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Abstract

Coastal cli昀昀s make up over half of the world’s shorelines and are susceptible to irreversible erosion.
Despite their global prevalence and increasing vulnerability due to sea level rise and coastal development,
large-scale and long-term monitoring of cli昀昀 retreat remains limited. Traditional measurement methods
such as LiDAR and GPS surveys are accurate but costly, labor-intensive, and geographically constrained.
Satellite imagery o昀昀ers a scalable and cost-e昀昀ective alternative, yet existing algorithms are primarily
designed for sandy coastlines and are not suitable for cli昀昀 environments.

This study investigates the potential of satellite imagery to monitor cli昀昀 erosion by adapting an existing
Satellite-Derived Shoreline (SDS) algorithm, CoastSat, into a Satellite-Derived Cli昀昀 (SDC) algorithm,
Cli昀昀Sat, answering the main research question: ’How can satellite-derived shoreline detection methods
be adapted and applied to extract coastal cli昀昀 erosion, and how do these satellite-based measurements
compare to in-situ erosion data?’

To address this, CoastSat was modi昀椀ed by incorporating a combined spectral index (NDVI and SwiRed)
to distinguish cli昀昀 tops from sandy foreshores and other land types. Additionally, composite imagery
was used to reduce noise, leveraging the relative stability of cli昀昀 lines compared to dynamic shorelines.
The algorithm was validated along the Holderness Coast in England — a 60 km stretch of rapidly
eroding clay cli昀昀s with biannual in-situ measurements.

Validation was conducted using both single satellite images and yearly composite images. The algo-
rithm’s performance was assessed by comparing satellite-derived erosion trends (via linear regression)
and total erosion amounts against in-situ data.

• Erosion Trends: Both methods showed similar performance, with a bias of -0.1 meters/year and
a standard deviation of 0.7 meters/year — well within acceptable limits (bias < 0.3 meters/year,
standard deviation < 0.7 meters/year).

• Total Erosion: The composite method had a slightly higher bias (-0.6 meters) than the single-
image method (-0.3 meters), but a notably lower standard deviation (4.7 meters vs. 5.5 meters),
especially when recorded erosion was below 10 meters. These results fall within acceptable thresh-
olds derived from other SDS algorithms (bias < 3 meters, standard deviation < 7 meters).

These 昀椀ndings demonstrate that satellite imagery can be e昀昀ectively used to monitor cli昀昀 erosion, with
the adapted algorithm performing as well as — or better than — established shoreline detection models.
Future research should focus on validating the algorithm across diverse cli昀昀 types, exploring alternative
spectral indices, and integrating elevation data to enhance accuracy. Additionally, the use of higher
resolution satellite imagery may further improve performance, particularly in areas with complex land
cover or high erosion rates.

ii



Contents

Preface i

Abstract ii

Nomenclature v

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Knowledge gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objective and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Research Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature review 4
2.1 Coastal cli昀昀 erosion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Monitoring techniques for coastal applications . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Satellite observation missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Satellite-derived shoreline methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Spectral indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Principles and work昀氀ow of CoastSat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Methodology 15
3.1 Development of the satellite-derived cli昀昀 line algorithm . . . . . . . . . . . . . . . . . . . 15
3.2 Case study: the Holderness Coast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Data processing and collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Validation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Results 19
4.1 Outcomes of the satellite-derived cli昀昀 line algorithm . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Spectral index evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Creating composite images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Overview of work昀氀ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Validation of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 General comparison of algorithms output to in-situ data . . . . . . . . . . . . . . 29
4.2.2 Comparison of output and data per erosion rate . . . . . . . . . . . . . . . . . . 31
4.2.3 Investigation of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Discussion 35
5.1 Reiteration and interpretation of the results . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Re昀氀ection on methodological choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Limitations and uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Applicability of Cli昀昀Sat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Wider Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion 40

7 Recommendations 42
7.1 Future research and development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Implementation of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 44

A Spectral index comparison 48

iii



Contents iv

B Comparison of the indices used in CoastSat and Cli昀昀Sat 59

C Evaluation of thresholding methods 62



Nomenclature

Abbreviation De昀椀nition
BI Bareness Index
BRBA Band Ratio for Built-up Area
BSI Bare Soil Index
DBSI Dry Bare-Soil Index
ERYC East Riding of Yorkshire Council
GEE Google Earth Engine
GPS Global Positioning System
INDBI Improved Normalized Di昀昀erence Built-up Index
LiDAR Light Detection and Ranging
MNDWI Modi昀椀ed Normalized Di昀昀erence Water Index
MSL Mean Sea Level
NBI New Built-up Index
NDBI Normalized Di昀昀erence Built-up Index
NDVI Normalized Di昀昀erence Vegetation Index
NDWI Normalized Di昀昀erence Water Index
NIR Near-Infrared
PDF Probability Density Function
RGB Red–Green–Blue
RTK-GPS Real-Time Kinematic Global Positioning System
SDC Satellite-Derived Cli昀昀
SDS Satellite-Derived Shoreline
SWIR Short-Wave Infrared
VNIR Visible and Near-Infrared
SwiRed SWIR–Red Index

v



1
Introduction

This chapter introduces the research context, knowledge gap and objectives of the study, leading to
the formulation of the research questions. Finally, the chapter presents the proposed structure of the
research.

1.1. Context
Coastal regions are highly urbanized land areas, accommodating approximately three billion people
worldwide (Bosboom & Stive, 2023). There is a high variability in types of coastal landforms, such as
sandy coasts, river deltas, tidal 昀氀ats, barrier islands, and cli昀昀s (Luijendijk et al., 2018). In this research,
the focus is on coastal cli昀昀s, which are present along approximately 52% of the world’s coastlines
(Young & Carilli, 2019), with high amounts located in for example the west coast of North-America and
South-America, and in countries like Japan, New-Zealand and Australia, as can be seen in 昀椀gure 1.1.

Figure 1.1: A global map of cli昀昀 likelihood for coasts around the world, with a brown color representing a high
likelihood and a yellow color a low likelihood (Young & Carilli, 2019).

Whereas sandy coasts are able to (slowly) recover after an erosive event (Burvingt & Castelle, 2023),
erosion is permanent for coastal cli昀昀s. In recent years, increasing amounts of news articles are reporting
cli昀昀 erosion, with people losing their homes to the sea in for example England (NOS, 2022), France
(NOS, 2023), California (Los Angeles Times, 2022) and Australia (Great Ocean Road Coast and Parks
Authority, 2024). Rising sea levels and growing coastal populations are expected to exacerbate these
challenges (Dawson et al., 2009).

1
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While extensive research and global databases exist for sandy coastlines (Luijendijk et al., 2018), similar
long-term, systematic datasets for cli昀昀 coasts are largely absent. Engineering 昀椀rms like Haskoning have
an increasing interest in these kind of datasets, as more people are under threat of cli昀昀 erosion. It also
shows to be valuable information for how far inland for example cables for o昀昀shore wind farms must
be installed to prevent them from being exposed. Data is especially scarce in remote or economically
constrained regions.

1.2. Knowledge gap
Although high-resolution methods like LiDAR drone surveys and GPS-measurements can accurately
measure cli昀昀 retreat, they are expensive, labor-intensive, or geographically limited (Westoby et al.,
2018). These limitations hinder their use for long-term and large-scale monitoring, particularly in
remote or economically constrained regions (Bird, 2008), and the only studies that exist measure either
on a short-term or with a coarse temporal resolution (C. S. Earlie et al., 2015; Obu et al., 2017; Swirad
& Young, 2022; Young et al., 2021). Therefore, there is a need for alternative approaches that are
globally scalable, cost-e昀昀ective, and capable of capturing long-term trends.

Optical satellite imagery presents a largely untapped potential for the long-term monitoring of cli昀昀
retreat. Since the 1980s, global archives of open source satellite imagery have been available (European
Space Agency, 2025; Gorelick et al., 2017; NASA, 2025), enabling consistent temporal analysis over
multiple decades. Recent developments in image classi昀椀cation and index-based shoreline detection have
contributed to a rapid increase of available satellite-derived shoreline (SDS) algorithms (Almeida et al.,
2021; Luijendijk et al., 2018; Mao et al., 2021; Sánchez-García et al., 2020; Vos et al., 2019), being able
to distinguish water from land, and therefore creating a coastline. However, since cli昀昀s are not always
adjacent to water, these algorithms do not work for these cli昀昀s.

One of the SDS-algorithms, CoastSat (Vos et al., 2019), has already been altered using a di昀昀erent index
to determine the waterline for a vegetated shore (Lanza et al., 2023), which shows the potential to
alter existing algorithms for cli昀昀 monitoring. However, such approaches have not yet been thoroughly
validated or systematically implemented for cli昀昀 monitoring.

1.3. Objective and scope
The objective of this research is to:

’Develop a satellite-derived cli昀昀 line algorithm to assess coastal cli昀昀 erosion rates on a large spatial
scale.’

The scope can be divided into the following items:

• Topic: This research focuses exclusively on coastal cli昀昀s, as these areas are prone to erosion but
few research has been done on large spatial - and time scales.

• Geographical: To validate the cli昀昀 line detection algorithm, in-situ data from the Holderness Coast
in England is used. This case study is introduced in Chapter 3.2.

• Temporal: The study uses both satellite and in-situ data from 2015 to 2025, considering there is
consistent imagery from Sentinel-2 available.

1.4. Research Questions
From the research gaps, the main research question for this research is formulated:

’How can satellite-derived shoreline detection methods be adapted and applied to extract coastal cli昀昀
erosion, and how do these satellite-based measurements compare to in-situ erosion data?’
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From this research question, the following sub-questions are de昀椀ned:

• What are the principles and techniques of current satellite-derived shoreline detection methods?
• How can satellite-derived shoreline detection methods be adapted for cli昀昀 line extraction?
• How accurate is satellite-derived cli昀昀 erosion compared to in-situ data?
• What factors in昀氀uence the accuracy of a satellite-derived cli昀昀 line detection method?

1.5. Research Structure
The structure of this research is as follows:

• Chapter 2, Theory: Explores existing knowledge on cli昀昀 erosion processes and available monitoring
techniques, with a focus on optical satellite-derived shoreline methods.

• Chapter 3, Methodology: Details the approach used to address the research questions, including
the methods for modifying and validating the cli昀昀 line detection tool.

• Chapter 4, Results: Presents the key 昀椀ndings in relation to the research questions.
• Chapter 5, Discussion: Evaluates the research outcomes, outlines its limitations, and provides the

applicability and wider contribution of the research.
• Chapter 6, Conclusion: Summarizes the main 昀椀ndings and provides direct answers to the research

questions.
• Chapter 7, Recommendations: O昀昀ers suggestions for future research directions and how the algo-

rithm can be implemented in the engineering and research 昀椀eld.



2
Literature review

In this chapter, the theoretical background of topics relevant to this research is explored. This is done
by conducting a literature review on the processes responsible for coastal cli昀昀 erosion, the available tools
to monitor these processes, the principles of satellite imagery and satellite-derived shoreline algorithms,
an investigation in spectral indices and the functioning of a tool named CoastSat for processing satellite-
derived shorelines.

2.1. Coastal cliff erosion processes
Coastal cli昀昀s erode due to a combination of marine and subaerial processes (Emery & Kuhn, 1982).
Marine forcing causes erosion through several mechanisms. Hydraulic action and wave quarrying occur
when the energy released by breaking waves is sufficiently large to loosen rock from the cli昀昀 (Hall et al.,
2008). Additionally, abrasion contributes to cli昀昀 erosion as stones or sediments carried by the water
impact the cli昀昀 face due to wave energy (Kline et al., 2014). These processes reinforce each other, as
loosened rock caused by wave quarrying can dislodge additional material (Bird, 2016). The e昀昀ects of
these processes are most signi昀椀cant at the cli昀昀 foot and the lower part of the cli昀昀 face, depending on the
water level, which is in昀氀uenced by factors such as tides. During storms, signi昀椀cant erosion at the cli昀昀
foot due to marine forces can destabilize the top of the cli昀昀 face, leading to collapse. Subaerial processes,
such as wind and rain, contribute to erosion at the upper parts of the cli昀昀 face through direct forcing
and other mechanisms, including physical and chemical weathering and temperature 昀氀uctuations (C.
Earlie et al., 2018). Finally, geophysical processes, such as earthquakes, can cause rapid, event-driven
cli昀昀 erosion (Bloom et al., 2023). A visual overview of these erosive processes is provided in Figure 2.1.

Figure 2.1: A visual representation of erosive processes. a) wave quarrying, b) abrasion, c) cli昀昀 face instability, d)
physical weathering, e) chemical weather, f) earthquake.

4



2.1. Coastal cliff erosion processes 5

The timescales over which these processes cause cli昀昀 erosion varies Earthquakes and collapses due to
instability can occur within seconds (Bloom et al., 2023), while hydraulic action and wave quarrying
can cause substantial damage within hours (Swirad & Young, 2022). Abrasion, as well as physical and
chemical weathering, are typically longer-term processes, acting over years or even decades (Kline et al.,
2014).

The vulnerability of coastal cli昀昀s to erosion depends on both their composition and exposure (Bird, 2016;
Kline et al., 2014; Swirad & Young, 2022; Young et al., 2021; Yuan et al., 2024). Cli昀昀 composition can
be categorized based on rock hardness, ranging from hard materials such as quartzites, sandstones, and
granite to weaker mud rocks and unconsolidated sands (Bird, 2008). Generally, the harder and more
resistant the rock, the steeper the slope of the cli昀昀. In addition to composition, the exposure of the
cli昀昀 plays a role in its vulnerability. For instance, if a cli昀昀 is situated in a shadow zone — where wave
energy is reduced due to refraction or di昀昀raction — the impact of marine forces is smaller, and the cli昀昀
erodes at a slower rate (Fellowes et al., 2022).

Table 2.1 presents the most dominant cli昀昀 erosion processes, including a brief description of each, the
key variables in昀氀uencing their severity, the types of cli昀昀s most sensitive to each process, and the typical
timescale over which each process occurs.

Process Description Sensitive cli昀昀
types

Drivers Time scale Spatial
scale

Wave
quarrying

Wave energy
creates pressure

di昀昀erences,
dislodging rocks

from the cli昀昀 face.

Steep, rocky,
high wave

exposure cli昀昀s.

Water level,
wave forcing.

Hours to
days (single

storms)

Meters to
kilometers

Abrasion Sediments thrown
against the cli昀昀 by
waves scouring the

cli昀昀 face.

Soft cli昀昀s in
sediment rich

areas.

Sediment
concentration

and size, water
level, wave

forcing.

Days to
years

Centimeters
to meters

Mass
movement

(instability)

Loss of support at
the cli昀昀 base makes

cli昀昀 material
collapse.

Steep,
unsupported

cli昀昀s.

Undercutting,
rock structure

Seconds
(with long
preparation

time)

Meters to
decameters

Physical
weathering

Wind, rain and
temperature

changes causing
erosion at the cli昀昀

face.

Soft, porous
cli昀昀s in variable

climates.

Wind speed and
direction,

precipitation,
temperature
昀氀uctuations.

Years to
decades

Centimeters
to meters

Chemical
weathering

Chemical reactions
causing erosion at

the cli昀昀 face.

Carbonate
rocks (like

limestone) in
humid coastal

areas.

Rainfall acidity,
moisture

availability,
rock

mineralogy.

Years to
centuries

Centimeters
to meters

Earthquakes Seismic activity
that breaks of cli昀昀

material.

Steep cli昀昀s in
seismically

active areas.

Seismic
intensity.

Seconds to
hours

Hectometers
to kilometers

Table 2.1: Cli昀昀 erosion processes (Bird, 2016) - wave quarrying (Hall et al., 2008), abrasion (Kline et al., 2014), mass
movement (Leisner et al., 2025), physical and chemical weathering (C. Earlie et al., 2018), earthquakes (Bloom et al.,

2023) - with a description, key in昀氀uencing variables, sensitive cli昀昀 types, and typical timescales.

All these processes contribute to cli昀昀 erosion solely, but their combined in昀氀uence causes acceleration of
erosion rates through feedback loops (Alessio & Keller, 2020). For example, weathering causes more
vulnerability for wave action and abrasion, causing ’new’ rock to reach the surface, that will start to
weather.
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2.2. Monitoring techniques for coastal applications
To determine if and how much a coast is eroding, monitoring is essential, and various techniques are
currently in use. Historically, beach measurements were conducted using measuring rods, involving
manual work on the beach (Emery, 1961). More recently, GPS devices have been employed to perform
these measurements more easily and accurately (Harley et al., 2011). Through signals from orbiting
satellites, the distance from a certain location to these satellites is obtained and therefore a precise
location can be determined (Global GPS Systems, 2022). If a base point, of which the exact location is
known, is combined with the GPS technology, the measurement error from the base station is used to
improve the accuracy of the GPS data, resulting in a real-time kinematic GPS (RTK-GPS). RTK-GPS
devices are used widely in coastal surveying studies (Aagaard et al., 2005; Harley et al., 2011; Larson
& Kraus, 1995), by walking a grid with the device on, where it can either record every second or be
installed to only measure a 昀椀xed point after a certain distance. The advantages are that a high accuracy
can be reached while having a high spatial resolution, however due to the process being manual work it
is labor intensive and therefore only a small spatial extend and a coarse temporal resolution is obtained
(Baptista et al., 2011; Westoby et al., 2018).

Apart from manual monitoring techniques, remote sensing technologies exist and are being used on a
global scale. A precise de昀椀nition of remote sensing is: “The process of detecting and monitoring the
physical characteristics of an area by measuring its re昀氀ected and emitted radiation at a distance” (U.S.
Geological Survey, 2025b). Remote sensing technologies can be separated in three di昀昀erent groups;
photogrammetry, LiDAR and satellite imagery (Vitousek et al., 2023; Westoby et al., 2018), where
both photogrammetry and LiDAR can be executed from a 昀椀xed point or using airborne technologies.

Photogrammetry is the process where a series of photos are taken over a period of time, after which
extensive processing leads to a 3D model of the area (Holman & Stanley, 2007). The photos can be
obtained from a 昀椀xed point, a moving vehicle like a truck or a moving air vehicle like a drone (Harrison
et al., 2017; Kregar & Kozmus Trajkovski, 2025; Pianca et al., 2015). The advantages are that the
measurement are performed at a high accuracy and spatial resolution. Where the 昀椀xed photogrammetry
can obtain a high temporal resolution but compromises on spatial extend, the aerial photogrammetry
techniques have a low temporal resolution with a more extensive spatial extend (Vitousek et al., 2023).
To generate accurate datasets, the equipment is expensive to acquire and it requires skill in processing
(Westoby et al., 2018).

LiDAR is a monitoring technique that stands for ’light detection and ranging’, that measures 3D pro昀椀les
using active laser scanning (Weitkamp, 2005). LiDAR data can be obtained from a 昀椀xed point, but
considering the spatial advantage it is generally obtained from an airborne vehicle like a plane or drone
(C. S. Earlie et al., 2015; Middleton et al., 2013; Obu et al., 2017; Young et al., 2021). While LiDAR can
generate accurate data on a 昀椀ne spatial resolution, high costs are involved for purchase and maintenance
(Vitousek et al., 2023; Westoby et al., 2018).

Where monitoring techniques like RTK-GPS, photogrammetry and LiDAR are all able to obtain a
high accuracy on a 昀椀ne spatial resolution but share disadvantages as high operating costs or a limited
temporal resolution or small spatial extend, satellite imagery distinguished itself. Satellites 昀氀y around
the world all of the time, acquiring weekly images of the whole world with a coarse spatial resolution
of 1-30 meters (Pardo-Pascual et al., 2018). While the images of satellites with a relative 昀椀ne spatial
resolution of around 1 meter are expensive to buy, the images with a spatial resolution of 10-30 meters
can be obtained freely (Gorelick et al., 2017). Using this, a dataset of coarse resolution data with weekly
measurements is available for any region of interest.

In Table 2.2, a brief description, the spatial and temporal solution and the most important advantages
and disadvantages of the above mentioned monitoring techniques are presented.
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Monitoring
technique

Description Spatial
resolution

Temporal
resolution

Advantages Disadvantages

GPS mea-
surements

Repeated
measurements

of (昀椀xed)
ground points.

0.5 meters Weeks to
years

Accurate (5-10
cm)

Labor intensive,
small spatial

extend.

Fixed
photogram-

metry

Repeated
photos from a

昀椀xes point.

0.5 meters Minutes to
hours

Accurate (1-2
m), low labour

intensity.

Needs stable
reference points,

small spatial
extend.

Aerial
photogram-

metry

Photos taken
from planes or

drones.

0.5 meters Months to
years.

Accurate (1-5
m), big spatial

extend, low
labour intensity.

Expensive,
weather

dependent.

Terrestial
LiDAR

Laser scanning
from a 昀椀xed

points to create
3D models

0.1 meters Months to
years

Accurate (0.5
m), low labour

intensity

Airborne
LiDAR

Laser scanning
to create 3D

models.

0.1 meters Months to
years

Accurate (0.5
m), big spatial

extend, low
labour intensity.

Expensive

Satellite
imagery

Use optical or
radar data from

satellites.

1-30 meters Days to
weeks

Cheap, global
spatial extend,
much historical
data available,
easy worldwide

access.

Inaccurate (1-30
m).

Table 2.2: Monitoring techniques for coastal erosion, based on Vitousek et al. (2023) and Westoby et al. (2018).
RTK-GPS (Aagaard et al., 2005; Larson & Kraus, 1995); Fixed photogrammetry (Holman & Stanley, 2007; Pianca
et al., 2015); Aerial photogrammetry (Ford, 2013; Harrison et al., 2017); Airborne LiDAR (Middleton et al., 2013);

Satellite imagery (Pardo-Pascual et al., 2018).

Some additional disadvantages are particularly relevant when focusing on cli昀昀 erosion. For example, it
is dangerous — and sometimes impossible — for people to perform RTK-GPS measurements on the cli昀昀
face or near the cli昀昀 edge, while airborne photogrammetry and LiDAR both have difficulty to resolve
near-vertical topography (Westoby et al., 2018).

Using satellite imagery for monitoring does not su昀昀er from these limitations. Furthermore, it eliminates
the risks of vandalism and logistical constraints, and since the 1980s, satellites have been capturing
images of the Earth on a bi-weekly basis (U.S. Geological Survey, 2025a), which ensures the availability
of long-term historical data. Although the spatial resolution is relatively coarse, satellite imagery enables
long-term monitoring of coastlines and the identi昀椀cation of shoreline movement trends. Additionally,
satellite data was used to classify coastal regions in the research by Luijendijk et al. (2018), opening
the 昀椀eld of coastal science to big data approaches.

Comparing monitoring techniques to coastal change processes, as shown in Figure 2.2, further highlights
the potential of satellite imagery for monitoring coastal cli昀昀s. As illustrated, the temporal and spatial
scales of satellite imagery largely overlap with those of cli昀昀 erosion. Especially for short- to medium-
term trends — on the order of decades or less — satellite imagery o昀昀ers valuable opportunities for
large-scale monitoring.
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Figure 2.2: A visual representation of the temporal and spatial scales of coastal change processes and monitoring
techniques (Vitousek et al., 2023), highlighting cli昀昀 erosion and satellite imagery.

2.3. Satellite observation missions
To understand how satellite imagery can be used to monitor coastal developments, it should be evaluated
how observational satellites operate. These satellites can be divided into two categories: radar and
optical. Radar satellites use electromagnetic waves to monitor the Earth’s surface, allowing them to
operate in darkness or through cloud cover, as they do not rely on sunlight (European Space Agency,
2024). Optical satellites, on the other hand, use cameras and sensors to register light re昀氀ections and
create images of the Earth (Space Shift Inc., 2024; U.S. Geological Survey, 2025a). This is comparable
to standard cameras, but with a broader range of spectral bands.

Satellite imagery distinguishes itself from other monitoring techniques since the data is freely accessible
through open-access sources, such as the Landsat missions (USGS and NASA) and Sentinel missions
(ESA). These images can be obtained through various platforms, one of which is Google Earth Engine
(GEE), where they are stored collectively (Gorelick et al., 2017). The images have spectral resolutions
of 30 and 10 meters respectively (European Space Agency, 2025; U.S. Geological Survey, 2025a), with
revisit periods of 16 and 5 days. The revisit period refers to the number of days between successive
observations of the same location at the equator, after completing a full global mapping cycle. The 5-
day revisit time for Sentinel-2 is achieved through two identical satellites in near-identical, out-of-phase
orbits. At higher latitudes, the revisit time decreases due to the swath width, which is the width of
the Earth’s surface captured in a single satellite pass — essentially how much the satellite can “see” at
once.

Both the Landsat satellites as the satellites from the Sentinel-2 mission carry multiple instruments that
detect the re昀氀ection of di昀昀erent spectral bands, ranging from coastal aerosol, blue, green, and red, as
well as visible and near-infrared (VNIR/NIR) and shortwave infrared (SWIR) (European Space Agency,
2025). Additionally, Landsat satellites are equipped with thermal sensors (U.S. Geological Survey,
2025a). An overview of all the relevant variables of the satellites accessable in the GEE are listed in
table 2.3.
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Satellite Active years Resolution Revisit
time

Spectral bands Swath width

Landsat 5 1984 - 2013 30 meters 16 days 11 bands: blue - SWIR
(0.45-2.35 µm) + thermal

(10.40-12.50 µm)

185 kilometers

Landsat 7 1999 - 2022 30 meters 16 days 8 bands: blue - SWIR
(0.45-2.35 µm) + thermal

(10.40-12.50 µm)

185 kilometers

Landsat 8 2013 - active 30 meters 16 days 11 bands: coastal aerosol
- SWIR (0.43-2.29 µm) +
thermal (10.60-12.51 µm)

185 kilometers

Landsat 9 2021 - active 30 meters 16 days 11 bands: coastal aerosol
- SWIR (0.43-2.29 µm) +
thermal (10.60-12.51 µm)

185 kilometers

Sentinel-2 2015 - active 10 meters 5 days 13 bands: coastal aerosol
- SWIR (0.443-2.19 µm)

290 kilometers

Table 2.3: Overview of the satellites accessible through GEE, with their resolutions, revisit times, spectral bands and
swath widths. Landsat information acquired through U.S. Geological Survey (2025a) and NASA (2025), Sentinel-2

through European Space Agency (2025).

As can be seen, the Sentinel-2 satellites provide a 昀椀ner spatial and temporal resolution compared to the
Landsat missions. Furthermore, it was found that Landsat 5 only provides usable imagery until 1995,
while due to inaccurate geo-referencing few images are admissible, while Landsat 7 experienced a sensor
failure from 2003 onward resulting in data gaps in each image (U.S. Geological Survey, 2025a). Due to
these errors limiting the historic database, and the coarse resolution of the Landsat missions that are
admissible, it was decided that this research only focuses on Sentinel-2 imagery.

2.4. Satellite-derived shoreline methods
Approximately 40 remote sensing algorithms have been developed to derive satellite-derived shorelines
(SDS) (Vos et al., 2023). These algorithms can be categorized into di昀昀erent methodological approaches,
such as land/water thresholding, maximum-gradient contouring, and soft classi昀椀cation techniques (Vi-
tousek et al., 2023). They also vary in resolution: some operate at pixel level, while others use sub-pixel
resolution, meaning they interpolate information from neighboring pixels to produce smoother contours.
An overview of these di昀昀erent methods is given in Figure 2.3.

Some of the SDS-algorithms work using composite images techniques (Almeida et al., 2021; Luijendijk
et al., 2018). This technique means using multiple satellite images to obtain a single composite image
which has a reduced amount of noise, while also losing information on variability to some extend
(Hagenaars et al., 2018). Since cli昀昀 coasts have limited seasonal variability - erosion rates can be higher
in winter, but cli昀昀s do not ’grow’ back in summer - and tides do not in昀氀uence the location of the cli昀昀
top, composite images could show promise to be implemented in a cli昀昀 line detection algorithm.

Previous research has shown that most SDS-algorithms using composite images compute an annual
mean composite, meaning that all images from one year are merged into a single image by averaging
the spectral values of each pixel (Almeida et al., 2021; Luijendijk et al., 2018). In another SDS-algorithm,
tests were conducted using di昀昀erent time windows for composites (ranging from 90 days to two years),
showing that longer time windows improve the detection of long-term trends, while seasonal variations
become less visible (Hagenaars et al., 2018). That study used the 15th percentile value instead of the
mean, assuming this approximates the median after cloud 昀椀ltering.
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Figure 2.3: A summary of di昀昀erent methods to automatically map shoreline using optical satellite imagery, including
an example of shoreline detection at pixel resolution (left) and sub-pixel resolution (right) (Vitousek et al., 2023).

Despite the di昀昀erences in methodological approaches, as can be seen in Figure 2.3, these algorithms
work on the same principles. By de昀椀ning a region of interest, obtaining satellite imagery of that area
resulting in spectral re昀氀ectance values for every pixel in every image (Almeida et al., 2021; Luijendijk
et al., 2018; Palomar-Vázquez et al., 2023; Vos et al., 2019). From these spectral re昀氀ectance values,
spectral indices can be calculated, resulting in a shoreline.

In a study conducted by Vos et al. (2023), 昀椀ve established SDS-algorithms were benchmark tested to
assess their accuracy. These included CoastSat (Vos et al., 2019), SHOREX (Sánchez-García et al.,
2020), ShorelineMonitor (Luijendijk et al., 2018), CASSIE (Almeida et al., 2021), and HighTide-SDS
(Mao et al., 2021). The algorithms di昀昀er in aspects such as satellite sources, temporal frequency, and
whether they are open-source. They were compared based on time-series analyses of the Mean Sea
Level (MSL) contour and long-term shoreline trends.

Since one of the goals of this research is to 昀椀nd out how accurate a cli昀昀 line detection algorithm is, it is
valuable to look at how accurate existing shoreline detection algorithms are, as there are no universally
accepted thresholds. In previous studies validating SDS-algorithms, bias and standard deviation are
commonly used as performance metrics (Almeida et al., 2021; Palomar-Vázquez et al., 2023; Vos et al.,
2019), while there is also a benchmarking study performed on multiple SDS-algorithms by Vos et al.
(2023), using these same performance metrics. In Table 2.4, the performance of the above mentioned
algorithms is summarized.
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SDS-algorithm Bias (absolute) Standard
deviation (σ)

CoastSat (Vos et al., 2019) - (µ = 1.4 meters) 7.0 meters
CASSIE (Almeida et al., 2021) 8.3 meters -

SAET (Palomar-Vázquez et al., 2023) 0.0-1.0 meters 2.6-3.8 meters
Benchmark: CoastSat (Vos et al., 2023) 2.3-12.0 meters 8.2-20.1 meters
Benchmark: SHOREX (Vos et al., 2023) 4.8-27.3 meters 6.9-25.2 meters
Benchmark: CASSIE (Vos et al., 2023) 1.7-6.7 meters 8.6-48.3 meters

Benchmark: ShorelineMonitor (Vos et al., 2023) 0.5-32.9 meters 7.9-20.1 meters
Benchmark: HighTide-SDS (Vos et al., 2023) 5.5-53.7 meters 7.8-22.9 meters

Table 2.4: An overview of an evaluation of SDS-algorithms scoring on statistical performance indicators for shoreline
position.

Apart from seeing how existing shoreline detection algorithms score on determining absolute shoreline
positions, it is interesting to look into how accurate they describe shoreline trends. From the three
individual studies (Almeida et al., 2021; Palomar-Vázquez et al., 2023; Vos et al., 2019) it was not
possible to obtain data on shoreline trends, but from the benchmarking tests, data could be obtained
(Vos et al., 2023). Graphs were provided that show the shoreline trends to in-situ data, which could be
overlaid with a grid to obtain numerical values. An example of this process for the one of the 昀椀ve sites
used in the test is shown in Figure 2.4. Based on the erosion trends for all sites and SDS-algorithms
investigated by the benchmarking test, the bias and standard deviation were calculated and presented
in Table 2.5.

Figure 2.4: A visual representation on how the erosion trend rates were determined for the 昀椀ve benchmarking tests,
based on Vos et al. (2023).

SDS-algorithm Bias Standard
deviation (σ)

CoastSat 0.2 m/year 0.7 m/year
SHOREX 0.3 m/year 0.6 m/year
CASSIE 0.2 m/year 0.7 m/year

ShorelineMonitor -0.1 m/year 0.6 m/year
HighTide-SDS 0.3 m/year 0.9 m/year

Table 2.5: An overview of an evaluation of SDS-algorithms scoring on statistical performance indicators for shoreline
trends, based on Vos et al. (2023).

Since this research aims to develop a cli昀昀 line detection algorithm from existing SDS-algorithms, one
of the SDS-algorithms should be chosen to do so. Of the 昀椀ve algorithms from the benchmarking
tests, which are the most-used algorithms worldwide, ShorelineMonitor and HighTide-SDS rely solely
on Landsat imagery, which limits both temporal and spatial resolution. Since SHOREX is not open-
source, the two remaining algorithms are CoastSat and CASSIE. CoastSat is more versatile due to its
additional supervised classi昀椀cation step (Vos et al., 2019), which CASSIE lacks (Almeida et al., 2021).
Furthermore, while they perform similarly regarding shoreline trends, it was found that CoastSat has
a lower standard deviation when determining absolute shoreline positions (Vos et al., 2023). Therefore
it was decided to use CoastSat as basis to create a cli昀昀 line detection algorithm.
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2.5. Spectral indices
For obtaining a shoreline, the Normalized Di昀昀erence Water Index (NDWI) (Gao, 1996) or Modi昀椀ed
Normalized Di昀昀erence Water Index (MNDWI) (Xu, 2006) are used in SDS-algorithms (Almeida et al.,
2021; Luijendijk et al., 2018; Palomar-Vázquez et al., 2023; Vos et al., 2019). These indices were
optimized to determine the di昀昀erence between water and di昀昀erent land features. However, when a cli昀昀
line needs to be detected, an index is needed to distinguish di昀昀erent land features from each other, since
cli昀昀s sometimes have sandy foreshores (Pye & Blott, 2015), while there also should be a land - water
separation for if the cli昀昀 is directly adjacent to the sea.

In the search for a suitable index to distinguish land features from each other and water, the focus was
on distinguishing built environments, vegetation and bare soils from sand and water, as these land types
often exhibit similar re昀氀ectance values in the 昀椀ve spectral bands used by CoastSat (blue, green, red,
NIR, and SWIR) (Vos et al., 2019). Table 2.6 presents a list of spectral indices that describe di昀昀erences
between water and land types using these 昀椀ve bands.

Index Formula Purpose Reference
Modi昀椀ed normalized

di昀昀erence water index
MNDWI = SWIR−G

SWIR+G
Highlights water

bodies
(Xu, 2006)

Normalized di昀昀erence
built index

NDBI = SWIR−NIR

SWIR+NIR
Highlight built-up

area
(Zha et al.,

2003)
Normalized di昀昀erence

vegetation index
NDV I = NIR−R

NIR+R
Highlight
vegetation

(Bhandari et al.,
2012)

Normalized di昀昀erence
water index

NDWI = NIR−G

NIR+G
Highlight water

bodies
(Gao, 1996)

Bare soil index 1 BSI1 = (SWIR+R)−(NIR+B)
(SWIR+R)+(NIR+B) Highlight bare soil

areas
(Chen et al.,

2004)
Bareness index BI = R+ SWIR−NIR Highlight urban

area
(Lin et al.,

2005)
Band ratio for built-up

area
BRBA = R

SWIR
Highlight built-up
area and bare soil

(Waqar et al.,
2012)

New built-up index NBI = SWIR∗R

NIR
Highlight built-up

area
(Jieli et al.,

2010)
SwiRed SwiRed = SWIR−R

SWIR+R
Highlight built-up

area
(Capolupo

et al., 2020)
Dry bare-soil index DBSI = MNDWI −NDV I Highlight (dry)

bare soil
(Rasul et al.,

2018)
Improved normalized

di昀昀erence built-up index
INDBI = NDBI −NDV I Highlight built-up

area
(He & Xie,

2010)

Table 2.6: Overview of spectral indices using a combination of blue, green, red, near infrared and short-wave infrared
bands, used to detect di昀昀erences between di昀昀erent land types and water, based on Javed et al. (2021) and Nguyen et al.

(2021).
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2.6. Principles and work昀氀ow of CoastSat
CoastSat is an advanced Python-based algorithm that enables users to generate time series of sandy
shoreline positions spanning over 30 years, using publicly available satellite imagery, with a horizontal
accuracy of approximately 10 meters (Vos et al., 2019). The algorithm downloads open-access satellite
imagery, after which a classi昀椀er is trained using a small number of images by manually labeling pixels
as water, white-water, sand, or other. This classi昀椀er, which can be trained for speci昀椀c locations, is then
used to classify each pixel in all downloaded images. The classi昀椀cation is based on the re昀氀ectance values
of the blue, green, and red spectral bands, as well as the Normalized Di昀昀erence Water Index (NDWI) and
the Normalized Di昀昀erence Vegetation Index (NDVI). After pixel classi昀椀cation, the Modi昀椀ed Normalized
Di昀昀erence Water Index (MNDWI) is calculated for each pixel individually. Each pixel now has both a
class and an MNDWI value between -1 and 1, with water typically associated with negative values and
land with positive values.

A Probability Density Function (PDF) is constructed to compare the distribution of MNDWI values
for each class. From this PDF, a threshold is computed using Otsu’s thresholding method (Otsu, 1979),
which maximizes the inter-class variance between sand and water, as can be seen in Figure 2.6. This
threshold represents the boundary between land and water, and the shoreline is de昀椀ned as the location
where the MNDWI equals this threshold, within a spatial bu昀昀er around a manually drawn reference
shoreline. Using the marching squares algorithm, a sub-pixel resolution is achieved (Cipolletti et al.,
2012). The full process is illustrated in Figure 2.5.

Figure 2.5: Example of the process of CoastSat and its outputs (Vos et al., 2019): a) RBG image of the region of
interest (in this case Narrabeen-Collaroy) and transect PF1. b) Output of image classi昀椀cation (sand, water,

white-water). c) scale of MNDWI, blue being negative and red positive, with a shoreline on the Otsu-threshold. d), e)
and f) a zoomed in views of the region of interest of respectively a), b) and c).
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Figure 2.6: An example of a probability density function of MNDWI values for di昀昀erent classes, showing the threshold
between water and sand (Vos et al., 2019).

If the process described above is repeated for multiple satellite images, a time series can be created.
By manually drawing or loading in transects along the shoreline, the individual shoreline positions per
image can be collected per transect. After tidal correction and 昀椀ltering methods to remove outliers, a
time-series of shoreline position is created, an example of which can be seen in 昀椀gure 2.7.

Figure 2.7: An example of a tidally corrected timeseries of shoreline position extracted by CoastSat (orange line) along
transect PF1 from Figure 2.5 compared to in-situ data (black line) (Vos et al., 2019).

In recent years, CoastSat has been adapted to detect vegetation in coastal areas (Lanza et al., 2023),
by using NDVI instead of MNDWI to delineate the shoreline. In this case, a threshold is determined
to distinguish between vegetation and water, potentially enabling shoreline detection in non-sandy
environments — making it particularly promising for application to cli昀昀 coasts. An example of this
output is shown in Figure 2.8.

Figure 2.8: Example of CoastSat with the added vegatation index, using NDVI to detect the shoreline (Lanza et al.,
2023).



3
Methodology

This chapter presents the methodology of this research. It begins with a description of proposed
modi昀椀cations made to the existing CoastSat algorithm to enable the detection of cli昀昀 erosion. This is
followed by the introduction of a case study to which the new algorithm will be applied, after which
the method used to compare the algorithm’s results with existing data is explained.

3.1. Development of the satellite-derived cliff line algorithm
The objective is to modify CoastSat in such a way that, instead of detecting the coastline, it identi昀椀es
the cli昀昀top line. A key di昀昀erence between these two is that for sandy coasts, the coastline is typically
de昀椀ned as the transition from sand to water and is therefore equal to the waterline. For cli昀昀 coasts,
however, the cli昀昀 line may need to be determined relative to the water, or relative to a sandy or rubble
foreshore.

From the literature, it was found that CoastSat relies on the re昀氀ectance values of the blue, green, red,
NIR and SWIR bands to classify pixels into the classes water, white-water, sand or other, after which
the MNDWI is used to distinguish sand and water at sub-pixel resolution to determine the waterline.
Since sub-pixel resolution is a 昀椀ner resolution than pixel resolution, it is preferred to maintain that
quality. To distinguish multiple land features such as vegetation and built environments from sand and
water, however, a di昀昀erent index than the MNDWI is required.

In the search for a suitable alternative index, the focus is on distinguishing vegetation, built environ-
ments and bare soils from sand, as these land types often exhibit similar re昀氀ectance values in the spectral
bands used by the algorithm (blue, green, red, NIR, and SWIR). In Table 2.6 presents a list of spectral
indices that describe di昀昀erences between water and land types using these 昀椀ve bands. These indices
will be tested in the algorithm to evaluate their performance, after which a 昀椀nal selection will be made
in Chapter 4.

To ensure that a reliable threshold can be determined between “other” land features and sand or water,
a new classi昀椀er must be trained. In the current CoastSat algorithm, four default classi昀椀ers are available,
each representing a di昀昀erent type of sandy beach. However, when adapting the algorithm to detect cli昀昀
lines, it is also necessary to consider the type of cli昀昀 during classi昀椀er training. The existing classi昀椀ers
are not sufficiently speci昀椀c for this purpose.

Another opportunity for the new satellite derived cli昀昀 line (SDC) algorithm is that cli昀昀s are less dynamic
and not a昀昀ected by, for example, tides — unlike beaches - as can be seen in Figure 2.2. Because of
this, the use of composite images could be valuable to reduce the spread in measurements. In Chapter
2.4, the use of composite images is explained, stating that the longer time window is chosen, the less
seasonal variability is obtained while improving the detection of long-term trends. Since this research
focus is on whether a cli昀昀 line detection algorithm can accurately determine erosion trends, it is decided
to use a time window of one year.

15
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To evaluate whether composite images are a valuable addition to the SDC-algorithm, the algorithm is
tested using both individual images and composite images. The composite approach that will be used
is a composite with a time window of a year, with a moving window every month. This means that
composite A contains images from, for example, January till December, composite B contains images
from February till January, and so on. The moving window is chosen to use a moving window to be able
to see the change more gradually, and to have more data points, making it easier to 昀椀lter for errors.

The composite technique that will be used is the mean, as CoastSat already includes a cloud 昀椀ltering
method. This ensures that cloudy images are excluded, making the mean preferable over the median
since more information is than captured. Using the mean allows all images to contribute to the com-
posite, resulting in a smoother and more continuous trend. A visual representation of the composite
imaging technique is shown in Figure 3.1.

Figure 3.1: A visual representation of the mean composite imaging technique with a sliding window.

3.2. Case study: the Holderness Coast
To validate the new algorithm, a study must be conducted to assess the accuracy of the satellite-derived
cli昀昀 line in comparison to in-situ measurements. For this purpose, a site is required that exhibits varying
erosion rates, di昀昀erent cli昀昀 types, and a beach at the foreshore. The Holderness coast was identi昀椀ed as
a suitable case study, as it meets all three criteria.

The Holderness coast is located in the East Riding of Yorkshire (East Yorkshire), a ceremonial county
on the east coast of England. East Yorkshire has a population of approximately 600,000 people and
covers an area of around 2,500 km². The coastline stretches from Bridlington to Easington and is
approximately 60 kilometers long. It primarily consists of clay cli昀昀s, with heights ranging from 5 to 35
meters (Pye & Blott, 2015). The exact location is shown in Figure 3.2.
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The Holderness coast is particularly suitable for validating the new algorithm due to the 昀椀ndings of
earlier research by Pye and Blott (2015). This study showed that total erosion in the area between
1852 and 2013 ranged from 0 to nearly 500 meters, corresponding to average erosion rates of 0 to 4
meters per year. This variation, combined with the diversity of land cover on top of the cli昀昀s (including
vegetation, farmland, and urban areas), makes it an ideal site for comparison.

Since 1999, biannual measurements have been conducted to monitor cli昀昀 line retreat, using a cross-shore
spacing of 500 meters (East Riding Coastal Monitoring Programme, 2024). Initially, these measurements
were performed using GPS, but since 2009, aerial LiDAR scans have been used. The current monitoring
program is funded until March 2027, with expectations for continuation beyond that date.

The East Riding of Yorkshire Council (ERYC) have shown interest in this research, since they are
investigating if they want to expand their measurement campaign by adding more interim results
between two LiDAR scans. For that reason, they have agreed to share the latest data from their
monitoring campaign, so the algorithm can be validated.

Figure 3.2: Location of the Holderness coast, retrieved from Google Maps (2025), with on the right a representation of
how the transects, used to measure erosion rates, are de昀椀ned.

3.3. Data processing and collection
The East Riding of Yorkshire Council (ERYC) have shared data of 101 transects along the coast, for
which per half year the retreat of the cli昀昀 top is given in meters. The output that is generated by
CoastSat is a timeseries of shoreline positions for any given transect along the coastline. Considering
a revisit period of 5 days - the revisit period for Sentinel-2 satellites, this means that over 70 shoreline
positions can be obtained per year.

To compare the data to the output of the model, processing steps have to taken. From the data, a total
amount of erosion can be obtained by adding the erosion amounts per half year for the time period of
interest. For the algorithm, the total erosion amounts can be obtained by taking the distance between
shoreline positions over that same time period. To compare the erosion trend, for both the data and
the algorithms output a linear regression trend will be calculated, resulting in a comparable erosion
rate in meters per year.

The comparison will be conducted over the period from September 2015 to September 2024. This time
period was chosen because Sentinel-2 became operational in June 2015, and 昀椀rst measurement taken
after that was in September. Furthermore, September 2024 is the most recent available data. For the
composite imaging method the comparison will be from March 2016 to September 2024, considering
the yearly composites span a whole year, and thus half a year of range is lost on both ends, and the
昀椀rst measurement was conducted in March 2016. To reach September 2024, the last composite contains
data from February 2025. An overview of this is presented in Figure 3.3
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Figure 3.3: A visualization of the time periods for which the single image method and composite method will be
compared to the in-situ data.

3.4. Validation criteria
To assess the accuracy of the new algorithm, its results will be compared to the available data from
the case study introduced above. From the biannual erosion measurements available for the Holderness
coast, both the total amount of erosion and a linear erosion trend can be derived. Therefore, the
algorithm should output the total erosion per transect as well as the corresponding linear trend.

To evaluate the accuracy of the algorithm, its performance will be assessed using statistical indicators.
In previous studies validating SDS-algorithms, bias and standard deviation are commonly used as
performance metrics, as discussed in Chapter 2.4. For this reason, the new SDC-algorithm will also be
validated using these two indicators. The bias indicates whether the algorithm systematically over- or
underestimates erosion, while the standard deviation re昀氀ects the variability of the error.

As there are no universally accepted thresholds for these indicators in coastal monitoring, acceptable
limits were derived from the performance of existing SDS-algorithms, as can be seen in Table 2.4 and
Table 2.5. From these results can be concluded that acceptable limits for a SDS-algorithm are, for total
erosion amounts, a bias below 3 meters and a standard deviation below 7 meters. For erosion trends,
the acceptable limit for bias was determined to be 0.3 meters per year, with a standard deviation of 0.7
meters per year.



4
Results

In this chapter, the results of the research are presented. First, the modi昀椀cations made to the CoastSat
algorithm are discussed, including the rationale behind each change. Second, the output of the new
algorithm, called Cli昀昀Sat is compared to the data from the Holderness coast, followed by an evaluation
of its performance.

4.1. Outcomes of the satellite-derived cliff line algorithm
To adapt CoastSat for the extraction of the cli昀昀 line instead of the shoreline, several modi昀椀cations are
proposed in Chapter 3.1. In this section, the proposed changes are evaluated and the best method is
selected on how the modi昀椀cations are implemented. After this, an overview of the new work昀氀ow is
given.

4.1.1. Spectral index evaluation
The 昀椀rst required change is the use of a di昀昀erent index to derive a sub-pixel resolution cli昀昀 line that
separates sand and water from vegetation, built environments, and bare soils. All indices listed in
Table 2.6 are implemented in the algorithm, and their performance is evaluated. For this evaluation,
two cloud-free images with dry-exposed sand from di昀昀erent seasons are used, to be able to compare all
land features without noise. Seasonal variation is included to assess how well the indices perform under
changing vegetation conditions.

In Figures 4.1 and Figure 4.2, an example of the results of the comparison is presented. Figure 4.1 shows
the probability density function of the index values for the four classes for three di昀昀erent indices (BI,
BSI and SwiRed), showing the di昀昀erences between the indices and how e昀昀ectively the index is able to
separate the classes. In Figure 4.2, all indices that are investigated are shown compared to the satellite
image used. All the 昀椀gures from the indices that are analyzed can be found in Appendix A.

Figure 4.1: An example of the probability density function of three indices separating the four classes, used to
determine a threshold resulting in a cli昀昀 line for the indices BI (a), BSI (b) and SwiRed (c), showing the di昀昀erences

between how well the indices are able to separate the classes.
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Figure 4.2: Index comparison of a satellite image taken on 17-09-2024 spanning transects 20-45, with a indices BI (b),
BRBA (c), BSI (d), DBSI (e), INDBI (f), MNDWI (g), NBI (h), NDBI (i), NDVI (j), NDWI (k), SwiRed (l).
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From the full analysis can be concluded that the NDVI, SwiRed and INDBI demonstrate the best
performance in distinguishing land features. NDVI clearly separates vegetation from sand and water,
while the SwiRed index more e昀昀ectively distinguishes built environments from sand and water. INDBI
performs well in separating built environments from sand, but shows limited contrast between land and
water. Seasonal di昀昀erences are clearly visible: in Figure 4.3, farmlands appear green, while in Figure
4.4, they are more sand-colored, making it harder for the indices to di昀昀erentiate between land types. It
can be seen that the NDVI and SwiRed are less sensitive for these seasonal changes than the INDBI.

Figure 4.3: Index comparison of a satellite image. a) satellite image taken on 24-06-2024 by Sentinel-2. b) NDVI. c)
SwiRed. d) INDBI.

Figure 4.4: Index comparison of a satellite image. a) satellite image taken on 17-09-2024 by Sentinel-2. b) NDVI c)
SwiRed d) INDBI
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When looking into the probability density function (PDF) of the three indices in Figure 4.5, it can be
seen that in the PDF of the INDBI there is signi昀椀cant overlap between the ’other’-class and the other
three classes, compared to NDVI and the SwiRed index. This means that the NDVI and SwiRed are
better in separating the four classes for this area, resulting in a more distinct threshold to determine
the cli昀昀 line.

Figure 4.5: The probability density function comparison of INDBI (a), NDVI (b) and SwiRed (c), showing that NDVI
and SwiRed are better in distinguishing the four land classes.

For optimal results, it is decided to combine the NDVI and SwiRed indices. This approach enhances the
overall distinction between vegetation and sand due to the in昀氀uence of NDVI, while the SwiRed index
improves the separation between sand and built environments. Both indices assign negative values to
(white-)water, values around zero to sand, and positive values to various land types, as summarized in
Table 4.1.

Index Water White-
water

Sand Vegetation Built envi-
ronment

NDVI < -0.4 < -0.3 -0.1 - 0.2 0.3 - 0.9 0 - 0.3
SwiRed < -0.5 < -0.3 -0.3 - 0.2 0.1 - 0.6 0.1 - 0.3

Table 4.1: Range of values for di昀昀erent classes for the NDVI and SwiRed index. Based on Laksono et al. (2020),
Capolupo et al. (2020) and simulations of the model.

To combine the two indices, the most straightforward options are addition, subtraction, multiplication,
or division, as other indices are also commonly combined in these ways (Javed et al., 2021). Since both
indices assign similar values to the di昀昀erent land features, subtraction and division are not suitable —
these operations would result in values clustering around zero for all land types. Therefore, addition
and multiplication remain as viable options.

Before the indices can be multiplied, all values must be shifted to positive by adding 1. This ensures
that negative values remain negative in relative terms, and positive values remain positive. As a result,
addition yields a combined index with a value range from –2 to 2, while multiplication produces an
expected range from –1 to 1 (after subtracting 1 again post-calculation to return to the original scale).
The results of both addition and multiplication methods are presented in Table 4.2.

Index Water White-
water

Sand Vegetation Built envi-
ronment

Addition < -0.9 < -0.6 -0.4 - 0.4 > 0.4 0.1 - 0.6
Multiplication < -0.7 < -0.5 -0.4 - 0.4 > 0.4 0.1 - 0.6

Table 4.2: Theoretical range of values of the combined indices using addition and multiplication.



4.1. Outcomes of the satellite-derived cliff line algorithm 23

From Table 4.2 can be concluded that both methods of combining the indices yield similar results,
meaning that no clear preference can be determined based on these values alone. To further assess
which method is more suitable, both were implemented over a 10-kilometer stretch of coastline, and the
resulting probability density functions (PDF) from the cli昀昀 line detection were analyzed.

It was found that the PDF generated using the multiplied indices showed a slightly broader spread
within the “sand” and “other” classes, as illustrated in Figure 4.6. Additionally, the (white-)water
region was more distinctly de昀椀ned. These characteristics make the multiplication method slightly more
suitable for combining the indices in this context.

Figure 4.6: Comparison of the probability density function of the two index combination methods. a) addition; b)
multiplication.

The index used in the remainder of this research is therefore calculated using the following formula:

Index = (NDV I + 1) ∗ (SwiRed+ 1)− 1 = (
NIR−R

NIR+R
+ 1) ∗ (

SWIR−R

SWIR+R
+ 1)− 1

To proof this index is an improvement compared to the index used by CoastSat, MNDWI, the resulting
cli昀昀 line by the indices of CoastSat (MNDWI) and Cli昀昀Sat are compared in Figure 4.7, with the
probability density functions of the indices presented in Figure 4.8. As visible, the newly found index
causes a better distinction between land and sand, creating a clear cli昀昀 line compared to the cli昀昀 line
created when using the MNDWI. In Appendix B, a more elaborate evaluation can be found on how
the indices of CoastSat and Cli昀昀Sat compare and the resulting e昀昀ect on both shoreline and cli昀昀 line
detection.

Figure 4.7: A comparison of the MNDWI (a) and newly found index (b) for cli昀昀 line extraction for transects 17-28 on
15-05-2018, showing that a more clear cli昀昀 line is found when using the new index.
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Figure 4.8: A comparison of the probability density functions of the MNDWI (a) and newly found index (b) for
transects 17-28 on 15-05-2018, showing that the new index better separates the four classes.

4.1.2. Creating composite images
Now that the index has been identi昀椀ed, the use of composite images can be evaluated. As proposed in
Chapter 3.4, the performance of individual satellite images is compared to composite images generated
using a moving window per month with a time window of one year. It is decided to use a moving
window to be able to see the change more gradually, and to have more data points, making it easier to
昀椀lter for errors. These tests were carried out over a 10-kilometer stretch of coastline, covering transects
21-40 of the coastline.

The composite technique considered most e昀昀ective beforehand is the mean composite, in which the
average re昀氀ectance values of each spectral band per pixel are calculated and used. This method has an
advantage over the median composite, as it incorporates all available images. This is bene昀椀cial because
certain images capture high water levels or storm surges, resulting in water temporarily covering the
beach. This e昀昀ect is also created by the angle of incidence of the satellite. If the satellite takes the
image from a certain angle from the cli昀昀, due to the height and steepness of the cli昀昀 (a part of) the
beach is not visible on the image, as shown in Figure 4.9. However, considering the mean altitude of
786 kilometers and the swath width of 290 for Sentinel-2 (European Space Agency, 2025), a maximum
of just 5 meters of horizontal information disappears for a cli昀昀 with a height of 30 meters, and so this
e昀昀ect is small compared to the spatial resolution of the satellite.

The e昀昀ect of water covering the beach causes the sand to be better distinguishable from other land
features, considering the water has di昀昀erent re昀氀ection coefficients for both the red and infrared bands
compared to sand and other land features. Since the amount of images where sand is covered by
water is only a fraction of all the images, this would rarely in昀氀uence the result when using a median
composite, while when using the mean, these events contribute to the overall pixel value. Since water
has a signi昀椀cantly lower index value, its presence lowers the average index of sandy areas, thereby
enhancing the distinction between sand and land.

One issue observed when calculating the mean per pixel is the presence of noise caused by residual clouds
that bypassed the cloud 昀椀lter, resulting in white blurs on certain pixels. To mitigate this, all pixel values
outside the range of one standard deviation were excluded when calculating the mean. This e昀昀ectively
removes the darkest and brightest re昀氀ections, including remaining cloud artifacts. By applying this
昀椀lter, the advantage of capturing subtle water e昀昀ects — improving the separation between sand and
land — is retained, while extreme outliers are removed. This makes the 昀椀ltered mean composite a
robust and reliable method for use in the algorithm.
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Figure 4.9: A visual presentation on the importance of the angle of incidence of the satellite, resulting in (parts of) the
beach being invisible in some images due to the cli昀昀 height and steepness.

In Figure 4.10 the two methods - single images and yearly composite images - are shown for one of the
20 evaluated transects (transect 30). As can be seen, the variation between pictures is reduced by using
composite images compared to single images, since the images range from 195 to 215 meters for the
composite while it ranges from 180 to 220 meters for the single images.
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Figure 4.10: A comparison for the time-series of transect 30 for a) single images method and b) composite method, showing more variation around for the single images method.
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When comparing the erosion trends derived from the two image techniques for transect 30, it can be seen
that there is no signi昀椀cant di昀昀erence (2.0 meters/year versus 1.9 meters/year), with the actual erosion
trend, based on the provided data, was found to be 2.2 meters per year. For the other 19 transects that
are evaluated, these same small di昀昀erences are noticed, and thus it is decided that based on these 20
transects, presented in Figure 4.11, no decision can be made on which method is most accurate. For
that reason, both methods will be validated for the entire coast.

Figure 4.11: An overview of transects 20-40 on an open street map.
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4.1.3. Overview of work昀氀ow
In Figure 4.12, an overview is given on the work昀氀ow of the new algorithm, Cli昀昀Sat. It is based on the
original CoastSat work昀氀ow, and one setting determines if the cli昀昀 line or shoreline will be determined.
Important to note is that it is not yet decided if composite images are indeed a valuable addition, so
the work昀氀ow is not de昀椀nite yet. Furthermore, a mechanism is included that if there are no sand pixels
present, the threshold is determined between land and water in stead of land and sand.

Figure 4.12: An overview of the work昀氀ow of the new algorithm, Cli昀昀Sat, with the black boxes being the original
work昀氀ow of CoastSat and the red boxes indicating the modi昀椀cations that were made.

In Figure 4.13, an example is given on how the composite image with classi昀椀cation and new index
calculation looks like, all contributing to the cli昀昀 line derivation.

Figure 4.13: An example of the output generated by Cli昀昀Sat, with the RGB composite image of transect 16-28 (a),
pixel classi昀椀cation (b) and index calculation (c), resulting in a cli昀昀 line.



4.2. Validation of the algorithm 29

4.2. Validation of the algorithm
To validate the algorithm, the results are compared to the data of the Holderness coast. The available
dataset consists of 121 cross-shore transects along the coastline, spaced at 500-meter intervals. Of these
121 transects, 20 are not actively monitored, because coastal defenses have been applied, resulting in
data of 101 transects. These transects are loaded into the algorithm to ensure that the analysis is
performed at the exact same locations as the 昀椀eld measurements.

4.2.1. General comparison of algorithms output to in-situ data
The comparison of the two methods (single image and composite) to the data is conducted for two
outputs: the annual erosion trend, and the total amount of erosion recorded. As explained in Chapter
3.3, the single imaging method is compared to in-situ data from September 2015 until September 2024,
while the composite method is compared from March 2016 until September 2024. It is found, however,
that at the start of the Sentinel-2 mission, few images were admissible due to the fact that just one of
the two planned satellites was in the air, resulting in a higher revisiting time, and images did not ful昀椀ll
requirements regarding the georeferencing, which is used to align the images, meaning the images were
昀椀ltered out in the process. For these reasons, the starting dates for the comparison are moved from
September 2015 to March 2016 (single images) and from March 2016 to May 2017 (composite images),
since no measurement was taken in the fall of 2016 due to bad weather.

To be able to compare the trend of the output compared to the trend of the data, the trend for the
data is be calculated 昀椀rst. This is done using linear regression, an example of which is given in Figure
4.14.

Figure 4.14: An example of how the linear erosion trend compares to the individual data points of a transect, in this
case transect 46.

The results of the comparison are presented in Table 4.3 and Table 4.4, showing the bias and standard
deviation of the algorithm’s output for single images and composites, relative to the provided data. In
Figure 4.15 and Figure 4.16, the bias and standard deviation are compared to the SDS-algorithms inves-
tigated in Chapter 2.4. All the settings in the algorithm, like the maximum allowed cloud cover in the
imagery, the minimum length required for a valid cli昀昀 line, or the maximum cross-shore distance allowed
between cli昀昀 lines across time steps are being kept constant. The total erosion amounts are captured
after averaging individual shoreline positions for the month before and after the in-situ measurement,
reducing individual errors.
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Images used Bias Standard
deviation (σ)

Single images 0.13 meters/year 0.69 meters/year
Yearly composites 0.14 meters/year 0.69 meters/year

Table 4.3: An overview of the statistical performance indicators for the yearly trend of the model compared to in-situ
data.

Figure 4.15: A visual presentation of the performance of the algorithm on capturing erosion trends compared to the
performance of existing SDS-algorithms, with the red line showing the acceptable limit.

Images used Bias Standard
deviation (σ)

Single images -0.3 meters 5.5 meters
Yearly composites -0.6 meters 4.7 meters

Table 4.4: An overview of the statistical performance indicators for total erosion of the model compared to in-situ data.

Figure 4.16: A visual presentation of the performance of the algorithm on capturing total erosion amounts compared
to the performance of existing SDS-algorithms, with the red line showing the acceptable limit.

From these results, it can be concluded that for the yearly erosion trend, both methods reach the same
accuracy, with a bias of 0.1 meters/year and a standard deviation of 0.7 meters/year. Comparing these
results to the validation criteria found in Chapter 3.4, stating acceptable limits are a bias below 0.3
meters/year and a standard deviation of 0.7 meters/year or below, Cli昀昀Sat operates (just) within these
limits for both the single image method as the composite method.
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For the total erosion amounts, the composite method shows to be more accurate. While the single
image method has a slightly lower bias than the composite method, the standard deviation is almost
a meter higher, meaning that the single image method has a higher variability than the composite
method. Comparing these results to the validation criteria, it can be found that both methods have a
much lower bias than the acceptable limit (3 meters), while also the standard deviation is well within
the limit (7 meters).

To conclude the analysis of the accuracy of Cli昀昀Sat for both the single image method and composite
method, it can be found that the algorithm meets all validation criteria, while the composite method
shows to be more precise when looking at total erosion amounts.

4.2.2. Comparison of output and data per erosion rate
Although the algorithm demonstrates reliable performance, it is important to consider its limitations.
One aspect investigated is how the algorithm performs across di昀昀erent erosion magnitudes. Given that
the spatial resolution of the satellite imagery used is 10 meters, and the analysis spans a period of 8
years, the data was categorized into two groups:

• Less than 1.2 meter of erosion per year (i.e., less than 10 meters total);
• More than 1.2 meters of erosion per year (over 10 meters total).

The results of this analysis are presented in Table 4.5 and Table 4.6.

Images used < 1.2 meters/year > 1.2 meters/year
Bias Standard

deviation (σ)
Bias Standard

deviation (σ)
Single images -0.1 m/y 0.5 m/y 0.3 m/y 0.8 m/y

Yearly composites -0.1 m/y 0.4 m/y 0.3 m/y 0.8 m/y

Table 4.5: An overview of the statistical performance indicators for erosion trend of the model compared to in-situ
data, divided into di昀昀erent amounts of erosion.

Images used < 10 meters > 10 meters
Bias Standard

deviation (σ)
Bias Standard

deviation (σ)
Single images -2.4 m 5.7 m 0.9 m 5.4 m

Yearly composites -1.3 m 4.0 m 0.0 m 5.2 m

Table 4.6: An overview of the statistical performance indicators for total erosion of the model compared to in-situ data,
divided into di昀昀erent amounts of erosion.

From these results, it can be concluded that for the erosion trend, the composite method is slightly
more accurate for low erosion trends compared to the single image method, while they perform similar
for erosion rates over 1.2 meter per year. For the total amount of erosion comparison, it shows that the
composite method signi昀椀cantly improves the accuracy for erosion amounts below 10 meters, while the
results for the erosion amounts above 10 meters do not show signi昀椀cant di昀昀erences.

The conclusion can be drawn that the composite image method is more accurate than the single image
method when it comes to low amounts of recorded erosion. Considering the observation that there is
more variation in shoreline positions for the single image method compared to the composite method
(Chapter 4.1.2), this di昀昀erence can be explained by the fact that the variation that is present for the
single images caused by the resolution has a higher in昀氀uence when the total erosion is less than one
pixel of an image (below 10 meters). If erosion rates are high, the di昀昀erence between the cli昀昀 line
positions within one composite are larger, causing a less distinct cli昀昀 line, and thus the advantage of
lower variation disappears.
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4.2.3. Investigation of errors
Upon reviewing the output, 13 transects are found where three or all of the four generated outputs
(trend and total erosion for each of the two methods) exceed the standard deviation, as shown in Figure
4.17, when compared to the provided data, suggesting that the algorithm - regardless of the imaging
method - tends to struggle in the same locations. These transects are further analyzed based on cli昀昀
height and the land features near the cli昀昀 edge.

Figure 4.17: A visual representation of the values of total erosion amounts of the data compared to the output of the
single image method (a) and the composite method (b).

When examining cli昀昀 height, two locations are identi昀椀ed where the cli昀昀 exceeds 20 meters over a stretch
of 昀椀ve or more transects (East Riding Coastal Monitoring Programme, 2024; Pye & Blott, 2015).
Of the 12 transects in these areas, 6 produced results outside the acceptable standard deviation range,
indicating that cli昀昀 height does in昀氀uence the model’s accuracy. A possible explanation is that, assuming
a similar slope across all cli昀昀s, higher cli昀昀s expose more of the cli昀昀 face in satellite imagery. This can
result in di昀昀erent (generally lower) re昀氀ectance values, and thus a di昀昀erent index, introducing noise into
the detection. Furthermore, the position of the satellite can cause the image to capture Unfortunately,
no data on cli昀昀 slope is available to con昀椀rm this hypothesis.

Another aspect investigated is the in昀氀uence of land features near the cli昀昀 edge. As discussed earlier
in this chapter, the most challenging distinctions are between sand and built environments, or sand
and bare soils such as dried farmland. Since the three largest cities along the coast are protected by
coastal defense structures and are excluded from the current measurement program, the algorithm’s
performance in dense urban areas remains unclear. However, among the investigated transects, seven
are located near campsites or parking areas at the cli昀昀 edge, showing these areas induce noise in the
model. The remaining transects are located adjacent to farmland extending to the cli昀昀 edge. A closer
look at these areas revealed seasonal changes in land cover — even in the yearly composites — where
farmland sometimes appear as bare soil, introducing additional noise into the model. An example of
this e昀昀ect is shown in Figure 4.18, comparing the same area (transects 95-99) for composite images in
2017 and 2019.
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Figure 4.18: A comparison between the composites of December 2017 (a) and December 2019 (b) for transects 95-99.
In 昀椀gure a, it can be seen that the more inland 昀椀elds have a lower index than the 昀椀elds near the cli昀昀, while in 昀椀gure b

this is the other way around. These changes in index near the cli昀昀top edge cause noise in the model.

Apart from the cli昀昀 characteristics, it is found that errors also occur while 昀椀nding the index threshold
representing the cli昀昀 line. Errors in the classifying process cause some land pixels to be classi昀椀ed as
sand, resulting in a shift in the threshold to a more positive index value, as can be seen in Figure 4.19.
Since this error is dependent on how the pixels are classi昀椀ed, it causes variability in the timeseries, as
can be seen in Figure 4.20. A more elaborate investigation into this error can be found in Appendix C.

Figure 4.19: An example of the threshold determination for transect 17-28 using Otsu’s thresholding method, showing
that the threshold found (dashed black line) has a slight error towards ’other’ (shown in red) compared to sand (shown

in orange), caused by the peak in the sand class around the index value 1.4.
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Figure 4.20: An example of variability for the timeseries of transect 22 caused by the error in threshold determination.



5
Discussion

In this chapter, the results of the research are discussed. First, the main 昀椀ndings are reiterated and
interpreted, followed by an evaluation of the limitations of both the research and the algorithm and a
re昀氀ection on the choices made in the research. Finally, the broader contributions and implications of
the study are addressed.

5.1. Reiteration and interpretation of the results
In this research, an algorithm called Cli昀昀Sat was developed to detect the cli昀昀 line based on satellite
imagery. The algorithm was created based on CoastSat, an existing algorithm to derive shorelines from
satellite imagery. First, the index used to determine the waterline (MNDWI) was changed, so a cli昀昀 line
could be detected, separating the cli昀昀 from sand and water. It was found that the combination of NDVI
and SwiRed worked best, considering the NDVI highlights vegetation and SwiRed built environment
from other land features and water. Apart from the change of index, composite images were included in
the algorithm. Using a window of a year that moves for every month, variations due to seasonality was
excluded from the images, resulting in more stable results. With a bias of -0.6 meters and a standard
deviation of 4.7 meters, the algorithm using yearly composite images was found to be the most accurate
compared to using single images, while it also outperformed existing SDS-algorithms compared to their
own validation tests.

While the previous chapter focuses on comparing the outputs of the two methods to existing data
and comparing the statistical results with existing SDS-algorithms, it should be re昀氀ected on what the
absolute results represent. Looking at the total erosion over the 8-year period, the absolute results of
the algorithm are shown in Table 5.1 and Figure 5.1. The 5 and 10 meter ranges were based on the
average standard deviation and the pixel size of the used satellite imagery. It can be concluded that
both methods overestimate and underestimate with approximately equal amounts, which con昀椀rms the
observed bias.

Images used < -5 m error > 5 m error < -10 m error > 10 m error
Single images 16 14 4 2

Yearly composite 15 12 3 2

Table 5.1: An overview of how big the error was for the two methods, di昀昀ering in overestimation (< -5 / -10 meters)
and underestimation (> 5 / 10 meters).

Measuring the amount of cli昀昀 erosion is highly relevant for determining how far from the cli昀昀 edge
houses or recreational areas can be safely built, as discussed in Chapter 1. When comparing the results,
it becomes clear that the least desirable outcome is a signi昀椀cant underestimation by the model compared
to provided data, which would imply that the cli昀昀 is eroding faster than the model suggests. Looking
at the results, just 2 out of 101 transects underestimate the real data more than 10 meters for both the
imaging methods.

35
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Figure 5.1: A visual representation of the error distribution of the total erosion amounts for the single image method
and composite image method.

5.2. Re昀氀ection on methodological choices
The 昀椀rst choice that was made was to use CoastSat as the base of Cli昀昀Sat. This choice was made due to
it being the most suitable algorithm as was found in Chapter 2.4. Especially the extra step of classifying
the pixels made it more easy to distinguish ’other’ land features from sand. However, CoastSat also
has its limitations, the most important one being that in CoastSat height is not incorporated, which is
an vital aspect of a cli昀昀 coast. However, in none of the SDS-algorithms that were considered for this
research height was a factor.

Another dominant factor in this research was the search for an index to be used. Although the currently
used index has proven to be the reliable within the scope of this study, one could argue that other, yet
untested indices might perform even better. To identify the most optimal index, it may be necessary
to look beyond the 昀椀ve spectral bands currently utilized in this algorithm. Furthermore, the index that
is now used is a combination of two indices, combined using multiplication. There might, however, be
a more optimal way to combine these two indices to highlight the correct land features.

Since this study is performed on one case study, the index is speci昀椀cally chosen for that site. Cli昀昀s
around the world, however, vary a lot in composition, and thus spectral re昀氀ections. This means that
di昀昀erent cli昀昀 types need di昀昀erent spectral indices, and so the index used by Cli昀昀Sat should be adjusted
for every site. This is a disadvantage compared to SDS-algorithms, considering these use an index to
separate water from land and therefore can be applied for di昀昀erent shorelines around the world.

In this research, composite images were created using a yearly window sliding for every month using
the mean after outliers are 昀椀ltered out. This method was chosen since it limits seasonal variation, while
it adds the advantage that sand is sometimes covered by water and thus the distinction between other
land features and sand is improved. This method showed consistent results, although there was still
variability captured in the images, as shown in Figure 4.18. However, more extensive research can be
done on the composite technique that is most e昀昀ective.

To evaluate the use of composite images for Cli昀昀Sat, the advantages and disadvantages should be listed.
The main advantage is that it is more accurate, especially for sites with low erosion rates. However, due
to the time window of a year, the episodic nature of cli昀昀 erosion is not captured using composites. Also,
if cli昀昀s have high erosion rates, a composite image with a time window of a year captures erosion within
the image, making the cli昀昀 line less clear. This e昀昀ect is also present if a cli昀昀 is high and the position of
the satellite relative to the cli昀昀 varies, as shown in Figure 4.9, the position of the cli昀昀 between images
varies slightly, while these image are combined into one composite. From this can be concluded that
using composite images is not necessarily bene昀椀cial for every cli昀昀.
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5.3. Limitations and uncertainties
An important limitation of this research is that it spans a relatively short time range. Due to the limited
period (8.5 and 7.5 years) and the spatial resolution of the satellite imagery used, the noise introduced
by pixel size becomes signi昀椀cant, especially for transects with low erosion rates. When looking further
back in time, from 2006 to 2024, only 9 of the 101 transects experience less than 10 meters erosion. This
means that all other transects experience at least one pixel of erosion in that time period, improving
the model’s accuracy over time. Furthermore, because a short time range is used in the research, an
absolute error of 5 meters in 7.5 years is of a bigger in昀氀uence than if the error of 5 meters is recorded
in 20 years, increasing the accuracy of the prediction of the erosion trend, making it more suitable for
applications such as determining safe building distances from the cli昀昀 edge.

The short time span of this study also introduces uncertainty in the erosion trends calculated from the
provided data. These trends were derived using linear regression, which can be misleading for transects
where episodic erosion occurs. In such cases, the linear trend may deviate from the actual total erosion,
as illustrated by two examples in Figure 5.2. Since only two measurements per year are available, peaks
in erosion are not always captured by the linear regression trend. In contrast, the model — based on
more frequent satellite observations — tends to re昀氀ect these variations more clearly, resulting in a linear
trend that more closely approximates the total erosion divided by the number of years. Therefore, one
could argue that comparing total erosion rather than the linear trend provides a more reliable basis for
validating the model against the data.

Figure 5.2: A visual representation of distribution of the erosion trend (a) and total erosion (b) for the single image
method, divided per erosion rate.

Another limitation of this research is that it only covers one type of cli昀昀 coast. It is, however, also
valuable to consider how this algorithm can be applied world wide. At present, it is optimized for cli昀昀s
with vegetation or built environments on top. However, there are many di昀昀erent types of cli昀昀s all over
the world. This study was performed for a clay cli昀昀, while there are also numerous di昀昀erent types
of rocky cli昀昀s. Although rocky cli昀昀s tend to be more resilient against erosion, it is still desirable to
develop an algorithm capable of monitoring such cli昀昀s. To achieve this, alternative indices may prove
to be more robust. This implies that the type of cli昀昀 must be manually determined in order to select
the appropriate index for monitoring.

Since cli昀昀s are typically high with a steep slope, a limitation of the algorithm is that it does not
take height into account. Currently, the model operates on two-dimensional imagery, while cli昀昀s are
characterized by a rapid increase in elevation. If cli昀昀 height is incorporated in the algorithm, cli昀昀s
that have similar spectral re昀氀ectance values compared to the beach, can still be distinguished. When
incorporating cli昀昀 height, the absolute height of the cli昀昀 is not critical; rather, it is the elevation
di昀昀erence between the cli昀昀 and the adjacent beach or sea that matters.
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5.4. Applicability of CliffSat
This research shows that there is potential for Cli昀昀Sat to be able to determine cli昀昀 lines, however it is
important to investigate how Cli昀昀Sat can be applied. Looking at the temporal and spatial scale of the
model and comparing it to coastal processes as presented in Figure 5.3, it can be seen that the spatial
and temporal scale of the algorithm largely overlap with the spatial and temporal scale of (short-term)
cli昀昀 retreat. However, storm induced changes and episodic events are not captured by Cli昀昀Sat.

Figure 5.3: A visual representation of the temporal and spatial scale of coastal change processes and Cli昀昀Sat, based on
(Vitousek et al., 2023). In red, the single image technique is shown, in dashed red the composite technique is shown,

having a reduced temporal scale.

Because of the temporal and spatial limitations of Cli昀昀Sat, it is difficult to draw conclusions on what
cli昀昀 erosion processes, presented in Table 2.1, are dominant for a speci昀椀c location using the algorithm.
The e昀昀ect of large storms or earthquakes will only be captured if the resulting erosion is over several
meters, while it will then still be difficult to 昀椀nd the exact date of the event due to spatial and temporal
constraints.

Due to the spatial resolution of the images used, the algorithm can not compete with for example LiDAR
measurements on accuracy. However, due to the relatively high temporal resolution of the satellites
used, a timeseries can be created and 昀椀rst insights can be obtained on the behavior of a cli昀昀. The
algorithm can therefore well be used to determine if a cli昀昀 is stable or eroding, and can even give a 昀椀rst
estimate on the erosion rates.

To be able to use Cli昀昀Sat on a new site, a new classi昀椀er has to be trained and an investigation will have
to be performed to determine the most suitable index to separate the classes. After this, Cli昀昀Sat can
be used to investigate the cli昀昀s behavior. To observe if the cli昀昀 is stable or erosive, it is recommended
to use composite images. If the cli昀昀 shows to have high erosion rates it can be decided to use single
images, showing more seasonal variation.
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5.5. Wider Contribution
To put this research into perspective, the wider contribution is elaborated. In addition to the overview
provided of cli昀昀 erosion processes, current monitoring techniques, and the analysis of various spectral
indices, the two most signi昀椀cant contributions are: (1) the conclusions regarding the essential compo-
nents of a successful satellite-derived cli昀昀 line algorithm, and (2) the evaluation of a 昀椀rst version of such
an algorithm, including potential improvements.

This research could mark the beginning of a new trend in which satellite-based cli昀昀 monitoring becomes a
widely adopted technique globally. Given its cost-free nature, it currently o昀昀ers an initial insight into the
behavior of coastal cli昀昀s within a system. In the future, as the algorithm is re昀椀ned or new algorithms are
developed, and the accuracy of SDC-algorithms improves, satellite monitoring could potentially become
the primary data source for research and engineering projects. It o昀昀ers the capability to provide long-
term insights into coastal systems, which is essential for sustainable planning and management.



6
Conclusion

Currently, a wide range of satellite-derived shoreline (SDS) algorithms are being used and developed
globally, di昀昀ering in both methodology and output. For instance, some algorithms generate shorelines
at pixel resolution, while others achieve sub-pixel resolution using various techniques. Additionally,
some rely on single satellite images, whereas others use composite images to mitigate daily or seasonal
variations.

Despite these di昀昀erences, most algorithms are based on similar principles. Satellite images are loaded
into the algorithm, after which re昀氀ectance values for each spectral band are calculated per pixel. From
these values, spectral indices are derived to distinguish between land and water. Based on this separa-
tion, a waterline is extracted, followed by optional post-processing steps.

To adapt a SDS-algorithm for cli昀昀 line extraction, the most critical modi昀椀cation is the use of a di昀昀erent
spectral index. SDS-algorithms typically use MNDWI and NDWI, which are optimized for distinguish-
ing land from water. However, coastal cli昀昀s often feature sandy foreshores and diverse land cover types
on the cli昀昀 top. Therefore, an index is needed that can di昀昀erentiate between various land features, sand,
and water. This study found that a combination of NDVI — e昀昀ective in separating vegetation from
other land features and water — and the SwiRed index — optimized for detecting built environments

— is most e昀昀ective in distinguishing the cli昀昀 top from the beach and sea.

While already present in some SDS-algorithms, the use of composite images is particularly bene昀椀cial
for cli昀昀 line extraction. Since cli昀昀s are relatively stable systems with minimal daily variation (except
in cases of sudden collapse), combining multiple images helps eliminate noise from daily and seasonal
changes, resulting in a more robust algorithm.

The new SDC-algorithm, called Cli昀昀Sat, was applied to the Holderness coast in England, resulting in
a comparison of 101 transects along the shoreline for which biannual LiDAR data was available. The
model was tested using two di昀昀erent approaches: single images and yearly composites. The composite
was generated by averaging re昀氀ection values for every pixel after 昀椀ltering out the most signi昀椀cant
outliers.

The two methods were evaluated using two metrics: the yearly erosion trend derived from linear re-
gression, and the total amount of erosion measured over the 8-year period. For the yearly trend, both
methods performed similarly in terms of bias and standard deviation. For total erosion, the composite
method had a slightly higher bias than the single images method, while the standard deviation of the
composite was a lot lower, especially for when the erosion recorded by the data was below 10 meters.

When compared to existing SDS-algorithms, the results show that both methods used for Cli昀昀Sat
exhibit a comparable bias and standard deviation for the yearly trend, indicating that they fall within
the acceptable performance range. For total erosion, the composite method achieved the lowest standard
deviation among all SDS-algorithms used for comparison, while the single-image method also remained
within acceptable limits.

Given that Cli昀昀Sat is based on the SDS-algorithm CoastSat, a direct comparison is particularly relevant.
Cli昀昀Sat and CoastSat performed similarly in estimating yearly erosion trends. However, when evaluating
total erosion, both imaging methods of Cli昀昀Sat outperformed CoastSat — both in its own validation
tests and in benchmarking studies conducted in other research.
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A deeper analysis of the algorithm’s performance revealed several factors in昀氀uencing its accuracy. Cli昀昀
height was found to be a signi昀椀cant factor, with higher cli昀昀s resulting in less accurate model output.
Additionally, built environments, campsites, and parking lots were more susceptible to noise in the time
series, leading to lower accuracy. Seasonal e昀昀ects also played a role: farmlands that become bare soil
during certain seasons reduced the contrast between sand and the cli昀昀, introducing higher errors into
the model.

To conclude, the answers to the sub-questions collectively address the main research question:

How can satellite-derived shoreline detection methods be adapted and applied to extract
coastal cli昀昀 erosion, and how do these satellite-based measurements compare to in-situ

erosion data?
By applying a di昀昀erent combination of spectral indices than those used in existing SDS-algorithms
and by creating composite images, it is possible to extract cli昀昀 lines from satellite data. The accuracy
achieved in comparison to in-situ data falls within the range of existing SDS-algorithms for monitoring
erosion trends. Moreover, Cli昀昀Sat demonstrates improved performance in estimating total erosion rates,
making it a valuable tool for long-term coastal monitoring.



7
Recommendations

In this chapter, recommendations for future research and development are presented. Additionally, the
potential for practical implementation of the algorithm is discussed.

7.1. Future research and development
As brie昀氀y discussed in Chapter 5, one of the key areas for future research is the spectral index used for
cli昀昀 line detection. Given the wide variety of cli昀昀 types and surface characteristics around the world,
it is unlikely that a single index will be suitable for all cases. Therefore, more extensive research into
spectral indices is needed to ensure the algorithm can be applied globally. A logical starting point would
be to analyze the re昀氀ectance values of di昀昀erent land features across spectral bands, which could lead
to the development of new, more specialized indices. For example, for fully vegetated cli昀昀s, the NDVI
has already proven to be e昀昀ective. Ideally, a database is made with speci昀椀c indices for all di昀昀erent cli昀昀
types, so that if the cli昀昀 type of a new region of interest is established, the right index can be found to
run the algorithm.

Another improvement that could be made is the integration of cli昀昀 height into the algorithm. This addi-
tion could help resolve ambiguities between detecting the cli昀昀 top and the cli昀昀 face, thereby improving
accuracy. However, it is recommended to continue using spectral indices in parallel, as they may o昀昀er
better performance for cli昀昀s with a low height. By combining height-based and index-based detection,
the algorithm could achieve optimal accuracy for medium-height cli昀昀s, while still maintaining reliable
performance for both high and low cli昀昀s with distinct surface re昀氀ectance characteristics.

Additionally, more research can be conducted on the threshold determination. Currently, Otsu’s thresh-
olding method is used by the algorithm to 昀椀nd a threshold between land and sand. However, it was
found that due to errors in the classi昀椀cation process, the threshold calculation is in昀氀uenced, resulting in
variation in the cli昀昀 line position. To eliminate this variation, apart from extensively training a classi-
昀椀er, a new thresholding method should be found that is more robust against errors in the classi昀椀cation
process.

Beyond algorithmic improvements, another direction for development is the use of higher-resolution
satellite imagery. As concluded in this study, the observed error margins are closely related to the spatial
resolution of the satellite data. This suggests that using 昀椀ner-resolution imagery could enhance accuracy.
A key strength of the current algorithm is its accessibility and cost-e昀昀ectiveness, so any improvements
in resolution should ideally not introduce signi昀椀cant costs. Fortunately, higher-resolution imagery is
already available for free under certain conditions, such as for research or educational purposes (Planet
Labs PBC, 2025), indicating that this improvement could be implemented in the near future.
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7.2. Implementation of the algorithm
To conclude this research, it is important to consider how Cli昀昀Sat can be practically applied by engi-
neering 昀椀rms such as Haskoning, or for academic and research purposes. Based on the results, it can
be concluded that the algorithm performs with a level of accuracy comparable to widely used SDS-
algorithms. This makes it suitable for providing an initial understanding of how a coastal cli昀昀 system
behave over time. However, it is not yet accurate enough to support de昀椀nitive conclusions — such as
determining whether a cli昀昀 is entirely stable or calculating precise erosion rates — based solely on its
output.

Another aspect of implementation is becoming familiar with the algorithm’s settings. Several parameters
can be adjusted to in昀氀uence the results, such as the maximum allowed cloud cover in the imagery, the
minimum length required for a valid cli昀昀 line, or the maximum cross-shore distance allowed between
cli昀昀 lines across time steps. By experimenting with these parameters and analyzing their impact on
the output, users can 昀椀ne-tune the algorithm for speci昀椀c locations. If this process is repeated across
multiple sites with available ground-truth data, the model can be continuously calibrated and validated.

Finally, it is worth exploring additional applications for the algorithm. Since it is designed to detect the
boundary between sand or water and other land features, it could potentially be adapted to monitor
other coastal systems. For example, it may be used to track the development of mangroves with sandy
or muddy foreshores, or to observe changes in dune vegetation, as illustrated in Figure 7.1.

Figure 7.1: Output of Cli昀昀Sat for a location in the Netherlands, Ouddorp, showing that the algorithm is able to detect
the vegetation line in dune systems, without changing any settings, proving this could be another purpose the algorithm

can ful昀椀ll.
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A
Spectral index comparison

In this section, the spectral index comparison is performed. This comparison is done based on the visual
distinction in index, visible in the right picture for every image, and the PDF, visible at the bottom of
every image. This comparison is executed for eleven di昀昀erent indices. In this appendix, two di昀昀erent
seasons are presented (June and September).

Figure A.1: MNDWI 24-06-2024
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Figure A.2: MNDWI 17-09-2024

Figure A.3: NDBI 24-06-2024



50

Figure A.4: NDBI 17-09-2024

Figure A.5: NDVI 24-06-2024



51

Figure A.6: NDVI 17-09-2024

Figure A.7: NDWI 24-06-2024
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Figure A.8: NDWI 17-09-2024

Figure A.9: BSI 24-06-2024
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Figure A.10: BSI 17-09-2024

Figure A.11: BI 24-06-2024
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Figure A.12: BI 17-09-2024

Figure A.13: NBI 24-06-2024
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Figure A.14: NBI 17-09-2024

Figure A.15: SwiRed 24-06-2024
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Figure A.16: SwiRed 17-09-2024

Figure A.17: DBSI 24-06-2024
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Figure A.18: DBSI 17-09-2024

Figure A.19: INDBI 24-06-2024
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Figure A.20: INDBI 17-09-2024

Figure A.21: BRBA 17-09-2024



B
Comparison of the indices used in

CoastSat and CliffSat

In this section, the indices of CoastSat and Cli昀昀Sat are compared. This is done by using both models
to derive both the waterline and cli昀昀 line, and compare the output to each other.

In Figure B.1 CoastSat, using the MNDWI, is presented for detecting the waterline. In Figure B.2,
the waterline is detected by Cli昀昀Sat, using a combination of the NDVI and SwiRed. As visible, the
waterlines found by both algorithms are comparable. This is caused by the fact that the index used in
Cli昀昀Sat not only separates land from sand, but also sand from water.

Figure B.1: An example of the waterline detection by CoastSat on 15-05-2018.
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Figure B.2: An example of the waterline detection by Cli昀昀Sat on 15-05-2018.

In Figure B.3, CoastSat is used to derive the cli昀昀 line, while in Figure B.4, Cli昀昀Sat is used to derive the
cli昀昀 line. As visible, the cli昀昀 line derived by CoastSat is not located on the actual cli昀昀 line, and there is
a lot of noise present compared to the cli昀昀 line derived by Cli昀昀Sat. This is due to the overlap of index
values between land and sand, caused by the fact that the MNDWI is good at separating water from
land, but not designed to separate land features from each other.

Figure B.3: An example of the cli昀昀 line detection by CoastSat on 15-05-2018.
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Figure B.4: An example of the cli昀昀 line detection by Cli昀昀Sat on 15-05-2018.

From this can be concluded that the index used in CoastSat is only suitable to detect the waterline,
where the index used in Cli昀昀Sat is able to detect both the waterline as the cli昀昀 line. This proves that
this newly found index is



C
Evaluation of thresholding methods

In this section, the error caused in the current thresholding method is evaluated. Both the reason and
e昀昀ects of this error is looked into, after which solutions to minimize the e昀昀ects are given.

In the classi昀椀cation step of the algorithm, sometimes mistakes are made, and pixels are classi昀椀ed
incorrectly. In this case, the mistake that is most often made, is that pixels from ’other’ land features
are classi昀椀ed as sand. These mistakes during the classi昀椀cation process in昀氀uence the distribution of the
sand pixels for the calculated index, as can be seen in the probability density function. An example of
this is given in Figure C.1.

Figure C.1: An example of the threshold determination for transect 17-28 using Otsu’s thresholding method, showing
that the threshold found (dashed black line) has a slight error towards ’other’ (shown in red) compared to sand (shown

in orange), caused by the peak in the sand class around the index value 1.4.

The variance for the land and sand class, used for the threshold calculation, is in昀氀uenced by this peak
of sand pixels in the PDF around the value 1.4, causing the threshold to shift towards a more positive
value. The result of this shift is that the cli昀昀 line is projected more landward, considering the index of
land is more positive than of sand. Since this mistake in the classi昀椀cation process varies per image, the
location of the cli昀昀 line also varies per image. This can be seen in Figure C.2
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Figure C.2: An example of variability for the timeseries of transect 22 caused by the error in threshold determination.

To con昀椀rm the variability in the timeseries is caused by this error and to get an insight into the
magnitude of this error, multiple images are evaluated and compared to the timeseries of a transect
visible in that image. For this analysis, transect 22 was chosen to compare to, considering small erosion
amounts and a high variability in the individual cli昀昀 line positions, making it a suitable transect to see
if the variability is in line with the classi昀椀cation and thresholding error.

In Figure C.3 the timeseries of transect 22 is given, with yellow markers to show what single images are
evaluated. If the variability is indeed a result from errors in the classi昀椀cation and threshold calculation,
it will be visible that images that are underneath the trend line have more misclassi昀椀ed sand pixels,
causing the cli昀昀 line to become more landward. If the image has a distance greater than the trend, less
misclassi昀椀ed sand pixels should be present.

Figure C.3: An example of variability for the timeseries of transect 22 caused by the error in threshold determination,
with the yellow marks representing single images that are evaluated.

If the variability is indeed caused by the error in the classi昀椀cation process and the subsequent threshold
calculation, it is expected that the image of early 2016 and 2017 show more misclassi昀椀ed sand pixels
than the image of late 2017. Again, the image of early 2019 should show more misclassi昀椀ed sand pixels
than the images of late 2019 and early 2020. The same should be seen for the images of 2021 and 2022;
late 2022 should contain the most wrongly classi昀椀ed sand pixels, compared to late 2021. Underneath,
the images are presented that were used for this analysis. In green circles, the areas where the sand
pixels are most often mistakenly classi昀椀ed are highlighted with green circles, as well as the location in
the probability density function where these pixels cause a peak.
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Figure C.4: A composite image of January 2016 used for 昀椀nding the in昀氀uence of mistakes in the classifying process,
causing a variability in the timeseries.

Figure C.5: A composite image of January 2017 used for 昀椀nding the in昀氀uence of mistakes in the classifying process,
causing a variability in the timeseries.
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Figure C.6: A composite image of December 2017 used for 昀椀nding the in昀氀uence of mistakes in the classifying process,
causing a variability in the timeseries.

As can be seen, there is indeed a di昀昀erence in the amount of sand pixels that are classi昀椀ed incorrectly.
Especially for the image of January 2016 (Figure C.4), there are more mistakes made during the
classi昀椀cation process than in December 2017 (Figure C.6), showing that the variability can indeed
be caused by this classi昀椀cation. A peak in sand pixels around an index value of 1.4 in the probability
density function is not observed. It is however visible that the threshold determined for December 2017
is more in the middle between sand and ’other’ than the threshold determined for both images from
January.

Figure C.7: A composite image of March 2019 used for 昀椀nding the in昀氀uence of mistakes in the classifying process,
causing a variability in the timeseries.
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Figure C.8: A composite image of August 2019 used for 昀椀nding the in昀氀uence of mistakes in the classifying process,
causing a variability in the timeseries.

Figure C.9: A composite image of October 2019 used for 昀椀nding the in昀氀uence of mistakes in the classifying process,
causing a variability in the timeseries.
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Figure C.10: A composite image of April 2020 used for 昀椀nding the in昀氀uence of mistakes in the classifying process,
causing a variability in the timeseries.

In this series of images it can be clearly seen that the image of March 2019, presented in Figure C.7, has
a lot of misclassi昀椀ed sand pixels. There is even a clear peak present in the probability density function,
shifting the threshold to a more positive index value. In the other images, it can be seen that a lot less
pixels are mistakenly classi昀椀ed, and it can be seen that in October 2019 (Figure C.9 the least errors are
present. This is in line with the cli昀昀 line position being position the furthest away from the base point
on land, as can be seen in Figure C.3.

From this evaluation can be concluded that the errors in the classi昀椀cation process and the subsequent
thresholding calculation cause a variation for the cli昀昀 line position. The biggest di昀昀erence that is
observed caused by this error is less than 7.5 meters, between March and October 2019. Considering
that the composite image technique causes a big di昀昀erence between land and sand pictures around the
cli昀昀 line, the interpolated index values between pixels have a steep transition, causing the error to be
of a small magnitude. If the di昀昀erence in index value between land and sand pixels near the cli昀昀 line is
smaller, the error caused by this process will have a higher magnitude, as shown in Figure C.11.

Figure C.11: A visual presentation on how the magnitude of the error is in昀氀uenced by the di昀昀erence in index value
between pixels.
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In this research, the e昀昀ect of the error is limited by training classi昀椀ers for every apart region of interest,
reducing the error in the classi昀椀cation process. It can, however, also be limited by evaluating other
thresholding methods, considering there are possibly thresholding methods that are more robust for
these classi昀椀cation errors. To make the model more robust, it is thus advised to evaluate di昀昀erent
thresholding methods in future research.


