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Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building
scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require
exquisite and targeted control over key Hamiltonian parameters that define the electrostatic environment.
However, due to the tight gate pitch, capacitive crosstalk between gates hinders independent tuning of
chemical potentials and interdot couplings. While virtual gates offer a practical solution, determining all the
required cross-capacitance matrices accurately and efficiently in large quantum dot registers is an open
challenge. Here, we establish a modular automated virtualization system (MAViS)—a general and modular
framework for autonomously constructing a complete stack of multilayer virtual gates in real time. Our
method employs machine learning techniques to rapidly extract features from two-dimensional charge
stability diagrams. We then utilize computer vision and regression models to self-consistently determine all
relative capacitive couplings necessary for virtualizing plunger and barrier gates in both low- and high-
tunnel-coupling regimes. Using MAViS, we successfully demonstrate accurate virtualization of a dense
two-dimensional array comprising ten quantum dots defined in a high-quality Ge/SiGe heterostructure.
Our work offers an elegant and practical solution for the efficient control of large-scale semiconductor

quantum dot systems.

DOI: 10.1103/PhysRevX.15.021034

I. INTRODUCTION

Qubits that utilize the spin degree of freedom of charge
carriers confined within semiconductor quantum dots
(QDs) show great promise for practical large-scale quantum
computation [1]. In the past decade, silicon spin qubit
systems based on one-dimensional arrays have demon-
strated long coherence times, high-fidelity single- and two-
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qubit gates, coherent quantum information transfer, and
compatibility with industrial manufacturing techniques
[2-12]. In more recent years, planar germanium QD hole-
spin qubits have emerged as an alternative semiconductor
technology that can ease certain challenges in qubit control
and device engineering [13]. In particular, the strong spin-
orbit coupling and small effective mass of holes in germa-
nium [14,15], together with a highly uniform and low noise
material platform [16-18], have sparked tunable QDs
[19-21] and spin qubits systems arranged in two dimensions
[22-24]. As compelling fabrication methods further advance
providing routes for engineering of large QD registers
[25,26], it is expected that automation will be playing a
pivotal role in orchestrating precise quantum operations at
various levels [11,27-35].

To meet the stringent requirements of high-fidelity oper-
ations in spin qubit arrays, targeted manipulation of key
Hamiltonian parameters such as chemical potentials and
tunnel couplings is required [36-38]. While dedicated

Published by the American Physical Society
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plunger and barrier gates are carefully engineered in QD
devices to tune these properties, in practice, metallic gates are
capacitively coupled to each other because of their close
proximity, causing crosstalk challenges. To overcome cross-
capacitance effects, the community has adopted virtual gates.
Virtual gates are defined as linear combinations of multiple
physical gates, with virtual matrices encoding information
on how each gate affects a specific array parameter [39—42].
As the QD registers scale in size and complexity, developing
methods that calibrate virtual matrices in an accurate,
efficient, and autonomous manner becomes crucial for
facilitating high-level and high-fidelity control [33].

In this work, we advance this effort by combining state-
of-the-art QD arrays with modern machine learning (ML)
to address the open challenge of virtualization. We propose
and validate a modular automated virtualization system
(MAViS), a framework to achieve orthogonal control of the
electrostatic potential landscape. We test bed the approach
on a two-dimensional (2D) germanium ten QD array by
defining a multilayer stack of virtual gates that accurately
control the QD energies and couplings. Here, we take
advantage of prior works aiming to automate the operation
of semiconductor qubits to build a framework that can
efficiently fine-tune multi-QD devices.

Initial virtualization methods relied on laboratory heuris-
tics, along with device-specific information processing
[43,44]. With the advent of modern machine learning,
automated methods relying on ML models and traditional
curve fitting to identify orthogonal plunger gates and mitigate
capacitative couplings were first proposed in Refs. [45,46],
improving on minimal computer-automated tuning algo-
rithms [47,48]. The prescribed methods extract the inclina-
tions of transition lines from 2D charge stability diagrams
(CSDs) to define the virtualization matrix. However, as QDs
in large arrays decouple from the reservoirs, causing a
reduced exchange rate of carriers with respect to the typical
measurement scan rates, the 2D CSDs become more chal-
lenging to interpret and analyze due to, e.g., secondary
charge transitions and more pronounced latching transition
lines [20]. Our method is articulated on several virtualization
layers, exploits both ML and classic analysis techniques for
robustness, and has a larger scope than existing approaches,
extending beyond plunger gate virtualization. By ultimately
enabling the definition of virtual barrier gates that tune the
interdot couplings over large ranges, without affecting the
QD potentials, we build an operation recipe that provides
control over the key Hamiltonian parameters defining the
electrostatics of the QD system. Finally, our ability to
accurately decode information from complex 2D CSDs
enables us to study the boundaries of the linear virtual gates
approach and provide a method for using control parameters
beyond such limits. Our work demonstrates the full virtu-
alization of a dense 2D array of ten QDs in a planar
germanium quantum well in the few-hole regime. We start
with a device hosting weakly coupled QDs pretuned via

manual operations and a set of unvirtualized sensor, plunger,
and barrier gates. By leveraging the MAViS, we then
seamlessly transition into a fully orthogonal gate space,
achieving complete virtualization in an automated and
efficient manner.

The organization of the paper is as follows: In Sec. II, we
present an overview of the virtualization framework,
including the description of the full virtualization stack
in Sec. I A, the experimental setup used to test the MAViS
in Sec. II B, and the data processing techniques in Sec. II C.
The plunger- and barrier-specific tools are described in
Secs. II D and I E, respectively. The performance of the
MAViS in autonomously defining a set of the virtual
plunger and barrier gates to control the ten-QD device is
presented in Sec. III. Finally, in Sec. IV we summarize our
results and discuss future outlook.

II. METHODS

A typical multi-QD spin qubit device is controlled by a
set of Np plunger gates P, Ny barrier gates B, and Ng
charge-sensing plunger gates S. Tuning the device into a
QD regime requires an extensive search over relatively
large voltage ranges, with the capacitive crosstalk between
gates further complicating the search. We propose a multi-
layer virtualization stack that is both device agnostic and
modular, as illustrated in Table I.

A. Virtualization stack

To ensure the high sensitivity of the charge sensors while
the QDs are calibrated, it is convenient to first address the
compensation to the charge sensor plunger gates by
exploiting a set of virtual gates {vP,vB}= {VP;, vB,|i =
I,...,Np;j=1,...,Ng} that can be used to maintain the
charge sensors tuned to their most sensitive voltage points
(layer 1 in Table I). Achieving this step requires knowledge
of the relative lever arms from the plunger and barrier gates
controlling the QDs to the plunger gates of the charge
sensors (S, with k €[1, ..., Ng]). The link between sensor-
virtualized gates and real gates is defined through the
virtual matrix M, and reads:

[vS,vP,vB| =M, - [S,P, B], (1)

with the absolute value of the entries of the inverse matrix
M7! being the relative lever arms of the QD plunger gates
(o, no+) and of the barrier gates (a Noin,i,) that are
extracted experimentally. As an example, if an increase of
1 mV in the barrier B| produces a shift of —0.2 mV to the
position of Coulomb peak associated with the third charge
sensor in the S space, the entry (3, Ng + Np + 1) of M7!
reads —0.2, and 0.2 is the relative lever arm of B; on S;.

We also note that splitting the virtualization stack into
multiple layers is advantageous for keeping virtual matrices
in basic forms. While M7! appears as a large matrix, in
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TABLE 1.

The five virtualization layers implemented in MAViS. The first column indicates the layer number. The second column

gives a description of each layer. Columns three and four give the output and input gates for each layer, respectively. The equation
defining the transformation between the input and output gates is given in the last column.

Layer Description Output gates Input gates Trans.

1 Charge sensor virtualization [vS, VP, vB] [S,P, B] Eq. (1)

2 Plunger gate orthogonalization o vP Eq. (2)

3 Plunger gate normalization: orthogonalization of plungers with uniform N (0] Eq. 3)
charging voltages

4 Barrier coarse virtualization: ensuring independent barriers to plungers J [VB,N] Eq. 4)
control in weak-coupling regime

5 Barrier fine virtualization: ensuring independent barriers to plungers control K [J, N] Eq. (5)

in high-coupling regime

practice, it is a diagonal matrix exhibiting off-diagonal
elements in only the first Ng rows. Furthermore, because
each of the sensor-virtualized gates vP and vB can (by
design) be varied without otherwise changing the compen-
sations to the charge sensors, any control parameter built as
a linear combination of these virtual gates will also keep all
charge sensors tuned. This allows building up higher-
hierarchy virtualization layers using the newly defined
{vP,vB} gates, while the sensor compensations are
adjusted automatically as part of the virtual gates.

For spin control and readout, it is practical to operate in
an orthogonal plunger gate space where each plunger
controls only the designated site’s chemical potential
independently from the other gates. This is addressed in
layer 2 of MAViS, which we call plunger gate orthogon-
alization, where a set of ad hoc virtual plunger gates O
provide orthogonal control over the chemical potentials
through a second virtual matrix M, as

0 =M, VP, (2)

with the absolute value of the entry of the inverse matrix
M;", a9;, being the relative lever arm of vP; to dot n. This
stage can also be extended to integrate compensations for
the cross-capacitance effects from the charge sensor to the
QDs, if desired.

Layer 3, which we call plunger gate normalization,
provides a virtual framework spanned by a new set of
virtual plunger gates N with a homogeneous charging
voltage over all sites. This step helps standardize the
measurement window size required to build the next layers
and is achieved through a diagonal matrix Mj;:

N:M3'O, (3)

with the entries a; of the inverse matrix M3' defined as
d;/Vp with V, the target charging voltage, and d; the
charging voltage measured along the O; voltage space.
To further isolate each QD for stages such as readout and
single-qubit gates, we require independent control over the
tunnel couplings between neighboring sites [1]. This
independence is achieved in layer 4: barrier coarse

virtualization, where a set of virtual barriers J is introduced.
As the qubit idle point is typically defined in the uncoupled
regime, we perform this calibration in the weak-coupling
(OFF) regime where a linear compensation is shown to be
sufficient [49]. We construct virtual barriers J; as a linear
combination of sensor-virtualized barrier vB; and normal-
ized plungers N;:

J=M, [vB,N], (4)

where the entry of M} at the position af'"; . encodes the
relative shift of the charge state of dot i as the barrier vB;
voltage is changed.

The execution of fast two-qubit exchange-based gates
requires modulating the tunnel coupling between adjacent
QDs across several orders of magnitude [1,22,36]. A large
voltage pulse on the barrier gates also affects the effective
QD positions as the wave functions are brought close to
overlap. This effect is expected to modify the aforemen-
tioned capacitive couplings limiting the range of validity of
the virtual matrix extracted in the OFF-coupling regime. As
a consequence, barrier control compensations dedicated to
the high-coupling (ON) regime are introduced in layer 5.
We anticipate that, depending on the targeted exchange
interactions, linear compensations may not suffice and that
nonlinear corrections to the plunger gates may be necessary
when a barrier is pulsed substantially. Therefore, we
heuristically define quadratically corrected virtual gates
K as follows:

Kj = Jj + Z[ajC?ﬁan2 +ﬂ2gNm]» (5)

where the (>_,,) involves only the nearest-neighboring
plunger gates to barrier gate j, and a?fl, ?an represent the
first and second order compensation coefficients of barrier
J; to the QDs m, respectively.

It is important to note that, in general, the charging
energy of the QDs varies across different charge states. This
means that the matrices and coefficients in Eqs. (1)—(5) are
valid only locally, as full global virtualization across all
charge states is not possible without many complex,
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FIG. 1.

Device architecture and virtualization workflow. (a) Layout of a ten-QD array based on a 3-4-3 geometry. Holes are trapped in

gate-defined germanium QDs controlled by a set of barrier (dark blue), plunger (magenta), and screening (cyan) gates. (b) Schematic
displaying the approximate potential landscape and position of the QDs in the array, with D,,, for n €1, ..., 10], indicating each dot and
Sy, Sk, Sg, and Sy, indicating the north, east, south, and west charge sensor, respectively. (¢) A typical 2D CSD of a double QD
measured via the rf-reflectometry charge sensing on Sy. (d) The workflow of the ML model: Each pixel is assigned a probability to be
part of a horizontal, vertical, and interdot transition (diagonal and no transition classes not shown). (e) Probability distribution of each
pixel to be a horizontal (left) or vertical (right) transition class. (f) Probability distribution of each pixel to be an interdot class. (g) A
Gaussian fit to the log-transformed probability distribution for the interdot class. (h) Extracted coordinates of the interdot centers of mass

based on dynamic thresholding.

nonlinear corrections. However, locally valid virtualization
is sufficient for most applications since spin processors are
operated in a predefined charge state. Thus, it is only
necessary to perform virtualization after bringing the device
to the desired regime of operation.

B. Experimental setup

The full virtualization approach is demonstrated on a
dense array of ten QDs defined in a planar germanium
quantum well. This device [50] is based on low-disorder
Ge/SiGe heterostructure grown on a Ge substrate, with the
quantum well separated from the dielectric interface by a
55-nm SiGe barrier [18].

The device uses a multilayer gate architecture to define
an array of ten QDs arranged in a 3-4-3 configuration; see
Fig. 1(a). Ten plunger gates and 12 barrier gates labeled P;
and B; for i€[l,...,10] and j€[l,..., 12], respectively,
offer control of the array’s electrostatic potential landscape.
Four additional plunger gates, labeled Py, Py, Py, and Py,
control the sensor QD’s potentials. The ten QDs are labeled

D,, with n€|l, ..., 10|, and their four peripheral sensor
QDs are labeled Sy, Sg, Sy, and Sg, based on their cardinal
directions; see Fig. 1(b). The additional eight screening
gates screen the electric field from the plunger gates to
prevent the formation of spurious QDs. The screening gates
are omitted from the virtualization stack as they are not
changed during normal device operation.

Prior to executing the virtualization stack, the QD array
is pretuned to the few-hole regime, with each QD being
either in a single-, triple-, or quintuple-hole occupancy for
spin qubit manipulation [51]. The four charge sensors
permit fast simultaneous radio-frequency- (rf) reflectom-
etry charge sensing in combination with video-mode
acquisition and frequency multiplexing [52,53].

C. Image processing

MAViS has at its basis an ML-based charge transition
identifier. The identification of charge transition lines and
interdot transition points (refereed to as interdots hereon)
from small 2D CSD of different plunger gate voltages, such
as shown in Fig. 1(c), requires careful determination of the
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corners of a honeycomb structure within imperfect images.
This is, in essence, an edge detection and classification
problem, a task suitable for ML.

To extract from the experimentally acquired 2D CSDs
information useful for automation, we use an ensemble of five
convolutional neural network pixel classifiers [54] trained to
distinguish each pixel as belonging to five different classes:
horizontal, vertical, or diagonal transitions (corresponding to
QD formed under left, right, or simultaneously under both
plunger gates), interdots, and points where no transitions are
present [45]. The pixel classifiers, trained using exclusively
simulated data [55,56], take as an input a small 2D plunger-
plunger voltage scan obtained using a charge sensor, as
shown in Fig. 1(c). It then labels each pixel within the scan
with a 5D vector indicating the probability of belonging to
each of the five possible charge transition classes.

Prior to running the pixel classifiers, the measured data
are preprocessed. This involves a series of steps. First, the
data are convolved with a Gaussian filter, and the gradient
is taken. The resulting image is then mean normalized,
and the normalized gradient is cropped to produce a
32 x 32 pixel subimage.

(@) vP3 (mV) (b)206(i] (pixels)

Each preprocessed image is passed through the ensemble
of pixel classifiers in a sliding-window fashion [57,58], and
the resulting probability vectors are averaged across the five
models. Since the pixel classifiers sample overlapping
windows, the predicted probabilities are averaged over all
subimages that contain a given pixel, producing a single
image for each class. The individual images codify the
likelihood that a horizontal or vertical transition, see
Fig. 1(e), or an interdot, see Fig. 1(f), exists at any particular
point [59].

To identify the coordinates of the interdots, we imple-
ment a dynamic thresholding algorithm that selects the
interdots based on the probabilities P(£) given by the ML
module, where # is the predicted class. The threshold ¢ is
determined based on the mean (x) and variance (6°) of a
Gaussian fit to the log-transformed interdot class proba-
bility distribution,

(6)

where 7 is set dynamically in the range of (2.5, 4) in order
to identify at least the expected number of interdots; see

0 =u+no,

(©) Hg, (pixels)
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FIG. 2. Plunger gates orthogonalization and normalization. (a) Exemplary charge stability diagram spanned by the sensor-virtualized
gates vP; and vP;. In red, we overlay the output of the pixel classifier module for vertical transitions. The region circled in green
indicates a single transition segment, while the blue dashed line indicates the composite line averaged over the three segments of the D
transition line on the left-hand side of the image. The red line in the center of the image has been erroneously marked by the classifier.
(b) The Hough transform of the ML model output. The individual transitions become thin bands, which overlap at a single point
corresponding to the composite line (marked in blue). The three additional peaks (marked in green) correspond to the individual
transitions on the left-hand side. Each pixel has a width of 0.17 mV and a height of 0.35 mV. (c) The sum of the squares of the Hough
transform, forming a bimodal distribution corresponding to the composite and individual transitions. (d) Inverse of the virtual matrix M,
obtained from the Hough transforms (left) and a 2D CSD acquired with orthogonalized virtual plunger gates (right). (e) Inverse of the
normalized virtual plunger matrix M5 (left) and 2D CSD acquired with normalized virtual plunger gates. In the space spanned by N, and
N3, the charging voltages for the specific charge state are constant (20 mV), allowing for uniform x and y axes.
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Fig. 1(f). In the end, a pixel is classified as belonging to an
interdot if P(£) > 6. The final interdot coordinates in the
2D CSD are determined based on the center of mass of each
cluster of points classified as an interdot, as illustrated in

Fig. 1(2).

D. Plunger virtualization

A typical 2D CSD acquired as a function of two
sensor-virtualized plunger gates exhibits a clearly visible
honeycomb pattern, as shown in Fig. 2(a). The significant
deviation of the vertical and horizontal transition lines from
the desirable, perfectly orthogonal pattern indicates the
presence of moderate plunger gate-to-dot cross-capacitance
and dot-to-dot capacitance that hinder individual control of
the chemical potential of each site. To define a virtual plunger
gate framework that allows individual QD control, we
perform a Hough transform on the ML model output to find
the slopes and locations of the transitions.

From a 2D CSD, the ML module identifies regions that
correspond to horizontal and vertical transitions. For
example, in Fig. 2(a), all pixels identified as belonging
to vertical transitions are marked in red. This includes three
left-hand side transitions and three right-hand side tran-
sitions, as well as an erroneously identified line in the
center of the honeycomb. The ML output is then processed
using the Hough transform, resulting in a representation
where each transition becomes a thin band in the Hough
space, with @ and d corresponding to the angle and distance
from the origin of the transition; see Fig. 2(b).

The peaks in the Hough transform of the ML output
correspond to the angles and locations of the transition lines
in the original data. To identify the average slopes of the
transitions, all distances in the Hough transformation are
squared and summed:

Hy(0) = H(0.d), (7)
d

where H(6,d) is the Hough transform of the image. The
resulting distribution H, (@) will then have a peak at the
angle corresponding to the slope of the lines in the image.

The 2D CSDs often contain several nearly collinear
transition lines that have slight offset relative to each other
due to the presence of interdot transition, as shown in
Fig. 2(a). This effect manifests itself visually in the Hough
transformation as several small peaks, shown in Fig. 2(b)
with green ovals, each corresponding to an individual
transition. The large peak, shown in Fig. 2(b) with a blue
oval, corresponds to a composite line that passes through
the centers of the nearly collinear transitions [indicated as a
dashed blue line in Fig. 2(a)]. The ability to distinguish
between these two cases is essential, as the slope of the
composite line will be different from the slopes of the
individual transitions themselves, and this difference will
be magnified as the size of the interdots increases.

When this occurs, H,(6) will have a bimodal distribu-
tion, with the peak closest to 8 = /2 (6 = 0) for the case
of horizontal (vertical) transitions corresponding to the
composite line, and the other peak reflecting the slope of
the individual transition segments, as shown in Fig. 2(c).
Our implementation of MAVIS is designed to prefer the
peak corresponding to individual transitions so that the
horizontal and vertical transitions are orthogonal in the final
virtualized space, although in principle the composite line
can be chosen instead. After finding the angle 6 corre-
sponding to the individual transitions, the slope of these
transitions is then obtained via basic trigonometric func-
tions. This process is repeated for all nearest-neighbor and
next-nearest-neighbor plunger-plunger pairs, yielding the
elements of the matrix M; "in Eq. (2).

After orthogonalization, the measurement is repeated
and the normalization coefficients are found by performing
a Hough transform on the new data and finding the
difference in d between the largest peak on each side of
the image. This is essentially finding the distance between
neighboring transitions, as illustrated in Fig. 2(d). After
finding such distances in all the relevant plunger-plunger
maps, the scale factors required to adjust the distances as
desired are computed and the median values yield the
elements of M3!.

E. Barrier virtualization

The next layer of MAVIS is the virtualization of the
barrier gates with respect to the QD levels. Because of the
barrier-to-QD capacitive couplings, nonvirtualized barriers
result in a shift of the charge state within a CSD as the
barrier gate is modified. Virtualized barriers are built to
ensure that such a charge state, enclosed by four interdots,
remains at the charge symmetry point despite varying the
tunnel coupling between neighboring QDs.

Barrier virtualization involves determining the virtuali-
zation coefficients in Egs. (4) and (5) that will correct for
the shifts of the interdot positions as the barrier gates are
adjusted. The same ML models trained on 2D CSDs
obtained from plunger-plunger sweeps are leveraged for
this task. First, the interdot locations in the 2D CSD are
determined as described in Sec. II C. To mitigate errors in
tracking individual interdots, the center of the honeycomb
formed by a set of four interdots is tracked instead. If the
pixel classifier fails to identify one of the tracked interdots
in one of the scans, coordinates for the corresponding
interdot from the previous scan are used instead. Then, we
derive the rate at which the charge state shifts as the barrier
voltage is changed using one of two methods.

For the OFF regime, the correction coefficients are
determined based on the local change in interdot positions.
The local tracking approach involves computing the shift
in interdot coordinates only between consecutive scans.
The average shift of the CSD is defined as the mean of the
resulting distribution of pairwise distances normalized by
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the barrier voltage step. In addition to being more robust
against missing points and boundary effects (e.g., an
interdot shifting from the region captured in the CSD), it
is also straightforward to identify and exclude outliers
caused by mistakes in the pixel classification process (false
positive interdot detections). Local tracking is also more
suitable in situations where only a few CSDs are available.
However, local tracking is appropriate only for finding
the linear fit coefficient. For the quadratic fit observed in
the ON regime, a global tracking method is implemented.
The global method involves direct tracking of the trajecto-
ries of the interdot transition points as the barrier gate is
pulsed over multiple scans. The center coordinates as a
function of the corresponding barrier voltages are then fit to
a linear or quadratic curve, as desired. While missing or
misclassified points can negatively affect the quality of the
fit, virtualization in the OFF regime ensures less drastic
shifts in the ON regime, making the fit less prone to errors.
Moreover, with a limited number of points involved in the
fit, a single misidentified point can substantially affect the
resulting fit and lead to a miscalibration, which makes this
approach less robust with noisy data. To overcome this
limitation and ensure a high-quality fit, the virtualization in
the ON regime is established based on a significantly
denser sampling of 2D CSD for every pair of gates. Since
only the neighboring gates need to be virtualized at this
step, a larger number of measurements per gate pair can be
afforded compared to the OFF regime virtualization.

III. RESULTS

MAVIS is designed to autonomously virtualize a set of
sensors, plungers, and barrier gates used to define QDs. It
operates through five distinct modules, each corresponding
to a specific virtualization layer outlined in Table I. At its
core is an ML pixel classifier that extracts high-level feature
representations from experimental data. MAViS leverages
horizontal and vertical transition classes to determine the
plunger-plunger virtualization coefficients, while the inter-
dot class is used to identify and track interdot transitions for
barrier virtualization. The performance of each virtualiza-
tion layer is discussed in the remainder of this section,
while we focus on the scalability and time requirements of
MAVIS in Supplemental Material [60].

A. Charge sensors compensation

When searching for clear honeycomblike patterns in 2D
CSDs measured via charge sensing, it is critical to maintain
the rf-reflectometry charge sensors tuned to their maxi-
mum-sensitivity point, i.e., at the flank of one of their
Coulomb peaks, throughout the whole voltage scan. The
high sensitivity of charge sensing is ensured by calibrating
the relative lever arm of each gate controlling the QD array
to the charge sensors’ plunger gates. This step does not
entail using ML algorithms and exploits only traditional

analysis routines to track the charge sensors’ Coulomb peak
position as a function of each barrier and plunger gate.
The charge sensor compensation matrix M, is deter-
mined in the first virtualization layer by obtaining the
crosstalk of each gate to the four charge sensors. This is
achieved by extracting the slope of the Coulomb peak
position as a function of each gate. The slope of the linear
shiftin the S vs P and S vs B space is extracted and fed into
the matrix M 1‘1, as shown in Supplemental Material [60].
As we move on to the next virtualization layers, only the
sensor-virtualized vP and vB parameters are considered.

B. Plunger gates virtualization

The plunger gate orthogonalization matrix M, is deter-
mined using the slope extraction method described in
Sec. IID. First, a 2D CSD acquired for each pair of
plunger gates (vP;, vP;), with 7, j € [1,...,10], and i # j,
is processed by the ML module to detect the horizontal and
vertical charge transition lines; see Fig. 2. Then, a Hough
transform method is used to extract the slopes of all relevant
charge transitions; see Fig. 2(b). The inverses of the slopes
define the elements of the orthogonalization matrix; see the
right-hand panel in Fig. 2(d). When scanning the newly
defined virtual plunger gates (O;, O;), with i, j €1, ..., 10],
the honeycomb diagrams display orthogonal transition
lines confirming the individual control of each plunger
to the corresponding QD, as shown in the left-hand panel in
Fig. 2(d).

The goal of the plunger normalization layer is to ensure
uniformity of charging voltages. This step gives three
practical advantages. First, it allows the homogenization
of the measurement window required for the next steps.
Second, it enables us to define all detuning (g;;, with
i,j€|l,...,10]) and total-energy (U, j, with i,je[l,...,10))
axes of all double-QD pairs, often adopted for readout and
initialization schemes, with the same simple 45°-rotation
matrix. Third, when a sizable charge jump occurs, visual-
izing a charge state with a different charging voltage (due to
the few-hole filling structure) immediately triggers the
experimentalist or a surveying algorithm to perform a more
in-depth verification of the charge state.

The uniformity of charging voltages with a target
constant spacing between consecutive transitions in a
new virtual gate space spanned by the normalized plunger
gates N;, with i € [1, ..., 10], is achieved through a diagonal
virtualization matrix M. The desired spacing across the
charge transitions and interdots encompassing the central
charge state of interest is set to V, = 20 mV. The elements
of matrix M5 are determined using the slope extraction
method described in Sec. I D applied to 2D CSDs acquired
after the first plunger orthogonalization is completed. Since
the uniformity of charging voltages is determined in an
already orthogonalized plunger space O;, withi € [1, ..., 10],
the resulting matrix M5 is diagonal; see the right-hand panel
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in Fig. 2(d) for M3'.
charge transitions in the (N;, N J-) space, with i, j €1, ...,
is illustrated in the right-hand panel of Fig. 2(e).

The homogenized spacing between
10],

C. Barrier virtualization in the OFF-coupling regime

Once the plunger gates are orthogonalized and normal-
ized, MAVIiS proceeds to virtualize the barrier gates to
achieve individual control of tunnel couplings without
affecting the chemical potential of any QD. The barrier-
plunger capacitive coupling manifests as a change in
interdot position in a 2D CSD as the plungers are swept
for different barrier gate voltages. As the barrier vBg is
stepped from —10 mV to 10 mV, there is a clearly visible
charge state shift across 2D CSDs due to the coupling of
the barrier gates to the QD levels is shown in Fig. 3(a).

Extraction of barrier-dot coupling involves choosing
for each barrier gate vB;, for i€[l,...,12], a pair of

N3 (mV)
(@) vBg: 10.0 mVv

neighboring virtual plunger gates (N;, N;), for some
i,j€[l,...,10], measuring several 2D CSDs while uni-
formly stepping vB;, and extracting the shifts in the interdot
positions. For each 2D CSD, the positions of interdots
forming the honeycomb of interest and of the correspond-
ing center of the honeycomb are determined using image
processing methods described in Sec. II C. The trajectory
of the honeycombs and their centers, shown in Figs. 3(c)
and 3(e), suggest a roughly linear relationship between the
plunger and barrier gates, as expected due to the low
coupling in the OFF regime.

However, on occasion, the pixel classifier fails to identify
interdots or identifies false positives [for examples of each,
see the first and last 2D CSD in Fig. 3(a)]. Moreover, as the
2D CSD shifts due to crosstalk, interdots may shift into or
out of the frame as the barrier voltage is changed. In such
cases, the quality of the linear fit will be significantly
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FIG. 3. Barrier coarse virtualization (OFF regime). (a) Sequence of N3 vs N; CSDs as a function of barrier vBg stepped in the range

[-10, 10] mV with respect to the starting dc voltage. (b) Sequence of N3 vs N; CSDs as a function of the virtualized barrier J. The cyan
points in (a) and (b) indicate the positions of the interdots returned by the ML module and the magenta diamonds indicate the center of
the tracked honeycomb. (c),(d) Concise presentations of the evolution of the charge sector (interdots and center of the diamond)
extracted from (a) and (b), respectively, showing the effective virtualization of J¢, which when varied maintains a constant charge state.
(e) The fit to the center of the honeycomb positions for plunger gates N3 and N as a function of barrier gate vB4 showing a linear
dependence. (f) The distribution of the pairwise distances between all identified interdots between consecutive 2D CSD. The center of
this distribution provides the rate of change of interdot position with barrier strength, i.e., the cross-capacitances. The dashed box
encloses points used to determine the crosstalk coefficients. Points lying outside of this box are considered outliers. (g) The resulting
capacitive-crosstalk matrix with N3 vs Jg and Ny vs Jg highlighted.
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affected, resulting in suboptimal accuracy of the extracted
slope. Thus, rather than finding the slopes directly, we rely
on the local change in the interdots’ position, as described
in Sec. II E.

A histogram of the computed pairwise distances between
interdots in consecutive 2D CSDs along each plunger axis
is shown in Fig. 3(f). This frequency distribution of
distances allows us to determine the average shift over
all interdots, indicated by a black cross in Fig. 3(f). The
outliers due to boundary effects and classifier errors are
easily identifiable as stray points far away from the central
cluster of points highlighted with a dashed box in Fig. 3(f).

The barrier virtualization coefficients are derived directly
from the histogram, as described in Sec. Il A. A section of
the matrix M}!, containing all the cross-capacitance
compensations, is depicted in Fig. 3(g). Using the newly

N5 (mV)
@ Jo.

defined virtual barrier gates Ji,...,J;,, we iterate the pro-
cedure for an additional three rounds to refine the coefficients
of the matrix. Our results show that repeating this procedure
for an additional two rounds is beneficial and leads to an
overall improvement in the accuracy of the estimated
parameters (see Supplemental Material [60]). When exploit-
ing the set of virtual barriers Ji,...,J;,, the honeycomb
diagram shown in 2D CSDs remains fixed with respect to
barrier voltage changes as shown in Fig. 3(b). The trajectory
of the honeycombs and their centers, shown in Fig. 3(d),
further validate the derived virtual barrier gates.

D. Barrier virtualization in the ON-coupling regime

Similar to the OFF regime, the interdot detection
algorithm is deployed to locate and track the honeycomb
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FIG. 4. Barrier fine virtualization (ON regime). (a) Sequence of CSDs N5 vs Ny as a function of Jg in the range [-110, 5] mV with
respect to the dc reference point. (b) Sequence of CSDs N5 vs Ng as a function of Kg in the same range. The cyan points in (a) and
(b) indicate the position of the interdots returned by the ML module and the magenta diamonds indicate the center of the tracked
honeycomb. The shift in the (Ng, N5) space of the central charge sector in (a) reveals imperfect virtualization over the large voltage range
(115 mV). Panel (b), where the finely virtualized gate Kg is adopted, shows a decreased susceptibility to the barrier gate voltage change.
(c),(d) Concise presentation of the evolution of the charge state while stepping Jg and Kg, respectively. The finely calibrated Kg preserves
the position of the charge state. (e) The fit to the center of the honeycomb positions for plunger gates N5 and Ny as a function of barrier
gate Jg indicating a beyond-linear dependence for Ns. (f),(g) The quadratic coefficient y/a and linear compensation coefficient 3,

respectively, with Kg vs N5 and vs Ng highlighted.
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of interests in the ON regime. However, in the ON regime,
the capacitive coupling manifests not only as a shift in the
trajectory of the center of the honeycombs but also as a
change in the honeycomb shape, as visible in Fig. 4(a) and
in the simulations in Appendix. Modulating the barrier
voltage to achieve the required large coupling strengths
affects the effective QD positions as the wave functions are
brought close to overlap. This effect, in turn, modifies the
capacitive couplings, limiting the range of validity of the
virtual matrix extracted in the OFF-coupling regime. Thus,
the virtual barrier gates constructed in the OFF regime need
to be corrected for the strongly coupled ON regime.
Importantly, in the ON regime, deviations from a purely
linear trend emerge.

In order to find the nonlinear corrections, we use the
global tracking method presented in Sec. I E. We note that,
in general, this method is more sensitive to errors in the
interdot-identification process, such as misidentified inter-
dots, false positives, and boundary effects, as it does not
include a simple way of excluding outliers. However,
because we have already performed virtualization in the
OFF regime, the large-scale shifts have already been
accounted for, which makes boundary effects much less
problematic. For instance, the total shift in Fig. 4(a) is much
smaller than the corresponding shift in Fig. 3(a), despite the
barrier being sampled over a much larger range, at about
5 mV in the ON regime compared to around 20 mV for the
OFF regime.

As the barrier is pulsed and the QDs are brought close
together, the center of the honeycomb shifts. Particularly, as
shown in Figs. 4(c) and 4(e), the center of the (N5, Ng) 2D
CSD is seen to follow a quadratic trajectory as barrier Jg is
lowered. We observe the same trend across all double QDs.
The quadratic and linear compensation coefficients,
depicted in Figs. 4(f) and 4(g), respectively, are derived
as described in Sec. II A. We observe that corrections to the
barrier matrix defined in the ON-coupling regime can be of
up to ~10% in the first order. Finally, we note that the
square root of the quadratic and linear coefficients are of
the same order, and both terms are equally important to
virtualizing the barriers.

Having obtained the best-fit coefficients, we then per-
form barrier pulses that incorporate quadratic and linear
compensations on the plungers, by constructing virtualized
barriers, K; for i €[1, ..., 12], according to Eq. (5). As the
virtual gate K; is varied, we observe that the map is
maintained at the charge symmetry point, allowing for a
wide range of barrier pulses, as shown in Fig. 4(b). The
compensation matrix values for the linear and quadratic
terms, together with measurements on additional double
quantum dots, are provided in Supplemental Material [60].

IV. SUMMARY AND OUTLOOK

Despite significant progress in operating and automating
the control of QD devices, gate virtualization remains

a challenging and time-consuming process that hinders
high-level control of spin qubit arrays. In this work, we
have introduced MAViS, a modular and scalable framework
that enables the autonomous construction of a complete stack
of multilayer virtual gates starting from raw plunger and
barrier gate voltages and sensor readouts in arbitrary archi-
tectures. We benchmark MAViS on a ten-QD array with 2D
connectivity and demonstrate that full virtualization can be
achieved in only ~5 h, inclusive of both data acquisition and
processing (see Supplemental Material [60]).

Motivated by the need for precise control over key
Hamiltonian parameters in spin qubit arrays, our approach
addresses the virtualization challenge by applying modern
ML techniques to state-of-the-art QD arrays. We envision
our approach to be useful also by other platforms such as in
Kitaev chains [61-63], in Andreev qubits [64,65], and in
topological readout schemes [66,67].

We have designed our methodology to be extremely
flexible, as evidenced by the modular structure of the
virtualization stack. Such modularity allows for easy
integration with other tools and frameworks without relying
on the details of the device-specific software. It also allows
for the incorporation of unit testing, since the virtualization
matrices can be validated and errors detected at every step
of the process. Moreover, the modular design enables
adaptation and advancement of only selected portions of
the virtualization process as necessary.

Likewise, we highlight the generalizability of the ML
models. Despite being trained using exclusively simulated,
unvirtualized data [35], the model ensemble is able to decode
features from charge stability diagrams both before and after
the plunger orthogonalization and normalization stages.
Additionally, the models are able to correctly classify
CSDs from a 2D array of germanium hole qubits, even
though its training data were simulated for electrons in a 1D
quantum nanowire, thus demonstrating that our tools are
device agnostic. Moreover, it is important to highlight that
the development and deployment of tools based on ML and
signal processing (Hough transform, regression models, etc.)
has allowed us to track interdots and map the full dependence
of the charge states with barrier voltages. Furthermore,
numerical simulations revealed that the observed beyond-
linear dependence can be caused by an increase in capacitive
coupling between the barrier gate and the QDs.

While our virtualization flow has succeeded in virtualiz-
ing a large array, we note that several potential points of
failure remain. First, it is possible that the CSD itself might
be too noisy for the ML model, especially for QDs near the
center of the device, which can be more difficult for the
sensors to pick up. In our case, because the device has
multiple sensors, we were always able to find a clear CSD
with distinct charge transitions. By running the analysis on
the output from all four sensors and selecting the clearest
result, we were able to handle cases where some of the
sensors gave suboptimal data. Second, the pixel classifier
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occasionally misidentified transitions or identified false
positives, particularly in cases with large latching effects.
This also occurred where there was a large gradient across
the region defined by a specific charge state, such as the
central hexagon in Fig. 2(a), where the pixel classifier
marked a red line in the center of the image which does not
correspond to any transition. In both cases, we mitigated
these errors by carefully designing the postprocessing
methods to be robust to such errors.

At present, MAViS enables the virtualization of the
barrier gates with respect to the QD charge states. An
end-to-end virtualization stack would require compensating
for the effect of each barrier to every interdot exchange
coupling. This effect can be studied with precision by
mapping the exchange coupling as measured via resonant
qubit spectroscopy as a function of virtualized barriers in
the ON regime [7,51,68]. Since compensating for exchange
coupling requires qubit characterization rather than decod-
ing information from CSDs, it is left for future work.

The extracted capacitive coupling matrices obtained
from our methods contain rich information about the device
and can be analyzed further to gain insight into the effective
location of the QDs, the disorder landscape, and the general
impurity density over each metallic gate. This approach
will allow the community to autonomously track QD
features for calibration of large-scale QD arrays.
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APPENDIX: CAPACITATIVE SIMULATIONS OF
QUADRATIC BEHAVIOR

The quadratic shift observed in the interdot position with
decreasing barrier voltage, as presented in Fig. 4, can be
reproduced using a capacitive model, where the capacitive
couplings are given gate voltage dependence. In particular,
we expect that more negative barrier voltages should draw
the dots together, leading to an increased dot-dot and
barrier-dot capacitive coupling. Our simulations show that
the increase in barrier voltage as the barrier gate voltage
decreases is sufficient to account for the quadratic depend-
ence we observed, while the increase in the dot-dot
coupling widens the interdot.

Figure 5 shows a simulated recreation of the barrier
virtualization into the ON regime, qualitatively reproducing
the observed behavior in Fig. 4. These simulations were
performed using the open-source package QARRAY [71].
The system is modeled as a double QD controlled by two
plunger gates (P;, P,) and one barrier gate (B). The
capacitive couplings are captured by the following capaci-
tance matrices:

Cul® = o0 o | (A1)
ng(B):o.os{(l) (1) 1+1().8b]’ (A2)

where C,; and Cy; represent the dot-dot and gate-dot
capacitive couplings, respectively, which we allow to
depend upon the barrier gate voltage through
b = —B/103. We construct the normalized plunger gate
voltages, N; and N,, at B=0 mV and define the OFF
regime virtualized barrier J at B = —25 mV. In the ON
regime, the virtualized barrier K is defined by fitting a
quadratic curve to the position of the charge state center as a
function of the barrier voltage. We find that linear trends,
such as shown in Fig. 4(e), are indicative of errors in the
linear virtualization coefficients. For qualitative agreement
with Fig. 4(e), we include an error in the barrier virtualiza-
tion against N, so that the coefficient was taken as —0.96
rather than the optimal value of 1.00. This model provides a
clear capacitative interpretation of the quadratic trends
observed experimentally.
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