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ABSTRACT

Understanding children’s social interaction patterns is critical for their cognitive devel-
opment; however, existing psychological studies often focus on dyadic interactions, over-
looking the complexities of group dynamics. This study extends the concept of ho-
mophily—the tendency for individuals to interact with similar others—by exploring its
implications within group settings. We introduce F-formations, a well-adopted notion
in the computational field for detecting interaction groups in adults, which has yet to be
extensively studied in children. By identifying this research gap, we aim to investigate
how F-formations can be applied to children’s social interactions.

Our case study was conducted in a preschool setting, specifically in the Starfish class-
room, which includes children with hearing loss. Several key findings emerged from this
study. First, we observed that F-formations can be detected in children’s interactions,
though some formations violate the definition of F-formations. Second, while the ho-
mophily effect was not evident in dyadic studies concerning children’s hearing condi-
tions, it was observed in group settings. We found that children prefer to form more ho-
mogeneous and smaller groups, with those who have hearing loss spending more time
with peers who share similar characteristics.

Overall, our results suggest that integrating group interaction data into traditional
dyadic analyses provides valuable insights into children’s social behavior, highlighting
the importance of studying group dynamics alongside dyadic interactions.

v



1
INTRODUCTION

Analyzing children’s social interactions has proven to be a valuable area of research, as
these peer interactions provide essential resources for children’s development, support-
ing their cognitive, emotional, and social skills[3]. This became particularly important
following the COVID-19 pandemic, which led to a decline in social interactions among
children, especially those with neuroatypical conditions, such as Autism spectrum dis-
order (ASD)[21]. A central challenge in this research is identifying and measuring social
interactions. Psychological studies have often focused on detecting dyadic (two-person)
interactions. A significant advancement in this field came from Messinger et al. [13],
who pioneered the use of automated data, such as continuous positional and move-
ment data, instead of the manual encoding methods used in earlier studies. They in-
troduced the concept of a radial distribution function, suggesting that children within
a range of 0.2 m to 2.0 m of each other can be considered in social contact. Fasano et
al. [7] extended this criterion by incorporating orientation, proposing that children who
are oriented toward one another within a 45° angle are also considered to be in social
contact. Building on these criteria, subsequent studies have investigated various social
patterns, including the homophily effect [1] and reciprocal interaction patterns [15], as
well as how additional factors, such as children’s physical conditions and the activities
they are engaged in, influence their social interactions.

While dyadic studies based on indexing social contact offer valuable insights into the
interaction patterns among children, they fall short of capturing the complexity of social
behavior within group settings. Group interactions involve more intricate dynamics that
cannot be fully understood by examining pairs alone. For instance, an outgoing child
may facilitate interactions between two other children, but by studying only dyads, we
might miss the broader interactional patterns and how these interactions evolve in the
presence of additional peers. Moreover, as acknowledged by Messinger et al. [13], mere
co-location does not necessarily guarantee a genuine interaction. For example, children
sitting around a table, whether face-to-face or side-by-side, engaged in activities like
paper cutting, are not necessarily interacting with one another. Therefore, our aim is to

Codes of this thesis can be found at the github repository.
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adopt a more comprehensive approach to modeling social interactions by extending the
analysis to group-level interactions, thereby uncovering additional patterns in children’s
social behavior that are influenced by the broader social context.

To model children’s group interactions, we also bring the psychological concept of f-
formation, as many computational group interaction detection tasks from surveillance
systems [9], computer vision [6][20][19], and Human-Robot Interaction [2][8] have done.
An f-formation is a concept raised by Kendon[10]. An f-formation refers to a social and
spatial arrangement in which individuals create and maintain a shared, enclosed space
(known as the "o-space"), allowing all participants to have equal and direct interaction as
seen in Figure 2.2. It is a useful tool for detecting interacting groups because, as noted by
Kendon, f-formations can identify a specific interactional situation and provide a means
of defining a social encounter as a unit for analysis. Although f-formation detection has
already been extensively studied in adults [5, 19, 2, 4], its application to children remains
largely unexplored. Children exhibit interactional patterns that are not typically found
in adults. First, based on our animated children’s movement data (seen in Figure 3.4),
we found that children tend to be quite close to each other. Additionally, a study [16]
points out that the interactions they form can be easily interrupted by a child’s shift of
attention from their partner to things such as other’s approaching and toys, making their
formations unstable and fluid. Hence, we first want to explore the applicability of f-
formation analysis in the children’s setting, leading us to the following research question:

RQ 1: Do f-formations occur in children’s group interactions?

Due to a lack of annotated data in our study case (dataset details provided in Section
3), we cannot directly validate the extracted f-formations by comparing them with the
annotations using standard metrics such as precision and recall. Additionally, manually
annotating the data can be time-consuming and costly, and it introduces subjectivity
[27]. Therefore, instead of relying on annotation, we adopt an indirect approach to an-
swer this question: we hypothesize that children do form f-formations, and we employ
an f-formation detection method to extract them. We then analyze the impact of these
extracted f-formations as group context on one of the existing dyadic social interaction
studies. If the conclusions of their study still hold or are further supported, it will bol-
ster our hypothesis that f-formations do exist among children and enable us to explore
additional social patterns with group information.

Specifically, we aim to extend the dyadic research on the homophily effect among
children [1]—where children tend to associate with those who share similar physical
conditions—to group settings. While the study primarily focused on children with ASD,
our study case involves children with or without hearing loss. Therefore, we will first ver-
ify the homophily effect in children concerning their hearing conditions in dyads and
then incorporate group information to examine the effects of grouping information. By
comparing findings from these studies, we can determine how group context influences
the dyadic conclusions drawn in [1]. This leads us to the following research questions:

RQ 2: Does the homophily effect apply to children when considering their hearing
conditions in dyadic interactions?

RQ 3: How does incorporating group context influence or further verify the homophily
effect in children with respect to their hearing conditions?

To address these questions, we adopt the Dominant Set (DS) clustering framework
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proposed by Hung et al. [9] to identify f-formations, followed by a series of experiments
and analyses. The structure of this thesis is as follows: We first review related work in
Chapter 2 to identify existing literature and the research gap that our study addresses. In
the dataset section, we provide detailed information about the specific case study we are
working on in Chapter 3. The methodology section, outlined in Chapter 4, describes the
pipeline we use for f-formation detection and analysis. The experiments and results sec-
tion in Chapter 5 presents our experimental findings and addresses the research ques-
tions. Finally, we conclude in Chapter 6 by summarizing our findings and discussing the
limitations of our study.



2
RELATED WORK

2.1. CHILDREN’S DYADIC INTERACTION STUDY IN THE PSY-
CHOLOGICAL FIELD

Previous psychological studies on children’s dyadic interactions primarily relied on man-
ual encoding, which limited both the quality and quantity of observed interactions. To
address this limitation, Messinger et al. [13] promoted the use of automated tracking
to study children’s locations and movements during social interactions. They modeled
data obtained from 16 five-year-olds during three 1-hour classroom free play sessions
and developed the radial distribution function (Figure 2.1) using a data-driven method.
The radial distribution function serves as an index for determining when children are
in social contact more than chance levels of colocation. They defined social contact as
occurring when children were within 0.2 to 2 meters of each other.

Figure 2.1: Radial Distribution Function. g(r) is the ratio of the observed distance between children to the
expected distance by chance. When g(r) > 1, children are closer than expected by chance, indicating
clustering. Social contact was defined as children being within a radius, r, of 1 m, where g(r) peaks.

Building on this, Fasano et al. [7] added the criterion of children being oriented to-
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wards one another within a 45° angle as another marker of social contact to improve the
method’s accuracy. Based on the interactions found by this updated criteria, their study
made foundings that children with ASD were less central in the classroom and exhibited
lower cohesion within the ASD group. Additionally, they found a reciprocal pattern that
children were more likely to vocalize to peers who had previously vocalized to them.

Perry et al. [15] extended Fasano et al.’s reciprocal research to children with hear-
ing loss, observing that vocalizations from a peer in one observation predicted a child’s
vocalizations to that peer in subsequent sessions. They also noted that social contact
and vocalizations varied by activity type, with fewer interactions during free play than in
structured activities.

Banarjee et al. [1] explored the homophily effect among children with developmental
disabilities (DD) and typically developing (TD) peers. They employed mixed-effect anal-
ysis to investigate how the social contact time of a pair is influenced by their homophily
status (as shown in Table 2.1). Their study revealed that children in concordant dyads
(DD-DD/TD-TD) spent a greater proportion of time in social contact than discordant
dyads (DD-TD, p<0.001). Additionally, DD-DD dyads were in social contact less than
TD-TD dyads(p<0.001). Children with DD did not differ from TD children in the overall
time spent in social contact with other children. It is noteworthy that the DD children
sampled are those with ASD, but the conclusions were generalized to encompass all cog-
nitive disabilities.

Table 2.1: Results from the original homophily effect study [1]. Time in social contact is defined as the time
the pair were in social contact divided by the total time both children were present in the classroom. The

table presents the predictors affecting the time spent in social contact.

Predictors Time in Social Contact (B) Standard Error (SE) Confidence Interval (CI) t-value p-value Effect Size (d)
(Intercept) 0.04 0.00 0.04–0.05 13.22 < 0.001 -
[DD] 0.00 0.00 –0.00 to 0.00 0.02 0.987 0.00
Homophily [concordant] 0.01 0.00 0.01–0.01 6.63 < 0.001 0.24
[DD] x Homophily [concordant] –0.01 0.00 –0.02 to –0.01 –4.29 < 0.001 –0.16
Random effects
σ2 0.00
Child 0.00
Classroom 0.00
ICC 0.08
Observations 3108

While these studies provide valuable insights into dyadic interactions among chil-
dren, they do not fully capture children’s social behaviors in group settings. For instance,
in a group of three, the presence of a third child C can either facilitate or hinder the in-
teractions between children A and B. A and B’s limited communication might be due
to child C dominating the conversation, rather than a lack of closeness between A and
B. Alternatively, C could also enhance A and B’s interaction. Additionally, A and B may
often appear together in group settings, but their interaction could be driven more by
the social dynamics of the group than by direct dyadic engagement. Therefore, to bet-
ter understand these interaction patterns, it is necessary to bring group perspective into
existing research.



2

6 2. RELATED WORK

2.2. F-FORMATION
Detecting interactional groups has long been a popular topic of research, although a
formal definition of these groups remains lacking. With the rise of social signaling liter-
ature, the social psychological notion of face-formation, or f-formation, has been widely
adopted to address this gap [18]. According to Kendon [10],

“An F-formation arises whenever two or more people sustain a spatial and orienta-
tional relationship in which the space between them is one to which they have equal, di-
rect, and exclusive access.”

Such patterns are frequently observed in free-standing conversational groups, where
individuals gather with the intention of conversing and exchanging information [9]. Kendon
recognized the significance of studying f-formations because the f-formation system
serves as a crucial means of maintaining the separate identity and integrity of an in-
teractional situation. Furthermore, because of its boundary-defining function, the f-
formation provides a useful way to define a social encounter as a unit of analysis. It
also organizes the spatial structure of face-to-face interaction. Given these capabilities,
the f-formation is an ideal focus for interactional group detection tasks.

In practice, an f-formation involves the organization of three social spaces: o-space,
p-space, and r-space (see Figure 2.2)[6][11] ). The o-space is a convex, empty area sur-
rounded by participants engaged in social interaction, where each individual faces in-
ward, and external people are excluded from this region. It is the core component of an
f-formation. The p-space is a narrow band surrounding the o-space, occupied by the
bodies of the interacting participants. Finally, the r-space extends beyond the p-space
and encompasses the surrounding area.

Commonly observed f-formation arrangements are shown in Figure 2.3. For two
participants, the most frequent formations include: the L-arrangement (Figure 2.3(a)),
where two individuals stand perpendicularly to each other, forming the shape of the let-
ter “L”; the vis-à-vis or face-to-face arrangement (Figure 2.3(b)), where two individuals
face each other; and the side-by-side arrangement (Figure 2.3(c)), where two partici-
pants stand close together, facing the same direction. With more than two participants,
the arrangements typically form semi-circular (d), circular (e), or linear (f) patterns [12].

Figure 2.2: An example of a conversational group organized as an F-formation (left)[11] and a conceptual
model (right)[6] showing the o-space, p-space, and r-space that constitute the F-formation.
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Figure 2.3: Common f-formation arrangements: (a) L-arrangement, (b) face-to-face, (c) side-by-side, (d)
semi-circular, (e) circular, and (f) linear [12].

2.3. INTERACTIONAL GROUP DETECTION IN COMPUTATIONAL

FIELDS
Considering an f-formation as a lose spatial arrangements of group, existing literature of
detecting f-formations can be concluded as two lines of approaches[18]. They represent
two perspectives of interpreting the F-formation. One is by direct mathematical model-
ing of spatial arrangements [26, 20, 6]. These model-based approaches tend to formalize
the transactional segments of individuals, which is the space that extends forward from
their lower body and that includes whatever they are currently engaged with[10]. Then,
these methods find the intersection of transactional spaces in a scene, or o-spaces of the
F-Formations.

The second approach adopts Graph Theory, where social scenes are represented as
edge-weighted graphs. In these graphs, individuals are depicted as nodes, and their pair-
wise relationships as edges. The goal is to partition the graph into subgroups of nodes
that correspond to interactional groups, as demonstrated in the works of [9, 25].

Setti et al. [18] provided a comparative study of two widely cited approaches from
these categories: the Hough for f-formation (HFF) method developed by Cristani et al.
[6] and the dominant set (DS) clustering method proposed by Hung and Kröse [9]. Their
analysis extended the metrics for group detection by introducing a threshold to assess
how accurately group members were identified. The study found that DS clustering
was more accurate when only position data was available, while HFF was more robust
to noisy data and performed better when head orientation information was included.
However, we argue that DS clustering method offer the benefits that 1) it is more prac-
tical because, in many research scenarios, tracking devices primarily capture position
data; 2) as a graph-based approach, DS clustering is inherently more flexible in mod-
eling member relationships. This flexibility allows for the incorporation of additional
factors by constructing various affinity matrices, creating significant potential for future
enhancements in group detection methodologies.

In graph-based methods, the affinity matrix is typically constructed using position
and orientation data. However, numerous techniques have since been employed to ac-
count for other factors that influence group interactions. To name a few, DANTE models
dyadic and contextual interactions using relative positions and head/body orientations
as input features in its deep learning framework[23]. Zhang et al. [28] incorporate en-
vironmental factors like furniture layout and crowdedness by modeling the geometric
variations of potential f-formations in a space. Additionally, beyond the visually ob-



2

8 2. RELATED WORK

tained features of position and orientation, other modalities have been incorporated to
enhance group detection. For example, Thompson et al. [24] combine motion-based
features with visual data to strengthen the estimation of pairwise affinities. Similarly,
Ramirez et al. [17] proposed a synchrony-based method that refines clusters of individ-
uals by integrating proxemics and the 2D field of view, highlighting the importance of
multimodal data for robust group detection.

2.4. RESEARCH GAP
In summary, dyadic studies within the psychological field have primarily focused on in-
dexing pairwise social contact based on two criteria: a distance of 0.2 to 2 meters and
a relative orientation of 45° between individuals. However, these studies often overlook
patterns that can only be understood within a broader group context. Therefore, we aim
to adopt existing computational methods for detecting interactional groups.

While the framework for detecting f-formations has been well established, there has
been no specific research on detecting and analyzing f-formations among children. Based
on our analysis of children’s movements in classroom settings, as discussed in Figure 3.4,
and insights from developmental psychology literature[16], we find that children’s spa-
tial interactions are often intimate yet unstable, easily disrupted by external factors such
as the presence of a third person or nearby objects. Thus, studying f-formations in chil-
dren offers a unique perspective that we believe is a significant research gap worthy of
exploration.



3
DATASET

3.1. STARFISH
Our case study is on the Starfish Kindergarten inclusive classroom [22]. This dataset logs
the activities of preschoolers in the classroom over 12 separate days from October 2022
to June 2023, with observations lasting approximately 3 hours each day (from 9:30 AM
to 12:30 PM). The children engage in both unstructured and structured play activities,
including breakfast time, storytime, circle time, and free play. The ongoing activities
are logged, and each day follows a similar schedule. The classroom features four desig-
nated activity areas: book reading, dramatic play, circle time, and lunch/snack periods.
Additionally, there is a terrace outside the classroom, as illustrated in Figure 3.1. The
classroom dimensions are approximately 15×15 m.

Data were collected from 13 children, consisting of 9 girls and 4 boys, aged between 4
and 6 years. These children are labeled with IDs DS_STARFISH_2223_27-33, 42-46, with
only the numbers used later for brevity. The children speak various languages, including
English, Mandarin, Spanish, and Portuguese, with English as the dominant language.
Among the participants, six children have hearing loss (HL), while the remaining seven
have typical hearing (TH). Additionally, data were recorded for 4 teachers and 2 lab as-
sistants, all of whom are female.

To collect data, each child wore a specially designed vest, as shown in Figure 3.2. The
vest contains a LENA recorder that captures vocalization data, a binary value indicating
whether the child is speaking (1) or not (0). Additionally, two Ubisense active tags (left
and right) are sewn into the pockets of the vests, positioned around waist height. Utiliz-
ing RFID technology, sensors at the corners of the classroom track these active tags, as
illustrated in Figure 3.3. The two tags provide tracked locations for each individual. The
midpoint of the tags’ XY coordinates indexes an individual’s location, while their body
orientation is estimated using these two coordinates.

The Ubisense system monitors children’s positions at a rate of 1–4 Hz, recording at
1 Hz when static and up to 4 Hz when moving. After obtaining the raw Ubisense data,
it was resampled to 0.1-second intervals. More details can be found in the data pro-
cessing section 4.2. Following data preprocessing, we created an animation tracing the

9
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Figure 3.1: Snapshot of the children’s activity animation. Date: 2023/01/30. Time: 09:38:46.300. The layout
includes four main activity areas and a terrace. Each triangle represents a participant, with blue triangles

indicating children and red triangles representing teachers/lab assistants. The triangles show the positions
and body directions of each participant, with top angle indicating orientations. A filled arrow indicates that
participants are in social contact. The origin of the XY plane is aligned with the left and bottom sides of the

classroom boundary (top view).

movements of participants in the classroom; a snapshot of the animation can be seen in
Figure 3.1. Observations from the animated video reveal that children tend to stand very
close to one another, as illustrated in Figure 3.4.

As a dataset previously used for studies on dyadic interactions, it also includes logs
of pairwise children’s interactions when two subjects are within a defined social contact
distance of 0.2 to 2.0 meters from each other or also within 45 degree relative orienta-
tions.

3.2. IDIAP POSTER DATA
The Idiap Poster Data[9] comprises 3 hours of real aerial video featuring over 50 people
showing up in a scientific work during a poster session. From this video, 84 distinct im-
ages were selected and organized into 8 different sets. Each set of images was annotated
by 3 different annotators. After getting proper definitions, the annotators were tasked
with identifying F-formations and their associates from the static images. In total, 21
individuals contributed annotations for at least one set of images. Further details about
the dataset can be found in the corresponding paper [9]. The dataset records the po-
sitions of individuals in the image plane, with the ordering reflecting the sequence in
which the annotators clicked on the people in the scene to identify the F-formations.
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Figure 3.2: Specially-designed Vest

Figure 3.3: Sensors in the classroom

Figure 3.4: Snapshots from the classroom animation illustrating the close proximity of children during
interactions.
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METHODOLOGY

4.1. OVERVIEW
This chapter outlines our methodology to achieve the following objectives: 1) to exam-
ine f-formations in children, and 2) to investigate how the homophily effect influences
dyadic and group interactions concerning hearing conditions. The fundamental task in-
volves detecting f-formations among children’s groups and extending the existing dyadic
analysis using the detected f-formations.

After obtaining the raw data from the Ubisense devices, we undertook the following
steps to accomplish our tasks. First, we performed preprocessing to remove unwanted
data, interpolate missing values, and estimate individual positions and body orienta-
tions based on the two locations from the Ubisense devices.

Next, we employed Hung’s Dominant Set (DS) clustering algorithm [9] in our f-formation
extraction process. This involved constructing the interaction graph for each scene,
building the affinity matrix, and calculating the dominant sets—i.e., the estimated f-
formations in each scene. Each classroom scene at a given timestamp is represented
as an interaction graph G = 〈V ,E , A〉, where n vertices (V) represent the participants
(children in our case). Each pair of nodes i , j ∈ N is connected by an undirected edge
e ∈ E , and the corresponding weight of this edge, wi j , represents the pairwise affinity
(i.e., ai j = wi j ), indicating the likelihood that two subjects belong to the same group. In
the DS extraction framework, the weights are organized into an affinity matrix, where
each element denotes the affinity score between two nodes. We employed the Gaussian
kernel to calculate pair affinities, as used in Hung’s work [9]. Once the affinities for each
pair of individuals in the social interaction graph are computed, the process continues
with grouping individuals using the Dominant Sets (DS) extraction method by Hung and
Kröse.

To assess the feasibility of detecting children’s groups through f-formation extraction
while considering the influence of group context, we extended the dyadic homophily
studies conducted by Banerjee [1] to a group context. This was accomplished by in-
tegrating group properties derived from the previous f-formation extraction. Since the

12
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dataset lacks labels for direct performance measurement, we evaluated the f-formations
by analyzing how the results of Banerjee’s original works were influenced by group infor-
mation through statistical analysis.

4.2. DATA PREPROCESSING
The original raw data were collected from two Ubisense devices located in the left and
right pockets of each child’s vest (at around waist height), with a frequency ranging from
1 to 4 Hz. The midpoint between the two devices is considered the child’s location, while
the line linking the two devices relative to the x-axis (as illustrated in Figure 3.1) is inter-
preted as the body orientation.

In our preprocessing steps, we generated three versions of the dataset for analysis:
1. Linear and Kalman Interpolation: We first applied linear interpolation to fill in

any missing data points and resampled the data at 0.1-second intervals. To enhance
interpolation accuracy, we incorporated Kalman interpolation for locations that were
missing within a one-minute window.

2. Manual Cropping of Overlapping Data: During our analysis, we identified in-
stances of overlapping triangular positions in the data. We manually cropped these en-
tries.

3. Outlier Removal: We removed any data entries that were deemed erroneous based
on a z-score threshold of z/height > 1.25.

The results of each version are detailed in the appendix, while subsequent experi-
ments are conducted using version 2.

Following these preprocessing steps, we eliminated unrelated entries, including those
associated with teachers, as well as times when children were not present in the class-
room or were outside on the terrace (primarily during toilet breaks and playground time),
according to the activity logs. Next, we constructed a coordinates dictionary for all par-
ticipants visible in each scene at 0.1-second intervals. For each scene, we stored the x
and y coordinates within the classroom, along with the body orientation for each child
present.

4.3. AFFINITY MATRIX BUILDING
In this step, our goal is to build the n×n affinity matrix A = ai j for an interactional scene
G using the provided features. As mentioned in Section 2.3, various techniques and fea-
ture choices exist for this step. While this is worth exploring in future research, it is not
the primary focus here. In this study, we continue to utilize positions and orientations.
When only positions are considered, the affinity calculation is defined by the following
equation:

ai j =
0 if i = j

e−
di j

2σ2 if i ̸= j
(4.1)

where i , j ∈V are the i -th and j -th children in an interactional scene. ai j represents
the affinity score between nodes i and j ; di j is the Euclidean distance between i and j ,
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calculated as ∥positionsi −positions j ∥2. Here, positionsi refers to the x, y coordinates of
node i in scene G .

It is important to note that although orientation is a crucial aspect in the definition
of f-formations, Setti et al.’s work [18] suggests that using position alone is sufficient to
detect groups. Including head or body orientations may enhance detection accuracy,
especially in crowded spaces, as shown in Figure 5.1. In this case, children 44 and 45 are
grouped together using the position-only Dominant Set (DS) algorithm, yet their atten-
tion is not aligned.

When both position and orientation are utilized, a binary mask is applied to the ker-
nel, ensuring that ai j is non-zero only if the partner is within −90◦ to 90◦ around the
person’s oriented direction. This can be represented as follows:

ai j = min

e−
di j

2σ2 if − π
2 ≤ θi −αi j ≤ π

2 ,

0 otherwise
,

e−
di j

2σ2 if − π
2 ≤ θ j −α j i ≤ π

2 ,

0 otherwise

 (4.2)

where αi j denotes the direction from i to j , and θi represents the body orientation
of person i . In practice, this means that a child must be within their frontal space for
their affinity score to be non-zero.

The choice of the parameterσ cannot be optimized through a standard loss function.
Previous research by Messinger et al. [13] indicates that children within a distance of 0.2
to 2 m are considered to be in social contact. This aligns with the interpretation of σ,
suggesting that children within a distance less than or equal toσhave a higher affinity for
grouping. Therefore, we began searching for σ within the range of 0.2 to 2 m, observing
the extracted f-formations with different values of σ for a random scene to determine
the optimal choice.

4.4. DOMINANT SET CLUSTERING ALGORITHM
After Setti et al. [18] compared the Dominant Set (DS) clustering method [9] with the
Hough for F-Formations(HFF) [6], they find that Hung’s graph-based clustering approach
is suitable for scenarios where only positional information is available. The HFF method
exhibits greater robustness to noise and performs better when incorporating head ori-
entation. In our study, we choose to adopt Hung’s DS extraction approach for the rea-
sons: 1) We have body orientation data estimated from devices attached to the children’s
waists, rather than head orientation as emphasized by Cristani et al.; 2) The Dominant
Set framework is more flexible, allowing for the incorporation of various external factors
through the construction of different affinity matrices, which may prove beneficial for
future work.

Once the predicted affinities are organized into an affinity matrix, we proceed to ex-
tract F-formations using the DS extraction approach. This method is based on the prin-
ciple that F-formations can be identified through graph clustering, framing the problem
as one of finding dominant sets—a concept first introduced by Pavan and Pelillo [14].

In this context, a dominant set can be viewed as a maximal clique, generalized to
edge-weighted graphs. It guarantees that the internal affinity among nodes in the set
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exceeds the affinity between any of the nodes in the set and those outside it. This prop-
erty closely aligns with the definition of F-formations, where individuals share a mutual
focus of attention, resulting in higher affinity among group members compared to those
outside the group.

Given a graph G = (V ,E , w), where V denotes the set of vertices (individuals), E sig-
nifies the set of edges (connections between individuals), and w is the positive weight
function representing the affinities between individuals, the DS clustering algorithm
identifies a subset of vertices S ⊆V such that the internal connections within S (as mea-
sured by the weighted affinity matrix) are maximized relative to connections with ver-
tices outside S.

The average weighted degree kS (i ) of a vertex i ∈ S with respect to the set S is defined
as:

kS (i ) = 1

|S|
∑
j∈S

ai j ,

where ai j represents the affinity between individuals i and j in the graph. This de-
gree quantifies the average connection strength between node i and the remainder of
set S. To assess the relative affinity between node i ∈ S and node j ∉ S, we define φS (i , j )
as:

φS (i , j ) = ai j −kS (i ),

which indicates the contribution of node j to the overall affinity of node i within the
set.

The algorithm then recursively computes the weight wS (i ) of node i concerning a
subset S, which includes both the node and previously selected vertices:

wS (i ) =
{

1 if |S| = 1,∑
j∈R φR ( j , i )wR ( j ) otherwise.

Here, R = S \ {i }, and wS (i ) measures the overall relative affinity between node i and
the remaining members of set S. The algorithm continues iterating until a set S meets
the conditions of a dominant set, defined by:

wS (i ) > 0, ∀i ∈ S,

wS∪{i }(i ) < 0, ∀i ∉ S.

These conditions ensure that members of the dominant set maintain stronger in-
ternal connections compared to connections with external nodes. The DS algorithm
iteratively identifies such sets until the stopping criterion is satisfied.

However, a limitation of the standard peeling-off strategy for identifying dominant
sets is that as more sets are removed, the remaining nodes often become singletons,
which may not correspond to any meaningful F-formation. To overcome this issue, we
modify the peeling-off approach proposed by Pavan and Pelillo [14] by introducing a
principled stopping criterion. This criterion evaluates the global context of the complete
graph by comparing the weight wS∪{i }(i ) for all i ∉ S, ensuring that clustering remains
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meaningful within the broader context of the entire graph rather than just the local sub-
graph. This modification eliminates the reliance on an arbitrary threshold and facilitates
more robust F-formation identification.

Finally, replicator dynamics [14] are employed to solve the underlying quadratic op-
timization problem, ensuring that the identified dominant sets are maximally cohesive.
This approach enables the accurate identification of F-formations, which represent groups
of individuals in a scene who have easy and equal access to a shared interaction space.

4.5. HOMOPHILY EFFECT WITH RESPECT TO HEARING CONDI-
TIONS IN CHILDREN DYADS AND GROUPS

The original study on the homophily effect [1] analyzed a dataset of children with Autism
Spectrum Disorder (ASD) and concluded that this phenomenon could extend to various
developmental disabilities. To explore whether this generalization applies to children
in relation to hearing conditions, we conducted a mixed-effect analysis for dyadic in-
teractions, replicating the methodology used in the original study [1] with the Starfish
dataset.

To further investigate how group contexts influence dyadic interactions in children
with hearing conditions, we shifted our focus from dyads to individual children to assess
how they are affected by their grouping. We extracted F-formations for each time frame
(every millisecond). However, not all formations represent meaningful interactions; for
example, brief encounters between children passing each other may not indicate en-
gagement. Therefore, our goal is to identify key group properties across all extracted
formations from the observation days to understand their influence on children’s inter-
actions.

Given that the original concept of social contact is inherently dyadic and cannot be
directly applied to groups, we propose the following formula to calculate the social con-
tact ratio in a group context. Notably, we do not adopt the definition of social contact
from [13]; instead, we consider a child to be in social contact with a group if they are part
of a detected F-formation.

Social Contact Ratio = Total time a child is in a group

Total time the child is in the classroom

Based on the findings from [1] and the results presented in Table 2.1, we recognize
that children tend to spend time with peers who share similar characteristics. To in-
vestigate this homogeneity and extend it to group settings, we introduce the first group
property known as the homophily degree, defined as the ratio of the majority condition
count to the group size.

Homophily Degree: The proportion of individuals in the group who share a common
characteristic (the majority condition), calculated as:

Homophily Degree = Majority condition count

Size of the group

Additionally, as shown in Table 2.1, children with developmental disabilities (DD)
tend to spend more time with other children who also have DD. This observation sug-
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gests that children with hearing loss (HL) may similarly prefer to be in groups with a
higher number of peers with HL. This leads us to investigate a second group property:

HL Ratio = HL count

Size of the group

Thirdly, based on the extracted F-formations, we noted that groups consisting pri-
marily of sizes 2 and 3 appear most frequently. This observation indicates that children
might prefer to spend time in smaller-size groups. Thus, we also analyze the impact of
group size on the social contact ratio concerning the homophily effect.

In summary, we first examine the homophily effect in children w.r.t hearing con-
ditions and then we examine how hearing conditions and three group properties, i.e.
homophily degree, HL ratio, and group size, collectively affect the time children spend
together.
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EXPERIMENTS AND RESULTS

5.1. IMPLEMENTATION AND F-FORMATION EXTRACTION RE-
SULTS

We implemented the Dominant Set (DS) algorithm following the reproduction of DANTE’s
work [23]. However, DANTE’s approach to building the affinity matrix differs from ours,
and they did not directly report their reproduction results with the DS algorithm. To val-
idate our implementation of the affinity matrix building as described in [9] and DANTE’s
DS algorithm, we first applied it to the Idiap dataset, which contains only positional in-
formation. We assessed the results using the evaluation method proposed in Setti et al.
[18], which establishes a threshold indicating the acceptable portion of correctly identi-
fied group members. A group is considered correctly identified if at least ⌈(T · |G|)⌉ of its
members are detected by the grouping algorithm, with no more than 1−⌈(T · |G|)⌉ false
positives, where G represents the size of the annotated group and T is the threshold.

Once the group labeling was established, we applied standard metrics to quantify
the accuracy of the detection method. We also compared our implementation results
with those from Setti et al., who implemented the DS algorithm using the same affinity
calculation equation with positional data. By setting the sigma value of the Gaussian
Kernel in the affinity function to 40, we achieved optimal results comparable to those
reported in their work [18] on the Idiap Poster Data. The performance metrics are shown
in Table 5.1, confirming the correctness of our implementation of affinity matrix building
and DANTE’s DS algorithm.

Table 5.1: Comparison of precision, recall, and F1 scores for different thresholds using Setti et al.’s method
and our proposed method.

Threshold = 2/3 Threshold = 1
Precision Recall F1 Score Precision Recall F1 Score

Setti et al.’s 0.90 0.81 0.85 0.71 0.65 0.68
Our Implementation 0.88 0.80 0.84 0.74 0.64 0.68

18
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After verifying the implementation of the DS clustering algorithm on Idiap Poster
Data, we obtained F-formation results based on positional data alone from the Starfish
dataset. For this dataset, the sigma value was set to 1.0, guided by the intuition from
Figure 2.1, where the peak occurs at this value. We also performed the same extraction
for features that included both position and orientations. The extraction results from
one random scene are illustrated in Figure 5.1.

(a) Positions only (b) Positions + orientations

Figure 5.1: Sample F-formation extraction results. The origin of the KC_X-KC_Y plane is aligned with the left
and bottom sides of the classroom boundary (top view). Only children are shown, and they are labeled with
numbers. Both figures represent the state at Time: 2023-01-30 09:52:27.900000, with σ= 1. Different colored
arrows indicate membership in different F-formations, while grey arrows represent singletons. (a) Extraction

based on positions only. (b) Extraction based on positions and orientations.

5.2. PARAMETER OPTIMIZATION
In our analysis, we set the sigma value appropriately when using the Gaussian kernel in
the affinity function to achieve optimal extraction results for subsequent analysis. The
sigma parameter represents the distance range within which individuals are considered
to belong to the same group. Based on the findings by Messinger et al. [13], a distance
range of 0.2 to 2 meters is indicative of social contact among children. Therefore, we
adopted this range as our initial consideration for the sigma value.

Given the absence of annotations in our dataset, we could not optimize sigma us-
ing standard metrics and loss functions to evaluate the performance of the extracted
F-formations. Instead, we plotted all F-formation extraction results for a random times-
tamp with sigma values ranging from 0.2 to 2.0 for both features: position only and po-
sition plus orientation. These results are presented in Figures 5.2 and 5.3.

From these figures, we observe that as sigma increases from 0.2 to 2.0, the clusters
gradually expand. At lower sigma values (e.g., 0.2), the clusters are tight and compact,
potentially constraining the variability within each group too much. As sigma increases,
the clusters become more dispersed. A sigma value between 0.8 and 1.0 appears opti-
mal, offering a balanced representation where the clusters are neither too rigid nor too
dispersed, effectively capturing group formations. Coupled with the radial distribution
function shown in Figure 2.1, which peaks at a radius of 1, we ultimately selected a sigma
value of 1.0.
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Figure 5.2: F-formations extracted at Time: 2023-01-30 09:52:27.900000, with sigma values ranging from 0.2 to
2.1, using position data only.
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Figure 5.3: F-formations extracted at Time: 2023-01-30 09:52:27.900000, with sigma values ranging from 0.2 to
2.1, using both position and orientation data.
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5.3. GROUP ANALYSIS
To address the proposed research questions, we conducted several experiments with the
extracted F-formations per second and analyzed the group properties to investigate the
influence of the homophily effect.

5.3.1. RQ1: DOES F-FORMATION OCCUR IN CHILDREN?
We explore this question by 1) presenting the clustered results and analyzing their rep-
resentations, and 2) examining how the group analysis in the next subsection impacts
the dyadic study. In this subsection, we first display the clustered results from three fre-
quently occurring clusters extracted using positional and orientational data. During this
process, we found out that frequent groups are all 2 or 3 people sized groups. This ob-
servation aligns with later studies indicating that children tend to spend more time in
smaller groups.

From the results in Table 5.2, we observe that for 2-person groups, children do form
typical F-formation arrangements such as L-shaped (a), side-by-side (b), and face-to-
face (c) configurations. However, there are also instances (d) where the arrangement
does not qualify as an F-formation due to a lack of common focused attention. For ex-
ample, in Group 32,45 (column 3), their body orientations are parallel. Despite being
detected by the Dominant Set (DS) clustering algorithm due to their spatial proximity
within each individual’s frontal area, it is unclear whether they are interacting or merely
passing by each other. The absence of head orientation data over time limits our ability
to accurately interpret these interactions.

Table 5.2: Examples of two-sized most frequent clusters

Groups / F-formations
Group (a)L (b)Side-by-Side (c)Face-to-Face (d)

32, 45

29, 30

The observations for 3-person clusters, as shown in Table 5.3, reveal similar patterns.
We can identify circular and semi-circular arrangements, yet in some cases (c), a com-
mon focus is not immediately evident.

Additionally, we encountered some irrationally clustered groups, illustrated in Figure
5.4. In case 5.4a, individuals 41 and 46 are grouped together, while 27, who is visibly
closer to 41, is left out. Similarly, in case 5.4b, individuals 45 and 32 are grouped despite
being quite far apart. We suspect these anomalies arise from the noise present in our
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Table 5.3: Examples of three-sized most frequent clusters

Groups / F-formations
Group (a)Circle (b)Semi-Circle (c)Abnormal

41, 42, 46

data, particularly in the orientation measurements, as the DS algorithm is known to be
sensitive to such noise [18].

(a) Irrational Case 1 (b) Irrational Case 2

Figure 5.4: Examples of irrationally clustered results.

Overall, from the extracted clusters, we can identify five typical f-formation arrange-
ments. However, some instances violate the definition of f-formation due to the lack
of common focused attention. To partially answer RQ1, we conclude that f-formations
can indeed be observed among children; however, our results also reveal irrationally
extracted clusters. This may indicate two possibilities: 1) the Dominant Set (DS) al-
gorithm’s sensitivity to noisy orientation data, and 2) that children frequently break f-
formations during interactions.
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5.3.2. RQ2: DOES THE HOMOPHILY EFFECT IN DYADS STILL HOLD FOR

CHILDREN WITH RESPECT TO HEARING CONDITIONS?
The homophily effect has been observed in children with ASD, as reported in the work of
Banerjee et al. [1]. However, their findings were generalized to all cognitive conditions.
To further investigate this, we aimed to confirm the existence of the homophily effect
in children concerning their hearing conditions by conducting a similar mixed-effects
analysis on the Starfish dataset.

As shown in Table 5.4, our results indicate that the homophily effect cannot be con-
firmed in this context (p = 0.086). Specifically, there is insufficient evidence to conclude
that children tend to spend more time with others who share the same hearing condi-
tion. Furthermore, no significant differences were observed in social contact patterns
between pairs of children with hearing loss (HL-HL) compared to those with typical
hearing (TH-TH) (p = 0.322). In contrast, the original study reported significant find-
ings regarding ASD groups, with p-values less than 0.001, as shown in Table 2.1.

To answer our RQ2, we conclude that the homophily effect cannot be verified in the
context of children’s groups concerning their hearing conditions. We suspect that this
lack of confirmation may be due to the limitations of dyadic analysis in capturing social
patterns, which prompted us to extend our analysis to a group context.

Table 5.4: Homophily effect for children with respect to hearing loss conditions.

Predictors Estimates std. Error CI Statistic p
(Intercept) 0.02 0.01 0.01 – 0.04 3.19 0.001
diagnosisPerson1 [HL] 0.00 0.01 -0.01 – 0.02 0.38 0.703
Homophily [same] 0.01 0.01 -0.00 – 0.03 1.72 0.086
diagnosisPerson1 [HL] × Homophily [same] -0.01 0.01 -0.02 – 0.01 -0.99 0.322
Random Effects
σ2 0.00
τ00 Subject 0.00
ICC 0.01
N Subject 12
Observations 684
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5.3.3. RQ1 & RQ3: DOES ADDING GROUPING CONTEXT FURTHER VERIFY

THE HOMOPHILY EFFECT?
HOMOPHILY DEGREE

Incorporating the first group property, homophily degree, within a group setting, we
obtained the results presented in Table 5.5. From the table, it is clear that homophily
degree significantly influences the social contact time of children within groups (p <
0.001). By comparing with the dyadic results from Table 5.4, this finding suggests that
group-level dynamics capture more nuanced social patterns compared to dyadic anal-
ysis alone. Specifically, the results indicate that children tend to spend more time in
groups that are more homogeneous, further supporting the homophily effect in children
w.r.t. hearing conditions.

Table 5.5: Impact of Homophily Degree on Social Contact Ratio in Group Settings

Predictors Estimates std. Error CI Statistic p
(Intercept) -0.00 0.00 -0.00 – -0.00 -8.09 <0.001
diagnosisPerson [HL] 0.00 0.00 -0.00 – 0.00 0.20 0.843
Homophily degree 0.00 0.00 0.00 – 0.00 14.03 <0.001
diagnosisPerson [HL] × Homophily degree 0.00 0.00 -0.00 – 0.00 1.17 0.240
Random Effects
σ2 0.00
τ00 group 0.00
τ00 person 0.00
ICC 0.98
N person 13
N group 4022
Observations 19399

HL RATIO

Next, we examined how an individual’s hearing condition interacts with group composi-
tion by analyzing the HL ratio within groups (Table 5.6). The results indicate that when
children with hearing loss are part of a group with a higher proportion of peers who also
have hearing loss, they tend to spend more time in that group.

GROUP SIZE

In addition to homophily degree and HL ratio, we also explored the effect of group size
on social contact patterns. Based on the extracted results, children were found to spend
most of their time in smaller groups of two or three. This suggests that group size is
another key factor in children’s social interactions.

As shown in Table 5.7, increasing group size has a negative effect on the time chil-
dren spend in the group. This trend highlights that smaller groups may facilitate more
concentrated social contact.

ANSWERING RQ1 AND RQ3
In summary, by incorporating group-level properties (homophily degree, HL ratio, and
group size), we can verify the existence of the homophily effect in children with respect
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Table 5.6: Impact of HL Ratio on Social Contact Ratio in Group Settings

Predictors Estimates std. Error CI Statistic p
(Intercept) 0.00 0.00 0.00 – 0.00 10.19 <0.001
diagnosisPerson [HL] 0.00 0.00 -0.00 – 0.00 0.25 0.804
HL ratio -0.00 0.00 -0.00 – 0.00 -0.17 0.865
diagnosisPerson [HL] × HL ratio 0.00 0.00 0.00 – 0.00 2.34 0.019
Random Effects
σ2 0.00
τ00 group 0.00
τ00 person 0.00
ICC 0.98
N person 13
N group 4022
Observations 19399

Table 5.7: Impact of Group Size and Hearing Conditions on Social Contact Ratio

Predictors Estimates std. Error CI Statistic p
(Intercept) 0.01 0.00 0.01 – 0.01 30.09 <0.001
diagnosisPerson [HL] 0.00 0.00 0.00 – 0.00 5.65 <0.001
Group Size -0.00 0.00 -0.00 – -0.00 -27.72 <0.001
diagnosisPerson [HL] × Group Size -0.00 0.00 -0.00 – -0.00 -6.15 <0.001

to hearing conditions. While dyadic analysis alone did not capture these social patterns,
the group context highlights the importance of homophily in shaping interactions.

These results demonstrate that:

• The homophily effect becomes more apparent in group settings, as homogeneous
groups tend to have higher social contact times.

• The analysis indirectly supports the existence of f-formations in children.

• Group properties, homophily degree, HL ratio and group size, are essential for
understanding children’s social dynamics, which are often overlooked in simpler
pairwise interactions.

Thus, the addition of group-level context significantly enhances our ability to detect and
verify the homophily effect, providing a more comprehensive view of social behavior
among children with hearing conditions.
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5.3.4. RESULTS EXTRACTED USING BOTH POSITIONS AND ORIENTATIONS
The analysis presented earlier focused solely on the position feature, which, according
to Setti et al. [18], is sufficient for extracting group formations, and DS clustering has
been shown to perform well using only position data. However, since orientation is a
key aspect of the f-formation definition, we conducted the same analysis by including
orientation features. This allowed us to explore how homophily degree and the HL ratio
interact with hearing conditions in relation to the time children spend in social contact.

The results presented in Table 5.8 show that when both position and orientation data
are considered, the HL ratio no longer has a significant effect on social contact time in
groups, nor does the interaction between HL ratio and hearing condition. This contrasts
with the position-only results, where some significant relationships were observed.

In Table 5.9, we observe that homophily degree remains a significant predictor of
social contact time, even when orientation data is included. Additionally, the interac-
tion between homophily degree and hearing condition shows a marginally significant
negative effect (p = 0.049), suggesting that for children with hearing loss, being in a ho-
mogeneous group might reduce the time spent in social contact. This nuanced result
was not apparent when using position data alone.

Table 5.8: Impact of HL Ratio and Hearing Condition on Social Contact Ratio

Predictors Estimates std. Error CI Statistic p
(Intercept) 0.00 0.00 0.00 – 0.00 6.07 <0.001
diagnosisPerson [HL] 0.00 0.00 -0.00 – 0.00 0.13 0.893
HL ratio -0.00 0.00 -0.00 – 0.00 -0.32 0.746
diagnosisPerson [HL] × HL ratio 0.00 0.00 -0.00 – 0.00 1.00 0.318

Table 5.9: Impact of Homophily Degree and Hearing Condition on Social Contact Ratio

Predictors Estimates std. Error CI Statistic p
(Intercept) -0.00 0.00 -0.00 – -0.00 -2.52 0.012
diagnosisPerson [HL] 0.00 0.00 0.00 – 0.00 2.13 0.033
Homophily degree 0.00 0.00 0.00 – 0.00 5.38 <0.001
diagnosisPerson [HL] × Homophily degree -0.00 0.00 -0.00 – -0.00 -1.97 0.049

The inconsistency in results between the analyses using position-only data and those
incorporating both position and orientation suggests that the estimated orientations
might introduce noise into the DS clustering process, reducing its accuracy in captur-
ing children’s social interactions. This reinforces the idea that while orientation is con-
ceptually important in defining f-formations, in practice, the precision of orientation
estimates may not be reliable enough to improve the detection of social groups in this
dataset.
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5.3.5. CONCLUSION
Based on the findings from both position-only and position-plus-orientation analyses,
we conclude that children tend to spend the most time in smaller groups, particularly
those with two or three members, and they generally prefer smaller groups over larger
ones. Moreover, children with hearing loss show a preference for spending more time
in groups with a higher proportion of peers who also have hearing loss, as indicated by
the HL ratio. Additionally, children exhibit a clear preference for more homogeneous
groups, where they share more similar characteristics with their peers. Finally, incor-
porating orientation data leads to less reliable results compared to using position data
alone, likely due to noise in the estimated orientations. This suggests that, at least in
this dataset, orientation may not provide additional value for detecting children’s social
interactions beyond what position data already captures.

These conclusions underscore the importance of group context in understanding
children’s social contact patterns. They also highlight that f-formation analysis, while
conceptually based on both position and orientation, may face practical limitations when
the orientation data is noisy or imprecise.
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CONCLUSION

6.1. SUMMARY OF OBSERVATIONS AND ANALYSIS
In this thesis, we investigated children’s social interactions in group contexts, with a spe-
cific focus on f-formations and the potential influence of the homophily effect, partic-
ularly regarding hearing conditions. Utilizing the Dominant Sets (DS) clustering algo-
rithm, we extracted group formations from real-world datasets, the Starfish dataset, and
analyzed their properties in terms of proximity, orientation, and group homogeneity.

Through our analyses, several key insights emerged:
Firstly, we demonstrated that f-formations, as defined in adult interactions, can in-

deed be observed among children. However, we also found instances where children’s
social behavior violated the classic definition, particularly in the lack of common fo-
cused attention. This suggests that while f-formations exist among children, they may
be more fluid and subject to breaking more frequently than in adult interactions.

Secondly, the homophily effect, in terms of hearing conditions, could not be con-
firmed using dyadic analysis. However, our group-level analysis verified its existence.
Children with hearing loss (HL) were found to prefer spending time in groups with a
higher proportion of HL peers, and they also spent more time in more homogeneous
groups. This effect was particularly strong when homophily degree was considered,
confirming that group-level dynamics reveal more about children’s social patterns than
dyadic interactions alone.

Thirdly, the analysis showed that children predominantly prefer smaller groups, es-
pecially groups of size 2 or 3. As the group size increased, the time children spent in
that group decreased, indicating that smaller groups might foster more interaction and
closer social bonds.

Finally, while positions alone were effective for extracting f-formations and analyzing
social contacts, incorporating orientations into the analysis introduced noise, leading to
less accurate clustering results. This suggests that the available orientation data may not
be reliable enough for precise interaction analysis in our dataset.

In conclusion, this study demonstrates that group-level analysis, particularly incor-
porating features such as homophily degree, provides a deeper understanding of chil-

29
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dren’s social interactions, revealing patterns that dyadic analyses may overlook. Fur-
thermore, it confirms the existence of f-formations in children while highlighting the
dynamic and sometimes irregular nature of these formations. Our findings have im-
plications for future research on children’s group dynamics, suggesting that both group
composition and homogeneity play crucial roles in shaping social interactions.

.

6.2. LIMITATIONS AND FUTURE WORK
While this study offers insights into children’s group dynamics and social interaction pat-
terns, several limitations need to be addressed. These limitations suggest potential areas
for future research, which could further improve our understanding of social formations
in children’s groups.

One limitation is related to the scope of the participant group. Throughout the study,
we use the terms "children" and "preschoolers" interchangeably. However, children at
different developmental stages—such as toddlers, preschoolers, and teenagers—can ex-
hibit vastly different social behaviors and group interaction patterns [16]. By focusing
solely on preschoolers, our analysis does not fully capture the diversity of social behav-
iors across childhood and adolescence. Future studies could extend this research to in-
clude a wider range of age groups, allowing for a more comprehensive understanding of
how social patterns evolve with age.

Another key limitation concerns the specific focus on F-formations. F-formations
are typically used to describe conversational group structures, but children’s social in-
teractions often go beyond verbal communication. Physical activities like ball games,
cooperative play, or other types of non-conversational interactions are common among
children and are not adequately captured by F-formation detection alone. Moreover, as
our results show, many detected groups do not conform strictly to the definition of an F-
formation. This suggests that future work could expand the scope of analysis to include
alternative group formations, which might provide deeper insights into children’s social
dynamics, especially in non-conversational settings.

A third limitation is the static nature of the F-formation analysis conducted in this
study. Our current approach analyzes group formations at discrete timestamps, which
aligns with previous dyadic mixed-effects models. However, this method overlooks the
continuous, fluid nature of social interactions. Group dynamics, particularly among
children, are highly dynamic and evolve over time. To gain a fuller understanding of
these evolving social interactions, future work could incorporate temporal dynamics,
tracking how F-formations emerge, dissolve, and change over time. Studies like Swof-
ford et al. [23] provide examples of how temporal analysis could be employed to capture
this richness.

Furthermore, since our graph-based approach provides flexibility in constructing the
affinity matrix, it could be enhanced by integrating additional contextual factors. For
instance, the layout of furniture, the ongoing activities, or the vocalization data captured
in the environment could be incorporated into the model. These factors are known to
influence how children form groups, and their inclusion could improve the accuracy of
group detection.

In terms of methodology, we chose to use the Dominant Set (DS) algorithm for group
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detection, drawing from Setti’s work [18]. However, as we observed in our study, the ori-
entation data was noisy, reducing the accuracy of the extracted groups. To address this,
future studies could introduce robustness measures to account for noisy data or com-
pare different F-formation extraction methods. Additionally, Hung et al. [9] proposed
an alternative approach to estimating orientations based on focused attention, which
might offer a less noisy solution for future applications.

In conclusion, while this work lays the groundwork for understanding group dynam-
ics in children’s social interactions, expanding the age range, incorporating alternative
group formations, addressing the fluidity of social interactions, and improving orienta-
tion estimation will be crucial for future research.



7
STATEMENT

We ensured that all ethical guidelines were followed throughout this research, with parental
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