bedroom-1 = 7
units, or bedroom-2 = 31, bedroom-3 = 14 units, kitchen-1 = 70 units, tv-room
= 39 units, and living-room = 209 units.

Result of the behavioral analysis of the design:
Community utility = 370 units.
Privacy-cost 370 units.
Circulation-cost 1206 units.
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Figure 6.33: A tree type design for the house

Above design is generated under the same conditions as used for previous
design, except that the knowledge-base was used.

Result of the behavioral analysis of the generated design:
Community utility 776 units.
Privacy-cost 445 units,
Circulation-cost 1612 units.

Analysis results of different designs for the house data-set generated with
respect to the combination of norms community and privacy / circulation-cost
is gathered in the following table.
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Design Community Privacy Circulation
type utility cost cost
Near-optimal 338 338 1174

Near-optimal +K.B. 776 445 1612

Tree 370 370 1206

Tree+K.B, 776 445 1612

Linear-tree 584 584 1420

Linear-tree* 1586 584 2422

Single-loaded 458 458 1294
Single-loaded* 1420 0 2256
Double-loaded 494 494 1330
Double-loaded* 876 0 1712

Star 478 478 1314

Star* 801 0 1637

Grid (3*4) 337 n 1213

The near-optimal and tree designs, in the above table, were generated under the following branching degree i kitchen-2 = 1,
toilet = 1, bath-room = 1, hall = 6, and all other locations = 4.

6.6.1 An analysis of TOPGENE performance

There are several ways to proceed with a performance analysis of TOPGENE in
generating designs with respect to a combination of norms. We can analyze
TOPGENE behavior by comparing the behavioral values of different designs with
each other, or contrasting these values with behavioral values of the same
designs generated with respect to single norms. TOPGENE, theoretically and
practically, can generate unlimited number of designs with respect to a
combination of norms. Every design, depending on the number and order of the
norms defined, has different behavior. Therefore, several designs may be
generated and analyzed for a set of design data. Here, we limit ourselves to
an analysis of generated designed that their behavioral values are gathered
in above table.

Identical conditions for different design types provide a basis for
analysis of TOPGENE's performance. For example, designs exhibited in figure
6.26 and 6.27 were generated for the house and under the same conditions. The
only difference between these two is design type. The former is a near-optimal
design in the form of a general graph, and the latter is a tree type design.
Defining a design as a near-optimal type implies the possibility of having
circular paths in the design, while a tree type design does not permit such
paths. The existence of circular paths in a design means more accesses between
the locations in comparison to a tree type design for the same design problem.
Extra accesses result in less disturbance caused by circulation flows, and
consequently provide lower privacy and circulation-costs, and lower community
benefit for the design. A comparison of analysis results of these two designs
shows that indeed, these conditions are satisfied for these two designs.
Besides, the tree type design has a higher community and intervening
opportunity utilities compared to the near-optimal one. TOPGENE considers the
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intervening opportunity benefits if IO locations are in~-between the bracketing
locations on a shortest path. This implies that an increase in accesses in a
design, reduces the chances of fulfilling several in-betweenness conditions
in the design. In other words, it is always harder to realise IO locations in-
between the bracketing points in a design with a highly connected locations
and with circular paths than in a tree type design. This is also the case for
designs depicted in figures 6.26 and 6.27. The IO benefit in the latter case
is 28 units in comparison to 20 units for the former one. This argument is
also valid for other designs depicted in figures 6.28 and 6.29.

A gecond analysis may be carried out by comparisons of above table with
the tables exhibited in sections 6.3 and 6.4 for the same problem but with
respect to single norms privacy and community. Such comparisons show that: all
designs generated with respect to the combination of norms community and
privacy (or circulation-cost) has performance values for these two norms
somewhere in-between the behavioral values of identical designs generated with
respect to each norm separately. The only exception is the grid type design.
In this case the two designs generated with respect to the privacy norm and
a combination of norms almost have the same performance values. A compromise
is seen in the performance of the design with respect to multiple norms in
comparison with a design generated for the same set of data, but with respect
to a single norm. This result shows that TOPGENE overall approach in
generating different designs with respect to a combination of norms is in
concordance with our intuition. Above table also confirms our expectation
that:

- A compromised design with respect to all three norms should be in the
form of a near-optimal or a tree type design, and not a linear-tree
type design. The reason was given above.

- More compact designs lean more towards the privacy and circulation-cost
norms, and not the community norm.

6.7 Evaluation of existing designs

The evaluation of existing designs with respect to social norms is executed
by the evaluator module of TOPGENE. This section presents evaluation results
for the two data-sets presented in the beginning of this chapter.
Evaluation of a design with respect to a set of norms, as it was described in
the previous chapter, proceeds by first generating a set of sub-optimal
yardstick designs, each with respect to an isolated point of view. In the next
stage the analysis result of the input-design is compared with that of the
generated yardstick designs.

In the following sub-sections record of evaluation of existing designs
for the house, police-station, and the hospital by TOPGENE is presented. The
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evaluation process for each floor of existing designs corresponding to the
data sets discussed in this chapter is carried out irrespective of other
floors. The reason is irregularity of connectivity pattern of these existing
designs. I believe that the evaluation of a multi-stories design, as a whole,
against design types discussed in this thesis, is misleading to a certain
degree, unless it is very much similar to a design type discusses so far. The
connectivity patterns of the multi-stories building presented in this chapter
are unlike to design types discussed so far. For example, the connectivity-
pattern of the hospital, as a whole, is similar to a loaded grid. This pattern
does not match design types presently considered by TOPGENE. Besides,
exhaustive enumeration of all design types by TOPGENE is not practical. So,
evaluating these designs as a whole against any design types discussed so far
is unrealistic, although possible by TOPGENE. Such an evaluation is logical
only if the topology of a multi-stories building is similar to a design
pattern that could be generated by TOPGENE.

I should, immediately refer to the fact that isolated evaluation of each
floor is not also without a consequence. This approach also loses the touch
with the reality that different floor of a design often has interaction with
each other. Still, I think that separate evaluation of each floor of a design
provides a better result than an evaluation based on the total design.

6.7.1 Evaluating the house

Evaluation of the existing design for the house data-set as it has been
carried out by TOPGENE is presented here. TOPGENE allows user to decide the
type (i.e., style) of the yardstick designs that are used for evaluation of
existing designs., I have assumed that the most important social aspect for a
house is privacy. AR high performing design with respect to the privacy and
also circulation-cost norm is a near-optimal type design. Defining a near-
optimal design for other two norms, community and intervening opportunity,
results in a linear-tree type design, which is high performing design with
respect to these norms. The yardstick design for evaluating the house was
defined as "near-optimal”. Furthermore, I have assumed that the intervening
opportunity requirements for the house are the same as those defined in
section 6.5.

Existing topology of the house, as it has been designed by a designer, and
result of the evaluation is as follows. The connectivity pattern of the
yardstick designs were already exhibited in previous sections, therefore they
are skipped here.
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Figure 6.34: Design the house as is designed by a designer

Result of the behavioral analysis of designs:

Design community privacy circ. I0
utility cost cost utility

Input-design: 464 149.5 1300 22

community yardstick 617 422 1453 12

privacy yardstick 617 422 1453 12

circulation-cost yardstick 1272 1074 2108 28

Evaluation result:

The community utility of the input-design is about 17% of the community
utility of the yardstick design, and it is considered very-bad.

The privacy-cost is 65% lower than the privacy-cost of the yardstick design,
and it is excellent.

The circulation-cost is about 11% lower than the circulation-cost of the
yardstick design, and it is excellent.

The IO utility is 64% of the IO utility of the yardstick design, and it is
fair.

6.7.2 Evaluating the police-station

The existing design to the police-station, depending on the interpretation of
the corridor in each floor, is closely related to either a near-optimal,
single-loaded or a double-loaded solution. So, it seems logical to evaluate
this design against one or both designs as yardstick design(s). To show the
capability of TOPGENE, and to improve insight in the existing designs of
police-stations this evaluation is carried out with respect to all three
yardsticks. Furthermore, each floor of the police-station is evaluated
separately and irrespective of the other floor.

First run conditions:

- Corridor is taken as a single location.
- Evaluation against near-optimal yardstick designs.
- Norms: Community, privacy, and circulation-cost.
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Evaluating the first-floor:
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Figure 6.35: Existing design for lst-floor of the
police-station with the corridor taken as a single location
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Figure 6.36: A near-optimal (linear-tree) yardstick design

for lst-floor of the police-station

Above design is generated by TOPGENE with respect to the "community" norm.

ARCHI
VE

KITCH
EN
QFFIC
ES

N/

Figure 6.37: A near-optimal yardstick design for lst-floor

of the police-station

(6-45)



Chapter 6: Experimenting with TOPGENE

Above design is generated by TOPGENE under the following constraints:

Norm(s) defined: "privacy" / "circulation-cost".

The knowledge-bases of recommended and prohibited accesses were used.
Maximum branchiness for each location = 4, except: chief-room = 2,
secretary’s room = 2, reataurant = 2, kitchen = 2, toilets = 1, and
corridor = 10.

Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input-design 7 0 218

community yardstick 386 352 532

privacy yardstick 83 48.5 229

circulation-cost yardstick 83 48.5 239

Evaluation result:

The community utility of the input-design is about 19% of a near-optimal
design, and it is considered as bad.

The privacy-cost is lower than a near-optimal design, and it is excellent.
The circulation cost is about 5% lower than a near-optimal design, and it is
excellent.

Evaluating the second-floor:
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Figure 6.38: Existing design for Znd-Iloor of the
police-station with corridor taken as a single location
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Figure 6.39: A near-optimal (liner-tree) yardstick design for
2nd-floor of the police-station

Above design is generated with respect to the "community" norm.
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Figure 6.40: A near-optimal yardstick design for
2nd-floor of the police-station

Above design is generated under constraints of the privacy (circulation-cost)
norm, the knowledge bases of accesses, and branchiness degree. The branching
degree of locations were defined as 4, except for the following locations:
toilets = 1, cells = 1, property-storage = 1, and corridor = unlimited.

Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input-design 99 26 253

community yardstick 572 528 726

privacy yardstick 82 30 236

circulation-cost yardstick 82 30 236

Evaluation result:

The community utility of the input-design is about 17% of a near-optimal
design, which is considered as bad.

The privacy-cost is about 15% lower than a near-optimal design, and it is
excellent

The circulation-cost is about 7% higher than a near-optimal design, and it is
excellent.
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Second run conditions:

= Multiple corridor assumption:
~ Evaluation against single loaded yardstick designs.
- Points of view of evaluation (norms): Community, privacy,

circulation-cost.

Evaluating the first-floor:
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Figure 6.41: Existing design for lst-floor of the police-station
with the corridor taken as a sequence of multiple locations
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Figure &.42: A single-loaded yardstick design for 1st-floor
of the police-station
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Above design is generated with respect to the community norm.
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Figure 6.43: A single-loaded yardstick design for
1st-floor of the police-station

Above design is generated with respect to the "Privacy" / "circulation-cost”
norm(s).

Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input-design 72 0 218

community yardstick 583 Q 678

privacy yardstick 254 0 400

circulation-cost yardstick 254 0 400

Evaluation result:

The community utility of the input-design is about 14% of a near-optimal
design, which is considered as bad.

The privacy-cost is 0 and it is excellent.

The circulation-cost is about 46% lower than the optimal design, and it is
excellent.
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Evaluating the second-floor:
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Figure 6.44: Existing design for 2nd-floor of the police-station
with the corridor taken as a sequence of multiple locations
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Figure 6.45: A single—loaded yardstick design with respect to the
norms “"community"”, for 2nd-floor of the police-station
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6.46: A single-loaded yardstick design for
2nd~floor of the police-station

Above design is generated with respect to the privacy / circulation-cost
norm(s).

Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input- design 93 23 247

community yardstick 726 0 880

privacy yardstick 398 0 552

circulation-cost yardstick 398 0 552

Evaluation result:

The community utility of the input-design is about 13% of a near-optimal
design, which is considered as bad.

The privacy-cost is 23 units, which is higher than a near-optimal design.
The circulation-cost is about 55% lower than a near-optimal

design, and it is excellent.

Third run conditions:

- Multiple corridor assumption:
- Evaluation against double-loaded yardstick designs.
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- Points of view of evaluation (norms): Community, privacy, and
circulation-cost.

Evaluating the first-floor:
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Figure 6.47: A double-loaded yardstick design with respect to
the "community” norm for lst-floor of the police-station

INSTR PERSQ CONFE
O K8 "Fhit i Hit g
ARélE AU)élL AUglE AU)'%IL AU)&IL AUEH_. AUéII_.
e it A §S¢Eé éﬁéEE shile §59IE
1 2 3 b
INSTD {NSTR CONFE SECRE
WEE | | A i

Figure 6.48: A double-loaded yardstick design for 1st-floor
of the police-station

Above design is generated with respect to the Privacy / circulation-cost
norm(se).

Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input- design 212 0 358

community yardstick 293 0 439

privacy yardstick 167 0 313

circulation-cost yardstick 167 0 313

Evaluation result:

The community utility of the input-design is about 72% of a near-optimal
design, which is considered as fair.

The privacy-cost is 0 and is excellent.

The circulation-cost is about 14% higher than a near-optimal design, and it
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Evaluating the second-floor

is excellent.

for

2K

yardstick design with respect

"circulation-cost"

2nd-floor of the police-station
(6-53)

" for 2nd-floor of the police-station.

A double-loaded yardstick design with respect to

to the norm "privacy"

the norms "community
Figure 6.50: A double-loaded

Figure 6.49:
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Result of the behavioral analysis of designs:

Design community  privacy circulation
utility cost cost

Input-design 267 23 421

community yardstick 368 0 522

privacy yardstick 235 0 389

circulation-cost yardstick 235 0 389

Evaluation result:

The community utility of the input-design is about 73% of a near-optimal
design, which is considered as FAIR.

The privacy-cost is 23 units higher than near-optimal design.

The circulation-cost is about 8 lower than a near-optimal design, and it is
excellent.

6.7.3 Evaluating the hospital

Thie section presents evaluation results of an existing design for the
hospital. The existing designs for different floors of the hospital are,
almost, in the form of a single-loaded or double-loaded corridors with
circular-access (loops) between some locations. So, the natural way of
evaluating this design is by comparing its performance against single-loaded
or double~-loaded design yardsticks with auxiliary locatione. Following are
evaluation of each floor of the hospital with respect to the social norms and
against the defined yardstick designs.

Evaluating the basement:

The basement of the hospital as it was evident from the result of its Q-
analysis, is a quiet floor with little interactions between itse locations.
This fact is reconfirmed by its performance analysis with respect to the
social norms. Here is the existing design for this floor.
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Figure 6.51: Existing design for the basement of the hospital
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Evaluating the basement agains

Figure 6.52

A single-loaded yardstick design with respect to

the community norm generated for basement of the hospital
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A single-loaded yardstick design with respect to

the privacy / circulation-cost norm for basement of the hospital

Figure 6.53
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Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input-design 0 0 10

community yardstick 0 0 45

privacy yardstick 0 0 20

circulation-cost yardstick 0 0 20

Evaluation result:
The community utility is O for both the input and the yardstick designs.
The privacy-cost is 0, and it is excellent.

The circulation-cost is about 50% lower than the yardstick design, and it is
excellent.

Evaluating the basement against a double-loaded design:

Figure 6.54: A double-loaded yardstick design for basement of
the hospital generated with respect to the community norm
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Figure 6.55: A single-loaded yardstick design for
basement of the hospital

Above design is generated with respect to the privacy / circulation-cost
norm(s) .
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Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input-design 0 0 10

Community yardstick 0 0 30

Privacy yardstick 0 0 15

Circulation-cost yardstick 0 0 15

Evaluation result:

The community utility for both the input and the yardstick design is O.

The privacy-cost is 0, which is excellent.

The circulation-cost is about 23% lower than the yardstick design, and it is
excellent.

Evaluating the ground-floor:
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Figure 6.56: Existing design for ground-floor of the hospital
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Evaluating the ground-floor against a single-loaded design
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Result of the behavioral analysis of designs
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Input-design

Community yardstick
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Evaluation result:

The community utility of the input-design is about 88% of the yardstick
design, and it is good.

The privacy~cost is 0, which is excellent.

The circulation-cost is about 69% higher than the generated yardstick design,
which is medium.

Evaluating the ground-floor against a double-loaded design:

AUXIL AUXIL AUXIL AUXIL AUXtL AUXIL AUX (L
i i} ihe e i i e
1 2 3 4 S [ ?

RONTG DELIV CENTR PHYSI
e Eig B it R opsre PEADY

Figure 6.59: A double-loaded yardstick design with respect to
the community norm generated for the ground-floor of hospital
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Figure 6.60: A single~loaded yardstick design with respect to
the privacy / circulation-cost norm(s) for the ground-floor

Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input-design 4445 0 5807

Community yardstick 2887 0 4249

Privacy yardstick 1365 0 2727

Circulation-cost yardstick 1365 0 2727

Evaluation result:

The community utility of the input~design is about 154% of the yardstick
design, and it is excellent.

The privacy-cost is 0, which is excellent.
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generated yardstick design,

The circulation-cost is about 113% higher than the

which is very bad.

Evaluating the first-floor
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Figure 6.61: Existing design of first-floor of the hospital

Evaluating the first-floor against a single-loaded design
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Figure 6.82: A single-loaded yardstick design for

1st-floor of the hospital
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Above design is generated with respect to the community norm.
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Figure 6.63: A single-loaded yardstick design with respect to the
privacy / circulation-cost norm(s) for lst-floor of the hospital

Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input-design 1474 240 2422

Community yardstick 5141 ] 6089

Privacy yardstick 1814 0 2762

Circulation-cost yardstick 1814 0 2762

Evaluation result:

The community utility of the input-design is about 29% of the yardstick
design, and it is very bad.

The privacy-cost is 240 unit, which is higher than the generated yardstick
design.

The circulation-cost is about 12% lower than the generated yardstick design,
and it is excellent.
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Evaluating the first-floor against a double-loaded design:

loaded yardstick design with respect to

the community norm for lst-floor of the hospital

Figure 6.64: A double-
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Result of the behavioral analysis of the designs:

Design community privacy circulation
utility cost cost

Input-design 1474 240 2422

Community yardstick 2703 0 3651

Privacy yardstick 1132 0 2080

Circulation-cost yardstick 1132 0 2080

Evaluation result:

The community utility of the input-design is about 55% of the yardstick
design, and it is medium.

The privacy-cost of the input-design is 240, which is higher than the
generated yardstick design.

The circulation-cost is about 16% higher than the generated yardstick design,
and it is excellent.

Evaluating the second-floor:

BhGen e a9

SBREY || KBRS || BBRS: |—| BGAB4 |—| 8RRk §BRS}

BBLeE Rt ohfeR | —{ LhEed URgLO §BRBY | CBES®

|~ AN |

§BRas 58631 53Rad §BR84
Fo{se GhEed | —| sany

Figure 6.66: Existing design for 2Znd-floor of the hospital
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Evaluating the second-floor against a single-loaded design:
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Figure 6.67: A single-loaded yardstick design with respect to
the community norm for 2nd-floor of the hospital
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Figure 6.68: A single-loaded yardstick design with respect to
the privacy / circulation-cost norm(s) for 2nd-floor of the hospital

Result of the behavioral analysis of the designs:

Design community privacy circulation
utility cost cost

Input-design 19703 278.5 21544

Community yardstick 19703 0 27057

Privacy yardstick 19509 0 26863

Circulation-cost yardstick 19509 0 26863
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Evaluation result:

The community utility of the input-design is about 72% of the yardstick
design, and it is fair.

The privacy-cost is 278 unit, which is higher than the yardstick design.
The circulation-cost is about 20% higher than the generated yardstick design,
which is excellent.

Evaluating the second-floor against a double-loaded design:
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Figure 6.69: A double-loaded yardstick design for
2nd-floor of the police-station

Above design is generated with respect to the community norm.
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Figure 6.70: A single-loaded yardstick design for 2nd-floor
of the police-station

Above design is generated with respect to the privacy / circulation-cost
norm(s).
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Result of the behavioral analysis of designs:

Design community privacy circulation
utility cost cost

Input-design 14190 278.5 21544

Community yardstick 11521 0 18875

Privacy yardstick 11427 0 18751

Circulation-cost yardstick 11427 0 18751

Evaluation result:

The community utility of the input-design is about 123% of the yardstick
design, and it is excellent.
The privacy-cost of the input-design is 278.5 unit, which is higher than the
generated yardstick design.

The circulation-cost is about 15% higher than the generated yardstick design,
which is excellent.

6.8 Summary

This chapter presented examples of designs that was generated by TOPGENE based
on three different design data-sets. These examples covered designs with
respect to single social norms, as well as combinations of them. An analysis
of complete sets of design types with respect a single or a combination of
norms was presented at the end of each section. These analysis confirmed that
TOPGENE as a heuristic program has a rational performance behavior , which is
in conformity with our intuition and our expectation from the system.
Comparisons of different design types for a data-set shows that the
performance of these designs relative to each other are in harmony with their
structural and operational characteristics. These two in turn, are in
concordance with the norm under which they are generated.

Chapter 8 presents further testing of TOPGENE. This chapter examines
TOPGENE designs against designs generated by a neural network for the same set
of problems.
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CHAPTER 7
NEURAL MODELING OF

ARCHITECTURAL DESIGN
L

This chapter discusses the implementation of a special case of the architec-
tural design (i.e., the linear-tree type design with respect to a single
social norm community or privacy) in a neural network model. The idea in
this chapter 1is borrowed from the Hopfield model implementation of the
Travelling Salesman Problem (TSP). The reason is the similarity between the
architectural design (AD) at topological level with the TSP. Test results
are satisfactory, and exploration of larger classes of architectural design

with respect to combined norms are possible.

7.1 Hopfield model

The work of Hopfield and Tanks {[Hopfield82] [84] [85] [86] is classified as
auto associative and evolutionary models of neural networks [Zeidenberg90].
The significance of their work is the introduction of the idea of an energy
function in modeling a network. This idea relates their network to physical
systems [Hopfield82].

A Hopfield net is a fully connected network, in which nodes represent
"state space of knowledge". The way the system evolves is based on the
magnitude of the relations between the nodes, and an equation of motion that
governs the behavior of the network over time. The equation of motion is
derived from an energy function equation. If the system starts with partial
(random) knowledge, it eventually settles into complete knowledge through an
iterative process. The initial state of the Hopfield model is a chaotic

situation for the total network. After the initialization of the nodes with
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the input values, the network iteratively calculates the successive values
for the nodes. Each node tries to effect and turn the other nodes on. As
the process continues, the effect of different weights associated with the
links between the nodes tries to calm the network down, and gradually
bringing it in a compromised equilibrium situation. When the process is
finalized, the value of each node is checked against a threshold value for
acquiring the result.

The Hopfield model is different from other neural network models in the
way that it produces a solution. The nodes in the Hopfield model are all
similar in terms of their positions in the total nets, and there is no
distinction between them. Each node i in this model has a threshold value Ui
and a step-function. A node 1 resets itself to a value Vl based on the
following step-function rule:

VvV =

1 1, if: ¥} wij v 2 U

3 1 where, ¥ w v is the input sum.

0, if: Lw v <U o

The weight wij is associated to the connections between the nodes i and j,
and could be symmetrical for both nodes. A node i thus calculates its output
value V1 based on the weighted sum of the input signals and the threshold
value by passing the sum of the weighted inputs minus their threshold value
to the step function. This is the same as saying that the nodes fire only
when appropriate, and not all simultaneously. In other words the system
behavior is similar to local brain behavior in an asynchronous way [Zeiden-
berg90].

In the Hopfield model the calculation process is sequentially in one
computational sweep applied to all the nodes, and checked if they fire or
not. For example the initial inputs to the network are supplied for all the
nodes at once, and the process continues until it reaches a stable state in
which further improvement is not evident in the status of the network. The
output of the Hopfield model is derived upon the final value of the whole

network.
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Output

Node Node Node Node Node

Inputs

Figure 7.1: The Hopfield Model with 5 neurons

7.2 Hopfield model for the Travelling Salesman Problem (TSP)

Hopfield demonstrated his model through the use of the TSP problem. His
approach towards modeling this problem was based on the representation of a
n city problem with an n by n permutation matrix in which a row represents a
city and a column the position of a city on the tour. For example, the

representation of a 4-cities B-D-A-C-E tour will look like:

Position

City , 1 23 45
A 00100

B 10000

C 00010

D 01000

E 00001

In the actual implementation, such a matrix represents the voltage for the
neurons, in a way that each entry Vi denotes the output voltage of a neuron
corresponding to the x-th row and i-th column. This matrix is continuously
updated according to the governing equation of motion until a termination
criterion is confronted after which the voltage for each neuron (i.e, matrix
elements) is interpreted as O or 1 for inferring the tour sequence (i.e

topology) for the problem.

7.3 The TSP energy function
The evolutionary behavior of the network is governed by an energy function

in which the minimum corresponds to the best solution. Such an energy func-
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tlon should consider the topological property of a closed tour on the
permutation matrix as well as the minimum distance condition on the tour. To
ensure these two conditions, Hopfield gave the following equation for the

energy function:

E=W2 LLL vV, V +®2LLL vV, V +(2) LV, -n?
x 1 gw1 Xt XS 1ox yex Y x1

+/2) LT Ld V, (1)

i y,l-v1+ Vy,i—)
X y#x 1
In this equation:
— The first term is 0, if each row in the matrix contains a single 1.
= The second term is 0, if each column in the matrix contains only a 1.
= The third term is 0, if the total number of 1s in the matrix is

exactly n.

The fourth term is minimum if a shortest tour is chosen a solution.

Furthermore, dxy is the distance between two cities x and y, and A, B, C,
and D are positive parameters. These parameters are important in terms of
the behavior of the network and must be chosen as appropriate as possible to
the problem. Experimenting with the network and deep understanding of its
behavior helps in appropriate determination of these parameters for a
particular problem. The values of these parameters in the Hopfield model are
A=B=500, C=200, and D=500.

Hopfield used the derivative of the energy function to arrive at an
expression for determining the weights for the connection between a neuron
pair (x1 yj). The connection weights are then used to generate the equation

of motion (2) for the input u . to a particular neuron le.
X

Q.IQ-
-

u
——(_13y_ _ _ - _
u =l )-A} Vx BY. Vyi C(Y ¥ V)tJ n) Df:dxy(vy’w1 + Vy,l—l) (2)
J#i y#x x j y

This equation (2) contributes to the determination of the input value of
each neuron (3) at each iteration, which in turns determines the output

voltage of a neuron according to the equation (4) acting as a step-function:

t+l _ t d t
uxi - uxi * a uxi (3)
1 Yyt
Vg = g(uxi) =5 [1 + tanh (G__)] (4)

o}
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where, u, = 0.02

The initial value of the neurons is chosen so that the total values sums up
to n (i.e., the number of the neurons). However, for keeping the network
from being trapped in an initjial equilibrium situation, random noise is
added to each neuron value as a starting force.

Hopfield and Tank [Hopfield85] proposed erroneously that a value of 1
can be used for interval time T without loss of generality; but, Wilson and
Pawley [Wilson88] warned that =1 causes destruction of the initial voltage
value of each neuron, and the oscillation of the neuron voltage without ever
converging. This is quit clear from the fact that if we substitute equation
(2) in equation (3), then we have:

dut

L+l t xi
u o =u, -1
xi xi

+ other terms} (5)

and if we take T as 1, then the first term annihilates the second term. For

this reason Wilson and Pawley proposed a fraction value such as 10”° for .

7.4 Generating linear-tree designs with respect to a norm

In this section the implementation issues concerning generating linear-tree
designs with respect to a single norm is discussed. The combination of norms
is a separate issue, and is subject to further investigation. The norms
privacy and circulation costs are in harmony with each other and demands the
same treatment, while the norm community conflicts with both of them. The
final point to be made is that since we have been after an approach rather
than a working system, all parameters discussed in the formal definition of
the norms, except the flow is assumed to be 1. So, the input to the model is
a matrix representing the flow-rate between different location-pairs in a
building. Obviously, the effect of other parameters may be enforced upon the
matrix before its input to the network.

To represent the design, we will use the Hopfield approach for the
travelling salesman problem. The network for a design problem with n numbers
of locations is represented as a n by n matrix that its rows denote the
locations of the building and columns denote the position of locations with

respect to each other.
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7.4.1 Heuristics

Remind that a design optimized with respect to community norm is a pattern
labeled with the actlvities in such a way that it creates maximum flow
overlap on each location, while the other two norms demand on the contrary.
These properties of designs have important réles in the modeling of the
problem in a network. The maximization or minimization of flow overlap and
consideration of design at topological level brings about a considerable
resemblance between the ADP and the TSP. In the case of the TSP one is
looking for the shortest closed path (a tour) that passes all cities, while
in the case of ADP the search will be directed towards an open path with
minimum or maximum flow overlaps. Besides the heuristics discussed may be
iIncluded in the network to enforce early settlement of the network to a
solution. For example based on the heuristics discussed we can assign the
most interactive locations as the end locations of a linear-tree design in
the case of the community norm. The least interactive location-pairs may be
chosen for the case of the privacy norm. This rule of thumbs decide on the

positions of two locations before the network start a computation.

7.4.2 The initial condition

Theoretically the initial input voltage values of the neurons should be
taken in a way that there is no bias in favor of any particular solution.
According to Hopfield and Tank these values should be chosen in a way that
the sum of the final voltage value is approximately equal to n, the number

of neurons in the network. that is:

L LV,=n (6)
From equation (6) we can derive the initial value of each neuron as:

0 Y%

w5 In (n - 1), where u, = 0.02 (7)

This insures that the initial voltage to all neurons sums up to n. A small
uniform random noise must be added to each neuron in order to keep the
network from being trapped in an unstable initial equilibrium situation.
This random noise for each neuron was added as is recommended by Wilson and

Pawley [Wilson88] as follows:

- 0.1 u, = Suxi < 0.1 u, (8)
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7.4.3 Energy functions

It was mentioned that in general our design problem is similar to the TSP,
if a linear-tree type design is in prospect. This type of design is topo-
logically the same as solutions to the TSP. We have to describe each model
in terms an energy function that embodies the properties of the designs in
mind. The TSP energy function, thus, can provide us with the initial idea
for devising such energy functions. I propose the following energy function

for our design problems with respect to the community norm:

A B C 2
Ee = —- LIl invxj *t—> L L ) vxivyi * _2_[ LX Va P ]
b3 i J#i X y#x |1 x 1
D -1
”T[Z L rrfi-g-n vx‘v”] (9)
X y#x i ji#i

As in the TSP, the first term, here, forces a single 1 in a row, the second
term is for having a single 1 in each column, and the third term is addi-
tional constraint for having exactly n 1s (i.e., n neurons on) at the final
stage. The fourth term, which is different from the corresponding term in
the TSP, embraces other topological properties of designs with respect to
the community norm. This term enforces the right labeling on the pattern in
order to have a maximum community utility (i.e., flow overlaps) on the
design pattern. The reason that we are using the reciprocal of the fourth
term is that AD with respect to community norm is a maximization problem,
while TSP is a minimization problem. This term gets large when interactive
location pairs are far apart and gets small as the network try to locate
them as far as possible. fxy in this term is the actual flow potential
(input) between the two locations x and y. These four terms together lead
the system towards a desired solution with respect to the community norm, by
deriving the energy value of the network towards a minimum value in a stable
condition.

A, B, C and D are all positive constants that play a considerable réle
in the model. Hopfield and Tank used A=B=D=500, and C=200 for their model.
These values were found inappropriate to our model. Experiments with the
network revealed that the following values were generally in favor of the
convergence of the network towards a solution for n = 15. I am, thus,

proposing a problem dependent D parameter for the model.
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= 500
= 500
= 100
100,000 * n

o w >

The derivative of the energy function can be used to derive the strength of
connection between a neuron pair xl and yj. This derivative has réle in

generating the equation of motion (10) for the input u to a particular

neuron.
duxi uxi
=X ATV -BY V —c[):zv -n]
dat T 0 yix V! xy
-2

+D [z L £ (Ji-3|-1) v ] LL T Lf (Jisj|-1) V.V ]

yx jE1 Y VI yax 1 gm™ xt y) (10)

1 uxi
where Vxl = g(uxi) = 5 [ 1 + tanh [ u ]] (11)
te1 t du,

and Ux‘ = uxi + T (12)

where, uizl is the input voltage of the neuron in on the next interval.

Similarly, we can describe the energy function and its corresponding
equation of motion for a design with respect to the privacy and/or
circulation-cost norm(s). This energy function is similar to the previous
function for community norm except for the fourth term. We have to devise
the energy function so that it corresponds to a linear-tree solution that
has most interactive activities close to each other, and there is minimum
flow overlap (intervention) on the pattern. Equation (13) is the energy

function for the privacy / circulation-cost sub-module.

IZI VvV + 2§57
x i J Xy

xi x
#1 J

o>

C 2
Ep = Z vV Vv + T[ Z E in - n]
i x i

#x

D s
* '2_§§ ?l:: Lyl v, v, (13)

#x #i

Where A, B, C and D are all positive parameters, and fxy is the flow
potential between the locations x and y. Experiments with the network showed

that the following value were generally appropriate for this model.
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500
500
= 200
100 / n

o o w >
It

Again the derivative of the energy function is used to fix the strength of
connection between a neuron pair x1 and xj. The equation of motion for the
privacy and/or circulation-cost norms(s) (14) for the input u, 6 to a

particular neuron le is:

du u
x1 x1i
e Xy v BY V -C(EEIV. -n)-Df T £ (]i-j|-1V
dt T T * by ! 5 ® yax 1w % y) (14)
1 uxx
where, V = g(ux‘) = — [1 + tanh ( o )] (15)
t+1 t duxl
and u o= t 3 (16)

7.4.4 Why dynamic parameters?

Experiments, also analysis of the network’s behavior showed that choosing
the right parameters is extremely important in well performance of the
network. Wrong choices for the parameters have a range of unwanted affects,

consisting of:

A partial solution (The network does not completely converge).
- A poor solutions that is not optimal or is in the neighborhood of an
optimal solution.

- Excessive iterations.

Chaotic behavior in the network (e.g., oscillation of the neurons’

values).

For example, choosing a large set of parameters (e.g., A=B=1000, C=500, and
D=10000) for the community module, or a set of too small parameters (e.g.,
A=B=C=D=100) for the privacy mostly resulted in partial solutions with often
missing end locations. A fixed value for D parameter, as in the case of
Hopfield model, also caused oscilation or excessive iterations specially for

large size problems.
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A close look at the fourth terms in our cases signifies that the value
of these terms decreases in the case of the community norm, and increases in
the case of the privacy norm. The rates of changes, here, are higher than
the rate of changes of similar terms in the TSP. The reason 1is that the
fourth term in TSP relies on the value of 2n neurons, while in the AD the
fourth term is calculated based on the values of all neurons in the network
(i.e., nz). Consequently, the rate of change of the fourth term for
different problem sizes in AD is much higher than the TSP. Leaving the
fourth term without compensation of appropriate values of the D parameter
for different size of problems results in the loss of the influence of the
fourth term. To tune the D parameter I altered the parameter D with the
changes in problem size. Limited experiments with the network revealed that
D=100,000(n) for the community module, and D=100/n for the privacy module
are appropriate choices. It is possible to performance of the network by
trying to find values of these parameters automatically without human

intervention or the influence of human judgment.

7.4.5 Updating rules

As was described previously the equation of motion for a neuron uij at a
time t+1 is determined by equation (3) as follows:

tel | by d &t
x1 xi dt xi
t
du : u ;
x .
where, T = (—%—) + other terms/t was appropriate for our case.

where t is the time interval for the recalculation of neuron behavior. This

parameter was set to 105 for our model.

7.4.6 Termination criteria
In order to stop the network at appropriate time three termination criteria
are suggested by Wilson and Pawley [Wilson881]:
1- The discovery of a valid tour. This condition occurs when there is
only a single 1 in each row and a single 1 in each column of the

solution matrix. To detect this condition a binary threshold test
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can be applied to the neuron’s voltage. For example any neuron that
its value is greater than 0.1 can be considered as on and otherwise
as off. This test detects the convergence of the network to a

solution, and halts it from further process.

2- The second termination criterion is the freezing condition. This is

the case when the network reaches a rather stable state and no
considerable change is possible in the status of the network. Such
condition can be detected by testing the changes in the output
values of the neurons. In our case the changes in the value of
neurons are tested against a 10'35 and the network is halted if the
change in the value of every neuron is less than this value.

The third stoppling criterion was the time-out test. The network was
stopped after 200 iterations, and the output values of neurons were
interpreted for a solution pattern. This value was set to 1000 in
the implementations of the TSP by Hopfield and Tank [Hopfield85],
and of the Wilson and Pawley ([Wilson88]. However, in our model,
because of the relative good performance of the network for both

problems I reduced this value to 200.

7.5 Algorithms for generating linear-tree designs

Based on the implementation details, discussed so far, I now present the

algorithm for solving the community norm. For clarity, the variables in this

algorithm are printed in italic font.

1- Input n (the number of locations).

2- Set the parameters value:
- Input the flow between each location-pair.
- Set timed-out value.

- uo

:= 0.02.

= u_init := - (U0 * log (n - 1.0))/2.0.
3- Initialize each neuron’s input voltage:

u_volt T u_init + random-noise.
X
4- Normalized_flowxi 1= Input_flowxi / Maximum_flow.

5- Add heuristics to the normalized-flow to accelerate convergence
(Choose two most interactive locations as the end locations).
6— time_out := FALSE.

7- freeze := FALSE.

8- Valid_solution := FALSE.

9- WHILE (!freeze 88& !'Valid_solution && !timed_out):
9.1~ Calculate the output voltage for each neuron.
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9.2=
9.3~

9.7=

V_ := (1.0 + tanh(u_volt =/ u0)) / 2.0.
xi xi

freeze := TRUE.
FOR each neuron ., Do:

terms = AY ij+ BY Vy‘+ C [ ¥ I ij— n ]
J#i y#x x J

S AR ISES vyj][);)y:ng £ £, (1=3]-1) vV ]-2

yEx j#i 1#1 x1 y]j
old_motion := motionxi
motion = := (- u_volt - terms) / 1E+5.

xi xi

IF:(|motionxi— old_motion| < 1E-35).
THEN: freeze := FALSE.

END_FOR.
Calculate the new input voltage for each neuron.
0ld_volt := u_volt .
= - xi
u_volt = u_volt + motion .
- xi xi xi

IF: ( |u_volt - Old_volt| < 1E-35).
THEN: freeze := FALSE.

Calculating the energy function.
Old_energy := Current_energy.

Currenil_energy := % Z(: Z: ;“invxj + % Z y“levxivvi

+ ‘%[Z;Vn' n]Z,, % [Z ) foy(h— il - inVyJ]-t

X y#x 1 j#1

IF: ( freeze & (|0ld_energy - Current_energy| < 1E-35)).

THEN: freeze := FALSE.

Check for convergence of the network to a solution.

IF: = A single neuron in each row has a voltage greater than a
threshold (i.e., in > 0.1).

~ A single neuron in each column has a voltage greater than the
threshold value.

THEN: = Valid_solution := TRUE.

IF: ((Valid_solution = TRUE) OR (freeze = TRUE) OR (iteration > timed-
out)).

THEN: Interpret and output the design and its evaluation value.

IF: freeze = TRUE.

THEN: print "The process was frozen.".

IF: Valid_solution = TRUE.

THEN: print "The process was timed out".

IF: (Valid_solution = TRUE).

THEN: print "The process was successful".

END-WHILE.

(7-12)



TOPGENE: An Artificial Intelligence Approach to a Design Process

10~ END

The algorithm for generating AD with respect to the norm privacy /
circulation-cost is the same as the above algorithm except the steps that
calculate the equation of motion and the energy function. The energy
function (13) and the equation of motion (14) for these norms resemble very
much the corresponding equations for the TSP. However, one must keep in mind
that in the TSP the search is for a closed path, while in the AD case we are
interested in Linear-tree solutions (i.e., open paths). For this reason, in
the TSP problem the subscripts for calculating the equation of motion must
be taken as modulo n, so that the n-th clity is adjacent to the first. In the
AD case this condition is neglected.

The computational complexity of the model for each iteration is in the
order of 0(n'). The worst situation for the model is calculation of the
fourth term for the equation of motion and the energy function. This
approach has a polynomial time complexity of order 4 as opposed to a combi-
natorial approach for solving the same problems which has an exponential

time complexity.

7.6 Experiments and test results

The Hopfield model for the AD discussed in this paper was implemented in the
programing language C and was run on an IBM/PS2 model 80 computer. In this
section, after giving a test example, the results of the random tests run
for up to 10 locations are summarized in different tables. The resulting
designs are not judged whether they are optimal or not, since first, optimal
designs are not known except for a small number of locations, and second,
satisfactory solutions suffices design problems. Intuitlve examination of
the results, and a comparison of results of the same problem with respect to
conflicting norms shows that they are satisfactory and in the neighborhood
of the optimal solutions. Test results are presented in terms of the number
of iterations. Greater efficiency could be achieved by parallel
implementation of the model.

Table 1 shows randomly generated numbers representing flow potentials

between 10 locations or activities of some kind in a building. This matrix

was used as input to the network. The resulting design patterns are
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exhibited in figures 4 and 5. I am discarding the index of group formation
as well as the unit utilities for different locations. These factors do not
have any effect on the model nor on the performance of the network, since it
is always possible to pre-process the flow matrix with regard to these
factors before its input to the network.

The evaluation of design patterns gives a total of 67461 community
utility for the design with respect to the community norm, and a total of
44274 units cost for the privacy / circulation-cost norm(s). Furthermore in

both cases the network converged fast and with a small number of iterations.

Locations (activities)

1 2 3 4 S 6 7 8 9 10

L 1 o

2 539 0
Z 3 885 655 [¢]

4 231 2 658 (o]
i 5 578 348 4 82 0
i 6 924 694 361 428 160 0
o 7 270 41 697 775 506 891 (¢}

8 617 387 43 121 853 238 277 [o]
n 9 963 733 389 467 199 584 623 316 0
s 10} 309 312 736 814 545 930 969 662 8 o]

Table 7.1: A randomly generated matrix representing the flow
between different locations (activities) in a building

Total community utility: 67461.
Number of iterations: 53.

Figure 7.2: A linear-tree design with respect to the community norm

Total privacy cost: 44274.
Number of iterations: 41.

Figure 7.3: A linear-tree design,
with respect to the privacy / circulation-cost norm(s)

The following tables summarize the result of runs for randomly generated

tests with sizes from 3 to 14 locations. These tables indicate that the
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model is efficient and converges fast to a solutlon. Tables 7.2 and 7.3 show
that the convergence efficiencies of the community and privacy modules are
more than 83% and 88% respectively. This does not mean that in the rest of
the cases the model in incapable of converging to solutions. The threshold
value for the timed-out is small in comparison with the Hopfield model which
were set to 1000. If the timed-out threshold is increased, then a higher
convergence percentage is expected.

Similarly, tables 7.3 and 7.5 show that for both norms more than 80
percent of the cases converged to a solution in less than 100 iterations.
This performance is also remarkable. Of course the performance of the model
drops considerably when the problem size increases. This deficiency may be
overcame by further investigation for finding more appropriate parameters

for problems of larger sizes.
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# of Total # of time # of time # of time
locations run converged Frozen timed-out
3 50 50 ()] (o]
4 50 50 0 (1]
S 50 50 0 (o]
6 50 50 0 V]
7 50 50 [+] o
8 50 50 (4] (4]
9 50 50 V] 4]
10 50 40 0 10
11 50 37 [s] 13
12 50 29 [0} 21
13 50 23 ] 27
14 50 22 1 27
Total 600 501 1 98
% 100 83.5 0.2 16.3

Table 7.2: Convergence efficiency of the community module
in terms of the number of solutions found

# of Total = 100 > 100
locations run iterations itereration
3 S0 50 o

4 50 50 0

5 50 50 (o]

6 50 49 1

7 50 49 1

8 50 46 4

9 50 43 7

10 S0 38 12

11 S0 36 14

12 50 38 12

13 S0 21 29

14 50 21 29
Total 600 491 109

% 100% 81.8% 18.2%

Table 7.3: Convergence efficiency of the community module
in terms of the number of iterations
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# of Total # of time # of time # of time
locations run converged Frozen timed-out
3 50 50 o] o]

4 50 50 o] o]

s SO S0 ] (8]

6 50 50 3] [}

7 S0 50 o (o]

8 50 50 0 o]

9 50 419 o] 1

10 50 41 o 9

11 50 43 o] 7

12 50 38 0 12

13 50 31 1 18

14 50 29 1 20

Total 600 531 2 67

% 100 88.5 0.3 11.2

Table 7.4: Convergence efficiency of the privacy /
circulation-cost module in terms of the number of solutions found

# of Total = 100 > 100
locations run iterations iterations
3 S0 50 o
4 50 50 (4]
s S0 s0 (o}
6 50 s0 (o]
7 50 50 0
8 50 50 o
9 50 42 8
10 S0 34 16
11 50 35 15
12 S0 35 15
13 50 25 25
14 50 26 24
Total 600 497 103
% 100 82.8 17.2

Table 7.5: Convergence efficiency of the privacy /
circulation-cost module in terms of the number of iterations
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Another attempt was made to investigate the performance of the modules in
terms of the quality of the solutions. The results are reflected in the
following two tables. These tables which are based on the first 50 solutions
found for problems of different sizes show the qualities of test runs in
terms of the nearness of the solutions to the best solutions. Test results
show that the modules rarely converge to a best solution, but about 80
percents of the solutions found are in the 10 percent range of the best
solution. Again, one should note that because of the computational
complexity of the problems no attempt was made to verify if the best
solutions were optimal solutions, and if not what was their distance from

the optimal ones.
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/ % distance from t
best solution found

7 % Of solutions falling within specif

distance from the best solutions.

Problem size 0% 5% 10% 15% 20%
3 100 100 100 100 100
4 100 100 100 100 100
5 14 100 100 100 100
6 28 100 100 100 100
7 4 50 76 98 100
8 2 32 60 90 96
9 2 T4 100 100 100

10 2 58 72 94 100
11 2 16 66 100 100
12 2 14 34 84 100
13 2 12 60 100 100

23.5 59.6 79 97 99

Average solutions falling within speci-
fic distances from the best solutoions.

7

/
/

Table 7.6: Statistics for solutions falling within specific distance
from the best solution for the community module

/ % distance from ty % Of solutions falling within specif
best solution found/ distance from the best solutions.

Problem size 0% 5% 10% 15% 20%
3 100 100 100 100 100
4 82 82 82 82 82
5 18 100 100 100 100
6 24 100 100 100 100
7 10 10 46 72 82
8 4 8 48 70 90
9 2 34 74 74 84

10 2 74 88 a7 99
11 2 72 100 100 100
12 2 58 100 100 100
13 2 48 98 100 100

22.5 62 85 90 94

Average solutions falling within speci-—
fic distances from the best solutoions.

Table 7.7: Statistics for solutions falling within specific

the best solution for the privacy module
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7.7 Summary

This chapter discussed the neural networks implementation of architectural
designs with respect to community and privacy norms. These problems are
similar 1in nature, but mathematically more complex than the travelling
salesman problem. Hopfield and Tank chose the TSP problem to introduce their
neural network model. Wilson and Pawley [Wilson88] criticized Hopfield and
Tank model by saying that their underlying "method 1s unreliable and does
not offer much scope for improvement". My experiments with the adapted
version of Hopfield model for AD introduced in this work show that Hopfield
model is a promising approach for optimizing architectural designs. The
experiments with the network showed that the network generate reasonable and
satisfactory design solutions with respect to social norms community and
privacy / circulation-cost norm(s).

From a technical point of view, this chapter provided an experimental
ground to discover the réle of variable parameters for the Hopfield model.
Both Hopfield and Pawley used constant parameters for different problem
sizes. A close examination of this network reveales that constant parameters
for problems of different size cannot guarantee the convergence of the
network to optimal solutions for all cases.

This fact was more evident in the case of our AD in which value of the
fourth term was under the influence of all neurons in the network, and
demanded different compensation for different problem size with respect to
the D parameter. This terms has a weaker effect in the total behavior of the
network for the case of the travelling salesman problem. The solution to
this problem is the tuning of parameters of the network to comply with the
size of the input problems. Different behaviors of neurons in networks of
different sizes demand different-size parameters. Something that was not
under immediate effect in the Hopfield implementation of the TSP problem.

Next chapter examines the performance behavior of TOPGENE as a
heuristic program by comparing sets of designs generated for the same sets
of data by both TOPGENE and the neural network.
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CHAPTER 8

A TESTING oF TOPGENE AND FUTURE WORKS
|

This chapter, presents:
- A comparison of design solutions by TOPGENE and the neural network (NN)
for the same problems.

— Limitation of both approaches and future works.

8.1 A comparative look at TOPGENE’s and NN’s solutions

This section compares solutions generated by the TOPGENE and the NN for the
same set of problems. This comparison is based on the limited capability of
the NN implementation of our architectural design problem (ADP). The present
version of the NN is only generating linear-tree sub-optimal designs with
respect to an isolated norm community or privacy. The linear-tree type
design happens to have a high degree of complexity, because of the high
degrees of interactions that is foreseen between location-pairs of such a
design type.

The main ideas behind comparing output of these two systems are, first,
a partial evaluation of TOPGENE as a heuristic system in generating designs,
and second, discovering some of the shortcomings associated with both
approaches.

The NN model accepts the actual or expected flows between location
pairs of a design as input, and produces a linear-tree type design in terms
of its connectivity pattern. A more sophisticated version of the NN, nece-
ssarily should include the Q-analysis module for derivation of expected flow
between locations of a design, if a wider range of input data-sets, or if a

more row data-set, such as activities and actors responsible for the
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activities, should be accepted by the NN.

The input flow tables for the NN, exhibited in the next sections, are
randomly generated. Each table is proceeded by the following information for
the community norm, and is repeated for the privacy / circulation~cost norm:

- The norm used for generating a design,

= Number of test runs on data,

— Average number of number of iterations for test runs,

~ Percent of the NN solutions that converged to the best performing

solution,

- The best performing design generated by the NN,

= Result of the performance analysis of the NN’'s solution,

~ TOPGENE’s solution for the same problem, and finally,

— Result of the performance analysis of TOPGENE's solutions.

The test runs are carried out for design problems from 4 locations up to 13

locations. Here is the first test run and its results:

The input flows between locations:

1 2 3 4
1 0 355 701 a8
2 355 0 394 740
3 701 394 [¢] 87
4 48 740 87 [¢]

Norim: community.

Number of runs: 50.

Average number of iterations: 30.

Percent of runs that converged to the best solution: 100%
Best solution found by the NN:

2 - 3 1 4 Total community utility: 1922.

Solution generated by the TOPGENE:

2 4 1 - 3 P4 4 |Total community utility: 1922.

Norm: privacy / circulation-cost.
Number of runs: 50.

Average number of iterations: 15.
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Percent of runs that converged to the best solution: 84%

Best solution found by the NN:

1 4 3 P4 2 1 4 Total privacy cost: 538.

Solution generated by the TOPGENE:

1 b 3 2 -~ ¢ Total privacy cost: 538.

The input flow between locations:

1 2 3 4 S
1 0 443 453 464 474
2 443 [} 485 495 506
3 453 485 o 517 527
4 464 495 517 0 538
5 474 506 527 538 o

Norm: community.

Number of runs: S50.

Average number of iterations: 35.

Percent of runs that converged to the best solution: 14%

Best solution found by the NN:

4 b 2 4 1 |~ 3 5 Total community utility:

Solution generated by the TOPGENE:

4 4 3 b 2F11 5 Total community utility:

Norm: privacy / circulation-cost.

Number of runs: S50.

Average number of iterations: 40.

Percent of runs that converged to the best solution: 18%
Best solution found by the NN:

1 a4 P s 3 B 2 Total privacy cost:4722.

Solution generated by the TOPGENE:

(8-3)
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The input flow between locations:

1 2 3 4 5 6
1 o 227 248 269 290 311
2 227 4] 332 354 375 396
3 248 332 o 417 438 459
4 269 358 417 (] 480 502
5 290 375 438 480 0 523
6 311 396 459 502 523 o]

Norm: community.

Number of runs: 50.

Average number of iterations: 35.

Percent of runs that converged to the best solution: 28%
Best solution found by the NN:

5 —J st M2t 3]s Total community utility:

Solution generated by the TOPGENE:

5 I 4 3 2 P~ 1 6 Total community utility:

Norm: privacy / circulation-cost.

Number of runs: 50.

Average number of iterations: 53.

Percent of runs that converged to the best solution: 24%
Total privacy cost: 6542.

Best solution found by the NN:

1 = 3 b4 5 I 6 4 - 2 Total privacy cost: 6542.

Solution generated by the TOPGENE:

1 p— 2 6 5 %— 3 b 2 Total privacy cost: 6545,

(8-4)
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The input flow between locations:
1 2 3 4 5 6 7

1 0 363 709 56 402 748 95
2 363 O 441 787 133 480 826
3 709 441 0 172 519 865 211
4 56 787 172 0 558 904 250
5 402 133 519 S58 0 596 943
6 748 48O 865 904 596 o 289
7 95 826 211 250 943 289 0

Norm: community.
Number of runs: 50.

Average number of iterations: 41.

Percent of runs that converged to the best solution: 4%

Best solution found by the NN:

S b4 2k 6 ' M4 437

Total community utility: 21079.
Solution generated by the TOPGENE:

5 4 3 bt 2 b~ 1 =1 6 P 7

Total community utility: 19000.

Norm: privacy / circulation-cost.

Number of runs: 50.

Average number of iterations: 59.

Percent of runs that converged to the best solution:

Best solution found by the NN:

1 P~ 3 P 6 P S5 7 2 4

Total privacy cost: 11981.
Solution generated by the TOPGENE:

O T e R e B R o A o

Total privacy-cost: 12447.

(8-5)
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The input flow between locatlions:

1 2 3 4 5 6 7 8
1 [¢] 328 674 21 367 713 59 406
2 328 o 752 98 445 791 137 484
3 674 752 0 830 176 523 869 215
4 21 98 830 0 561 908 254 600
5 367 445 176 561 0 947 293 639
6 713 791 523 908 947 4] 986 332
7 59 137 869 254 293 986 0 678
8 406 484 215 600 639 332 678 0

Norm: community.

Number of runs: SO.

Average number of iterations: SO.

Percent of runs that converged to the best solution: 2%

Best solution found by the NN:

6 8 r— 3 b4 5 k1 4 4 1 2 7

Total community utility: 37732.
Solution generated by the TOPGENE:

6 4 3 1 8 F1 1 P 2 — ¢ Sr—-?

Total community utility: 36349.

Norm: privacy / circulation-cost.
Number of runs: 50.
Average number of iterations: 59.

Percent of runs that converged to the best solution: 4%

Best solution found by the NN:

1 2 3 7 6 F s - s - 4

Total privacy cost: 21995.

Solution generated by the TOPGENE:

1 - 2 8}d st s 4 7 3 4

Total privacy-cost: 22601.
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The input flow between locations:

1 2 3 4 S 6 7 8 9
1 o] 995 s 16 26 37 a7 58 69
2 995 o 79 90 100 111 121 132 142
3 5 79 o 153 164 174 185 195 206
4 16 90 153 4] 216 227 238 248 259
S 26 100 164 216 o] 269 280 290 301
6 37 111 174 227 269 o] 312 322 333
7 a7 121 185 238 280 312 o 343 354
8 58 132 195 248 290 322 343 [¢] 364
9 69 142 206 259 301 333 354 364 [¢]

Norm: community.

Number of runs: SO.

Average number of iterations: 60

Percent of runs that converged to the best solution: 2%

Best solution found by the NN:

1 b 7 8 b a o 34 5649 2

Total community utility: 20064.
Solution generated by the TOPGENE:

1—-9-—3—4r—5 6 7 ~— 8 p— 2

Total community utility: 19633.

Norm: privacy / circulation-cost.

Number of runs: 50.

Average number of iterations: 62.

Percent of runs that converged to the best solution: 2%
Best solution found by the NN:

1 4 21 7 948 F 6 15} 4 p— 3

Total privacy cost: 11161.
Solution generated by the TOPGENE:

1 2 9 1 8 7 6 1 S — 4 P 3

Total privacy-cost: 11231
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The input flow between locations:

1 2 3 4 5 6

1 0O 826 836 847 858 868
2 826 0 921 932 942 953
3 836 921 [ 6 16 27
4 847 932 6 0 80 90
5 858 942 16 80 0 143
6 868 953 27 90 143 4]
7 879 963 37 101 153 196
8 889 974 48 111 164 206
9 900 984 s8 122 175 217
10 910 995 69 132 185 227

Norm: community.
Number of runs: 50.

Average number of iterations: 67.

7

879
963

37
101
153
196

238
249
259

889
974

48
111
164
206
238

270
280

900
984

58
122
175
217
249
270

291

10

910
998

69
132
185
227
259
280
291

Percent of runs that converged to the best solution: 2%
Best solution found by the NN:

2 4 1t 8 4 6 4~ 74 3k 5 b4 9 b4 10
Total community utility: 69204.
Solution generated by the TOPGENE:

24 1 HH 3k 4 FH 56} 7 8 P 9 o 10
Total community utility: 66792
Norm: privacy / circulation-cost.
Number of runs: S50.
Average number of iterations: 62.
Percent of runs that converged to the best solution: 2%
Best solution found by the NN:

3 b 6 g8 9 2841 F{ 7 }o 104 5 |4 2
Total privacy cost: 39978.
Solution generated by the TOPGENE:

S sH7H 989 2 F 104 1 - 8 — 6 I 2
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The input flow between locations:
1 2 3 4 S 6 7 8 9 10 11

1 0 197 229 260 292 324 356 387 419 451 482
2 197 0O 6514 546 578 609 641 673 704 736 768
3 229 514 0O 799 831 863 895 926 958 990 21
4 260 546 799 o 53 85 117 148 180 212 243
S 292 578 831 53 O 275 307 338 370 402 434
6 324 609 863 85 275 0 465 497 529 560 592
7 356 641 895 117 307 465 0 624 656 687 719
8 387 673 926 148 338 497 624 0 751 782 814
9 419 704 958 180 370 529 656 751 0 846 877
10 451 736 990 212 402 560 687 782 846 0 909
11 482 768 21 243 434 592 719 814 877 909 o

Norm: community.

Number of runs: S50.

Average number of iterations: 67.

Percent of runs that converged to the best solution: 2%

The design solution:

3 F— 11 2 M 9 M1 S P~ 4 M 6 P 8 I 7

10

Total community utility: 106510.
Solution generated by the TOPGENE:

3 P~ 11p— 1 2~ 4 —~5pmM6pM70prH?3=38mr—-?¢

10

Total community utility: 104007

Norm: privacy / circulation-cost.

Number of runs: S50.

Average number of iterations: 74.

Percent of runs that converged to the best solution: 2%

The design solution:

3 b s HHstd e b8 2k 7] 10— 9 FH 1

11

Total privacy cost:78701.
Solution generated by the TOPGENE:

Total privacy-cost: 74846
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The input flow between locations:

1 2 3 4 5 6 7 8 9 10 11 12

1 0O 438 469 501 533 564 596 628 659 691 723 755
2 438 0 786 818 850 881 913 945 977 8 40 72
3 469 786 0 103 135 167 198 230 262 294 325 357
4 5§01 818 103 0 389 420 452 484 516 547 579 611
5 533 850 135 389 0 642 674 706 737 769 801 833
6 564 881 167 420 642 0 864 896 928 959 991 23
7 596 913 198 452 674 864 0O 5S4 86 118 150 181
8 628 945 230 484 706 896 54 0 213 245 276 308
9 659 977 262 516 737 928 86 213 0 340 372 403
10 691 8 294 547 769 959 118 245 340 O 435 467
11 723 40 325 579 801 991 1S5S0 276 372 435 0 498
12 755 72 357 611 833 23 181 308 403 467 498 o
Norm: community.
Number of runs: S5S0.
Average number of iterations: 75.
Percent of runs that converged to the best solution: 2%
The design solution:

6 +— 4 s 4 1 - 3 8 P4 12+ 9 - 2 H 7 P 10 11
Total community utility: 131156.
Solution generated by the TOPGENE:

6 P 2 1204 1 4 3 P 14 5 7 o4 8 o 10 9 B 11
Total community utility: 12782S§
Norm: privacy / circulation-cost.
Number of runs: S50.
Average number of iterations: 81.
Percent of runs that converged to the best solution: 2%
The design solution:

2 7 b4 3 b 8 FH 6 4 5 FH 9 1 4 11— 12} 10
The Total privacy cost:91031.
Solution generated by the TOPGENE:

7F43M 9 2 4 5 HH 11 6 10 1 b 12 4 |4 8
Total privacy-cost: 94459

(8-10)



TOPGENE: An Artificial Intelligence Approach to a Design Process

The input flow between locations:

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 308 340 372 404 435 467 499 530 562 594 626 657
2 308 O 689 721 752 784 816 847 879 911 943 974 6
3 340 689 [ as 69 101 133 164 196 228 260 291 323
4 372 721 38 0O 355 386 418 450 482 513 545 577 608
5 4084 752 69 355 0 640 672 704 735 767 799 830 862
6 435 784 101 386 640 0O 894 925 957 989 21 52 84
7 467 816 133 418 672 894 0 116 147 179 211 242 274
8 499 847 164 450 704 925 116 O 306 338 369 401 433
9 530 879 196 482 735 957 147 306 O 464 496 528 560
10 s62 911 228 513 767 989 179 338 464 0 591 623 655
11 594 943 260 545 799 21 211 369 496 591 0 686 718
12 626 974 291 577 830 52 242 401 528 623 686 o 750
13 657 6 323 608 862 84 274 433 660 655 718 750 [¢]
Norm: community.
Number of runs: 50.
Average number of iterations: 68.
Percent of runs that converged to the best solution: 2%
The design solution:

6 H 2 sH®@H*HM“YH3H 12 7H 8 H o a4 H 10
Total community utility: 167695.
Solution generated by the TOPGENE:

6 2 Hs H! 3 4 H 131 7 8 H 114 9 124 10
Total community utility: 167023
Norm: privacy / circulation-cost.
Number of runs: 50.
Average number of iterations: 75.
Percent of runs that converged to the best solution: 2%
The NN solution:

2 Ha3aH 7 8 6 H 10H 9 1 5 1 H 11H 12H 2 H 13

Total privacy cost:127322.
Solution generated by the TOPGENE:

3 He H 1 H 11 13 s H 12H 2 M 10 6 H 9H 4 H 7

Total privacy-cost: 131759
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The following tables compare performances of designs generated by both

systems:
Problem | Performance value|% runs Performance relative distance in
size (utility) of the [converged| value of the {% of TOPGENE solutions
NN best solution |to best TOPGENE’s ... |from the NN solutions
4 1922 100 1922 0
s 5083 14 5050 0.6
[ 8405 28 8310 1.1
7 21079 4 19000 9.8
8 37732 2 36349 3.6
9 20064 2 19633 2.1
10 69204 2 66792 3.4
11 106510 2 104007 2.3
12 131156 2 127825 2.5
13 167695 2 167023 0.4
Ave. 2.58
Table~1: Comparison of the performance of TOPGENE
and the NN with respect to the community norm
Problem|Performance value|% runs Performance relative distance in
size (cost) of the NN [converged| value of the |¥% of TOPGENE solutions
best solution to best TOPGENE’s ... |from the NN solution
4 538 84 538 0.0
s 4722 18 4724 0.0
6 6542 24 6545 0.0
7 11981 10 12447 3.9
8 21995 4 22601 2.8
9 11161 2 11231 0.6
10 39978 2 40380 1.0
11 78701 2 74846 -4.9
12 91031 2 94459 3.8
13 127322 2 131759 3.5
Ave.1.07

Table-2: Comparison of the performance of TOPGENE
and the NN with respect to the privacy norm
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Above test-runs show that:

- Except for small sized problems, the NN solutions are better perform-
ing than TOPGENE’s solutions.

~ Only in one case (i.e., table-1, problem size 7) the solution
generated by TOPGENE is about 10% worse than a solution generated by
the NN for the same problem.

- On the average, the performance behavior of designs generated by
TOPGENE are not more than 2.5 percent worse than the solutions
generated by the NN for the same set of data. Considering the speed
of TOPGENE in generating designs relative to the NN, this deviation
is very low and negligible.

- The problem size 11 in table-2 shows that it is even possible for the
TOPGENE to perform better than the NN in terms of the quality of a
solution to a design problem.

-~ The NN implementation of the ADP problems, in general converges fas-
ter than the original Hopfield and Tanks NN model for the travelling
salesman problem (TSP) in terms of the number of iterations that it
takes to produce a solution. The NN converges to a solution on the
average with 50 iterations. This is a very low number of iterations.

- Because of the computational complexity of the ADP, the time that one
iteration takes is time-wise more costly than the TSP problem. For
example, for a design with 10 to 15 locations the time that it takes
for the NN to converge to a solution is between one to two hours on
an IBM-PS2 model 80 machine. This in comparison with TOPGENE perfor-
mance also is a long time. TOPGENE produces a solution for the same
problems in an interval between one to two minutes depending on the
type of solution required. The NN implementation of the ADP problem
in software is much slower than the TOPGENE approach.

Based on above facts, and considering that, first, TOPGENE is a heuristic
program that relies on rules of thumbs for generating any designs, and
second, the NN is a computational system, one can conclude that TOPGENE is a
remarkably fast performing system. In addition, one must remember that
because of the possibility of integrating TOPGENE with knowledge bases of
recommended and prohibited accesses in a building, TOPGENE non-linear

designs are more realistic than a neural network designs. The most that a
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neural network similar to one discusses in last chapter can do is to strive
for an optimized design regardless of whether it is practical on not.
Something common between the NN and an analytical optimization method for
generating a design.

8.2 Limitations of TOPGENE and future works

There are limitations with TOPGENE, as a functioning system, some of which
can be eliminated by its expansion. There are many possibilities for increa-
sing the effectiveness and efficiency of TOPGENE as a spatial reasoner or as
a topological pattern generator. One of the most important measures of the
success of TOPGENE is the ease with which such extensions can be made. There
are also differences between the theory behind TOPGENE, as discussed in
[Tzonis87], and the implementation. In this section I discuss these diffe-

rences, and propose possible extensions to the system.

Path finding and division of flow on them
Path finding is one of the bottlenecks in TOPGENE. As, it was discussed in
the implementation chapter, TOPGENE needs to detect paths between locations
for two purposes. First, for keeping track of the shortest paths between
locations in partial designs while configuring a design, and second, once a
design is configured, TOPGENE has to analyze and calculate performance
behavior of the design with respect to the social norms, and possibly
produce a diagnosis report for its behavior. The computational complexity
of the path finding was eased by devising an special algorithm for keeping
track of distances in growing partial designs, as was discussed in chapter
4. The complexity of best known algorithms for generating paths between all
location pairs in a graph is n° [Buckley90] [Gibbons85]. This complexity,
although for structurally complicated designs, may be time consuming but is
bearable if it has to be calculated once for a design, and not for every
partial design as in TOPGENE. People, however take the shortest path towards
their destination if they know it and if it is a permitted path. This rule
also is applicable in a building as well.

TOPGENE may apply this human heuristic dividing flows on paths based on

statistical or probabllistic assumptions. Because of modularity of the
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TOPGENE this is not a hard task to fulfill.

Increasing the system efficiency

A major thrust of this work was to find an efficient method for solving a
class of design problems which are computationally intractable. The goal has
played a major part in deciding on the search strategy that enable the
system to perform well in terms of the computational efficiency. TOPGENE is
written in GCLISP and runs on an IBM PS2 machine. From the early stages of
the system implementation, several key decision was made and methods adopted
to increase the efficiency of the system. This included devising a new graph
manipulation algorithm, discussed in chapter 4, and taking advantage of
existing information within the system to speed up the system. Example of
the second case was the use of distance matrix for speeding up findings of
the shortest paths in a partial design. This decision speeds up the system,
time-wise, by a factor of 10 to 15.

The slow performance in matrix manipulation of most of the LISP
interpreters, including GCLISP, is bottle neck in TOPGENE, specially for
problems of large size. For example, TOPGENE may take several minutes to
pre-process data (i.e., Q-analysis) for a design problem of 20 to 30
locations. This problem is believed to ease if TOPGENE is interfaced with
other programming languages such as C, for handling of sub-processes such as

Q-analysis, that heavily rely on numerical calculation.

Integration of a data-base of precedents of architectural designs

A data-base of architectural designs including their connectivity patterns
is a natural extension to the TOPGENE. Such an extension to TOPGENE necessa-
rily demands study on the choices of numerical indices, the same as discuss-
ed in chapter 4, for indexing and retrieval of the precedents. I strongly
suggest a sub-set of the topological indices (TIs) discussed in appendix-A
for this purpose. The hierarchical model for measuring complexity of graphs
proposed by Bonchev [Bonchev87a], discussed in section 4.1.4 is one of the
best choices. This model can capture most of the structural (topological)
properties of a building in a vector type index that can be used for
indexing and retrieval of precedents of architectural design. One should
note that the integration of precedents of designs necessarily would not

undermine the current status of TOPGENE in terms of its algorithms and
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methods that it uses in generating new designs. The reasons are, first,
there is always a need for analytical treatment of data on design problems
dealing with social norms with a method such as Q-analysis; second, it is
always possible that a precedent solution for a design problem does not
exist, and that it necessarily should be generated directly, based of the
data presented to the system; and third, a data base of precedents of design
may only help in the design generation activities, and not the evaluation.
The evaluation problem, thus, needs the current approach by TOPGENE in any

cases.

Introduction of non-uniform utility / costs to the system

TOPGENE, currently assumes uniform utlilities / costs assoclated with
behavior of different parts of a building. This, although may be true in
some situations, but in general, a designer may consider different utilities
and costs associated with performances of different parts of a design with
respect to the social norms. Addition of this capability is a possibility
that also is in conformity with the current architecture of TOPGENE. Only,
different indices have to be used for calculating the performance behavior

of different locations.

Focusing social points of view on micro level rather than for the totality
of a design
The current version of the TOPGENE, assumes uniformly similar social requir-
ements for a design in its totality, and consequently for each location of a
design. It is quite natural that a designer demands different performance
from different parts of a building with respect to the social norms. Here,
as in the previous case, a more complicated analysis of deslign data is
needed. TOPGENE based on this approach would have to process data related to
parts of a design with different behaviors separately, proceeds design for
each part, and combine the sub-designs found, to form a total design. Such
an approach is very much akin to the model of design based on decomposition
of the problem, discussed in chapter 2.

Another addition is enabling the system to respond to a different type
of problem formulation based on unlike social requirements from various
parts of a building. This is different from the case discussed above. In

previous case, the requirements of a design were the same for various parts,
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while the 1indices of social behaviors were different. Here, unlike
performance is demanded for different parts of a design regardless of the

input data and indices of social behaviors.

Introduction of the time constraint to the system
Flow-rates between different locations of a bullding are in reality a time
dependent phenomenon. A flow rate between two specific locations changes
over time. For example, the flow rate in one part of a building may be
higher during the day than night, and another part of the building may
behave on the contrary. TOPGENE currently assumes constant flow-rate between
different locations in any times, or as one may interpret, it considers the
average flow rate, or total flow-rate for a time-interval.

Involvement of this timing factor is another extension possibility for
the system. Such an extension also requires only changes to the data prepa-

ration and data analysis part of the system and not in its general approach.

Adding friendlier input user interface

A friendly interface plays an important rule in acceptance of a system by
its users. TOPGENE currently supports a graphical interface for input and
automatic display of connectivity patterns of buildings. The system also
includes window facilities for inputting other design data for generating
topological patterns. However, because of the reliance of the system on a
fairly vast amount of information for process, thinking about a friendlier

user interface worth the effort.

Incorporation of explanation facilities

TOPGENE, on a limited base, supports and navigate the user on entering data
to the system, and almost has no facilities for explaining its course of
actions at micro levels. The system, is perfectly capable of providing
logical explanations for the actions that it takes based on the mathematical
information that it collects about a building. Adding (optional) explanation

facilities to the system is a user’s favorite.

Processing of location pairs with the same priority
TOPGENE cannot give processing priority to location pairs within the same

cluster (i.e., priority in terms of flow generation potential). This is not
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always healthy in terms of the outcome of a design. For example, suppose
that we have the following location pairs in a cluster to be processed:
(toilet conference-room)

(chief~room conference-room)

(chief-room secretary-room)

Handling the first location pair, for example with respect to the privacy
norm, After will create new connection (access) between the conference-room
and the toilet, and the branchiness degree of the conference-room 1is
increased by 1. In the next iteration, the location pair (chief-room and
conference-room) must be processed. Now, if the limit for branching degree
of the conference-room is reached, then TOPGENE will avoid creating new
access between the conference-room and the chief-room. It is obvious that if
a designer had to make an access choice between the toilet and the
conference-room to the chief-room, then he would have chosen the conference-
room. Two possibilities exist for overcoming this problen:

~ Letting the system interact with the user while confronting such a

situation.
— Enriching the system with a larger knowledge base, and stronger know-

ledge of architectural design.

A solution based on the second proposal is discussed in the next section.

Enhancing the knowledge-bases with class descriptions and flow weights

The knowledge bases of recommended and prohibited accesses in buildings
proved to play an important réle in generating more realistic and practical
designs. These knowledge bases, integrated into the system in final design
stages of TOPGENE, currently consists of simple assertions concerning the
recommended and prohibited accesses in buildings. The efficiency and produc-
tivity of these knowledge bases may be further improved by taking advantage
of Al representation techniques such as class description and including a
broader knowledge of architectural design at topological level. Class desc-
ription of recommended and prohibited links helps in both broadening and
deepening the reasoning process of TOPGENE in a sense that ,first , it
provides a means for deeper classification of access knowledge of design,

and second, classification in turn provides the system with broader reason-
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ing possibilities.

Another improvement in this direction is the enhancement of the recomm-
ended and prohibited accesses with the weights (i.e., potential flows
between the location pairs) associated with them. These weights may play
réle in generating designs with different properties in terms of optimality
or realism. As an example, consider the following set of recommended
accesses in a building.

(access hall living-room)
(access hall bed-room)

(access hall kitchen)

(access kitchen-1 kitchen-2)
(access living-room kitchen-1)

(access living-room kitchen-2)

These recommended accesses are available to the TOPGENE in order of their
priorities with respect to the flow generation potential between the
location pair in each access. However, the actual flow between the location
pairs is not evident to TOPGENE. The Q-analysis process presently simply
ranks recommended accesses extracted from the knowledge base before passing
them to an appropriate task-executer to be processed. This process becomes
more attractive if weights are kept in each assertion reflecting a recommen-
ded or prohibited link. In such case, a wiser mechanism for dealing with the
knowledge of access in a building is possible. For example, weights allow a
better switching control between different processes that work on the
relations between different locations of a building in terms of flow degrees
(weights) between them.

Let’s consider above recommended accesses enhanced with flow weights as
follows:
(access hall living-room 214)
(access hall bed-room 210)
(access hall kitchen 108)
(access kitchen-1 kitchen-2 55)
(access living~room kitchen~1 55)

(access living-room kitchen-2 40)

Now, if we suppose that a location pair with maximum priority in the list of
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prohibited accesses for the same building has a flow degree of 100. A TOP-
GENE task-executer processing above recommended accesses is preferred to
stop, when (hall kitchen) is processed and switch to processing non-
recommended links having a hire priority. The current version of TOPGENE may
not make such decisions because of the absence of the flow weights in the
partially hierarchical clusters of location pairs. One should note that the
implementation of this 1idea in fact requires a trade-off mechanism between

the optimality and realism of a design.

Error detection and error correction

Detecting and correcting erroneous data is necessary part of any system
requiring outside data for consumption. For example, if the input data
contradict system requirements, it should be detected or the user must be
warned against the consequences. In general, error correction depends on
detecting where errors are introduced into the system. To make the system
robust, such an error correction is integrated into the TOPGENE. But, since
TOPGENE is adaptable to both being a deductive knowledge~based system or an
interactive system, thought should always be given on the detection and

correction of mistakes on data entry points.

8.3 Limitations of the NN approach and future works

The neural modeling step towards the architectural problem was taken at the
final stages of TOPGENE implementation. This approach was not intended to be
finalized and complete. There are many unresolved situations in this res-

pect. Here are notes on the shortcomings associated with the NN:

Generating all design types

The current NN implementation of the architectural design problem is only
capable of generating linear-tree designs with respect to a single norms
community, privacy, or circulation-cost. The possibilities of generating
other types of designs are open to quest. I should mention that, on the
contrary to what may seems, other types of design such as a general tree or
near—optimal types do not have a high priority for this approach. The
linear-tree type was the most important of all with this respect. The reason

is that, first, linear-tree type designs are the optimal type design for the
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community norm; second, computationally this type of design is one of the
most intractable types with respect to all norms. In fact, detection of a
near-optimal design in the form of a general graph or a tree graph for the
privacy and the circulation-cost norm turns into the problem of detecting a
minimum flow spanning graph (or tree) that is also planar. This was already
discusses in chapter 5. Implementation of such an algorithm in a NN does not
seem as important as the linear-tree type designs. One reason is existence
of algorithms for solving such problems, which do not exist for the previous

case.

Design with respect to the intervening opportunity norm

Another shortcoming of the NN is generating designs with respect to the
intervening opportunity norm. The energy functions devised for other norms
are valuable bases for discovering a new energy function for optimizing
designs with respect to this norm. Interesting enough is the fact that an
optimal solution with respect to this norm also is in the form of a linear-
tree type design. Linear-tree type design has potential for producing
maximum in-betweenness condition which is valuable to the intervening

opportunity norm.

Design with respect to a combination of norms

Generating designs with respect to a combination of social norms is another
deficiency in the NN. I believe, once the strategles for generating sub-
optimal designs with respect to single norms are complete, generating de-
signs with respect to a combination of them are not a hard task to accom-
plish. The most important aspect of the neural network used in this work, as
described in chapter 7, are the control strategy of a network for accomp-
lishing a task. The main contributor to the control mechanism of Hopfield
model is the equation of motion. A natural suggestion for a control strategy
for a similar network capable of solving a design problem with respect to a
combination of norms is a control mechanism that combines the control mecha-
nism discovered for each norm separately. This strategy, already experienced
my myself works well and produces result. This is the same as letting all
equation of motions related to norms govern the network simultaneously, and
compete with each other to derive the network towards their own goal. The

ultimate wining neurons will be those having or gaining upper hand with
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respect to a norm during the process. Optional weights also may be attached
to each equation of motion as a secondary control in elevating the effects
of some norms in the outcome of a design with respect to the other norms.

I used a combination of equations of motion for the community and
privacy / circulation-cost norms to create a new network generating linear-
tree design. The initial guess was that such a network, due to conflict
between these norms, will not settle down to a solution and endlessly will
continue to oscillate; but, the results were on the contrary. The network
converges to solutions with behaviors that are indeed somewhere in-between
the behavior of two designs generated with respect to each norm separately.
Continuation of this approach and further enhancement with the intervening
opportunity norm is a worthwhile attempt.

Here, 1s an example of a design generated by the NN with respect to the
combination of norms privacy and community. The generated designs with
respect to each norm separately also are presented for comparison of their
behavioral values with behavioral values of the design with respect to

combination of the norms.

The input flow between locations:

0O 468 S00 532 564 595

468 0 627 659 690 722
500 627 0 7754 785 817
532 659 754 0O 849 881
564 690 785 849 0 912
595 722 817 881 912 o]

Design with respect to the community norm:

S 3 1 - 2 4 P 6

The process was successfully terminated after 30 iterations.
Total community utility: 15169. units.

Design with respect to the privacy norm:

1 P~ 3 5 — 6 4 2

The process was successfully terminated after 45 iterations.

Total privacy cost: 12379. units.

Design with respect to combination of the norms community and privacy /

circulation-cost:
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6 — 3 1 5 b4 2 |- 4

The values of parameters for this test run was:

A = 500.00, B = 500.00, C = 150.00, Dc = 1.000.000n, and Dp = 100 / n, where
Dc and DP are D parameters for the community and privacy / circulation-cost
energy functions, respectively.

The process was successfully terminated after 51 iterations.

Total community utility: 14791.00 units.

Total privacy cost: 14791.00 units.

This example, and several other test runs, show that combining the energy
functions in the NN is a possibility for generating design with respect to
multiple norms. The community utility and privacy cost for the third solu-
tion are both 14791 units. This value is somewhere in-between the 15169
units utility and 12379 units cost for designs with respect to single norms
community and privacy, respectively. These values show that the third
solution, having more tendency towards the design with respect to the
community norm, but is indeed a design with a behavioral value obtained by a
trade off between the behavioral value of the two designs with respect to a
single norm.

If such a network, in a long run, shows bias towards a norm, then this
problem may be eliminated by tuning the network by changing the parameters
values, or as was discussed earlier, by adding weligh options to correspon-

ding equation of motions.
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CHAPTER 9

CONCLUDING REMARKS
]

This chapter discusses the characteristics of TOPGENE, the contributions of
the work carried out, and presents some final remarks regarding TOPGENE’s
potential. In the final section I suggest two other possibilities for solv-

ing the design problem discussed in the work.

9.1 The characterization of TOPGENE

Al has its own set of standards for judging theories. An Al theory is broad
if it describes a broad class of knowledge and inference. It is coherent if
its sub-parts fit together well. It is resonant if it introduces ideas that
are relevant to other AI programs. It is robust if it can be extended to
handle more knowledge and more inference, and if it will interface cleanly
with other AI theories. TOPGENE stands relatively high with respect to the
Al standards.

In any integrated computer system, many or most of the design
decisions, including the program specifications, are made largely to fit in
with other design decisions. In learning from such systems, it is important
to decide what features are valid outside the system, and what 1is their
scope. At most specific level, TOPGENE builds abstract graphs and uses Q-
analysis method to infer the flow potentials between the locations in a
design and cluster them in a partially hierarchical manner. TOPGENE is also
an Al system that reasons about the structural-functional interrelationship.
Several aspects of TOPGENE are relevant to spatial reasoning in general. For
example there is not much difference in optimizing urban plans with respect

to social norms than optimizing a building with this respect. An urban
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planning problem with respect to the same social norms discussed in this
work can directly be presented to TOPGENE for a solution.

TOPGENE is also characterized as a deep reasoning system. It produces
inference based on mathematical modeling and a relatively deep knowledge of
architectural design compared to shallow knowledge in the form of inference
rules.

TOPGENE, apparently a complicated system based on methods brought
together from many disciplines, is a coherent system. All its algorithms and
data structures interface with each other in a clear way. Each module of
TOPGENE uses neatly one or more aspects of connectivity patterns of a
building that are in principle relevant.

Emphasizing coherence usually limits the scope of the problem that is
to be studied, and the system to be developed. Coherence limits expansions
of a system unless full implications for representation and inferences on
expanded parts are understood. TOPGENE, however, has a high degree of flexi-
bility and robustness in terms of the extensions. This shown in the propo-
sals of chapter 8. TOPGENE may be extended beyond its present capabilities
without needs for a great deal of changes in its data structures and reason-
ing processes.

It is more difficult to assess the significance of TOPGENE to the
knowledge based systems. TOPGENE presently takes advantage of a simple
knowledge base of recommendations and prohibitions of access in buildings,
and uses them in conjunction with 1its deep reasoning process. A more
sophisticated version of TOPGENE should use a wider knowledge-base of
design, and an inference method that has more significance to the knowledge
based systems technology. However, TOPGENE has proved that domain knowledge

plays a significant réle in generating realistic architectural designs.

TOPGENE, s competence is generalizable in the following sense:

- The kernel of the system consists of connectivity patterns of a
building with activities and actors attached to its 1locations.
Matrices and other suitable graph representation techniques are
chosen to represent and manipulate the kernel information for
deriving implicit information vital for reasoning. Such information

includes the underlying relationships between the activities and
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actors within a building, which in turn cause the circulation flow of
people and objects in the building, and consequently results in
interactions between the actors. The interactions between the actors
results in the social performance of a building. Other implicit
information includes paths between locations, information for
hierarchical abstractions etc.

- Hierarchical abstraction is used, for abstracting the relationship
information from fine-grain level to a higher and more abstract
level. This task is accomplished by the Q-analysis method.

- TOPGENE contains micro-level knowledge of architectural design, and
also general heuristic rules applicable to other domains with the
same underlaying properties. The model can be used to analyze the

behavior of other systems similar to buildings.

9.2 Contributions

The main focus of this work has been discovering ways for tackling a design
problem characterized as intractable. The work has fulfilled this objective
by addressing several issues surrounding the goal, and has made several
contributions on the course of its quest for unknowns:

The problems tackled in this work raise a number of issues of interest
to the AI and architectural design communities. The principal issues
addressed in this study can be summarized as follows:

-~ The development and testing of TOPGENE was definitely worthwhile.
Without TOPGENE the theory of architectural design at topological
level presented would have been considerably more nebulous and less
coherent. The need for much of the details of representation,
algorithms, techniques used, and many of the normalcy conditions
could not have been seen a priori; but once seen they could be
Jjustified on theoretical grounds.

- TOPGENE is an example of how ideas from different disciplines may be
brought together in a design automation process.

- The development of TOPGENE, the neural network implementation of ADP,
and ideas discussed in the next section, all lay down examples of an

Al approach in dealing with intractable problems, such as a design
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problem, which is generally dealt with by intuition and is considered
hard to automate. TOPGENE is an example of heuristic programming in
dealing with intractability, while the neural network is a proof of
the usefulness of neural modeling techniques in design.

— TOPGENE showed, once more, the réle of domain heuristics in reducing
the complexity by integrating them into the state-space of search.

— TOPGENE has shown the réle of existing graph theoretical works and
algorithms in automating architectural designs at topological level.
= The work has brought into attention the significance of topological
indices (TIs) in design and development of precedents-based automated
systems of architectural design. TIs were also used in TOPGENE to
diagnose eccentricity of a location with respect to other locations

in a design.

~ Abstraction levels help 1in problem solving. TOPGENE provides
abstraction decomposition of the design problem, to achieve design
generation, and to evaluate existing design problems. TOPGENE has
shown that abstraction and hierarchies plays an important réle in
reducing search efforts. Abstraction of data in TOPGENE is carried
out by the Q-analysis method. The work proves that this method has an
important réle in abstraction, externalization of hidden design
information, measuring dynamic aspects of buildings such as flow
potential between location pairs, and in hierarchical clustering of
objects with respect to a common attribute of them.

- Knowledge plays an important réle in architectural design. The use of
heuristics together with mathematical modeling of building behavior
do not suffice for generation of realistic designs. Without design
knowledge it is hard to generate realistic designs, and without
mathematical modeling it is hard to judge the quality of generated
designs or existing designs. These are other lessons learned from the
development of TOPGENE.

— TOPGENE achieves some generality by applying mathematical notions in
a relatively general way. The proposed methodology has general
applicability in similar design problems such as in urban design.

— Development of a new algorithm for detecting new tracks and keeping

track of distances in dynamically-growing graphs.
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- The réle of domain constraints (e.g., planarity of topological
patterns), in reducing the states in the search space.
- Viewing architectural norms as constraints, and relaxing them when

conflicts occur.

9.3 Other possibilities
During the work, several possibilities for tackling the architectural design
problem at topological level was considered worthwhile, two of which are

briefly described in the following sub-sections.

9.3.1 Automatic discovery of designs

The first possibility to be discussed is based on automatic discovery of
designs with limited number of locations that have certain behavior with
respect to the social norms. These designs, can be indexed and stored in a
data base of solutions to be used for generating larger scale designs. The
discoverer must be focused on enumerating all possible designs for problem
of small sizes and select those with certain potential behavior for future
use. Enumeration of small scale designs at topological (connectivity) level
means enumeration of all possible planar graphs labeled with the activities
related to the design. Generating all possible labeled graphs, even for
graphs of up to 8 nodes is a complicated and time consuming task; but, if
one is enumerating these solutions only once for the purpose of discovering
the best solutions, then the suggested approach is worth consideration.

The discovered solutions, then, must be indexed according to their
behavioral properties with respect to the social norms, and stored in a data
base for use in generating more sophisticated designs.

Appendix C exhibits paper and pencil simulation of the automatic
discovery process for cases of design problems with a few number of nodes.
To save the time, the analysis results of the solutions are suppressed and
the proposed solutions are judged and selected intuitively.

A system based on a data base of precedents of small scaled designs
probably must use a model of design process based on the problem

decomposition, discussed in chapter 2, to generate designs of larger sizes
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with respect to the social norms. A design generation process based on this
approach, decomposes a large scale design into sub-problems of specific
characteristics matching one or more sub-problems. The solutions of the sub-
problems are discovered and catalogued, the ready made solutions are
selected, and composes into a global design for the whole problem.

This approach, has to take advantage of a data abstraction method such
as Q-analysis used in conjunction with TOPGENE, for inferring hidden
information from a design and hierarchical clustering of design activities
(locations) for further processes. Hierarchical abstraction of a design
provides a ground for decomposition of a design problem into smaller scaled
problems. Data abstraction, as in the case of TOPGENE, is also a necessity
for diagnosis and evaluation of the selected sub-designs, composed designs,

and existing designs.

9.3.2 Search for fixed points

Another possibility based on the current capabilities and wunderlaying
methods in TOPGENE is a system using a search method targeted for a set of
fixed points corresponding to different social behaviors of a design. This
method best can be described by looking at the following figure. In this
figure, four curves Uco Cpr Ccc Ulio are assumed to correspond to the
community utility, privacy cost, circulation cost, and intervening
opportunity utility of sub-optimal designs with respect to these norms.
These curves may be assumed to correspond to a design formed on an iterative
improvement basis from a null design up to a complete design. A null design,
as indicated in the figure, has zero cost or utility associated with 1its
behavior, and as a design grows towards a complete design consisting of all
activities (locations) involved in the design statement the cost or the
utility associated with it presumably increases. Each final complete sub-
optimal design, thus have a total behavioral value corresponding to the norm
under which it is generated. Based on the fact that some of these norm are
in conflict, a design with respect to all these norms would have to have a
behavior comprising of compromise between the behavioral values of sub-
optimal designs. A natural decision on where to fix the compromising points

are points A, B, C, and D, half-way from the optimal points on the curves
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(values). But, were are these optimal points, when the sub-optimal solutions
with respect to each norm is not known or it 1is hard to find? A fast
solution to this problems is TOPGENE. The behavioral values of sub-optimal
designs generated by TOPGENE could be taken as behavioral values of the
actual sub-optimal designs with respect to these norms.

TOPGENE, for the proposed approach, can be also revised to generate a
globally optimal deslign with respect to a combination of norms. The revised
system, then, would start from a null partial design with its behavioral
values with respect to the social norms set to zero, and it will iteratively
improve the formed partial design by selecting, on each iteration, an
appropriate unprocessed location. The goal of such a process would be to
generate a design that has performance values as close as possible to the

points A, B, C, and D on the curves corresponding to different social norms.

COSsT/
UTILITY

NULL PARTIAL COMPLETE
DESIGN DESIGN DESIGN

Figure 9.1 Curves representing performance values of
sub-optimal designs with respect to social norms
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Chapter 9: Concluding remarks

The problems associated with this approach are as follows:

- The sub-optimal solutions generated by TOPGENE are based on heuristic
strategy adapted by the system. They are only in the neighborhood of
the optimal solutions. This means that the fixed points found, in
turn, would be in the neighborhood of the actual fixed points.

~ Careful thought is needed for adapting a search strategy while
building partial designs towards a complete design. Such a search
might not be allowed to run into complete enumeration of all
possibilities.

— A final design, although a reasonable one in terms of trade-offs made
between a set of conflicting norms, but may not a realistic one
unless, as in the case of TOPGENE, the system is integrated with a

knowledge base of recommended and prohibited accesses in buildings.

ARRERRRLNRIRLY
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L
APPENDIX-A

EXAMPLES OF TOPOLOGICAL INDICES (TIs)
]|

This appendix presents the definition and properties of a number of topological
indices (TIs), identified in relation to the structural characteristics of graphs.
Tis, introduces in chapter 4, are of extreme use in design and development of
precedent based automatic systems capable of indexing, storing, and retrieving
existing architectural design solutions.

A.l1 TIs based on the structural connectivity in a graph

Most of the topological indices introduced in literatures are either based on the
connectivity relationships, or the topological distances in graphs. This implies
that a large number of TIs are derivable from the adjacency matrix, and the
distance matrix corresponding to a graph.

A.l.1 The (global) connectivity index

The simplest topological index, reflecting the topological complexity of a graph,
is the number of its components. A connected graph is intuitively more complex
than a disconnected one. Therefore, such an index should have an inverse relation
with number of components of a graph. A (global) connectivity index for a graph,
thus, can be defined [Bonchev87] as:

Ccon(G) =—11<—, where k is the number components of G

Clearly, the relation O < Cecon = 1 always hold for a graph G, where Ccon (G) is
equal to 1 if G is connected, and Ccon(G) decreases with increase in the number of
components of G.

o

A NN
l |
. /0 0\0/0 0\0/0 0\0/0

Ccon(G)=0.25 Ccon{(G)= 0.3 CcoN(G)=0.5 Ccon(G)=1.0

Figure A.l: Connectivity index for different graphs of the same order
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A.1.2 The connectivity index B.
Another measure of connectivity in a graph is the B-index. This index is a simple
yardstick for measuring the connectivity of a connected graph G B-index relates
the number of vertices n to the number of edges m in G. One way of calculating the
B-Index is by dividing m with n [Haggett69].
B=m/n

A graph with a high B-index is structurally more complex than a graph with a lower
B-index. furthermore:
If B-index < 1.0, then the graph is a tree.
If B~index = 1.0, then the graph has only one circuit.
If B-index > 1.0, then the graph is a general graph.

This index, thus, can be used for distinguishing basic classes of graphs, and
estimating their structural complexities. ’

0 0

N

NZZN B AN

(o]
B=16/9=1.8 B=12/9=1.3 B=8/9=0.9

‘ (8]

(o]

Figure A.2: Connectivity complexity of graphs measured by B-index

A.1.3 Euler’s formula and Cyclomatic number
Euler [Trinajstic83a} discovered that for any connected planar graph with n ver~
tices, m edges, and f faces, the relation m-n-+2=f always holds. This relation for
disconnected planar graphs with k components is m-n+k+l=f. Based on the above
relation we have the cyclomatic-number f(G), which is the number of face-cycles in
a graph:

f(G) =m -n+k

This formula holds and yields more structural information (e.g., number of cycles)
in a graph than the connectivity indices discussed.

A.1.4 Randic’s molecular-connectivity index

This index, introduced by M. Randic in 1975 [Balaban87], is based on the topo-
logical concept of vertex degree. This index is a valuable index in chemistry that
is used in developing new drugs, modeling toxicity, and even predicting taste and
smell of new substances yet to be engineered [Rouvray83]l. This index is defined as
follows:

m
X(G)=L [d(v )* d)(v Y2 tor 14y
Where m is the number of edges in a graph G, and d(vi) * d{vj) is the multiplica-

tion of branching degree of adjacent vertices in G. Randic’s index increases with
increase in branchiness degree in G.
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a b a b
(o) 0 0
o o of o Do old
o/ \o 0/ \o
e f e f
1 1
X(G1)=4*( )+( }=2.64
v 1¥3 v 3*3
X(G2)=2* )+ 2% ————)=3.62
v 1%¥3 v 3*3 vV 2%2 2*3

Figure A.3: Randic’s connectivity index

Randic’s connectivity index can be generalized for all paths of various length in
a graph [Trinajstic83b] as follows:
Xp(G)=F [d(vx)*d(vl)..“d(v“l]-“/m 1% .. #te
paths

where, d(vl) * L .* d(vhl) are the vertex degrees in a path p.

Derivable from this formula are the zero-order connectivity index, and the
first-order connectivity index (the original Randic’s connectivity index):

n
=(1/2)
XO(G) =Y [d(vi)] , where n is the number of vertices In G.

A.1.5 Adjacency index

The vertex adjacency is also fundamental, after the connectivity index, in deter-
mination of structural complexity in a graph. Adjacency of a graph is represented
by a square matrix having entries ai=1 for the pairs of adjacent vertices and O
otherwise. Such a matrix is symmetric if the graph representing is undirected. The
total adjacency of a graph G, denoted by A(G) is the sum of entries in the adja-
cency matrix that represents G:

AG) = } a = X d(vl)

A(G) is equal to the sum of all vertex degrees in G. If G is a simple connected
graph (no loops and multiple edges), then, The A(G) range for connectedness is:

m < A(G) s 2m (m = total number of edges)
The m bound corresponds to simple connected digraphs, and the 2m bound corresponds
to undirected graphs. A(G) is generally higher for undirected graphs than for

directed graphs with the same number of vertices and edges. A(G) for completely
connected graphs (k-graphs) are:

(A-3)



Appendix-A: Examples of topological indices (TIs)

A(Gk) = n(n-1), where n is the number of nodes in Gk.

A(G) is a primary topological index which increases with the number of cycles in a
graph.

With above points in mind, the following inequalities for graphs with constant
number of vertices holds:

Alacyclic graphs) < A(cyclic graphs)

A(digraph) = A(undirected graphs)

A(simple graphs) = A(multi-graphs)

e T/ NN N\,
l (I) | | l | cl)
o s \/ \/ \/ N

Figure A.4: Increase in complexity, reflected by total adjacency

A.1.6 Relative adjacency(RA) index

The total adjacency of graphs reflects the size of the graph besides their adja-
cency relations. This means that the adjacency relations of graphs of different
size cannot be compared. The reason is that a comparison will be misleading be-
cause of the size effect. To avoid the size effect from the adjacency measure,
relative adjacency is recommended. Relative adjacency of a graph G is obtainable
by normalization of its total adjacency by total adjacency of complete graph of
the same size (Gk).

_A
RA(G)= ¢

where, 0 = RA(G) =l for simple graphs.

/0\ o 0 0 o
o Mo I
| | oO—0——0—0
N ]
o/ 0o o 0 (o]

A=12 A=22
RA=12/(6%5)=0.4 RA=22/(12%11)=0.16

Figure A.5: Two graphs and their total and relative adjacencies

The trace of an adjacency matrix, which is the sum of diagonal elements, is a
graph invariant denoting the number of first order loops in a graph. {Trinajstic-
83al.
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TrA=Z(a“)

The trace of powers of an adjacency matrix is also a graph invariant that is equal
to twice the number of edges in G.

Tr A =§ (@) =L dlv) = 2m

Several graphs with different characteristics may map to a single TI. This
problem, discussed in chapter 4, exists with most of the TIs including the total
and relative adjacencies. To have an index with a higher discriminating power, an
index with a higher level of complexity is needed.

The relative adjacency may be extended to multi-graphs as well. It is obvious
that some multi-graphs, for example complete multi-graphs, will have RA larger
than unity.

A.1.7 Branching degree

The branching-degree, also called branchedness or valancy, is among the well known
graph invariants. Branching-degree is derivable both for vertices of a graph and
the graph as a whole. The valancy of a vertex Vi denoted by d(vl), is defined as

the neighborhood of v d(vl) is equal to the sum of the elements in i-th row
(i.e., summation index j) of the adjacency matrix A(G), which is equivalent to the

multiplication of row Al by column A-:'.

dw =Ta =La, al,=@})
J J

The branching degree of a graph, can be taken as the number of locations of degree
one [Tzonis87], or the average of branching-degree of all vertices, depending on
the application. The latter is sometimes called the mean-local-degree of a graph
[Haggett69l].

Av. d(G) = [} d(vl)]/n, where n Is the order of G.

Vertices with identical graph invariants are said to be topologically equivalent.
Similarly a graph whose vertices are all non-equivalent is called an
identity-graph [Balaban87].

A.1.8 The Zagreb Group Indices

The following indices, devised for measuring the m-energy of chemical molecules
[Trinajstic83b] [Bonchev83], are based on the branching degree, of vertices. The
first index is calculated over all vertices of a graph G, while the second one is
over all edges in G. Both of these indices monotonically increases with increase
in the branchiness complexity of a graph.

n
ML(G) = ¥ dz(Vl), Vn nodes in G.
i

m
M2 =% dv ) * d(v ), Vm edges in G.
{(i,}J) ! J
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A.1.9 The comparability index

This index, introduced by Gutman and Randic [Trinajstic83bl, uses the algebraic
concept of comparability of functions to compare branching degrees of graphs. The
modified version of this index is described by Trinajstic as follows:

Let Vzvl, Vo Voo Ve e vn , and V’=vl, v; , Vé s ey v;‘ be two non-

increasing sequences of the same length of natural numbers representing the
degrees of vertices in two graphs. If V and V' fulfill the following conditions,
then the sequence V is said to precede V, otherwise they cannot be compared.

n

n
(1 Lv, =1v
n n
(2) ¥ d(vl) zydav), Vv eG.

In the following example, G! could be compared with G2 and G3, and it can be
ordered to precede them (i.e., it is more branched). G2 and G3 cannot be compared,
since the number of degree two vertices in G3 exceeds the number of vertices of
the same size in G2.

o 0o o o o o

(|>—<|>——<l)—o (l)—tl)—o—o—o—o 0—<|)~—o—o—0—-o
Ll $ b $ !
Gl: [4431111111) G2: [4322211111) G3: [4222221111)

Figure A.6: Comparability index for 3 different graphs

A.2 TIs based on the topological distances in a graph
The topological distance between two vertices v, and vj, denoted by d(v1 vj) or

simply d _, is by definition the number of edges (or nodes) on the shortest path
1)
between v, vJ. There are many topological indices based on topological distances

in a graph, some of which are described below.

A.2.1 Shape index

The shape index for a graph G is obtainable by division of the total distance in G
to its diameter. This index has an inverse relation with the compactness of a
graph. The shape index is calculated in transportation networks by dividing the
total mileage of a network by its diameter [Haggett69].

SIG) = [ L Ld,, 1V d©)
i}

A.2.2 Dispersion index

The dispersion index for a graph G is the summation of distances between all node
pairs in G [Haggett69].

Disp(G) = ¥ T dy
1]

(A-6)
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A.2.3 Average distance index

The average distance between all pairs of location can be calculated by dividing
the summation of the length of all possible paths by the number of the paths. This
index has an inverse relation with connectedness and compactness of a graph. The
average distance can be expressed qualitatively as short, medium, or long, by
comparing it with the total distance of a graph.

Av.D(G) = [Z Z dU]/p, where p 1s the number of paths in G.
[

A.2.4 Distance sum (accessibility) index
The distance sum index (S‘), also called the vertex accessibility index

[Haggett69], for a node v, € V(G) is the summation of distances from v, to all
other nodes in G. s, for a vertex v is obtainable from a distance matrix D by

adding all entries on its row.

Above accessibility measure relate to the paths originating from different
locations. A similar accessibility measures can be obtained in terms of paths
ending with different locations within a network.

The meaning of accessibility measures in terms of paths originating or coming
to a location is that, for example a location with a high accessibility-from-index
in a building is suitable for activities which demands rapid outward movements
such as security, firing service, etc. while a location with high accessibility-
to-index is suitable for inward static activities such as child care room,
classroom, etc.

Penetration, a measure of relative accessibility, is depth (topological distance)
of a location compared with the nearest deeper location [Tzonis87]. This measure
is only suitable for systems having at least one point defined as the entry point.

d(¥1, entry)
Penetration of v, = d(vx' entry)+d(vl, end)

g e g e
100 16 0 14 0 10
b AN
\6 / \11 \11/ \\9
a 0<————->-——o d a og———»—/o d
/l \\9 / /l \10/
fo 0”b f o 0<b
15 { N 14 { N
x\ \b\
———)l (o '} 1 0 ¢

Figure A.9: Accessibility from measure and accessibility to measure
Example from: [Haggett69]), page 46.
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A.2.5 Balaban’s distance connectivity index
This index, proposed by Balaban in 1982 [Bonchev83), is another topological index
based on the distance matrix. In the following formula Sl and SJ are distance sums

for vertices i and j to all other vertices in a graph G, and m is the number of
edges in G.

m

JG) =m ) (s *s )-1/2, V (I J) edges in G.
(1 )

A.2.6 Balaban average distance connectivity index

Another index proposed by Balaban [Balaban87] {Hanson87] is the average distance
sum index. This index which is believed to have the most discriminating power
[Trinajstic83b], is based on the distance sums s], the number of edges m, and the

cyclomatic number f(G) of graphs.

m
m -1/2
J(G) =FG) “):Jgsl 53) , V edges (1 ) in G.

A.2.7 Centrality

Centrality, a vertex property of graphs, is a measure of closeness of a node to
the center of the graph. One measure of the centrality is the Konig number [Kans-
ky63]. Konig number of a particular vertex is calculated by counting the maximum
number of edges in the shortest path by which that particular vertex is connected
to any other vertex. This index, thus, monotonically increases with increase in
distances of nodes from the center of a graph. Konig number is used in the
analysis of the transport networks [Haggett69].

e

g
2 )
/

%

4
AN

/

4
d

a

e

/
O’ b
\\
\ 3
c
Figure A.7: A Partially symmetrical graph G, and its Konig number
[Haggett69] Page: 35.

0}
3

A centrality measure developed for chemical application by Bavelas is based on the
distance matrix D of a graph. The centrality index for a vertex vl, denoted by

C(vi), is obtained by dividing the total distance of the graph by the distance sum

(A-8)
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s of v .
i i

Clv)) = (L SIS,

A global centrality index C(G), for a graph is defined as the sum of all point
centralities.
CG) =Y C(vl)
i

Vertex accessibility index is more powerful than the Konig number in a way that it
can distinguish nodes with the same Konig number.

A.2.8 Eccentricity, radius, diameter, center and centroid of graphs
The eccentricity of a vertex veV(G), denoted by e(v), is the distance farthest
from v to any other vertex in G [Balaban87] [Buckley90l.

elv) =Max d , V)
i 1)

The radius r(G) is the minimum eccentricity of the nodes in G, whereas the diame-
ter d(G) is the maximum eccentricity.

A vertex vi is a central vertex if e(vi) = r(G).

The center of G, denoted by C(G), is the set of all central nodes (i.e., vertices
with minimal eccentricity) in G [Bonchev83l].

v is called a peripheral node if d(v)=e(v). The set of all peripheral nodes are
called the periphery of G.

An eccentric node for veG is any node at distance e(v) from v.

A centroid is a vertex with minimal weight or distance sums, where weight of a
vertex v, is the maximum number of lines in any branches of v, [Balaban87] [Buck-
ley90].

The following figure illustrate these indices. Notice that while the vertex degree
decreases from the center of a graph toward its periphery, weights, eccentrici-
ties, and distance sums increase from the center towards the periphery of the

graph. These information, obviously, have interesting implications for topological
properties of buildings and architectural designs.

(1) (1) (1) (1) (1)

22 19 22 7 8
(o] o o (1) O (1) o

o R 1 e 7 @

—0 O—%-—0

(3) 4 (3 (4) [ (2) (Y]
. | | 6 .
0O O (o] (o} (o)
22 19 22 7 (1)

) (1) (1) (1)

Figure A.10: The vertex degrees (in brackets), distance
sums, and centroids (%) calculated for a number of graphs
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Figure A.12: Centroids (#) of graphs based on the vertices weights

A.2.9 Wiener’s index, normalized Wiener’s index, and Wieners polarity index

The index, introduced by H. Wiener in 1947 ([Adler87], is a topological index
characterizing the branchedness of a graph. The Wiener index is generally larger
for graphs having a larger number of nodes, but it also provides a measure of
branchiness of a graph. This index is equal to the sum of the distances between
all pairs of nodes in a graph G, or half of all entries in the distance matrix of
G [Balaban87] {Rouvray86].

_ 1

where, dlj are the off-diagonal elements of the distance matrix D(G). This index

is twice the distance sum index Si introduced earlier.
Wiener index may be normalized by dividing it by the multiplication of the
number of distances (H) and the number of edges (m) in a graph. This index, to be

called normalized Wiener index, is [Hanson87): W(G)= W(G) / (H * m)

c a b ¢ d e f
0 1 3 2 3 3
0 a
b 0 2 1 2 z
a v | £ W) = 28
d o c o 1 2 2
O——0——0— -
| d o t 1 w(G) = 0.37
0o 2
0 e
f 0

Figure A.13: A graph and its Wiener indices

Another index, based on the Wiener index, is Wiener’s polarity index [Trinajstic-

(A-10)
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83bl, which is equal the number of pairs of vertices of distance 3. The polarity
index can be generalized for paths of other lengths.

P(G) = 172 ¥ sd 3), where 8(a, b) =1 if a=b, and O otherwise
i, J=1

A.2.10 The Altenburg Polynomial index
This index represented by the following polynomial [Kier76l, is a characteristic
measure of graphs in which n, represents the number of pairs of nodes separated by

dl links.
y=1 nld‘

This index for the graph of figure 4.10 is y=5di+7d2+3d3=28. Note that the result
of this index is identical to wiener’s index.

A.2.11 Balaban centric index

The centric index, named after Balaban [Bonchev83] [Rouvray83] [Trinajstic83bl],
emphasizes the branching degree of a node. This index, which is only available for
trees, is calculated by squaring the number of vertices of degree one in a graph,
pruning counted vertices, and continuing the previous step until no_ vertex is

left. This index can be represented by the quadratic formula B(G) =} a, where a

is the number of pruned vertices in step i. Balaban’s index has a direct relation
with the compactness and branchiness of a graph.

o o o
L
0——0—0—0 o0—0—0 o
[
(o) o
2 2 2

(2) (1)
B(G)=49+4+1=54
Figure A.14: A graph and its Balaban’s centric index

A.2.12 The Platt Index [Trinajstic83b]

This index introduced by Platt for predicting the physical properties of alkanes
is based on the degrees of edges of a graph. The degree of an edge e, denoted by
d(e), is the number of adjacent edges (i.e., immediate neighbors sum) to e. The
Platt index is then defined as:

m
F(G) = § d(el) , where m is the number of edges in G.
1
This index also have a direct relation with both the compactness and branchedness
of a graph.

(A-11)
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A.2.13 The Gordon-Scantlebury index
This index used in chemistry is defined as the total number of 2-walks in a graph,
that is:

GS(G) =L d ,vd =2

A.2.14 Topological index based on the vertices Weight [Balaban87]
Another TI, proposed by Balaban, is the weight index P based on the weights of the
vertices on acyclic (tree) graphs. This index is similar to eccentricity formula.

m
P(G) = ¥ (WI*WJ)_I/Z, Y m edges In a graph G.

A.2.15 Some indices for comparisons of graphs

A Maximum Common Substructure MCS(G1, G2) for two graphs Gl and G2 is defined as
measure of the maximum number of nodes and links (number of atoms and bounds-NAB-
in the case of chemical molecules) in a sub-graph common to two graphs Gl and G2
such that no other sub-graph has a greater measure value [Johnson]. Figure 4.12
depicts MCS for two graphs Gl and G2.

o
0o—o0—o0 0—0—o0 0—0—0
0—0—0 0—0—0 0—0—0
o
Gl MCS(G1, G2)=6+5=11 G2

Figure A.15 : MCS for two graphs

Based on the MCS, Tsai [87] has proposed two indices for measuring the degree of
similarity and dissimilarity between two graphs. The Maximum Similarity Index
(MSI) for two graphs Gl and G2 is [Tsai87l:

_ McCs(G1, G2) , MCS(Gl, G2)
MSI(GL, G2) = —— gD NAB(G2)
MDI, the (Molecular) Dissimilarity Index for two graphs is:

MDI(G1, G2) = 1.0 - MSI(G1, G2)
Another measure, also an indication of dissimilarity between two graphs is the
Topological Distance index (TD) [Tsai87]. This index, not to be confused with the
topological distances in a graph, is as follows:
TD(G1, G2)=NAB(Gl) + NAB(G2) - 2*MCS(G1, G2)

Tsai [87] has applied MSI in quantitative analysis studies of structure-sweet
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taste relationships of some chemical compounds, in the molecular similarity desc-
ription of the compounds, and in molecular modeling.

Above indices are used [Johnson87] to arrive at a new index, called the sub-graph
metric index, for comparison of two graphs:

d(GL, G2) = |Gl| + |G2| - 2 *|MCS(Gl, G2)|

where, |Gl| and |[G2| are the cardinalities of graphs Gl and G2, defined as the sum
of the cardinality of their vertex and edge sets respectively. That s
|G1|=| V(GD|+|E(G1)|, and |G2]=|V(G2)|+|E(G2)].

The sub-graph metric index can be extended to the graphs with labeled nodes and
edges. Here the requirement is that the vertices and edges of a sub-graph agree in
their type with the corresponding vertices and edges of sub-graph of another
graph.

The indices introduced in this section are capable of matching the topological
pattern of a building with other patterns (for example a set of patterns stored in
a data base) for filtering and selection purposes.

A.2.16 Depth of a location

Depth of a location is its topological distance from an entry. In the case of a
building with multiple entry points, depth for a location, depending on
applications, could be considered as the distance of that location from the
nearest, farthest, or even average distances of that location from the entry
points. Depth is, in fact, a measure of relative accessibility of a location
[Tzonis87].

A.2.17 Betweenness

The betweenness index for a node is the number of all pairs of nodes which paths
between them passes through that node. The definition of this concept, depending
on whether the effect of alternative paths (bypasses) is considered or not, may
vary [Tzonis87].

A.2.18 Intervening locations
The intervening locations between two points vi and vj is the set of all locations
on the paths between these two locations.

(A-13)
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EXAMPLES OF EXPERT RULES
]

This appendix presents examples of expert rules that relates
organization (topology), operation, and behavior of buildings with

B.1 Rules relating design variables to norms
IF:

— Branching.
THEN:

— Privacy.

- Security.

IF:

— Serial arrangement of locations (Intervening locations).
THEN:

- Potential exposure.

- No privacy.

—~ Potential for intervening opportunities.

IF:

- Average Distance is short,
THEN:

-~ Low circulation cost.

~ Low privacy cost.

IF:
— Average Distance is long.
THEN:

- High community.
— Potential for intervening opportunity.

B.2 Rules relating design variables to flow
- Location is a center location.

(B-1)
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THEN:
- Distribution of flows.
= Collector of flows.

IF:

~ Degree of branchiness = n.
THEN:

- Degree of control flow = n.
IF:

- Average Distance is short.
THEN:

- Divided flow among paths.
— Potential for regulating flow.

IF:
- Average Distance is long.

THEN:
- Flow is concentrated on one or few paths.
— Potential for high flow on a single path.

IF:
- No alternate paths.
THEN:
=~ All flow on the same path.
= All flow pass the same intervening locations.
~ Create potential for flow monitoring at entry zone.

IF:
- Several alternate paths.
THEN:
- Divided flow.
- Increases indeterminacies of the flow.

IF:
- No intervening locations.
THEN:
— Flow between locations does not affect anything else.

IF:
= Low penetration for a location L.
THEN:
-~ All traffics (flow) from entry to location beyond passes through L.

IF:

- High penetration for a location.
THEN:

- Low flow.

IF:

— Betweenness.

- No bypass.

— One bracketing pair.
THEN:

(B-2)
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= Flow determinate.
= Uniform flow.

IF:
—~ Betweenness.
— No bypass.
- Many bracketing pairs.
THEN:
— Flow is equal to the sum of flows between location-pairs.
- Possible variety of flow.

IF:
- Betweenness.
- Bypass.
THEN:
- Flow indeterminate.

IF:

- Balance near center.
THEN

- potential for high flow.

IF:

— Balance far from the center of gravity.
THEN:

— Potential for insulating from high flows.

B.3 Rules relating norms to design variables
IF:
- Many intervening locations.
THEN:
- Overlapping flows.
— Separation of pair.
Affect flow rate.
— Potential for variety of experience.
- Potential for shared experience.
— Potential for high flow.

IF:
= Privacy.
THEN
~ High degree of branching.
-~ Many dead-ends.
= Separate zones.

IF:

— Intervening opportunities.
THEN:

— Ave. distance long.

IF:
- Community for a location.

(B-3)



Appendix-B: Examples of expert rules

THEN:
— Intersecting flows.
— Overlapping flows.
— Simultaneous flows.
- No bypass.
- Maximum accessibility.
— Minimum distance from other points.
- No congestion around.
= Maximum flow.

IF
- Privacy.
THEN
— No through flow.
- Short path.
- Divide and separate flow.
~ Location far from center of gravity.
-~ Many dead ends.
~ Much branching.
~ No dead end provide bypass.
— Low encounter.
= Minimum shared paths.
— Create hierarchies.

IF:
~ Intervening opportunities.
THEN
-~ Share paths.
- Increase number of available locations.

IF:
— Intervening opportunities.
THEN
— Average distance long.
IF:
- Security.
THEN:
= Zoning.
— Channel all flow to pass a surveillance point.

IF:
- Safety.
THEN:
— Surveillance point.
- Easy out.
= Avoid paths where there is little flow.

B.4 Rules relating flow to norms
IF:

~ No through flow.
THEN:

(B-4)
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- Privacy.

IF:
= Through low.
THEN:
= Exposure.
- Potential for community.
- Potential for intervening opportunity.

B.5 Unclassified rules
IF:
~ (Loop & n- locations & n is odd).
THEN:
(n-1)/2
- Exposure degree of each location = 2 } i
1=1

IF:
— (Loop & n=— 1 locations AND n is even).
THEN:
(n-2)/2
— Exposure degree of each location = 1+2 § i + ((n -~ 2)/4).
i=1
IF:
— Degree of branchiness=n.
THEN:
- Degree of control flow=n.

IF:
- Stan type design with branchiness equal to n.
THEN:
— Security and
— n-degree of disturbance for center and privacy for branches.

IF:
= L1 connected to L2 and L2 dead-end.
THEN:
- L2 private with respect to LI.
IF:
-~ L1 connected to L2.
THEN:
- L1 and L2 have access.

IF:
- L2 inbetween L1 and L3.
= Gl moves from L1 to L3.
THEN:
-~ G2 has contact with Gl.

IF:
- Prohibited-—encounter(Gx. Gy, Ll).
THEN:
(B-5)
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- Disfunction (Gx, Ll).

IF:

— Degree of branchiness equal to n.
THEN:

- Exposure degree equal to n.

IF:

~ No of side-locations m and n.
THEN:

— Exposure degree = n(m+1) + m(n+1).

IF:
— Branching.
THEN:
-~ Zoning.
— Isolation from circulation.

IF:

— Location is a center location.
THEN:

~ Information control.

~ Surveillance.

— Social interaction.

IF:
— Branching.
THEN
= Zoning.
= Isolation from circulation.

IF:

= Branchiness of a location n.
THEN:

- Potential exposure degree=n.

IF:
- Branchiness is low.
THEN:
-~ Long paths.
~ Few dead-end locations.
- No hierarchy of places.

IF:

- Branchiness is high.
THEN:

— Creates hierarchy of places (by penetration).
Provide dead ends (location of O flow).
Opportunities for convergence and divergence.
Potential for separation.

Potential for isolation.
- potential for controlling.
- Potential for mixing.
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IF:

- Several alternate paths.
THEN:

— Provides bypass.

— Increases accessibilities.

IF:
- No intervening locations.

THEN: .
- Flow between locations does not affect anything else.

(B-7)
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AUTOMATIC DISCOVERY: EXAMPLES

This appendix presents examples of small scale designs (connectivity patterns)
with respect to social norms. These examples reflects generation of connectivity
patterns of buildings with respect to the social norms based on graph enumeration
techniques. Here 1 have shown the paper and pencils enumeration of graphs for
discovery of designs of up to 6 or 7 locations. The approach may be automated, and
results of the discovery can then be cataloged and stored in a data base to be
used for generation of larger size designs.

In the examples that follows, a graph is tagged with G, designs (connectivity
patterns) are tagged with an S, As represent the activities attached to each
location, and CO, PR, CC, IO indicate the community, privacy, circulation-cost and
intervening opportunity norms, respectively.

For n=1, we have only a null graph with a single node. This case is valueless
in designs.

(G1) o

For n=2, we have a tree type graph with 2 nodes;

(Gl) o——©0

A single possibility for this case, obviously reduces the burden of choices
regardless of the points of view on the design. A design choice for this case is
as follows, where Al are the activities for a design.

(S1) A1 O 0 A2

For n=3 there are only 2 planar graphs (a tree and a cyclic graph).
(o)

o
(G1) (G2) ‘\
0——0

(o] 0

But once we try to label them, the number of possibilities increases, and the
complexity of designs shows itself. The following paragraphs presents samples of
different formulation of design problems with 3 locations, and their possible
solutions that are intuitively found.

(C-1)
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Problem:

- We have 3 activities Al, A2, and A3.

- The activity pair (Al A2) has a flow potential of some degree.

- No intervening opportunity activity is defined.

What is (are) the design(s) with respect to each social norms Co, Pr, CC, and a
combination of them.

Al O

(s1) l Sub-optimal solution for the community norm.
A3 O———O0 A2

Al O Al O Sub_optimal solutions for
(s2) ‘ (s3) '\\ circulation_cost / privecy norm.
A2 O O A3 A2 O 0 A3

For this problem a globally optimal solution comprising all social norms does not
exist. In this case one has a free choice of taking a sub-optimal solution at
random. However, such a globally optimal design can be recognized if weights are
assigned to the norms, in which case the solution associated with the higher
weighted norm is the optimal design. For example, Sl is preferred over S2 if the
community norm has a higher priority over other norms, otherwise S2 is preferable.

Problem:

- We have 3 activities Al, A2, and A3.

- Only the activity pair (Al A2) has a flow potential of some degree.

- A3 is an intervening opportunity activity for groups responsible for activities
Al and AZ2.

What are the optimal designs for different ranking order of social norms?

As in the previous case several design possibilities exist for above problem,
best of which are as follows:

Al O Al O
(s1) ‘ (S2) \\

A3 O 0 A2 A2 O0———0 A3
Ranking order SOLUTION
CO > PR > 10 S1
CO > 10 > PR S1
10 > CO > PR S1
[0 > PR > CO S2
PR > CO > IO S2
PR > I0 > CO S2

Problem:

- We have 3 activities Al, A2, and A3.

- The activity pair (Al A2) has a flow potential of some degree.

- Al is an intervening opportunity activity for groups responsible for activities

(C-2)
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A2 and A3.
What are the optimal designs for different ranking order of social norms?

Best solutions and their ranking order:

Al O A2 O Al O
(s1) (S2) (S3)
A3 O———0 A2 Al O——0 A3 A2 O———0 A3
Ranking _order SOLUTION
CO > PR > IO Sl
CO > 10 > PR Sl
10 > CO > PR S3
10 > PR > CO S2
PR > CO > IO S3
PR > IO > CO S2
Problem:

- We have 3 activities Al, A2, and A3.

- The circulation degree between activity pairs in decreasing order are as follow:
C(A1 A2) > C(Al A3)

- No intervening opportunity activity is defined.

What are the optimal designs for different ranking order of social norms?

Best solutions and their ranking order:

Al O Al O
(1) ‘ (s2) I\

A3 O——0 A2 A2 O 0 A3
Ranking g order SOLUTION
CO > PR > IO S1
CO > 10 > PR S1
10 > CO > PR Si
10 > PR > CO S2
PR > CO > 10 S2
PR > IO > CO S2

Problem:

-~ We have 3 activities Al, A2, and A3.

- The circulation degree between activity pairs in decreasing order are as follow:
C(Al A2) > C(Al A3)

- Al is an intervening opportunity activity for groups responsible for A2 and A3.

What are the optimal designs for different ranking order of social norms?

(C-3)
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Best solutions and their ranking order:

Al O A2 O
(S1) (S2)

A3 O———0 A2 Al O——0 A3
Ranking order SOLUTION
CO > PR > IO S1
CO > I0 > PR Si
I0 > CO > PR S2
I0 > PR > CO S2
PR > CO > IO S2
PR > 10 > CO S2

Problem:
- We have 3 activities Al, A2, and A3.

- The circulation degree between activity pairs in decreasing order are as follow:
C(Al A2) > C(Al A3)

- AZ is an intervening opportunity activity for groups responsible for A3 and A4.
What are the optimal designs for different ranking order of social norms?

Best solutions and their ranking order:

Al O Al O

(s1) (s2)
A3 O——O0 A2 A2 O——O0 A3
A2 O A2 O

(S3) ’ (S4) '\
Al O——0 A3

Al O—0 A3

Ranking order SOLUTION
CO > PR > 10 S1

CO > 10 > PR S1

I0 > CO > PR S2

I0 > PR > CO S2

PR > CO > IO S3

PR > IO > CO S4
Problem:

- We have 3 activities Al, A2, and A3.

- The circulation degrees between location pairs, in increasing order, are assumed
to be as follow: C(Al A2) > C(A2 A3) > etc.

- Al is an 10 activity for the groups responsible for activities A3 and A2.

What are the optimal designs for different ranking order of social norms?
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Best solutions and their ranking order:

Al O A3 O Al O

(SD | (S3) (S3) '\
A3 O O A2 Al O 0 A2 A2 O 0O A3

Ranking order SOLUTION

CO > PR > IO S1

CO > I0 > PR S1

10 > CO > PR S2

I0 > PR > CO S3

PR > CO > IO S2

PR > 10 > CO S3

Problem:

— We have 3 activities Al, A2, and A3.

— The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: C(Al A2) > C(A2 A3) > etc.

— A2 is an IO activity for Al and A3.

What are the optimal designs for different ranking order of social norms?

Best solutions and their ranking order:

Al O Al O Al O

(s1) ‘ (s2) ‘ (3) |\
A3 O——O0 A2 A2 O——O0 A3 A2 O——0 A3

Ranking _order SOLUTION

CO > PR > 10 S1

CO > I0 > PR S2

10 > CO > PR S2

I0 > PR > CO S3

PR > CO > IO S3

PR > IO > CO s2

Problem:

-~ We have 3 activities Al, A2, and A3.

— The circulation degrees between location pairs are the same.

- C(Al A2) = C(A2 A3) = C(Al A3).

-~ A2 is an IO activity for Al and A3,

What are the optimal designs for different ranking order of social norms?

Best solutions and their ranking order:

Al O Al O Al O
(S1) (s2) (S3)
A3 0——0 A2 A2 O——O A3 A2 O

0 A3
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Ranking order SOLUTION
CO > PR > IO S1, S2
CO > I0 > PR S1, S2

I0 > CO > PR S2

10 > PR > CO S3

PR > CO > IO S3

PR > IO > CO S3

For n=4, we there are 6 planar graphs (2 trees and 4 general graphs)

B O 0O A BO 0O A BO——O0A
(G1) t ‘ (G2) l (G3) |/
CO——O0D CO~———O0D COoO——O0D
BO—0 A B O O A BO—O0 A
(G4) ‘ l (G5) |/| (Ge) |K’
COoO——oO0D CO——O0D CO/—OD

Problem:

— We have 4 activities Al, A2, A3, and A4.

~ The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow:

- C(Al A2) > C(A2 A3) > C(A3 A4).

- A3 is an I.0. activity for Al and A2.

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O 0 A2 0 A4
| ] 1
(s1) ‘ [ (s2)
A3 O 0 A4 alo——043 o a2
Al O 0 A4 A3 o\——\Al
(S3) (S4) ’ So,
A2 O 0 A3 A2 04— "0 A4
Ranking order SOLUTION
CO > PR > IO Sl
CO > 10 > PR s1
10 > CO > PR S1
10 > PR > CO s2
PR > CO > 10 s3
PR > 10 > CO sS4

Problem:
— We have 4 activities Al, A2, A3, and A4.
—~ The circulation value between location pairs, in decreasing order, are assumed
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to be in the following manner:
- (Al A2) > (A2 A3) > (A3 A4).
— A4 is an L.O. activity for Al and AZ2.
What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O O A2 O A3 A3 O—\Al
(s1) l (s2) (S4) l o
A3 O——0 A4 Alo—o2% o a2 a2 LN g
Ranking order SOLUTION
CO > PR > IO S1
CO > I0 > PR S1
10 > CO > PR S1
10 > PR > CO S2
PR > CO > IO S3
PR > 10 > CO S3
Problem:

- We have 4 activities Al, A2, A3, and A4.

— The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al A2) > (A2 A3) > (A3 A4).

— A2 is an IO activity for Al and A3.

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O 0O A2 Al O 0O A3
(S1) (S2)
A3 O 0O A4 A2 O 0 A4
0 Ad A3 O\T
(S3) (S4) '/O\
Al o—0%2 o a3 A2 0Z—Y0 A4
Ranking order SOLUTION
CO > PR > 10 S1
CO > 10 > PR S1
10 > CO > PR S2
10 > PR > CO S3
PR > CO > IO S3
PR > 10 > CO S4

Problem:

- We have 4 activities Al, A2, A3, and A4.

— The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al AZ2) > (A2 A3) > (A3 A4).

- A4 is an 1.0. activity for Al and A3.

What are the optimal designs for different ranking priorities of the social norms?

(c-n
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Best solutions and their ranking order:

Al O 0 A2 O A3 A3 0—\-\-11—
(S1) l ‘ {S2) (S3) (o)
Ad N\

A4 O—0 A3 Al O———O0——0 A2 . A2 O——-0 A4

Ranking order SOLUTION

CO > PR > 10 S1

CO > 10 > PR S1

I0 > CO > PR Sl

I0 > PR > CO S2

PR > CO > IO S3

PR > IO > CO S3

Problem:

- We have 4 activities Al, A2, A3, and A4.

- The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al A2) > (A2 A3) > (A3 A4).

= A2 is an IO activity for Al and AA4.

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O 0 A4 O A3 A3 O_\Al
(Sy) ‘ (S2) (S3) I (o)
A2 /N

A3 O——0 A2 Al O———0———0 A4 A2 O 0 A4

Ranking order SOLUTION

CO > PR > IO S1

CO > 10 > PR Si

10 > CO > PR Si

10 > PR > CO S2

PR > CO > IO S3

PR > I0 > CO S3

Problem:

- We have 4 activities Al, A2, A3, and A4.

~ The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al A2) > (A2 A3) > (A3 A4).

- A3 is an 1.0. activity for A1 and A4,

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O 0 A4 0 A2 A3 o\T
(st) I (S2) (S3) o
A3 /N
A3 0— 0 A2 Alo—o02 o0a4 A2 0o a4
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Ranking order SOLUTION
CO > PR > 10 S2

CO > 10 > PR S1

I0 > CO > PR S1

10 > PR > CO S2

PR > CO > IO S3

PR > 10 > CO S3
Problem:

- We have 4 activities Al, A2, A3, and A4.

- The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al A2) > (A2 A3) > (A3 A4).

— A3 is an IO activity for Al and A4, and A4 is an IO activity for A3 and A2.

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O O A2 A3 0—\ Al
(SN ‘ ‘ (S3) ‘/O\

A3 O 0 A4 A2 O—0 A4
Ranking order SOLUTION
CO > PR > 10 S1
CO > I0 > PR S1
10 > CO > PR S2
10 > PR > CO S2
PR > CO > IO Sl
PR > 10 > CO S2

Problem:

- We have 4 activities Al, A2, A3, and A4.

— The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al A2) > (A2 A3) > (A3 A4).

— A4 is an 1.0. activity for Al and A3, and A3 is an IO activity for A4 and AZ2.

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O 0 A2 Al O 0 A2 A3 O\T
(s1) ' \ (s2) (S3) ‘/0\

A3 O————O0 A4 A4 O O A3 A2 O————0 A4
Ranking order SOLUTION
CO > PR > 10 S1
cO > 10 > PR S1
JO0 > CO > PR S3
10 > PR > CO S3
PR > CO > IO S2
PR > 10 > CO S3
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Praoblem:

— We have 4 activities Al, A2, A3, and A4.

~ The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al A2) > (A2 A3) > (A3 A4).

— A2 is an IO activity for Al and A4, and A4 is an IO activity for A2 and A3.

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O 0 A2 Al O 0O A3
(S1) ‘ ‘ (s2) ' I
A3 O——O0 A4 A2 O 0 A4
0O A3 0\:3 A3 O\————Al
(S2) (S2) ' AN (S3) (¢]
A2 A2 O\ RN
Al O——O——0 A4 Al O—O0—————0 A4 A2 O———0 A4
Ranking order SOLUTION
CO > PR > 10 S1
CO > 10 > PR S2
I0 > CO > PR S1
10 > PR > CO S2
PR > CO > IO S3
PR > 10 > CO S4
Problem:

-~ We have 4 activities Al, A2, A3, and A4.

— The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al A2) > (A2 A3) > (A3 A4).

=~ A4 is an L.O. activity for Al and A2, and A2 is an 1.0. activity for A4 and A3.

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O 0 A2 Al O 0 A3 A3 O———

\Al
(s1) \ l (s2) l } (S3) | 0
A3 O 0 A4 A4 O 0 A2 A2 o/ \o A4
Ranking order SOLUTION
CO > PR > IO S1
Co > I0 > PR s2
10 > CO > PR Sl
I0 > PR > CO S2
PR > CO > IO S3
PR > 10 > CO sS4
Problem:

— We have 4 activities Al, A2, A3, and A4.
- The circulation degrees between location pairs, in decreasing order, are assumed
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to be as follow: (Al A2) > (A2 A3) > (A3 A4).
- A2 is an 1.O. activity for Al and A3, and A3 is an 1.0. activity for A2 and A4.
What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

A1 O O A2 Al O 0O A4 A3 0—-—\Al
(S1) (S2) (S3) /O\

A3 O——O0 A4 A2 O 0 A3 A2 O—0 A4

Ranking order SOLUTION

CO > PR > IO S1

CO > 10 > PR S2

10 > CO > PR S1

10 > PR > CO S2

PR > CO > IO S3

PR > 10 > CO S4

Problem:

— We have 4 activities Al, A2, A3, and A4.

- The circulation degrees between location pairs, in decreasing order, are assumed
to be as follow: (Al A2) > (A2 A3) > (A3 A4).

— A3 is an IO activity for Al and A2, and A2 is an IO activity for A3 and A4.

What are the optimal designs for different ranking priorities of the social norms?

Best solutions and their ranking order:

Al O 0O A2 Al O O A4 A3 O———\Al
(S1) ‘ | (S2) \ (S3) ) /0\
A3 O O A4 A3 O 0 A2 A2 O——0 A4
Ranking order SOLUTION
CO > PR > IO S1
CO > 10 > PR S2
10 > CO > PR S1
10 > PR > CO S2
PR > CO > 10 S3
PR > IO > CO S4

Problem of larger size is left for the discoverer system. Designs problems with a
size larger than 4, are in any case beyond the handling capacity of individuals.
The only way to get around the complexity of their enumeration, testing, and
selections of appropriate designs are by means of an automatic system.
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Dit proefschrift behandelt architectureel ontwerpen (van gebouwen) in drie
etappen: analytisch, topologisch en meetkundig. In de analytische fase wordt
de opdracht geformuleerd en het programma van eisen opgesteld. De volgende
twee fasen betreffen het eigenlijke ontwerp. Beide zijn, rekentechnisch
gezien, onhandelbaar qua complexiteit. Mensen echter, kunnen gebouwen wel
ontwerpen. Dit proefschrift automatiseert kennls die architecten gebruiken
om vloerontwerpen van gebouwen (in de topologische ontwerpfase) te maken.
Dit gaat vooraf aan de maatvoering (meetkundige fase). De Kkennis in de
topologische fase is primair kennis die de functie van een gebouw uitdrukt
in ruimtelijke verbanden (bijvoorbeeld: plaats secretaressekamer altijd met
toegang naar werkkamer chef of gang). Deze kennis wordt in dit proefschrift
verdeelt in vier "sociale" kennisregels: privacy (van ruimtes), de gemeen-
schappeli jkheid (van ruimtes), de ontmoetingskans (van mensen in ruimtes) en
de loopafstand (tussen ruimtes). In dit proefschrift wordt het ontwerpen (op
topologisch nivo) van een gebouw geautomatiseerd m.b.v. de genoemde kennis-
regels, ook wordt de beoordeling van bestaande ontwerpen m.b.v. dezelfde
kennisregels uitgetest.

Omdat ontwerpen een combinatorisch complex karakter heeft, is het voor
grote aantallen ruimtes rekentechnisch onhaalbaar. Het belangrijkste deel
van dit proefschrift is de TOPologische GENErator. Dit is software die
kennisregels kan hanteren om (incrementeel) vloerindeling te ontwerpen en te
beoordelen. De rekentechnische problemen zijn gekraakt m.b.v. een heuris-
tische zoekmethode "hill-climbing", door de ruimte van mogelijke ontwerpen.

Omdat de expertise in de kennisregels (logisch) ook nog afhankeli jk en

zelfs strijdig is, neemt de complexiteit van de zoekruimte juist door het



gebruik van deze ontwerpkennis toe. De mate van interactie tussen ruimtes
volgens die kennisregels is behandeld m.b.v. de zgn. "Q-analysis" om tijdens
het ontwerp- redeneerproces zoveel mogelijk clusters (van ruimtes) te kunnen
behandelen, ter reductie van de zoekruimte.

Als alternatief voor de expliciete kennisaanpak is een Neuraal Netwerk
(NN) volgens Hopfield’s ideéen geprogrammeerd. Deze impliciete kennisaanpak
is met succes toegepast op dezelfde ontwerpproblemen zoals behandeld door
het op expliciete kennisregels gebaseerde TOPGENE. Verbazingwekkend is dat
de NN aanpak soms zelfs beter scoort dan de kennisaanpak.
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